MyArxiv
Computation and Language 73
☆ Prometheus 2: An Open Source Language Model Specialized in Evaluating Other Language Models
Proprietary LMs such as GPT-4 are often employed to assess the quality of responses from various LMs. However, concerns including transparency, controllability, and affordability strongly motivate the development of open-source LMs specialized in evaluations. On the other hand, existing open evaluator LMs exhibit critical shortcomings: 1) they issue scores that significantly diverge from those assigned by humans, and 2) they lack the flexibility to perform both direct assessment and pairwise ranking, the two most prevalent forms of assessment. Additionally, they do not possess the ability to evaluate based on custom evaluation criteria, focusing instead on general attributes like helpfulness and harmlessness. To address these issues, we introduce Prometheus 2, a more powerful evaluator LM than its predecessor that closely mirrors human and GPT-4 judgements. Moreover, it is capable of processing both direct assessment and pair-wise ranking formats grouped with a user-defined evaluation criteria. On four direct assessment benchmarks and four pairwise ranking benchmarks, Prometheus 2 scores the highest correlation and agreement with humans and proprietary LM judges among all tested open evaluator LMs. Our models, code, and data are all publicly available at https://github.com/prometheus-eval/prometheus-eval.
comment: Work in Progress
☆ FLAME: Factuality-Aware Alignment for Large Language Models
Alignment is a standard procedure to fine-tune pre-trained large language models (LLMs) to follow natural language instructions and serve as helpful AI assistants. We have observed, however, that the conventional alignment process fails to enhance the factual accuracy of LLMs, and often leads to the generation of more false facts (i.e. hallucination). In this paper, we study how to make the LLM alignment process more factual, by first identifying factors that lead to hallucination in both alignment steps:\ supervised fine-tuning (SFT) and reinforcement learning (RL). In particular, we find that training the LLM on new knowledge or unfamiliar texts can encourage hallucination. This makes SFT less factual as it trains on human labeled data that may be novel to the LLM. Furthermore, reward functions used in standard RL can also encourage hallucination, because it guides the LLM to provide more helpful responses on a diverse set of instructions, often preferring longer and more detailed responses. Based on these observations, we propose factuality-aware alignment, comprised of factuality-aware SFT and factuality-aware RL through direct preference optimization. Experiments show that our proposed factuality-aware alignment guides LLMs to output more factual responses while maintaining instruction-following capability.
☆ D2PO: Discriminator-Guided DPO with Response Evaluation Models
Varied approaches for aligning language models have been proposed, including supervised fine-tuning, RLHF, and direct optimization methods such as DPO. Although DPO has rapidly gained popularity due to its straightforward training process and competitive results, there is an open question of whether there remain practical advantages of using a discriminator, like a reward model, to evaluate responses. We propose D2PO, discriminator-guided DPO, an approach for the online setting where preferences are being collected throughout learning. As we collect gold preferences, we use these not only to train our policy, but to train a discriminative response evaluation model to silver-label even more synthetic data for policy training. We explore this approach across a set of diverse tasks, including a realistic chat setting, we find that our approach leads to higher-quality outputs compared to DPO with the same data budget, and greater efficiency in terms of preference data requirements. Furthermore, we show conditions under which silver labeling is most helpful: it is most effective when training the policy with DPO, outperforming traditional PPO, and benefits from maintaining a separate discriminator from the policy model.
comment: 20 pages, 12 figures
☆ Analyzing the Role of Semantic Representations in the Era of Large Language Models NAACL 2024
Traditionally, natural language processing (NLP) models often use a rich set of features created by linguistic expertise, such as semantic representations. However, in the era of large language models (LLMs), more and more tasks are turned into generic, end-to-end sequence generation problems. In this paper, we investigate the question: what is the role of semantic representations in the era of LLMs? Specifically, we investigate the effect of Abstract Meaning Representation (AMR) across five diverse NLP tasks. We propose an AMR-driven chain-of-thought prompting method, which we call AMRCoT, and find that it generally hurts performance more than it helps. To investigate what AMR may have to offer on these tasks, we conduct a series of analysis experiments. We find that it is difficult to predict which input examples AMR may help or hurt on, but errors tend to arise with multi-word expressions, named entities, and in the final inference step where the LLM must connect its reasoning over the AMR to its prediction. We recommend focusing on these areas for future work in semantic representations for LLMs. Our code: https://github.com/causalNLP/amr_llm.
comment: NAACL 2024
☆ Controllable Text Generation in the Instruction-Tuning Era
While most research on controllable text generation has focused on steering base Language Models, the emerging instruction-tuning and prompting paradigm offers an alternate approach to controllability. We compile and release ConGenBench, a testbed of 17 different controllable generation tasks, using a subset of it to benchmark the performance of 9 different baselines and methods on Instruction-tuned Language Models. To our surprise, we find that prompting-based approaches outperform controllable text generation methods on most datasets and tasks, highlighting a need for research on controllable text generation with Instruction-tuned Language Models in specific. Prompt-based approaches match human performance on most stylistic tasks while lagging on structural tasks, foregrounding a need to study more varied constraints and more challenging stylistic tasks. To facilitate such research, we provide an algorithm that uses only a task dataset and a Large Language Model with in-context capabilities to automatically generate a constraint dataset. This method eliminates the fields dependence on pre-curated constraint datasets, hence vastly expanding the range of constraints that can be studied in the future.
☆ MANTIS: Interleaved Multi-Image Instruction Tuning
The recent years have witnessed a great array of large multimodal models (LMMs) to effectively solve single-image vision language tasks. However, their abilities to solve multi-image visual language tasks is yet to be improved. The existing multi-image LMMs (e.g. OpenFlamingo, Emu, Idefics, etc) mostly gain their multi-image ability through pre-training on hundreds of millions of noisy interleaved image-text data from web, which is neither efficient nor effective. In this paper, we aim at building strong multi-image LMMs via instruction tuning with academic-level resources. Therefore, we meticulously construct Mantis-Instruct containing 721K instances from 14 multi-image datasets. We design Mantis-Instruct to cover different multi-image skills like co-reference, reasoning, comparing, temporal understanding. We combine Mantis-Instruct with several single-image visual-language datasets to train our model Mantis to handle any interleaved image-text inputs. We evaluate the trained Mantis on five multi-image benchmarks and eight single-image benchmarks. Though only requiring academic-level resources (i.e. 36 hours on 16xA100-40G), Mantis-8B can achieve state-of-the-art performance on all the multi-image benchmarks and beats the existing best multi-image LMM Idefics2-8B by an average of 9 absolute points. We observe that Mantis performs equivalently well on the held-in and held-out evaluation benchmarks. We further evaluate Mantis on single-image benchmarks and demonstrate that Mantis can maintain a strong single-image performance on par with CogVLM and Emu2. Our results are particularly encouraging as it shows that low-cost instruction tuning is indeed much more effective than intensive pre-training in terms of building multi-image LMMs.
comment: 9 pages, 3 figures
☆ NeMo-Aligner: Scalable Toolkit for Efficient Model Alignment
Aligning Large Language Models (LLMs) with human values and preferences is essential for making them helpful and safe. However, building efficient tools to perform alignment can be challenging, especially for the largest and most competent LLMs which often contain tens or hundreds of billions of parameters. We create NeMo-Aligner, a toolkit for model alignment that can efficiently scale to using hundreds of GPUs for training. NeMo-Aligner comes with highly optimized and scalable implementations for major paradigms of model alignment such as: Reinforcement Learning from Human Feedback (RLHF), Direct Preference Optimization (DPO), SteerLM, and Self-Play Fine-Tuning (SPIN). Additionally, our toolkit supports running most of the alignment techniques in a Parameter Efficient Fine-Tuning (PEFT) setting. NeMo-Aligner is designed for extensibility, allowing support for other alignment techniques with minimal effort. It is open-sourced with Apache 2.0 License and we invite community contributions at https://github.com/NVIDIA/NeMo-Aligner
comment: 13 pages, 4 figures
☆ V-FLUTE: Visual Figurative Language Understanding with Textual Explanations
Large Vision-Language models (VLMs) have demonstrated strong reasoning capabilities in tasks requiring a fine-grained understanding of literal images and text, such as visual question-answering or visual entailment. However, there has been little exploration of these models' capabilities when presented with images and captions containing figurative phenomena such as metaphors or humor, the meaning of which is often implicit. To close this gap, we propose a new task and a high-quality dataset: Visual Figurative Language Understanding with Textual Explanations (V-FLUTE). We frame the visual figurative language understanding problem as an explainable visual entailment task, where the model has to predict whether the image (premise) entails a claim (hypothesis) and justify the predicted label with a textual explanation. Using a human-AI collaboration framework, we build a high-quality dataset, V-FLUTE, that contains 6,027 instances spanning five diverse multimodal figurative phenomena: metaphors, similes, idioms, sarcasm, and humor. The figurative phenomena can be present either in the image, the caption, or both. We further conduct both automatic and human evaluations to assess current VLMs' capabilities in understanding figurative phenomena.
☆ WildChat: 1M ChatGPT Interaction Logs in the Wild ICLR 2024
Chatbots such as GPT-4 and ChatGPT are now serving millions of users. Despite their widespread use, there remains a lack of public datasets showcasing how these tools are used by a population of users in practice. To bridge this gap, we offered free access to ChatGPT for online users in exchange for their affirmative, consensual opt-in to anonymously collect their chat transcripts and request headers. From this, we compiled WildChat, a corpus of 1 million user-ChatGPT conversations, which consists of over 2.5 million interaction turns. We compare WildChat with other popular user-chatbot interaction datasets, and find that our dataset offers the most diverse user prompts, contains the largest number of languages, and presents the richest variety of potentially toxic use-cases for researchers to study. In addition to timestamped chat transcripts, we enrich the dataset with demographic data, including state, country, and hashed IP addresses, alongside request headers. This augmentation allows for more detailed analysis of user behaviors across different geographical regions and temporal dimensions. Finally, because it captures a broad range of use cases, we demonstrate the dataset's potential utility in fine-tuning instruction-following models. WildChat is released at https://wildchat.allen.ai under AI2 ImpACT Licenses.
comment: accepted by ICLR 2024
☆ UQA: Corpus for Urdu Question Answering
This paper introduces UQA, a novel dataset for question answering and text comprehension in Urdu, a low-resource language with over 70 million native speakers. UQA is generated by translating the Stanford Question Answering Dataset (SQuAD2.0), a large-scale English QA dataset, using a technique called EATS (Enclose to Anchor, Translate, Seek), which preserves the answer spans in the translated context paragraphs. The paper describes the process of selecting and evaluating the best translation model among two candidates: Google Translator and Seamless M4T. The paper also benchmarks several state-of-the-art multilingual QA models on UQA, including mBERT, XLM-RoBERTa, and mT5, and reports promising results. For XLM-RoBERTa-XL, we have an F1 score of 85.99 and 74.56 EM. UQA is a valuable resource for developing and testing multilingual NLP systems for Urdu and for enhancing the cross-lingual transferability of existing models. Further, the paper demonstrates the effectiveness of EATS for creating high-quality datasets for other languages and domains. The UQA dataset and the code are publicly available at www.github.com/sameearif/UQA.
☆ MiniGPT-3D: Efficiently Aligning 3D Point Clouds with Large Language Models using 2D Priors
Large 2D vision-language models (2D-LLMs) have gained significant attention by bridging Large Language Models (LLMs) with images using a simple projector. Inspired by their success, large 3D point cloud-language models (3D-LLMs) also integrate point clouds into LLMs. However, directly aligning point clouds with LLM requires expensive training costs, typically in hundreds of GPU-hours on A100, which hinders the development of 3D-LLMs. In this paper, we introduce MiniGPT-3D, an efficient and powerful 3D-LLM that achieves multiple SOTA results while training for only 27 hours on one RTX 3090. Specifically, we propose to align 3D point clouds with LLMs using 2D priors from 2D-LLMs, which can leverage the similarity between 2D and 3D visual information. We introduce a novel four-stage training strategy for modality alignment in a cascaded way, and a mixture of query experts module to adaptively aggregate features with high efficiency. Moreover, we utilize parameter-efficient fine-tuning methods LoRA and Norm fine-tuning, resulting in only 47.8M learnable parameters, which is up to 260x fewer than existing methods. Extensive experiments show that MiniGPT-3D achieves SOTA on 3D object classification and captioning tasks, with significantly cheaper training costs. Notably, MiniGPT-3D gains an 8.12 increase on GPT-4 evaluation score for the challenging object captioning task compared to ShapeLLM-13B, while the latter costs 160 total GPU-hours on 8 A800. We are the first to explore the efficient 3D-LLM, offering new insights to the community. Code and weights are available at https://github.com/TangYuan96/MiniGPT-3D.
comment: 17 pages, 9 figures
☆ Unsupervised Flow Discovery from Task-oriented Dialogues
The design of dialogue flows is a critical but time-consuming task when developing task-oriented dialogue (TOD) systems. We propose an approach for the unsupervised discovery of flows from dialogue history, thus making the process applicable to any domain for which such an history is available. Briefly, utterances are represented in a vector space and clustered according to their semantic similarity. Clusters, which can be seen as dialogue states, are then used as the vertices of a transition graph for representing the flows visually. We present concrete examples of flows, discovered from MultiWOZ, a public TOD dataset. We further elaborate on their significance and relevance for the underlying conversations and introduce an automatic validation metric for their assessment. Experimental results demonstrate the potential of the proposed approach for extracting meaningful flows from task-oriented conversations.
comment: 12 pages, 4 figures
☆ Verification and Refinement of Natural Language Explanations through LLM-Symbolic Theorem Proving
Natural language explanations have become a proxy for evaluating explainable and multi-step Natural Language Inference (NLI) models. However, assessing the validity of explanations for NLI is challenging as it typically involves the crowd-sourcing of apposite datasets, a process that is time-consuming and prone to logical errors. To address existing limitations, this paper investigates the verification and refinement of natural language explanations through the integration of Large Language Models (LLMs) and Theorem Provers (TPs). Specifically, we present a neuro-symbolic framework, named Explanation-Refiner, that augments a TP with LLMs to generate and formalise explanatory sentences and suggest potential inference strategies for NLI. In turn, the TP is employed to provide formal guarantees on the logical validity of the explanations and to generate feedback for subsequent improvements. We demonstrate how Explanation-Refiner can be jointly used to evaluate explanatory reasoning, autoformalisation, and error correction mechanisms of state-of-the-art LLMs as well as to automatically enhance the quality of human-annotated explanations of variable complexity in different domains.
☆ Topics in the Study of the Pragmatic Functions of Phonetic Reduction in Dialog
Reduced articulatory precision is common in speech, but for dialog its acoustic properties and pragmatic functions have been little studied. We here try to remedy this gap. This technical report contains content that was omitted from the journal article (Ward et al. 2024, submitted). Specifically, we here report 1) lessons learned about annotating for perceived reduction, 2) the finding that, unlike in read speech, the correlates of reduction in dialog include high pitch, wide pitch range, and intensity, and 3) a baseline model for predicting reduction in dialog, using simple acoustic/prosodic features, that achieves correlations with human perceptions of 0.24 for English, and 0.17 for Spanish. We also provide examples of additional possible pragmatic functions of reduction in English, and various discussion, observations and speculations
☆ GAIA: A General AI Assistant for Intelligent Accelerator Operations
Large-scale machines like particle accelerators are usually run by a team of experienced operators. In case of a particle accelerator, these operators possess suitable background knowledge on both accelerator physics and the technology comprising the machine. Due to the complexity of the machine, particular subsystems of the machine are taken care of by experts, who the operators can turn to. In this work the reasoning and action (ReAct) prompting paradigm is used to couple an open-weights large language model (LLM) with a high-level machine control system framework and other tools, e.g. the electronic logbook or machine design documentation. By doing so, a multi-expert retrieval augmented generation (RAG) system is implemented, which assists operators in knowledge retrieval tasks, interacts with the machine directly if needed, or writes high level control system scripts. This consolidation of expert knowledge and machine interaction can simplify and speed up machine operation tasks for both new and experienced human operators.
☆ The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights
Bridging the significant gap between large language model's English and non-English performance presents a great challenge. While some previous studies attempt to mitigate this gap with translated training data, the recently proposed question alignment approach leverages the model's English expertise to improve multilingual performance with minimum usage of expensive, error-prone translation. In this paper, we explore how broadly this method can be applied by examining its effects in reasoning with executable code and reasoning with common sense. We also explore how to apply this approach efficiently to extremely large language models using proxy-tuning. Experiment results on multilingual reasoning benchmarks mGSM, mSVAMP and xCSQA demonstrate that the question alignment approach can be used to boost multilingual performance across diverse reasoning scenarios, model families, and sizes. For instance, when applied to the LLaMA2 models, our method brings an average accuracy improvements of 12.2% on mGSM even with the 70B model. To understand the mechanism of its success, we analyze representation space, chain-of-thought and translation data scales, which reveals how question translation training strengthens language alignment within LLMs and shapes their working patterns.
☆ Overcoming LLM Challenges using RAG-Driven Precision in Coffee Leaf Disease Remediation
This research introduces an innovative AI-driven precision agriculture system, leveraging YOLOv8 for disease identification and Retrieval Augmented Generation (RAG) for context-aware diagnosis. Focused on addressing the challenges of diseases affecting the coffee production sector in Karnataka, The system integrates sophisticated object detection techniques with language models to address the inherent constraints associated with Large Language Models (LLMs). Our methodology not only tackles the issue of hallucinations in LLMs, but also introduces dynamic disease identification and remediation strategies. Real-time monitoring, collaborative dataset expansion, and organizational involvement ensure the system's adaptability in diverse agricultural settings. The effect of the suggested system extends beyond automation, aiming to secure food supplies, protect livelihoods, and promote eco-friendly farming practices. By facilitating precise disease identification, the system contributes to sustainable and environmentally conscious agriculture, reducing reliance on pesticides. Looking to the future, the project envisions continuous development in RAG-integrated object detection systems, emphasizing scalability, reliability, and usability. This research strives to be a beacon for positive change in agriculture, aligning with global efforts toward sustainable and technologically enhanced food production.
comment: 6 pages, 3 figures
☆ The Effectiveness of LLMs as Annotators: A Comparative Overview and Empirical Analysis of Direct Representation LREC
Large Language Models (LLMs) have emerged as powerful support tools across various natural language tasks and a range of application domains. Recent studies focus on exploring their capabilities for data annotation. This paper provides a comparative overview of twelve studies investigating the potential of LLMs in labelling data. While the models demonstrate promising cost and time-saving benefits, there exist considerable limitations, such as representativeness, bias, sensitivity to prompt variations and English language preference. Leveraging insights from these studies, our empirical analysis further examines the alignment between human and GPT-generated opinion distributions across four subjective datasets. In contrast to the studies examining representation, our methodology directly obtains the opinion distribution from GPT. Our analysis thereby supports the minority of studies that are considering diverse perspectives when evaluating data annotation tasks and highlights the need for further research in this direction.
comment: LREC-COLING NLPerspectives workshop
☆ Low-resource speech recognition and dialect identification of Irish in a multi-task framework
This paper explores the use of Hybrid CTC/Attention encoder-decoder models trained with Intermediate CTC (InterCTC) for Irish (Gaelic) low-resource speech recognition (ASR) and dialect identification (DID). Results are compared to the current best performing models trained for ASR (TDNN-HMM) and DID (ECAPA-TDNN). An optimal InterCTC setting is initially established using a Conformer encoder. This setting is then used to train a model with an E-branchformer encoder and the performance of both architectures are compared. A multi-task fine-tuning approach is adopted for language model (LM) shallow fusion. The experiments yielded an improvement in DID accuracy of 10.8% relative to a baseline ECAPA-TDNN, and WER performance approaching the TDNN-HMM model. This multi-task approach emerges as a promising strategy for Irish low-resource ASR and DID.
comment: 7 pages. Accepted to Odyssey 2024 - The Speaker and Language Recognition Workshop
☆ Reinforcement Learning for Edit-Based Non-Autoregressive Neural Machine Translation
Non-autoregressive (NAR) language models are known for their low latency in neural machine translation (NMT). However, a performance gap exists between NAR and autoregressive models due to the large decoding space and difficulty in capturing dependency between target words accurately. Compounding this, preparing appropriate training data for NAR models is a non-trivial task, often exacerbating exposure bias. To address these challenges, we apply reinforcement learning (RL) to Levenshtein Transformer, a representative edit-based NAR model, demonstrating that RL with self-generated data can enhance the performance of edit-based NAR models. We explore two RL approaches: stepwise reward maximization and episodic reward maximization. We discuss the respective pros and cons of these two approaches and empirically verify them. Moreover, we experimentally investigate the impact of temperature setting on performance, confirming the importance of proper temperature setting for NAR models' training.
☆ Identification of Entailment and Contradiction Relations between Natural Language Sentences: A Neurosymbolic Approach
Natural language inference (NLI), also known as Recognizing Textual Entailment (RTE), is an important aspect of natural language understanding. Most research now uses machine learning and deep learning to perform this task on specific datasets, meaning their solution is not explainable nor explicit. To address the need for an explainable approach to RTE, we propose a novel pipeline that is based on translating text into an Abstract Meaning Representation (AMR) graph. For this we use a pre-trained AMR parser. We then translate the AMR graph into propositional logic and use a SAT solver for automated reasoning. In text, often commonsense suggests that an entailment (or contradiction) relationship holds between a premise and a claim, but because different wordings are used, this is not identified from their logical representations. To address this, we introduce relaxation methods to allow replacement or forgetting of some propositions. Our experimental results show this pipeline performs well on four RTE datasets.
Prompt engineering paradigms for medical applications: scoping review and recommendations for better practices
Prompt engineering is crucial for harnessing the potential of large language models (LLMs), especially in the medical domain where specialized terminology and phrasing is used. However, the efficacy of prompt engineering in the medical domain remains to be explored. In this work, 114 recent studies (2022-2024) applying prompt engineering in medicine, covering prompt learning (PL), prompt tuning (PT), and prompt design (PD) are reviewed. PD is the most prevalent (78 articles). In 12 papers, PD, PL, and PT terms were used interchangeably. ChatGPT is the most commonly used LLM, with seven papers using it for processing sensitive clinical data. Chain-of-Thought emerges as the most common prompt engineering technique. While PL and PT articles typically provide a baseline for evaluating prompt-based approaches, 64% of PD studies lack non-prompt-related baselines. We provide tables and figures summarizing existing work, and reporting recommendations to guide future research contributions.
☆ Boosting Jailbreak Attack with Momentum ICLR 2024
Large Language Models (LLMs) have achieved remarkable success across diverse tasks, yet they remain vulnerable to adversarial attacks, notably the well-documented \textit{jailbreak} attack. Recently, the Greedy Coordinate Gradient (GCG) attack has demonstrated efficacy in exploiting this vulnerability by optimizing adversarial prompts through a combination of gradient heuristics and greedy search. However, the efficiency of this attack has become a bottleneck in the attacking process. To mitigate this limitation, in this paper we rethink the generation of adversarial prompts through an optimization lens, aiming to stabilize the optimization process and harness more heuristic insights from previous iterations. Specifically, we introduce the \textbf{M}omentum \textbf{A}ccelerated G\textbf{C}G (\textbf{MAC}) attack, which incorporates a momentum term into the gradient heuristic. Experimental results showcase the notable enhancement achieved by MAP in gradient-based attacks on aligned language models. Our code is available at https://github.com/weizeming/momentum-attack-llm.
comment: ICLR 2024 Workshop on Reliable and Responsible Foundation Models
☆ DMON: A Simple yet Effective Approach for Argument Structure Learning COLING 2024
Argument structure learning~(ASL) entails predicting relations between arguments. Because it can structure a document to facilitate its understanding, it has been widely applied in many fields~(medical, commercial, and scientific domains). Despite its broad utilization, ASL remains a challenging task because it involves examining the complex relationships between the sentences in a potentially unstructured discourse. To resolve this problem, we have developed a simple yet effective approach called Dual-tower Multi-scale cOnvolution neural Network~(DMON) for the ASL task. Specifically, we organize arguments into a relationship matrix that together with the argument embeddings forms a relationship tensor and design a mechanism to capture relations with contextual arguments. Experimental results on three different-domain argument mining datasets demonstrate that our framework outperforms state-of-the-art models. The code is available at https://github.com/VRCMF/DMON.git .
comment: COLING 2024
☆ TartuNLP at EvaLatin 2024: Emotion Polarity Detection
This paper presents the TartuNLP team submission to EvaLatin 2024 shared task of the emotion polarity detection for historical Latin texts. Our system relies on two distinct approaches to annotating training data for supervised learning: 1) creating heuristics-based labels by adopting the polarity lexicon provided by the organizers and 2) generating labels with GPT4. We employed parameter efficient fine-tuning using the adapters framework and experimented with both monolingual and cross-lingual knowledge transfer for training language and task adapters. Our submission with the LLM-generated labels achieved the overall first place in the emotion polarity detection task. Our results show that LLM-based annotations show promising results on texts in Latin.
comment: Accepted to The Third Workshop on Language Technologies for Historical and Ancient Languages (LT4HALA 2024)
☆ It Couldn't Help But Overhear: On the Limits of Modelling Meta-Communicative Grounding Acts with Supervised Learning
Active participation in a conversation is key to building common ground, since understanding is jointly tailored by producers and recipients. Overhearers are deprived of the privilege of performing grounding acts and can only conjecture about intended meanings. Still, data generation and annotation, modelling, training and evaluation of NLP dialogue models place reliance on the overhearing paradigm. How much of the underlying grounding processes are thereby forfeited? As we show, there is evidence pointing to the impossibility of properly modelling human meta-communicative acts with data-driven learning models. In this paper, we discuss this issue and provide a preliminary analysis on the variability of human decisions for requesting clarification. Most importantly, we wish to bring this topic back to the community's table, encouraging discussion on the consequences of having models designed to only "listen in".
comment: work in progress
☆ Efficient Data Generation for Source-grounded Information-seeking Dialogs: A Use Case for Meeting Transcripts
Existing methods for creating source-grounded information-seeking dialog datasets are often costly and hard to implement due to their sole reliance on human annotators. We propose combining large language models (LLMs) prompting with human expertise for more efficient and reliable data generation. Instead of the labor-intensive Wizard-of-Oz (WOZ) method, where two annotators generate a dialog from scratch, role-playing agent and user, we use LLM generation to simulate the two roles. Annotators then verify the output and augment it with attribution data. We demonstrate our method by constructing MISeD -- Meeting Information Seeking Dialogs dataset -- the first information-seeking dialog dataset focused on meeting transcripts. Models finetuned with MISeD demonstrate superior performance on our test set, as well as on a novel fully-manual WOZ test set and an existing query-based summarization benchmark, suggesting the utility of our approach.
☆ Silencing the Risk, Not the Whistle: A Semi-automated Text Sanitization Tool for Mitigating the Risk of Whistleblower Re-Identification
Whistleblowing is essential for ensuring transparency and accountability in both public and private sectors. However, (potential) whistleblowers often fear or face retaliation, even when reporting anonymously. The specific content of their disclosures and their distinct writing style may re-identify them as the source. Legal measures, such as the EU WBD, are limited in their scope and effectiveness. Therefore, computational methods to prevent re-identification are important complementary tools for encouraging whistleblowers to come forward. However, current text sanitization tools follow a one-size-fits-all approach and take an overly limited view of anonymity. They aim to mitigate identification risk by replacing typical high-risk words (such as person names and other NE labels) and combinations thereof with placeholders. Such an approach, however, is inadequate for the whistleblowing scenario since it neglects further re-identification potential in textual features, including writing style. Therefore, we propose, implement, and evaluate a novel classification and mitigation strategy for rewriting texts that involves the whistleblower in the assessment of the risk and utility. Our prototypical tool semi-automatically evaluates risk at the word/term level and applies risk-adapted anonymization techniques to produce a grammatically disjointed yet appropriately sanitized text. We then use a LLM that we fine-tuned for paraphrasing to render this text coherent and style-neutral. We evaluate our tool's effectiveness using court cases from the ECHR and excerpts from a real-world whistleblower testimony and measure the protection against authorship attribution (AA) attacks and utility loss statistically using the popular IMDb62 movie reviews dataset. Our method can significantly reduce AA accuracy from 98.81% to 31.22%, while preserving up to 73.1% of the original content's semantics.
comment: Accepted for publication at the ACM Conference on Fairness, Accountability, and Transparency 2024 (ACM FAccT'24). This is a preprint manuscript (authors' own version before final copy-editing)
☆ Few Shot Class Incremental Learning using Vision-Language models
Recent advancements in deep learning have demonstrated remarkable performance comparable to human capabilities across various supervised computer vision tasks. However, the prevalent assumption of having an extensive pool of training data encompassing all classes prior to model training often diverges from real-world scenarios, where limited data availability for novel classes is the norm. The challenge emerges in seamlessly integrating new classes with few samples into the training data, demanding the model to adeptly accommodate these additions without compromising its performance on base classes. To address this exigency, the research community has introduced several solutions under the realm of few-shot class incremental learning (FSCIL). In this study, we introduce an innovative FSCIL framework that utilizes language regularizer and subspace regularizer. During base training, the language regularizer helps incorporate semantic information extracted from a Vision-Language model. The subspace regularizer helps in facilitating the model's acquisition of nuanced connections between image and text semantics inherent to base classes during incremental training. Our proposed framework not only empowers the model to embrace novel classes with limited data, but also ensures the preservation of performance on base classes. To substantiate the efficacy of our approach, we conduct comprehensive experiments on three distinct FSCIL benchmarks, where our framework attains state-of-the-art performance.
comment: under review at Pattern Recognition Letters
☆ UniGen: Universal Domain Generalization for Sentiment Classification via Zero-shot Dataset Generation
Although pre-trained language models have exhibited great flexibility and versatility with prompt-based few-shot learning, they suffer from the extensive parameter size and limited applicability for inference. Recent studies have suggested that PLMs be used as dataset generators and a tiny task-specific model be trained to achieve efficient inference. However, their applicability to various domains is limited because they tend to generate domain-specific datasets. In this work, we propose a novel approach to universal domain generalization that generates a dataset regardless of the target domain. This allows for generalization of the tiny task model to any domain that shares the label space, thus enhancing the real-world applicability of the dataset generation paradigm. Our experiments indicate that the proposed method accomplishes generalizability across various domains while using a parameter set that is orders of magnitude smaller than PLMs.
☆ The IgboAPI Dataset: Empowering Igbo Language Technologies through Multi-dialectal Enrichment LREC
The Igbo language is facing a risk of becoming endangered, as indicated by a 2025 UNESCO study. This highlights the need to develop language technologies for Igbo to foster communication, learning and preservation. To create robust, impactful, and widely adopted language technologies for Igbo, it is essential to incorporate the multi-dialectal nature of the language. The primary obstacle in achieving dialectal-aware language technologies is the lack of comprehensive dialectal datasets. In response, we present the IgboAPI dataset, a multi-dialectal Igbo-English dictionary dataset, developed with the aim of enhancing the representation of Igbo dialects. Furthermore, we illustrate the practicality of the IgboAPI dataset through two distinct studies: one focusing on Igbo semantic lexicon and the other on machine translation. In the semantic lexicon project, we successfully establish an initial Igbo semantic lexicon for the Igbo semantic tagger, while in the machine translation study, we demonstrate that by finetuning existing machine translation systems using the IgboAPI dataset, we significantly improve their ability to handle dialectal variations in sentences.
comment: Accepted to the LREC-COLING 2024 conference
☆ Context-Aware Clustering using Large Language Models
Despite the remarkable success of Large Language Models (LLMs) in text understanding and generation, their potential for text clustering tasks remains underexplored. We observed that powerful closed-source LLMs provide good quality clusterings of entity sets but are not scalable due to the massive compute power required and the associated costs. Thus, we propose CACTUS (Context-Aware ClusTering with aUgmented triplet losS), a systematic approach that leverages open-source LLMs for efficient and effective supervised clustering of entity subsets, particularly focusing on text-based entities. Existing text clustering methods fail to effectively capture the context provided by the entity subset. Moreover, though there are several language modeling based approaches for clustering, very few are designed for the task of supervised clustering. This paper introduces a novel approach towards clustering entity subsets using LLMs by capturing context via a scalable inter-entity attention mechanism. We propose a novel augmented triplet loss function tailored for supervised clustering, which addresses the inherent challenges of directly applying the triplet loss to this problem. Furthermore, we introduce a self-supervised clustering task based on text augmentation techniques to improve the generalization of our model. For evaluation, we collect ground truth clusterings from a closed-source LLM and transfer this knowledge to an open-source LLM under the supervised clustering framework, allowing a faster and cheaper open-source model to perform the same task. Experiments on various e-commerce query and product clustering datasets demonstrate that our proposed approach significantly outperforms existing unsupervised and supervised baselines under various external clustering evaluation metrics.
comment: 16 pages
☆ On the Evaluation of Machine-Generated Reports SIGIR 2024
Large Language Models (LLMs) have enabled new ways to satisfy information needs. Although great strides have been made in applying them to settings like document ranking and short-form text generation, they still struggle to compose complete, accurate, and verifiable long-form reports. Reports with these qualities are necessary to satisfy the complex, nuanced, or multi-faceted information needs of users. In this perspective paper, we draw together opinions from industry and academia, and from a variety of related research areas, to present our vision for automatic report generation, and -- critically -- a flexible framework by which such reports can be evaluated. In contrast with other summarization tasks, automatic report generation starts with a detailed description of an information need, stating the necessary background, requirements, and scope of the report. Further, the generated reports should be complete, accurate, and verifiable. These qualities, which are desirable -- if not required -- in many analytic report-writing settings, require rethinking how to build and evaluate systems that exhibit these qualities. To foster new efforts in building these systems, we present an evaluation framework that draws on ideas found in various evaluations. To test completeness and accuracy, the framework uses nuggets of information, expressed as questions and answers, that need to be part of any high-quality generated report. Additionally, evaluation of citations that map claims made in the report to their source documents ensures verifiability.
comment: 12 pages, 4 figures, accepted at SIGIR 2024 as perspective paper
☆ Bayesian Optimization with LLM-Based Acquisition Functions for Natural Language Preference Elicitation
Designing preference elicitation (PE) methodologies that can quickly ascertain a user's top item preferences in a cold-start setting is a key challenge for building effective and personalized conversational recommendation (ConvRec) systems. While large language models (LLMs) constitute a novel technology that enables fully natural language (NL) PE dialogues, we hypothesize that monolithic LLM NL-PE approaches lack the multi-turn, decision-theoretic reasoning required to effectively balance the NL exploration and exploitation of user preferences towards an arbitrary item set. In contrast, traditional Bayesian optimization PE methods define theoretically optimal PE strategies, but fail to use NL item descriptions or generate NL queries, unrealistically assuming users can express preferences with direct item ratings and comparisons. To overcome the limitations of both approaches, we formulate NL-PE in a Bayesian Optimization (BO) framework that seeks to generate NL queries which actively elicit natural language feedback to reduce uncertainty over item utilities to identify the best recommendation. We demonstrate our framework in a novel NL-PE algorithm, PEBOL, which uses Natural Language Inference (NLI) between user preference utterances and NL item descriptions to maintain preference beliefs and BO strategies such as Thompson Sampling (TS) and Upper Confidence Bound (UCB) to guide LLM query generation. We numerically evaluate our methods in controlled experiments, finding that PEBOL achieves up to 131% improvement in MAP@10 after 10 turns of cold start NL-PE dialogue compared to monolithic GPT-3.5, despite relying on a much smaller 400M parameter NLI model for preference inference.
☆ A Hong Kong Sign Language Corpus Collected from Sign-interpreted TV News LREC
This paper introduces TVB-HKSL-News, a new Hong Kong sign language (HKSL) dataset collected from a TV news program over a period of 7 months. The dataset is collected to enrich resources for HKSL and support research in large-vocabulary continuous sign language recognition (SLR) and translation (SLT). It consists of 16.07 hours of sign videos of two signers with a vocabulary of 6,515 glosses (for SLR) and 2,850 Chinese characters or 18K Chinese words (for SLT). One signer has 11.66 hours of sign videos and the other has 4.41 hours. One objective in building the dataset is to support the investigation of how well large-vocabulary continuous sign language recognition/translation can be done for a single signer given a (relatively) large amount of his/her training data, which could potentially lead to the development of new modeling methods. Besides, most parts of the data collection pipeline are automated with little human intervention; we believe that our collection method can be scaled up to collect more sign language data easily for SLT in the future for any sign languages if such sign-interpreted videos are available. We also run a SOTA SLR/SLT model on the dataset and get a baseline SLR word error rate of 34.08% and a baseline SLT BLEU-4 score of 23.58 for benchmarking future research on the dataset.
comment: Accepted by LREC-COLING 2024
☆ Language Fairness in Multilingual Information Retrieval SIGIR 2024
Multilingual information retrieval (MLIR) considers the problem of ranking documents in several languages for a query expressed in a language that may differ from any of those languages. Recent work has observed that approaches such as combining ranked lists representing a single document language each or using multilingual pretrained language models demonstrate a preference for one language over others. This results in systematic unfair treatment of documents in different languages. This work proposes a language fairness metric to evaluate whether documents across different languages are fairly ranked through statistical equivalence testing using the Kruskal-Wallis test. In contrast to most prior work in group fairness, we do not consider any language to be an unprotected group. Thus our proposed measure, PEER (Probability of EqualExpected Rank), is the first fairness metric specifically designed to capture the language fairness of MLIR systems. We demonstrate the behavior of PEER on artificial ranked lists. We also evaluate real MLIR systems on two publicly available benchmarks and show that the PEER scores align with prior analytical findings on MLIR fairness. Our implementation is compatible with ir-measures and is available at http://github.com/hltcoe/peer_measure.
comment: 5 pages, 1 figure, accepted at SIGIR 2024 as short paper
☆ Distillation for Multilingual Information Retrieval SIGIR 2024
Recent work in cross-language information retrieval (CLIR), where queries and documents are in different languages, has shown the benefit of the Translate-Distill framework that trains a cross-language neural dual-encoder model using translation and distillation. However, Translate-Distill only supports a single document language. Multilingual information retrieval (MLIR), which ranks a multilingual document collection, is harder to train than CLIR because the model must assign comparable relevance scores to documents in different languages. This work extends Translate-Distill and propose Multilingual Translate-Distill (MTD) for MLIR. We show that ColBERT-X models trained with MTD outperform their counterparts trained ith Multilingual Translate-Train, which is the previous state-of-the-art training approach, by 5% to 25% in nDCG@20 and 15% to 45% in MAP. We also show that the model is robust to the way languages are mixed in training batches. Our implementation is available on GitHub.
comment: 6 pages, 1 figure, accepted at SIGIR 2024 as short paper
☆ PLAID SHIRTTT for Large-Scale Streaming Dense Retrieval SIGIR 2024
PLAID, an efficient implementation of the ColBERT late interaction bi-encoder using pretrained language models for ranking, consistently achieves state-of-the-art performance in monolingual, cross-language, and multilingual retrieval. PLAID differs from ColBERT by assigning terms to clusters and representing those terms as cluster centroids plus compressed residual vectors. While PLAID is effective in batch experiments, its performance degrades in streaming settings where documents arrive over time because representations of new tokens may be poorly modeled by the earlier tokens used to select cluster centroids. PLAID Streaming Hierarchical Indexing that Runs on Terabytes of Temporal Text (PLAID SHIRTTT) addresses this concern using multi-phase incremental indexing based on hierarchical sharding. Experiments on ClueWeb09 and the multilingual NeuCLIR collection demonstrate the effectiveness of this approach both for the largest collection indexed to date by the ColBERT architecture and in the multilingual setting, respectively.
comment: 5 pages, 1 figure, accepted at SIGIR 2024 as short paper
☆ CACTUS: Chemistry Agent Connecting Tool-Usage to Science
Large language models (LLMs) have shown remarkable potential in various domains, but they often lack the ability to access and reason over domain-specific knowledge and tools. In this paper, we introduced CACTUS (Chemistry Agent Connecting Tool-Usage to Science), an LLM-based agent that integrates cheminformatics tools to enable advanced reasoning and problem-solving in chemistry and molecular discovery. We evaluate the performance of CACTUS using a diverse set of open-source LLMs, including Gemma-7b, Falcon-7b, MPT-7b, Llama2-7b, and Mistral-7b, on a benchmark of thousands of chemistry questions. Our results demonstrate that CACTUS significantly outperforms baseline LLMs, with the Gemma-7b and Mistral-7b models achieving the highest accuracy regardless of the prompting strategy used. Moreover, we explore the impact of domain-specific prompting and hardware configurations on model performance, highlighting the importance of prompt engineering and the potential for deploying smaller models on consumer-grade hardware without significant loss in accuracy. By combining the cognitive capabilities of open-source LLMs with domain-specific tools, CACTUS can assist researchers in tasks such as molecular property prediction, similarity searching, and drug-likeness assessment. Furthermore, CACTUS represents a significant milestone in the field of cheminformatics, offering an adaptable tool for researchers engaged in chemistry and molecular discovery. By integrating the strengths of open-source LLMs with domain-specific tools, CACTUS has the potential to accelerate scientific advancement and unlock new frontiers in the exploration of novel, effective, and safe therapeutic candidates, catalysts, and materials. Moreover, CACTUS's ability to integrate with automated experimentation platforms and make data-driven decisions in real time opens up new possibilities for autonomous discovery.
☆ How Can I Get It Right? Using GPT to Rephrase Incorrect Trainee Responses
One-on-one tutoring is widely acknowledged as an effective instructional method, conditioned on qualified tutors. However, the high demand for qualified tutors remains a challenge, often necessitating the training of novice tutors (i.e., trainees) to ensure effective tutoring. Research suggests that providing timely explanatory feedback can facilitate the training process for trainees. However, it presents challenges due to the time-consuming nature of assessing trainee performance by human experts. Inspired by the recent advancements of large language models (LLMs), our study employed the GPT-4 model to build an explanatory feedback system. This system identifies trainees' responses in binary form (i.e., correct/incorrect) and automatically provides template-based feedback with responses appropriately rephrased by the GPT-4 model. We conducted our study on 410 responses from trainees across three training lessons: Giving Effective Praise, Reacting to Errors, and Determining What Students Know. Our findings indicate that: 1) using a few-shot approach, the GPT-4 model effectively identifies correct/incorrect trainees' responses from three training lessons with an average F1 score of 0.84 and an AUC score of 0.85; and 2) using the few-shot approach, the GPT-4 model adeptly rephrases incorrect trainees' responses into desired responses, achieving performance comparable to that of human experts.
comment: International Journal of Artificial Intelligence in Education
☆ Efficient Compression of Multitask Multilingual Speech Models
Whisper is a multitask and multilingual speech model covering 99 languages. It yields commendable automatic speech recognition (ASR) results in a subset of its covered languages, but the model still underperforms on a non-negligible number of under-represented languages, a problem exacerbated in smaller model versions. In this work, we examine its limitations, demonstrating the presence of speaker-related (gender, age) and model-related (resourcefulness and model size) bias. Despite that, we show that only model-related bias are amplified by quantization, impacting more low-resource languages and smaller models. Searching for a better compression approach, we propose DistilWhisper, an approach that is able to bridge the performance gap in ASR for these languages while retaining the advantages of multitask and multilingual capabilities. Our approach involves two key strategies: lightweight modular ASR fine-tuning of whisper-small using language-specific experts, and knowledge distillation from whisper-large-v2. This dual approach allows us to effectively boost ASR performance while keeping the robustness inherited from the multitask and multilingual pre-training. Results demonstrate that our approach is more effective than standard fine-tuning or LoRA adapters, boosting performance in the targeted languages for both in- and out-of-domain test sets, while introducing only a negligible parameter overhead at inference.
comment: Master Thesis
☆ The Role of Model Architecture and Scale in Predicting Molecular Properties: Insights from Fine-Tuning RoBERTa, BART, and LLaMA
This study introduces a systematic framework to compare the efficacy of Large Language Models (LLMs) for fine-tuning across various cheminformatics tasks. Employing a uniform training methodology, we assessed three well-known models-RoBERTa, BART, and LLaMA-on their ability to predict molecular properties using the Simplified Molecular Input Line Entry System (SMILES) as a universal molecular representation format. Our comparative analysis involved pre-training 18 configurations of these models, with varying parameter sizes and dataset scales, followed by fine-tuning them on six benchmarking tasks from DeepChem. We maintained consistent training environments across models to ensure reliable comparisons. This approach allowed us to assess the influence of model type, size, and training dataset size on model performance. Specifically, we found that LLaMA-based models generally offered the lowest validation loss, suggesting their superior adaptability across tasks and scales. However, we observed that absolute validation loss is not a definitive indicator of model performance - contradicts previous research - at least for fine-tuning tasks: instead, model size plays a crucial role. Through rigorous replication and validation, involving multiple training and fine-tuning cycles, our study not only delineates the strengths and limitations of each model type but also provides a robust methodology for selecting the most suitable LLM for specific cheminformatics applications. This research underscores the importance of considering model architecture and dataset characteristics in deploying AI for molecular property prediction, paving the way for more informed and effective utilization of AI in drug discovery and related fields.
☆ Modeling Empathetic Alignment in Conversation NAACL 2024
Empathy requires perspective-taking: empathetic responses require a person to reason about what another has experienced and communicate that understanding in language. However, most NLP approaches to empathy do not explicitly model this alignment process. Here, we introduce a new approach to recognizing alignment in empathetic speech, grounded in Appraisal Theory. We introduce a new dataset of over 9.2K span-level annotations of different types of appraisals of a person's experience and over 3K empathetic alignments between a speaker's and observer's speech. Through computational experiments, we show that these appraisals and alignments can be accurately recognized. In experiments in over 9.2M Reddit conversations, we find that appraisals capture meaningful groupings of behavior but that most responses have minimal alignment. However, we find that mental health professionals engage with substantially more empathetic alignment.
comment: Camera-ready version for NAACL 2024
☆ LLaVA Finds Free Lunch: Teaching Human Behavior Improves Content Understanding Abilities Of LLMs
Communication is defined as ``Who says what to whom with what effect.'' A message from a communicator generates downstream receiver effects, also known as behavior. Receiver behavior, being a downstream effect of the message, carries rich signals about it. Even after carrying signals about the message, the behavior data is often ignored while training large language models. We show that training LLMs on receiver behavior can actually help improve their content-understanding abilities. Specifically, we show that training LLMs to predict the receiver behavior of likes and comments improves the LLM's performance on a wide variety of downstream content understanding tasks. We show this performance increase over 40 video and image understanding tasks over 23 benchmark datasets across both 0-shot and fine-tuning settings, outperforming many supervised baselines. Moreover, since receiver behavior, such as likes and comments, is collected by default on the internet and does not need any human annotations to be useful, the performance improvement we get after training on this data is essentially free-lunch. We release the receiver behavior cleaned comments and likes of 750k images and videos collected from multiple platforms along with our instruction-tuning data.
♻ ☆ Large language models can accurately predict searcher preferences
Relevance labels, which indicate whether a search result is valuable to a searcher, are key to evaluating and optimising search systems. The best way to capture the true preferences of users is to ask them for their careful feedback on which results would be useful, but this approach does not scale to produce a large number of labels. Getting relevance labels at scale is usually done with third-party labellers, who judge on behalf of the user, but there is a risk of low-quality data if the labeller doesn't understand user needs. To improve quality, one standard approach is to study real users through interviews, user studies and direct feedback, find areas where labels are systematically disagreeing with users, then educate labellers about user needs through judging guidelines, training and monitoring. This paper introduces an alternate approach for improving label quality. It takes careful feedback from real users, which by definition is the highest-quality first-party gold data that can be derived, and develops an large language model prompt that agrees with that data. We present ideas and observations from deploying language models for large-scale relevance labelling at Bing, and illustrate with data from TREC. We have found large language models can be effective, with accuracy as good as human labellers and similar capability to pick the hardest queries, best runs, and best groups. Systematic changes to the prompts make a difference in accuracy, but so too do simple paraphrases. To measure agreement with real searchers needs high-quality ``gold'' labels, but with these we find that models produce better labels than third-party workers, for a fraction of the cost, and these labels let us train notably better rankers.
♻ ☆ Towards Real-time Learning in Large Language Models: A Critical Review
Real-time learning concerns the ability of learning systems to acquire knowledge over time, enabling their adaptation and generalization to novel tasks. It is a critical ability for intelligent, real-world systems, especially when data may be insufficient or difficult to obtain. This review provides a comprehensive analysis of real-time learning in Large Language Models. It synthesizes the state-of-the-art real-time learning paradigms, including continual learning, meta-learning, parameter-efficient learning, and mixture-of-experts learning. We demonstrate their utility for real-time learning by describing specific achievements from these related topics and their critical factors. Finally, the paper highlights current problems and challenges for future research in the field. By consolidating the latest relevant research developments, this review offers a comprehensive understanding of real-time learning and its implications for designing and developing LLM-based learning systems addressing real-world problems.
♻ ☆ A Careful Examination of Large Language Model Performance on Grade School Arithmetic
Large language models (LLMs) have achieved impressive success on many benchmarks for mathematical reasoning. However, there is growing concern that some of this performance actually reflects dataset contamination, where data closely resembling benchmark questions leaks into the training data, instead of true reasoning ability. To investigate this claim rigorously, we commission Grade School Math 1000 (GSM1k). GSM1k is designed to mirror the style and complexity of the established GSM8k benchmark, the gold standard for measuring elementary mathematical reasoning. We ensure that the two benchmarks are comparable across important metrics such as human solve rates, number of steps in solution, answer magnitude, and more. When evaluating leading open- and closed-source LLMs on GSM1k, we observe accuracy drops of up to 13%, with several families of models (e.g., Phi and Mistral) showing evidence of systematic overfitting across almost all model sizes. At the same time, many models, especially those on the frontier, (e.g., Gemini/GPT/Claude) show minimal signs of overfitting. Further analysis suggests a positive relationship (Spearman's r^2=0.32) between a model's probability of generating an example from GSM8k and its performance gap between GSM8k and GSM1k, suggesting that many models may have partially memorized GSM8k.
♻ ☆ Fewer Truncations Improve Language Modeling ICML 2024
In large language model training, input documents are typically concatenated together and then split into sequences of equal length to avoid padding tokens. Despite its efficiency, the concatenation approach compromises data integrity -- it inevitably breaks many documents into incomplete pieces, leading to excessive truncations that hinder the model from learning to compose logically coherent and factually consistent content that is grounded on the complete context. To address the issue, we propose Best-fit Packing, a scalable and efficient method that packs documents into training sequences through length-aware combinatorial optimization. Our method completely eliminates unnecessary truncations while retaining the same training efficiency as concatenation. Empirical results from both text and code pre-training show that our method achieves superior performance (e.g., relatively +4.7% on reading comprehension; +16.8% in context following; and +9.2% on program synthesis), and reduces closed-domain hallucination effectively by up to 58.3%.
comment: ICML 2024
♻ ☆ BiomedRAG: A Retrieval Augmented Large Language Model for Biomedicine
Large Language Models (LLMs) have swiftly emerged as vital resources for different applications in the biomedical and healthcare domains; however, these models encounter issues such as generating inaccurate information or hallucinations. Retrieval-augmented generation provided a solution for these models to update knowledge and enhance their performance. In contrast to previous retrieval-augmented LMs, which utilize specialized cross-attention mechanisms to help LLM encode retrieved text, BiomedRAG adopts a simpler approach by directly inputting the retrieved chunk-based documents into the LLM. This straightforward design is easily applicable to existing retrieval and language models, effectively bypassing noise information in retrieved documents, particularly in noise-intensive tasks. Moreover, we demonstrate the potential for utilizing the LLM to supervise the retrieval model in the biomedical domain, enabling it to retrieve the document that assists the LM in improving its predictions. Our experiments reveal that with the tuned scorer,\textsc{ BiomedRAG} attains superior performance across 5 biomedical NLP tasks, encompassing information extraction (triple extraction, relation extraction), text classification, link prediction, and question-answering, leveraging over 9 datasets. For instance, in the triple extraction task, \textsc{BiomedRAG} outperforms other triple extraction systems with micro-F1 scores of 81.42 and 88.83 on GIT and ChemProt corpora, respectively.
♻ ☆ CPLLM: Clinical Prediction with Large Language Models
We present Clinical Prediction with Large Language Models (CPLLM), a method that involves fine-tuning a pre-trained Large Language Model (LLM) for clinical disease and readmission prediction. We utilized quantization and fine-tuned the LLM using prompts. For diagnosis prediction, we predict whether patients will be diagnosed with a target disease during their next visit or in the subsequent diagnosis, leveraging their historical diagnosis records. We compared our results to various baselines, including RETAIN, and Med-BERT, the current state-of-the-art model for disease prediction using temporal structured EHR data. In addition, We also evaluated CPLLM for patient hospital readmission prediction and compared our method's performance with benchmark baselines. Our experiments have shown that our proposed method, CPLLM, surpasses all the tested models in terms of PR-AUC and ROC-AUC metrics, showing state-of-the-art results for diagnosis prediction and patient hospital readmission prediction. Such a method can be easily implemented and integrated into the clinical process to help care providers estimate the next steps of patients
comment: v2
♻ ☆ Sparse is Enough in Fine-tuning Pre-trained Large Language Models ICML 2024
With the prevalence of pre-training-fine-tuning paradigm, how to efficiently adapt the pre-trained model to the downstream tasks has been an intriguing issue. Parameter-Efficient Fine-Tuning (PEFT) methods have been proposed for low-cost adaptation. Although PEFT has demonstrated effectiveness and been widely applied, the underlying principles are still unclear. In this paper, we adopt the PAC-Bayesian generalization error bound, viewing pre-training as a shift of prior distribution which leads to a tighter bound for generalization error. We validate this shift from the perspectives of oscillations in the loss landscape and the quasi-sparsity in gradient distribution. Based on this, we propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT), and validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning. The code is accessible at https://github.com/song-wx/SIFT/.
comment: Accepted at ICML 2024
♻ ☆ Strong Priority and Determinacy in Timed CCS
Building on the standard theory of process algebra with priorities, we identify a new scheduling mechanism, called "constructive reduction" which is designed to capture the essence of synchronous programming. The distinctive property of this evaluation strategy is to achieve determinacy-by-construction for multi-cast concurrent communication with shared memory. In the technical setting of CCS extended by clocks and priorities, we prove for a large class of "coherent" processes a confluence property for constructive reductions. We show that under some restrictions, called "pivotability", coherence is preserved by the operators of prefix, summation, parallel composition, restriction and hiding. Since this permits memory and sharing, we are able to cover a strictly larger class of processes compared to those in Milner's classical confluence theory for CCS without priorities.
♻ ☆ StableSSM: Alleviating the Curse of Memory in State-space Models through Stable Reparameterization ICML 2024
In this paper, we investigate the long-term memory learning capabilities of state-space models (SSMs) from the perspective of parameterization. We prove that state-space models without any reparameterization exhibit a memory limitation similar to that of traditional RNNs: the target relationships that can be stably approximated by state-space models must have an exponential decaying memory. Our analysis identifies this ``curse of memory'' as a result of the recurrent weights converging to a stability boundary, suggesting that a reparameterization technique can be effective. To this end, we introduce a class of reparameterization techniques for SSMs that effectively lift its memory limitations. Besides improving approximation capabilities, we further illustrate that a principled choice of reparameterization scheme can also enhance optimization stability. We validate our findings using synthetic datasets, language models and image classifications.
comment: 27 pages, 7 figures, ICML 2024
♻ ☆ Language Models As Semantic Indexers
Semantic identifier (ID) is an important concept in information retrieval that aims to preserve the semantics of objects such as documents and items inside their IDs. Previous studies typically adopt a two-stage pipeline to learn semantic IDs by first procuring embeddings using off-the-shelf text encoders and then deriving IDs based on the embeddings. However, each step introduces potential information loss, and there is usually an inherent mismatch between the distribution of embeddings within the latent space produced by text encoders and the anticipated distribution required for semantic indexing. It is non-trivial to design a method that can learn the document's semantic representations and its hierarchical structure simultaneously, given that semantic IDs are discrete and sequentially structured, and the semantic supervision is deficient. In this paper, we introduce LMIndexer, a self-supervised framework to learn semantic IDs with a generative language model. We tackle the challenge of sequential discrete ID by introducing a semantic indexer capable of generating neural sequential discrete representations with progressive training and contrastive learning. In response to the semantic supervision deficiency, we propose to train the model with a self-supervised document reconstruction objective. We show the high quality of the learned IDs and demonstrate their effectiveness on three tasks including recommendation, product search, and document retrieval on five datasets from various domains. Code is available at https://github.com/PeterGriffinJin/LMIndexer.
comment: 10 pages, 5 appendix pages
♻ ☆ LLM Self Defense: By Self Examination, LLMs Know They Are Being Tricked
Large language models (LLMs) are popular for high-quality text generation but can produce harmful content, even when aligned with human values through reinforcement learning. Adversarial prompts can bypass their safety measures. We propose LLM Self Defense, a simple approach to defend against these attacks by having an LLM screen the induced responses. Our method does not require any fine-tuning, input preprocessing, or iterative output generation. Instead, we incorporate the generated content into a pre-defined prompt and employ another instance of an LLM to analyze the text and predict whether it is harmful. We test LLM Self Defense on GPT 3.5 and Llama 2, two of the current most prominent LLMs against various types of attacks, such as forcefully inducing affirmative responses to prompts and prompt engineering attacks. Notably, LLM Self Defense succeeds in reducing the attack success rate to virtually 0 using both GPT 3.5 and Llama 2. The code is publicly available at https://github.com/poloclub/llm-self-defense
♻ ☆ Generating Feedback-Ladders for Logical Errors in Programming using Large Language Models
In feedback generation for logical errors in programming assignments, large language model (LLM)-based methods have shown great promise. These methods ask the LLM to generate feedback given the problem statement and a student's (buggy) submission. There are several issues with these types of methods. First, the generated feedback messages are often too direct in revealing the error in the submission and thus diminish valuable opportunities for the student to learn. Second, they do not consider the student's learning context, i.e., their previous submissions, current knowledge, etc. Third, they are not layered since existing methods use a single, shared prompt for all student submissions. In this paper, we explore using LLMs to generate a "feedback-ladder", i.e., multiple levels of feedback for the same problem-submission pair. We evaluate the quality of the generated feedback-ladder via a user study with students, educators, and researchers. We have observed diminishing effectiveness for higher-level feedback and higher-scoring submissions overall in the study. In practice, our method enables teachers to select an appropriate level of feedback to show to a student based on their personal learning context, or in a progressive manner to go more detailed if a higher-level feedback fails to correct the student's error.
comment: Published on the 17th EDM 2024 - Posters and Demos Track
♻ ☆ Towards Incremental Transformers: An Empirical Analysis of Transformer Models for Incremental NLU EMNLP 2021
Incremental processing allows interactive systems to respond based on partial inputs, which is a desirable property e.g. in dialogue agents. The currently popular Transformer architecture inherently processes sequences as a whole, abstracting away the notion of time. Recent work attempts to apply Transformers incrementally via restart-incrementality by repeatedly feeding, to an unchanged model, increasingly longer input prefixes to produce partial outputs. However, this approach is computationally costly and does not scale efficiently for long sequences. In parallel, we witness efforts to make Transformers more efficient, e.g. the Linear Transformer (LT) with a recurrence mechanism. In this work, we examine the feasibility of LT for incremental NLU in English. Our results show that the recurrent LT model has better incremental performance and faster inference speed compared to the standard Transformer and LT with restart-incrementality, at the cost of part of the non-incremental (full sequence) quality. We show that the performance drop can be mitigated by training the model to wait for right context before committing to an output and that training with input prefixes is beneficial for delivering correct partial outputs.
comment: Accepted at EMNLP 2021 (contains corrigendum)
♻ ☆ CreoleVal: Multilingual Multitask Benchmarks for Creoles ACL
Creoles represent an under-explored and marginalized group of languages, with few available resources for NLP research.While the genealogical ties between Creoles and a number of highly-resourced languages imply a significant potential for transfer learning, this potential is hampered due to this lack of annotated data. In this work we present CreoleVal, a collection of benchmark datasets spanning 8 different NLP tasks, covering up to 28 Creole languages; it is an aggregate of novel development datasets for reading comprehension, relation classification, and machine translation for Creoles, in addition to a practical gateway to a handful of preexisting benchmarks. For each benchmark, we conduct baseline experiments in a zero-shot setting in order to further ascertain the capabilities and limitations of transfer learning for Creoles. Ultimately, we see CreoleVal as an opportunity to empower research on Creoles in NLP and computational linguistics, and in general, a step towards more equitable language technology around the globe.
comment: Accepted to TACL
♻ ☆ Towards A Structured Overview of Use Cases for Natural Language Processing in the Legal Domain: A German Perspective
In recent years, the field of Legal Tech has risen in prevalence, as the Natural Language Processing (NLP) and legal disciplines have combined forces to digitalize legal processes. Amidst the steady flow of research solutions stemming from the NLP domain, the study of use cases has fallen behind, leading to a number of innovative technical methods without a place in practice. In this work, we aim to build a structured overview of Legal Tech use cases, grounded in NLP literature, but also supplemented by voices from legal practice in Germany. Based upon a Systematic Literature Review, we identify seven categories of NLP technologies for the legal domain, which are then studied in juxtaposition to 22 legal use cases. In the investigation of these use cases, we identify 15 ethical, legal, and social aspects (ELSA), shedding light on the potential concerns of digitally transforming the legal domain.
comment: 10 pages, 6 tables, 30th Americas Conference on Information Systems (AMCIS 2024)
♻ ☆ An Expert is Worth One Token: Synergizing Multiple Expert LLMs as Generalist via Expert Token Routing
We present Expert-Token-Routing, a unified generalist framework that facilitates seamless integration of multiple expert LLMs. Our framework represents expert LLMs as special expert tokens within the vocabulary of a meta LLM. The meta LLM can route to an expert LLM like generating new tokens. Expert-Token-Routing not only supports learning the implicit expertise of expert LLMs from existing instruction dataset but also allows for dynamic extension of new expert LLMs in a plug-and-play manner. It also conceals the detailed collaboration process from the user's perspective, facilitating interaction as though it were a singular LLM. Our framework outperforms various existing multi-LLM collaboration paradigms across benchmarks that incorporate six diverse expert domains, demonstrating effectiveness and robustness in building generalist LLM system via synergizing multiple expert LLMs.
♻ ☆ Evaluating Generative Ad Hoc Information Retrieval
Recent advances in large language models have enabled the development of viable generative retrieval systems. Instead of a traditional document ranking, many generative retrieval systems directly return a grounded generated text as an answer to an information need expressed as a query or question. Quantifying the utility of the textual responses is essential for appropriately evaluating such generative ad hoc retrieval. Yet, the established evaluation methodology for ranking-based retrieval is not suited for reliable, repeatable, and reproducible evaluation of generated answers. In this paper, we survey the relevant literature from the fields of information retrieval and natural language processing, we identify search tasks and system architectures in generative retrieval, we develop a corresponding user model, and we study its operationalization. Our analysis provides a foundation and new insights for the evaluation of generative retrieval systems, focusing on ad hoc retrieval.
comment: 14 pages, 6 figures, 1 table
♻ ☆ ReactGenie: A Development Framework for Complex Multimodal Interactions Using Large Language Models
By combining voice and touch interactions, multimodal interfaces can surpass the efficiency of either modality alone. Traditional multimodal frameworks require laborious developer work to support rich multimodal commands where the user's multimodal command involves possibly exponential combinations of actions/function invocations. This paper presents ReactGenie, a programming framework that better separates multimodal input from the computational model to enable developers to create efficient and capable multimodal interfaces with ease. ReactGenie translates multimodal user commands into NLPL (Natural Language Programming Language), a programming language we created, using a neural semantic parser based on large-language models. The ReactGenie runtime interprets the parsed NLPL and composes primitives in the computational model to implement complex user commands. As a result, ReactGenie allows easy implementation and unprecedented richness in commands for end-users of multimodal apps. Our evaluation showed that 12 developers can learn and build a nontrivial ReactGenie application in under 2.5 hours on average. In addition, compared with a traditional GUI, end-users can complete tasks faster and with less task load using ReactGenie apps.
♻ ☆ On the Learnability of Watermarks for Language Models ICLR 2024
Watermarking of language model outputs enables statistical detection of model-generated text, which can mitigate harms and misuses of language models. Existing watermarking strategies operate by altering the decoder of an existing language model. In this paper, we ask whether language models can directly learn to generate watermarked text, which would have significant implications for the real-world deployment of watermarks. First, learned watermarks could be used to build open models that naturally generate watermarked text, enabling watermarking for open models, where users can control the decoding procedure. Second, if watermarking is used to determine the provenance of generated text, an adversary can hurt the reputation of a victim model by spoofing its watermark and generating damaging watermarked text. To investigate the learnability of watermarks, we propose watermark distillation, which trains a student model to behave like a teacher model that uses decoding-based watermarking. We test our approach on three decoding-based watermarking strategies and various hyperparameter settings, finding that models can learn to generate watermarked text with high detectability. We also find limitations to learnability, including the loss of watermarking capabilities under fine-tuning on normal text and high sample complexity when learning low-distortion watermarks.
comment: Accepted at ICLR 2024
♻ ☆ HANS, are you clever? Clever Hans Effect Analysis of Neural Systems
Instruction-tuned Large Language Models (It-LLMs) have been exhibiting outstanding abilities to reason around cognitive states, intentions, and reactions of all people involved, letting humans guide and comprehend day-to-day social interactions effectively. In fact, several multiple-choice questions (MCQ) benchmarks have been proposed to construct solid assessments of the models' abilities. However, earlier works are demonstrating the presence of inherent "order bias" in It-LLMs, posing challenges to the appropriate evaluation. In this paper, we investigate It-LLMs' resilience abilities towards a series of probing tests using four MCQ benchmarks. Introducing adversarial examples, we show a significant performance gap, mainly when varying the order of the choices, which reveals a selection bias and brings into discussion reasoning abilities. Following a correlation between first positions and model choices due to positional bias, we hypothesized the presence of structural heuristics in the decision-making process of the It-LLMs, strengthened by including significant examples in few-shot scenarios. Finally, by using the Chain-of-Thought (CoT) technique, we elicit the model to reason and mitigate the bias by obtaining more robust models.
comment: This paper contains erroneous evaluations and we would like to withdraw it
♻ ☆ GRAMMAR: Grounded and Modular Methodology for Assessment of Domain-Specific Retrieval-Augmented Language Model
Retrieval-augmented Generation (RAG) systems have been actively studied and deployed across various industries to query on domain-specific knowledge base. However, evaluating these systems presents unique challenges due to the scarcity of domain-specific queries and corresponding ground truths, as well as a lack of systematic approaches to diagnosing the cause of failure cases -- whether they stem from knowledge deficits or issues related to system robustness. To address these challenges, we introduce GRAMMAR (GRounded And Modular Methodology for Assessment of RAG), an evaluation framework comprising two key elements: 1) a data generation process that leverages relational databases and LLMs to efficiently produce scalable query-answer pairs. This method facilitates the separation of query logic from linguistic variations for enhanced debugging capabilities; and 2) an evaluation framework that differentiates knowledge gaps from robustness and enables the identification of defective modules. Our empirical results underscore the limitations of current reference-free evaluation approaches and the reliability of GRAMMAR to accurately identify model vulnerabilities.
♻ ☆ Structured Probabilistic Coding AAAI 2024
This paper presents a new supervised representation learning framework, namely structured probabilistic coding (SPC), to learn compact and informative representations from input related to the target task. SPC is an encoder-only probabilistic coding technology with a structured regularization from the target space. It can enhance the generalization ability of pre-trained language models for better language understanding. Specifically, our probabilistic coding simultaneously performs information encoding and task prediction in one module to more fully utilize the effective information from input data. It uses variational inference in the output space to reduce randomness and uncertainty. Besides, to better control the learning process of probabilistic representations, a structured regularization is proposed to promote uniformity across classes in the latent space. With the regularization term, SPC can preserve the Gaussian structure of the latent code and achieve better coverage of the hidden space with class uniformly. Experimental results on 12 natural language understanding tasks demonstrate that our SPC effectively improves the performance of pre-trained language models for classification and regression. Extensive experiments show that SPC can enhance the generalization capability, robustness to label noise, and clustering quality of output representations.
comment: 11 pages, accepted by AAAI 2024 (Oral)
♻ ☆ Adversarial Attacks and Defense for Conversation Entailment Task
As the deployment of NLP systems in critical applications grows, ensuring the robustness of large language models (LLMs) against adversarial attacks becomes increasingly important. Large language models excel in various NLP tasks but remain vulnerable to low-cost adversarial attacks. Focusing on the domain of conversation entailment, where multi-turn dialogues serve as premises to verify hypotheses, we fine-tune a transformer model to accurately discern the truthfulness of these hypotheses. Adversaries manipulate hypotheses through synonym swapping, aiming to deceive the model into making incorrect predictions. To counteract these attacks, we implemented innovative fine-tuning techniques and introduced an embedding perturbation loss method to significantly bolster the model's robustness. Our findings not only emphasize the importance of defending against adversarial attacks in NLP but also highlight the real-world implications, suggesting that enhancing model robustness is critical for reliable NLP applications.
♻ ☆ CIC: A framework for Culturally-aware Image Captioning IJCAI 2024
Image Captioning generates descriptive sentences from images using Vision-Language Pre-trained models (VLPs) such as BLIP, which has improved greatly. However, current methods lack the generation of detailed descriptive captions for the cultural elements depicted in the images, such as the traditional clothing worn by people from Asian cultural groups. In this paper, we propose a new framework, \textbf{Culturally-aware Image Captioning (CIC)}, that generates captions and describes cultural elements extracted from cultural visual elements in images representing cultures. Inspired by methods combining visual modality and Large Language Models (LLMs) through appropriate prompts, our framework (1) generates questions based on cultural categories from images, (2) extracts cultural visual elements from Visual Question Answering (VQA) using generated questions, and (3) generates culturally-aware captions using LLMs with the prompts. Our human evaluation conducted on 45 participants from 4 different cultural groups with a high understanding of the corresponding culture shows that our proposed framework generates more culturally descriptive captions when compared to the image captioning baseline based on VLPs. Our code and dataset will be made publicly available upon acceptance.
comment: Accepted in IJCAI 2024
♻ ☆ More Compute Is What You Need
Large language model pre-training has become increasingly expensive, with most practitioners relying on scaling laws to allocate compute budgets for model size and training tokens, commonly referred to as Compute-Optimal or Chinchilla Optimal. In this paper, we hypothesize a new scaling law that suggests model performance depends mostly on the amount of compute spent for transformer-based models, independent of the specific allocation to model size and dataset size. Using this unified scaling law, we predict that (a) for inference efficiency, training should prioritize smaller model sizes and larger training datasets, and (b) assuming the exhaustion of available web datasets, scaling the model size might be the only way to further improve model performance.
♻ ☆ Large Language Models as Zero-shot Dialogue State Tracker through Function Calling
Large language models (LLMs) are increasingly prevalent in conversational systems due to their advanced understanding and generative capabilities in general contexts. However, their effectiveness in task-oriented dialogues (TOD), which requires not only response generation but also effective dialogue state tracking (DST) within specific tasks and domains, remains less satisfying. In this work, we propose a novel approach FnCTOD for solving DST with LLMs through function calling. This method improves zero-shot DST, allowing adaptation to diverse domains without extensive data collection or model tuning. Our experimental results demonstrate that our approach achieves exceptional performance with both modestly sized open-source and also proprietary LLMs: with in-context prompting it enables various 7B or 13B parameter models to surpass the previous state-of-the-art (SOTA) achieved by ChatGPT, and improves ChatGPT's performance beating the SOTA by 5.6% average joint goal accuracy (JGA). Individual model results for GPT-3.5 and GPT-4 are boosted by 4.8% and 14%, respectively. We also show that by fine-tuning on a small collection of diverse task-oriented dialogues, we can equip modestly sized models, specifically a 13B parameter LLaMA2-Chat model, with function-calling capabilities and DST performance comparable to ChatGPT while maintaining their chat capabilities. We have made the code publicly available at https://github.com/facebookresearch/FnCTOD
comment: More results in the next version. Code available at: https://github.com/facebookresearch/FnCTOD
♻ ☆ A Primer on the Inner Workings of Transformer-based Language Models
The rapid progress of research aimed at interpreting the inner workings of advanced language models has highlighted a need for contextualizing the insights gained from years of work in this area. This primer provides a concise technical introduction to the current techniques used to interpret the inner workings of Transformer-based language models, focusing on the generative decoder-only architecture. We conclude by presenting a comprehensive overview of the known internal mechanisms implemented by these models, uncovering connections across popular approaches and active research directions in this area.
♻ ☆ AmpleGCG: Learning a Universal and Transferable Generative Model of Adversarial Suffixes for Jailbreaking Both Open and Closed LLMs
As large language models (LLMs) become increasingly prevalent and integrated into autonomous systems, ensuring their safety is imperative. Despite significant strides toward safety alignment, recent work GCG~\citep{zou2023universal} proposes a discrete token optimization algorithm and selects the single suffix with the lowest loss to successfully jailbreak aligned LLMs. In this work, we first discuss the drawbacks of solely picking the suffix with the lowest loss during GCG optimization for jailbreaking and uncover the missed successful suffixes during the intermediate steps. Moreover, we utilize those successful suffixes as training data to learn a generative model, named AmpleGCG, which captures the distribution of adversarial suffixes given a harmful query and enables the rapid generation of hundreds of suffixes for any harmful queries in seconds. AmpleGCG achieves near 100\% attack success rate (ASR) on two aligned LLMs (Llama-2-7B-chat and Vicuna-7B), surpassing two strongest attack baselines. More interestingly, AmpleGCG also transfers seamlessly to attack different models, including closed-source LLMs, achieving a 99\% ASR on the latest GPT-3.5. To summarize, our work amplifies the impact of GCG by training a generative model of adversarial suffixes that is universal to any harmful queries and transferable from attacking open-source LLMs to closed-source LLMs. In addition, it can generate 200 adversarial suffixes for one harmful query in only 4 seconds, rendering it more challenging to defend.
♻ ☆ OpenELM: An Efficient Language Model Family with Open Training and Inference Framework
The reproducibility and transparency of large language models are crucial for advancing open research, ensuring the trustworthiness of results, and enabling investigations into data and model biases, as well as potential risks. To this end, we release OpenELM, a state-of-the-art open language model. OpenELM uses a layer-wise scaling strategy to efficiently allocate parameters within each layer of the transformer model, leading to enhanced accuracy. For example, with a parameter budget of approximately one billion parameters, OpenELM exhibits a 2.36% improvement in accuracy compared to OLMo while requiring $2\times$ fewer pre-training tokens. Diverging from prior practices that only provide model weights and inference code, and pre-train on private datasets, our release includes the complete framework for training and evaluation of the language model on publicly available datasets, including training logs, multiple checkpoints, and pre-training configurations. We also release code to convert models to MLX library for inference and fine-tuning on Apple devices. This comprehensive release aims to empower and strengthen the open research community, paving the way for future open research endeavors. Our source code along with pre-trained model weights and training recipes is available at \url{https://github.com/apple/corenet}. Additionally, \model models can be found on HuggingFace at: \url{https://huggingface.co/apple/OpenELM}.
comment: Minor corrections
Computer Vision and Pattern Recognition 121
☆ Multi-Space Alignments Towards Universal LiDAR Segmentation CVPR 2024
A unified and versatile LiDAR segmentation model with strong robustness and generalizability is desirable for safe autonomous driving perception. This work presents M3Net, a one-of-a-kind framework for fulfilling multi-task, multi-dataset, multi-modality LiDAR segmentation in a universal manner using just a single set of parameters. To better exploit data volume and diversity, we first combine large-scale driving datasets acquired by different types of sensors from diverse scenes and then conduct alignments in three spaces, namely data, feature, and label spaces, during the training. As a result, M3Net is capable of taming heterogeneous data for training state-of-the-art LiDAR segmentation models. Extensive experiments on twelve LiDAR segmentation datasets verify our effectiveness. Notably, using a shared set of parameters, M3Net achieves 75.1%, 83.1%, and 72.4% mIoU scores, respectively, on the official benchmarks of SemanticKITTI, nuScenes, and Waymo Open.
comment: CVPR 2024; 33 pages, 14 figures, 14 tables; Code at https://github.com/youquanl/M3Net
☆ Customizing Text-to-Image Models with a Single Image Pair
Art reinterpretation is the practice of creating a variation of a reference work, making a paired artwork that exhibits a distinct artistic style. We ask if such an image pair can be used to customize a generative model to capture the demonstrated stylistic difference. We propose Pair Customization, a new customization method that learns stylistic difference from a single image pair and then applies the acquired style to the generation process. Unlike existing methods that learn to mimic a single concept from a collection of images, our method captures the stylistic difference between paired images. This allows us to apply a stylistic change without overfitting to the specific image content in the examples. To address this new task, we employ a joint optimization method that explicitly separates the style and content into distinct LoRA weight spaces. We optimize these style and content weights to reproduce the style and content images while encouraging their orthogonality. During inference, we modify the diffusion process via a new style guidance based on our learned weights. Both qualitative and quantitative experiments show that our method can effectively learn style while avoiding overfitting to image content, highlighting the potential of modeling such stylistic differences from a single image pair.
comment: project page: https://paircustomization.github.io/
☆ Plan-Seq-Learn: Language Model Guided RL for Solving Long Horizon Robotics Tasks ICLR 2024
Large Language Models (LLMs) have been shown to be capable of performing high-level planning for long-horizon robotics tasks, yet existing methods require access to a pre-defined skill library (e.g. picking, placing, pulling, pushing, navigating). However, LLM planning does not address how to design or learn those behaviors, which remains challenging particularly in long-horizon settings. Furthermore, for many tasks of interest, the robot needs to be able to adjust its behavior in a fine-grained manner, requiring the agent to be capable of modifying low-level control actions. Can we instead use the internet-scale knowledge from LLMs for high-level policies, guiding reinforcement learning (RL) policies to efficiently solve robotic control tasks online without requiring a pre-determined set of skills? In this paper, we propose Plan-Seq-Learn (PSL): a modular approach that uses motion planning to bridge the gap between abstract language and learned low-level control for solving long-horizon robotics tasks from scratch. We demonstrate that PSL achieves state-of-the-art results on over 25 challenging robotics tasks with up to 10 stages. PSL solves long-horizon tasks from raw visual input spanning four benchmarks at success rates of over 85%, out-performing language-based, classical, and end-to-end approaches. Video results and code at https://mihdalal.github.io/planseqlearn/
comment: Published at ICLR 2024. Website at https://mihdalal.github.io/planseqlearn/ 9 pages, 3 figures, 3 tables; 14 pages appendix (7 additional figures)
☆ OmniDrive: A Holistic LLM-Agent Framework for Autonomous Driving with 3D Perception, Reasoning and Planning
The advances in multimodal large language models (MLLMs) have led to growing interests in LLM-based autonomous driving agents to leverage their strong reasoning capabilities. However, capitalizing on MLLMs' strong reasoning capabilities for improved planning behavior is challenging since planning requires full 3D situational awareness beyond 2D reasoning. To address this challenge, our work proposes a holistic framework for strong alignment between agent models and 3D driving tasks. Our framework starts with a novel 3D MLLM architecture that uses sparse queries to lift and compress visual representations into 3D before feeding them into an LLM. This query-based representation allows us to jointly encode dynamic objects and static map elements (e.g., traffic lanes), providing a condensed world model for perception-action alignment in 3D. We further propose OmniDrive-nuScenes, a new visual question-answering dataset challenging the true 3D situational awareness of a model with comprehensive visual question-answering (VQA) tasks, including scene description, traffic regulation, 3D grounding, counterfactual reasoning, decision making and planning. Extensive studies show the effectiveness of the proposed architecture as well as the importance of the VQA tasks for reasoning and planning in complex 3D scenes.
☆ Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions. Crucially, the CBM design inherently allows for human interventions, in which expert users are given the ability to modify potentially misaligned concept choices to influence the decision behavior of the model in an interpretable fashion. However, existing approaches often require numerous human interventions per image to achieve strong performances, posing practical challenges in scenarios where obtaining human feedback is expensive. In this paper, we find that this is noticeably driven by an independent treatment of concepts during intervention, wherein a change of one concept does not influence the use of other ones in the model's final decision. To address this issue, we introduce a trainable concept intervention realignment module, which leverages concept relations to realign concept assignments post-intervention. Across standard, real-world benchmarks, we find that concept realignment can significantly improve intervention efficacy; significantly reducing the number of interventions needed to reach a target classification performance or concept prediction accuracy. In addition, it easily integrates into existing concept-based architectures without requiring changes to the models themselves. This reduced cost of human-model collaboration is crucial to enhancing the feasibility of CBMs in resource-constrained environments.
☆ Track2Act: Predicting Point Tracks from Internet Videos enables Diverse Zero-shot Robot Manipulation
We seek to learn a generalizable goal-conditioned policy that enables zero-shot robot manipulation: interacting with unseen objects in novel scenes without test-time adaptation. While typical approaches rely on a large amount of demonstration data for such generalization, we propose an approach that leverages web videos to predict plausible interaction plans and learns a task-agnostic transformation to obtain robot actions in the real world. Our framework,Track2Act predicts tracks of how points in an image should move in future time-steps based on a goal, and can be trained with diverse videos on the web including those of humans and robots manipulating everyday objects. We use these 2D track predictions to infer a sequence of rigid transforms of the object to be manipulated, and obtain robot end-effector poses that can be executed in an open-loop manner. We then refine this open-loop plan by predicting residual actions through a closed loop policy trained with a few embodiment-specific demonstrations. We show that this approach of combining scalably learned track prediction with a residual policy requiring minimal in-domain robot-specific data enables zero-shot robot manipulation, and present a wide array of real-world robot manipulation results across unseen tasks, objects, and scenes. https://homangab.github.io/track2act/
comment: preprint
☆ A separability-based approach to quantifying generalization: which layer is best?
Generalization to unseen data remains poorly understood for deep learning classification and foundation models. How can one assess the ability of networks to adapt to new or extended versions of their input space in the spirit of few-shot learning, out-of-distribution generalization, and domain adaptation? Which layers of a network are likely to generalize best? We provide a new method for evaluating the capacity of networks to represent a sampled domain, regardless of whether the network has been trained on all classes in the domain. Our approach is the following: after fine-tuning state-of-the-art pre-trained models for visual classification on a particular domain, we assess their performance on data from related but distinct variations in that domain. Generalization power is quantified as a function of the latent embeddings of unseen data from intermediate layers for both unsupervised and supervised settings. Working throughout all stages of the network, we find that (i) high classification accuracy does not imply high generalizability; and (ii) deeper layers in a model do not always generalize the best, which has implications for pruning. Since the trends observed across datasets are largely consistent, we conclude that our approach reveals (a function of) the intrinsic capacity of the different layers of a model to generalize.
comment: 6, pages, 5 figures
Transformer-Aided Semantic Communications
The transformer structure employed in large language models (LLMs), as a specialized category of deep neural networks (DNNs) featuring attention mechanisms, stands out for their ability to identify and highlight the most relevant aspects of input data. Such a capability is particularly beneficial in addressing a variety of communication challenges, notably in the realm of semantic communication where proper encoding of the relevant data is critical especially in systems with limited bandwidth. In this work, we employ vision transformers specifically for the purpose of compression and compact representation of the input image, with the goal of preserving semantic information throughout the transmission process. Through the use of the attention mechanism inherent in transformers, we create an attention mask. This mask effectively prioritizes critical segments of images for transmission, ensuring that the reconstruction phase focuses on key objects highlighted by the mask. Our methodology significantly improves the quality of semantic communication and optimizes bandwidth usage by encoding different parts of the data in accordance with their semantic information content, thus enhancing overall efficiency. We evaluate the effectiveness of our proposed framework using the TinyImageNet dataset, focusing on both reconstruction quality and accuracy. Our evaluation results demonstrate that our framework successfully preserves semantic information, even when only a fraction of the encoded data is transmitted, according to the intended compression rates.
☆ PAM-UNet: Shifting Attention on Region of Interest in Medical Images
Computer-aided segmentation methods can assist medical personnel in improving diagnostic outcomes. While recent advancements like UNet and its variants have shown promise, they face a critical challenge: balancing accuracy with computational efficiency. Shallow encoder architectures in UNets often struggle to capture crucial spatial features, leading in inaccurate and sparse segmentation. To address this limitation, we propose a novel \underline{P}rogressive \underline{A}ttention based \underline{M}obile \underline{UNet} (\underline{PAM-UNet}) architecture. The inverted residual (IR) blocks in PAM-UNet help maintain a lightweight framework, while layerwise \textit{Progressive Luong Attention} ($\mathcal{PLA}$) promotes precise segmentation by directing attention toward regions of interest during synthesis. Our approach prioritizes both accuracy and speed, achieving a commendable balance with a mean IoU of 74.65 and a dice score of 82.87, while requiring only 1.32 floating-point operations per second (FLOPS) on the Liver Tumor Segmentation Benchmark (LiTS) 2017 dataset. These results highlight the importance of developing efficient segmentation models to accelerate the adoption of AI in clinical practice.
comment: Accepted at 2024 IEEE EMBC
☆ LocInv: Localization-aware Inversion for Text-Guided Image Editing CVPR 2024
Large-scale Text-to-Image (T2I) diffusion models demonstrate significant generation capabilities based on textual prompts. Based on the T2I diffusion models, text-guided image editing research aims to empower users to manipulate generated images by altering the text prompts. However, existing image editing techniques are prone to editing over unintentional regions that are beyond the intended target area, primarily due to inaccuracies in cross-attention maps. To address this problem, we propose Localization-aware Inversion (LocInv), which exploits segmentation maps or bounding boxes as extra localization priors to refine the cross-attention maps in the denoising phases of the diffusion process. Through the dynamic updating of tokens corresponding to noun words in the textual input, we are compelling the cross-attention maps to closely align with the correct noun and adjective words in the text prompt. Based on this technique, we achieve fine-grained image editing over particular objects while preventing undesired changes to other regions. Our method LocInv, based on the publicly available Stable Diffusion, is extensively evaluated on a subset of the COCO dataset, and consistently obtains superior results both quantitatively and qualitatively.The code will be released at https://github.com/wangkai930418/DPL
comment: Accepted by CVPR 2024 Workshop AI4CC
☆ Navigating Heterogeneity and Privacy in One-Shot Federated Learning with Diffusion Models
Federated learning (FL) enables multiple clients to train models collectively while preserving data privacy. However, FL faces challenges in terms of communication cost and data heterogeneity. One-shot federated learning has emerged as a solution by reducing communication rounds, improving efficiency, and providing better security against eavesdropping attacks. Nevertheless, data heterogeneity remains a significant challenge, impacting performance. This work explores the effectiveness of diffusion models in one-shot FL, demonstrating their applicability in addressing data heterogeneity and improving FL performance. Additionally, we investigate the utility of our diffusion model approach, FedDiff, compared to other one-shot FL methods under differential privacy (DP). Furthermore, to improve generated sample quality under DP settings, we propose a pragmatic Fourier Magnitude Filtering (FMF) method, enhancing the effectiveness of generated data for global model training.
☆ MANTIS: Interleaved Multi-Image Instruction Tuning
The recent years have witnessed a great array of large multimodal models (LMMs) to effectively solve single-image vision language tasks. However, their abilities to solve multi-image visual language tasks is yet to be improved. The existing multi-image LMMs (e.g. OpenFlamingo, Emu, Idefics, etc) mostly gain their multi-image ability through pre-training on hundreds of millions of noisy interleaved image-text data from web, which is neither efficient nor effective. In this paper, we aim at building strong multi-image LMMs via instruction tuning with academic-level resources. Therefore, we meticulously construct Mantis-Instruct containing 721K instances from 14 multi-image datasets. We design Mantis-Instruct to cover different multi-image skills like co-reference, reasoning, comparing, temporal understanding. We combine Mantis-Instruct with several single-image visual-language datasets to train our model Mantis to handle any interleaved image-text inputs. We evaluate the trained Mantis on five multi-image benchmarks and eight single-image benchmarks. Though only requiring academic-level resources (i.e. 36 hours on 16xA100-40G), Mantis-8B can achieve state-of-the-art performance on all the multi-image benchmarks and beats the existing best multi-image LMM Idefics2-8B by an average of 9 absolute points. We observe that Mantis performs equivalently well on the held-in and held-out evaluation benchmarks. We further evaluate Mantis on single-image benchmarks and demonstrate that Mantis can maintain a strong single-image performance on par with CogVLM and Emu2. Our results are particularly encouraging as it shows that low-cost instruction tuning is indeed much more effective than intensive pre-training in terms of building multi-image LMMs.
comment: 9 pages, 3 figures
☆ V-FLUTE: Visual Figurative Language Understanding with Textual Explanations
Large Vision-Language models (VLMs) have demonstrated strong reasoning capabilities in tasks requiring a fine-grained understanding of literal images and text, such as visual question-answering or visual entailment. However, there has been little exploration of these models' capabilities when presented with images and captions containing figurative phenomena such as metaphors or humor, the meaning of which is often implicit. To close this gap, we propose a new task and a high-quality dataset: Visual Figurative Language Understanding with Textual Explanations (V-FLUTE). We frame the visual figurative language understanding problem as an explainable visual entailment task, where the model has to predict whether the image (premise) entails a claim (hypothesis) and justify the predicted label with a textual explanation. Using a human-AI collaboration framework, we build a high-quality dataset, V-FLUTE, that contains 6,027 instances spanning five diverse multimodal figurative phenomena: metaphors, similes, idioms, sarcasm, and humor. The figurative phenomena can be present either in the image, the caption, or both. We further conduct both automatic and human evaluations to assess current VLMs' capabilities in understanding figurative phenomena.
Advancing human-centric AI for robust X-ray analysis through holistic self-supervised learning
AI Foundation models are gaining traction in various applications, including medical fields like radiology. However, medical foundation models are often tested on limited tasks, leaving their generalisability and biases unexplored. We present RayDINO, a large visual encoder trained by self-supervision on 873k chest X-rays. We compare RayDINO to previous state-of-the-art models across nine radiology tasks, from classification and dense segmentation to text generation, and provide an in depth analysis of population, age and sex biases of our model. Our findings suggest that self-supervision allows patient-centric AI proving useful in clinical workflows and interpreting X-rays holistically. With RayDINO and small task-specific adapters, we reach state-of-the-art results and improve generalization to unseen populations while mitigating bias, illustrating the true promise of foundation models: versatility and robustness.
☆ Understanding Retrieval-Augmented Task Adaptation for Vision-Language Models ICML 2024
Pre-trained contrastive vision-language models have demonstrated remarkable performance across a wide range of tasks. However, they often struggle on fine-trained datasets with categories not adequately represented during pre-training, which makes adaptation necessary. Recent works have shown promising results by utilizing samples from web-scale databases for retrieval-augmented adaptation, especially in low-data regimes. Despite the empirical success, understanding how retrieval impacts the adaptation of vision-language models remains an open research question. In this work, we adopt a reflective perspective by presenting a systematic study to understand the roles of key components in retrieval-augmented adaptation. We unveil new insights on uni-modal and cross-modal retrieval and highlight the critical role of logit ensemble for effective adaptation. We further present theoretical underpinnings that directly support our empirical observations.
comment: The paper is accepted at ICML 2024
☆ SATO: Stable Text-to-Motion Framework
Is the Text to Motion model robust? Recent advancements in Text to Motion models primarily stem from more accurate predictions of specific actions. However, the text modality typically relies solely on pre-trained Contrastive Language-Image Pretraining (CLIP) models. Our research has uncovered a significant issue with the text-to-motion model: its predictions often exhibit inconsistent outputs, resulting in vastly different or even incorrect poses when presented with semantically similar or identical text inputs. In this paper, we undertake an analysis to elucidate the underlying causes of this instability, establishing a clear link between the unpredictability of model outputs and the erratic attention patterns of the text encoder module. Consequently, we introduce a formal framework aimed at addressing this issue, which we term the Stable Text-to-Motion Framework (SATO). SATO consists of three modules, each dedicated to stable attention, stable prediction, and maintaining a balance between accuracy and robustness trade-off. We present a methodology for constructing an SATO that satisfies the stability of attention and prediction. To verify the stability of the model, we introduced a new textual synonym perturbation dataset based on HumanML3D and KIT-ML. Results show that SATO is significantly more stable against synonyms and other slight perturbations while keeping its high accuracy performance.
☆ Purify Unlearnable Examples via Rate-Constrained Variational Autoencoders ICML 2024
Unlearnable examples (UEs) seek to maximize testing error by making subtle modifications to training examples that are correctly labeled. Defenses against these poisoning attacks can be categorized based on whether specific interventions are adopted during training. The first approach is training-time defense, such as adversarial training, which can mitigate poisoning effects but is computationally intensive. The other approach is pre-training purification, e.g., image short squeezing, which consists of several simple compressions but often encounters challenges in dealing with various UEs. Our work provides a novel disentanglement mechanism to build an efficient pre-training purification method. Firstly, we uncover rate-constrained variational autoencoders (VAEs), demonstrating a clear tendency to suppress the perturbations in UEs. We subsequently conduct a theoretical analysis for this phenomenon. Building upon these insights, we introduce a disentangle variational autoencoder (D-VAE), capable of disentangling the perturbations with learnable class-wise embeddings. Based on this network, a two-stage purification approach is naturally developed. The first stage focuses on roughly eliminating perturbations, while the second stage produces refined, poison-free results, ensuring effectiveness and robustness across various scenarios. Extensive experiments demonstrate the remarkable performance of our method across CIFAR-10, CIFAR-100, and a 100-class ImageNet-subset. Code is available at https://github.com/yuyi-sd/D-VAE.
comment: Accepted by ICML 2024
☆ Improving Domain Generalization on Gaze Estimation via Branch-out Auxiliary Regularization
Despite remarkable advancements, mainstream gaze estimation techniques, particularly appearance-based methods, often suffer from performance degradation in uncontrolled environments due to variations in illumination and individual facial attributes. Existing domain adaptation strategies, limited by their need for target domain samples, may fall short in real-world applications. This letter introduces Branch-out Auxiliary Regularization (BAR), an innovative method designed to boost gaze estimation's generalization capabilities without requiring direct access to target domain data. Specifically, BAR integrates two auxiliary consistency regularization branches: one that uses augmented samples to counteract environmental variations, and another that aligns gaze directions with positive source domain samples to encourage the learning of consistent gaze features. These auxiliary pathways strengthen the core network and are integrated in a smooth, plug-and-play manner, facilitating easy adaptation to various other models. Comprehensive experimental evaluations on four cross-dataset tasks demonstrate the superiority of our approach.
☆ StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation
For recent diffusion-based generative models, maintaining consistent content across a series of generated images, especially those containing subjects and complex details, presents a significant challenge. In this paper, we propose a new way of self-attention calculation, termed Consistent Self-Attention, that significantly boosts the consistency between the generated images and augments prevalent pretrained diffusion-based text-to-image models in a zero-shot manner. To extend our method to long-range video generation, we further introduce a novel semantic space temporal motion prediction module, named Semantic Motion Predictor. It is trained to estimate the motion conditions between two provided images in the semantic spaces. This module converts the generated sequence of images into videos with smooth transitions and consistent subjects that are significantly more stable than the modules based on latent spaces only, especially in the context of long video generation. By merging these two novel components, our framework, referred to as StoryDiffusion, can describe a text-based story with consistent images or videos encompassing a rich variety of contents. The proposed StoryDiffusion encompasses pioneering explorations in visual story generation with the presentation of images and videos, which we hope could inspire more research from the aspect of architectural modifications. Our code is made publicly available at https://github.com/HVision-NKU/StoryDiffusion.
☆ MiniGPT-3D: Efficiently Aligning 3D Point Clouds with Large Language Models using 2D Priors
Large 2D vision-language models (2D-LLMs) have gained significant attention by bridging Large Language Models (LLMs) with images using a simple projector. Inspired by their success, large 3D point cloud-language models (3D-LLMs) also integrate point clouds into LLMs. However, directly aligning point clouds with LLM requires expensive training costs, typically in hundreds of GPU-hours on A100, which hinders the development of 3D-LLMs. In this paper, we introduce MiniGPT-3D, an efficient and powerful 3D-LLM that achieves multiple SOTA results while training for only 27 hours on one RTX 3090. Specifically, we propose to align 3D point clouds with LLMs using 2D priors from 2D-LLMs, which can leverage the similarity between 2D and 3D visual information. We introduce a novel four-stage training strategy for modality alignment in a cascaded way, and a mixture of query experts module to adaptively aggregate features with high efficiency. Moreover, we utilize parameter-efficient fine-tuning methods LoRA and Norm fine-tuning, resulting in only 47.8M learnable parameters, which is up to 260x fewer than existing methods. Extensive experiments show that MiniGPT-3D achieves SOTA on 3D object classification and captioning tasks, with significantly cheaper training costs. Notably, MiniGPT-3D gains an 8.12 increase on GPT-4 evaluation score for the challenging object captioning task compared to ShapeLLM-13B, while the latter costs 160 total GPU-hours on 8 A800. We are the first to explore the efficient 3D-LLM, offering new insights to the community. Code and weights are available at https://github.com/TangYuan96/MiniGPT-3D.
comment: 17 pages, 9 figures
☆ Goal-conditioned reinforcement learning for ultrasound navigation guidance
Transesophageal echocardiography (TEE) plays a pivotal role in cardiology for diagnostic and interventional procedures. However, using it effectively requires extensive training due to the intricate nature of image acquisition and interpretation. To enhance the efficiency of novice sonographers and reduce variability in scan acquisitions, we propose a novel ultrasound (US) navigation assistance method based on contrastive learning as goal-conditioned reinforcement learning (GCRL). We augment the previous framework using a novel contrastive patient batching method (CPB) and a data-augmented contrastive loss, both of which we demonstrate are essential to ensure generalization to anatomical variations across patients. The proposed framework enables navigation to both standard diagnostic as well as intricate interventional views with a single model. Our method was developed with a large dataset of 789 patients and obtained an average error of 6.56 mm in position and 9.36 degrees in angle on a testing dataset of 140 patients, which is competitive or superior to models trained on individual views. Furthermore, we quantitatively validate our method's ability to navigate to interventional views such as the Left Atrial Appendage (LAA) view used in LAA closure. Our approach holds promise in providing valuable guidance during transesophageal ultrasound examinations, contributing to the advancement of skill acquisition for cardiac ultrasound practitioners.
comment: 11 pages, 3 figures
☆ ATOM: Attention Mixer for Efficient Dataset Distillation CVPR
Recent works in dataset distillation seek to minimize training expenses by generating a condensed synthetic dataset that encapsulates the information present in a larger real dataset. These approaches ultimately aim to attain test accuracy levels akin to those achieved by models trained on the entirety of the original dataset. Previous studies in feature and distribution matching have achieved significant results without incurring the costs of bi-level optimization in the distillation process. Despite their convincing efficiency, many of these methods suffer from marginal downstream performance improvements, limited distillation of contextual information, and subpar cross-architecture generalization. To address these challenges in dataset distillation, we propose the ATtentiOn Mixer (ATOM) module to efficiently distill large datasets using a mixture of channel and spatial-wise attention in the feature matching process. Spatial-wise attention helps guide the learning process based on consistent localization of classes in their respective images, allowing for distillation from a broader receptive field. Meanwhile, channel-wise attention captures the contextual information associated with the class itself, thus making the synthetic image more informative for training. By integrating both types of attention, our ATOM module demonstrates superior performance across various computer vision datasets, including CIFAR10/100 and TinyImagenet. Notably, our method significantly improves performance in scenarios with a low number of images per class, thereby enhancing its potential. Furthermore, we maintain the improvement in cross-architectures and applications such as neural architecture search.
comment: Accepted for an oral presentation in CVPR-DD 2024
☆ Improving Subject-Driven Image Synthesis with Subject-Agnostic Guidance CVPR 2024
In subject-driven text-to-image synthesis, the synthesis process tends to be heavily influenced by the reference images provided by users, often overlooking crucial attributes detailed in the text prompt. In this work, we propose Subject-Agnostic Guidance (SAG), a simple yet effective solution to remedy the problem. We show that through constructing a subject-agnostic condition and applying our proposed dual classifier-free guidance, one could obtain outputs consistent with both the given subject and input text prompts. We validate the efficacy of our approach through both optimization-based and encoder-based methods. Additionally, we demonstrate its applicability in second-order customization methods, where an encoder-based model is fine-tuned with DreamBooth. Our approach is conceptually simple and requires only minimal code modifications, but leads to substantial quality improvements, as evidenced by our evaluations and user studies.
comment: Accepted to CVPR 2024
☆ Sparse multi-view hand-object reconstruction for unseen environments CVPR
Recent works in hand-object reconstruction mainly focus on the single-view and dense multi-view settings. On the one hand, single-view methods can leverage learned shape priors to generalise to unseen objects but are prone to inaccuracies due to occlusions. On the other hand, dense multi-view methods are very accurate but cannot easily adapt to unseen objects without further data collection. In contrast, sparse multi-view methods can take advantage of the additional views to tackle occlusion, while keeping the computational cost low compared to dense multi-view methods. In this paper, we consider the problem of hand-object reconstruction with unseen objects in the sparse multi-view setting. Given multiple RGB images of the hand and object captured at the same time, our model SVHO combines the predictions from each view into a unified reconstruction without optimisation across views. We train our model on a synthetic hand-object dataset and evaluate directly on a real world recorded hand-object dataset with unseen objects. We show that while reconstruction of unseen hands and objects from RGB is challenging, additional views can help improve the reconstruction quality.
comment: Camera-ready version. Paper accepted to CVPRW 2024. 8 pages, 7 figures, 1 table
☆ Multi-view Action Recognition via Directed Gromov-Wasserstein Discrepancy
Action recognition has become one of the popular research topics in computer vision. There are various methods based on Convolutional Networks and self-attention mechanisms as Transformers to solve both spatial and temporal dimensions problems of action recognition tasks that achieve competitive performances. However, these methods lack a guarantee of the correctness of the action subject that the models give attention to, i.e., how to ensure an action recognition model focuses on the proper action subject to make a reasonable action prediction. In this paper, we propose a multi-view attention consistency method that computes the similarity between two attentions from two different views of the action videos using Directed Gromov-Wasserstein Discrepancy. Furthermore, our approach applies the idea of Neural Radiance Field to implicitly render the features from novel views when training on single-view datasets. Therefore, the contributions in this work are three-fold. Firstly, we introduce the multi-view attention consistency to solve the problem of reasonable prediction in action recognition. Secondly, we define a new metric for multi-view consistent attention using Directed Gromov-Wasserstein Discrepancy. Thirdly, we built an action recognition model based on Video Transformers and Neural Radiance Fields. Compared to the recent action recognition methods, the proposed approach achieves state-of-the-art results on three large-scale datasets, i.e., Jester, Something-Something V2, and Kinetics-400.
☆ NeRF in Robotics: A Survey
Meticulous 3D environment representations have been a longstanding goal in computer vision and robotics fields. The recent emergence of neural implicit representations has introduced radical innovation to this field as implicit representations enable numerous capabilities. Among these, the Neural Radiance Field (NeRF) has sparked a trend because of the huge representational advantages, such as simplified mathematical models, compact environment storage, and continuous scene representations. Apart from computer vision, NeRF has also shown tremendous potential in the field of robotics. Thus, we create this survey to provide a comprehensive understanding of NeRF in the field of robotics. By exploring the advantages and limitations of NeRF, as well as its current applications and future potential, we hope to shed light on this promising area of research. Our survey is divided into two main sections: \textit{The Application of NeRF in Robotics} and \textit{The Advance of NeRF in Robotics}, from the perspective of how NeRF enters the field of robotics. In the first section, we introduce and analyze some works that have been or could be used in the field of robotics from the perception and interaction perspectives. In the second section, we show some works related to improving NeRF's own properties, which are essential for deploying NeRF in the field of robotics. In the discussion section of the review, we summarize the existing challenges and provide some valuable future research directions for reference.
comment: 21 pages, 19 figures
☆ Multi-modal Learnable Queries for Image Aesthetics Assessment ICME2024
Image aesthetics assessment (IAA) is attracting wide interest with the prevalence of social media. The problem is challenging due to its subjective and ambiguous nature. Instead of directly extracting aesthetic features solely from the image, user comments associated with an image could potentially provide complementary knowledge that is useful for IAA. With existing large-scale pre-trained models demonstrating strong capabilities in extracting high-quality transferable visual and textual features, learnable queries are shown to be effective in extracting useful features from the pre-trained visual features. Therefore, in this paper, we propose MMLQ, which utilizes multi-modal learnable queries to extract aesthetics-related features from multi-modal pre-trained features. Extensive experimental results demonstrate that MMLQ achieves new state-of-the-art performance on multi-modal IAA, beating previous methods by 7.7% and 8.3% in terms of SRCC and PLCC, respectively.
comment: Accepted by ICME2024
☆ Imagine the Unseen: Occluded Pedestrian Detection via Adversarial Feature Completion
Pedestrian detection has significantly progressed in recent years, thanks to the development of DNNs. However, detection performance at occluded scenes is still far from satisfactory, as occlusion increases the intra-class variance of pedestrians, hindering the model from finding an accurate classification boundary between pedestrians and background clutters. From the perspective of reducing intra-class variance, we propose to complete features for occluded regions so as to align the features of pedestrians across different occlusion patterns. An important premise for feature completion is to locate occluded regions. From our analysis, channel features of different pedestrian proposals only show high correlation values at visible parts and thus feature correlations can be used to model occlusion patterns. In order to narrow down the gap between completed features and real fully visible ones, we propose an adversarial learning method, which completes occluded features with a generator such that they can hardly be distinguished by the discriminator from real fully visible features. We report experimental results on the CityPersons, Caltech and CrowdHuman datasets. On CityPersons, we show significant improvements over five different baseline detectors, especially on the heavy occlusion subset. Furthermore, we show that our proposed method FeatComp++ achieves state-of-the-art results on all the above three datasets without relying on extra cues.
☆ Towards Inclusive Face Recognition Through Synthetic Ethnicity Alteration
Numerous studies have shown that existing Face Recognition Systems (FRS), including commercial ones, often exhibit biases toward certain ethnicities due to under-represented data. In this work, we explore ethnicity alteration and skin tone modification using synthetic face image generation methods to increase the diversity of datasets. We conduct a detailed analysis by first constructing a balanced face image dataset representing three ethnicities: Asian, Black, and Indian. We then make use of existing Generative Adversarial Network-based (GAN) image-to-image translation and manifold learning models to alter the ethnicity from one to another. A systematic analysis is further conducted to assess the suitability of such datasets for FRS by studying the realistic skin-tone representation using Individual Typology Angle (ITA). Further, we also analyze the quality characteristics using existing Face image quality assessment (FIQA) approaches. We then provide a holistic FRS performance analysis using four different systems. Our findings pave the way for future research works in (i) developing both specific ethnicity and general (any to any) ethnicity alteration models, (ii) expanding such approaches to create databases with diverse skin tones, (iii) creating datasets representing various ethnicities which further can help in mitigating bias while addressing privacy concerns.
comment: 8 Pages
☆ Towards Consistent Object Detection via LiDAR-Camera Synergy
As human-machine interaction continues to evolve, the capacity for environmental perception is becoming increasingly crucial. Integrating the two most common types of sensory data, images, and point clouds, can enhance detection accuracy. However, currently, no model exists that can simultaneously detect an object's position in both point clouds and images and ascertain their corresponding relationship. This information is invaluable for human-machine interactions, offering new possibilities for their enhancement. In light of this, this paper introduces an end-to-end Consistency Object Detection (COD) algorithm framework that requires only a single forward inference to simultaneously obtain an object's position in both point clouds and images and establish their correlation. Furthermore, to assess the accuracy of the object correlation between point clouds and images, this paper proposes a new evaluation metric, Consistency Precision (CP). To verify the effectiveness of the proposed framework, an extensive set of experiments has been conducted on the KITTI and DAIR-V2X datasets. The study also explored how the proposed consistency detection method performs on images when the calibration parameters between images and point clouds are disturbed, compared to existing post-processing methods. The experimental results demonstrate that the proposed method exhibits excellent detection performance and robustness, achieving end-to-end consistency detection. The source code will be made publicly available at https://github.com/xifen523/COD.
comment: The source code will be made publicly available at https://github.com/xifen523/COD
☆ Evaluation of Video-Based rPPG in Challenging Environments: Artifact Mitigation and Network Resilience
Video-based remote photoplethysmography (rPPG) has emerged as a promising technology for non-contact vital sign monitoring, especially under controlled conditions. However, the accurate measurement of vital signs in real-world scenarios faces several challenges, including artifacts induced by videocodecs, low-light noise, degradation, low dynamic range, occlusions, and hardware and network constraints. In this article, we systematically investigate comprehensive investigate these issues, measuring their detrimental effects on the quality of rPPG measurements. Additionally, we propose practical strategies for mitigating these challenges to improve the dependability and resilience of video-based rPPG systems. We detail methods for effective biosignal recovery in the presence of network limitations and present denoising and inpainting techniques aimed at preserving video frame integrity. Through extensive evaluations and direct comparisons, we demonstrate the effectiveness of the approaches in enhancing rPPG measurements under challenging environments, contributing to the development of more reliable and effective remote vital sign monitoring technologies.
comment: 22 main article pages with 3 supplementary pages, journal
☆ RaffeSDG: Random Frequency Filtering enabled Single-source Domain Generalization for Medical Image Segmentation
Deep learning models often encounter challenges in making accurate inferences when there are domain shifts between the source and target data. This issue is particularly pronounced in clinical settings due to the scarcity of annotated data resulting from the professional and private nature of medical data. Despite the existence of decent solutions, many of them are hindered in clinical settings due to limitations in data collection and computational complexity. To tackle domain shifts in data-scarce medical scenarios, we propose a Random frequency filtering enabled Single-source Domain Generalization algorithm (RaffeSDG), which promises robust out-of-domain inference with segmentation models trained on a single-source domain. A filter-based data augmentation strategy is first proposed to promote domain variability within a single-source domain by introducing variations in frequency space and blending homologous samples. Then Gaussian filter-based structural saliency is also leveraged to learn robust representations across augmented samples, further facilitating the training of generalizable segmentation models. To validate the effectiveness of RaffeSDG, we conducted extensive experiments involving out-of-domain inference on segmentation tasks for three human tissues imaged by four diverse modalities. Through thorough investigations and comparisons, compelling evidence was observed in these experiments, demonstrating the potential and generalizability of RaffeSDG. The code is available at https://github.com/liamheng/Non-IID_Medical_Image_Segmentation.
☆ CromSS: Cross-modal pre-training with noisy labels for remote sensing image segmentation ICLR 2024
We study the potential of noisy labels y to pretrain semantic segmentation models in a multi-modal learning framework for geospatial applications. Specifically, we propose a novel Cross-modal Sample Selection method (CromSS) that utilizes the class distributions P^{(d)}(x,c) over pixels x and classes c modelled by multiple sensors/modalities d of a given geospatial scene. Consistency of predictions across sensors $d$ is jointly informed by the entropy of P^{(d)}(x,c). Noisy label sampling we determine by the confidence of each sensor d in the noisy class label, P^{(d)}(x,c=y(x)). To verify the performance of our approach, we conduct experiments with Sentinel-1 (radar) and Sentinel-2 (optical) satellite imagery from the globally-sampled SSL4EO-S12 dataset. We pair those scenes with 9-class noisy labels sourced from the Google Dynamic World project for pretraining. Transfer learning evaluations (downstream task) on the DFC2020 dataset confirm the effectiveness of the proposed method for remote sensing image segmentation.
comment: Accepted as an oral presentation by ICLR 2024 ML4RS workshop
☆ Error-Driven Uncertainty Aware Training
Neural networks are often overconfident about their predictions, which undermines their reliability and trustworthiness. In this work, we present a novel technique, named Error-Driven Uncertainty Aware Training (EUAT), which aims to enhance the ability of neural models to estimate their uncertainty correctly, namely to be highly uncertain when they output inaccurate predictions and low uncertain when their output is accurate. The EUAT approach operates during the model's training phase by selectively employing two loss functions depending on whether the training examples are correctly or incorrectly predicted by the model. This allows for pursuing the twofold goal of i) minimizing model uncertainty for correctly predicted inputs and ii) maximizing uncertainty for mispredicted inputs, while preserving the model's misprediction rate. We evaluate EUAT using diverse neural models and datasets in the image recognition domains considering both non-adversarial and adversarial settings. The results show that EUAT outperforms existing approaches for uncertainty estimation (including other uncertainty-aware training techniques, calibration, ensembles, and DEUP) by providing uncertainty estimates that not only have higher quality when evaluated via statistical metrics (e.g., correlation with residuals) but also when employed to build binary classifiers that decide whether the model's output can be trusted or not and under distributional data shifts.
☆ Towards Cross-Scale Attention and Surface Supervision for Fractured Bone Segmentation in CT
Bone segmentation is an essential step for the preoperative planning of fracture trauma surgery. The automated segmentation of fractured bone from computed tomography (CT) scans remains challenging, due to the large differences of fractures in position and morphology, and also the inherent anatomical characteristics of different bone structures. To alleviate these issues, we propose a cross-scale attention mechanism as well as a surface supervision strategy for fractured bone segmentation in CT. Specifically, a cross-scale attention mechanism is introduced to effectively aggregate the features among different scales to provide more powerful fracture representation. Moreover, a surface supervision strategy is employed, which explicitly constrains the network to pay more attention to the bone boundary. The efficacy of the proposed method is evaluated on a public dataset containing CT scans with hip fractures. The evaluation metrics are Dice similarity coefficient (DSC), average symmetric surface distance (ASSD), and Hausdorff distance (95HD). The proposed method achieves an average DSC of 93.36%, ASSD of 0.85mm, 95HD of 7.51mm. Our method offers an effective fracture segmentation approach for the pelvic CT examinations, and has the potential to be used for improving the segmentation performance of other types of fractures.
☆ Latent Fingerprint Matching via Dense Minutia Descriptor
Latent fingerprint matching is a daunting task, primarily due to the poor quality of latent fingerprints. In this study, we propose a deep-learning based dense minutia descriptor (DMD) for latent fingerprint matching. A DMD is obtained by extracting the fingerprint patch aligned by its central minutia, capturing detailed minutia information and texture information. Our dense descriptor takes the form of a three-dimensional representation, with two dimensions associated with the original image plane and the other dimension representing the abstract features. Additionally, the extraction process outputs the fingerprint segmentation map, ensuring that the descriptor is only valid in the foreground region. The matching between two descriptors occurs in their overlapping regions, with a score normalization strategy to reduce the impact brought by the differences outside the valid area. Our descriptor achieves state-of-the-art performance on several latent fingerprint datasets. Overall, our DMD is more representative and interpretable compared to previous methods.
comment: 10 pages, 6 figures
☆ Imagine2touch: Predictive Tactile Sensing for Robotic Manipulation using Efficient Low-Dimensional Signals ICRA2024
Humans seemingly incorporate potential touch signals in their perception. Our goal is to equip robots with a similar capability, which we term Imagine2touch. Imagine2touch aims to predict the expected touch signal based on a visual patch representing the area to be touched. We use ReSkin, an inexpensive and compact touch sensor to collect the required dataset through random touching of five basic geometric shapes, and one tool. We train Imagine2touch on two out of those shapes and validate it on the ood. tool. We demonstrate the efficacy of Imagine2touch through its application to the downstream task of object recognition. In this task, we evaluate Imagine2touch performance in two experiments, together comprising 5 out of training distribution objects. Imagine2touch achieves an object recognition accuracy of 58% after ten touches per object, surpassing a proprioception baseline.
comment: 3 pages, 3 figures, 2 tables, accepted at ViTac2024 ICRA2024 Workshop. arXiv admin note: substantial text overlap with arXiv:2403.15107
☆ Uncertainty-aware self-training with expectation maximization basis transformation
Self-training is a powerful approach to deep learning. The key process is to find a pseudo-label for modeling. However, previous self-training algorithms suffer from the over-confidence issue brought by the hard labels, even some confidence-related regularizers cannot comprehensively catch the uncertainty. Therefore, we propose a new self-training framework to combine uncertainty information of both model and dataset. Specifically, we propose to use Expectation-Maximization (EM) to smooth the labels and comprehensively estimate the uncertainty information. We further design a basis extraction network to estimate the initial basis from the dataset. The obtained basis with uncertainty can be filtered based on uncertainty information. It can then be transformed into the real hard label to iteratively update the model and basis in the retraining process. Experiments on image classification and semantic segmentation show the advantages of our methods among confidence-aware self-training algorithms with 1-3 percentage improvement on different datasets.
☆ GroupedMixer: An Entropy Model with Group-wise Token-Mixers for Learned Image Compression
Transformer-based entropy models have gained prominence in recent years due to their superior ability to capture long-range dependencies in probability distribution estimation compared to convolution-based methods. However, previous transformer-based entropy models suffer from a sluggish coding process due to pixel-wise autoregression or duplicated computation during inference. In this paper, we propose a novel transformer-based entropy model called GroupedMixer, which enjoys both faster coding speed and better compression performance than previous transformer-based methods. Specifically, our approach builds upon group-wise autoregression by first partitioning the latent variables into groups along spatial-channel dimensions, and then entropy coding the groups with the proposed transformer-based entropy model. The global causal self-attention is decomposed into more efficient group-wise interactions, implemented using inner-group and cross-group token-mixers. The inner-group token-mixer incorporates contextual elements within a group while the cross-group token-mixer interacts with previously decoded groups. Alternate arrangement of two token-mixers enables global contextual reference. To further expedite the network inference, we introduce context cache optimization to GroupedMixer, which caches attention activation values in cross-group token-mixers and avoids complex and duplicated computation. Experimental results demonstrate that the proposed GroupedMixer yields the state-of-the-art rate-distortion performance with fast compression speed.
comment: Accepted by IEEE TCSVT
Self-Supervised Learning for Interventional Image Analytics: Towards Robust Device Trackers
An accurate detection and tracking of devices such as guiding catheters in live X-ray image acquisitions is an essential prerequisite for endovascular cardiac interventions. This information is leveraged for procedural guidance, e.g., directing stent placements. To ensure procedural safety and efficacy, there is a need for high robustness no failures during tracking. To achieve that, one needs to efficiently tackle challenges, such as: device obscuration by contrast agent or other external devices or wires, changes in field-of-view or acquisition angle, as well as the continuous movement due to cardiac and respiratory motion. To overcome the aforementioned challenges, we propose a novel approach to learn spatio-temporal features from a very large data cohort of over 16 million interventional X-ray frames using self-supervision for image sequence data. Our approach is based on a masked image modeling technique that leverages frame interpolation based reconstruction to learn fine inter-frame temporal correspondences. The features encoded in the resulting model are fine-tuned downstream. Our approach achieves state-of-the-art performance and in particular robustness compared to ultra optimized reference solutions (that use multi-stage feature fusion, multi-task and flow regularization). The experiments show that our method achieves 66.31% reduction in maximum tracking error against reference solutions (23.20% when flow regularization is used); achieving a success score of 97.95% at a 3x faster inference speed of 42 frames-per-second (on GPU). The results encourage the use of our approach in various other tasks within interventional image analytics that require effective understanding of spatio-temporal semantics.
☆ Automated Virtual Product Placement and Assessment in Images using Diffusion Models CVPR 2024
In Virtual Product Placement (VPP) applications, the discrete integration of specific brand products into images or videos has emerged as a challenging yet important task. This paper introduces a novel three-stage fully automated VPP system. In the first stage, a language-guided image segmentation model identifies optimal regions within images for product inpainting. In the second stage, Stable Diffusion (SD), fine-tuned with a few example product images, is used to inpaint the product into the previously identified candidate regions. The final stage introduces an "Alignment Module", which is designed to effectively sieve out low-quality images. Comprehensive experiments demonstrate that the Alignment Module ensures the presence of the intended product in every generated image and enhances the average quality of images by 35%. The results presented in this paper demonstrate the effectiveness of the proposed VPP system, which holds significant potential for transforming the landscape of virtual advertising and marketing strategies.
comment: Accepted at the 6th AI for Content Creation (AI4CC) workshop at CVPR 2024
☆ Detecting and clustering swallow events in esophageal long-term high-resolution manometry
High-resolution manometry (HRM) is the gold standard in diagnosing esophageal motility disorders. As HRM is typically conducted under short-term laboratory settings, intermittently occurring disorders are likely to be missed. Therefore, long-term (up to 24h) HRM (LTHRM) is used to gain detailed insights into the swallowing behavior. However, analyzing the extensive data from LTHRM is challenging and time consuming as medical experts have to analyze the data manually, which is slow and prone to errors. To address this challenge, we propose a Deep Learning based swallowing detection method to accurately identify swallowing events and secondary non-deglutitive-induced esophageal motility disorders in LTHRM data. We then proceed with clustering the identified swallows into distinct classes, which are analyzed by highly experienced clinicians to validate the different swallowing patterns. We evaluate our computational pipeline on a total of 25 LTHRMs, which were meticulously annotated by medical experts. By detecting more than 94% of all relevant swallow events and providing all relevant clusters for a more reliable diagnostic process among experienced clinicians, we are able to demonstrate the effectiveness as well as positive clinical impact of our approach to make LTHRM feasible in clinical care.
☆ Investigating Self-Supervised Image Denoising with Denaturation
Self-supervised learning for image denoising problems in the presence of denaturation for noisy data is a crucial approach in machine learning. However, theoretical understanding of the performance of the approach that uses denatured data is lacking. To provide better understanding of the approach, in this paper, we analyze a self-supervised denoising algorithm that uses denatured data in depth through theoretical analysis and numerical experiments. Through the theoretical analysis, we discuss that the algorithm finds desired solutions to the optimization problem with the population risk, while the guarantee for the empirical risk depends on the hardness of the denoising task in terms of denaturation levels. We also conduct several experiments to investigate the performance of an extended algorithm in practice. The results indicate that the algorithm training with denatured images works, and the empirical performance aligns with the theoretical results. These results suggest several insights for further improvement of self-supervised image denoising that uses denatured data in future directions.
☆ Domain-Transferred Synthetic Data Generation for Improving Monocular Depth Estimation
A major obstacle to the development of effective monocular depth estimation algorithms is the difficulty in obtaining high-quality depth data that corresponds to collected RGB images. Collecting this data is time-consuming and costly, and even data collected by modern sensors has limited range or resolution, and is subject to inconsistencies and noise. To combat this, we propose a method of data generation in simulation using 3D synthetic environments and CycleGAN domain transfer. We compare this method of data generation to the popular NYUDepth V2 dataset by training a depth estimation model based on the DenseDepth structure using different training sets of real and simulated data. We evaluate the performance of the models on newly collected images and LiDAR depth data from a Husky robot to verify the generalizability of the approach and show that GAN-transformed data can serve as an effective alternative to real-world data, particularly in depth estimation.
☆ Sports Analysis and VR Viewing System Based on Player Tracking and Pose Estimation with Multimodal and Multiview Sensors
Sports analysis and viewing play a pivotal role in the current sports domain, offering significant value not only to coaches and athletes but also to fans and the media. In recent years, the rapid development of virtual reality (VR) and augmented reality (AR) technologies have introduced a new platform for watching games. Visualization of sports competitions in VR/AR represents a revolutionary technology, providing audiences with a novel immersive viewing experience. However, there is still a lack of related research in this area. In this work, we present for the first time a comprehensive system for sports competition analysis and real-time visualization on VR/AR platforms. First, we utilize multiview LiDARs and cameras to collect multimodal game data. Subsequently, we propose a framework for multi-player tracking and pose estimation based on a limited amount of supervised data, which extracts precise player positions and movements from point clouds and images. Moreover, we perform avatar modeling of players to obtain their 3D models. Ultimately, using these 3D player data, we conduct competition analysis and real-time visualization on VR/AR. Extensive quantitative experiments demonstrate the accuracy and robustness of our multi-player tracking and pose estimation framework. The visualization results showcase the immense potential of our sports visualization system on the domain of watching games on VR/AR devices. The multimodal competition dataset we collected and all related code will be released soon.
comment: arXiv admin note: text overlap with arXiv:2312.06409
☆ Federated Learning with Heterogeneous Data Handling for Robust Vehicular Object Detection
In the pursuit of refining precise perception models for fully autonomous driving, continual online model training becomes essential. Federated Learning (FL) within vehicular networks offers an efficient mechanism for model training while preserving raw sensory data integrity. Yet, FL struggles with non-identically distributed data (e.g., quantity skew), leading to suboptimal convergence rates during model training. In previous work, we introduced FedLA, an innovative Label-Aware aggregation method addressing data heterogeneity in FL for generic scenarios. In this paper, we introduce FedProx+LA, a novel FL method building upon the state-of-the-art FedProx and FedLA to tackle data heterogeneity, which is specifically tailored for vehicular networks. We evaluate the efficacy of FedProx+LA in continuous online object detection model training. Through a comparative analysis against conventional and state-of-the-art methods, our findings reveal the superior convergence rate of FedProx+LA. Notably, if the label distribution is very heterogeneous, our FedProx+LA approach shows substantial improvements in detection performance compared to baseline methods, also outperforming our previous FedLA approach. Moreover, both FedLA and FedProx+LA increase convergence speed by 30% compared to baseline methods.
☆ Image segmentation of treated and untreated tumor spheroids by Fully Convolutional Networks
Multicellular tumor spheroids (MCTS) are advanced cell culture systems for assessing the impact of combinatorial radio(chemo)therapy. They exhibit therapeutically relevant in-vivo-like characteristics from 3D cell-cell and cell-matrix interactions to radial pathophysiological gradients related to proliferative activity and nutrient/oxygen supply, altering cellular radioresponse. State-of-the-art assays quantify long-term curative endpoints based on collected brightfield image time series from large treated spheroid populations per irradiation dose and treatment arm. Here, spheroid control probabilities are documented analogous to in-vivo tumor control probabilities based on Kaplan-Meier curves. This analyses require laborious spheroid segmentation of up to 100.000 images per treatment arm to extract relevant structural information from the images, e.g., diameter, area, volume and circularity. While several image analysis algorithms are available for spheroid segmentation, they all focus on compact MCTS with clearly distinguishable outer rim throughout growth. However, treated MCTS may partly be detached and destroyed and are usually obscured by dead cell debris. We successfully train two Fully Convolutional Networks, UNet and HRNet, and optimize their hyperparameters to develop an automatic segmentation for both untreated and treated MCTS. We systematically validate the automatic segmentation on larger, independent data sets of spheroids derived from two human head-and-neck cancer cell lines. We find an excellent overlap between manual and automatic segmentation for most images, quantified by Jaccard indices at around 90%. For images with smaller overlap of the segmentations, we demonstrate that this error is comparable to the variations across segmentations from different biological experts, suggesting that these images represent biologically unclear or ambiguous cases.
comment: 28 pages, 21 figures
☆ Enhancing Person Re-Identification via Uncertainty Feature Fusion and Wise Distance Aggregation
The quest for robust Person re-identification (Re-ID) systems capable of accurately identifying subjects across diverse scenarios remains a formidable challenge in surveillance and security applications. This study presents a novel methodology that significantly enhances Person Re-Identification (Re-ID) by integrating Uncertainty Feature Fusion (UFFM) with Wise Distance Aggregation (WDA). Tested on benchmark datasets - Market-1501, DukeMTMC-ReID, and MSMT17 - our approach demonstrates substantial improvements in Rank-1 accuracy and mean Average Precision (mAP). Specifically, UFFM capitalizes on the power of feature synthesis from multiple images to overcome the limitations imposed by the variability of subject appearances across different views. WDA further refines the process by intelligently aggregating similarity metrics, thereby enhancing the system's ability to discern subtle but critical differences between subjects. The empirical results affirm the superiority of our method over existing approaches, achieving new performance benchmarks across all evaluated datasets. Code is available on Github.
Transformers Fusion across Disjoint Samples for Hyperspectral Image Classification
3D Swin Transformer (3D-ST) known for its hierarchical attention and window-based processing, excels in capturing intricate spatial relationships within images. Spatial-spectral Transformer (SST), meanwhile, specializes in modeling long-range dependencies through self-attention mechanisms. Therefore, this paper introduces a novel method: an attentional fusion of these two transformers to significantly enhance the classification performance of Hyperspectral Images (HSIs). What sets this approach apart is its emphasis on the integration of attentional mechanisms from both architectures. This integration not only refines the modeling of spatial and spectral information but also contributes to achieving more precise and accurate classification results. The experimentation and evaluation of benchmark HSI datasets underscore the importance of employing disjoint training, validation, and test samples. The results demonstrate the effectiveness of the fusion approach, showcasing its superiority over traditional methods and individual transformers. Incorporating disjoint samples enhances the robustness and reliability of the proposed methodology, emphasizing its potential for advancing hyperspectral image classification.
☆ Learning Object States from Actions via Large Language Models
Temporally localizing the presence of object states in videos is crucial in understanding human activities beyond actions and objects. This task has suffered from a lack of training data due to object states' inherent ambiguity and variety. To avoid exhaustive annotation, learning from transcribed narrations in instructional videos would be intriguing. However, object states are less described in narrations compared to actions, making them less effective. In this work, we propose to extract the object state information from action information included in narrations, using large language models (LLMs). Our observation is that LLMs include world knowledge on the relationship between actions and their resulting object states, and can infer the presence of object states from past action sequences. The proposed LLM-based framework offers flexibility to generate plausible pseudo-object state labels against arbitrary categories. We evaluate our method with our newly collected Multiple Object States Transition (MOST) dataset including dense temporal annotation of 60 object state categories. Our model trained by the generated pseudo-labels demonstrates significant improvement of over 29% in mAP against strong zero-shot vision-language models, showing the effectiveness of explicitly extracting object state information from actions through LLMs.
comment: 19 pages of main content, 24 pages of supplementary material
☆ Type2Branch: Keystroke Biometrics based on a Dual-branch Architecture with Attention Mechanisms and Set2set Loss
In 2021, the pioneering work on TypeNet showed that keystroke dynamics verification could scale to hundreds of thousands of users with minimal performance degradation. Recently, the KVC-onGoing competition has provided an open and robust experimental protocol for evaluating keystroke dynamics verification systems of such scale, including considerations of algorithmic fairness. This article describes Type2Branch, the model and techniques that achieved the lowest error rates at the KVC-onGoing, in both desktop and mobile scenarios. The novelty aspects of the proposed Type2Branch include: i) synthesized timing features emphasizing user behavior deviation from the general population, ii) a dual-branch architecture combining recurrent and convolutional paths with various attention mechanisms, iii) a new loss function named Set2set that captures the global structure of the embedding space, and iv) a training curriculum of increasing difficulty. Considering five enrollment samples per subject of approximately 50 characters typed, the proposed Type2Branch achieves state-of-the-art performance with mean per-subject EERs of 0.77% and 1.03% on evaluation sets of respectively 15,000 and 5,000 subjects for desktop and mobile scenarios. With a uniform global threshold for all subjects, the EERs are 3.25% for desktop and 3.61% for mobile, outperforming previous approaches by a significant margin.
comment: 13 pages, 3 figures
☆ Single Image Super-Resolution Based on Global-Local Information Synergy
Although several image super-resolution solutions exist, they still face many challenges. CNN-based algorithms, despite the reduction in computational complexity, still need to improve their accuracy. While Transformer-based algorithms have higher accuracy, their ultra-high computational complexity makes them difficult to be accepted in practical applications. To overcome the existing challenges, a novel super-resolution reconstruction algorithm is proposed in this paper. The algorithm achieves a significant increase in accuracy through a unique design while maintaining a low complexity. The core of the algorithm lies in its cleverly designed Global-Local Information Extraction Module and Basic Block Module. By combining global and local information, the Global-Local Information Extraction Module aims to understand the image content more comprehensively so as to recover the global structure and local details in the image more accurately, which provides rich information support for the subsequent reconstruction process. Experimental results show that the comprehensive performance of the algorithm proposed in this paper is optimal, providing an efficient and practical new solution in the field of super-resolution reconstruction.
☆ MCMS: Multi-Category Information and Multi-Scale Stripe Attention for Blind Motion Deblurring
Deep learning-based motion deblurring techniques have advanced significantly in recent years. This class of techniques, however, does not carefully examine the inherent flaws in blurry images. For instance, low edge and structural information are traits of blurry images. The high-frequency component of blurry images is edge information, and the low-frequency component is structure information. A blind motion deblurring network (MCMS) based on multi-category information and multi-scale stripe attention mechanism is proposed. Given the respective characteristics of the high-frequency and low-frequency components, a three-stage encoder-decoder model is designed. Specifically, the first stage focuses on extracting the features of the high-frequency component, the second stage concentrates on extracting the features of the low-frequency component, and the third stage integrates the extracted low-frequency component features, the extracted high-frequency component features, and the original blurred image in order to recover the final clear image. As a result, the model effectively improves motion deblurring by fusing the edge information of the high-frequency component and the structural information of the low-frequency component. In addition, a grouped feature fusion technique is developed so as to achieve richer, more three-dimensional and comprehensive utilization of various types of features at a deep level. Next, a multi-scale stripe attention mechanism (MSSA) is designed, which effectively combines the anisotropy and multi-scale information of the image, a move that significantly enhances the capability of the deep model in feature representation. Large-scale comparative studies on various datasets show that the strategy in this paper works better than the recently published measures.
☆ Poisoning Attacks on Federated Learning for Autonomous Driving SC
Federated Learning (FL) is a decentralized learning paradigm, enabling parties to collaboratively train models while keeping their data confidential. Within autonomous driving, it brings the potential of reducing data storage costs, reducing bandwidth requirements, and to accelerate the learning. FL is, however, susceptible to poisoning attacks. In this paper, we introduce two novel poisoning attacks on FL tailored to regression tasks within autonomous driving: FLStealth and Off-Track Attack (OTA). FLStealth, an untargeted attack, aims at providing model updates that deteriorate the global model performance while appearing benign. OTA, on the other hand, is a targeted attack with the objective to change the global model's behavior when exposed to a certain trigger. We demonstrate the effectiveness of our attacks by conducting comprehensive experiments pertaining to the task of vehicle trajectory prediction. In particular, we show that, among five different untargeted attacks, FLStealth is the most successful at bypassing the considered defenses employed by the server. For OTA, we demonstrate the inability of common defense strategies to mitigate the attack, highlighting the critical need for new defensive mechanisms against targeted attacks within FL for autonomous driving.
comment: Accepted to SCAI2024
☆ Callico: a Versatile Open-Source Document Image Annotation Platform ICDAR 2024
This paper presents Callico, a web-based open source platform designed to simplify the annotation process in document recognition projects. The move towards data-centric AI in machine learning and deep learning underscores the importance of high-quality data, and the need for specialised tools that increase the efficiency and effectiveness of generating such data. For document image annotation, Callico offers dual-display annotation for digitised documents, enabling simultaneous visualisation and annotation of scanned images and text. This capability is critical for OCR and HTR model training, document layout analysis, named entity recognition, form-based key value annotation or hierarchical structure annotation with element grouping. The platform supports collaborative annotation with versatile features backed by a commitment to open source development, high-quality code standards and easy deployment via Docker. Illustrative use cases - including the transcription of the Belfort municipal registers, the indexing of French World War II prisoners for the ICRC, and the extraction of personal information from the Socface project's census lists - demonstrate Callico's applicability and utility.
comment: Accepted to ICDAR 2024
☆ HandSSCA: 3D Hand Mesh Reconstruction with State Space Channel Attention from RGB images
Reconstructing a hand mesh from a single RGB image is a challenging task because hands are often occluded by objects. Most previous works attempted to introduce more additional information and adopt attention mechanisms to improve 3D reconstruction results, but it would increased computational complexity. This observation prompts us to propose a new and concise architecture while improving computational efficiency. In this work, we propose a simple and effective 3D hand mesh reconstruction network HandSSCA, which is the first to incorporate state space modeling into the field of hand pose estimation. In the network, we have designed a novel state space channel attention module that extends the effective sensory field, extracts hand features in the spatial dimension, and enhances hand regional features in the channel dimension. This design helps to reconstruct a complete and detailed hand mesh. Extensive experiments conducted on well-known datasets featuring challenging hand-object occlusions (such as FREIHAND, DEXYCB, and HO3D) demonstrate that our proposed HandSSCA achieves state-of-the-art performance while maintaining a minimal parameter count.
comment: 13 pages, 5 figures
☆ MFDS-Net: Multi-Scale Feature Depth-Supervised Network for Remote Sensing Change Detection with Global Semantic and Detail Information
Change detection as an interdisciplinary discipline in the field of computer vision and remote sensing at present has been receiving extensive attention and research. Due to the rapid development of society, the geographic information captured by remote sensing satellites is changing faster and more complex, which undoubtedly poses a higher challenge and highlights the value of change detection tasks. We propose MFDS-Net: Multi-Scale Feature Depth-Supervised Network for Remote Sensing Change Detection with Global Semantic and Detail Information (MFDS-Net) with the aim of achieving a more refined description of changing buildings as well as geographic information, enhancing the localisation of changing targets and the acquisition of weak features. To achieve the research objectives, we use a modified ResNet_34 as backbone network to perform feature extraction and DO-Conv as an alternative to traditional convolution to better focus on the association between feature information and to obtain better training results. We propose the Global Semantic Enhancement Module (GSEM) to enhance the processing of high-level semantic information from a global perspective. The Differential Feature Integration Module (DFIM) is proposed to strengthen the fusion of different depth feature information, achieving learning and extraction of differential features. The entire network is trained and optimized using a deep supervision mechanism. The experimental outcomes of MFDS-Net surpass those of current mainstream change detection networks. On the LEVIR dataset, it achieved an F1 score of 91.589 and IoU of 84.483, on the WHU dataset, the scores were F1: 92.384 and IoU: 86.807, and on the GZ-CD dataset, the scores were F1: 86.377 and IoU: 76.021. The code is available at https://github.com/AOZAKIiii/MFDS-Net
☆ A text-based, generative deep learning model for soil reflectance spectrum simulation in the VIS-NIR (400-2499 nm) bands
Simulating soil reflectance spectra is invaluable for soil-plant radiative modeling and training machine learning models, yet it is difficult as the intricate relationships between soil structure and its constituents. To address this, a fully data-driven soil optics generative model (SOGM) for simulation of soil reflectance spectra based on soil property inputs was developed. The model is trained on an extensive dataset comprising nearly 180,000 soil spectra-property pairs from 17 datasets. It generates soil reflectance spectra from text-based inputs describing soil properties and their values rather than only numerical values and labels in binary vector format. The generative model can simulate output spectra based on an incomplete set of input properties. SOGM is based on the denoising diffusion probabilistic model (DDPM). Two additional sub-models were also built to complement the SOGM: a spectral padding model that can fill in the gaps for spectra shorter than the full visible-near-infrared range (VIS-NIR; 400 to 2499 nm), and a wet soil spectra model that can estimate the effects of water content on soil reflectance spectra given the dry spectrum predicted by the SOGM. The SOGM was up-scaled by coupling with the Helios 3D plant modeling software, which allowed for generation of synthetic aerial images of simulated soil and plant scenes. It can also be easily integrated with soil-plant radiation model used for remote sensin research like PROSAIL. The testing results of the SOGM on new datasets that not included in model training proved that the model can generate reasonable soil reflectance spectra based on available property inputs. The presented models are openly accessible on: https://github.com/GEMINI-Breeding/SOGM_soil_spectra_simulation.
comment: The paper has been submitted to Remote sensing of Environment and revised
☆ Continual Learning for Robust Gate Detection under Dynamic Lighting in Autonomous Drone Racing IJCNN
In autonomous and mobile robotics, a principal challenge is resilient real-time environmental perception, particularly in situations characterized by unknown and dynamic elements, as exemplified in the context of autonomous drone racing. This study introduces a perception technique for detecting drone racing gates under illumination variations, which is common during high-speed drone flights. The proposed technique relies upon a lightweight neural network backbone augmented with capabilities for continual learning. The envisaged approach amalgamates predictions of the gates' positional coordinates, distance, and orientation, encapsulating them into a cohesive pose tuple. A comprehensive number of tests serve to underscore the efficacy of this approach in confronting diverse and challenging scenarios, specifically those involving variable lighting conditions. The proposed methodology exhibits notable robustness in the face of illumination variations, thereby substantiating its effectiveness.
comment: 8 pages, 6 figures, in 2024 International Joint Conference on Neural Networks (IJCNN)
☆ Few Shot Class Incremental Learning using Vision-Language models
Recent advancements in deep learning have demonstrated remarkable performance comparable to human capabilities across various supervised computer vision tasks. However, the prevalent assumption of having an extensive pool of training data encompassing all classes prior to model training often diverges from real-world scenarios, where limited data availability for novel classes is the norm. The challenge emerges in seamlessly integrating new classes with few samples into the training data, demanding the model to adeptly accommodate these additions without compromising its performance on base classes. To address this exigency, the research community has introduced several solutions under the realm of few-shot class incremental learning (FSCIL). In this study, we introduce an innovative FSCIL framework that utilizes language regularizer and subspace regularizer. During base training, the language regularizer helps incorporate semantic information extracted from a Vision-Language model. The subspace regularizer helps in facilitating the model's acquisition of nuanced connections between image and text semantics inherent to base classes during incremental training. Our proposed framework not only empowers the model to embrace novel classes with limited data, but also ensures the preservation of performance on base classes. To substantiate the efficacy of our approach, we conduct comprehensive experiments on three distinct FSCIL benchmarks, where our framework attains state-of-the-art performance.
comment: under review at Pattern Recognition Letters
☆ Technical Report of NICE Challenge at CVPR 2024: Caption Re-ranking Evaluation Using Ensembled CLIP and Consensus Scores
This report presents the ECO (Ensembled Clip score and cOnsensus score) pipeline from team DSBA LAB, which is a new framework used to evaluate and rank captions for a given image. ECO selects the most accurate caption describing image. It is made possible by combining an Ensembled CLIP score, which considers the semantic alignment between the image and captions, with a Consensus score that accounts for the essentialness of the captions. Using this framework, we achieved notable success in the CVPR 2024 Workshop Challenge on Caption Re-ranking Evaluation at the New Frontiers for Zero-Shot Image Captioning Evaluation (NICE). Specifically, we secured third place based on the CIDEr metric, second in both the SPICE and METEOR metrics, and first in the ROUGE-L and all BLEU Score metrics. The code and configuration for the ECO framework are available at https://github.com/ DSBA-Lab/ECO .
☆ Addressing Diverging Training Costs using Local Restoration for Precise Bird's Eye View Map Construction
Recent advancements in Bird's Eye View (BEV) fusion for map construction have demonstrated remarkable mapping of urban environments. However, their deep and bulky architecture incurs substantial amounts of backpropagation memory and computing latency. Consequently, the problem poses an unavoidable bottleneck in constructing high-resolution (HR) BEV maps, as their large-sized features cause significant increases in costs including GPU memory consumption and computing latency, named diverging training costs issue. Affected by the problem, most existing methods adopt low-resolution (LR) BEV and struggle to estimate the precise locations of urban scene components like road lanes, and sidewalks. As the imprecision leads to risky self-driving, the diverging training costs issue has to be resolved. In this paper, we address the issue with our novel Trumpet Neural Network (TNN) mechanism. The framework utilizes LR BEV space and outputs an up-sampled semantic BEV map to create a memory-efficient pipeline. To this end, we introduce Local Restoration of BEV representation. Specifically, the up-sampled BEV representation has severely aliased, blocky signals, and thick semantic labels. Our proposed Local Restoration restores the signals and thins (or narrows down) the width of the labels. Our extensive experiments show that the TNN mechanism provides a plug-and-play memory-efficient pipeline, thereby enabling the effective estimation of real-sized (or precise) semantic labels for BEV map construction.
☆ Correcting Biased Centered Kernel Alignment Measures in Biological and Artificial Neural Networks ICLR 2024
Centred Kernel Alignment (CKA) has recently emerged as a popular metric to compare activations from biological and artificial neural networks (ANNs) in order to quantify the alignment between internal representations derived from stimuli sets (e.g. images, text, video) that are presented to both systems. In this paper we highlight issues that the community should take into account if using CKA as an alignment metric with neural data. Neural data are in the low-data high-dimensionality domain, which is one of the cases where (biased) CKA results in high similarity scores even for pairs of random matrices. Using fMRI and MEG data from the THINGS project, we show that if biased CKA is applied to representations of different sizes in the low-data high-dimensionality domain, they are not directly comparable due to biased CKA's sensitivity to differing feature-sample ratios and not stimuli-driven responses. This situation can arise both when comparing a pre-selected area of interest (e.g. ROI) to multiple ANN layers, as well as when determining to which ANN layer multiple regions of interest (ROIs) / sensor groups of different dimensionality are most similar. We show that biased CKA can be artificially driven to its maximum value when using independent random data of different sample-feature ratios. We further show that shuffling sample-feature pairs of real neural data does not drastically alter biased CKA similarity in comparison to unshuffled data, indicating an undesirable lack of sensitivity to stimuli-driven neural responses. Positive alignment of true stimuli-driven responses is only achieved by using debiased CKA. Lastly, we report findings that suggest biased CKA is sensitive to the inherent structure of neural data, only differing from shuffled data when debiased CKA detects stimuli-driven alignment.
comment: ICLR 2024 Re-Align Workshop
☆ On Mechanistic Knowledge Localization in Text-to-Image Generative Models ICML 2024
Identifying layers within text-to-image models which control visual attributes can facilitate efficient model editing through closed-form updates. Recent work, leveraging causal tracing show that early Stable-Diffusion variants confine knowledge primarily to the first layer of the CLIP text-encoder, while it diffuses throughout the UNet.Extending this framework, we observe that for recent models (e.g., SD-XL, DeepFloyd), causal tracing fails in pinpointing localized knowledge, highlighting challenges in model editing. To address this issue, we introduce the concept of Mechanistic Localization in text-to-image models, where knowledge about various visual attributes (e.g., ``style", ``objects", ``facts") can be mechanistically localized to a small fraction of layers in the UNet, thus facilitating efficient model editing. We localize knowledge using our method LocoGen which measures the direct effect of intermediate layers to output generation by performing interventions in the cross-attention layers of the UNet. We then employ LocoEdit, a fast closed-form editing method across popular open-source text-to-image models (including the latest SD-XL)and explore the possibilities of neuron-level model editing. Using Mechanistic Localization, our work offers a better view of successes and failures in localization-based text-to-image model editing. Code will be available at \href{https://github.com/samyadeepbasu/LocoGen}{https://github.com/samyadeepbasu/LocoGen}.
comment: Appearing in ICML 2024
☆ Deep Learning Models in Speech Recognition: Measuring GPU Energy Consumption, Impact of Noise and Model Quantization for Edge Deployment
Recent transformer-based ASR models have achieved word-error rates (WER) below 4%, surpassing human annotator accuracy, yet they demand extensive server resources, contributing to significant carbon footprints. The traditional server-based architecture of ASR also presents privacy concerns, alongside reliability and latency issues due to network dependencies. In contrast, on-device (edge) ASR enhances privacy, boosts performance, and promotes sustainability by effectively balancing energy use and accuracy for specific applications. This study examines the effects of quantization, memory demands, and energy consumption on the performance of various ASR model inference on the NVIDIA Jetson Orin Nano. By analyzing WER and transcription speed across models using FP32, FP16, and INT8 quantization on clean and noisy datasets, we highlight the crucial trade-offs between accuracy, speeds, quantization, energy efficiency, and memory needs. We found that changing precision from fp32 to fp16 halves the energy consumption for audio transcription across different models, with minimal performance degradation. A larger model size and number of parameters neither guarantees better resilience to noise, nor predicts the energy consumption for a given transcription load. These, along with several other findings offer novel insights for optimizing ASR systems within energy- and memory-limited environments, crucial for the development of efficient on-device ASR solutions. The code and input data needed to reproduce the results in this article are open sourced are available on [https://github.com/zzadiues3338/ASR-energy-jetson].
☆ Spider: A Unified Framework for Context-dependent Concept Understanding ICML 2024
Different from the context-independent (CI) concepts such as human, car, and airplane, context-dependent (CD) concepts require higher visual understanding ability, such as camouflaged object and medical lesion. Despite the rapid advance of many CD understanding tasks in respective branches, the isolated evolution leads to their limited cross-domain generalisation and repetitive technique innovation. Since there is a strong coupling relationship between foreground and background context in CD tasks, existing methods require to train separate models in their focused domains. This restricts their real-world CD concept understanding towards artificial general intelligence (AGI). We propose a unified model with a single set of parameters, Spider, which only needs to be trained once. With the help of the proposed concept filter driven by the image-mask group prompt, Spider is able to understand and distinguish diverse strong context-dependent concepts to accurately capture the Prompter's intention. Without bells and whistles, Spider significantly outperforms the state-of-the-art specialized models in 8 different context-dependent segmentation tasks, including 4 natural scenes (salient, camouflaged, and transparent objects and shadow) and 4 medical lesions (COVID-19, polyp, breast, and skin lesion with color colonoscopy, CT, ultrasound, and dermoscopy modalities). Besides, Spider shows obvious advantages in continuous learning. It can easily complete the training of new tasks by fine-tuning parameters less than 1\% and bring a tolerable performance degradation of less than 5\% for all old tasks. The source code will be publicly available at \href{https://github.com/Xiaoqi-Zhao-DLUT/Spider-UniCDSeg}{Spider-UniCDSeg}.
comment: Accepted by ICML 2024
☆ Part-aware Shape Generation with Latent 3D Diffusion of Neural Voxel Fields
This paper presents a novel latent 3D diffusion model for the generation of neural voxel fields, aiming to achieve accurate part-aware structures. Compared to existing methods, there are two key designs to ensure high-quality and accurate part-aware generation. On one hand, we introduce a latent 3D diffusion process for neural voxel fields, enabling generation at significantly higher resolutions that can accurately capture rich textural and geometric details. On the other hand, a part-aware shape decoder is introduced to integrate the part codes into the neural voxel fields, guiding the accurate part decomposition and producing high-quality rendering results. Through extensive experimentation and comparisons with state-of-the-art methods, we evaluate our approach across four different classes of data. The results demonstrate the superior generative capabilities of our proposed method in part-aware shape generation, outperforming existing state-of-the-art methods.
☆ Estimate the building height at a 10-meter resolution based on Sentinel data
Building height is an important indicator for scientific research and practical application. However, building height products with a high spatial resolution (10m) are still very scarce. To meet the needs of high-resolution building height estimation models, this study established a set of spatial-spectral-temporal feature databases, combining SAR data provided by Sentinel-1, optical data provided by Sentinel-2, and shape data provided by building footprints. The statistical indicators on the time scale are extracted to form a rich database of 160 features. This study combined with permutation feature importance, Shapley Additive Explanations, and Random Forest variable importance, and the final stable features are obtained through an expert scoring system. This study took 12 large, medium, and small cities in the United States as the training data. It used moving windows to aggregate the pixels to solve the impact of SAR image displacement and building shadows. This study built a building height model based on a random forest model and compared three model ensemble methods of bagging, boosting, and stacking. To evaluate the accuracy of the prediction results, this study collected Lidar data in the test area, and the evaluation results showed that its R-Square reached 0.78, which can prove that the building height can be obtained effectively. The fast production of high-resolution building height data can support large-scale scientific research and application in many fields.
☆ FREE: Faster and Better Data-Free Meta-Learning
Data-Free Meta-Learning (DFML) aims to extract knowledge from a collection of pre-trained models without requiring the original data, presenting practical benefits in contexts constrained by data privacy concerns. Current DFML methods primarily focus on the data recovery from these pre-trained models. However, they suffer from slow recovery speed and overlook gaps inherent in heterogeneous pre-trained models. In response to these challenges, we introduce the Faster and Better Data-Free Meta-Learning (FREE) framework, which contains: (i) a meta-generator for rapidly recovering training tasks from pre-trained models; and (ii) a meta-learner for generalizing to new unseen tasks. Specifically, within the module Faster Inversion via Meta-Generator, each pre-trained model is perceived as a distinct task. The meta-generator can rapidly adapt to a specific task in just five steps, significantly accelerating the data recovery. Furthermore, we propose Better Generalization via Meta-Learner and introduce an implicit gradient alignment algorithm to optimize the meta-learner. This is achieved as aligned gradient directions alleviate potential conflicts among tasks from heterogeneous pre-trained models. Empirical experiments on multiple benchmarks affirm the superiority of our approach, marking a notable speed-up (20$\times$) and performance enhancement (1.42\% $\sim$ 4.78\%) in comparison to the state-of-the-art.
☆ LLM-AD: Large Language Model based Audio Description System
The development of Audio Description (AD) has been a pivotal step forward in making video content more accessible and inclusive. Traditionally, AD production has demanded a considerable amount of skilled labor, while existing automated approaches still necessitate extensive training to integrate multimodal inputs and tailor the output from a captioning style to an AD style. In this paper, we introduce an automated AD generation pipeline that harnesses the potent multimodal and instruction-following capacities of GPT-4V(ision). Notably, our methodology employs readily available components, eliminating the need for additional training. It produces ADs that not only comply with established natural language AD production standards but also maintain contextually consistent character information across frames, courtesy of a tracking-based character recognition module. A thorough analysis on the MAD dataset reveals that our approach achieves a performance on par with learning-based methods in automated AD production, as substantiated by a CIDEr score of 20.5.
☆ A Hong Kong Sign Language Corpus Collected from Sign-interpreted TV News LREC
This paper introduces TVB-HKSL-News, a new Hong Kong sign language (HKSL) dataset collected from a TV news program over a period of 7 months. The dataset is collected to enrich resources for HKSL and support research in large-vocabulary continuous sign language recognition (SLR) and translation (SLT). It consists of 16.07 hours of sign videos of two signers with a vocabulary of 6,515 glosses (for SLR) and 2,850 Chinese characters or 18K Chinese words (for SLT). One signer has 11.66 hours of sign videos and the other has 4.41 hours. One objective in building the dataset is to support the investigation of how well large-vocabulary continuous sign language recognition/translation can be done for a single signer given a (relatively) large amount of his/her training data, which could potentially lead to the development of new modeling methods. Besides, most parts of the data collection pipeline are automated with little human intervention; we believe that our collection method can be scaled up to collect more sign language data easily for SLT in the future for any sign languages if such sign-interpreted videos are available. We also run a SOTA SLR/SLT model on the dataset and get a baseline SLR word error rate of 34.08% and a baseline SLT BLEU-4 score of 23.58 for benchmarking future research on the dataset.
comment: Accepted by LREC-COLING 2024
☆ FITA: Fine-grained Image-Text Aligner for Radiology Report Generation
Radiology report generation aims to automatically generate detailed and coherent descriptive reports alongside radiology images. Previous work mainly focused on refining fine-grained image features or leveraging external knowledge. However, the precise alignment of fine-grained image features with corresponding text descriptions has not been considered. This paper presents a novel method called Fine-grained Image-Text Aligner (FITA) to construct fine-grained alignment for image and text features. It has three novel designs: Image Feature Refiner (IFR), Text Feature Refiner (TFR) and Contrastive Aligner (CA). IFR and TFR aim to learn fine-grained image and text features, respectively. We achieve this by leveraging saliency maps to effectively fuse symptoms with corresponding abnormal visual regions, and by utilizing a meticulously constructed triplet set for training. Finally, CA module aligns fine-grained image and text features using contrastive loss for precise alignment. Results show that our method surpasses existing methods on the widely used benchmark
comment: 11 pages, 3 figures
☆ Efficient Data-driven Scene Simulation using Robotic Surgery Videos via Physics-embedded 3D Gaussians
Surgical scene simulation plays a crucial role in surgical education and simulator-based robot learning. Traditional approaches for creating these environments with surgical scene involve a labor-intensive process where designers hand-craft tissues models with textures and geometries for soft body simulations. This manual approach is not only time-consuming but also limited in the scalability and realism. In contrast, data-driven simulation offers a compelling alternative. It has the potential to automatically reconstruct 3D surgical scenes from real-world surgical video data, followed by the application of soft body physics. This area, however, is relatively uncharted. In our research, we introduce 3D Gaussian as a learnable representation for surgical scene, which is learned from stereo endoscopic video. To prevent over-fitting and ensure the geometrical correctness of these scenes, we incorporate depth supervision and anisotropy regularization into the Gaussian learning process. Furthermore, we apply the Material Point Method, which is integrated with physical properties, to the 3D Gaussians to achieve realistic scene deformations. Our method was evaluated on our collected in-house and public surgical videos datasets. Results show that it can reconstruct and simulate surgical scenes from endoscopic videos efficiently-taking only a few minutes to reconstruct the surgical scene-and produce both visually and physically plausible deformations at a speed approaching real-time. The results demonstrate great potential of our proposed method to enhance the efficiency and variety of simulations available for surgical education and robot learning.
☆ X-Oscar: A Progressive Framework for High-quality Text-guided 3D Animatable Avatar Generation ICML2024
Recent advancements in automatic 3D avatar generation guided by text have made significant progress. However, existing methods have limitations such as oversaturation and low-quality output. To address these challenges, we propose X-Oscar, a progressive framework for generating high-quality animatable avatars from text prompts. It follows a sequential Geometry->Texture->Animation paradigm, simplifying optimization through step-by-step generation. To tackle oversaturation, we introduce Adaptive Variational Parameter (AVP), representing avatars as an adaptive distribution during training. Additionally, we present Avatar-aware Score Distillation Sampling (ASDS), a novel technique that incorporates avatar-aware noise into rendered images for improved generation quality during optimization. Extensive evaluations confirm the superiority of X-Oscar over existing text-to-3D and text-to-avatar approaches. Our anonymous project page: https://xmu-xiaoma666.github.io/Projects/X-Oscar/.
comment: ICML2024
☆ Hyperspectral Band Selection based on Generalized 3DTV and Tensor CUR Decomposition
Hyperspectral Imaging (HSI) serves as an important technique in remote sensing. However, high dimensionality and data volume typically pose significant computational challenges. Band selection is essential for reducing spectral redundancy in hyperspectral imagery while retaining intrinsic critical information. In this work, we propose a novel hyperspectral band selection model by decomposing the data into a low-rank and smooth component and a sparse one. In particular, we develop a generalized 3D total variation (G3DTV) by applying the $\ell_1^p$-norm to derivatives to preserve spatial-spectral smoothness. By employing the alternating direction method of multipliers (ADMM), we derive an efficient algorithm, where the tensor low-rankness is implied by the tensor CUR decomposition. We demonstrate the effectiveness of the proposed approach through comparisons with various other state-of-the-art band selection techniques using two benchmark real-world datasets. In addition, we provide practical guidelines for parameter selection in both noise-free and noisy scenarios.
☆ LLaVA Finds Free Lunch: Teaching Human Behavior Improves Content Understanding Abilities Of LLMs
Communication is defined as ``Who says what to whom with what effect.'' A message from a communicator generates downstream receiver effects, also known as behavior. Receiver behavior, being a downstream effect of the message, carries rich signals about it. Even after carrying signals about the message, the behavior data is often ignored while training large language models. We show that training LLMs on receiver behavior can actually help improve their content-understanding abilities. Specifically, we show that training LLMs to predict the receiver behavior of likes and comments improves the LLM's performance on a wide variety of downstream content understanding tasks. We show this performance increase over 40 video and image understanding tasks over 23 benchmark datasets across both 0-shot and fine-tuning settings, outperforming many supervised baselines. Moreover, since receiver behavior, such as likes and comments, is collected by default on the internet and does not need any human annotations to be useful, the performance improvement we get after training on this data is essentially free-lunch. We release the receiver behavior cleaned comments and likes of 750k images and videos collected from multiple platforms along with our instruction-tuning data.
☆ EchoScene: Indoor Scene Generation via Information Echo over Scene Graph Diffusion
We present EchoScene, an interactive and controllable generative model that generates 3D indoor scenes on scene graphs. EchoScene leverages a dual-branch diffusion model that dynamically adapts to scene graphs. Existing methods struggle to handle scene graphs due to varying numbers of nodes, multiple edge combinations, and manipulator-induced node-edge operations. EchoScene overcomes this by associating each node with a denoising process and enables collaborative information exchange, enhancing controllable and consistent generation aware of global constraints. This is achieved through an information echo scheme in both shape and layout branches. At every denoising step, all processes share their denoising data with an information exchange unit that combines these updates using graph convolution. The scheme ensures that the denoising processes are influenced by a holistic understanding of the scene graph, facilitating the generation of globally coherent scenes. The resulting scenes can be manipulated during inference by editing the input scene graph and sampling the noise in the diffusion model. Extensive experiments validate our approach, which maintains scene controllability and surpasses previous methods in generation fidelity. Moreover, the generated scenes are of high quality and thus directly compatible with off-the-shelf texture generation. Code and trained models are open-sourced.
comment: 25 pages. 10 figures
♻ ☆ Continual Diffusion: Continual Customization of Text-to-Image Diffusion with C-LoRA
Recent works demonstrate a remarkable ability to customize text-to-image diffusion models while only providing a few example images. What happens if you try to customize such models using multiple, fine-grained concepts in a sequential (i.e., continual) manner? In our work, we show that recent state-of-the-art customization of text-to-image models suffer from catastrophic forgetting when new concepts arrive sequentially. Specifically, when adding a new concept, the ability to generate high quality images of past, similar concepts degrade. To circumvent this forgetting, we propose a new method, C-LoRA, composed of a continually self-regularized low-rank adaptation in cross attention layers of the popular Stable Diffusion model. Furthermore, we use customization prompts which do not include the word of the customized object (i.e., "person" for a human face dataset) and are initialized as completely random embeddings. Importantly, our method induces only marginal additional parameter costs and requires no storage of user data for replay. We show that C-LoRA not only outperforms several baselines for our proposed setting of text-to-image continual customization, which we refer to as Continual Diffusion, but that we achieve a new state-of-the-art in the well-established rehearsal-free continual learning setting for image classification. The high achieving performance of C-LoRA in two separate domains positions it as a compelling solution for a wide range of applications, and we believe it has significant potential for practical impact. Project page: https://jamessealesmith.github.io/continual-diffusion/
comment: Transactions on Machine Learning Research (TMLR) 2024
♻ ☆ Perception and Localization of Macular Degeneration Applying Convolutional Neural Network, ResNet and Grad-CAM
A well-known retinal disease that sends blurry visions to the affected patients is Macular Degeneration. This research is based on classifying the healthy and macular degeneration fundus by localizing the affected region of the fundus. A CNN architecture and CNN with ResNet architecture (ResNet50, ResNet50v2, ResNet101, ResNet101v2, ResNet152, ResNet152v2) as the backbone are used to classify the two types of fundus. The data are split into three categories including (a) Training set is 90% and Testing set is 10% (b) Training set is 80% and Testing set is 20%, (c) Training set is 50% and Testing set is 50%. After the training, the best model has been selected from the evaluation metrics. Among the models, CNN with a backbone of ResNet50 performs best which gives the training accuracy of 98.7% for 90% train and 10% test data split. With this model, we have performed the Grad-CAM visualization to get the region of the affected area of the fundus.
comment: 12 pages, 5 figures, 2 tables
♻ ☆ Compact 3D Scene Representation via Self-Organizing Gaussian Grids
3D Gaussian Splatting has recently emerged as a highly promising technique for modeling of static 3D scenes. In contrast to Neural Radiance Fields, it utilizes efficient rasterization allowing for very fast rendering at high-quality. However, the storage size is significantly higher, which hinders practical deployment, e.g. on resource constrained devices. In this paper, we introduce a compact scene representation organizing the parameters of 3D Gaussian Splatting (3DGS) into a 2D grid with local homogeneity, ensuring a drastic reduction in storage requirements without compromising visual quality during rendering. Central to our idea is the explicit exploitation of perceptual redundancies present in natural scenes. In essence, the inherent nature of a scene allows for numerous permutations of Gaussian parameters to equivalently represent it. To this end, we propose a novel highly parallel algorithm that regularly arranges the high-dimensional Gaussian parameters into a 2D grid while preserving their neighborhood structure. During training, we further enforce local smoothness between the sorted parameters in the grid. The uncompressed Gaussians use the same structure as 3DGS, ensuring a seamless integration with established renderers. Our method achieves a reduction factor of 17x to 42x in size for complex scenes with no increase in training time, marking a substantial leap forward in the domain of 3D scene distribution and consumption. Additional information can be found on our project page: https://fraunhoferhhi.github.io/Self-Organizing-Gaussians/
comment: Added compression of spherical harmonics, updated compression method with improved results (all attributes compressed with JPEG XL now), added qualitative comparison of additional scenes, moved compression explanation and comparison to main paper, added comparison with "Making Gaussian Splats smaller"
♻ ☆ Retrieval-Augmented Generation for AI-Generated Content: A Survey
Advancements in model algorithms, the growth of foundational models, and access to high-quality datasets have propelled the evolution of Artificial Intelligence Generated Content (AIGC). Despite its notable successes, AIGC still faces hurdles such as updating knowledge, handling long-tail data, mitigating data leakage, and managing high training and inference costs. Retrieval-Augmented Generation (RAG) has recently emerged as a paradigm to address such challenges. In particular, RAG introduces the information retrieval process, which enhances the generation process by retrieving relevant objects from available data stores, leading to higher accuracy and better robustness. In this paper, we comprehensively review existing efforts that integrate RAG technique into AIGC scenarios. We first classify RAG foundations according to how the retriever augments the generator, distilling the fundamental abstractions of the augmentation methodologies for various retrievers and generators. This unified perspective encompasses all RAG scenarios, illuminating advancements and pivotal technologies that help with potential future progress. We also summarize additional enhancements methods for RAG, facilitating effective engineering and implementation of RAG systems. Then from another view, we survey on practical applications of RAG across different modalities and tasks, offering valuable references for researchers and practitioners. Furthermore, we introduce the benchmarks for RAG, discuss the limitations of current RAG systems, and suggest potential directions for future research. Github: https://github.com/PKU-DAIR/RAG-Survey.
comment: Citing 334 papers, 21 pages, 1 table, 12 figures. Project: https://github.com/PKU-DAIR/RAG-Survey
♻ ☆ FlowBot3D: Learning 3D Articulation Flow to Manipulate Articulated Objects
We explore a novel method to perceive and manipulate 3D articulated objects that generalizes to enable a robot to articulate unseen classes of objects. We propose a vision-based system that learns to predict the potential motions of the parts of a variety of articulated objects to guide downstream motion planning of the system to articulate the objects. To predict the object motions, we train a neural network to output a dense vector field representing the point-wise motion direction of the points in the point cloud under articulation. We then deploy an analytical motion planner based on this vector field to achieve a policy that yields maximum articulation. We train the vision system entirely in simulation, and we demonstrate the capability of our system to generalize to unseen object instances and novel categories in both simulation and the real world, deploying our policy on a Sawyer robot with no finetuning. Results show that our system achieves state-of-the-art performance in both simulated and real-world experiments.
comment: Accepted to Robotics Science and Systems (RSS) 2022, Best Paper Finalist
♻ ☆ TAX-Pose: Task-Specific Cross-Pose Estimation for Robot Manipulation
How do we imbue robots with the ability to efficiently manipulate unseen objects and transfer relevant skills based on demonstrations? End-to-end learning methods often fail to generalize to novel objects or unseen configurations. Instead, we focus on the task-specific pose relationship between relevant parts of interacting objects. We conjecture that this relationship is a generalizable notion of a manipulation task that can transfer to new objects in the same category; examples include the relationship between the pose of a pan relative to an oven or the pose of a mug relative to a mug rack. We call this task-specific pose relationship "cross-pose" and provide a mathematical definition of this concept. We propose a vision-based system that learns to estimate the cross-pose between two objects for a given manipulation task using learned cross-object correspondences. The estimated cross-pose is then used to guide a downstream motion planner to manipulate the objects into the desired pose relationship (placing a pan into the oven or the mug onto the mug rack). We demonstrate our method's capability to generalize to unseen objects, in some cases after training on only 10 demonstrations in the real world. Results show that our system achieves state-of-the-art performance in both simulated and real-world experiments across a number of tasks. Supplementary information and videos can be found at https://sites.google.com/view/tax-pose/home.
comment: Conference on Robot Learning (CoRL), 2022. Supplementary material is available at https://sites.google.com/view/tax-pose/home
♻ ☆ USC: Uncompromising Spatial Constraints for Safety-Oriented 3D Object Detectors in Autonomous Driving SC 2024
We consider the safety-oriented performance of 3D object detectors in autonomous driving contexts. Specifically, despite impressive results shown by the mass literature, developers often find it hard to ensure the safe deployment of these learning-based perception models. Attributing the challenge to the lack of safety-oriented metrics, we hereby present uncompromising spatial constraints (USC), which characterize a simple yet important localization requirement demanding the predictions to fully cover the objects when seen from the autonomous vehicle. The constraints, as we formulate using the perspective and bird's-eye views, can be naturally reflected by quantitative measures, such that having an object detector with a higher score implies a lower risk of collision. Finally, beyond model evaluation, we incorporate the quantitative measures into common loss functions to enable safety-oriented fine-tuning for existing models. With experiments using the nuScenes dataset and a closed-loop simulation, our work demonstrates such considerations of safety notions at the perception level not only improve model performances beyond accuracy but also allow for a more direct linkage to actual system safety.
comment: 8 pages (IEEE double column format), 7 figures, 2 tables, submitted to ITSC 2024
♻ ☆ Operational Support Estimator Networks
In this work, we propose a novel approach called Operational Support Estimator Networks (OSENs) for the support estimation task. Support Estimation (SE) is defined as finding the locations of non-zero elements in sparse signals. By its very nature, the mapping between the measurement and sparse signal is a non-linear operation. Traditional support estimators rely on computationally expensive iterative signal recovery techniques to achieve such non-linearity. Contrary to the convolutional layers, the proposed OSEN approach consists of operational layers that can learn such complex non-linearities without the need for deep networks. In this way, the performance of non-iterative support estimation is greatly improved. Moreover, the operational layers comprise so-called generative super neurons with non-local kernels. The kernel location for each neuron/feature map is optimized jointly for the SE task during training. We evaluate the OSENs in three different applications: i. support estimation from Compressive Sensing (CS) measurements, ii. representation-based classification, and iii. learning-aided CS reconstruction where the output of OSENs is used as prior knowledge to the CS algorithm for enhanced reconstruction. Experimental results show that the proposed approach achieves computational efficiency and outperforms competing methods, especially at low measurement rates by significant margins. The software implementation is shared at https://github.com/meteahishali/OSEN.
♻ ☆ ObjectAdd: Adding Objects into Image via a Training-Free Diffusion Modification Fashion
We introduce ObjectAdd, a training-free diffusion modification method to add user-expected objects into user-specified area. The motive of ObjectAdd stems from: first, describing everything in one prompt can be difficult, and second, users often need to add objects into the generated image. To accommodate with real world, our ObjectAdd maintains accurate image consistency after adding objects with technical innovations in: (1) embedding-level concatenation to ensure correct text embedding coalesce; (2) object-driven layout control with latent and attention injection to ensure objects accessing user-specified area; (3) prompted image inpainting in an attention refocusing & object expansion fashion to ensure rest of the image stays the same. With a text-prompted image, our ObjectAdd allows users to specify a box and an object, and achieves: (1) adding object inside the box area; (2) exact content outside the box area; (3) flawless fusion between the two areas
comment: 12 pages
♻ ☆ Blue noise for diffusion models SIGGRAPH 2024
Most of the existing diffusion models use Gaussian noise for training and sampling across all time steps, which may not optimally account for the frequency contents reconstructed by the denoising network. Despite the diverse applications of correlated noise in computer graphics, its potential for improving the training process has been underexplored. In this paper, we introduce a novel and general class of diffusion models taking correlated noise within and across images into account. More specifically, we propose a time-varying noise model to incorporate correlated noise into the training process, as well as a method for fast generation of correlated noise mask. Our model is built upon deterministic diffusion models and utilizes blue noise to help improve the generation quality compared to using Gaussian white (random) noise only. Further, our framework allows introducing correlation across images within a single mini-batch to improve gradient flow. We perform both qualitative and quantitative evaluations on a variety of datasets using our method, achieving improvements on different tasks over existing deterministic diffusion models in terms of FID metric.
comment: SIGGRAPH 2024 Conference Proceedings; Project page: https://xchhuang.github.io/bndm
♻ ☆ Correcting Diffusion-Based Perceptual Image Compression with Privileged End-to-End Decoder ICML 2024
The images produced by diffusion models can attain excellent perceptual quality. However, it is challenging for diffusion models to guarantee distortion, hence the integration of diffusion models and image compression models still needs more comprehensive explorations. This paper presents a diffusion-based image compression method that employs a privileged end-to-end decoder model as correction, which achieves better perceptual quality while guaranteeing the distortion to an extent. We build a diffusion model and design a novel paradigm that combines the diffusion model and an end-to-end decoder, and the latter is responsible for transmitting the privileged information extracted at the encoder side. Specifically, we theoretically analyze the reconstruction process of the diffusion models at the encoder side with the original images being visible. Based on the analysis, we introduce an end-to-end convolutional decoder to provide a better approximation of the score function $\nabla_{\mathbf{x}_t}\log p(\mathbf{x}_t)$ at the encoder side and effectively transmit the combination. Experiments demonstrate the superiority of our method in both distortion and perception compared with previous perceptual compression methods.
comment: Accepted by ICML 2024
♻ ☆ DA-RAW: Domain Adaptive Object Detection for Real-World Adverse Weather Conditions ICRA 2024
Despite the success of deep learning-based object detection methods in recent years, it is still challenging to make the object detector reliable in adverse weather conditions such as rain and snow. For the robust performance of object detectors, unsupervised domain adaptation has been utilized to adapt the detection network trained on clear weather images to adverse weather images. While previous methods do not explicitly address weather corruption during adaptation, the domain gap between clear and adverse weather can be decomposed into two factors with distinct characteristics: a style gap and a weather gap. In this paper, we present an unsupervised domain adaptation framework for object detection that can more effectively adapt to real-world environments with adverse weather conditions by addressing these two gaps separately. Our method resolves the style gap by concentrating on style-related information of high-level features using an attention module. Using self-supervised contrastive learning, our framework then reduces the weather gap and acquires instance features that are robust to weather corruption. Extensive experiments demonstrate that our method outperforms other methods for object detection in adverse weather conditions.
comment: Accepted to ICRA 2024. Our project website can be found at https://bit.ly/3yccTRa
♻ ☆ Accelerating Diffusion Models for Inverse Problems through Shortcut Sampling IJCAI 2024
Diffusion models have recently demonstrated an impressive ability to address inverse problems in an unsupervised manner. While existing methods primarily focus on modifying the posterior sampling process, the potential of the forward process remains largely unexplored. In this work, we propose Shortcut Sampling for Diffusion(SSD), a novel approach for solving inverse problems in a zero-shot manner. Instead of initiating from random noise, the core concept of SSD is to find a specific transitional state that bridges the measurement image y and the restored image x. By utilizing the shortcut path of "input - transitional state - output", SSD can achieve precise restoration with fewer steps. To derive the transitional state during the forward process, we introduce Distortion Adaptive Inversion. Moreover, we apply back projection as additional consistency constraints during the generation process. Experimentally, we demonstrate SSD's effectiveness on multiple representative IR tasks. Our method achieves competitive results with only 30 NFEs compared to state-of-the-art zero-shot methods(100 NFEs) and outperforms them with 100 NFEs in certain tasks. Code is available at https://github.com/GongyeLiu/SSD
comment: full version; IJCAI 2024 accepted (main track)
♻ ☆ CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
Pre-trained vision-language models~(VLMs) are the de-facto foundation models for various downstream tasks. However, scene text recognition methods still prefer backbones pre-trained on a single modality, namely, the visual modality, despite the potential of VLMs to serve as powerful scene text readers. For example, CLIP can robustly identify regular (horizontal) and irregular (rotated, curved, blurred, or occluded) text in images. With such merits, we transform CLIP into a scene text reader and introduce CLIP4STR, a simple yet effective STR method built upon image and text encoders of CLIP. It has two encoder-decoder branches: a visual branch and a cross-modal branch. The visual branch provides an initial prediction based on the visual feature, and the cross-modal branch refines this prediction by addressing the discrepancy between the visual feature and text semantics. To fully leverage the capabilities of both branches, we design a dual predict-and-refine decoding scheme for inference. We scale CLIP4STR in terms of the model size, pre-training data, and training data, achieving state-of-the-art performance on 11 STR benchmarks. Additionally, a comprehensive empirical study is provided to enhance the understanding of the adaptation of CLIP to STR. We believe our method establishes a simple yet strong baseline for future STR research with VLMs.
comment: Preprint. A PyTorch re-implementation is at https://github.com/VamosC/CLIP4STR
♻ ☆ Fingerprint Matching with Localized Deep Representation
Compared to minutia-based fingerprint representations, fixed-length representations are attractive due to simple and efficient matching. However, fixed-length fingerprint representations are limited in accuracy when matching fingerprints with different visible areas, which can occur due to different finger poses or acquisition methods. To address this issue, we propose a localized deep representation of fingerprint, named LDRF. By focusing on the discriminative characteristics within local regions, LDRF provides a more robust and accurate fixed-length representation for fingerprints with variable visible areas. LDRF can be adapted to retain information within any valid area, making it highly flexible. The matching scores produced by LDRF also exhibit intuitive statistical characteristics, which led us to propose a matching score normalization technique to mitigate the uncertainty in the cases of very small overlapping area. With this new technique, we can maintain a high level of accuracy and reliability in our fingerprint matching, even as the size of the database grows rapidly. Our experimental results on 21 datasets containing over 140K fingerprints of various finger poses and impression types show that LDRF outperforms other fixed-length representations and is robust to sensing technologies and impression types. Besides, the proposed matching score normalization effectively reduces the false match rate (FMR) in large-scale identification experiments comprising over 5.11 million fingerprints. Specifically, this technique results in a reduction of two orders of magnitude compared to matching without matching score normalization and five orders of magnitude compared to prior works.
comment: 18 pages, 20 figures
♻ ☆ 3D Gaussian Blendshapes for Head Avatar Animation SIGGRAPH
We introduce 3D Gaussian blendshapes for modeling photorealistic head avatars. Taking a monocular video as input, we learn a base head model of neutral expression, along with a group of expression blendshapes, each of which corresponds to a basis expression in classical parametric face models. Both the neutral model and expression blendshapes are represented as 3D Gaussians, which contain a few properties to depict the avatar appearance. The avatar model of an arbitrary expression can be effectively generated by combining the neutral model and expression blendshapes through linear blending of Gaussians with the expression coefficients. High-fidelity head avatar animations can be synthesized in real time using Gaussian splatting. Compared to state-of-the-art methods, our Gaussian blendshape representation better captures high-frequency details exhibited in input video, and achieves superior rendering performance.
comment: ACM SIGGRAPH Conference Proceedings 2024
♻ ☆ Content Bias in Deep Learning Image Age Approximation: A new Approach Towards better Explainability
In the context of temporal image forensics, it is not evident that a neural network, trained on images from different time-slots (classes), exploits solely image age related features. Usually, images taken in close temporal proximity (e.g., belonging to the same age class) share some common content properties. Such content bias can be exploited by a neural network. In this work, a novel approach is proposed that evaluates the influence of image content. This approach is verified using synthetic images (where content bias can be ruled out) with an age signal embedded. Based on the proposed approach, it is shown that a deep learning approach proposed in the context of age classification is most likely highly dependent on the image content. As a possible countermeasure, two different models from the field of image steganalysis, along with three different preprocessing techniques to increase the signal-to-noise ratio (age signal to image content), are evaluated using the proposed method.
comment: This is a preprint, the paper is currently under consideration at Pattern Recognition Letters
♻ ☆ Uncertainty Quantification with Deep Ensembles for 6D Object Pose Estimation
The estimation of 6D object poses is a fundamental task in many computer vision applications. Particularly, in high risk scenarios such as human-robot interaction, industrial inspection, and automation, reliable pose estimates are crucial. In the last years, increasingly accurate and robust deep-learning-based approaches for 6D object pose estimation have been proposed. Many top-performing methods are not end-to-end trainable but consist of multiple stages. In the context of deep uncertainty quantification, deep ensembles are considered as state of the art since they have been proven to produce well-calibrated and robust uncertainty estimates. However, deep ensembles can only be applied to methods that can be trained end-to-end. In this work, we propose a method to quantify the uncertainty of multi-stage 6D object pose estimation approaches with deep ensembles. For the implementation, we choose SurfEmb as representative, since it is one of the top-performing 6D object pose estimation approaches in the BOP Challenge 2022. We apply established metrics and concepts for deep uncertainty quantification to evaluate the results. Furthermore, we propose a novel uncertainty calibration score for regression tasks to quantify the quality of the estimated uncertainty.
comment: 8 pages
♻ ☆ Landmark-Guided Cross-Speaker Lip Reading with Mutual Information Regularization LREC
Lip reading, the process of interpreting silent speech from visual lip movements, has gained rising attention for its wide range of realistic applications. Deep learning approaches greatly improve current lip reading systems. However, lip reading in cross-speaker scenarios where the speaker identity changes, poses a challenging problem due to inter-speaker variability. A well-trained lip reading system may perform poorly when handling a brand new speaker. To learn a speaker-robust lip reading model, a key insight is to reduce visual variations across speakers, avoiding the model overfitting to specific speakers. In this work, in view of both input visual clues and latent representations based on a hybrid CTC/attention architecture, we propose to exploit the lip landmark-guided fine-grained visual clues instead of frequently-used mouth-cropped images as input features, diminishing speaker-specific appearance characteristics. Furthermore, a max-min mutual information regularization approach is proposed to capture speaker-insensitive latent representations. Experimental evaluations on public lip reading datasets demonstrate the effectiveness of the proposed approach under the intra-speaker and inter-speaker conditions.
comment: To appear in LREC-COLING 2024
♻ ☆ Continual Action Assessment via Task-Consistent Score-Discriminative Feature Distribution Modeling
Action Quality Assessment (AQA) is a task that tries to answer how well an action is carried out. While remarkable progress has been achieved, existing works on AQA assume that all the training data are visible for training at one time, but do not enable continual learning on assessing new technical actions. In this work, we address such a Continual Learning problem in AQA (Continual-AQA), which urges a unified model to learn AQA tasks sequentially without forgetting. Our idea for modeling Continual-AQA is to sequentially learn a task-consistent score-discriminative feature distribution, in which the latent features express a strong correlation with the score labels regardless of the task or action types.From this perspective, we aim to mitigate the forgetting in Continual-AQA from two aspects. Firstly, to fuse the features of new and previous data into a score-discriminative distribution, a novel Feature-Score Correlation-Aware Rehearsal is proposed to store and reuse data from previous tasks with limited memory size. Secondly, an Action General-Specific Graph is developed to learn and decouple the action-general and action-specific knowledge so that the task-consistent score-discriminative features can be better extracted across various tasks. Extensive experiments are conducted to evaluate the contributions of proposed components. The comparisons with the existing continual learning methods additionally verify the effectiveness and versatility of our approach. Data and code are available at https://github.com/iSEE-Laboratory/Continual-AQA.
comment: 16 pages, 8 figures
♻ ☆ HARMamba: Efficient Wearable Sensor Human Activity Recognition Based on Bidirectional Selective SSM
Wearable sensor-based human activity recognition (HAR) is a critical research domain in activity perception. However, achieving high efficiency and long sequence recognition remains a challenge. Despite the extensive investigation of temporal deep learning models, such as CNNs, RNNs, and transformers, their extensive parameters often pose significant computational and memory constraints, rendering them less suitable for resource-constrained mobile health applications. This study introduces HARMamba, an innovative light-weight and versatile HAR architecture that combines selective bidirectional SSM and hardware-aware design. To optimize real-time resource consumption in practical scenarios, HARMamba employs linear recursive mechanisms and parameter discretization, allowing it to selectively focus on relevant input sequences while efficiently fusing scan and recompute operations. To address potential issues with invalid sensor data, the system processes the data stream through independent channels, dividing each channel into "patches" and appending classification token to the end of the sequence. Position embeddings are incorporated to represent the sequence order, and the activity categories are output through a classification header. The HARMamba Block serves as the fundamental component of the HARMamba architecture, enabling the effective capture of more discriminative activity sequence features. HARMamba outperforms contemporary state-of-the-art frameworks, delivering comparable or better accuracy with significantly reducing computational and memory demands. It's effectiveness has been extensively validated on public datasets like PAMAP2, WISDM, UNIMIB SHAR and UCI, showcasing impressive results.
♻ ☆ Retrieval-Augmented Score Distillation for Text-to-3D Generation ICML 2024
Text-to-3D generation has achieved significant success by incorporating powerful 2D diffusion models, but insufficient 3D prior knowledge also leads to the inconsistency of 3D geometry. Recently, since large-scale multi-view datasets have been released, fine-tuning the diffusion model on the multi-view datasets becomes a mainstream to solve the 3D inconsistency problem. However, it has confronted with fundamental difficulties regarding the limited quality and diversity of 3D data, compared with 2D data. To sidestep these trade-offs, we explore a retrieval-augmented approach tailored for score distillation, dubbed ReDream. We postulate that both expressiveness of 2D diffusion models and geometric consistency of 3D assets can be fully leveraged by employing the semantically relevant assets directly within the optimization process. To this end, we introduce novel framework for retrieval-based quality enhancement in text-to-3D generation. We leverage the retrieved asset to incorporate its geometric prior in the variational objective and adapt the diffusion model's 2D prior toward view consistency, achieving drastic improvements in both geometry and fidelity of generated scenes. We conduct extensive experiments to demonstrate that ReDream exhibits superior quality with increased geometric consistency. Project page is available at https://ku-cvlab.github.io/ReDream/.
comment: Accepted to ICML 2024 / Project Page: https://ku-cvlab.github.io/ReDream/
♻ ☆ Morphing Tokens Draw Strong Masked Image Models
Masked image modeling (MIM) is a promising option for training Vision Transformers among various self-supervised learning (SSL) methods. The essence of MIM lies in token-wise masked token predictions, with targets tokenized from images or generated by pre-trained models such as vision-language models. While tokenizers or pre-trained models are plausible MIM targets, they often offer spatially inconsistent targets even for neighboring tokens, complicating models to learn unified discriminative representations. Our pilot study confirms that addressing spatial inconsistencies has the potential to enhance representation quality. Motivated by the findings, we introduce a novel self-supervision signal called Dynamic Token Morphing (DTM), which dynamically aggregates contextually related tokens to yield contextualized targets. DTM is compatible with various SSL frameworks; we showcase an improved MIM by employing DTM, barely introducing extra training costs. Our experiments on ImageNet-1K and ADE20K demonstrate the superiority of our methods compared with state-of-the-art, complex MIM methods. Furthermore, the comparative evaluation of the iNaturalists and fine-grained visual classification datasets further validates the transferability of our method on various downstream tasks. Code is available at https://github.com/naver-ai/dtm
comment: 27 pages, 17 tables, 6 figures
♻ ☆ Few-Shot Learning with Uncertainty-based Quadruplet Selection for Interference Classification in GNSS Data
Jamming devices pose a significant threat by disrupting signals from the global navigation satellite system (GNSS), compromising the robustness of accurate positioning. Detecting anomalies in frequency snapshots is crucial to counteract these interferences effectively. The ability to adapt to diverse, unseen interference characteristics is essential for ensuring the reliability of GNSS in real-world applications. In this paper, we propose a few-shot learning (FSL) approach to adapt to new interference classes. Our method employs quadruplet selection for the model to learn representations using various positive and negative interference classes. Furthermore, our quadruplet variant selects pairs based on the aleatoric and epistemic uncertainty to differentiate between similar classes. We recorded a dataset at a motorway with eight interference classes on which our FSL method with quadruplet loss outperforms other FSL techniques in jammer classification accuracy with 97.66%. Dataset available at: https://gitlab.cc-asp.fraunhofer.de/darcy_gnss/FIOT_highway
♻ ☆ Joint covariance properties under geometric image transformations for spatio-temporal receptive fields according to the generalized Gaussian derivative model for visual receptive fields
The influence of natural image transformations on receptive field responses is crucial for modelling visual operations in computer vision and biological vision. In this regard, covariance properties with respect to geometric image transformations in the earliest layers of the visual hierarchy are essential for expressing robust image operations, and for formulating invariant visual operations at higher levels. This paper defines and proves a set of joint covariance properties under compositions of spatial scaling transformations, spatial affine transformations, Galilean transformations and temporal scaling transformations, which make it possible to characterize how different types of image transformations interact with each other and the associated spatio-temporal receptive field responses. In this regard, we also extend the notion of scale-normalized derivatives to affine-normalized derivatives, to be able to obtain true affine-covariant properties of spatial derivatives, that are computed based on spatial smoothing with affine Gaussian kernels. The derived relations show how the parameters of the receptive fields need to be transformed, in order to match the output from spatio-temporal receptive fields under composed spatio-temporal image transformations. As a side effect, the presented proof for the joint covariance property over the integrated combination of the different geometric image transformations also provides specific proofs for the individual transformation properties, which have not previously been fully reported in the literature. The paper also presents an in-depth theoretical analysis of geometric interpretations of the derived covariance properties, as well as outlines a number of biological interpretations of these results.
comment: 38 pages, 13 figures. Note: From version 4, this paper considers a different form of joint composition of the geometric image transformations than in the earlier versions
♻ ☆ The Perception-Robustness Tradeoff in Deterministic Image Restoration
We study the behavior of deterministic methods for solving inverse problems in imaging. These methods are commonly designed to achieve two goals: (1) attaining high perceptual quality, and (2) generating reconstructions that are consistent with the measurements. We provide a rigorous proof that the better a predictor satisfies these two requirements, the larger its Lipschitz constant must be, regardless of the nature of the degradation involved. In particular, to approach perfect perceptual quality and perfect consistency, the Lipschitz constant of the model must grow to infinity. This implies that such methods are necessarily more susceptible to adversarial attacks. We demonstrate our theory on single image super-resolution algorithms, addressing both noisy and noiseless settings. We also show how this undesired behavior can be leveraged to explore the posterior distribution, thereby allowing the deterministic model to imitate stochastic methods.
♻ ☆ COMET: Contrastive Mean Teacher for Online Source-Free Universal Domain Adaptation IJCNN
In real-world applications, there is often a domain shift from training to test data. This observation resulted in the development of test-time adaptation (TTA). It aims to adapt a pre-trained source model to the test data without requiring access to the source data. Thereby, most existing works are limited to the closed-set assumption, i.e. there is no category shift between source and target domain. We argue that in a realistic open-world setting a category shift can appear in addition to a domain shift. This means, individual source classes may not appear in the target domain anymore, samples of new classes may be part of the target domain or even both at the same time. Moreover, in many real-world scenarios the test data is not accessible all at once but arrives sequentially as a stream of batches demanding an immediate prediction. Hence, TTA must be applied in an online manner. To the best of our knowledge, the combination of these aspects, i.e. online source-free universal domain adaptation (online SF-UniDA), has not been studied yet. In this paper, we introduce a Contrastive Mean Teacher (COMET) tailored to this novel scenario. It applies a contrastive loss to rebuild a feature space where the samples of known classes build distinct clusters and the samples of new classes separate well from them. It is complemented by an entropy loss which ensures that the classifier output has a small entropy for samples of known classes and a large entropy for samples of new classes to be easily detected and rejected as unknown. To provide the losses with reliable pseudo labels, they are embedded into a mean teacher (MT) framework. We evaluate our method across two datasets and all category shifts to set an initial benchmark for online SF-UniDA. Thereby, COMET yields state-of-the-art performance and proves to be consistent and robust across a variety of different scenarios.
comment: Accepted at the International Joint Conference on Neural Networks (IJCNN) 2024
♻ ☆ Automotive Object Detection via Learning Sparse Events by Spiking Neurons
Event-based sensors, distinguished by their high temporal resolution of 1 $\mathrm{\mu}\text{s}$ and a dynamic range of 120 $\text{dB}$, stand out as ideal tools for deployment in fast-paced settings like vehicles and drones. Traditional object detection techniques that utilize Artificial Neural Networks (ANNs) face challenges due to the sparse and asynchronous nature of the events these sensors capture. In contrast, Spiking Neural Networks (SNNs) offer a promising alternative, providing a temporal representation that is inherently aligned with event-based data. This paper explores the unique membrane potential dynamics of SNNs and their ability to modulate sparse events. We introduce an innovative spike-triggered adaptive threshold mechanism designed for stable training. Building on these insights, we present a specialized spiking feature pyramid network (SpikeFPN) optimized for automotive event-based object detection. Comprehensive evaluations demonstrate that SpikeFPN surpasses both traditional SNNs and advanced ANNs enhanced with attention mechanisms. Evidently, SpikeFPN achieves a mean Average Precision (mAP) of 0.477 on the GEN1 Automotive Detection (GAD) benchmark dataset, marking significant increases over the selected SNN baselines. Moreover, the efficient design of SpikeFPN ensures robust performance while optimizing computational resources, attributed to its innate sparse computation capabilities.
♻ ☆ SimPro: A Simple Probabilistic Framework Towards Realistic Long-Tailed Semi-Supervised Learning ICML2024
Recent advancements in semi-supervised learning have focused on a more realistic yet challenging task: addressing imbalances in labeled data while the class distribution of unlabeled data remains both unknown and potentially mismatched. Current approaches in this sphere often presuppose rigid assumptions regarding the class distribution of unlabeled data, thereby limiting the adaptability of models to only certain distribution ranges. In this study, we propose a novel approach, introducing a highly adaptable framework, designated as SimPro, which does not rely on any predefined assumptions about the distribution of unlabeled data. Our framework, grounded in a probabilistic model, innovatively refines the expectation-maximization (EM) algorithm by explicitly decoupling the modeling of conditional and marginal class distributions. This separation facilitates a closed-form solution for class distribution estimation during the maximization phase, leading to the formulation of a Bayes classifier. The Bayes classifier, in turn, enhances the quality of pseudo-labels in the expectation phase. Remarkably, the SimPro framework not only comes with theoretical guarantees but also is straightforward to implement. Moreover, we introduce two novel class distributions broadening the scope of the evaluation. Our method showcases consistent state-of-the-art performance across diverse benchmarks and data distribution scenarios. Our code is available at https://github.com/LeapLabTHU/SimPro.
comment: ICML2024
♻ ☆ RSCaMa: Remote Sensing Image Change Captioning with State Space Model
Remote Sensing Image Change Captioning (RSICC) aims to describe surface changes between multi-temporal remote sensing images in language, including the changed object categories, locations, and dynamics of changing objects (e.g., added or disappeared). This poses challenges to spatial and temporal modeling of bi-temporal features. Despite previous methods progressing in the spatial change perception, there are still weaknesses in joint spatial-temporal modeling. To address this, in this paper, we propose a novel RSCaMa model, which achieves efficient joint spatial-temporal modeling through multiple CaMa layers, enabling iterative refinement of bi-temporal features. To achieve efficient spatial modeling, we introduce the recently popular Mamba (a state space model) with a global receptive field and linear complexity into the RSICC task and propose the Spatial Difference-aware SSM (SD-SSM), overcoming limitations of previous CNN- and Transformer-based methods in the receptive field and computational complexity. SD-SSM enhances the model's ability to capture spatial changes sharply. In terms of efficient temporal modeling, considering the potential correlation between the temporal scanning characteristics of Mamba and the temporality of the RSICC, we propose the Temporal-Traversing SSM (TT-SSM), which scans bi-temporal features in a temporal cross-wise manner, enhancing the model's temporal understanding and information interaction. Experiments validate the effectiveness of the efficient joint spatial-temporal modeling and demonstrate the outstanding performance of RSCaMa and the potential of the Mamba in the RSICC task. Additionally, we systematically compare three different language decoders, including Mamba, GPT-style decoder, and Transformer decoder, providing valuable insights for future RSICC research. The code will be available at \emph{\url{https://github.com/Chen-Yang-Liu/RSCaMa}}
♻ ☆ Efficient Remote Sensing with Harmonized Transfer Learning and Modality Alignment ICLR
With the rise of Visual and Language Pretraining (VLP), an increasing number of downstream tasks are adopting the paradigm of pretraining followed by fine-tuning. Although this paradigm has demonstrated potential in various multimodal downstream tasks, its implementation in the remote sensing domain encounters some obstacles. Specifically, the tendency for same-modality embeddings to cluster together impedes efficient transfer learning. To tackle this issue, we review the aim of multimodal transfer learning for downstream tasks from a unified perspective, and rethink the optimization process based on three distinct objectives. We propose "Harmonized Transfer Learning and Modality Alignment (HarMA)", a method that simultaneously satisfies task constraints, modality alignment, and single-modality uniform alignment, while minimizing training overhead through parameter-efficient fine-tuning. Remarkably, without the need for external data for training, HarMA achieves state-of-the-art performance in two popular multimodal retrieval tasks in the field of remote sensing. Our experiments reveal that HarMA achieves competitive and even superior performance to fully fine-tuned models with only minimal adjustable parameters. Due to its simplicity, HarMA can be integrated into almost all existing multimodal pretraining models. We hope this method can facilitate the efficient application of large models to a wide range of downstream tasks while significantly reducing the resource consumption. Code is available at https://github.com/seekerhuang/HarMA.
comment: Accepted by the Twelfth International Conference on Learning Representations (ICLR) Workshop
♻ ☆ TExplain: Explaining Learned Visual Features via Pre-trained (Frozen) Language Models ICLR 2024
Interpreting the learned features of vision models has posed a longstanding challenge in the field of machine learning. To address this issue, we propose a novel method that leverages the capabilities of language models to interpret the learned features of pre-trained image classifiers. Our method, called TExplain, tackles this task by training a neural network to establish a connection between the feature space of image classifiers and language models. Then, during inference, our approach generates a vast number of sentences to explain the features learned by the classifier for a given image. These sentences are then used to extract the most frequent words, providing a comprehensive understanding of the learned features and patterns within the classifier. Our method, for the first time, utilizes these frequent words corresponding to a visual representation to provide insights into the decision-making process of the independently trained classifier, enabling the detection of spurious correlations, biases, and a deeper comprehension of its behavior. To validate the effectiveness of our approach, we conduct experiments on diverse datasets, including ImageNet-9L and Waterbirds. The results demonstrate the potential of our method to enhance the interpretability and robustness of image classifiers.
comment: Accepted to ICLR 2024, Reliable and Responsible Foundation Models workshop
♻ ☆ Searching from Area to Point: A Hierarchical Framework for Semantic-Geometric Combined Feature Matching
Feature matching is a crucial technique in computer vision. A unified perspective for this task is to treat it as a searching problem, aiming at an efficient search strategy to narrow the search space to point matches between images. One of the key aspects of search strategy is the search space, which in current approaches is not carefully defined, resulting in limited matching accuracy. This paper, thus, pays attention to the search space and proposes to set the initial search space for point matching as the matched image areas containing prominent semantic, named semantic area matches. This search space favors point matching by salient features and alleviates the accuracy limitation in recent Transformer-based matching methods. To achieve this search space, we introduce a hierarchical feature matching framework: Area to Point Matching (A2PM), to first find semantic area matches between images and later perform point matching on area matches. We further propose Semantic and Geometry Area Matching (SGAM) method to realize this framework, which utilizes semantic prior and geometry consistency to establish accurate area matches between images. By integrating SGAM with off-the-shelf state-of-the-art matchers, our method, adopting the A2PM framework, achieves encouraging precision improvements in massive point matching and pose estimation experiments.
comment: v3
♻ ☆ CIC: A framework for Culturally-aware Image Captioning IJCAI 2024
Image Captioning generates descriptive sentences from images using Vision-Language Pre-trained models (VLPs) such as BLIP, which has improved greatly. However, current methods lack the generation of detailed descriptive captions for the cultural elements depicted in the images, such as the traditional clothing worn by people from Asian cultural groups. In this paper, we propose a new framework, \textbf{Culturally-aware Image Captioning (CIC)}, that generates captions and describes cultural elements extracted from cultural visual elements in images representing cultures. Inspired by methods combining visual modality and Large Language Models (LLMs) through appropriate prompts, our framework (1) generates questions based on cultural categories from images, (2) extracts cultural visual elements from Visual Question Answering (VQA) using generated questions, and (3) generates culturally-aware captions using LLMs with the prompts. Our human evaluation conducted on 45 participants from 4 different cultural groups with a high understanding of the corresponding culture shows that our proposed framework generates more culturally descriptive captions when compared to the image captioning baseline based on VLPs. Our code and dataset will be made publicly available upon acceptance.
comment: Accepted in IJCAI 2024
♻ ☆ Pixel is a Barrier: Diffusion Models Are More Adversarially Robust Than We Think
Adversarial examples for diffusion models are widely used as solutions for safety concerns. By adding adversarial perturbations to personal images, attackers can not edit or imitate them easily. However, it is essential to note that all these protections target the latent diffusion model (LDMs), the adversarial examples for diffusion models in the pixel space (PDMs) are largely overlooked. This may mislead us to think that the diffusion models are vulnerable to adversarial attacks like most deep models. In this paper, we show novel findings that: even though gradient-based white-box attacks can be used to attack the LDMs, they fail to attack PDMs. This finding is supported by extensive experiments of almost a wide range of attacking methods on various PDMs and LDMs with different model structures, which means diffusion models are indeed much more robust against adversarial attacks. We also find that PDMs can be used as an off-the-shelf purifier to effectively remove the adversarial patterns that were generated on LDMs to protect the images, which means that most protection methods nowadays, to some extent, cannot protect our images from malicious attacks. We hope that our insights will inspire the community to rethink the adversarial samples for diffusion models as protection methods and move forward to more effective protection. Codes are available in https://github.com/xavihart/PDM-Pure.
♻ ☆ PARASOL: Parametric Style Control for Diffusion Image Synthesis
We propose PARASOL, a multi-modal synthesis model that enables disentangled, parametric control of the visual style of the image by jointly conditioning synthesis on both content and a fine-grained visual style embedding. We train a latent diffusion model (LDM) using specific losses for each modality and adapt the classifier-free guidance for encouraging disentangled control over independent content and style modalities at inference time. We leverage auxiliary semantic and style-based search to create training triplets for supervision of the LDM, ensuring complementarity of content and style cues. PARASOL shows promise for enabling nuanced control over visual style in diffusion models for image creation and stylization, as well as generative search where text-based search results may be adapted to more closely match user intent by interpolating both content and style descriptors.
comment: Camera-ready version
♻ ☆ Underwater Variable Zoom: Depth-Guided Perception Network for Underwater Image Enhancement
Underwater scenes intrinsically involve degradation problems owing to heterogeneous ocean elements. Prevailing underwater image enhancement (UIE) methods stick to straightforward feature modeling to learn the mapping function, which leads to limited vision gain as it lacks more explicit physical cues (e.g., depth). In this work, we investigate injecting the depth prior into the deep UIE model for more precise scene enhancement capability. To this end, we present a novel depth-guided perception UIE framework, dubbed underwater variable zoom (UVZ). Specifically, UVZ resorts to a two-stage pipeline. First, a depth estimation network is designed to generate critical depth maps, combined with an auxiliary supervision network introduced to suppress estimation differences during training. Second, UVZ parses near-far scenarios by harnessing the predicted depth maps, enabling local and non-local perceiving in different regions. Extensive experiments on five benchmark datasets demonstrate that UVZ achieves superior visual gain and delivers promising quantitative metrics. Besides, UVZ is confirmed to exhibit good generalization in some visual tasks, especially in unusual lighting conditions. The code, models and results are available at: https://github.com/WindySprint/UVZ.
♻ ☆ Pyramid Pixel Context Adaption Network for Medical Image Classification with Supervised Contrastive Learning
Spatial attention mechanism has been widely incorporated into deep neural networks (DNNs), significantly lifting the performance in computer vision tasks via long-range dependency modeling. However, it may perform poorly in medical image analysis. Unfortunately, existing efforts are often unaware that long-range dependency modeling has limitations in highlighting subtle lesion regions. To overcome this limitation, we propose a practical yet lightweight architectural unit, Pyramid Pixel Context Adaption (PPCA) module, which exploits multi-scale pixel context information to recalibrate pixel position in a pixel-independent manner dynamically. PPCA first applies a well-designed cross-channel pyramid pooling to aggregate multi-scale pixel context information, then eliminates the inconsistency among them by the well-designed pixel normalization, and finally estimates per pixel attention weight via a pixel context integration. By embedding PPCA into a DNN with negligible overhead, the PPCANet is developed for medical image classification. In addition, we introduce supervised contrastive learning to enhance feature representation by exploiting the potential of label information via supervised contrastive loss. The extensive experiments on six medical image datasets show that PPCANet outperforms state-of-the-art attention-based networks and recent deep neural networks. We also provide visual analysis and ablation study to explain the behavior of PPCANet in the decision-making process.
comment: 15 pages
♻ ☆ Intriguing Properties of Diffusion Models: An Empirical Study of the Natural Attack Capability in Text-to-Image Generative Models
Denoising probabilistic diffusion models have shown breakthrough performance to generate more photo-realistic images or human-level illustrations than the prior models such as GANs. This high image-generation capability has stimulated the creation of many downstream applications in various areas. However, we find that this technology is actually a double-edged sword: We identify a new type of attack, called the Natural Denoising Diffusion (NDD) attack based on the finding that state-of-the-art deep neural network (DNN) models still hold their prediction even if we intentionally remove their robust features, which are essential to the human visual system (HVS), through text prompts. The NDD attack shows a significantly high capability to generate low-cost, model-agnostic, and transferable adversarial attacks by exploiting the natural attack capability in diffusion models. To systematically evaluate the risk of the NDD attack, we perform a large-scale empirical study with our newly created dataset, the Natural Denoising Diffusion Attack (NDDA) dataset. We evaluate the natural attack capability by answering 6 research questions. Through a user study, we find that it can achieve an 88% detection rate while being stealthy to 93% of human subjects; we also find that the non-robust features embedded by diffusion models contribute to the natural attack capability. To confirm the model-agnostic and transferable attack capability, we perform the NDD attack against the Tesla Model 3 and find that 73% of the physically printed attacks can be detected as stop signs. Our hope is that the study and dataset can help our community be aware of the risks in diffusion models and facilitate further research toward robust DNN models.
♻ ☆ AnomalyXFusion: Multi-modal Anomaly Synthesis with Diffusion
Anomaly synthesis is one of the effective methods to augment abnormal samples for training. However, current anomaly synthesis methods predominantly rely on texture information as input, which limits the fidelity of synthesized abnormal samples. Because texture information is insufficient to correctly depict the pattern of anomalies, especially for logical anomalies. To surmount this obstacle, we present the AnomalyXFusion framework, designed to harness multi-modality information to enhance the quality of synthesized abnormal samples. The AnomalyXFusion framework comprises two distinct yet synergistic modules: the Multi-modal In-Fusion (MIF) module and the Dynamic Dif-Fusion (DDF) module. The MIF module refines modality alignment by aggregating and integrating various modality features into a unified embedding space, termed X-embedding, which includes image, text, and mask features. Concurrently, the DDF module facilitates controlled generation through an adaptive adjustment of X-embedding conditioned on the diffusion steps. In addition, to reveal the multi-modality representational power of AnomalyXFusion, we propose a new dataset, called MVTec Caption. More precisely, MVTec Caption extends 2.2k accurate image-mask-text annotations for the MVTec AD and LOCO datasets. Comprehensive evaluations demonstrate the effectiveness of AnomalyXFusion, especially regarding the fidelity and diversity for logical anomalies. Project page: http:github.com/hujiecpp/MVTec-Caption
♻ ☆ APLA: Additional Perturbation for Latent Noise with Adversarial Training Enables Consistency
Diffusion models have exhibited promising progress in video generation. However, they often struggle to retain consistent details within local regions across frames. One underlying cause is that traditional diffusion models approximate Gaussian noise distribution by utilizing predictive noise, without fully accounting for the impact of inherent information within the input itself. Additionally, these models emphasize the distinction between predictions and references, neglecting information intrinsic to the videos. To address this limitation, inspired by the self-attention mechanism, we propose a novel text-to-video (T2V) generation network structure based on diffusion models, dubbed Additional Perturbation for Latent noise with Adversarial training (APLA). Our approach only necessitates a single video as input and builds upon pre-trained stable diffusion networks. Notably, we introduce an additional compact network, known as the Video Generation Transformer (VGT). This auxiliary component is designed to extract perturbations from the inherent information contained within the input, thereby refining inconsistent pixels during temporal predictions. We leverage a hybrid architecture of transformers and convolutions to compensate for temporal intricacies, enhancing consistency between different frames within the video. Experiments demonstrate a noticeable improvement in the consistency of the generated videos both qualitatively and quantitatively.
♻ ☆ Utilizing Machine Learning and 3D Neuroimaging to Predict Hearing Loss: A Comparative Analysis of Dimensionality Reduction and Regression Techniques
In this project, we have explored machine learning approaches for predicting hearing loss thresholds on the brain's gray matter 3D images. We have solved the problem statement in two phases. In the first phase, we used a 3D CNN model to reduce high-dimensional input into latent space and decode it into an original image to represent the input in rich feature space. In the second phase, we utilized this model to reduce input into rich features and used these features to train standard machine learning models for predicting hearing thresholds. We have experimented with autoencoders and variational autoencoders in the first phase for dimensionality reduction and explored random forest, XGBoost and multi-layer perceptron for regressing the thresholds. We split the given data set into training and testing sets and achieved an 8.80 range and 22.57 range for PT500 and PT4000 on the test set, respectively. We got the lowest RMSE using multi-layer perceptron among the other models. Our approach leverages the unique capabilities of VAEs to capture complex, non-linear relationships within high-dimensional neuroimaging data. We rigorously evaluated the models using various metrics, focusing on the root mean squared error (RMSE). The results highlight the efficacy of the multi-layer neural network model, which outperformed other techniques in terms of accuracy. This project advances the application of data mining in medical diagnostics and enhances our understanding of age-related hearing loss through innovative machine-learning frameworks.
♻ ☆ A Survey on Transferability of Adversarial Examples across Deep Neural Networks
The emergence of Deep Neural Networks (DNNs) has revolutionized various domains by enabling the resolution of complex tasks spanning image recognition, natural language processing, and scientific problem-solving. However, this progress has also brought to light a concerning vulnerability: adversarial examples. These crafted inputs, imperceptible to humans, can manipulate machine learning models into making erroneous predictions, raising concerns for safety-critical applications. An intriguing property of this phenomenon is the transferability of adversarial examples, where perturbations crafted for one model can deceive another, often with a different architecture. This intriguing property enables black-box attacks which circumvents the need for detailed knowledge of the target model. This survey explores the landscape of the adversarial transferability of adversarial examples. We categorize existing methodologies to enhance adversarial transferability and discuss the fundamental principles guiding each approach. While the predominant body of research primarily concentrates on image classification, we also extend our discussion to encompass other vision tasks and beyond. Challenges and opportunities are discussed, highlighting the importance of fortifying DNNs against adversarial vulnerabilities in an evolving landscape.
comment: Accepted to Transactions on Machine Learning Research (TMLR)
♻ ☆ 6-DoF Grasp Planning using Fast 3D Reconstruction and Grasp Quality CNN
Recent consumer demand for home robots has accelerated performance of robotic grasping. However, a key component of the perception pipeline, the depth camera, is still expensive and inaccessible to most consumers. In addition, grasp planning has significantly improved recently, by leveraging large datasets and cloud robotics, and by limiting the state and action space to top-down grasps with 4 degrees of freedom (DoF). By leveraging multi-view geometry of the object using inexpensive equipment such as off-the-shelf RGB cameras and state-of-the-art algorithms such as Learn Stereo Machine (LSM\cite{kar2017learning}), the robot is able to generate more robust grasps from different angles with 6-DoF. In this paper, we present a modification of LSM to graspable objects, evaluate the grasps, and develop a 6-DoF grasp planner based on Grasp-Quality CNN (GQ-CNN\cite{mahler2017dex}) that exploits multiple camera views to plan a robust grasp, even in the absence of a possible top-down grasp.
Information Retrieval 19
☆ UQA: Corpus for Urdu Question Answering
This paper introduces UQA, a novel dataset for question answering and text comprehension in Urdu, a low-resource language with over 70 million native speakers. UQA is generated by translating the Stanford Question Answering Dataset (SQuAD2.0), a large-scale English QA dataset, using a technique called EATS (Enclose to Anchor, Translate, Seek), which preserves the answer spans in the translated context paragraphs. The paper describes the process of selecting and evaluating the best translation model among two candidates: Google Translator and Seamless M4T. The paper also benchmarks several state-of-the-art multilingual QA models on UQA, including mBERT, XLM-RoBERTa, and mT5, and reports promising results. For XLM-RoBERTa-XL, we have an F1 score of 85.99 and 74.56 EM. UQA is a valuable resource for developing and testing multilingual NLP systems for Urdu and for enhancing the cross-lingual transferability of existing models. Further, the paper demonstrates the effectiveness of EATS for creating high-quality datasets for other languages and domains. The UQA dataset and the code are publicly available at www.github.com/sameearif/UQA.
☆ Modeling Activity-Driven Music Listening with PACE
While the topic of listening context is widely studied in the literature of music recommender systems, the integration of regular user behavior is often omitted. In this paper, we propose PACE (PAttern-based user Consumption Embedding), a framework for building user embeddings that takes advantage of periodic listening behaviors. PACE leverages users' multichannel time-series consumption patterns to build understandable user vectors. We believe the embeddings learned with PACE unveil much about the repetitive nature of user listening dynamics. By applying this framework on long-term user histories, we evaluate the embeddings through a predictive task of activities performed while listening to music. The validation task's interest is two-fold, while it shows the relevance of our approach, it also offers an insightful way of understanding users' musical consumption habits.
comment: 5 pages, CHIIR'24 conference
☆ Overcoming LLM Challenges using RAG-Driven Precision in Coffee Leaf Disease Remediation
This research introduces an innovative AI-driven precision agriculture system, leveraging YOLOv8 for disease identification and Retrieval Augmented Generation (RAG) for context-aware diagnosis. Focused on addressing the challenges of diseases affecting the coffee production sector in Karnataka, The system integrates sophisticated object detection techniques with language models to address the inherent constraints associated with Large Language Models (LLMs). Our methodology not only tackles the issue of hallucinations in LLMs, but also introduces dynamic disease identification and remediation strategies. Real-time monitoring, collaborative dataset expansion, and organizational involvement ensure the system's adaptability in diverse agricultural settings. The effect of the suggested system extends beyond automation, aiming to secure food supplies, protect livelihoods, and promote eco-friendly farming practices. By facilitating precise disease identification, the system contributes to sustainable and environmentally conscious agriculture, reducing reliance on pesticides. Looking to the future, the project envisions continuous development in RAG-integrated object detection systems, emphasizing scalability, reliability, and usability. This research strives to be a beacon for positive change in agriculture, aligning with global efforts toward sustainable and technologically enhanced food production.
comment: 6 pages, 3 figures
☆ Are We Really Achieving Better Beyond-Accuracy Performance in Next Basket Recommendation? SIGIR'24
Next basket recommendation (NBR) is a special type of sequential recommendation that is increasingly receiving attention. So far, most NBR studies have focused on optimizing the accuracy of the recommendation, whereas optimizing for beyond-accuracy metrics, e.g., item fairness and diversity remains largely unexplored. Recent studies into NBR have found a substantial performance difference between recommending repeat items and explore items. Repeat items contribute most of the users' perceived accuracy compared with explore items. Informed by these findings, we identify a potential "short-cut" to optimize for beyond-accuracy metrics while maintaining high accuracy. To leverage and verify the existence of such short-cuts, we propose a plug-and-play two-step repetition-exploration (TREx) framework that treats repeat items and explores items separately, where we design a simple yet highly effective repetition module to ensure high accuracy, while two exploration modules target optimizing only beyond-accuracy metrics. Experiments are performed on two widely-used datasets w.r.t. a range of beyond-accuracy metrics, viz. five fairness metrics and three diversity metrics. Our experimental results verify the effectiveness of TREx. Prima facie, this appears to be good news: we can achieve high accuracy and improved beyond-accuracy metrics at the same time. However, we argue that the real-world value of our algorithmic solution, TREx, is likely to be limited and reflect on the reasonableness of the evaluation setup. We end up challenging existing evaluation paradigms, particularly in the context of beyond-accuracy metrics, and provide insights for researchers to navigate potential pitfalls and determine reasonable metrics to consider when optimizing for accuracy and beyond-accuracy metrics.
comment: To appear at SIGIR'24
☆ Generative Relevance Feedback and Convergence of Adaptive Re-Ranking: University of Glasgow Terrier Team at TREC DL 2023
This paper describes our participation in the TREC 2023 Deep Learning Track. We submitted runs that apply generative relevance feedback from a large language model in both a zero-shot and pseudo-relevance feedback setting over two sparse retrieval approaches, namely BM25 and SPLADE. We couple this first stage with adaptive re-ranking over a BM25 corpus graph scored using a monoELECTRA cross-encoder. We investigate the efficacy of these generative approaches for different query types in first-stage retrieval. In re-ranking, we investigate operating points of adaptive re-ranking with different first stages to find the point in graph traversal where the first stage no longer has an effect on the performance of the overall retrieval pipeline. We find some performance gains from the application of generative query reformulation. However, our strongest run in terms of P@10 and nDCG@10 applied both adaptive re-ranking and generative pseudo-relevance feedback, namely uogtr_b_grf_e_gb.
comment: 5 pages, 5 figures, TREC Deep Learning 2023 Notebook
☆ Faster Learned Sparse Retrieval with Block-Max Pruning SIGIR 2024
Learned sparse retrieval systems aim to combine the effectiveness of contextualized language models with the scalability of conventional data structures such as inverted indexes. Nevertheless, the indexes generated by these systems exhibit significant deviations from the ones that use traditional retrieval models, leading to a discrepancy in the performance of existing query optimizations that were specifically developed for traditional structures. These disparities arise from structural variations in query and document statistics, including sub-word tokenization, leading to longer queries, smaller vocabularies, and different score distributions within posting lists. This paper introduces Block-Max Pruning (BMP), an innovative dynamic pruning strategy tailored for indexes arising in learned sparse retrieval environments. BMP employs a block filtering mechanism to divide the document space into small, consecutive document ranges, which are then aggregated and sorted on the fly, and fully processed only as necessary, guided by a defined safe early termination criterion or based on approximate retrieval requirements. Through rigorous experimentation, we show that BMP substantially outperforms existing dynamic pruning strategies, offering unparalleled efficiency in safe retrieval contexts and improved tradeoffs between precision and efficiency in approximate retrieval tasks.
comment: SIGIR 2024 (short paper track)
☆ "In-Context Learning" or: How I learned to stop worrying and love "Applied Information Retrieval" SIGIR 2024
With the increasing ability of large language models (LLMs), in-context learning (ICL) has evolved as a new paradigm for natural language processing (NLP), where instead of fine-tuning the parameters of an LLM specific to a downstream task with labeled examples, a small number of such examples is appended to a prompt instruction for controlling the decoder's generation process. ICL, thus, is conceptually similar to a non-parametric approach, such as $k$-NN, where the prediction for each instance essentially depends on the local topology, i.e., on a localised set of similar instances and their labels (called few-shot examples). This suggests that a test instance in ICL is analogous to a query in IR, and similar examples in ICL retrieved from a training set relate to a set of documents retrieved from a collection in IR. While standard unsupervised ranking models can be used to retrieve these few-shot examples from a training set, the effectiveness of the examples can potentially be improved by re-defining the notion of relevance specific to its utility for the downstream task, i.e., considering an example to be relevant if including it in the prompt instruction leads to a correct prediction. With this task-specific notion of relevance, it is possible to train a supervised ranking model (e.g., a bi-encoder or cross-encoder), which potentially learns to optimally select the few-shot examples. We believe that the recent advances in neural rankers can potentially find a use case for this task of optimally choosing examples for more effective downstream ICL predictions.
comment: 9 Pages, 3 Figures, Accepted as Perspective paper to SIGIR 2024
☆ Silencing the Risk, Not the Whistle: A Semi-automated Text Sanitization Tool for Mitigating the Risk of Whistleblower Re-Identification
Whistleblowing is essential for ensuring transparency and accountability in both public and private sectors. However, (potential) whistleblowers often fear or face retaliation, even when reporting anonymously. The specific content of their disclosures and their distinct writing style may re-identify them as the source. Legal measures, such as the EU WBD, are limited in their scope and effectiveness. Therefore, computational methods to prevent re-identification are important complementary tools for encouraging whistleblowers to come forward. However, current text sanitization tools follow a one-size-fits-all approach and take an overly limited view of anonymity. They aim to mitigate identification risk by replacing typical high-risk words (such as person names and other NE labels) and combinations thereof with placeholders. Such an approach, however, is inadequate for the whistleblowing scenario since it neglects further re-identification potential in textual features, including writing style. Therefore, we propose, implement, and evaluate a novel classification and mitigation strategy for rewriting texts that involves the whistleblower in the assessment of the risk and utility. Our prototypical tool semi-automatically evaluates risk at the word/term level and applies risk-adapted anonymization techniques to produce a grammatically disjointed yet appropriately sanitized text. We then use a LLM that we fine-tuned for paraphrasing to render this text coherent and style-neutral. We evaluate our tool's effectiveness using court cases from the ECHR and excerpts from a real-world whistleblower testimony and measure the protection against authorship attribution (AA) attacks and utility loss statistically using the popular IMDb62 movie reviews dataset. Our method can significantly reduce AA accuracy from 98.81% to 31.22%, while preserving up to 73.1% of the original content's semantics.
comment: Accepted for publication at the ACM Conference on Fairness, Accountability, and Transparency 2024 (ACM FAccT'24). This is a preprint manuscript (authors' own version before final copy-editing)
☆ Fair Recommendations with Limited Sensitive Attributes: A Distributionally Robust Optimization Approach
As recommender systems are indispensable in various domains such as job searching and e-commerce, providing equitable recommendations to users with different sensitive attributes becomes an imperative requirement. Prior approaches for enhancing fairness in recommender systems presume the availability of all sensitive attributes, which can be difficult to obtain due to privacy concerns or inadequate means of capturing these attributes. In practice, the efficacy of these approaches is limited, pushing us to investigate ways of promoting fairness with limited sensitive attribute information. Toward this goal, it is important to reconstruct missing sensitive attributes. Nevertheless, reconstruction errors are inevitable due to the complexity of real-world sensitive attribute reconstruction problems and legal regulations. Thus, we pursue fair learning methods that are robust to reconstruction errors. To this end, we propose Distributionally Robust Fair Optimization (DRFO), which minimizes the worst-case unfairness over all potential probability distributions of missing sensitive attributes instead of the reconstructed one to account for the impact of the reconstruction errors. We provide theoretical and empirical evidence to demonstrate that our method can effectively ensure fairness in recommender systems when only limited sensitive attributes are accessible.
comment: 8 pages, 5 figures
☆ Multi-intent-aware Session-based Recommendation SIGIR 2024
Session-based recommendation (SBR) aims to predict the following item a user will interact with during an ongoing session. Most existing SBR models focus on designing sophisticated neural-based encoders to learn a session representation, capturing the relationship among session items. However, they tend to focus on the last item, neglecting diverse user intents that may exist within a session. This limitation leads to significant performance drops, especially for longer sessions. To address this issue, we propose a novel SBR model, called Multi-intent-aware Session-based Recommendation Model (MiaSRec). It adopts frequency embedding vectors indicating the item frequency in session to enhance the information about repeated items. MiaSRec represents various user intents by deriving multiple session representations centered on each item and dynamically selecting the important ones. Extensive experimental results show that MiaSRec outperforms existing state-of-the-art SBR models on six datasets, particularly those with longer average session length, achieving up to 6.27% and 24.56% gains for MRR@20 and Recall@20. Our code is available at https://github.com/jin530/MiaSRec.
comment: SIGIR 2024. 5 pages
☆ On the Evaluation of Machine-Generated Reports SIGIR 2024
Large Language Models (LLMs) have enabled new ways to satisfy information needs. Although great strides have been made in applying them to settings like document ranking and short-form text generation, they still struggle to compose complete, accurate, and verifiable long-form reports. Reports with these qualities are necessary to satisfy the complex, nuanced, or multi-faceted information needs of users. In this perspective paper, we draw together opinions from industry and academia, and from a variety of related research areas, to present our vision for automatic report generation, and -- critically -- a flexible framework by which such reports can be evaluated. In contrast with other summarization tasks, automatic report generation starts with a detailed description of an information need, stating the necessary background, requirements, and scope of the report. Further, the generated reports should be complete, accurate, and verifiable. These qualities, which are desirable -- if not required -- in many analytic report-writing settings, require rethinking how to build and evaluate systems that exhibit these qualities. To foster new efforts in building these systems, we present an evaluation framework that draws on ideas found in various evaluations. To test completeness and accuracy, the framework uses nuggets of information, expressed as questions and answers, that need to be part of any high-quality generated report. Additionally, evaluation of citations that map claims made in the report to their source documents ensures verifiability.
comment: 12 pages, 4 figures, accepted at SIGIR 2024 as perspective paper
☆ Language Fairness in Multilingual Information Retrieval SIGIR 2024
Multilingual information retrieval (MLIR) considers the problem of ranking documents in several languages for a query expressed in a language that may differ from any of those languages. Recent work has observed that approaches such as combining ranked lists representing a single document language each or using multilingual pretrained language models demonstrate a preference for one language over others. This results in systematic unfair treatment of documents in different languages. This work proposes a language fairness metric to evaluate whether documents across different languages are fairly ranked through statistical equivalence testing using the Kruskal-Wallis test. In contrast to most prior work in group fairness, we do not consider any language to be an unprotected group. Thus our proposed measure, PEER (Probability of EqualExpected Rank), is the first fairness metric specifically designed to capture the language fairness of MLIR systems. We demonstrate the behavior of PEER on artificial ranked lists. We also evaluate real MLIR systems on two publicly available benchmarks and show that the PEER scores align with prior analytical findings on MLIR fairness. Our implementation is compatible with ir-measures and is available at http://github.com/hltcoe/peer_measure.
comment: 5 pages, 1 figure, accepted at SIGIR 2024 as short paper
☆ Distillation for Multilingual Information Retrieval SIGIR 2024
Recent work in cross-language information retrieval (CLIR), where queries and documents are in different languages, has shown the benefit of the Translate-Distill framework that trains a cross-language neural dual-encoder model using translation and distillation. However, Translate-Distill only supports a single document language. Multilingual information retrieval (MLIR), which ranks a multilingual document collection, is harder to train than CLIR because the model must assign comparable relevance scores to documents in different languages. This work extends Translate-Distill and propose Multilingual Translate-Distill (MTD) for MLIR. We show that ColBERT-X models trained with MTD outperform their counterparts trained ith Multilingual Translate-Train, which is the previous state-of-the-art training approach, by 5% to 25% in nDCG@20 and 15% to 45% in MAP. We also show that the model is robust to the way languages are mixed in training batches. Our implementation is available on GitHub.
comment: 6 pages, 1 figure, accepted at SIGIR 2024 as short paper
☆ PLAID SHIRTTT for Large-Scale Streaming Dense Retrieval SIGIR 2024
PLAID, an efficient implementation of the ColBERT late interaction bi-encoder using pretrained language models for ranking, consistently achieves state-of-the-art performance in monolingual, cross-language, and multilingual retrieval. PLAID differs from ColBERT by assigning terms to clusters and representing those terms as cluster centroids plus compressed residual vectors. While PLAID is effective in batch experiments, its performance degrades in streaming settings where documents arrive over time because representations of new tokens may be poorly modeled by the earlier tokens used to select cluster centroids. PLAID Streaming Hierarchical Indexing that Runs on Terabytes of Temporal Text (PLAID SHIRTTT) addresses this concern using multi-phase incremental indexing based on hierarchical sharding. Experiments on ClueWeb09 and the multilingual NeuCLIR collection demonstrate the effectiveness of this approach both for the largest collection indexed to date by the ColBERT architecture and in the multilingual setting, respectively.
comment: 5 pages, 1 figure, accepted at SIGIR 2024 as short paper
♻ ☆ Large language models can accurately predict searcher preferences
Relevance labels, which indicate whether a search result is valuable to a searcher, are key to evaluating and optimising search systems. The best way to capture the true preferences of users is to ask them for their careful feedback on which results would be useful, but this approach does not scale to produce a large number of labels. Getting relevance labels at scale is usually done with third-party labellers, who judge on behalf of the user, but there is a risk of low-quality data if the labeller doesn't understand user needs. To improve quality, one standard approach is to study real users through interviews, user studies and direct feedback, find areas where labels are systematically disagreeing with users, then educate labellers about user needs through judging guidelines, training and monitoring. This paper introduces an alternate approach for improving label quality. It takes careful feedback from real users, which by definition is the highest-quality first-party gold data that can be derived, and develops an large language model prompt that agrees with that data. We present ideas and observations from deploying language models for large-scale relevance labelling at Bing, and illustrate with data from TREC. We have found large language models can be effective, with accuracy as good as human labellers and similar capability to pick the hardest queries, best runs, and best groups. Systematic changes to the prompts make a difference in accuracy, but so too do simple paraphrases. To measure agreement with real searchers needs high-quality ``gold'' labels, but with these we find that models produce better labels than third-party workers, for a fraction of the cost, and these labels let us train notably better rankers.
♻ ☆ Faster maximal clique enumeration in large real-world link streams
Link streams offer a good model for representing interactions over time. They consist of links $(b,e,u,v)$, where $u$ and $v$ are vertices interacting during the whole time interval $[b,e]$. In this paper, we deal with the problem of enumerating maximal cliques in link streams. A clique is a pair $(C,[t_0,t_1])$, where $C$ is a set of vertices that all interact pairwise during the full interval $[t_0,t_1]$. It is maximal when neither its set of vertices nor its time interval can be increased. Some of the main works solving this problem are based on the famous Bron-Kerbosch algorithm for enumerating maximal cliques in graphs. We take this idea as a starting point to propose a new algorithm which matches the cliques of the instantaneous graphs formed by links existing at a given time $t$ to the maximal cliques of the link stream. We prove its validity and compute its complexity, which is better than the state-of-the art ones in many cases of interest. We also study the output-sensitive complexity, which is close to the output size, thereby showing that our algorithm is efficient. To confirm this, we perform experiments on link streams used in the state of the art, and on massive link streams, up to 100 million links. In all cases our algorithm is faster, mostly by a factor of at least 10 and up to a factor of $10^4$. Moreover, it scales to massive link streams for which the existing algorithms are not able to provide the solution.
comment: 28 pages, 6 figure, 5 tables, tu be published in Journal of Graph Algorithms and Applications
♻ ☆ Language Models As Semantic Indexers
Semantic identifier (ID) is an important concept in information retrieval that aims to preserve the semantics of objects such as documents and items inside their IDs. Previous studies typically adopt a two-stage pipeline to learn semantic IDs by first procuring embeddings using off-the-shelf text encoders and then deriving IDs based on the embeddings. However, each step introduces potential information loss, and there is usually an inherent mismatch between the distribution of embeddings within the latent space produced by text encoders and the anticipated distribution required for semantic indexing. It is non-trivial to design a method that can learn the document's semantic representations and its hierarchical structure simultaneously, given that semantic IDs are discrete and sequentially structured, and the semantic supervision is deficient. In this paper, we introduce LMIndexer, a self-supervised framework to learn semantic IDs with a generative language model. We tackle the challenge of sequential discrete ID by introducing a semantic indexer capable of generating neural sequential discrete representations with progressive training and contrastive learning. In response to the semantic supervision deficiency, we propose to train the model with a self-supervised document reconstruction objective. We show the high quality of the learned IDs and demonstrate their effectiveness on three tasks including recommendation, product search, and document retrieval on five datasets from various domains. Code is available at https://github.com/PeterGriffinJin/LMIndexer.
comment: 10 pages, 5 appendix pages
♻ ☆ Evaluating Generative Ad Hoc Information Retrieval
Recent advances in large language models have enabled the development of viable generative retrieval systems. Instead of a traditional document ranking, many generative retrieval systems directly return a grounded generated text as an answer to an information need expressed as a query or question. Quantifying the utility of the textual responses is essential for appropriately evaluating such generative ad hoc retrieval. Yet, the established evaluation methodology for ranking-based retrieval is not suited for reliable, repeatable, and reproducible evaluation of generated answers. In this paper, we survey the relevant literature from the fields of information retrieval and natural language processing, we identify search tasks and system architectures in generative retrieval, we develop a corresponding user model, and we study its operationalization. Our analysis provides a foundation and new insights for the evaluation of generative retrieval systems, focusing on ad hoc retrieval.
comment: 14 pages, 6 figures, 1 table
♻ ☆ Disaggregated Multi-Tower: Topology-aware Modeling Technique for Efficient Large-Scale Recommendation
We study a mismatch between the deep learning recommendation models' flat architecture, common distributed training paradigm and hierarchical data center topology. To address the associated inefficiencies, we propose Disaggregated Multi-Tower (DMT), a modeling technique that consists of (1) Semantic-preserving Tower Transform (SPTT), a novel training paradigm that decomposes the monolithic global embedding lookup process into disjoint towers to exploit data center locality; (2) Tower Module (TM), a synergistic dense component attached to each tower to reduce model complexity and communication volume through hierarchical feature interaction; and (3) Tower Partitioner (TP), a feature partitioner to systematically create towers with meaningful feature interactions and load balanced assignments to preserve model quality and training throughput via learned embeddings. We show that DMT can achieve up to 1.9x speedup compared to the state-of-the-art baselines without losing accuracy across multiple generations of hardware at large data center scales.
Machine Learning 153
☆ Multi-Space Alignments Towards Universal LiDAR Segmentation CVPR 2024
A unified and versatile LiDAR segmentation model with strong robustness and generalizability is desirable for safe autonomous driving perception. This work presents M3Net, a one-of-a-kind framework for fulfilling multi-task, multi-dataset, multi-modality LiDAR segmentation in a universal manner using just a single set of parameters. To better exploit data volume and diversity, we first combine large-scale driving datasets acquired by different types of sensors from diverse scenes and then conduct alignments in three spaces, namely data, feature, and label spaces, during the training. As a result, M3Net is capable of taming heterogeneous data for training state-of-the-art LiDAR segmentation models. Extensive experiments on twelve LiDAR segmentation datasets verify our effectiveness. Notably, using a shared set of parameters, M3Net achieves 75.1%, 83.1%, and 72.4% mIoU scores, respectively, on the official benchmarks of SemanticKITTI, nuScenes, and Waymo Open.
comment: CVPR 2024; 33 pages, 14 figures, 14 tables; Code at https://github.com/youquanl/M3Net
☆ Customizing Text-to-Image Models with a Single Image Pair
Art reinterpretation is the practice of creating a variation of a reference work, making a paired artwork that exhibits a distinct artistic style. We ask if such an image pair can be used to customize a generative model to capture the demonstrated stylistic difference. We propose Pair Customization, a new customization method that learns stylistic difference from a single image pair and then applies the acquired style to the generation process. Unlike existing methods that learn to mimic a single concept from a collection of images, our method captures the stylistic difference between paired images. This allows us to apply a stylistic change without overfitting to the specific image content in the examples. To address this new task, we employ a joint optimization method that explicitly separates the style and content into distinct LoRA weight spaces. We optimize these style and content weights to reproduce the style and content images while encouraging their orthogonality. During inference, we modify the diffusion process via a new style guidance based on our learned weights. Both qualitative and quantitative experiments show that our method can effectively learn style while avoiding overfitting to image content, highlighting the potential of modeling such stylistic differences from a single image pair.
comment: project page: https://paircustomization.github.io/
☆ Plan-Seq-Learn: Language Model Guided RL for Solving Long Horizon Robotics Tasks ICLR 2024
Large Language Models (LLMs) have been shown to be capable of performing high-level planning for long-horizon robotics tasks, yet existing methods require access to a pre-defined skill library (e.g. picking, placing, pulling, pushing, navigating). However, LLM planning does not address how to design or learn those behaviors, which remains challenging particularly in long-horizon settings. Furthermore, for many tasks of interest, the robot needs to be able to adjust its behavior in a fine-grained manner, requiring the agent to be capable of modifying low-level control actions. Can we instead use the internet-scale knowledge from LLMs for high-level policies, guiding reinforcement learning (RL) policies to efficiently solve robotic control tasks online without requiring a pre-determined set of skills? In this paper, we propose Plan-Seq-Learn (PSL): a modular approach that uses motion planning to bridge the gap between abstract language and learned low-level control for solving long-horizon robotics tasks from scratch. We demonstrate that PSL achieves state-of-the-art results on over 25 challenging robotics tasks with up to 10 stages. PSL solves long-horizon tasks from raw visual input spanning four benchmarks at success rates of over 85%, out-performing language-based, classical, and end-to-end approaches. Video results and code at https://mihdalal.github.io/planseqlearn/
comment: Published at ICLR 2024. Website at https://mihdalal.github.io/planseqlearn/ 9 pages, 3 figures, 3 tables; 14 pages appendix (7 additional figures)
☆ Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions. Crucially, the CBM design inherently allows for human interventions, in which expert users are given the ability to modify potentially misaligned concept choices to influence the decision behavior of the model in an interpretable fashion. However, existing approaches often require numerous human interventions per image to achieve strong performances, posing practical challenges in scenarios where obtaining human feedback is expensive. In this paper, we find that this is noticeably driven by an independent treatment of concepts during intervention, wherein a change of one concept does not influence the use of other ones in the model's final decision. To address this issue, we introduce a trainable concept intervention realignment module, which leverages concept relations to realign concept assignments post-intervention. Across standard, real-world benchmarks, we find that concept realignment can significantly improve intervention efficacy; significantly reducing the number of interventions needed to reach a target classification performance or concept prediction accuracy. In addition, it easily integrates into existing concept-based architectures without requiring changes to the models themselves. This reduced cost of human-model collaboration is crucial to enhancing the feasibility of CBMs in resource-constrained environments.
☆ A separability-based approach to quantifying generalization: which layer is best?
Generalization to unseen data remains poorly understood for deep learning classification and foundation models. How can one assess the ability of networks to adapt to new or extended versions of their input space in the spirit of few-shot learning, out-of-distribution generalization, and domain adaptation? Which layers of a network are likely to generalize best? We provide a new method for evaluating the capacity of networks to represent a sampled domain, regardless of whether the network has been trained on all classes in the domain. Our approach is the following: after fine-tuning state-of-the-art pre-trained models for visual classification on a particular domain, we assess their performance on data from related but distinct variations in that domain. Generalization power is quantified as a function of the latent embeddings of unseen data from intermediate layers for both unsupervised and supervised settings. Working throughout all stages of the network, we find that (i) high classification accuracy does not imply high generalizability; and (ii) deeper layers in a model do not always generalize the best, which has implications for pruning. Since the trends observed across datasets are largely consistent, we conclude that our approach reveals (a function of) the intrinsic capacity of the different layers of a model to generalize.
comment: 6, pages, 5 figures
Transformer-Aided Semantic Communications
The transformer structure employed in large language models (LLMs), as a specialized category of deep neural networks (DNNs) featuring attention mechanisms, stands out for their ability to identify and highlight the most relevant aspects of input data. Such a capability is particularly beneficial in addressing a variety of communication challenges, notably in the realm of semantic communication where proper encoding of the relevant data is critical especially in systems with limited bandwidth. In this work, we employ vision transformers specifically for the purpose of compression and compact representation of the input image, with the goal of preserving semantic information throughout the transmission process. Through the use of the attention mechanism inherent in transformers, we create an attention mask. This mask effectively prioritizes critical segments of images for transmission, ensuring that the reconstruction phase focuses on key objects highlighted by the mask. Our methodology significantly improves the quality of semantic communication and optimizes bandwidth usage by encoding different parts of the data in accordance with their semantic information content, thus enhancing overall efficiency. We evaluate the effectiveness of our proposed framework using the TinyImageNet dataset, focusing on both reconstruction quality and accuracy. Our evaluation results demonstrate that our framework successfully preserves semantic information, even when only a fraction of the encoded data is transmitted, according to the intended compression rates.
☆ Accelerating Convergence in Bayesian Few-Shot Classification
Bayesian few-shot classification has been a focal point in the field of few-shot learning. This paper seamlessly integrates mirror descent-based variational inference into Gaussian process-based few-shot classification, addressing the challenge of non-conjugate inference. By leveraging non-Euclidean geometry, mirror descent achieves accelerated convergence by providing the steepest descent direction along the corresponding manifold. It also exhibits the parameterization invariance property concerning the variational distribution. Experimental results demonstrate competitive classification accuracy, improved uncertainty quantification, and faster convergence compared to baseline models. Additionally, we investigate the impact of hyperparameters and components. Code is publicly available at https://github.com/keanson/MD-BSFC.
☆ Analyzing the Role of Semantic Representations in the Era of Large Language Models NAACL 2024
Traditionally, natural language processing (NLP) models often use a rich set of features created by linguistic expertise, such as semantic representations. However, in the era of large language models (LLMs), more and more tasks are turned into generic, end-to-end sequence generation problems. In this paper, we investigate the question: what is the role of semantic representations in the era of LLMs? Specifically, we investigate the effect of Abstract Meaning Representation (AMR) across five diverse NLP tasks. We propose an AMR-driven chain-of-thought prompting method, which we call AMRCoT, and find that it generally hurts performance more than it helps. To investigate what AMR may have to offer on these tasks, we conduct a series of analysis experiments. We find that it is difficult to predict which input examples AMR may help or hurt on, but errors tend to arise with multi-word expressions, named entities, and in the final inference step where the LLM must connect its reasoning over the AMR to its prediction. We recommend focusing on these areas for future work in semantic representations for LLMs. Our code: https://github.com/causalNLP/amr_llm.
comment: NAACL 2024
☆ Navigating Heterogeneity and Privacy in One-Shot Federated Learning with Diffusion Models
Federated learning (FL) enables multiple clients to train models collectively while preserving data privacy. However, FL faces challenges in terms of communication cost and data heterogeneity. One-shot federated learning has emerged as a solution by reducing communication rounds, improving efficiency, and providing better security against eavesdropping attacks. Nevertheless, data heterogeneity remains a significant challenge, impacting performance. This work explores the effectiveness of diffusion models in one-shot FL, demonstrating their applicability in addressing data heterogeneity and improving FL performance. Additionally, we investigate the utility of our diffusion model approach, FedDiff, compared to other one-shot FL methods under differential privacy (DP). Furthermore, to improve generated sample quality under DP settings, we propose a pragmatic Fourier Magnitude Filtering (FMF) method, enhancing the effectiveness of generated data for global model training.
☆ FeNNol: an Efficient and Flexible Library for Building Force-field-enhanced Neural Network Potentials
Neural network interatomic potentials (NNPs) have recently proven to be powerful tools to accurately model complex molecular systems while bypassing the high numerical cost of ab-initio molecular dynamics simulations. In recent years, numerous advances in model architectures as well as the development of hybrid models combining machine-learning (ML) with more traditional, physically-motivated, force-field interactions have considerably increased the design space of ML potentials. In this paper, we present FeNNol, a new library for building, training and running force-field-enhanced neural network potentials. It provides a flexible and modular system for building hybrid models, allowing to easily combine state-of-the-art embeddings with ML-parameterized physical interaction terms without the need for explicit programming. Furthermore, FeNNol leverages the automatic differentiation and just-in-time compilation features of the Jax Python library to enable fast evaluation of NNPs, shrinking the performance gap between ML potentials and standard force-fields. This is demonstrated with the popular ANI-2x model reaching simulation speeds nearly on par with the AMOEBA polarizable force-field on commodity GPUs (GPU=Graphics processing unit). We hope that FeNNol will facilitate the development and application of new hybrid NNP architectures for a wide range of molecular simulation problems.
☆ Digital Twin Generators for Disease Modeling
A patient's digital twin is a computational model that describes the evolution of their health over time. Digital twins have the potential to revolutionize medicine by enabling individual-level computer simulations of human health, which can be used to conduct more efficient clinical trials or to recommend personalized treatment options. Due to the overwhelming complexity of human biology, machine learning approaches that leverage large datasets of historical patients' longitudinal health records to generate patients' digital twins are more tractable than potential mechanistic models. In this manuscript, we describe a neural network architecture that can learn conditional generative models of clinical trajectories, which we call Digital Twin Generators (DTGs), that can create digital twins of individual patients. We show that the same neural network architecture can be trained to generate accurate digital twins for patients across 13 different indications simply by changing the training set and tuning hyperparameters. By introducing a general purpose architecture, we aim to unlock the ability to scale machine learning approaches to larger datasets and across more indications so that a digital twin could be created for any patient in the world.
☆ Designing Algorithmic Recommendations to Achieve Human-AI Complementarity
Algorithms frequently assist, rather than replace, human decision-makers. However, the design and analysis of algorithms often focus on predicting outcomes and do not explicitly model their effect on human decisions. This discrepancy between the design and role of algorithmic assistants becomes of particular concern in light of empirical evidence that suggests that algorithmic assistants again and again fail to improve human decisions. In this article, we formalize the design of recommendation algorithms that assist human decision-makers without making restrictive ex-ante assumptions about how recommendations affect decisions. We formulate an algorithmic-design problem that leverages the potential-outcomes framework from causal inference to model the effect of recommendations on a human decision-maker's binary treatment choice. Within this model, we introduce a monotonicity assumption that leads to an intuitive classification of human responses to the algorithm. Under this monotonicity assumption, we can express the human's response to algorithmic recommendations in terms of their compliance with the algorithm and the decision they would take if the algorithm sends no recommendation. We showcase the utility of our framework using an online experiment that simulates a hiring task. We argue that our approach explains the relative performance of different recommendation algorithms in the experiment, and can help design solutions that realize human-AI complementarity.
☆ NeMo-Aligner: Scalable Toolkit for Efficient Model Alignment
Aligning Large Language Models (LLMs) with human values and preferences is essential for making them helpful and safe. However, building efficient tools to perform alignment can be challenging, especially for the largest and most competent LLMs which often contain tens or hundreds of billions of parameters. We create NeMo-Aligner, a toolkit for model alignment that can efficiently scale to using hundreds of GPUs for training. NeMo-Aligner comes with highly optimized and scalable implementations for major paradigms of model alignment such as: Reinforcement Learning from Human Feedback (RLHF), Direct Preference Optimization (DPO), SteerLM, and Self-Play Fine-Tuning (SPIN). Additionally, our toolkit supports running most of the alignment techniques in a Parameter Efficient Fine-Tuning (PEFT) setting. NeMo-Aligner is designed for extensibility, allowing support for other alignment techniques with minimal effort. It is open-sourced with Apache 2.0 License and we invite community contributions at https://github.com/NVIDIA/NeMo-Aligner
comment: 13 pages, 4 figures
☆ Common pitfalls to avoid while using multiobjective optimization in machine learning
Recently, there has been an increasing interest in exploring the application of multiobjective optimization (MOO) in machine learning (ML). The interest is driven by the numerous situations in real-life applications where multiple objectives need to be optimized simultaneously. A key aspect of MOO is the existence of a Pareto set, rather than a single optimal solution, which illustrates the inherent trade-offs between objectives. Despite its potential, there is a noticeable lack of satisfactory literature that could serve as an entry-level guide for ML practitioners who want to use MOO. Hence, our goal in this paper is to produce such a resource. We critically review previous studies, particularly those involving MOO in deep learning (using Physics-Informed Neural Networks (PINNs) as a guiding example), and identify misconceptions that highlight the need for a better grasp of MOO principles in ML. Using MOO of PINNs as a case study, we demonstrate the interplay between the data loss and the physics loss terms. We highlight the most common pitfalls one should avoid while using MOO techniques in ML. We begin by establishing the groundwork for MOO, focusing on well-known approaches such as the weighted sum (WS) method, alongside more complex techniques like the multiobjective gradient descent algorithm (MGDA). Additionally, we compare the results obtained from the WS and MGDA with one of the most common evolutionary algorithms, NSGA-II. We emphasize the importance of understanding the specific problem, the objective space, and the selected MOO method, while also noting that neglecting factors such as convergence can result in inaccurate outcomes and, consequently, a non-optimal solution. Our goal is to offer a clear and practical guide for ML practitioners to effectively apply MOO, particularly in the context of DL.
comment: 21 pages, 12 figures
☆ Understanding Retrieval-Augmented Task Adaptation for Vision-Language Models ICML 2024
Pre-trained contrastive vision-language models have demonstrated remarkable performance across a wide range of tasks. However, they often struggle on fine-trained datasets with categories not adequately represented during pre-training, which makes adaptation necessary. Recent works have shown promising results by utilizing samples from web-scale databases for retrieval-augmented adaptation, especially in low-data regimes. Despite the empirical success, understanding how retrieval impacts the adaptation of vision-language models remains an open research question. In this work, we adopt a reflective perspective by presenting a systematic study to understand the roles of key components in retrieval-augmented adaptation. We unveil new insights on uni-modal and cross-modal retrieval and highlight the critical role of logit ensemble for effective adaptation. We further present theoretical underpinnings that directly support our empirical observations.
comment: The paper is accepted at ICML 2024
☆ Dynamic Local Average Treatment Effects
We consider Dynamic Treatment Regimes (DTRs) with one sided non-compliance that arise in applications such as digital recommendations and adaptive medical trials. These are settings where decision makers encourage individuals to take treatments over time, but adapt encouragements based on previous encouragements, treatments, states, and outcomes. Importantly, individuals may choose to (not) comply with a treatment recommendation, whenever it is made available to them, based on unobserved confounding factors. We provide non-parametric identification, estimation, and inference for Dynamic Local Average Treatment Effects, which are expected values of multi-period treatment contrasts among appropriately defined complier subpopulations. Under standard assumptions in the Instrumental Variable and DTR literature, we show that one can identify local average effects of contrasts that correspond to offering treatment at any single time step. Under an additional cross-period effect-compliance independence assumption, which is satisfied in Staggered Adoption settings and a generalization of them, which we define as Staggered Compliance settings, we identify local average treatment effects of treating in multiple time periods.
☆ Uncertainty for Active Learning on Graphs
Uncertainty Sampling is an Active Learning strategy that aims to improve the data efficiency of machine learning models by iteratively acquiring labels of data points with the highest uncertainty. While it has proven effective for independent data its applicability to graphs remains under-explored. We propose the first extensive study of Uncertainty Sampling for node classification: (1) We benchmark Uncertainty Sampling beyond predictive uncertainty and highlight a significant performance gap to other Active Learning strategies. (2) We develop ground-truth Bayesian uncertainty estimates in terms of the data generating process and prove their effectiveness in guiding Uncertainty Sampling toward optimal queries. We confirm our results on synthetic data and design an approximate approach that consistently outperforms other uncertainty estimators on real datasets. (3) Based on this analysis, we relate pitfalls in modeling uncertainty to existing methods. Our analysis enables and informs the development of principled uncertainty estimation on graphs.
☆ Purify Unlearnable Examples via Rate-Constrained Variational Autoencoders ICML 2024
Unlearnable examples (UEs) seek to maximize testing error by making subtle modifications to training examples that are correctly labeled. Defenses against these poisoning attacks can be categorized based on whether specific interventions are adopted during training. The first approach is training-time defense, such as adversarial training, which can mitigate poisoning effects but is computationally intensive. The other approach is pre-training purification, e.g., image short squeezing, which consists of several simple compressions but often encounters challenges in dealing with various UEs. Our work provides a novel disentanglement mechanism to build an efficient pre-training purification method. Firstly, we uncover rate-constrained variational autoencoders (VAEs), demonstrating a clear tendency to suppress the perturbations in UEs. We subsequently conduct a theoretical analysis for this phenomenon. Building upon these insights, we introduce a disentangle variational autoencoder (D-VAE), capable of disentangling the perturbations with learnable class-wise embeddings. Based on this network, a two-stage purification approach is naturally developed. The first stage focuses on roughly eliminating perturbations, while the second stage produces refined, poison-free results, ensuring effectiveness and robustness across various scenarios. Extensive experiments demonstrate the remarkable performance of our method across CIFAR-10, CIFAR-100, and a 100-class ImageNet-subset. Code is available at https://github.com/yuyi-sd/D-VAE.
comment: Accepted by ICML 2024
☆ UQA: Corpus for Urdu Question Answering
This paper introduces UQA, a novel dataset for question answering and text comprehension in Urdu, a low-resource language with over 70 million native speakers. UQA is generated by translating the Stanford Question Answering Dataset (SQuAD2.0), a large-scale English QA dataset, using a technique called EATS (Enclose to Anchor, Translate, Seek), which preserves the answer spans in the translated context paragraphs. The paper describes the process of selecting and evaluating the best translation model among two candidates: Google Translator and Seamless M4T. The paper also benchmarks several state-of-the-art multilingual QA models on UQA, including mBERT, XLM-RoBERTa, and mT5, and reports promising results. For XLM-RoBERTa-XL, we have an F1 score of 85.99 and 74.56 EM. UQA is a valuable resource for developing and testing multilingual NLP systems for Urdu and for enhancing the cross-lingual transferability of existing models. Further, the paper demonstrates the effectiveness of EATS for creating high-quality datasets for other languages and domains. The UQA dataset and the code are publicly available at www.github.com/sameearif/UQA.
☆ Creative Problem Solving in Large Language and Vision Models -- What Would it Take?
In this paper, we discuss approaches for integrating Computational Creativity (CC) with research in large language and vision models (LLVMs) to address a key limitation of these models, i.e., creative problem solving. We present preliminary experiments showing how CC principles can be applied to address this limitation through augmented prompting. With this work, we hope to foster discussions of Computational Creativity in the context of ML algorithms for creative problem solving in LLVMs. Our code is at: https://github.com/lnairGT/creative-problem-solving-LLMs
comment: 9 pages, 7 figures, 2 tables
☆ Test-time Assessment of a Model's Performance on Unseen Domains via Optimal Transport
Gauging the performance of ML models on data from unseen domains at test-time is essential yet a challenging problem due to the lack of labels in this setting. Moreover, the performance of these models on in-distribution data is a poor indicator of their performance on data from unseen domains. Thus, it is essential to develop metrics that can provide insights into the model's performance at test time and can be computed only with the information available at test time (such as their model parameters, the training data or its statistics, and the unlabeled test data). To this end, we propose a metric based on Optimal Transport that is highly correlated with the model's performance on unseen domains and is efficiently computable only using information available at test time. Concretely, our metric characterizes the model's performance on unseen domains using only a small amount of unlabeled data from these domains and data or statistics from the training (source) domain(s). Through extensive empirical evaluation using standard benchmark datasets, and their corruptions, we demonstrate the utility of our metric in estimating the model's performance in various practical applications. These include the problems of selecting the source data and architecture that leads to the best performance on data from an unseen domain and the problem of predicting a deployed model's performance at test time on unseen domains. Our empirical results show that our metric, which uses information from both the source and the unseen domain, is highly correlated with the model's performance, achieving a significantly better correlation than that obtained via the popular prediction entropy-based metric, which is computed solely using the data from the unseen domain.
☆ In-and-Out: Algorithmic Diffusion for Sampling Convex Bodies
We present a new random walk for uniformly sampling high-dimensional convex bodies. It achieves state-of-the-art runtime complexity with stronger guarantees on the output than previously known, namely in R\'enyi divergence (which implies TV, $\mathcal{W}_2$, KL, $\chi^2$). The proof departs from known approaches for polytime algorithms for the problem -- we utilize a stochastic diffusion perspective to show contraction to the target distribution with the rate of convergence determined by functional isoperimetric constants of the stationary density.
comment: 32 pages
☆ MiniGPT-3D: Efficiently Aligning 3D Point Clouds with Large Language Models using 2D Priors
Large 2D vision-language models (2D-LLMs) have gained significant attention by bridging Large Language Models (LLMs) with images using a simple projector. Inspired by their success, large 3D point cloud-language models (3D-LLMs) also integrate point clouds into LLMs. However, directly aligning point clouds with LLM requires expensive training costs, typically in hundreds of GPU-hours on A100, which hinders the development of 3D-LLMs. In this paper, we introduce MiniGPT-3D, an efficient and powerful 3D-LLM that achieves multiple SOTA results while training for only 27 hours on one RTX 3090. Specifically, we propose to align 3D point clouds with LLMs using 2D priors from 2D-LLMs, which can leverage the similarity between 2D and 3D visual information. We introduce a novel four-stage training strategy for modality alignment in a cascaded way, and a mixture of query experts module to adaptively aggregate features with high efficiency. Moreover, we utilize parameter-efficient fine-tuning methods LoRA and Norm fine-tuning, resulting in only 47.8M learnable parameters, which is up to 260x fewer than existing methods. Extensive experiments show that MiniGPT-3D achieves SOTA on 3D object classification and captioning tasks, with significantly cheaper training costs. Notably, MiniGPT-3D gains an 8.12 increase on GPT-4 evaluation score for the challenging object captioning task compared to ShapeLLM-13B, while the latter costs 160 total GPU-hours on 8 A800. We are the first to explore the efficient 3D-LLM, offering new insights to the community. Code and weights are available at https://github.com/TangYuan96/MiniGPT-3D.
comment: 17 pages, 9 figures
☆ Random Pareto front surfaces
The Pareto front of a set of vectors is the subset which is comprised solely of all of the best trade-off points. By interpolating this subset, we obtain the optimal trade-off surface. In this work, we prove a very useful result which states that all Pareto front surfaces can be explicitly parametrised using polar coordinates. In particular, our polar parametrisation result tells us that we can fully characterise any Pareto front surface using the length function, which is a scalar-valued function that returns the projected length along any positive radial direction. Consequently, by exploiting this representation, we show how it is possible to generalise many useful concepts from linear algebra, probability and statistics, and decision theory to function over the space of Pareto front surfaces. Notably, we focus our attention on the stochastic setting where the Pareto front surface itself is a stochastic process. Among other things, we showcase how it is possible to define and estimate many statistical quantities of interest such as the expectation, covariance and quantile of any Pareto front surface distribution. As a motivating example, we investigate how these statistics can be used within a design of experiments setting, where the goal is to both infer and use the Pareto front surface distribution in order to make effective decisions. Besides this, we also illustrate how these Pareto front ideas can be used within the context of extreme value theory. Finally, as a numerical example, we applied some of our new methodology on a real-world air pollution data set.
comment: The code is available at: https://github.com/benmltu/scalarize
☆ Learning Force Control for Legged Manipulation ICRA24
Controlling contact forces during interactions is critical for locomotion and manipulation tasks. While sim-to-real reinforcement learning (RL) has succeeded in many contact-rich problems, current RL methods achieve forceful interactions implicitly without explicitly regulating forces. We propose a method for training RL policies for direct force control without requiring access to force sensing. We showcase our method on a whole-body control platform of a quadruped robot with an arm. Such force control enables us to perform gravity compensation and impedance control, unlocking compliant whole-body manipulation. The learned whole-body controller with variable compliance makes it intuitive for humans to teleoperate the robot by only commanding the manipulator, and the robot's body adjusts automatically to achieve the desired position and force. Consequently, a human teleoperator can easily demonstrate a wide variety of loco-manipulation tasks. To the best of our knowledge, we provide the first deployment of learned whole-body force control in legged manipulators, paving the way for more versatile and adaptable legged robots.
comment: This work has been accepted to ICRA24, as well as the Loco-manipulation workshop at ICRA24
☆ Invariant Risk Minimization Is A Total Variation Model
Invariant risk minimization (IRM) is an arising approach to generalize invariant features to different environments in machine learning. While most related works focus on new IRM settings or new application scenarios, the mathematical essence of IRM remains to be properly explained. We verify that IRM is essentially a total variation based on $L^2$ norm (TV-$\ell_2$) of the learning risk with respect to the classifier variable. Moreover, we propose a novel IRM framework based on the TV-$\ell_1$ model. It not only expands the classes of functions that can be used as the learning risk, but also has robust performance in denoising and invariant feature preservation based on the coarea formula. We also illustrate some requirements for IRM-TV-$\ell_1$ to achieve out-of-distribution generalization. Experimental results show that the proposed framework achieves competitive performance in several benchmark machine learning scenarios.
☆ Dynamic Online Ensembles of Basis Expansions
Practical Bayesian learning often requires (1) online inference, (2) dynamic models, and (3) ensembling over multiple different models. Recent advances have shown how to use random feature approximations to achieve scalable, online ensembling of Gaussian processes with desirable theoretical properties and fruitful applications. One key to these methods' success is the inclusion of a random walk on the model parameters, which makes models dynamic. We show that these methods can be generalized easily to any basis expansion model and that using alternative basis expansions, such as Hilbert space Gaussian processes, often results in better performance. To simplify the process of choosing a specific basis expansion, our method's generality also allows the ensembling of several entirely different models, for example, a Gaussian process and polynomial regression. Finally, we propose a novel method to ensemble static and dynamic models together.
comment: 34 pages, 14 figures. Accepted to Transactions on Machine Learning Research (TMLR)
☆ Community-Invariant Graph Contrastive Learning ICML-2024
Graph augmentation has received great attention in recent years for graph contrastive learning (GCL) to learn well-generalized node/graph representations. However, mainstream GCL methods often favor randomly disrupting graphs for augmentation, which shows limited generalization and inevitably leads to the corruption of high-level graph information, i.e., the graph community. Moreover, current knowledge-based graph augmentation methods can only focus on either topology or node features, causing the model to lack robustness against various types of noise. To address these limitations, this research investigated the role of the graph community in graph augmentation and figured out its crucial advantage for learnable graph augmentation. Based on our observations, we propose a community-invariant GCL framework to maintain graph community structure during learnable graph augmentation. By maximizing the spectral changes, this framework unifies the constraints of both topology and feature augmentation, enhancing the model's robustness. Empirical evidence on 21 benchmark datasets demonstrates the exclusive merits of our framework. Code is released on Github (https://github.com/ShiyinTan/CI-GCL.git).
comment: This paper is accepted by ICML-2024
☆ Position Paper: Beyond Robustness Against Single Attack Types
Current research on defending against adversarial examples focuses primarily on achieving robustness against a single attack type such as $\ell_2$ or $\ell_{\infty}$-bounded attacks. However, the space of possible perturbations is much larger and currently cannot be modeled by a single attack type. The discrepancy between the focus of current defenses and the space of attacks of interest calls to question the practicality of existing defenses and the reliability of their evaluation. In this position paper, we argue that the research community should look beyond single attack robustness, and we draw attention to three potential directions involving robustness against multiple attacks: simultaneous multiattack robustness, unforeseen attack robustness, and a newly defined problem setting which we call continual adaptive robustness. We provide a unified framework which rigorously defines these problem settings, synthesize existing research in these fields, and outline open directions. We hope that our position paper inspires more research in simultaneous multiattack, unforeseen attack, and continual adaptive robustness.
☆ Constrained Reinforcement Learning Under Model Mismatch
Existing studies on constrained reinforcement learning (RL) may obtain a well-performing policy in the training environment. However, when deployed in a real environment, it may easily violate constraints that were originally satisfied during training because there might be model mismatch between the training and real environments. To address the above challenge, we formulate the problem as constrained RL under model uncertainty, where the goal is to learn a good policy that optimizes the reward and at the same time satisfy the constraint under model mismatch. We develop a Robust Constrained Policy Optimization (RCPO) algorithm, which is the first algorithm that applies to large/continuous state space and has theoretical guarantees on worst-case reward improvement and constraint violation at each iteration during the training. We demonstrate the effectiveness of our algorithm on a set of RL tasks with constraints.
☆ Data Scoping: Effectively Learning the Evolution of Generic Transport PDEs
Transport phenomena (e.g., fluid flows) are governed by time-dependent partial differential equations (PDEs) describing mass, momentum, and energy conservation, and are ubiquitous in many engineering applications. However, deep learning architectures are fundamentally incompatible with the simulation of these PDEs. This paper clearly articulates and then solves this incompatibility. The local-dependency of generic transport PDEs implies that it only involves local information to predict the physical properties at a location in the next time step. However, the deep learning architecture will inevitably increase the scope of information to make such predictions as the number of layers increases, which can cause sluggish convergence and compromise generalizability. This paper aims to solve this problem by proposing a distributed data scoping method with linear time complexity to strictly limit the scope of information to predict the local properties. The numerical experiments over multiple physics show that our data scoping method significantly accelerates training convergence and improves the generalizability of benchmark models on large-scale engineering simulations. Specifically, over the geometries not included in the training data for heat transferring simulation, it can increase the accuracy of Convolutional Neural Networks (CNNs) by 21.7 \% and that of Fourier Neural Operators (FNOs) by 38.5 \% on average.
☆ Non-iterative Optimization of Trajectory and Radio Resource for Aerial Network
We address a joint trajectory planning, user association, resource allocation, and power control problem to maximize proportional fairness in the aerial IoT network, considering practical end-to-end quality-of-service (QoS) and communication schedules. Though the problem is rather ancient, apart from the fact that the previous approaches have never considered user- and time-specific QoS, we point out a prevalent mistake in coordinate optimization approaches adopted by the majority of the literature. Coordinate optimization approaches, which repetitively optimize radio resources for a fixed trajectory and vice versa, generally converge to local optima when all variables are differentiable. However, these methods often stagnate at a non-stationary point, significantly degrading the network utility in mixed-integer problems such as joint trajectory and radio resource optimization. We detour this problem by converting the formulated problem into the Markov decision process (MDP). Exploiting the beneficial characteristics of the MDP, we design a non-iterative framework that cooperatively optimizes trajectory and radio resources without initial trajectory choice. The proposed framework can incorporate various trajectory planning algorithms such as the genetic algorithm, tree search, and reinforcement learning. Extensive comparisons with diverse baselines verify that the proposed framework significantly outperforms the state-of-the-art method, nearly achieving the global optimum. Our implementation code is available at https://github.com/hslyu/dbspf.
Graph is all you need? Lightweight data-agnostic neural architecture search without training
Neural architecture search (NAS) enables the automatic design of neural network models. However, training the candidates generated by the search algorithm for performance evaluation incurs considerable computational overhead. Our method, dubbed nasgraph, remarkably reduces the computational costs by converting neural architectures to graphs and using the average degree, a graph measure, as the proxy in lieu of the evaluation metric. Our training-free NAS method is data-agnostic and light-weight. It can find the best architecture among 200 randomly sampled architectures from NAS-Bench201 in 217 CPU seconds. Besides, our method is able to achieve competitive performance on various datasets including NASBench-101, NASBench-201, and NDS search spaces. We also demonstrate that nasgraph generalizes to more challenging tasks on Micro TransNAS-Bench-101.
☆ The Effectiveness of LLMs as Annotators: A Comparative Overview and Empirical Analysis of Direct Representation LREC
Large Language Models (LLMs) have emerged as powerful support tools across various natural language tasks and a range of application domains. Recent studies focus on exploring their capabilities for data annotation. This paper provides a comparative overview of twelve studies investigating the potential of LLMs in labelling data. While the models demonstrate promising cost and time-saving benefits, there exist considerable limitations, such as representativeness, bias, sensitivity to prompt variations and English language preference. Leveraging insights from these studies, our empirical analysis further examines the alignment between human and GPT-generated opinion distributions across four subjective datasets. In contrast to the studies examining representation, our methodology directly obtains the opinion distribution from GPT. Our analysis thereby supports the minority of studies that are considering diverse perspectives when evaluating data annotation tasks and highlights the need for further research in this direction.
comment: LREC-COLING NLPerspectives workshop
☆ Koopman Data-Driven Predictive Control with Robust Stability and Recursive Feasibility Guarantees
In this paper, we consider the design of data-driven predictive controllers for nonlinear systems from input-output data via linear-in-control input Koopman lifted models. Instead of identifying and simulating a Koopman model to predict future outputs, we design a subspace predictive controller in the Koopman space. This allows us to learn the observables minimizing the multi-step output prediction error of the Koopman subspace predictor, preventing the propagation of prediction errors. To avoid losing feasibility of our predictive control scheme due to prediction errors, we compute a terminal cost and terminal set in the Koopman space and we obtain recursive feasibility guarantees through an interpolated initial state. As a third contribution, we introduce a novel regularization cost yielding input-to-state stability guarantees with respect to the prediction error for the resulting closed-loop system. The performance of the developed Koopman data-driven predictive control methodology is illustrated on a nonlinear benchmark example from the literature.
☆ Behavior Imitation for Manipulator Control and Grasping with Deep Reinforcement Learning
The existing Motion Imitation models typically require expert data obtained through MoCap devices, but the vast amount of training data needed is difficult to acquire, necessitating substantial investments of financial resources, manpower, and time. This project combines 3D human pose estimation with reinforcement learning, proposing a novel model that simplifies Motion Imitation into a prediction problem of joint angle values in reinforcement learning. This significantly reduces the reliance on vast amounts of training data, enabling the agent to learn an imitation policy from just a few seconds of video and exhibit strong generalization capabilities. It can quickly apply the learned policy to imitate human arm motions in unfamiliar videos. The model first extracts skeletal motions of human arms from a given video using 3D human pose estimation. These extracted arm motions are then morphologically retargeted onto a robotic manipulator. Subsequently, the retargeted motions are used to generate reference motions. Finally, these reference motions are used to formulate a reinforcement learning problem, enabling the agent to learn a policy for imitating human arm motions. This project excels at imitation tasks and demonstrates robust transferability, accurately imitating human arm motions from other unfamiliar videos. This project provides a lightweight, convenient, efficient, and accurate Motion Imitation model. While simplifying the complex process of Motion Imitation, it achieves notably outstanding performance.
comment: 50 pages, 30 figures, Final Year Project Report at Nanyang Technological University, Singapore This article is an NTU FYP report. The formal paper is still in the preparation process
☆ Quantifying Spatial Domain Explanations in BCI using Earth Mover's Distance IJCNN
Brain-computer interface (BCI) systems facilitate unique communication between humans and computers, benefiting severely disabled individuals. Despite decades of research, BCIs are not fully integrated into clinical and commercial settings. It's crucial to assess and explain BCI performance, offering clear explanations for potential users to avoid frustration when it doesn't work as expected. This work investigates the efficacy of different deep learning and Riemannian geometry-based classification models in the context of motor imagery (MI) based BCI using electroencephalography (EEG). We then propose an optimal transport theory-based approach using earth mover's distance (EMD) to quantify the comparison of the feature relevance map with the domain knowledge of neuroscience. For this, we utilized explainable AI (XAI) techniques for generating feature relevance in the spatial domain to identify important channels for model outcomes. Three state-of-the-art models are implemented - 1) Riemannian geometry-based classifier, 2) EEGNet, and 3) EEG Conformer, and the observed trend in the model's accuracy across different architectures on the dataset correlates with the proposed feature relevance metrics. The models with diverse architectures perform significantly better when trained on channels relevant to motor imagery than data-driven channel selection. This work focuses attention on the necessity for interpretability and incorporating metrics beyond accuracy, underscores the value of combining domain knowledge and quantifying model interpretations with data-driven approaches in creating reliable and robust Brain-Computer Interfaces (BCIs).
comment: 8 pages, 3 figures, 3 tables, draft of the accepted work at IJCNN, WCCI 2024
☆ The Importance of Model Inspection for Better Understanding Performance Characteristics of Graph Neural Networks
This study highlights the importance of conducting comprehensive model inspection as part of comparative performance analyses. Here, we investigate the effect of modelling choices on the feature learning characteristics of graph neural networks applied to a brain shape classification task. Specifically, we analyse the effect of using parameter-efficient, shared graph convolutional submodels compared to structure-specific, non-shared submodels. Further, we assess the effect of mesh registration as part of the data harmonisation pipeline. We find substantial differences in the feature embeddings at different layers of the models. Our results highlight that test accuracy alone is insufficient to identify important model characteristics such as encoded biases related to data source or potentially non-discriminative features learned in submodels. Our model inspection framework offers a valuable tool for practitioners to better understand performance characteristics of deep learning models in medical imaging.
comment: International Symposium on Biomedical Imaging (ISBI)
☆ An Online Gradient-Based Caching Policy with Logarithmic Complexity and Regret Guarantees
The commonly used caching policies, such as LRU or LFU, exhibit optimal performance only for specific traffic patterns. Even advanced Machine Learning-based methods, which detect patterns in historical request data, struggle when future requests deviate from past trends. Recently, a new class of policies has emerged that makes no assumptions about the request arrival process. These algorithms solve an online optimization problem, enabling continuous adaptation to the context. They offer theoretical guarantees on the regret metric, which is the gap between the gain of the online policy and the gain of the optimal static cache allocation in hindsight. Nevertheless, the high computational complexity of these solutions hinders their practical adoption. In this study, we introduce a groundbreaking gradient-based online caching policy, the first to achieve logarithmic computational complexity relative to catalog size along with regret guarantees. This means our algorithm can efficiently handle large-scale data while minimizing the performance gap between real-time decisions and optimal hindsight choices. As requests arrive, our policy dynamically adjusts the probabilities of including items in the cache, which drive cache update decisions. Our algorithm's streamlined complexity is a key advantage, enabling its application to real-world traces featuring millions of requests and items. This is a significant achievement, as traces of this scale have been out of reach for existing policies with regret guarantees. To the best of our knowledge, our experimental results show for the first time that the regret guarantees of gradient-based caching policies bring significant benefits in scenarios of practical interest.
☆ Continuously evolving rewards in an open-ended environment
Unambiguous identification of the rewards driving behaviours of entities operating in complex open-ended real-world environments is difficult, partly because goals and associated behaviours emerge endogenously and are dynamically updated as environments change. Reproducing such dynamics in models would be useful in many domains, particularly where fixed reward functions limit the adaptive capabilities of agents. Simulation experiments described assess a candidate algorithm for the dynamic updating of rewards, RULE: Reward Updating through Learning and Expectation. The approach is tested in a simplified ecosystem-like setting where experiments challenge entities' survival, calling for significant behavioural change. The population of entities successfully demonstrate the abandonment of an initially rewarded but ultimately detrimental behaviour, amplification of beneficial behaviour, and appropriate responses to novel items added to their environment. These adjustment happen through endogenous modification of the entities' underlying reward function, during continuous learning, without external intervention.
comment: 30 pages, 8 figures
☆ Causal Influence in Federated Edge Inference
In this paper, we consider a setting where heterogeneous agents with connectivity are performing inference using unlabeled streaming data. Observed data are only partially informative about the target variable of interest. In order to overcome the uncertainty, agents cooperate with each other by exchanging their local inferences with and through a fusion center. To evaluate how each agent influences the overall decision, we adopt a causal framework in order to distinguish the actual influence of agents from mere correlations within the decision-making process. Various scenarios reflecting different agent participation patterns and fusion center policies are investigated. We derive expressions to quantify the causal impact of each agent on the joint decision, which could be beneficial for anticipating and addressing atypical scenarios, such as adversarial attacks or system malfunctions. We validate our theoretical results with numerical simulations and a real-world application of multi-camera crowd counting.
☆ Revisiting semi-supervised training objectives for differentiable particle filters
Differentiable particle filters combine the flexibility of neural networks with the probabilistic nature of sequential Monte Carlo methods. However, traditional approaches rely on the availability of labelled data, i.e., the ground truth latent state information, which is often difficult to obtain in real-world applications. This paper compares the effectiveness of two semi-supervised training objectives for differentiable particle filters. We present results in two simulated environments where labelled data are scarce.
comment: 5 pages, 2 figures
Prompt engineering paradigms for medical applications: scoping review and recommendations for better practices
Prompt engineering is crucial for harnessing the potential of large language models (LLMs), especially in the medical domain where specialized terminology and phrasing is used. However, the efficacy of prompt engineering in the medical domain remains to be explored. In this work, 114 recent studies (2022-2024) applying prompt engineering in medicine, covering prompt learning (PL), prompt tuning (PT), and prompt design (PD) are reviewed. PD is the most prevalent (78 articles). In 12 papers, PD, PL, and PT terms were used interchangeably. ChatGPT is the most commonly used LLM, with seven papers using it for processing sensitive clinical data. Chain-of-Thought emerges as the most common prompt engineering technique. While PL and PT articles typically provide a baseline for evaluating prompt-based approaches, 64% of PD studies lack non-prompt-related baselines. We provide tables and figures summarizing existing work, and reporting recommendations to guide future research contributions.
☆ Lying Graph Convolution: Learning to Lie for Node Classification Tasks IJCNN2024
In the context of machine learning for graphs, many researchers have empirically observed that Deep Graph Networks (DGNs) perform favourably on node classification tasks when the graph structure is homophilic (\ie adjacent nodes are similar). In this paper, we introduce Lying-GCN, a new DGN inspired by opinion dynamics that can adaptively work in both the heterophilic and the homophilic setting. At each layer, each agent (node) shares its own opinions (node embeddings) with its neighbours. Instead of sharing its opinion directly as in GCN, we introduce a mechanism which allows agents to lie. Such a mechanism is adaptive, thus the agents learn how and when to lie according to the task that should be solved. We provide a characterisation of our proposal in terms of dynamical systems, by studying the spectral property of the coefficient matrix of the system. While the steady state of the system collapses to zero, we believe the lying mechanism is still usable to solve node classification tasks. We empirically prove our belief on both synthetic and real-world datasets, by showing that the lying mechanism allows to increase the performances in the heterophilic setting without harming the results in the homophilic one.
comment: Accepted to IJCNN2024
☆ TRAMBA: A Hybrid Transformer and Mamba Architecture for Practical Audio and Bone Conduction Speech Super Resolution and Enhancement on Mobile and Wearable Platforms
We propose TRAMBA, a hybrid transformer and Mamba architecture for acoustic and bone conduction speech enhancement, suitable for mobile and wearable platforms. Bone conduction speech enhancement has been impractical to adopt in mobile and wearable platforms for several reasons: (i) data collection is labor-intensive, resulting in scarcity; (ii) there exists a performance gap between state of-art models with memory footprints of hundreds of MBs and methods better suited for resource-constrained systems. To adapt TRAMBA to vibration-based sensing modalities, we pre-train TRAMBA with audio speech datasets that are widely available. Then, users fine-tune with a small amount of bone conduction data. TRAMBA outperforms state-of-art GANs by up to 7.3% in PESQ and 1.8% in STOI, with an order of magnitude smaller memory footprint and an inference speed up of up to 465 times. We integrate TRAMBA into real systems and show that TRAMBA (i) improves battery life of wearables by up to 160% by requiring less data sampling and transmission; (ii) generates higher quality voice in noisy environments than over-the-air speech; (iii) requires a memory footprint of less than 20.0 MB.
☆ Mathematics of Differential Machine Learning in Derivative Pricing and Hedging
This article introduces the groundbreaking concept of the financial differential machine learning algorithm through a rigorous mathematical framework. Diverging from existing literature on financial machine learning, the work highlights the profound implications of theoretical assumptions within financial models on the construction of machine learning algorithms. This endeavour is particularly timely as the finance landscape witnesses a surge in interest towards data-driven models for the valuation and hedging of derivative products. Notably, the predictive capabilities of neural networks have garnered substantial attention in both academic research and practical financial applications. The approach offers a unified theoretical foundation that facilitates comprehensive comparisons, both at a theoretical level and in experimental outcomes. Importantly, this theoretical grounding lends substantial weight to the experimental results, affirming the differential machine learning method's optimality within the prevailing context. By anchoring the insights in rigorous mathematics, the article bridges the gap between abstract financial concepts and practical algorithmic implementations.
☆ Boosting Jailbreak Attack with Momentum ICLR 2024
Large Language Models (LLMs) have achieved remarkable success across diverse tasks, yet they remain vulnerable to adversarial attacks, notably the well-documented \textit{jailbreak} attack. Recently, the Greedy Coordinate Gradient (GCG) attack has demonstrated efficacy in exploiting this vulnerability by optimizing adversarial prompts through a combination of gradient heuristics and greedy search. However, the efficiency of this attack has become a bottleneck in the attacking process. To mitigate this limitation, in this paper we rethink the generation of adversarial prompts through an optimization lens, aiming to stabilize the optimization process and harness more heuristic insights from previous iterations. Specifically, we introduce the \textbf{M}omentum \textbf{A}ccelerated G\textbf{C}G (\textbf{MAC}) attack, which incorporates a momentum term into the gradient heuristic. Experimental results showcase the notable enhancement achieved by MAP in gradient-based attacks on aligned language models. Our code is available at https://github.com/weizeming/momentum-attack-llm.
comment: ICLR 2024 Workshop on Reliable and Responsible Foundation Models
☆ Improving Membership Inference in ASR Model Auditing with Perturbed Loss Features ICASSP 2024
Membership Inference (MI) poses a substantial privacy threat to the training data of Automatic Speech Recognition (ASR) systems, while also offering an opportunity to audit these models with regard to user data. This paper explores the effectiveness of loss-based features in combination with Gaussian and adversarial perturbations to perform MI in ASR models. To the best of our knowledge, this approach has not yet been investigated. We compare our proposed features with commonly used error-based features and find that the proposed features greatly enhance performance for sample-level MI. For speaker-level MI, these features improve results, though by a smaller margin, as error-based features already obtained a high performance for this task. Our findings emphasise the importance of considering different feature sets and levels of access to target models for effective MI in ASR systems, providing valuable insights for auditing such models.
comment: Trustworthy Speech Processing, Satellite Workshop at ICASSP 2024
☆ Error-Driven Uncertainty Aware Training
Neural networks are often overconfident about their predictions, which undermines their reliability and trustworthiness. In this work, we present a novel technique, named Error-Driven Uncertainty Aware Training (EUAT), which aims to enhance the ability of neural models to estimate their uncertainty correctly, namely to be highly uncertain when they output inaccurate predictions and low uncertain when their output is accurate. The EUAT approach operates during the model's training phase by selectively employing two loss functions depending on whether the training examples are correctly or incorrectly predicted by the model. This allows for pursuing the twofold goal of i) minimizing model uncertainty for correctly predicted inputs and ii) maximizing uncertainty for mispredicted inputs, while preserving the model's misprediction rate. We evaluate EUAT using diverse neural models and datasets in the image recognition domains considering both non-adversarial and adversarial settings. The results show that EUAT outperforms existing approaches for uncertainty estimation (including other uncertainty-aware training techniques, calibration, ensembles, and DEUP) by providing uncertainty estimates that not only have higher quality when evaluated via statistical metrics (e.g., correlation with residuals) but also when employed to build binary classifiers that decide whether the model's output can be trusted or not and under distributional data shifts.
☆ Learning-to-solve unit commitment based on few-shot physics-guided spatial-temporal graph convolution network
This letter proposes a few-shot physics-guided spatial temporal graph convolutional network (FPG-STGCN) to fast solve unit commitment (UC). Firstly, STGCN is tailored to parameterize UC. Then, few-shot physics-guided learning scheme is proposed. It exploits few typical UC solutions yielded via commercial optimizer to escape from local minimum, and leverages the augmented Lagrangian method for constraint satisfaction. To further enable both feasibility and continuous relaxation for integers in learning process, straight-through estimator for Tanh-Sign composition is proposed to fully differentiate the mixed integer solution space. Case study on the IEEE benchmark justifies that, our method bests mainstream learning ways on UC feasibility, and surpasses traditional solver on efficiency.
☆ Towards Interpretable Reinforcement Learning with Constrained Normalizing Flow Policies
Reinforcement learning policies are typically represented by black-box neural networks, which are non-interpretable and not well-suited for safety-critical domains. To address both of these issues, we propose constrained normalizing flow policies as interpretable and safe-by-construction policy models. We achieve safety for reinforcement learning problems with instantaneous safety constraints, for which we can exploit domain knowledge by analytically constructing a normalizing flow that ensures constraint satisfaction. The normalizing flow corresponds to an interpretable sequence of transformations on action samples, each ensuring alignment with respect to a particular constraint. Our experiments reveal benefits beyond interpretability in an easier learning objective and maintained constraint satisfaction throughout the entire learning process. Our approach leverages constraints over reward engineering while offering enhanced interpretability, safety, and direct means of providing domain knowledge to the agent without relying on complex reward functions.
☆ Decoupling Feature Extraction and Classification Layers for Calibrated Neural Networks
Deep Neural Networks (DNN) have shown great promise in many classification applications, yet are widely known to have poorly calibrated predictions when they are over-parametrized. Improving DNN calibration without comprising on model accuracy is of extreme importance and interest in safety critical applications such as in the health-care sector. In this work, we show that decoupling the training of feature extraction layers and classification layers in over-parametrized DNN architectures such as Wide Residual Networks (WRN) and Visual Transformers (ViT) significantly improves model calibration whilst retaining accuracy, and at a low training cost. In addition, we show that placing a Gaussian prior on the last hidden layer outputs of a DNN, and training the model variationally in the classification training stage, even further improves calibration. We illustrate these methods improve calibration across ViT and WRN architectures for several image classification benchmark datasets.
☆ Gradient-Congruity Guided Federated Sparse Training
Edge computing allows artificial intelligence and machine learning models to be deployed on edge devices, where they can learn from local data and collaborate to form a global model. Federated learning (FL) is a distributed machine learning technique that facilitates this process while preserving data privacy. However, FL also faces challenges such as high computational and communication costs regarding resource-constrained devices, and poor generalization performance due to the heterogeneity of data across edge clients and the presence of out-of-distribution data. In this paper, we propose the Gradient-Congruity Guided Federated Sparse Training (FedSGC), a novel method that integrates dynamic sparse training and gradient congruity inspection into federated learning framework to address these issues. Our method leverages the idea that the neurons, in which the associated gradients with conflicting directions with respect to the global model contain irrelevant or less generalized information for other clients, and could be pruned during the sparse training process. Conversely, the neurons where the associated gradients with consistent directions could be grown in a higher priority. In this way, FedSGC can greatly reduce the local computation and communication overheads while, at the same time, enhancing the generalization abilities of FL. We evaluate our method on challenging non-i.i.d settings and show that it achieves competitive accuracy with state-of-the-art FL methods across various scenarios while minimizing computation and communication costs.
☆ Potential Energy based Mixture Model for Noisy Label Learning NeurIPS 2022
Training deep neural networks (DNNs) from noisy labels is an important and challenging task. However, most existing approaches focus on the corrupted labels and ignore the importance of inherent data structure. To bridge the gap between noisy labels and data, inspired by the concept of potential energy in physics, we propose a novel Potential Energy based Mixture Model (PEMM) for noise-labels learning. We innovate a distance-based classifier with the potential energy regularization on its class centers. Embedding our proposed classifier with existing deep learning backbones, we can have robust networks with better feature representations. They can preserve intrinsic structures from the data, resulting in a superior noisy tolerance. We conducted extensive experiments to analyze the efficiency of our proposed model on several real-world datasets. Quantitative results show that it can achieve state-of-the-art performance.
comment: 36th Conference on Neural Information Processing Systems (NeurIPS 2022)
☆ Interpretable Data-driven Anomaly Detection in Industrial Processes with ExIFFI
Anomaly detection (AD) is a crucial process often required in industrial settings. Anomalies can signal underlying issues within a system, prompting further investigation. Industrial processes aim to streamline operations as much as possible, encompassing the production of the final product, making AD an essential mean to reach this goal.Conventional anomaly detection methodologies typically classify observations as either normal or anomalous without providing insight into the reasons behind these classifications.Consequently, in light of the emergence of Industry 5.0, a more desirable approach involves providing interpretable outcomes, enabling users to understand the rationale behind the results.This paper presents the first industrial application of ExIFFI, a recently developed approach focused on the production of fast and efficient explanations for the Extended Isolation Forest (EIF) Anomaly detection method. ExIFFI is tested on two publicly available industrial datasets demonstrating superior effectiveness in explanations and computational efficiency with the respect to other state-of-the-art explainable AD models.
comment: 6 pages, submitted to IEEE RTSI 2024
☆ Tabular and Deep Reinforcement Learning for Gittins Index
In the realm of multi-arm bandit problems, the Gittins index policy is known to be optimal in maximizing the expected total discounted reward obtained from pulling the Markovian arms. In most realistic scenarios however, the Markovian state transition probabilities are unknown and therefore the Gittins indices cannot be computed. One can then resort to reinforcement learning (RL) algorithms that explore the state space to learn these indices while exploiting to maximize the reward collected. In this work, we propose tabular (QGI) and Deep RL (DGN) algorithms for learning the Gittins index that are based on the retirement formulation for the multi-arm bandit problem. When compared with existing RL algorithms that learn the Gittins index, our algorithms have a lower run time, require less storage space (small Q-table size in QGI and smaller replay buffer in DGN), and illustrate better empirical convergence to the Gittins index. This makes our algorithm well suited for problems with large state spaces and is a viable alternative to existing methods. As a key application, we demonstrate the use of our algorithms in minimizing the mean flowtime in a job scheduling problem when jobs are available in batches and have an unknown service time distribution. \
☆ SynFlowNet: Towards Molecule Design with Guaranteed Synthesis Pathways ICLR 2024
Recent breakthroughs in generative modelling have led to a number of works proposing molecular generation models for drug discovery. While these models perform well at capturing drug-like motifs, they are known to often produce synthetically inaccessible molecules. This is because they are trained to compose atoms or fragments in a way that approximates the training distribution, but they are not explicitly aware of the synthesis constraints that come with making molecules in the lab. To address this issue, we introduce SynFlowNet, a GFlowNet model whose action space uses chemically validated reactions and reactants to sequentially build new molecules. We evaluate our approach using synthetic accessibility scores and an independent retrosynthesis tool. SynFlowNet consistently samples synthetically feasible molecules, while still being able to find diverse and high-utility candidates. Furthermore, we compare molecules designed with SynFlowNet to experimentally validated actives, and find that they show comparable properties of interest, such as molecular weight, SA score and predicted protein binding affinity.
comment: Presented at ICLR 2024 GEM Workshop
☆ Why Tabular Foundation Models Should Be a Research Priority ICML 2024
Recent text and image foundation models are incredibly impressive, and these models are attracting an ever-increasing portion of research resources. In this position piece we aim to shift the ML research community's priorities ever so slightly to a different modality: tabular data. Tabular data is the dominant modality in many fields, yet it is given hardly any research attention and significantly lags behind in terms of scale and power. We believe the time is now to start developing tabular foundation models, or what we coin a Large Tabular Model (LTM). LTMs could revolutionise the way science and ML use tabular data: not as single datasets that are analyzed in a vacuum, but contextualized with respect to related datasets. The potential impact is far-reaching: from few-shot tabular models to automating data science; from out-of-distribution synthetic data to empowering multidisciplinary scientific discovery. We intend to excite reflections on the modalities we study, and convince some researchers to study large tabular models.
comment: Accepted at International Conference on Machine Learning (ICML 2024)
☆ Sharp Bounds for Sequential Federated Learning on Heterogeneous Data
There are two paradigms in Federated Learning (FL): parallel FL (PFL), where models are trained in a parallel manner across clients; and sequential FL (SFL), where models are trained in a sequential manner across clients. In contrast to that of PFL, the convergence theory of SFL on heterogeneous data is still lacking. To resolve the theoretical dilemma of SFL, we establish sharp convergence guarantees for SFL on heterogeneous data with both upper and lower bounds. Specifically, we derive the upper bounds for strongly convex, general convex and non-convex objective functions, and construct the matching lower bounds for the strongly convex and general convex objective functions. Then, we compare the upper bounds of SFL with those of PFL, showing that SFL outperforms PFL (at least, when the level of heterogeneity is relatively high). Experimental results on quadratic functions and real data sets validate the counterintuitive comparison result.
comment: arXiv admin note: text overlap with arXiv:2311.03154
☆ Leveraging Procedural Generation for Learning Autonomous Peg-in-Hole Assembly in Space
The ability to autonomously assemble structures is crucial for the development of future space infrastructure. However, the unpredictable conditions of space pose significant challenges for robotic systems, necessitating the development of advanced learning techniques to enable autonomous assembly. In this study, we present a novel approach for learning autonomous peg-in-hole assembly in the context of space robotics. Our focus is on enhancing the generalization and adaptability of autonomous systems through deep reinforcement learning. By integrating procedural generation and domain randomization, we train agents in a highly parallelized simulation environment across a spectrum of diverse scenarios with the aim of acquiring a robust policy. The proposed approach is evaluated using three distinct reinforcement learning algorithms to investigate the trade-offs among various paradigms. We demonstrate the adaptability of our agents to novel scenarios and assembly sequences while emphasizing the potential of leveraging advanced simulation techniques for robot learning in space. Our findings set the stage for future advancements in intelligent robotic systems capable of supporting ambitious space missions and infrastructure development beyond Earth.
comment: Accepted for publication at the 2024 International Conference on Space Robotics (iSpaRo) | The source code is available at https://github.com/AndrejOrsula/drl_omni_peg
☆ Lipschitz constant estimation for general neural network architectures using control tools
This paper is devoted to the estimation of the Lipschitz constant of neural networks using semidefinite programming. For this purpose, we interpret neural networks as time-varying dynamical systems, where the $k$-th layer corresponds to the dynamics at time $k$. A key novelty with respect to prior work is that we use this interpretation to exploit the series interconnection structure of neural networks with a dynamic programming recursion. Nonlinearities, such as activation functions and nonlinear pooling layers, are handled with integral quadratic constraints. If the neural network contains signal processing layers (convolutional or state space model layers), we realize them as 1-D/2-D/N-D systems and exploit this structure as well. We distinguish ourselves from related work on Lipschitz constant estimation by more extensive structure exploitation (scalability) and a generalization to a large class of common neural network architectures. To show the versatility and computational advantages of our method, we apply it to different neural network architectures trained on MNIST and CIFAR-10.
☆ Investigating Self-Supervised Image Denoising with Denaturation
Self-supervised learning for image denoising problems in the presence of denaturation for noisy data is a crucial approach in machine learning. However, theoretical understanding of the performance of the approach that uses denatured data is lacking. To provide better understanding of the approach, in this paper, we analyze a self-supervised denoising algorithm that uses denatured data in depth through theoretical analysis and numerical experiments. Through the theoretical analysis, we discuss that the algorithm finds desired solutions to the optimization problem with the population risk, while the guarantee for the empirical risk depends on the hardness of the denoising task in terms of denaturation levels. We also conduct several experiments to investigate the performance of an extended algorithm in practice. The results indicate that the algorithm training with denatured images works, and the empirical performance aligns with the theoretical results. These results suggest several insights for further improvement of self-supervised image denoising that uses denatured data in future directions.
☆ Continual Imitation Learning for Prosthetic Limbs
Lower limb amputations and neuromuscular impairments severely restrict mobility, necessitating advancements beyond conventional prosthetics. Motorized bionic limbs offer promise, but their utility depends on mimicking the evolving synergy of human movement in various settings. In this context, we present a novel model for bionic prostheses' application that leverages camera-based motion capture and wearable sensor data, to learn the synergistic coupling of the lower limbs during human locomotion, empowering it to infer the kinematic behavior of a missing lower limb across varied tasks, such as climbing inclines and stairs. We propose a model that can multitask, adapt continually, anticipate movements, and refine. The core of our method lies in an approach which we call -- multitask prospective rehearsal -- that anticipates and synthesizes future movements based on the previous prediction and employs a corrective mechanism for subsequent predictions. We design an evolving architecture that merges lightweight, task-specific modules on a shared backbone, ensuring both specificity and scalability. We empirically validate our model against various baselines using real-world human gait datasets, including experiments with transtibial amputees, which encompass a broad spectrum of locomotion tasks. The results show that our approach consistently outperforms baseline models, particularly under scenarios affected by distributional shifts, adversarial perturbations, and noise.
☆ Hypergraph $p$-Laplacian regularization on point clouds for data interpolation
As a generalization of graphs, hypergraphs are widely used to model higher-order relations in data. This paper explores the benefit of the hypergraph structure for the interpolation of point cloud data that contain no explicit structural information. We define the $\varepsilon_n$-ball hypergraph and the $k_n$-nearest neighbor hypergraph on a point cloud and study the $p$-Laplacian regularization on the hypergraphs. We prove the variational consistency between the hypergraph $p$-Laplacian regularization and the continuum $p$-Laplacian regularization in a semisupervised setting when the number of points $n$ goes to infinity while the number of labeled points remains fixed. A key improvement compared to the graph case is that the results rely on weaker assumptions on the upper bound of $\varepsilon_n$ and $k_n$. To solve the convex but non-differentiable large-scale optimization problem, we utilize the stochastic primal-dual hybrid gradient algorithm. Numerical experiments on data interpolation verify that the hypergraph $p$-Laplacian regularization outperforms the graph $p$-Laplacian regularization in preventing the development of spikes at the labeled points.
comment: 33 pages
☆ Federated Learning with Heterogeneous Data Handling for Robust Vehicular Object Detection
In the pursuit of refining precise perception models for fully autonomous driving, continual online model training becomes essential. Federated Learning (FL) within vehicular networks offers an efficient mechanism for model training while preserving raw sensory data integrity. Yet, FL struggles with non-identically distributed data (e.g., quantity skew), leading to suboptimal convergence rates during model training. In previous work, we introduced FedLA, an innovative Label-Aware aggregation method addressing data heterogeneity in FL for generic scenarios. In this paper, we introduce FedProx+LA, a novel FL method building upon the state-of-the-art FedProx and FedLA to tackle data heterogeneity, which is specifically tailored for vehicular networks. We evaluate the efficacy of FedProx+LA in continuous online object detection model training. Through a comparative analysis against conventional and state-of-the-art methods, our findings reveal the superior convergence rate of FedProx+LA. Notably, if the label distribution is very heterogeneous, our FedProx+LA approach shows substantial improvements in detection performance compared to baseline methods, also outperforming our previous FedLA approach. Moreover, both FedLA and FedProx+LA increase convergence speed by 30% compared to baseline methods.
☆ Less is More: on the Over-Globalizing Problem in Graph Transformers ICML 2024
Graph Transformer, due to its global attention mechanism, has emerged as a new tool in dealing with graph-structured data. It is well recognized that the global attention mechanism considers a wider receptive field in a fully connected graph, leading many to believe that useful information can be extracted from all the nodes. In this paper, we challenge this belief: does the globalizing property always benefit Graph Transformers? We reveal the over-globalizing problem in Graph Transformer by presenting both empirical evidence and theoretical analysis, i.e., the current attention mechanism overly focuses on those distant nodes, while the near nodes, which actually contain most of the useful information, are relatively weakened. Then we propose a novel Bi-Level Global Graph Transformer with Collaborative Training (CoBFormer), including the inter-cluster and intra-cluster Transformers, to prevent the over-globalizing problem while keeping the ability to extract valuable information from distant nodes. Moreover, the collaborative training is proposed to improve the model's generalization ability with a theoretical guarantee. Extensive experiments on various graphs well validate the effectiveness of our proposed CoBFormer.
comment: Accepted by ICML 2024
☆ Multivariate trace estimation using quantum state space linear algebra
In this paper, we present a quantum algorithm for approximating multivariate traces, i.e. the traces of matrix products. Our research is motivated by the extensive utility of multivariate traces in elucidating spectral characteristics of matrices, as well as by recent advancements in leveraging quantum computing for faster numerical linear algebra. Central to our approach is a direct translation of a multivariate trace formula into a quantum circuit, achieved through a sequence of low-level circuit construction operations. To facilitate this translation, we introduce \emph{quantum Matrix States Linear Algebra} (qMSLA), a framework tailored for the efficient generation of state preparation circuits via primitive matrix algebra operations. Our algorithm relies on sets of state preparation circuits for input matrices as its primary inputs and yields two state preparation circuits encoding the multivariate trace as output. These circuits are constructed utilizing qMSLA operations, which enact the aforementioned multivariate trace formula. We emphasize that our algorithm's inputs consist solely of state preparation circuits, eschewing harder to synthesize constructs such as Block Encodings. Furthermore, our approach operates independently of the availability of specialized hardware like QRAM, underscoring its versatility and practicality.
☆ Poisoning Attacks on Federated Learning for Autonomous Driving SC
Federated Learning (FL) is a decentralized learning paradigm, enabling parties to collaboratively train models while keeping their data confidential. Within autonomous driving, it brings the potential of reducing data storage costs, reducing bandwidth requirements, and to accelerate the learning. FL is, however, susceptible to poisoning attacks. In this paper, we introduce two novel poisoning attacks on FL tailored to regression tasks within autonomous driving: FLStealth and Off-Track Attack (OTA). FLStealth, an untargeted attack, aims at providing model updates that deteriorate the global model performance while appearing benign. OTA, on the other hand, is a targeted attack with the objective to change the global model's behavior when exposed to a certain trigger. We demonstrate the effectiveness of our attacks by conducting comprehensive experiments pertaining to the task of vehicle trajectory prediction. In particular, we show that, among five different untargeted attacks, FLStealth is the most successful at bypassing the considered defenses employed by the server. For OTA, we demonstrate the inability of common defense strategies to mitigate the attack, highlighting the critical need for new defensive mechanisms against targeted attacks within FL for autonomous driving.
comment: Accepted to SCAI2024
☆ AB-Training: A Communication-Efficient Approach for Distributed Low-Rank Learning
Communication bottlenecks hinder the scalability of distributed neural network training, particularly on distributed-memory computing clusters. To significantly reduce this communication overhead, we introduce AB-training, a novel data-parallel training method that decomposes weight matrices into low-rank representations and utilizes independent group-based training. This approach consistently reduces network traffic by 50% across multiple scaling scenarios, increasing the training potential on communication-constrained systems. Our method exhibits regularization effects at smaller scales, leading to improved generalization for models like VGG16, while achieving a remarkable 44.14 : 1 compression ratio during training on CIFAR-10 and maintaining competitive accuracy. Albeit promising, our experiments reveal that large batch effects remain a challenge even in low-rank training regimes.
☆ Fair Recommendations with Limited Sensitive Attributes: A Distributionally Robust Optimization Approach
As recommender systems are indispensable in various domains such as job searching and e-commerce, providing equitable recommendations to users with different sensitive attributes becomes an imperative requirement. Prior approaches for enhancing fairness in recommender systems presume the availability of all sensitive attributes, which can be difficult to obtain due to privacy concerns or inadequate means of capturing these attributes. In practice, the efficacy of these approaches is limited, pushing us to investigate ways of promoting fairness with limited sensitive attribute information. Toward this goal, it is important to reconstruct missing sensitive attributes. Nevertheless, reconstruction errors are inevitable due to the complexity of real-world sensitive attribute reconstruction problems and legal regulations. Thus, we pursue fair learning methods that are robust to reconstruction errors. To this end, we propose Distributionally Robust Fair Optimization (DRFO), which minimizes the worst-case unfairness over all potential probability distributions of missing sensitive attributes instead of the reconstructed one to account for the impact of the reconstruction errors. We provide theoretical and empirical evidence to demonstrate that our method can effectively ensure fairness in recommender systems when only limited sensitive attributes are accessible.
comment: 8 pages, 5 figures
☆ A text-based, generative deep learning model for soil reflectance spectrum simulation in the VIS-NIR (400-2499 nm) bands
Simulating soil reflectance spectra is invaluable for soil-plant radiative modeling and training machine learning models, yet it is difficult as the intricate relationships between soil structure and its constituents. To address this, a fully data-driven soil optics generative model (SOGM) for simulation of soil reflectance spectra based on soil property inputs was developed. The model is trained on an extensive dataset comprising nearly 180,000 soil spectra-property pairs from 17 datasets. It generates soil reflectance spectra from text-based inputs describing soil properties and their values rather than only numerical values and labels in binary vector format. The generative model can simulate output spectra based on an incomplete set of input properties. SOGM is based on the denoising diffusion probabilistic model (DDPM). Two additional sub-models were also built to complement the SOGM: a spectral padding model that can fill in the gaps for spectra shorter than the full visible-near-infrared range (VIS-NIR; 400 to 2499 nm), and a wet soil spectra model that can estimate the effects of water content on soil reflectance spectra given the dry spectrum predicted by the SOGM. The SOGM was up-scaled by coupling with the Helios 3D plant modeling software, which allowed for generation of synthetic aerial images of simulated soil and plant scenes. It can also be easily integrated with soil-plant radiation model used for remote sensin research like PROSAIL. The testing results of the SOGM on new datasets that not included in model training proved that the model can generate reasonable soil reflectance spectra based on available property inputs. The presented models are openly accessible on: https://github.com/GEMINI-Breeding/SOGM_soil_spectra_simulation.
comment: The paper has been submitted to Remote sensing of Environment and revised
☆ Leverage Multi-source Traffic Demand Data Fusion with Transformer Model for Urban Parking Prediction SC 2024
The escalation in urban private car ownership has worsened the urban parking predicament, necessitating effective parking availability prediction for urban planning and management. However, the existing prediction methods suffer from low prediction accuracy with the lack of spatial-temporal correlation features related to parking volume, and neglect of flow patterns and correlations between similar parking lots within certain areas. To address these challenges, this study proposes a parking availability prediction framework integrating spatial-temporal deep learning with multi-source data fusion, encompassing traffic demand data from multiple sources (e.g., metro, bus, taxi services), and parking lot data. The framework is based on the Transformer as the spatial-temporal deep learning model and leverages K-means clustering to establish parking cluster zones, extracting and integrating traffic demand characteristics from various transportation modes (i.e., metro, bus, online ride-hailing, and taxi) connected to parking lots. Real-world empirical data was used to verify the effectiveness of the proposed method compared with different machine learning, deep learning, and traditional statistical models for predicting parking availability. Experimental results reveal that, with the proposed pipeline, the developed Transformer model outperforms other models in terms of various metrics, e.g., Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). By fusing multi-source demanding data with spatial-temporal deep learning techniques, this approach offers the potential to develop parking availability prediction systems that furnish more accurate and timely information to both drivers and urban planners, thereby fostering more efficient and sustainable urban mobility.
comment: 7 pages, 5 figures, under review by the 27th IEEE International Conference on Intelligent Transportation Systems (IEEE ITSC 2024)
☆ Continual Learning for Robust Gate Detection under Dynamic Lighting in Autonomous Drone Racing IJCNN
In autonomous and mobile robotics, a principal challenge is resilient real-time environmental perception, particularly in situations characterized by unknown and dynamic elements, as exemplified in the context of autonomous drone racing. This study introduces a perception technique for detecting drone racing gates under illumination variations, which is common during high-speed drone flights. The proposed technique relies upon a lightweight neural network backbone augmented with capabilities for continual learning. The envisaged approach amalgamates predictions of the gates' positional coordinates, distance, and orientation, encapsulating them into a cohesive pose tuple. A comprehensive number of tests serve to underscore the efficacy of this approach in confronting diverse and challenging scenarios, specifically those involving variable lighting conditions. The proposed methodology exhibits notable robustness in the face of illumination variations, thereby substantiating its effectiveness.
comment: 8 pages, 6 figures, in 2024 International Joint Conference on Neural Networks (IJCNN)
☆ Explicitly Modeling Generality into Self-Supervised Learning
The goal of generality in machine learning is to achieve excellent performance on various unseen tasks and domains. Recently, self-supervised learning (SSL) has been regarded as an effective method to achieve this goal. It can learn high-quality representations from unlabeled data and achieve promising empirical performance on multiple downstream tasks. Existing SSL methods mainly constrain generality from two aspects: (i) large-scale training data, and (ii) learning task-level shared knowledge. However, these methods lack explicit modeling of the SSL generality in the learning objective, and the theoretical understanding of SSL's generality remains limited. This may cause SSL models to overfit in data-scarce situations and generalize poorly in the real world, making it difficult to achieve true generality. To address these issues, we provide a theoretical definition of generality in SSL and define a $\sigma$-measurement to help quantify it. Based on this insight, we explicitly model generality into self-supervised learning and further propose a novel SSL framework, called GeSSL. It introduces a self-motivated target based on $\sigma$-measurement, which enables the model to find the optimal update direction towards generality. Extensive theoretical and empirical evaluations demonstrate the superior performance of the proposed GeSSL.
comment: 28 pages
☆ Polynomial Chaos Expanded Gaussian Process
In complex and unknown processes, global models are initially generated over the entire experimental space, but they often fail to provide accurate predictions in local areas. Recognizing this limitation, this study addresses the need for models that effectively represent both global and local experimental spaces. It introduces a novel machine learning (ML) approach: Polynomial Chaos Expanded Gaussian Process (PCEGP), leveraging polynomial chaos expansion (PCE) to calculate input-dependent hyperparameters of the Gaussian process (GP). This approach provides a mathematically interpretable method that incorporates non-stationary covariance functions and heteroscedastic noise estimation to generate locally adapted models. The model performance is compared to different algorithms in benchmark tests for regression tasks. The results demonstrate low prediction errors of the PCEGP in these benchmark applications, highlighting model performance that is often competitive with or superior to previous methods. A key advantage of the presented model is the transparency and traceability in the calculation of hyperparameters and model predictions.
comment: Manuscript: 20 pages, 4 figures, 7 tables
☆ Efficient and Flexible Method for Reducing Moderate-size Deep Neural Networks with Condensation
Neural networks have been extensively applied to a variety of tasks, achieving astounding results. Applying neural networks in the scientific field is an important research direction that is gaining increasing attention. In scientific applications, the scale of neural networks is generally moderate-size, mainly to ensure the speed of inference during application. Additionally, comparing neural networks to traditional algorithms in scientific applications is inevitable. These applications often require rapid computations, making the reduction of neural network sizes increasingly important. Existing work has found that the powerful capabilities of neural networks are primarily due to their non-linearity. Theoretical work has discovered that under strong non-linearity, neurons in the same layer tend to behave similarly, a phenomenon known as condensation. Condensation offers an opportunity to reduce the scale of neural networks to a smaller subnetwork with similar performance. In this article, we propose a condensation reduction algorithm to verify the feasibility of this idea in practical problems. Our reduction method can currently be applied to both fully connected networks and convolutional networks, achieving positive results. In complex combustion acceleration tasks, we reduced the size of the neural network to 41.7% of its original scale while maintaining prediction accuracy. In the CIFAR10 image classification task, we reduced the network size to 11.5% of the original scale, still maintaining a satisfactory validation accuracy. Our method can be applied to most trained neural networks, reducing computational pressure and improving inference speed.
☆ LOQA: Learning with Opponent Q-Learning Awareness ICLR
In various real-world scenarios, interactions among agents often resemble the dynamics of general-sum games, where each agent strives to optimize its own utility. Despite the ubiquitous relevance of such settings, decentralized machine learning algorithms have struggled to find equilibria that maximize individual utility while preserving social welfare. In this paper we introduce Learning with Opponent Q-Learning Awareness (LOQA), a novel, decentralized reinforcement learning algorithm tailored to optimizing an agent's individual utility while fostering cooperation among adversaries in partially competitive environments. LOQA assumes the opponent samples actions proportionally to their action-value function Q. Experimental results demonstrate the effectiveness of LOQA at achieving state-of-the-art performance in benchmark scenarios such as the Iterated Prisoner's Dilemma and the Coin Game. LOQA achieves these outcomes with a significantly reduced computational footprint, making it a promising approach for practical multi-agent applications.
comment: accepted to ICLR but still not in proceedings https://openreview.net/forum?id=FDQF6A1s6M
☆ CrossMPT: Cross-attention Message-Passing Transformer for Error Correcting Codes
Error correcting codes~(ECCs) are indispensable for reliable transmission in communication systems. The recent advancements in deep learning have catalyzed the exploration of ECC decoders based on neural networks. Among these, transformer-based neural decoders have achieved state-of-the-art decoding performance. In this paper, we propose a novel Cross-attention Message-Passing Transformer~(CrossMPT). CrossMPT iteratively updates two types of input vectors (i.e., magnitude and syndrome vectors) using two masked cross-attention blocks. The mask matrices in these cross-attention blocks are determined by the code's parity-check matrix that delineates the relationship between magnitude and syndrome vectors. Our experimental results show that CrossMPT significantly outperforms existing neural network-based decoders, particularly in decoding low-density parity-check codes. Notably, CrossMPT also achieves a significant reduction in computational complexity, achieving over a 50\% decrease in its attention layers compared to the original transformer-based decoder, while retaining the computational complexity of the remaining layers.
comment: 13 pages
☆ The Privacy Power of Correlated Noise in Decentralized Learning ICML 2024
Decentralized learning is appealing as it enables the scalable usage of large amounts of distributed data and resources (without resorting to any central entity), while promoting privacy since every user minimizes the direct exposure of their data. Yet, without additional precautions, curious users can still leverage models obtained from their peers to violate privacy. In this paper, we propose Decor, a variant of decentralized SGD with differential privacy (DP) guarantees. Essentially, in Decor, users securely exchange randomness seeds in one communication round to generate pairwise-canceling correlated Gaussian noises, which are injected to protect local models at every communication round. We theoretically and empirically show that, for arbitrary connected graphs, Decor matches the central DP optimal privacy-utility trade-off. We do so under SecLDP, our new relaxation of local DP, which protects all user communications against an external eavesdropper and curious users, assuming that every pair of connected users shares a secret, i.e., an information hidden to all others. The main theoretical challenge is to control the accumulation of non-canceling correlated noise due to network sparsity. We also propose a companion SecLDP privacy accountant for public use.
comment: Accepted as conference paper at ICML 2024
☆ MVMoE: Multi-Task Vehicle Routing Solver with Mixture-of-Experts ICML 2024
Learning to solve vehicle routing problems (VRPs) has garnered much attention. However, most neural solvers are only structured and trained independently on a specific problem, making them less generic and practical. In this paper, we aim to develop a unified neural solver that can cope with a range of VRP variants simultaneously. Specifically, we propose a multi-task vehicle routing solver with mixture-of-experts (MVMoE), which greatly enhances the model capacity without a proportional increase in computation. We further develop a hierarchical gating mechanism for the MVMoE, delivering a good trade-off between empirical performance and computational complexity. Experimentally, our method significantly promotes the zero-shot generalization performance on 10 unseen VRP variants, and showcases decent results on the few-shot setting and real-world benchmark instances. We further provide extensive studies on the effect of MoE configurations in solving VRPs. Surprisingly, the hierarchical gating can achieve much better out-of-distribution generalization performance. The source code is available at: https://github.com/RoyalSkye/Routing-MVMoE.
comment: Accepted at ICML 2024
☆ Network reconstruction via the minimum description length principle
A fundamental problem associated with the task of network reconstruction from dynamical or behavioral data consists in determining the most appropriate model complexity in a manner that prevents overfitting, and produces an inferred network with a statistically justifiable number of edges. The status quo in this context is based on $L_{1}$ regularization combined with cross-validation. As we demonstrate, besides its high computational cost, this commonplace approach unnecessarily ties the promotion of sparsity with weight "shrinkage". This combination forces a trade-off between the bias introduced by shrinkage and the network sparsity, which often results in substantial overfitting even after cross-validation. In this work, we propose an alternative nonparametric regularization scheme based on hierarchical Bayesian inference and weight quantization, which does not rely on weight shrinkage to promote sparsity. Our approach follows the minimum description length (MDL) principle, and uncovers the weight distribution that allows for the most compression of the data, thus avoiding overfitting without requiring cross-validation. The latter property renders our approach substantially faster to employ, as it requires a single fit to the complete data. As a result, we have a principled and efficient inference scheme that can be used with a large variety of generative models, without requiring the number of edges to be known in advance. We also demonstrate that our scheme yields systematically increased accuracy in the reconstruction of both artificial and empirical networks. We highlight the use of our method with the reconstruction of interaction networks between microbial communities from large-scale abundance samples involving in the order of $10^{4}$ to $10^{5}$ species, and demonstrate how the inferred model can be used to predict the outcome of interventions in the system.
comment: 17 pages, 10 figures
☆ Non-clairvoyant Scheduling with Partial Predictions
The non-clairvoyant scheduling problem has gained new interest within learning-augmented algorithms, where the decision-maker is equipped with predictions without any quality guarantees. In practical settings, access to predictions may be reduced to specific instances, due to cost or data limitations. Our investigation focuses on scenarios where predictions for only $B$ job sizes out of $n$ are available to the algorithm. We first establish near-optimal lower bounds and algorithms in the case of perfect predictions. Subsequently, we present a learning-augmented algorithm satisfying the robustness, consistency, and smoothness criteria, and revealing a novel tradeoff between consistency and smoothness inherent in the scenario with a restricted number of predictions.
☆ Efficient and Adaptive Posterior Sampling Algorithms for Bandits
We study Thompson Sampling-based algorithms for stochastic bandits with bounded rewards. As the existing problem-dependent regret bound for Thompson Sampling with Gaussian priors [Agrawal and Goyal, 2017] is vacuous when $T \le 288 e^{64}$, we derive a more practical bound that tightens the coefficient of the leading term %from $288 e^{64}$ to $1270$. Additionally, motivated by large-scale real-world applications that require scalability, adaptive computational resource allocation, and a balance in utility and computation, we propose two parameterized Thompson Sampling-based algorithms: Thompson Sampling with Model Aggregation (TS-MA-$\alpha$) and Thompson Sampling with Timestamp Duelling (TS-TD-$\alpha$), where $\alpha \in [0,1]$ controls the trade-off between utility and computation. Both algorithms achieve $O \left(K\ln^{\alpha+1}(T)/\Delta \right)$ regret bound, where $K$ is the number of arms, $T$ is the finite learning horizon, and $\Delta$ denotes the single round performance loss when pulling a sub-optimal arm.
☆ Tackling Graph Oversquashing by Global and Local Non-Dissipativity
A common problem in Message-Passing Neural Networks is oversquashing -- the limited ability to facilitate effective information flow between distant nodes. Oversquashing is attributed to the exponential decay in information transmission as node distances increase. This paper introduces a novel perspective to address oversquashing, leveraging properties of global and local non-dissipativity, that enable the maintenance of a constant information flow rate. Namely, we present SWAN, a uniquely parameterized model GNN with antisymmetry both in space and weight domains, as a means to obtain non-dissipativity. Our theoretical analysis asserts that by achieving these properties, SWAN offers an enhanced ability to transmit information over extended distances. Empirical evaluations on synthetic and real-world benchmarks that emphasize long-range interactions validate the theoretical understanding of SWAN, and its ability to mitigate oversquashing.
☆ Deep Learning Models in Speech Recognition: Measuring GPU Energy Consumption, Impact of Noise and Model Quantization for Edge Deployment
Recent transformer-based ASR models have achieved word-error rates (WER) below 4%, surpassing human annotator accuracy, yet they demand extensive server resources, contributing to significant carbon footprints. The traditional server-based architecture of ASR also presents privacy concerns, alongside reliability and latency issues due to network dependencies. In contrast, on-device (edge) ASR enhances privacy, boosts performance, and promotes sustainability by effectively balancing energy use and accuracy for specific applications. This study examines the effects of quantization, memory demands, and energy consumption on the performance of various ASR model inference on the NVIDIA Jetson Orin Nano. By analyzing WER and transcription speed across models using FP32, FP16, and INT8 quantization on clean and noisy datasets, we highlight the crucial trade-offs between accuracy, speeds, quantization, energy efficiency, and memory needs. We found that changing precision from fp32 to fp16 halves the energy consumption for audio transcription across different models, with minimal performance degradation. A larger model size and number of parameters neither guarantees better resilience to noise, nor predicts the energy consumption for a given transcription load. These, along with several other findings offer novel insights for optimizing ASR systems within energy- and memory-limited environments, crucial for the development of efficient on-device ASR solutions. The code and input data needed to reproduce the results in this article are open sourced are available on [https://github.com/zzadiues3338/ASR-energy-jetson].
☆ Spider: A Unified Framework for Context-dependent Concept Understanding ICML 2024
Different from the context-independent (CI) concepts such as human, car, and airplane, context-dependent (CD) concepts require higher visual understanding ability, such as camouflaged object and medical lesion. Despite the rapid advance of many CD understanding tasks in respective branches, the isolated evolution leads to their limited cross-domain generalisation and repetitive technique innovation. Since there is a strong coupling relationship between foreground and background context in CD tasks, existing methods require to train separate models in their focused domains. This restricts their real-world CD concept understanding towards artificial general intelligence (AGI). We propose a unified model with a single set of parameters, Spider, which only needs to be trained once. With the help of the proposed concept filter driven by the image-mask group prompt, Spider is able to understand and distinguish diverse strong context-dependent concepts to accurately capture the Prompter's intention. Without bells and whistles, Spider significantly outperforms the state-of-the-art specialized models in 8 different context-dependent segmentation tasks, including 4 natural scenes (salient, camouflaged, and transparent objects and shadow) and 4 medical lesions (COVID-19, polyp, breast, and skin lesion with color colonoscopy, CT, ultrasound, and dermoscopy modalities). Besides, Spider shows obvious advantages in continuous learning. It can easily complete the training of new tasks by fine-tuning parameters less than 1\% and bring a tolerable performance degradation of less than 5\% for all old tasks. The source code will be publicly available at \href{https://github.com/Xiaoqi-Zhao-DLUT/Spider-UniCDSeg}{Spider-UniCDSeg}.
comment: Accepted by ICML 2024
☆ Estimate the building height at a 10-meter resolution based on Sentinel data
Building height is an important indicator for scientific research and practical application. However, building height products with a high spatial resolution (10m) are still very scarce. To meet the needs of high-resolution building height estimation models, this study established a set of spatial-spectral-temporal feature databases, combining SAR data provided by Sentinel-1, optical data provided by Sentinel-2, and shape data provided by building footprints. The statistical indicators on the time scale are extracted to form a rich database of 160 features. This study combined with permutation feature importance, Shapley Additive Explanations, and Random Forest variable importance, and the final stable features are obtained through an expert scoring system. This study took 12 large, medium, and small cities in the United States as the training data. It used moving windows to aggregate the pixels to solve the impact of SAR image displacement and building shadows. This study built a building height model based on a random forest model and compared three model ensemble methods of bagging, boosting, and stacking. To evaluate the accuracy of the prediction results, this study collected Lidar data in the test area, and the evaluation results showed that its R-Square reached 0.78, which can prove that the building height can be obtained effectively. The fast production of high-resolution building height data can support large-scale scientific research and application in many fields.
☆ Context-Aware Clustering using Large Language Models
Despite the remarkable success of Large Language Models (LLMs) in text understanding and generation, their potential for text clustering tasks remains underexplored. We observed that powerful closed-source LLMs provide good quality clusterings of entity sets but are not scalable due to the massive compute power required and the associated costs. Thus, we propose CACTUS (Context-Aware ClusTering with aUgmented triplet losS), a systematic approach that leverages open-source LLMs for efficient and effective supervised clustering of entity subsets, particularly focusing on text-based entities. Existing text clustering methods fail to effectively capture the context provided by the entity subset. Moreover, though there are several language modeling based approaches for clustering, very few are designed for the task of supervised clustering. This paper introduces a novel approach towards clustering entity subsets using LLMs by capturing context via a scalable inter-entity attention mechanism. We propose a novel augmented triplet loss function tailored for supervised clustering, which addresses the inherent challenges of directly applying the triplet loss to this problem. Furthermore, we introduce a self-supervised clustering task based on text augmentation techniques to improve the generalization of our model. For evaluation, we collect ground truth clusterings from a closed-source LLM and transfer this knowledge to an open-source LLM under the supervised clustering framework, allowing a faster and cheaper open-source model to perform the same task. Experiments on various e-commerce query and product clustering datasets demonstrate that our proposed approach significantly outperforms existing unsupervised and supervised baselines under various external clustering evaluation metrics.
comment: 16 pages
♻ ☆ Diffusive Gibbs Sampling ICML 2024
The inadequate mixing of conventional Markov Chain Monte Carlo (MCMC) methods for multi-modal distributions presents a significant challenge in practical applications such as Bayesian inference and molecular dynamics. Addressing this, we propose Diffusive Gibbs Sampling (DiGS), an innovative family of sampling methods designed for effective sampling from distributions characterized by distant and disconnected modes. DiGS integrates recent developments in diffusion models, leveraging Gaussian convolution to create an auxiliary noisy distribution that bridges isolated modes in the original space and applying Gibbs sampling to alternately draw samples from both spaces. A novel Metropolis-within-Gibbs scheme is proposed to enhance mixing in the denoising sampling step. DiGS exhibits a better mixing property for sampling multi-modal distributions than state-of-the-art methods such as parallel tempering, attaining substantially improved performance across various tasks, including mixtures of Gaussians, Bayesian neural networks and molecular dynamics.
comment: Accepted for publication at ICML 2024. Code available: https://github.com/Wenlin-Chen/DiGS
♻ ☆ Large language models can accurately predict searcher preferences
Relevance labels, which indicate whether a search result is valuable to a searcher, are key to evaluating and optimising search systems. The best way to capture the true preferences of users is to ask them for their careful feedback on which results would be useful, but this approach does not scale to produce a large number of labels. Getting relevance labels at scale is usually done with third-party labellers, who judge on behalf of the user, but there is a risk of low-quality data if the labeller doesn't understand user needs. To improve quality, one standard approach is to study real users through interviews, user studies and direct feedback, find areas where labels are systematically disagreeing with users, then educate labellers about user needs through judging guidelines, training and monitoring. This paper introduces an alternate approach for improving label quality. It takes careful feedback from real users, which by definition is the highest-quality first-party gold data that can be derived, and develops an large language model prompt that agrees with that data. We present ideas and observations from deploying language models for large-scale relevance labelling at Bing, and illustrate with data from TREC. We have found large language models can be effective, with accuracy as good as human labellers and similar capability to pick the hardest queries, best runs, and best groups. Systematic changes to the prompts make a difference in accuracy, but so too do simple paraphrases. To measure agreement with real searchers needs high-quality ``gold'' labels, but with these we find that models produce better labels than third-party workers, for a fraction of the cost, and these labels let us train notably better rankers.
♻ ☆ Towards Real-time Learning in Large Language Models: A Critical Review
Real-time learning concerns the ability of learning systems to acquire knowledge over time, enabling their adaptation and generalization to novel tasks. It is a critical ability for intelligent, real-world systems, especially when data may be insufficient or difficult to obtain. This review provides a comprehensive analysis of real-time learning in Large Language Models. It synthesizes the state-of-the-art real-time learning paradigms, including continual learning, meta-learning, parameter-efficient learning, and mixture-of-experts learning. We demonstrate their utility for real-time learning by describing specific achievements from these related topics and their critical factors. Finally, the paper highlights current problems and challenges for future research in the field. By consolidating the latest relevant research developments, this review offers a comprehensive understanding of real-time learning and its implications for designing and developing LLM-based learning systems addressing real-world problems.
♻ ☆ Continual Diffusion: Continual Customization of Text-to-Image Diffusion with C-LoRA
Recent works demonstrate a remarkable ability to customize text-to-image diffusion models while only providing a few example images. What happens if you try to customize such models using multiple, fine-grained concepts in a sequential (i.e., continual) manner? In our work, we show that recent state-of-the-art customization of text-to-image models suffer from catastrophic forgetting when new concepts arrive sequentially. Specifically, when adding a new concept, the ability to generate high quality images of past, similar concepts degrade. To circumvent this forgetting, we propose a new method, C-LoRA, composed of a continually self-regularized low-rank adaptation in cross attention layers of the popular Stable Diffusion model. Furthermore, we use customization prompts which do not include the word of the customized object (i.e., "person" for a human face dataset) and are initialized as completely random embeddings. Importantly, our method induces only marginal additional parameter costs and requires no storage of user data for replay. We show that C-LoRA not only outperforms several baselines for our proposed setting of text-to-image continual customization, which we refer to as Continual Diffusion, but that we achieve a new state-of-the-art in the well-established rehearsal-free continual learning setting for image classification. The high achieving performance of C-LoRA in two separate domains positions it as a compelling solution for a wide range of applications, and we believe it has significant potential for practical impact. Project page: https://jamessealesmith.github.io/continual-diffusion/
comment: Transactions on Machine Learning Research (TMLR) 2024
♻ ☆ Fourier Neural Operator with Learned Deformations for PDEs on General Geometries
Deep learning surrogate models have shown promise in solving partial differential equations (PDEs). Among them, the Fourier neural operator (FNO) achieves good accuracy, and is significantly faster compared to numerical solvers, on a variety of PDEs, such as fluid flows. However, the FNO uses the Fast Fourier transform (FFT), which is limited to rectangular domains with uniform grids. In this work, we propose a new framework, viz., geo-FNO, to solve PDEs on arbitrary geometries. Geo-FNO learns to deform the input (physical) domain, which may be irregular, into a latent space with a uniform grid. The FNO model with the FFT is applied in the latent space. The resulting geo-FNO model has both the computation efficiency of FFT and the flexibility of handling arbitrary geometries. Our geo-FNO is also flexible in terms of its input formats, viz., point clouds, meshes, and design parameters are all valid inputs. We consider a variety of PDEs such as the Elasticity, Plasticity, Euler's, and Navier-Stokes equations, and both forward modeling and inverse design problems. Geo-FNO is $10^5$ times faster than the standard numerical solvers and twice more accurate compared to direct interpolation on existing ML-based PDE solvers such as the standard FNO.
♻ ☆ BrainSCUBA: Fine-Grained Natural Language Captions of Visual Cortex Selectivity ICLR 2024
Understanding the functional organization of higher visual cortex is a central focus in neuroscience. Past studies have primarily mapped the visual and semantic selectivity of neural populations using hand-selected stimuli, which may potentially bias results towards pre-existing hypotheses of visual cortex functionality. Moving beyond conventional approaches, we introduce a data-driven method that generates natural language descriptions for images predicted to maximally activate individual voxels of interest. Our method -- Semantic Captioning Using Brain Alignments ("BrainSCUBA") -- builds upon the rich embedding space learned by a contrastive vision-language model and utilizes a pre-trained large language model to generate interpretable captions. We validate our method through fine-grained voxel-level captioning across higher-order visual regions. We further perform text-conditioned image synthesis with the captions, and show that our images are semantically coherent and yield high predicted activations. Finally, to demonstrate how our method enables scientific discovery, we perform exploratory investigations on the distribution of "person" representations in the brain, and discover fine-grained semantic selectivity in body-selective areas. Unlike earlier studies that decode text, our method derives voxel-wise captions of semantic selectivity. Our results show that BrainSCUBA is a promising means for understanding functional preferences in the brain, and provides motivation for further hypothesis-driven investigation of visual cortex.
comment: ICLR 2024. Project page: https://www.cs.cmu.edu/~afluo/BrainSCUBA
♻ ☆ Learning finitely correlated states: stability of the spectral reconstruction
We show that marginals of blocks of $t$ systems of any finitely correlated translation invariant state on a chain can be learned, in trace distance, with $O(t^2)$ copies -- with an explicit dependence on local dimension, memory dimension and spectral properties of a certain map constructed from the state -- and computational complexity polynomial in $t$. The algorithm requires only the estimation of a marginal of a controlled size, in the worst case bounded by the minimum bond dimension, from which it reconstructs a translation invariant matrix product operator. In the analysis, a central role is played by the theory of operator systems. A refined error bound can be proven for $C^*$-finitely correlated states, which have an operational interpretation in terms of sequential quantum channels applied to the memory system. We can also obtain an analogous error bound for a class of matrix product density operators reconstructible by local marginals. In this case, a linear number of marginals must be estimated, obtaining a sample complexity of $\tilde{O}(t^3)$. The learning algorithm also works for states that are only close to a finitely correlated state, with the potential of providing competitive algorithms for other interesting families of states.
comment: 27+7 pages, 6 figures. Typos corrected, improved presentation
♻ ☆ A Careful Examination of Large Language Model Performance on Grade School Arithmetic
Large language models (LLMs) have achieved impressive success on many benchmarks for mathematical reasoning. However, there is growing concern that some of this performance actually reflects dataset contamination, where data closely resembling benchmark questions leaks into the training data, instead of true reasoning ability. To investigate this claim rigorously, we commission Grade School Math 1000 (GSM1k). GSM1k is designed to mirror the style and complexity of the established GSM8k benchmark, the gold standard for measuring elementary mathematical reasoning. We ensure that the two benchmarks are comparable across important metrics such as human solve rates, number of steps in solution, answer magnitude, and more. When evaluating leading open- and closed-source LLMs on GSM1k, we observe accuracy drops of up to 13%, with several families of models (e.g., Phi and Mistral) showing evidence of systematic overfitting across almost all model sizes. At the same time, many models, especially those on the frontier, (e.g., Gemini/GPT/Claude) show minimal signs of overfitting. Further analysis suggests a positive relationship (Spearman's r^2=0.32) between a model's probability of generating an example from GSM8k and its performance gap between GSM8k and GSM1k, suggesting that many models may have partially memorized GSM8k.
♻ ☆ Fewer Truncations Improve Language Modeling ICML 2024
In large language model training, input documents are typically concatenated together and then split into sequences of equal length to avoid padding tokens. Despite its efficiency, the concatenation approach compromises data integrity -- it inevitably breaks many documents into incomplete pieces, leading to excessive truncations that hinder the model from learning to compose logically coherent and factually consistent content that is grounded on the complete context. To address the issue, we propose Best-fit Packing, a scalable and efficient method that packs documents into training sequences through length-aware combinatorial optimization. Our method completely eliminates unnecessary truncations while retaining the same training efficiency as concatenation. Empirical results from both text and code pre-training show that our method achieves superior performance (e.g., relatively +4.7% on reading comprehension; +16.8% in context following; and +9.2% on program synthesis), and reduces closed-domain hallucination effectively by up to 58.3%.
comment: ICML 2024
♻ ☆ Transfer Learning in Robotics: An Upcoming Breakthrough? A Review of Promises and Challenges
Transfer learning is a conceptually-enticing paradigm in pursuit of truly intelligent embodied agents. The core concept -- reusing prior knowledge to learn in and from novel situations -- is successfully leveraged by humans to handle novel situations. In recent years, transfer learning has received renewed interest from the community from different perspectives, including imitation learning, domain adaptation, and transfer of experience from simulation to the real world, among others. In this paper, we unify the concept of transfer learning in robotics and provide the first taxonomy of its kind considering the key concepts of robot, task, and environment. Through a review of the promises and challenges in the field, we identify the need of transferring at different abstraction levels, the need of quantifying the transfer gap and the quality of transfer, as well as the dangers of negative transfer. Via this position paper, we hope to channel the effort of the community towards the most significant roadblocks to realize the full potential of transfer learning in robotics.
comment: 21 pages, 7 figures
♻ ☆ Chronos: Learning the Language of Time Series
We introduce Chronos, a simple yet effective framework for pretrained probabilistic time series models. Chronos tokenizes time series values using scaling and quantization into a fixed vocabulary and trains existing transformer-based language model architectures on these tokenized time series via the cross-entropy loss. We pretrained Chronos models based on the T5 family (ranging from 20M to 710M parameters) on a large collection of publicly available datasets, complemented by a synthetic dataset that we generated via Gaussian processes to improve generalization. In a comprehensive benchmark consisting of 42 datasets, and comprising both classical local models and deep learning methods, we show that Chronos models: (a) significantly outperform other methods on datasets that were part of the training corpus; and (b) have comparable and occasionally superior zero-shot performance on new datasets, relative to methods that were trained specifically on them. Our results demonstrate that Chronos models can leverage time series data from diverse domains to improve zero-shot accuracy on unseen forecasting tasks, positioning pretrained models as a viable tool to greatly simplify forecasting pipelines.
comment: Code and model checkpoints available at https://github.com/amazon-science/chronos-forecasting
♻ ☆ CPLLM: Clinical Prediction with Large Language Models
We present Clinical Prediction with Large Language Models (CPLLM), a method that involves fine-tuning a pre-trained Large Language Model (LLM) for clinical disease and readmission prediction. We utilized quantization and fine-tuned the LLM using prompts. For diagnosis prediction, we predict whether patients will be diagnosed with a target disease during their next visit or in the subsequent diagnosis, leveraging their historical diagnosis records. We compared our results to various baselines, including RETAIN, and Med-BERT, the current state-of-the-art model for disease prediction using temporal structured EHR data. In addition, We also evaluated CPLLM for patient hospital readmission prediction and compared our method's performance with benchmark baselines. Our experiments have shown that our proposed method, CPLLM, surpasses all the tested models in terms of PR-AUC and ROC-AUC metrics, showing state-of-the-art results for diagnosis prediction and patient hospital readmission prediction. Such a method can be easily implemented and integrated into the clinical process to help care providers estimate the next steps of patients
comment: v2
♻ ☆ Conformal online model aggregation
Conformal prediction equips machine learning models with a reasonable notion of uncertainty quantification without making strong distributional assumptions. It wraps around any black-box prediction model and converts point predictions into set predictions that have a predefined marginal coverage guarantee. However, conformal prediction only works if we fix the underlying machine learning model in advance. A relatively unaddressed issue in conformal prediction is that of model selection and/or aggregation: for a given problem, which of the plethora of prediction methods (random forests, neural nets, regularized linear models, etc.) should we conformalize? This paper proposes a new approach towards conformal model aggregation in online settings that is based on combining the prediction sets from several algorithms by voting, where weights on the models are adapted over time based on past performance.
comment: 22 pages, 12 figures. arXiv admin note: text overlap with arXiv:2401.09379
♻ ☆ Disentangled Representation Learning
Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, and data mining. In this article, we comprehensively investigate DRL from various aspects including motivations, definitions, methodologies, evaluations, applications, and model designs. We first present two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition for disentangled representation learning. We further categorize the methodologies for DRL into four groups from the following perspectives, the model type, representation structure, supervision signal, and independence assumption. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.
comment: 29 pages, 12 Figures, 4 Tables
♻ ☆ Sparse is Enough in Fine-tuning Pre-trained Large Language Models ICML 2024
With the prevalence of pre-training-fine-tuning paradigm, how to efficiently adapt the pre-trained model to the downstream tasks has been an intriguing issue. Parameter-Efficient Fine-Tuning (PEFT) methods have been proposed for low-cost adaptation. Although PEFT has demonstrated effectiveness and been widely applied, the underlying principles are still unclear. In this paper, we adopt the PAC-Bayesian generalization error bound, viewing pre-training as a shift of prior distribution which leads to a tighter bound for generalization error. We validate this shift from the perspectives of oscillations in the loss landscape and the quasi-sparsity in gradient distribution. Based on this, we propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT), and validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning. The code is accessible at https://github.com/song-wx/SIFT/.
comment: Accepted at ICML 2024
♻ ☆ KAN: Kolmogorov-Arnold Networks
Inspired by the Kolmogorov-Arnold representation theorem, we propose Kolmogorov-Arnold Networks (KANs) as promising alternatives to Multi-Layer Perceptrons (MLPs). While MLPs have fixed activation functions on nodes ("neurons"), KANs have learnable activation functions on edges ("weights"). KANs have no linear weights at all -- every weight parameter is replaced by a univariate function parametrized as a spline. We show that this seemingly simple change makes KANs outperform MLPs in terms of accuracy and interpretability. For accuracy, much smaller KANs can achieve comparable or better accuracy than much larger MLPs in data fitting and PDE solving. Theoretically and empirically, KANs possess faster neural scaling laws than MLPs. For interpretability, KANs can be intuitively visualized and can easily interact with human users. Through two examples in mathematics and physics, KANs are shown to be useful collaborators helping scientists (re)discover mathematical and physical laws. In summary, KANs are promising alternatives for MLPs, opening opportunities for further improving today's deep learning models which rely heavily on MLPs.
comment: 48 pages, 20 figures. Codes are available at https://github.com/KindXiaoming/pykan
♻ ☆ TAX-Pose: Task-Specific Cross-Pose Estimation for Robot Manipulation
How do we imbue robots with the ability to efficiently manipulate unseen objects and transfer relevant skills based on demonstrations? End-to-end learning methods often fail to generalize to novel objects or unseen configurations. Instead, we focus on the task-specific pose relationship between relevant parts of interacting objects. We conjecture that this relationship is a generalizable notion of a manipulation task that can transfer to new objects in the same category; examples include the relationship between the pose of a pan relative to an oven or the pose of a mug relative to a mug rack. We call this task-specific pose relationship "cross-pose" and provide a mathematical definition of this concept. We propose a vision-based system that learns to estimate the cross-pose between two objects for a given manipulation task using learned cross-object correspondences. The estimated cross-pose is then used to guide a downstream motion planner to manipulate the objects into the desired pose relationship (placing a pan into the oven or the mug onto the mug rack). We demonstrate our method's capability to generalize to unseen objects, in some cases after training on only 10 demonstrations in the real world. Results show that our system achieves state-of-the-art performance in both simulated and real-world experiments across a number of tasks. Supplementary information and videos can be found at https://sites.google.com/view/tax-pose/home.
comment: Conference on Robot Learning (CoRL), 2022. Supplementary material is available at https://sites.google.com/view/tax-pose/home
♻ ☆ USC: Uncompromising Spatial Constraints for Safety-Oriented 3D Object Detectors in Autonomous Driving SC 2024
We consider the safety-oriented performance of 3D object detectors in autonomous driving contexts. Specifically, despite impressive results shown by the mass literature, developers often find it hard to ensure the safe deployment of these learning-based perception models. Attributing the challenge to the lack of safety-oriented metrics, we hereby present uncompromising spatial constraints (USC), which characterize a simple yet important localization requirement demanding the predictions to fully cover the objects when seen from the autonomous vehicle. The constraints, as we formulate using the perspective and bird's-eye views, can be naturally reflected by quantitative measures, such that having an object detector with a higher score implies a lower risk of collision. Finally, beyond model evaluation, we incorporate the quantitative measures into common loss functions to enable safety-oriented fine-tuning for existing models. With experiments using the nuScenes dataset and a closed-loop simulation, our work demonstrates such considerations of safety notions at the perception level not only improve model performances beyond accuracy but also allow for a more direct linkage to actual system safety.
comment: 8 pages (IEEE double column format), 7 figures, 2 tables, submitted to ITSC 2024
♻ ☆ Adaptive Federated Learning with Auto-Tuned Clients
Federated learning (FL) is a distributed machine learning framework where the global model of a central server is trained via multiple collaborative steps by participating clients without sharing their data. While being a flexible framework, where the distribution of local data, participation rate, and computing power of each client can greatly vary, such flexibility gives rise to many new challenges, especially in the hyperparameter tuning on the client side. We propose $\Delta$-SGD, a simple step size rule for SGD that enables each client to use its own step size by adapting to the local smoothness of the function each client is optimizing. We provide theoretical and empirical results where the benefit of the client adaptivity is shown in various FL scenarios.
♻ ☆ Bridging Dimensions: Confident Reachability for High-Dimensional Controllers
Autonomous systems are increasingly implemented using end-to-end learning-based controllers. Such controllers make decisions that are executed on the real system, with images as one of the primary sensing modalities. Deep neural networks form a fundamental building block of such controllers. Unfortunately, the existing neural-network verification tools do not scale to inputs with thousands of dimensions -- especially when the individual inputs (such as pixels) are devoid of clear physical meaning. This paper takes a step towards connecting exhaustive closed-loop verification with high-dimensional controllers. Our key insight is that the behavior of a high-dimensional controller can be approximated with several low-dimensional controllers. To balance the approximation accuracy and verifiability of our low-dimensional controllers, we leverage the latest verification-aware knowledge distillation. Then, we inflate low-dimensional reachability results with statistical approximation errors, yielding a high-confidence reachability guarantee for the high-dimensional controller. We investigate two inflation techniques -- based on trajectories and control actions -- both of which show convincing performance in three OpenAI gym benchmarks.
♻ ☆ Probabilistic Feature Augmentation for AIS-Based Multi-Path Long-Term Vessel Trajectory Forecasting
Maritime transportation is paramount in achieving global economic growth, entailing concurrent ecological obligations in sustainability and safeguarding endangered marine species, most notably preserving large whale populations. In this regard, the Automatic Identification System (AIS) data plays a significant role by offering real-time streaming data on vessel movement, allowing enhanced traffic monitoring. This study explores using AIS data to prevent vessel-to-whale collisions by forecasting long-term vessel trajectories from engineered AIS data sequences. For such a task, we have developed an encoder-decoder model architecture using Bidirectional Long Short-Term Memory Networks (Bi-LSTM) to predict the next 12 hours of vessel trajectories using 1 to 3 hours of AIS data as input. We feed the model with probabilistic features engineered from historical AIS data that refer to each trajectory's potential route and destination. The model then predicts the vessel's trajectory, considering these additional features by leveraging convolutional layers for spatial feature learning and a position-aware attention mechanism that increases the importance of recent timesteps of a sequence during temporal feature learning. The probabilistic features have an F1 Score of approximately 85% and 75% for each feature type, respectively, demonstrating their effectiveness in augmenting information to the neural network. We test our model on the Gulf of St. Lawrence, a region known to be the habitat of North Atlantic Right Whales (NARW). Our model achieved a high R2 score of over 98% using various techniques and features. It stands out among other approaches as it can make complex decisions during turnings and path selection. Our study highlights the potential of data engineering and trajectory forecasting models for marine life species preservation.
♻ ☆ StableSSM: Alleviating the Curse of Memory in State-space Models through Stable Reparameterization ICML 2024
In this paper, we investigate the long-term memory learning capabilities of state-space models (SSMs) from the perspective of parameterization. We prove that state-space models without any reparameterization exhibit a memory limitation similar to that of traditional RNNs: the target relationships that can be stably approximated by state-space models must have an exponential decaying memory. Our analysis identifies this ``curse of memory'' as a result of the recurrent weights converging to a stability boundary, suggesting that a reparameterization technique can be effective. To this end, we introduce a class of reparameterization techniques for SSMs that effectively lift its memory limitations. Besides improving approximation capabilities, we further illustrate that a principled choice of reparameterization scheme can also enhance optimization stability. We validate our findings using synthetic datasets, language models and image classifications.
comment: 27 pages, 7 figures, ICML 2024
♻ ☆ Beyond Individual Input for Deep Anomaly Detection on Tabular Data
Anomaly detection is vital in many domains, such as finance, healthcare, and cybersecurity. In this paper, we propose a novel deep anomaly detection method for tabular data that leverages Non-Parametric Transformers (NPTs), a model initially proposed for supervised tasks, to capture both feature-feature and sample-sample dependencies. In a reconstruction-based framework, we train an NPT to reconstruct masked features of normal samples. In a non-parametric fashion, we leverage the whole training set during inference and use the model's ability to reconstruct the masked features to generate an anomaly score. To the best of our knowledge, this is the first work to successfully combine feature-feature and sample-sample dependencies for anomaly detection on tabular datasets. Through extensive experiments on 31 benchmark tabular datasets, we demonstrate that our method achieves state-of-the-art performance, outperforming existing methods by 2.4% and 1.2% in terms of F1-score and AUROC, respectively. Our ablation study further proves that modeling both types of dependencies is crucial for anomaly detection on tabular data.
♻ ☆ MEGA-DAgger: Imitation Learning with Multiple Imperfect Experts
Imitation learning has been widely applied to various autonomous systems thanks to recent development in interactive algorithms that address covariate shift and compounding errors induced by traditional approaches like behavior cloning. However, existing interactive imitation learning methods assume access to one perfect expert. Whereas in reality, it is more likely to have multiple imperfect experts instead. In this paper, we propose MEGA-DAgger, a new DAgger variant that is suitable for interactive learning with multiple imperfect experts. First, unsafe demonstrations are filtered while aggregating the training data, so the imperfect demonstrations have little influence when training the novice policy. Next, experts are evaluated and compared on scenarios-specific metrics to resolve the conflicted labels among experts. Through experiments in autonomous racing scenarios, we demonstrate that policy learned using MEGA-DAgger can outperform both experts and policies learned using the state-of-the-art interactive imitation learning algorithms such as Human-Gated DAgger. The supplementary video can be found at \url{https://youtu.be/wPCht31MHrw}.
♻ ☆ Language Models As Semantic Indexers
Semantic identifier (ID) is an important concept in information retrieval that aims to preserve the semantics of objects such as documents and items inside their IDs. Previous studies typically adopt a two-stage pipeline to learn semantic IDs by first procuring embeddings using off-the-shelf text encoders and then deriving IDs based on the embeddings. However, each step introduces potential information loss, and there is usually an inherent mismatch between the distribution of embeddings within the latent space produced by text encoders and the anticipated distribution required for semantic indexing. It is non-trivial to design a method that can learn the document's semantic representations and its hierarchical structure simultaneously, given that semantic IDs are discrete and sequentially structured, and the semantic supervision is deficient. In this paper, we introduce LMIndexer, a self-supervised framework to learn semantic IDs with a generative language model. We tackle the challenge of sequential discrete ID by introducing a semantic indexer capable of generating neural sequential discrete representations with progressive training and contrastive learning. In response to the semantic supervision deficiency, we propose to train the model with a self-supervised document reconstruction objective. We show the high quality of the learned IDs and demonstrate their effectiveness on three tasks including recommendation, product search, and document retrieval on five datasets from various domains. Code is available at https://github.com/PeterGriffinJin/LMIndexer.
comment: 10 pages, 5 appendix pages
♻ ☆ TS-RSR: A provably efficient approach for batch bayesian optimization
This paper presents a new approach for batch Bayesian Optimization (BO) called Thompson Sampling-Regret to Sigma Ratio directed sampling (TS-RSR), where we sample a new batch of actions by minimizing a Thompson Sampling approximation of a regret to uncertainty ratio. Our sampling objective is able to coordinate the actions chosen in each batch in a way that minimizes redundancy between points whilst focusing on points with high predictive means or high uncertainty. Theoretically, we provide rigorous convergence guarantees on our algorithm's regret, and numerically, we demonstrate that our method attains state-of-the-art performance on a range of challenging synthetic and realistic test functions, where it outperforms several competitive benchmark batch BO algorithms.
comment: Revised presentation and organization of theoretical results
♻ ☆ Blue noise for diffusion models SIGGRAPH 2024
Most of the existing diffusion models use Gaussian noise for training and sampling across all time steps, which may not optimally account for the frequency contents reconstructed by the denoising network. Despite the diverse applications of correlated noise in computer graphics, its potential for improving the training process has been underexplored. In this paper, we introduce a novel and general class of diffusion models taking correlated noise within and across images into account. More specifically, we propose a time-varying noise model to incorporate correlated noise into the training process, as well as a method for fast generation of correlated noise mask. Our model is built upon deterministic diffusion models and utilizes blue noise to help improve the generation quality compared to using Gaussian white (random) noise only. Further, our framework allows introducing correlation across images within a single mini-batch to improve gradient flow. We perform both qualitative and quantitative evaluations on a variety of datasets using our method, achieving improvements on different tasks over existing deterministic diffusion models in terms of FID metric.
comment: SIGGRAPH 2024 Conference Proceedings; Project page: https://xchhuang.github.io/bndm
♻ ☆ Learning to Embed Time Series Patches Independently ICLR 2024
Masked time series modeling has recently gained much attention as a self-supervised representation learning strategy for time series. Inspired by masked image modeling in computer vision, recent works first patchify and partially mask out time series, and then train Transformers to capture the dependencies between patches by predicting masked patches from unmasked patches. However, we argue that capturing such patch dependencies might not be an optimal strategy for time series representation learning; rather, learning to embed patches independently results in better time series representations. Specifically, we propose to use 1) the simple patch reconstruction task, which autoencode each patch without looking at other patches, and 2) the simple patch-wise MLP that embeds each patch independently. In addition, we introduce complementary contrastive learning to hierarchically capture adjacent time series information efficiently. Our proposed method improves time series forecasting and classification performance compared to state-of-the-art Transformer-based models, while it is more efficient in terms of the number of parameters and training/inference time. Code is available at this repository: https://github.com/seunghan96/pits.
comment: ICLR 2024
♻ ☆ Correcting Diffusion-Based Perceptual Image Compression with Privileged End-to-End Decoder ICML 2024
The images produced by diffusion models can attain excellent perceptual quality. However, it is challenging for diffusion models to guarantee distortion, hence the integration of diffusion models and image compression models still needs more comprehensive explorations. This paper presents a diffusion-based image compression method that employs a privileged end-to-end decoder model as correction, which achieves better perceptual quality while guaranteeing the distortion to an extent. We build a diffusion model and design a novel paradigm that combines the diffusion model and an end-to-end decoder, and the latter is responsible for transmitting the privileged information extracted at the encoder side. Specifically, we theoretically analyze the reconstruction process of the diffusion models at the encoder side with the original images being visible. Based on the analysis, we introduce an end-to-end convolutional decoder to provide a better approximation of the score function $\nabla_{\mathbf{x}_t}\log p(\mathbf{x}_t)$ at the encoder side and effectively transmit the combination. Experiments demonstrate the superiority of our method in both distortion and perception compared with previous perceptual compression methods.
comment: Accepted by ICML 2024
♻ ☆ Accelerating Diffusion Models for Inverse Problems through Shortcut Sampling IJCAI 2024
Diffusion models have recently demonstrated an impressive ability to address inverse problems in an unsupervised manner. While existing methods primarily focus on modifying the posterior sampling process, the potential of the forward process remains largely unexplored. In this work, we propose Shortcut Sampling for Diffusion(SSD), a novel approach for solving inverse problems in a zero-shot manner. Instead of initiating from random noise, the core concept of SSD is to find a specific transitional state that bridges the measurement image y and the restored image x. By utilizing the shortcut path of "input - transitional state - output", SSD can achieve precise restoration with fewer steps. To derive the transitional state during the forward process, we introduce Distortion Adaptive Inversion. Moreover, we apply back projection as additional consistency constraints during the generation process. Experimentally, we demonstrate SSD's effectiveness on multiple representative IR tasks. Our method achieves competitive results with only 30 NFEs compared to state-of-the-art zero-shot methods(100 NFEs) and outperforms them with 100 NFEs in certain tasks. Code is available at https://github.com/GongyeLiu/SSD
comment: full version; IJCAI 2024 accepted (main track)
♻ ☆ Conformal Decision Theory: Safe Autonomous Decisions from Imperfect Predictions
We introduce Conformal Decision Theory, a framework for producing safe autonomous decisions despite imperfect machine learning predictions. Examples of such decisions are ubiquitous, from robot planning algorithms that rely on pedestrian predictions, to calibrating autonomous manufacturing to exhibit high throughput and low error, to the choice of trusting a nominal policy versus switching to a safe backup policy at run-time. The decisions produced by our algorithms are safe in the sense that they come with provable statistical guarantees of having low risk without any assumptions on the world model whatsoever; the observations need not be I.I.D. and can even be adversarial. The theory extends results from conformal prediction to calibrate decisions directly, without requiring the construction of prediction sets. Experiments demonstrate the utility of our approach in robot motion planning around humans, automated stock trading, and robot manufacturing.
comment: 8 pages, 5 figures
♻ ☆ Delegating Data Collection in Decentralized Machine Learning
Motivated by the emergence of decentralized machine learning (ML) ecosystems, we study the delegation of data collection. Taking the field of contract theory as our starting point, we design optimal and near-optimal contracts that deal with two fundamental information asymmetries that arise in decentralized ML: uncertainty in the assessment of model quality and uncertainty regarding the optimal performance of any model. We show that a principal can cope with such asymmetry via simple linear contracts that achieve 1-1/e fraction of the optimal utility. To address the lack of a priori knowledge regarding the optimal performance, we give a convex program that can adaptively and efficiently compute the optimal contract. We also study linear contracts and derive the optimal utility in the more complex setting of multiple interactions.
♻ ☆ Improving Subgraph-GNNs via Edge-Level Ego-Network Encodings
We present a novel edge-level ego-network encoding for learning on graphs that can boost Message Passing Graph Neural Networks (MP-GNNs) by providing additional node and edge features or extending message-passing formats. The proposed encoding is sufficient to distinguish Strongly Regular Graphs, a family of challenging 3-WL equivalent graphs. We show theoretically that such encoding is more expressive than node-based sub-graph MP-GNNs. In an empirical evaluation on four benchmarks with 10 graph datasets, our results match or improve previous baselines on expressivity, graph classification, graph regression, and proximity tasks -- while reducing memory usage by 18.1x in certain real-world settings.
comment: TMLR, graph neural networks, weisfeiler-lehman, expressivity, higher-order GNNs, 3-WL, 1-WL, edge-level, ego-networks
♻ ☆ A Probabilistic Framework for Modular Continual Learning
Modular approaches that use a different composition of modules for each problem are a promising direction in continual learning (CL). However, searching through the large, discrete space of module compositions is challenging, especially because evaluating a composition's performance requires a round of neural network training. We address this challenge through a modular CL framework, PICLE, that uses a probabilistic model to cheaply compute the fitness of each composition, allowing PICLE to achieve both perceptual, few-shot and latent transfer. The model combines prior knowledge about good module compositions with dataset-specific information. We evaluate PICLE using two benchmark suites designed to assess different desiderata of CL techniques. Comparing to a wide range of approaches, we show that PICLE is the first modular CL algorithm to achieve perceptual, few-shot and latent transfer while scaling well to large search spaces, outperforming previous state-of-the-art modular CL approaches on long problem sequences.
♻ ☆ The Effect of Data Poisoning on Counterfactual Explanations
Counterfactual explanations provide a popular method for analyzing the predictions of black-box systems, and they can offer the opportunity for computational recourse by suggesting actionable changes on how to change the input to obtain a different (i.e. more favorable) system output. However, recent work highlighted their vulnerability to different types of manipulations. This work studies the vulnerability of counterfactual explanations to data poisoning. We formalize data poisoning in the context of counterfactual explanations for increasing the cost of recourse on three different levels: locally for a single instance, or a sub-group of instances, or globally for all instances. We demonstrate that state-of-the-art counterfactual generation methods \& toolboxes are vulnerable to such data poisoning.
♻ ☆ Scalable network reconstruction in subquadratic time
Network reconstruction consists in determining the unobserved pairwise couplings between $N$ nodes given only observational data on the resulting behavior that is conditioned on those couplings -- typically a time-series or independent samples from a graphical model. A major obstacle to the scalability of algorithms proposed for this problem is a seemingly unavoidable quadratic complexity of $\Omega(N^2)$, corresponding to the requirement of each possible pairwise coupling being contemplated at least once, despite the fact that most networks of interest are sparse, with a number of non-zero couplings that is only $O(N)$. Here we present a general algorithm applicable to a broad range of reconstruction problems that significantly outperforms this quadratic baseline. Our algorithm relies on a stochastic second neighbor search (Dong et al., 2011) that produces the best edge candidates with high probability, thus bypassing an exhaustive quadratic search. If we rely on the conjecture that the second-neighbor search finishes in log-linear time (Baron & Darling, 2020; 2022), we demonstrate theoretically that our algorithm finishes in subquadratic time, with a data-dependent complexity loosely upper bounded by $O(N^{3/2}\log N)$, but with a more typical log-linear complexity of $O(N\log^2N)$. In practice, we show that our algorithm achieves a performance that is many orders of magnitude faster than the quadratic baseline -- in a manner consistent with our theoretical analysis -- allows for easy parallelization, and thus enables the reconstruction of networks with hundreds of thousands and even millions of nodes and edges.
comment: 12 pages, 7 figures
♻ ☆ Online Dynamic Submodular Optimization
We propose new algorithms with provable performance for online binary optimization subject to general constraints and in dynamic settings. We consider the subset of problems in which the objective function is submodular. We propose the online submodular greedy algorithm (OSGA) which solves to optimality an approximation of the previous round loss function to avoid the NP-hardness of the original problem. We extend OSGA to a generic approximation function. We show that OSGA has a dynamic regret bound similar to the tightest bounds in online convex optimization with respect to the time horizon and the cumulative round optimum variation. For instances where no approximation exists or a computationally simpler implementation is desired, we design the online submodular projected gradient descent (OSPGD) by leveraging the Lova\'sz extension. We obtain a regret bound that is akin to the conventional online gradient descent (OGD). Finally, we numerically test our algorithms in two power system applications: fast-timescale demand response and real-time distribution network reconfiguration.
♻ ☆ DataLight: Offline Data-Driven Traffic Signal Control
Reinforcement learning (RL) has emerged as a promising solution for addressing traffic signal control (TSC) challenges. While most RL-based TSC systems typically employ an online approach, facilitating frequent active interaction with the environment, learning such strategies in the real world is impractical due to safety and risk concerns. To tackle these challenges, this study introduces an innovative offline data-driven approach, called DataLight. DataLight employs effective state representations and reward function by capturing vehicular speed information within the environment. It then segments roads to capture spatial information and further enhances the spatially segmented state representations with sequential modeling. The experimental results demonstrate the effectiveness of DataLight, showcasing superior performance compared to both state-of-the-art online and offline TSC methods. Additionally, DataLight exhibits robust learning capabilities concerning real-world deployment issues. The code is available at https://github.com/LiangZhang1996/DataLight.
comment: 15 pages, 3 figures
♻ ☆ DynamicLight: Two-Stage Dynamic Traffic Signal Timing
Reinforcement learning (RL) is gaining popularity as an effective approach for traffic signal control (TSC) and is increasingly applied in this domain. However, most existing RL methodologies are confined to a single-stage TSC framework, primarily focusing on selecting an appropriate traffic signal phase at fixed action intervals, leading to inflexible and less adaptable phase durations. To address such limitations, we introduce a novel two-stage TSC framework named DynamicLight. This framework initiates with a phase control strategy responsible for determining the optimal traffic phase, followed by a duration control strategy tasked with determining the corresponding phase duration. Experimental results show that DynamicLight outperforms state-of-the-art TSC models and exhibits exceptional model generalization capabilities. Additionally, the robustness and potential for real-world implementation of DynamicLight are further demonstrated and validated through various DynamicLight variants. The code is released at https://github.com/LiangZhang1996/DynamicLight.
comment: 18 pages, 5 figures
♻ ☆ Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly
Large Language Models (LLM) and foundation models are popular as they offer new opportunities for individuals and businesses to improve natural language processing, interact with data, and retrieve information faster. However, training or fine-tuning LLMs requires a vast amount of data, which can be challenging to access due to legal or technical restrictions and may require private computing resources. Federated Learning (FL) is a solution designed to overcome these challenges and expand data access for deep learning applications. This paper takes a hardware-centric approach to explore how LLMs can be brought to modern edge computing systems. Our study fine-tunes the FLAN-T5 model family, ranging from 80M to 3B parameters, using FL for a text summarization task. We provide a micro-level hardware benchmark, compare the model FLOP utilization to a state-of-the-art data center GPU, and study the network utilization in realistic conditions. Our contribution is twofold: First, we evaluate the current capabilities of edge computing systems and their potential for LLM FL workloads. Second, by comparing these systems with a data-center GPU, we demonstrate the potential for improvement and the next steps toward achieving greater computational efficiency at the edge.
comment: Camera-ready version for DEEM'24. Please cite the official ACM paper via https://doi.org/10.1145/3650203.3663331
♻ ☆ Scalable Decentralized Algorithms for Online Personalized Mean Estimation
In numerous settings, agents lack sufficient data to directly learn a model. Collaborating with other agents may help, but it introduces a bias-variance trade-off, when local data distributions differ. A key challenge is for each agent to identify clients with similar distributions while learning the model, a problem that remains largely unresolved. This study focuses on a simplified version of the overarching problem, where each agent collects samples from a real-valued distribution over time to estimate its mean. Existing algorithms face impractical space and time complexities (quadratic in the number of agents A). To address scalability challenges, we propose a framework where agents self-organize into a graph, allowing each agent to communicate with only a selected number of peers r. We introduce two collaborative mean estimation algorithms: one draws inspiration from belief propagation, while the other employs a consensus-based approach, with complexity of O( r |A| log |A|) and O(r |A|), respectively. We establish conditions under which both algorithms yield asymptotically optimal estimates and offer a theoretical characterization of their performance.
♻ ☆ Time-Varying Propensity Score to Bridge the Gap between the Past and Present ICLR 2024
Real-world deployment of machine learning models is challenging because data evolves over time. While no model can work when data evolves in an arbitrary fashion, if there is some pattern to these changes, we might be able to design methods to address it. This paper addresses situations when data evolves gradually. We introduce a time-varying propensity score that can detect gradual shifts in the distribution of data which allows us to selectively sample past data to update the model -- not just similar data from the past like that of a standard propensity score but also data that evolved in a similar fashion in the past. The time-varying propensity score is quite general: we demonstrate different ways of implementing it and evaluate it on a variety of problems ranging from supervised learning (e.g., image classification problems) where data undergoes a sequence of gradual shifts, to reinforcement learning tasks (e.g., robotic manipulation and continuous control) where data shifts as the policy or the task changes.
comment: Published at ICLR 2024
♻ ☆ Automating the Discovery of Partial Differential Equations in Dynamical Systems
Identifying partial differential equations (PDEs) from data is crucial for understanding the governing mechanisms of natural phenomena, yet it remains a challenging task. We present an extension to the ARGOS framework, ARGOS-RAL, which leverages sparse regression with the recurrent adaptive lasso to identify PDEs from limited prior knowledge automatically. Our method automates calculating partial derivatives, constructing a candidate library, and estimating a sparse model. We rigorously evaluate the performance of ARGOS-RAL in identifying canonical PDEs under various noise levels and sample sizes, demonstrating its robustness in handling noisy and non-uniformly distributed data. We also test the algorithm's performance on datasets consisting solely of random noise to simulate scenarios with severely compromised data quality. Our results show that ARGOS-RAL effectively and reliably identifies the underlying PDEs from data, outperforming the sequential threshold ridge regression method in most cases. We highlight the potential of combining statistical methods, machine learning, and dynamical systems theory to automatically discover governing equations from collected data, streamlining the scientific modeling process.
comment: 18 pages, 6 figures, 1 table
♻ ☆ Neural Exec: Learning (and Learning from) Execution Triggers for Prompt Injection Attacks
We introduce a new family of prompt injection attacks, termed Neural Exec. Unlike known attacks that rely on handcrafted strings (e.g., "Ignore previous instructions and..."), we show that it is possible to conceptualize the creation of execution triggers as a differentiable search problem and use learning-based methods to autonomously generate them. Our results demonstrate that a motivated adversary can forge triggers that are not only drastically more effective than current handcrafted ones but also exhibit inherent flexibility in shape, properties, and functionality. In this direction, we show that an attacker can design and generate Neural Execs capable of persisting through multi-stage preprocessing pipelines, such as in the case of Retrieval-Augmented Generation (RAG)-based applications. More critically, our findings show that attackers can produce triggers that deviate markedly in form and shape from any known attack, sidestepping existing blacklist-based detection and sanitation approaches.
comment: v0.2
♻ ☆ Maximum entropy GFlowNets with soft Q-learning
Generative Flow Networks (GFNs) have emerged as a powerful tool for sampling discrete objects from unnormalized distributions, offering a scalable alternative to Markov Chain Monte Carlo (MCMC) methods. While GFNs draw inspiration from maximum entropy reinforcement learning (RL), the connection between the two has largely been unclear and seemingly applicable only in specific cases. This paper addresses the connection by constructing an appropriate reward function, thereby establishing an exact relationship between GFNs and maximum entropy RL. This construction allows us to introduce maximum entropy GFNs, which, in contrast to GFNs with uniform backward policy, achieve the maximum entropy attainable by GFNs without constraints on the state space.
♻ ☆ Self-Improved Learning for Scalable Neural Combinatorial Optimization
The end-to-end neural combinatorial optimization (NCO) method shows promising performance in solving complex combinatorial optimization problems without the need for expert design. However, existing methods struggle with large-scale problems, hindering their practical applicability. To overcome this limitation, this work proposes a novel Self-Improved Learning (SIL) method for better scalability of neural combinatorial optimization. Specifically, we develop an efficient self-improved mechanism that enables direct model training on large-scale problem instances without any labeled data. Powered by an innovative local reconstruction approach, this method can iteratively generate better solutions by itself as pseudo-labels to guide efficient model training. In addition, we design a linear complexity attention mechanism for the model to efficiently handle large-scale combinatorial problem instances with low computation overhead. Comprehensive experiments on the Travelling Salesman Problem (TSP) and the Capacitated Vehicle Routing Problem (CVRP) with up to 100K nodes in both uniform and real-world distributions demonstrate the superior scalability of our method.
♻ ☆ How Deep Networks Learn Sparse and Hierarchical Data: the Sparse Random Hierarchy Model
Understanding what makes high-dimensional data learnable is a fundamental question in machine learning. On the one hand, it is believed that the success of deep learning lies in its ability to build a hierarchy of representations that become increasingly more abstract with depth, going from simple features like edges to more complex concepts. On the other hand, learning to be insensitive to invariances of the task, such as smooth transformations for image datasets, has been argued to be important for deep networks and it strongly correlates with their performance. In this work, we aim to explain this correlation and unify these two viewpoints. We show that by introducing sparsity to generative hierarchical models of data, the task acquires insensitivity to spatial transformations that are discrete versions of smooth transformations. In particular, we introduce the Sparse Random Hierarchy Model (SRHM), where we observe and rationalize that a hierarchical representation mirroring the hierarchical model is learnt precisely when such insensitivity is learnt, thereby explaining the strong correlation between the latter and performance. Moreover, we quantify how the sample complexity of CNNs learning the SRHM depends on both the sparsity and hierarchical structure of the task.
comment: 9 pages, 6 figures
♻ ☆ Retrieval-Augmented Score Distillation for Text-to-3D Generation ICML 2024
Text-to-3D generation has achieved significant success by incorporating powerful 2D diffusion models, but insufficient 3D prior knowledge also leads to the inconsistency of 3D geometry. Recently, since large-scale multi-view datasets have been released, fine-tuning the diffusion model on the multi-view datasets becomes a mainstream to solve the 3D inconsistency problem. However, it has confronted with fundamental difficulties regarding the limited quality and diversity of 3D data, compared with 2D data. To sidestep these trade-offs, we explore a retrieval-augmented approach tailored for score distillation, dubbed ReDream. We postulate that both expressiveness of 2D diffusion models and geometric consistency of 3D assets can be fully leveraged by employing the semantically relevant assets directly within the optimization process. To this end, we introduce novel framework for retrieval-based quality enhancement in text-to-3D generation. We leverage the retrieved asset to incorporate its geometric prior in the variational objective and adapt the diffusion model's 2D prior toward view consistency, achieving drastic improvements in both geometry and fidelity of generated scenes. We conduct extensive experiments to demonstrate that ReDream exhibits superior quality with increased geometric consistency. Project page is available at https://ku-cvlab.github.io/ReDream/.
comment: Accepted to ICML 2024 / Project Page: https://ku-cvlab.github.io/ReDream/
♻ ☆ High-probability sample complexities for policy evaluation with linear function approximation
This paper is concerned with the problem of policy evaluation with linear function approximation in discounted infinite horizon Markov decision processes. We investigate the sample complexities required to guarantee a predefined estimation error of the best linear coefficients for two widely-used policy evaluation algorithms: the temporal difference (TD) learning algorithm and the two-timescale linear TD with gradient correction (TDC) algorithm. In both the on-policy setting, where observations are generated from the target policy, and the off-policy setting, where samples are drawn from a behavior policy potentially different from the target policy, we establish the first sample complexity bound with high-probability convergence guarantee that attains the optimal dependence on the tolerance level. We also exhihit an explicit dependence on problem-related quantities, and show in the on-policy setting that our upper bound matches the minimax lower bound on crucial problem parameters, including the choice of the feature maps and the problem dimension.
comment: The first two authors contributed equally; paper accepted to IEEE Transactions on Information Theory
♻ ☆ Foundational Policy Acquisition via Multitask Learning for Motor Skill Generation
In this study, we propose a multitask reinforcement learning algorithm for foundational policy acquisition to generate novel motor skills. Inspired by human sensorimotor adaptation mechanisms, we aim to train encoder-decoder networks that can be commonly used to learn novel motor skills in a single movement category. To train the policy network, we develop the multitask reinforcement learning method, where the policy needs to cope with changes in goals or environments with different reward functions or physical parameters of the environment in dynamic movement generation tasks. Here, as a concrete task, we evaluated the proposed method with the ball heading task using a monopod robot model. The results showed that the proposed method could adapt to novel target positions or inexperienced ball restitution coefficients. Furthermore, we demonstrated that the acquired foundational policy network originally learned for heading motion, can be used to generate an entirely new overhead kicking skill.
comment: 11 pages, 6 figures
♻ ☆ Instance-Level Safety-Aware Fidelity of Synthetic Data and Its Calibration
Modeling and calibrating the fidelity of synthetic data is paramount in shaping the future of safe and reliable self-driving technology by offering a cost-effective and scalable alternative to real-world data collection. We focus on its role in safety-critical applications, introducing four types of instance-level fidelity that go beyond mere visual input characteristics. The aim is to ensure that applying testing on synthetic data can reveal real-world safety issues, and the absence of safety-critical issues when testing under synthetic data can provide a strong safety guarantee in real-world behavior. We suggest an optimization method to refine the synthetic data generator, reducing fidelity gaps identified by deep learning components. Experiments show this tuning enhances the correlation between safety-critical errors in synthetic and real data.
♻ ☆ On the Learnability of Watermarks for Language Models ICLR 2024
Watermarking of language model outputs enables statistical detection of model-generated text, which can mitigate harms and misuses of language models. Existing watermarking strategies operate by altering the decoder of an existing language model. In this paper, we ask whether language models can directly learn to generate watermarked text, which would have significant implications for the real-world deployment of watermarks. First, learned watermarks could be used to build open models that naturally generate watermarked text, enabling watermarking for open models, where users can control the decoding procedure. Second, if watermarking is used to determine the provenance of generated text, an adversary can hurt the reputation of a victim model by spoofing its watermark and generating damaging watermarked text. To investigate the learnability of watermarks, we propose watermark distillation, which trains a student model to behave like a teacher model that uses decoding-based watermarking. We test our approach on three decoding-based watermarking strategies and various hyperparameter settings, finding that models can learn to generate watermarked text with high detectability. We also find limitations to learnability, including the loss of watermarking capabilities under fine-tuning on normal text and high sample complexity when learning low-distortion watermarks.
comment: Accepted at ICLR 2024
♻ ☆ The Perception-Robustness Tradeoff in Deterministic Image Restoration
We study the behavior of deterministic methods for solving inverse problems in imaging. These methods are commonly designed to achieve two goals: (1) attaining high perceptual quality, and (2) generating reconstructions that are consistent with the measurements. We provide a rigorous proof that the better a predictor satisfies these two requirements, the larger its Lipschitz constant must be, regardless of the nature of the degradation involved. In particular, to approach perfect perceptual quality and perfect consistency, the Lipschitz constant of the model must grow to infinity. This implies that such methods are necessarily more susceptible to adversarial attacks. We demonstrate our theory on single image super-resolution algorithms, addressing both noisy and noiseless settings. We also show how this undesired behavior can be leveraged to explore the posterior distribution, thereby allowing the deterministic model to imitate stochastic methods.
♻ ☆ SimPro: A Simple Probabilistic Framework Towards Realistic Long-Tailed Semi-Supervised Learning ICML2024
Recent advancements in semi-supervised learning have focused on a more realistic yet challenging task: addressing imbalances in labeled data while the class distribution of unlabeled data remains both unknown and potentially mismatched. Current approaches in this sphere often presuppose rigid assumptions regarding the class distribution of unlabeled data, thereby limiting the adaptability of models to only certain distribution ranges. In this study, we propose a novel approach, introducing a highly adaptable framework, designated as SimPro, which does not rely on any predefined assumptions about the distribution of unlabeled data. Our framework, grounded in a probabilistic model, innovatively refines the expectation-maximization (EM) algorithm by explicitly decoupling the modeling of conditional and marginal class distributions. This separation facilitates a closed-form solution for class distribution estimation during the maximization phase, leading to the formulation of a Bayes classifier. The Bayes classifier, in turn, enhances the quality of pseudo-labels in the expectation phase. Remarkably, the SimPro framework not only comes with theoretical guarantees but also is straightforward to implement. Moreover, we introduce two novel class distributions broadening the scope of the evaluation. Our method showcases consistent state-of-the-art performance across diverse benchmarks and data distribution scenarios. Our code is available at https://github.com/LeapLabTHU/SimPro.
comment: ICML2024
♻ ☆ Attention-Enhanced Reservoir Computing
Photonic reservoir computing has been successfully utilized in time-series prediction as the need for hardware implementations has increased. Prediction of chaotic time series remains a significant challenge, an area where the conventional reservoir computing framework encounters limitations of prediction accuracy. We introduce an attention mechanism to the reservoir computing model in the output stage. This attention layer is designed to prioritize distinct features and temporal sequences, thereby substantially enhancing the prediction accuracy. Our results show that a photonic reservoir computer enhanced with the attention mechanism exhibits improved prediction capabilities for smaller reservoirs. These advancements highlight the transformative possibilities of reservoir computing for practical applications where accurate prediction of chaotic time series is crucial.
♻ ☆ MISLEAD: Manipulating Importance of Selected features for Learning Epsilon in Evasion Attack Deception
Emerging vulnerabilities in machine learning (ML) models due to adversarial attacks raise concerns about their reliability. Specifically, evasion attacks manipulate models by introducing precise perturbations to input data, causing erroneous predictions. To address this, we propose a methodology combining SHapley Additive exPlanations (SHAP) for feature importance analysis with an innovative Optimal Epsilon technique for conducting evasion attacks. Our approach begins with SHAP-based analysis to understand model vulnerabilities, crucial for devising targeted evasion strategies. The Optimal Epsilon technique, employing a Binary Search algorithm, efficiently determines the minimum epsilon needed for successful evasion. Evaluation across diverse machine learning architectures demonstrates the technique's precision in generating adversarial samples, underscoring its efficacy in manipulating model outcomes. This study emphasizes the critical importance of continuous assessment and monitoring to identify and mitigate potential security risks in machine learning systems.
♻ ☆ Structured Probabilistic Coding AAAI 2024
This paper presents a new supervised representation learning framework, namely structured probabilistic coding (SPC), to learn compact and informative representations from input related to the target task. SPC is an encoder-only probabilistic coding technology with a structured regularization from the target space. It can enhance the generalization ability of pre-trained language models for better language understanding. Specifically, our probabilistic coding simultaneously performs information encoding and task prediction in one module to more fully utilize the effective information from input data. It uses variational inference in the output space to reduce randomness and uncertainty. Besides, to better control the learning process of probabilistic representations, a structured regularization is proposed to promote uniformity across classes in the latent space. With the regularization term, SPC can preserve the Gaussian structure of the latent code and achieve better coverage of the hidden space with class uniformly. Experimental results on 12 natural language understanding tasks demonstrate that our SPC effectively improves the performance of pre-trained language models for classification and regression. Extensive experiments show that SPC can enhance the generalization capability, robustness to label noise, and clustering quality of output representations.
comment: 11 pages, accepted by AAAI 2024 (Oral)
♻ ☆ Don't Start from Scratch: Behavioral Refinement via Interpolant-based Policy Diffusion
Imitation learning empowers artificial agents to mimic behavior by learning from demonstrations. Recently, diffusion models, which have the ability to model high-dimensional and multimodal distributions, have shown impressive performance on imitation learning tasks. These models learn to shape a policy by diffusing actions (or states) from standard Gaussian noise. However, the target policy to be learned is often significantly different from Gaussian and this mismatch can result in poor performance when using a small number of diffusion steps (to improve inference speed) and under limited data. The key idea in this work is that initiating from a more informative source than Gaussian enables diffusion methods to mitigate the above limitations. We contribute both theoretical results, a new method, and empirical findings that show the benefits of using an informative source policy. Our method, which we call BRIDGER, leverages the stochastic interpolants framework to bridge arbitrary policies, thus enabling a flexible approach towards imitation learning. It generalizes prior work in that standard Gaussians can still be applied, but other source policies can be used if available. In experiments on challenging simulation benchmarks and on real robots, BRIDGER outperforms state-of-the-art diffusion policies. We provide further analysis on design considerations when applying BRIDGER.
♻ ☆ Disaggregated Multi-Tower: Topology-aware Modeling Technique for Efficient Large-Scale Recommendation
We study a mismatch between the deep learning recommendation models' flat architecture, common distributed training paradigm and hierarchical data center topology. To address the associated inefficiencies, we propose Disaggregated Multi-Tower (DMT), a modeling technique that consists of (1) Semantic-preserving Tower Transform (SPTT), a novel training paradigm that decomposes the monolithic global embedding lookup process into disjoint towers to exploit data center locality; (2) Tower Module (TM), a synergistic dense component attached to each tower to reduce model complexity and communication volume through hierarchical feature interaction; and (3) Tower Partitioner (TP), a feature partitioner to systematically create towers with meaningful feature interactions and load balanced assignments to preserve model quality and training throughput via learned embeddings. We show that DMT can achieve up to 1.9x speedup compared to the state-of-the-art baselines without losing accuracy across multiple generations of hardware at large data center scales.
♻ ☆ Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances ICLR 2024
Solving a linear system $Ax=b$ is a fundamental scientific computing primitive for which numerous solvers and preconditioners have been developed. These come with parameters whose optimal values depend on the system being solved and are often impossible or too expensive to identify; thus in practice sub-optimal heuristics are used. We consider the common setting in which many related linear systems need to be solved, e.g. during a single numerical simulation. In this scenario, can we sequentially choose parameters that attain a near-optimal overall number of iterations, without extra matrix computations? We answer in the affirmative for Successive Over-Relaxation (SOR), a standard solver whose parameter $\omega$ has a strong impact on its runtime. For this method, we prove that a bandit online learning algorithm--using only the number of iterations as feedback--can select parameters for a sequence of instances such that the overall cost approaches that of the best fixed $\omega$ as the sequence length increases. Furthermore, when given additional structural information, we show that a contextual bandit method asymptotically achieves the performance of the instance-optimal policy, which selects the best $\omega$ for each instance. Our work provides the first learning-theoretic treatment of high-precision linear system solvers and the first end-to-end guarantees for data-driven scientific computing, demonstrating theoretically the potential to speed up numerical methods using well-understood learning algorithms.
comment: ICLR 2024 Spotlight
♻ ☆ Skeleton Regression: A Graph-Based Approach to Estimation with Manifold Structure
We introduce a new regression framework designed to deal with large-scale, complex data that lies around a low-dimensional manifold with noises. Our approach first constructs a graph representation, referred to as the skeleton, to capture the underlying geometric structure. We then define metrics on the skeleton graph and apply nonparametric regression techniques, along with feature transformations based on the graph, to estimate the regression function. We also discuss the limitations of some nonparametric regressors with respect to the general metric space such as the skeleton graph. The proposed regression framework suggests a novel way to deal with data with underlying geometric structures and provides additional advantages in handling the union of multiple manifolds, additive noises, and noisy observations. We provide statistical guarantees for the proposed method and demonstrate its effectiveness through simulations and real data examples.
♻ ☆ Efficient Remote Sensing with Harmonized Transfer Learning and Modality Alignment ICLR
With the rise of Visual and Language Pretraining (VLP), an increasing number of downstream tasks are adopting the paradigm of pretraining followed by fine-tuning. Although this paradigm has demonstrated potential in various multimodal downstream tasks, its implementation in the remote sensing domain encounters some obstacles. Specifically, the tendency for same-modality embeddings to cluster together impedes efficient transfer learning. To tackle this issue, we review the aim of multimodal transfer learning for downstream tasks from a unified perspective, and rethink the optimization process based on three distinct objectives. We propose "Harmonized Transfer Learning and Modality Alignment (HarMA)", a method that simultaneously satisfies task constraints, modality alignment, and single-modality uniform alignment, while minimizing training overhead through parameter-efficient fine-tuning. Remarkably, without the need for external data for training, HarMA achieves state-of-the-art performance in two popular multimodal retrieval tasks in the field of remote sensing. Our experiments reveal that HarMA achieves competitive and even superior performance to fully fine-tuned models with only minimal adjustable parameters. Due to its simplicity, HarMA can be integrated into almost all existing multimodal pretraining models. We hope this method can facilitate the efficient application of large models to a wide range of downstream tasks while significantly reducing the resource consumption. Code is available at https://github.com/seekerhuang/HarMA.
comment: Accepted by the Twelfth International Conference on Learning Representations (ICLR) Workshop
♻ ☆ Neural Operator: Learning Maps Between Function Spaces
The classical development of neural networks has primarily focused on learning mappings between finite dimensional Euclidean spaces or finite sets. We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces. We formulate the neural operator as a composition of linear integral operators and nonlinear activation functions. We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator. The proposed neural operators are also discretization-invariant, i.e., they share the same model parameters among different discretization of the underlying function spaces. Furthermore, we introduce four classes of efficient parameterization, viz., graph neural operators, multi-pole graph neural operators, low-rank neural operators, and Fourier neural operators. An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations (PDEs). We consider standard PDEs such as the Burgers, Darcy subsurface flow, and the Navier-Stokes equations, and show that the proposed neural operators have superior performance compared to existing machine learning based methodologies, while being several orders of magnitude faster than conventional PDE solvers.
♻ ☆ MBDP: A Model-based Approach to Achieve both Robustness and Sample Efficiency via Double Dropout Planning
Model-based reinforcement learning is a widely accepted solution for solving excessive sample demands. However, the predictions of the dynamics models are often not accurate enough, and the resulting bias may incur catastrophic decisions due to insufficient robustness. Therefore, it is highly desired to investigate how to improve the robustness of model-based RL algorithms while maintaining high sampling efficiency. In this paper, we propose Model-Based Double-dropout Planning (MBDP) to balance robustness and efficiency. MBDP consists of two kinds of dropout mechanisms, where the rollout-dropout aims to improve the robustness with a small cost of sample efficiency, while the model-dropout is designed to compensate for the lost efficiency at a slight expense of robustness. By combining them in a complementary way, MBDP provides a flexible control mechanism to meet different demands of robustness and efficiency by tuning two corresponding dropout ratios. The effectiveness of MBDP is demonstrated both theoretically and experimentally.
♻ ☆ An extension of McDiarmid's inequality
We generalize McDiarmid's inequality for functions with bounded differences on a high probability set, using an extension argument. Those functions concentrate around their conditional expectations. We further extend the results to concentration in general metric spaces.
comment: 14 pages
Multimedia 1
♻ ☆ Landmark-Guided Cross-Speaker Lip Reading with Mutual Information Regularization LREC
Lip reading, the process of interpreting silent speech from visual lip movements, has gained rising attention for its wide range of realistic applications. Deep learning approaches greatly improve current lip reading systems. However, lip reading in cross-speaker scenarios where the speaker identity changes, poses a challenging problem due to inter-speaker variability. A well-trained lip reading system may perform poorly when handling a brand new speaker. To learn a speaker-robust lip reading model, a key insight is to reduce visual variations across speakers, avoiding the model overfitting to specific speakers. In this work, in view of both input visual clues and latent representations based on a hybrid CTC/attention architecture, we propose to exploit the lip landmark-guided fine-grained visual clues instead of frequently-used mouth-cropped images as input features, diminishing speaker-specific appearance characteristics. Furthermore, a max-min mutual information regularization approach is proposed to capture speaker-insensitive latent representations. Experimental evaluations on public lip reading datasets demonstrate the effectiveness of the proposed approach under the intra-speaker and inter-speaker conditions.
comment: To appear in LREC-COLING 2024
Performance 4
☆ GROMACS on AMD GPU-Based HPC Platforms: Using SYCL for Performance and Portability
GROMACS is a widely-used molecular dynamics software package with a focus on performance, portability, and maintainability across a broad range of platforms. Thanks to its early algorithmic redesign and flexible heterogeneous parallelization, GROMACS has successfully harnessed GPU accelerators for more than a decade. With the diversification of accelerator platforms in HPC and no obvious choice for a multi-vendor programming model, the GROMACS project found itself at a crossroads. The performance and portability requirements, and a strong preference for a standards-based solution, motivated our choice to use SYCL on both new HPC GPU platforms: AMD and Intel. Since the GROMACS 2022 release, the SYCL backend has been the primary means to target AMD GPUs in preparation for exascale HPC architectures like LUMI and Frontier. SYCL is a cross-platform, royalty-free, C++17-based standard for programming hardware accelerators. It allows using the same code to target GPUs from all three major vendors with minimal specialization. While SYCL implementations build on native toolchains, performance of such an approach is not immediately evident. Biomolecular simulations have challenging performance characteristics: latency sensitivity, the need for strong scaling, and typical iteration times as short as hundreds of microseconds. Hence, obtaining good performance across the range of problem sizes and scaling regimes is particularly challenging. Here, we share the results of our work on readying GROMACS for AMD GPU platforms using SYCL, and demonstrate performance on Cray EX235a machines with MI250X accelerators. Our findings illustrate that portability is possible without major performance compromises. We provide a detailed analysis of node-level kernel and runtime performance with the aim of sharing best practices with the HPC community on using SYCL as a performance-portable GPU framework.
comment: 14 pages, 9 figures, presented at Cray User Group 2024
☆ Benchmarking Quantum Annealers with Near-Optimal Minor-Embedded Instances
Benchmarking Quantum Process Units (QPU) at an application level usually requires considering the whole programming stack of the quantum computer. One critical task is the minor-embedding (resp. transpilation) step, which involves space-time overheads for annealing-based (resp. gate-based) quantum computers. This paper establishes a new protocol to generate graph instances with their associated near-optimal minor-embedding mappings to D-Wave Quantum Annealers (QA). This set of favorable mappings is used to generate a wide diversity of optimization problem instances. We use this method to benchmark QA on large instances of unconstrained and constrained optimization problems and compare the performance of the QPU with efficient classical solvers. The benchmark aims to evaluate and quantify the key characteristics of instances that could benefit from the use of a quantum computer. In this context, existing QA seem best suited for unconstrained problems on instances with densities less than $10\%$. For constrained problems, the penalty terms used to encode the hard constraints restrict the performance of QA and suggest that these QPU will be less efficient on these problems of comparable size.
☆ Tabular and Deep Reinforcement Learning for Gittins Index
In the realm of multi-arm bandit problems, the Gittins index policy is known to be optimal in maximizing the expected total discounted reward obtained from pulling the Markovian arms. In most realistic scenarios however, the Markovian state transition probabilities are unknown and therefore the Gittins indices cannot be computed. One can then resort to reinforcement learning (RL) algorithms that explore the state space to learn these indices while exploiting to maximize the reward collected. In this work, we propose tabular (QGI) and Deep RL (DGN) algorithms for learning the Gittins index that are based on the retirement formulation for the multi-arm bandit problem. When compared with existing RL algorithms that learn the Gittins index, our algorithms have a lower run time, require less storage space (small Q-table size in QGI and smaller replay buffer in DGN), and illustrate better empirical convergence to the Gittins index. This makes our algorithm well suited for problems with large state spaces and is a viable alternative to existing methods. As a key application, we demonstrate the use of our algorithms in minimizing the mean flowtime in a job scheduling problem when jobs are available in batches and have an unknown service time distribution. \
♻ ☆ Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly
Large Language Models (LLM) and foundation models are popular as they offer new opportunities for individuals and businesses to improve natural language processing, interact with data, and retrieve information faster. However, training or fine-tuning LLMs requires a vast amount of data, which can be challenging to access due to legal or technical restrictions and may require private computing resources. Federated Learning (FL) is a solution designed to overcome these challenges and expand data access for deep learning applications. This paper takes a hardware-centric approach to explore how LLMs can be brought to modern edge computing systems. Our study fine-tunes the FLAN-T5 model family, ranging from 80M to 3B parameters, using FL for a text summarization task. We provide a micro-level hardware benchmark, compare the model FLOP utilization to a state-of-the-art data center GPU, and study the network utilization in realistic conditions. Our contribution is twofold: First, we evaluate the current capabilities of edge computing systems and their potential for LLM FL workloads. Second, by comparing these systems with a data-center GPU, we demonstrate the potential for improvement and the next steps toward achieving greater computational efficiency at the edge.
comment: Camera-ready version for DEEM'24. Please cite the official ACM paper via https://doi.org/10.1145/3650203.3663331
Database 6
☆ Reverse Influential Community Search Over Social Networks (Technical Report)
As an important fundamental task of numerous real-world applications such as social network analysis and online advertising/marketing, several prior works studied influential community search, which retrieves a community with high structural cohesiveness and maximum influences on other users in social networks. However, previous works usually considered the influences of the community on arbitrary users in social networks, rather than specific groups (e.g., customer groups, or senior communities). Inspired by this, we propose a novel Reverse Influential Community Search (RICS) problem, which obtains a seed community with the maximum influence on a user-specified target community, satisfying both structural and keyword constraints. To efficiently tackle the RICS problem, we design effective pruning strategies to filter out false alarms of candidate seed communities, and propose an effective index mechanism to facilitate the community retrieval. We also formulate and tackle an RICS variant, named Relaxed Reverse Influential Community Search (R2ICS), which returns a subgraph with the relaxed structural constraints and having the maximum influence on a user-specified target community. Comprehensive experiments have been conducted to verify the efficiency and effectiveness of our RICS and R2ICS approaches on both real-world and synthetic social networks under various parameter settings.
☆ GTX: A Transactional Graph Data System For HTAP Workloads VLDB 2024
Processing, managing, and analyzing dynamic graphs are the cornerstone in multiple application domains including fraud detection, recommendation system, graph neural network training, etc. This demo presents GTX, a latch-free write-optimized transactional graph data system that supports high throughput read-write transactions while maintaining competitive graph analytics. GTX has a unique latch-free graph storage and a transaction and concurrency control protocol for dynamic power-law graphs. GTX leverages atomic operations to eliminate latches, proposes a delta-based multi-version storage, and designs a hybrid transaction commit protocol to reduce interference between concurrent operations. To further improve its throughput, we design a delta-chains index to support efficient edge lookups. GTX manages concurrency control at delta-chain level, and provides adaptive concurrency according to the workload. Real-world graph access and updates exhibit temporal localities and hotspots. Unlike other transactional graph systems that experience significant performance degradation, GTX is the only system that can adapt to temporal localities and hotspots in graph updates and maintain million-transactions-per-second throughput. GTX is prototyped as a graph library and is evaluated using a graph library evaluation tool using real and synthetic datasets.
comment: 4 pages 2 figures for VLDB 2024 DEMO
☆ GTX: A Write-Optimized Latch-free Graph Data System with Transactional Support VLDB 2025
This paper introduces GTX a standalone main-memory write-optimized graph system that specializes in structural and graph property updates while maintaining concurrent reads and graph analytics with snapshot isolation-level transactional concurrency. Recent graph libraries target efficient concurrent read and write support while guaranteeing transactional consistency. However, their performance suffers for updates with strong temporal locality over the same vertexes and edges due to vertex-centric lock contentions. GTX introduces a new delta-chain-centric concurrency-control protocol that eliminates traditional mutually exclusive latches. GTX resolves the conflicts caused by vertex-level locking, and adapts to real-life workloads while maintaining sequential access to the graph's adjacency lists storage. This combination of features has been demonstrated to provide good performance in graph analytical queries. GTX's transactions support fast group commit, novel write-write conflict prevention, and lazy garbage collection. Based on extensive experimental and comparative studies, in addition to maintaining competitive concurrent read and analytical performance, GTX demonstrates high throughput over state-of-the-art techniques when handling concurrent transaction+analytics workloads. For write-heavy transactional workloads, GTX performs up to 11x better than the best-performing state-of-the-art systems in transaction throughput. At the same time, GTX does not sacrifice the performance of read-heavy analytical workloads, and has competitive performance similar to state-of-the-art systems.
comment: 12 pages, 13 figures, submitted to VLDB 2025
☆ Privacy-Enhanced Database Synthesis for Benchmark Publishing
Benchmarking is crucial for evaluating a DBMS, yet existing benchmarks often fail to reflect the varied nature of user workloads. As a result, there is increasing momentum toward creating databases that incorporate real-world user data to more accurately mirror business environments. However, privacy concerns deter users from directly sharing their data, underscoring the importance of creating synthesized databases for benchmarking that also prioritize privacy protection. Differential privacy has become a key method for safeguarding privacy when sharing data, but the focus has largely been on minimizing errors in aggregate queries or classification tasks, with less attention given to benchmarking factors like runtime performance. This paper delves into the creation of privacy-preserving databases specifically for benchmarking, aiming to produce a differentially private database whose query performance closely resembles that of the original data. Introducing PrivBench, an innovative synthesis framework, we support the generation of high-quality data that maintains privacy. PrivBench uses sum-product networks (SPNs) to partition and sample data, enhancing data representation while securing privacy. The framework allows users to adjust the detail of SPN partitions and privacy settings, crucial for customizing privacy levels. We validate our approach, which uses the Laplace and exponential mechanisms, in maintaining privacy. Our tests show that PrivBench effectively generates data that maintains privacy and excels in query performance, consistently reducing errors in query execution time, query cardinality, and KL divergence.
Foundations for Digital Twins
The growing reliance on digital twins across various industries and domains brings with it semantic interoperability challenges. Ontologies are a well-known strategy for addressing such challenges, though given the complexity of the phenomenon, there are risks of reintroducing the interoperability challenges at the level of ontology representations. In the interest of avoiding such pitfalls, we introduce and defend characterizations of digital twins within the context of the Common Core Ontologies, an extension of the widely-used Basic Formal Ontology. We provide a set of definitions and design patterns relevant to the domain of digital twins, highlighted by illustrative use cases of digital twins and their physical counterparts. In doing so, we provide a foundation on which to build more sophisticated ontological content related and connected to digital twins.
comment: 14
♻ ☆ Unique Characterisability and Learnability of Temporal Queries Mediated by an Ontology
Algorithms for learning database queries from examples and unique characterisations of queries by examples are prominent starting points for developing automated support for query construction and explanation. We investigate how far recent results and techniques on learning and unique characterisations of atemporal queries mediated by an ontology can be extended to temporal data and queries. Based on a systematic review of the relevant approaches in the atemporal case, we obtain general transfer results identifying conditions under which temporal queries composed of atemporal ones are (polynomially) learnable and uniquely characterisable.
Computation and Language 68
☆ Self-Play Preference Optimization for Language Model Alignment
Traditional reinforcement learning from human feedback (RLHF) approaches relying on parametric models like the Bradley-Terry model fall short in capturing the intransitivity and irrationality in human preferences. Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences, enabling more flexible and accurate language model alignment. In this paper, we propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game aimed at identifying the Nash equilibrium policy. Our approach, dubbed \textit{Self-Play Preference Optimization} (SPPO), approximates the Nash equilibrium through iterative policy updates and enjoys theoretical convergence guarantee. Our method can effectively increase the log-likelihood of the chosen response and decrease that of the rejected response, which cannot be trivially achieved by symmetric pairwise loss such as Direct Preference Optimization (DPO) and Identity Preference Optimization (IPO). In our experiments, using only 60k prompts (without responses) from the UltraFeedback dataset and without any prompt augmentation, by leveraging a pre-trained preference model PairRM with only 0.4B parameters, SPPO can obtain a model from fine-tuning Mistral-7B-Instruct-v0.2 that achieves the state-of-the-art length-controlled win-rate of 28.53% against GPT-4-Turbo on AlpacaEval 2.0. It also outperforms the (iterative) DPO and IPO on MT-Bench and the Open LLM Leaderboard. Notably, the strong performance of SPPO is achieved without additional external supervision (e.g., responses, preferences, etc.) from GPT-4 or other stronger language models.
comment: 25 pages, 4 figures, 5 tables
☆ Is Bigger Edit Batch Size Always Better? -- An Empirical Study on Model Editing with Llama-3
This study presents a targeted model editing analysis focused on the latest large language model, Llama-3. We explore the efficacy of popular model editing techniques - ROME, MEMIT, and EMMET, which are designed for precise layer interventions. We identify the most effective layers for targeted edits through an evaluation that encompasses up to 4096 edits across three distinct strategies: sequential editing, batch editing, and a hybrid approach we call as sequential-batch editing. Our findings indicate that increasing edit batch-sizes may degrade model performance more significantly than using smaller edit batches sequentially for equal number of edits. With this, we argue that sequential model editing is an important component for scaling model editing methods and future research should focus on methods that combine both batched and sequential editing. This observation suggests a potential limitation in current model editing methods which push towards bigger edit batch sizes, and we hope it paves way for future investigations into optimizing batch sizes and model editing performance.
☆ NLU-STR at SemEval-2024 Task 1: Generative-based Augmentation and Encoder-based Scoring for Semantic Textual Relatedness
Semantic textual relatedness is a broader concept of semantic similarity. It measures the extent to which two chunks of text convey similar meaning or topics, or share related concepts or contexts. This notion of relatedness can be applied in various applications, such as document clustering and summarizing. SemRel-2024, a shared task in SemEval-2024, aims at reducing the gap in the semantic relatedness task by providing datasets for fourteen languages and dialects including Arabic. This paper reports on our participation in Track A (Algerian and Moroccan dialects) and Track B (Modern Standard Arabic). A BERT-based model is augmented and fine-tuned for regression scoring in supervised track (A), while BERT-based cosine similarity is employed for unsupervised track (B). Our system ranked 1st in SemRel-2024 for MSA with a Spearman correlation score of 0.49. We ranked 5th for Moroccan and 12th for Algerian with scores of 0.83 and 0.53, respectively.
☆ RST-LoRA: A Discourse-Aware Low-Rank Adaptation for Long Document Abstractive Summarization NAACL 2024
For long document summarization, discourse structure is important to discern the key content of the text and the differences in importance level between sentences. Unfortunately, the integration of rhetorical structure theory (RST) into parameter-efficient fine-tuning strategies for long document summarization remains unexplored. Therefore, this paper introduces RST-LoRA and proposes four RST-aware variants to explicitly incorporate RST into the LoRA model. Our empirical evaluation demonstrates that incorporating the type and uncertainty of rhetorical relations can complementarily enhance the performance of LoRA in summarization tasks. Furthermore, the best-performing variant we introduced outperforms the vanilla LoRA and full-parameter fine-tuning models, as confirmed by multiple automatic and human evaluations, and even surpasses previous state-of-the-art methods.
comment: NAACL 2024 Main & Long Conference Paper (Oral Presentation)
☆ When Quantization Affects Confidence of Large Language Models? NAACL 2024
Recent studies introduced effective compression techniques for Large Language Models (LLMs) via post-training quantization or low-bit weight representation. Although quantized weights offer storage efficiency and allow for faster inference, existing works have indicated that quantization might compromise performance and exacerbate biases in LLMs. This study investigates the confidence and calibration of quantized models, considering factors such as language model type and scale as contributors to quantization loss. Firstly, we reveal that quantization with GPTQ to 4-bit results in a decrease in confidence regarding true labels, with varying impacts observed among different language models. Secondly, we observe fluctuations in the impact on confidence across different scales. Finally, we propose an explanation for quantization loss based on confidence levels, indicating that quantization disproportionately affects samples where the full model exhibited low confidence levels in the first place.
comment: Accepted to NAACL 2024 Findings
☆ Causal Evaluation of Language Models
Causal reasoning is viewed as crucial for achieving human-level machine intelligence. Recent advances in language models have expanded the horizons of artificial intelligence across various domains, sparking inquiries into their potential for causal reasoning. In this work, we introduce Causal evaluation of Language Models (CaLM), which, to the best of our knowledge, is the first comprehensive benchmark for evaluating the causal reasoning capabilities of language models. First, we propose the CaLM framework, which establishes a foundational taxonomy consisting of four modules: causal target (i.e., what to evaluate), adaptation (i.e., how to obtain the results), metric (i.e., how to measure the results), and error (i.e., how to analyze the bad results). This taxonomy defines a broad evaluation design space while systematically selecting criteria and priorities. Second, we compose the CaLM dataset, comprising 126,334 data samples, to provide curated sets of causal targets, adaptations, metrics, and errors, offering extensive coverage for diverse research pursuits. Third, we conduct an extensive evaluation of 28 leading language models on a core set of 92 causal targets, 9 adaptations, 7 metrics, and 12 error types. Fourth, we perform detailed analyses of the evaluation results across various dimensions (e.g., adaptation, scale). Fifth, we present 50 high-level empirical findings across 9 dimensions (e.g., model), providing valuable guidance for future language model development. Finally, we develop a multifaceted platform, including a website, leaderboards, datasets, and toolkits, to support scalable and adaptable assessments. We envision CaLM as an ever-evolving benchmark for the community, systematically updated with new causal targets, adaptations, models, metrics, and error types to reflect ongoing research advancements. Project website is at https://opencausalab.github.io/CaLM.
comment: 315 pages, 230 figures, 21 tables. Project website: https://opencausalab.github.io/CaLM
☆ Addressing Topic Granularity and Hallucination in Large Language Models for Topic Modelling
Large language models (LLMs) with their strong zero-shot topic extraction capabilities offer an alternative to probabilistic topic modelling and closed-set topic classification approaches. As zero-shot topic extractors, LLMs are expected to understand human instructions to generate relevant and non-hallucinated topics based on the given documents. However, LLM-based topic modelling approaches often face difficulties in generating topics with adherence to granularity as specified in human instructions, often resulting in many near-duplicate topics. Furthermore, methods for addressing hallucinated topics generated by LLMs have not yet been investigated. In this paper, we focus on addressing the issues of topic granularity and hallucinations for better LLM-based topic modelling. To this end, we introduce a novel approach that leverages Direct Preference Optimisation (DPO) to fine-tune open-source LLMs, such as Mistral-7B. Our approach does not rely on traditional human annotation to rank preferred answers but employs a reconstruction pipeline to modify raw topics generated by LLMs, thus enabling a fast and efficient training and inference framework. Comparative experiments show that our fine-tuning approach not only significantly improves the LLM's capability to produce more coherent, relevant, and precise topics, but also reduces the number of hallucinated topics.
☆ Investigating Automatic Scoring and Feedback using Large Language Models
Automatic grading and feedback have been long studied using traditional machine learning and deep learning techniques using language models. With the recent accessibility to high performing large language models (LLMs) like LLaMA-2, there is an opportunity to investigate the use of these LLMs for automatic grading and feedback generation. Despite the increase in performance, LLMs require significant computational resources for fine-tuning and additional specific adjustments to enhance their performance for such tasks. To address these issues, Parameter Efficient Fine-tuning (PEFT) methods, such as LoRA and QLoRA, have been adopted to decrease memory and computational requirements in model fine-tuning. This paper explores the efficacy of PEFT-based quantized models, employing classification or regression head, to fine-tune LLMs for automatically assigning continuous numerical grades to short answers and essays, as well as generating corresponding feedback. We conducted experiments on both proprietary and open-source datasets for our tasks. The results show that prediction of grade scores via finetuned LLMs are highly accurate, achieving less than 3% error in grade percentage on average. For providing graded feedback fine-tuned 4-bit quantized LLaMA-2 13B models outperform competitive base models and achieve high similarity with subject matter expert feedback in terms of high BLEU and ROUGE scores and qualitatively in terms of feedback. The findings from this study provide important insights into the impacts of the emerging capabilities of using quantization approaches to fine-tune LLMs for various downstream tasks, such as automatic short answer scoring and feedback generation at comparatively lower costs and latency.
☆ Are Models Biased on Text without Gender-related Language?
Gender bias research has been pivotal in revealing undesirable behaviors in large language models, exposing serious gender stereotypes associated with occupations, and emotions. A key observation in prior work is that models reinforce stereotypes as a consequence of the gendered correlations that are present in the training data. In this paper, we focus on bias where the effect from training data is unclear, and instead address the question: Do language models still exhibit gender bias in non-stereotypical settings? To do so, we introduce UnStereoEval (USE), a novel framework tailored for investigating gender bias in stereotype-free scenarios. USE defines a sentence-level score based on pretraining data statistics to determine if the sentence contain minimal word-gender associations. To systematically benchmark the fairness of popular language models in stereotype-free scenarios, we utilize USE to automatically generate benchmarks without any gender-related language. By leveraging USE's sentence-level score, we also repurpose prior gender bias benchmarks (Winobias and Winogender) for non-stereotypical evaluation. Surprisingly, we find low fairness across all 28 tested models. Concretely, models demonstrate fair behavior in only 9%-41% of stereotype-free sentences, suggesting that bias does not solely stem from the presence of gender-related words. These results raise important questions about where underlying model biases come from and highlight the need for more systematic and comprehensive bias evaluation. We release the full dataset and code at https://ucinlp.github.io/unstereo-eval.
comment: In International Conference on Learning Representations 2024
☆ The Real, the Better: Aligning Large Language Models with Online Human Behaviors
Large language model alignment is widely used and studied to avoid LLM producing unhelpful and harmful responses. However, the lengthy training process and predefined preference bias hinder adaptation to online diverse human preferences. To this end, this paper proposes an alignment framework, called Reinforcement Learning with Human Behavior (RLHB), to align LLMs by directly leveraging real online human behaviors. By taking the generative adversarial framework, the generator is trained to respond following expected human behavior; while the discriminator tries to verify whether the triplets of query, response, and human behavior come from real online environments. Behavior modeling in natural-language form and the multi-model joint training mechanism enable an active and sustainable online alignment. Experimental results confirm the effectiveness of our proposed methods by both human and automatic evaluations.
comment: 11 pages, 6 figures
☆ NumLLM: Numeric-Sensitive Large Language Model for Chinese Finance
Recently, many works have proposed various financial large language models (FinLLMs) by pre-training from scratch or fine-tuning open-sourced LLMs on financial corpora. However, existing FinLLMs exhibit unsatisfactory performance in understanding financial text when numeric variables are involved in questions. In this paper, we propose a novel LLM, called numeric-sensitive large language model (NumLLM), for Chinese finance. We first construct a financial corpus from financial textbooks which is essential for improving numeric capability of LLMs during fine-tuning. After that, we train two individual low-rank adaptation (LoRA) modules by fine-tuning on our constructed financial corpus. One module is for adapting general-purpose LLMs to financial domain, and the other module is for enhancing the ability of NumLLM to understand financial text with numeric variables. Lastly, we merge the two LoRA modules into the foundation model to obtain NumLLM for inference. Experiments on financial question-answering benchmark show that NumLLM can boost the performance of the foundation model and can achieve the best overall performance compared to all baselines, on both numeric and non-numeric questions.
☆ Mixture of insighTful Experts (MoTE): The Synergy of Thought Chains and Expert Mixtures in Self-Alignment
As the capabilities of large language models (LLMs) have expanded dramatically, aligning these models with human values presents a significant challenge, posing potential risks during deployment. Traditional alignment strategies rely heavily on human intervention, such as Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), or on the self-alignment capacities of LLMs, which usually require a strong LLM's emergent ability to improve its original bad answer. To address these challenges, we propose a novel self-alignment method that utilizes a Chain of Thought (CoT) approach, termed AlignCoT. This method encompasses stages of Question Analysis, Answer Guidance, and Safe Answer production. It is designed to enable LLMs to generate high-quality, safe responses throughout various stages of their development. Furthermore, we introduce the Mixture of insighTful Experts (MoTE) architecture, which applies the mixture of experts to enhance each component of the AlignCoT process, markedly increasing alignment efficiency. The MoTE approach not only outperforms existing methods in aligning LLMs with human values but also highlights the benefits of using self-generated data, revealing the dual benefits of improved alignment and training efficiency.
☆ New Benchmark Dataset and Fine-Grained Cross-Modal Fusion Framework for Vietnamese Multimodal Aspect-Category Sentiment Analysis
The emergence of multimodal data on social media platforms presents new opportunities to better understand user sentiments toward a given aspect. However, existing multimodal datasets for Aspect-Category Sentiment Analysis (ACSA) often focus on textual annotations, neglecting fine-grained information in images. Consequently, these datasets fail to fully exploit the richness inherent in multimodal. To address this, we introduce a new Vietnamese multimodal dataset, named ViMACSA, which consists of 4,876 text-image pairs with 14,618 fine-grained annotations for both text and image in the hotel domain. Additionally, we propose a Fine-Grained Cross-Modal Fusion Framework (FCMF) that effectively learns both intra- and inter-modality interactions and then fuses these information to produce a unified multimodal representation. Experimental results show that our framework outperforms SOTA models on the ViMACSA dataset, achieving the highest F1 score of 79.73%. We also explore characteristics and challenges in Vietnamese multimodal sentiment analysis, including misspellings, abbreviations, and the complexities of the Vietnamese language. This work contributes both a benchmark dataset and a new framework that leverages fine-grained multimodal information to improve multimodal aspect-category sentiment analysis. Our dataset is available for research purposes: https://github.com/hoangquy18/Multimodal-Aspect-Category-Sentiment-Analysis.
☆ A Legal Framework for Natural Language Processing Model Training in Portugal LREC 2024
Recent advances in deep learning have promoted the advent of many computational systems capable of performing intelligent actions that, until then, were restricted to the human intellect. In the particular case of human languages, these advances allowed the introduction of applications like ChatGPT that are capable of generating coherent text without being explicitly programmed to do so. Instead, these models use large volumes of textual data to learn meaningful representations of human languages. Associated with these advances, concerns about copyright and data privacy infringements caused by these applications have emerged. Despite these concerns, the pace at which new natural language processing applications continued to be developed largely outperformed the introduction of new regulations. Today, communication barriers between legal experts and computer scientists motivate many unintentional legal infringements during the development of such applications. In this paper, a multidisciplinary team intends to bridge this communication gap and promote more compliant Portuguese NLP research by presenting a series of everyday NLP use cases, while highlighting the Portuguese legislation that may arise during its development.
comment: LEGAL2024 Legal and Ethical Issues in Human Language Technologies, LREC 2024
☆ CookingSense: A Culinary Knowledgebase with Multidisciplinary Assertions LREC
This paper introduces CookingSense, a descriptive collection of knowledge assertions in the culinary domain extracted from various sources, including web data, scientific papers, and recipes, from which knowledge covering a broad range of aspects is acquired. CookingSense is constructed through a series of dictionary-based filtering and language model-based semantic filtering techniques, which results in a rich knowledgebase of multidisciplinary food-related assertions. Additionally, we present FoodBench, a novel benchmark to evaluate culinary decision support systems. From evaluations with FoodBench, we empirically prove that CookingSense improves the performance of retrieval augmented language models. We also validate the quality and variety of assertions in CookingSense through qualitative analysis.
comment: LREC-COLING 2024 Accepted
☆ Navigating WebAI: Training Agents to Complete Web Tasks with Large Language Models and Reinforcement Learning
Recent advancements in language models have demonstrated remarkable improvements in various natural language processing (NLP) tasks such as web navigation. Supervised learning (SL) approaches have achieved impressive performance while utilizing significantly less training data compared to previous methods. However, these SL-based models fall short when compared to reinforcement learning (RL) approaches, which have shown superior results. In this paper, we propose a novel approach that combines SL and RL techniques over the MiniWoB benchmark to leverage the strengths of both methods. We also address a critical limitation in previous models' understanding of HTML content, revealing a tendency to memorize target elements rather than comprehend the underlying structure. To rectify this, we propose methods to enhance true understanding and present a new baseline of results. Our experiments demonstrate that our approach outperforms previous SL methods on certain tasks using less data and narrows the performance gap with RL models, achieving 43.58\% average accuracy in SL and 36.69\% when combined with a multimodal RL approach. This study sets a new direction for future web navigation and offers insights into the limitations and potential of language modeling for computer tasks.
comment: ACM 2024, Avila Spain. 9 pages
☆ GOLD: Geometry Problem Solver with Natural Language Description NAACL 2024
Addressing the challenge of automated geometry math problem-solving in artificial intelligence (AI) involves understanding multi-modal information and mathematics. Current methods struggle with accurately interpreting geometry diagrams, which hinders effective problem-solving. To tackle this issue, we present the Geometry problem sOlver with natural Language Description (GOLD) model. GOLD enhances the extraction of geometric relations by separately processing symbols and geometric primitives within the diagram. Subsequently, it converts the extracted relations into natural language descriptions, efficiently utilizing large language models to solve geometry math problems. Experiments show that the GOLD model outperforms the Geoformer model, the previous best method on the UniGeo dataset, by achieving accuracy improvements of 12.7% and 42.1% in calculation and proving subsets. Additionally, it surpasses the former best model on the PGPS9K and Geometry3K datasets, PGPSNet, by obtaining accuracy enhancements of 1.8% and 3.2%, respectively.
comment: Accepted in NAACL 2024 Findings
☆ Is Temperature the Creativity Parameter of Large Language Models?
Large language models (LLMs) are applied to all sorts of creative tasks, and their outputs vary from beautiful, to peculiar, to pastiche, into plain plagiarism. The temperature parameter of an LLM regulates the amount of randomness, leading to more diverse outputs; therefore, it is often claimed to be the creativity parameter. Here, we investigate this claim using a narrative generation task with a predetermined fixed context, model and prompt. Specifically, we present an empirical analysis of the LLM output for different temperature values using four necessary conditions for creativity in narrative generation: novelty, typicality, cohesion, and coherence. We find that temperature is weakly correlated with novelty, and unsurprisingly, moderately correlated with incoherence, but there is no relationship with either cohesion or typicality. However, the influence of temperature on creativity is far more nuanced and weak than suggested by the "creativity parameter" claim; overall results suggest that the LLM generates slightly more novel outputs as temperatures get higher. Finally, we discuss ideas to allow more controlled LLM creativity, rather than relying on chance via changing the temperature parameter.
comment: To be published in the Proceedings of the 15th International Conference on Computational Creativity (ICCC'24), 8 pages, 2 figures, 2 tables
☆ Explainable Automatic Grading with Neural Additive Models
The use of automatic short answer grading (ASAG) models may help alleviate the time burden of grading while encouraging educators to frequently incorporate open-ended items in their curriculum. However, current state-of-the-art ASAG models are large neural networks (NN) often described as "black box", providing no explanation for which characteristics of an input are important for the produced output. This inexplicable nature can be frustrating to teachers and students when trying to interpret, or learn from an automatically-generated grade. To create a powerful yet intelligible ASAG model, we experiment with a type of model called a Neural Additive Model that combines the performance of a NN with the explainability of an additive model. We use a Knowledge Integration (KI) framework from the learning sciences to guide feature engineering to create inputs that reflect whether a student includes certain ideas in their response. We hypothesize that indicating the inclusion (or exclusion) of predefined ideas as features will be sufficient for the NAM to have good predictive power and interpretability, as this may guide a human scorer using a KI rubric. We compare the performance of the NAM with another explainable model, logistic regression, using the same features, and to a non-explainable neural model, DeBERTa, that does not require feature engineering.
☆ Harnessing the Power of Multiple Minds: Lessons Learned from LLM Routing NAACL 2024
With the rapid development of LLMs, it is natural to ask how to harness their capabilities efficiently. In this paper, we explore whether it is feasible to direct each input query to a single most suitable LLM. To this end, we propose LLM routing for challenging reasoning tasks. Our extensive experiments suggest that such routing shows promise but is not feasible in all scenarios, so more robust approaches should be investigated to fill this gap.
comment: Accepted to Workshop on Insights from Negative Results in NLP 2024 (co-located with NAACL 2024)
☆ BiomedRAG: A Retrieval Augmented Large Language Model for Biomedicine
Large Language Models (LLMs) have swiftly emerged as vital resources for different applications in the biomedical and healthcare domains; however, these models encounter issues such as generating inaccurate information or hallucinations. Retrieval-augmented generation provided a solution for these models to update knowledge and enhance their performance. In contrast to previous retrieval-augmented LMs, which utilize specialized cross-attention mechanisms to help LLM encode retrieved text, BiomedRAG adopts a simpler approach by directly inputting the retrieved chunk-based documents into the LLM. This straightforward design is easily applicable to existing retrieval and language models, effectively bypassing noise information in retrieved documents, particularly in noise-intensive tasks. Moreover, we demonstrate the potential for utilizing the LLM to supervise the retrieval model in the biomedical domain, enabling it to retrieve the document that assists the LM in improving its predictions. Our experiments reveal that with the tuned scorer,\textsc{ BiomedRAG} attains superior performance across 5 biomedical NLP tasks, encompassing information extraction (triple extraction, relation extraction), text classification, link prediction, and question-answering, leveraging over 9 datasets. For instance, in the triple extraction task, \textsc{BiomedRAG} outperforms other triple extraction systems with micro-F1 scores of 81.42 and 88.83 on GIT and ChemProt corpora, respectively.
☆ Enhancing Surgical Robots with Embodied Intelligence for Autonomous Ultrasound Scanning ICRA 2024
Ultrasound robots are increasingly used in medical diagnostics and early disease screening. However, current ultrasound robots lack the intelligence to understand human intentions and instructions, hindering autonomous ultrasound scanning. To solve this problem, we propose a novel Ultrasound Embodied Intelligence system that equips ultrasound robots with the large language model (LLM) and domain knowledge, thereby improving the efficiency of ultrasound robots. Specifically, we first design an ultrasound operation knowledge database to add expertise in ultrasound scanning to the LLM, enabling the LLM to perform precise motion planning. Furthermore, we devise a dynamic ultrasound scanning strategy based on a \textit{think-observe-execute} prompt engineering, allowing LLMs to dynamically adjust motion planning strategies during the scanning procedures. Extensive experiments demonstrate that our system significantly improves ultrasound scan efficiency and quality from verbal commands. This advancement in autonomous medical scanning technology contributes to non-invasive diagnostics and streamlined medical workflows.
comment: ICRA 2024 Full-day Workshop: C4SR+: Continuum, Compliant, Cooperative, Cognitive
☆ RAG-based Explainable Prediction of Road Users Behaviors for Automated Driving using Knowledge Graphs and Large Language Models
Prediction of road users' behaviors in the context of autonomous driving has gained considerable attention by the scientific community in the last years. Most works focus on predicting behaviors based on kinematic information alone, a simplification of the reality since road users are humans, and as such they are highly influenced by their surrounding context. In addition, a large plethora of research works rely on powerful Deep Learning techniques, which exhibit high performance metrics in prediction tasks but may lack the ability to fully understand and exploit the contextual semantic information contained in the road scene, not to mention their inability to provide explainable predictions that can be understood by humans. In this work, we propose an explainable road users' behavior prediction system that integrates the reasoning abilities of Knowledge Graphs (KG) and the expressiveness capabilities of Large Language Models (LLM) by using Retrieval Augmented Generation (RAG) techniques. For that purpose, Knowledge Graph Embeddings (KGE) and Bayesian inference are combined to allow the deployment of a fully inductive reasoning system that enables the issuing of predictions that rely on legacy information contained in the graph as well as on current evidence gathered in real time by onboard sensors. Two use cases have been implemented following the proposed approach: 1) Prediction of pedestrians' crossing actions; 2) Prediction of lane change maneuvers. In both cases, the performance attained surpasses the current state of the art in terms of anticipation and F1-score, showing a promising avenue for future research in this field.
☆ MetaRM: Shifted Distributions Alignment via Meta-Learning
The success of Reinforcement Learning from Human Feedback (RLHF) in language model alignment is critically dependent on the capability of the reward model (RM). However, as the training process progresses, the output distribution of the policy model shifts, leading to the RM's reduced ability to distinguish between responses. This issue is further compounded when the RM, trained on a specific data distribution, struggles to generalize to examples outside of that distribution. These two issues can be united as a challenge posed by the shifted distribution of the environment. To surmount this challenge, we introduce MetaRM, a method leveraging meta-learning to align the RM with the shifted environment distribution. MetaRM is designed to train the RM by minimizing data loss, particularly for data that can improve the differentiation ability to examples of the shifted target distribution. Extensive experiments demonstrate that MetaRM significantly improves the RM's distinguishing ability in iterative RLHF optimization, and also provides the capacity to identify subtle differences in out-of-distribution samples.
comment: 11 pages, 6 figures. arXiv admin note: text overlap with arXiv:2401.06080
☆ Self-Refine Instruction-Tuning for Aligning Reasoning in Language Models
The alignments of reasoning abilities between smaller and larger Language Models are largely conducted via Supervised Fine-Tuning (SFT) using demonstrations generated from robust Large Language Models (LLMs). Although these approaches deliver more performant models, they do not show sufficiently strong generalization ability as the training only relies on the provided demonstrations. In this paper, we propose the Self-refine Instruction-tuning method that elicits Smaller Language Models to self-refine their abilities. Our approach is based on a two-stage process, where reasoning abilities are first transferred between LLMs and Small Language Models (SLMs) via Instruction-tuning on demonstrations provided by LLMs, and then the instructed models Self-refine their abilities through preference optimization strategies. In particular, the second phase operates refinement heuristics based on the Direct Preference Optimization algorithm, where the SLMs are elicited to deliver a series of reasoning paths by automatically sampling the generated responses and providing rewards using ground truths from the LLMs. Results obtained on commonsense and math reasoning tasks show that this approach significantly outperforms Instruction-tuning in both in-domain and out-domain scenarios, aligning the reasoning abilities of Smaller and Larger Language Models.
☆ CofiPara: A Coarse-to-fine Paradigm for Multimodal Sarcasm Target Identification with Large Multimodal Models
Social media abounds with multimodal sarcasm, and identifying sarcasm targets is particularly challenging due to the implicit incongruity not directly evident in the text and image modalities. Current methods for Multimodal Sarcasm Target Identification (MSTI) predominantly focus on superficial indicators in an end-to-end manner, overlooking the nuanced understanding of multimodal sarcasm conveyed through both the text and image. This paper proposes a versatile MSTI framework with a coarse-to-fine paradigm, by augmenting sarcasm explainability with reasoning and pre-training knowledge. Inspired by the powerful capacity of Large Multimodal Models (LMMs) on multimodal reasoning, we first engage LMMs to generate competing rationales for coarser-grained pre-training of a small language model on multimodal sarcasm detection. We then propose fine-tuning the model for finer-grained sarcasm target identification. Our framework is thus empowered to adeptly unveil the intricate targets within multimodal sarcasm and mitigate the negative impact posed by potential noise inherently in LMMs. Experimental results demonstrate that our model far outperforms state-of-the-art MSTI methods, and markedly exhibits explainability in deciphering sarcasm as well.
comment: 25 pages, 7 figures, and 18 tables
☆ AdaMoLE: Fine-Tuning Large Language Models with Adaptive Mixture of Low-Rank Adaptation Experts
We introduce AdaMoLE, a novel method for fine-tuning large language models (LLMs) through an Adaptive Mixture of Low-Rank Adaptation (LoRA) Experts. Moving beyond conventional methods that employ a static top-k strategy for activating experts, AdaMoLE dynamically adjusts the activation threshold using a dedicated threshold network, adaptively responding to the varying complexities of different tasks. By replacing a single LoRA in a layer with multiple LoRA experts and integrating a gating function with the threshold mechanism, AdaMoLE effectively selects and activates the most appropriate experts based on the input context. Our extensive evaluations across a variety of commonsense reasoning and natural language processing tasks show that AdaMoLE exceeds baseline performance. This enhancement highlights the advantages of AdaMoLE's adaptive selection of LoRA experts, improving model effectiveness without a corresponding increase in the expert count. The experimental validation not only confirms AdaMoLE as a robust approach for enhancing LLMs but also suggests valuable directions for future research in adaptive expert selection mechanisms, potentially broadening the scope for optimizing model performance across diverse language processing tasks.
☆ A Careful Examination of Large Language Model Performance on Grade School Arithmetic
Large language models (LLMs) have achieved impressive success on many benchmarks for mathematical reasoning. However, there is growing concern that some of this performance actually reflects dataset contamination, where data closely resembling benchmark questions leaks into the training data, instead of true reasoning ability. To investigate this claim rigorously, we commission Grade School Math 1000 (GSM1k). GSM1k is designed to mirror the style and complexity of the established GSM8k benchmark, the gold standard for measuring elementary mathematical reasoning. We ensure that the two benchmarks are comparable across important metrics such as human solve rates, number of steps in solution, answer magnitude, and more. When evaluating leading open- and closed-source LLMs on GSM1k, we observe accuracy drops of up to 13%, with several families of models (e.g., Phi and Mistral) showing evidence of systematic overfitting across almost all model sizes. At the same time, many models, especially those on the frontier, (e.g., Gemini/GPT/Claude) show minimal signs of overfitting. Further analysis suggests a positive relationship (Spearman's r^2=0.32) between a model's probability of generating an example from GSM8k and its performance gap between GSM8k and GSM1k, suggesting that many models may have partially memorized GSM8k.
☆ DFKI-NLP at SemEval-2024 Task 2: Towards Robust LLMs Using Data Perturbations and MinMax Training
The NLI4CT task at SemEval-2024 emphasizes the development of robust models for Natural Language Inference on Clinical Trial Reports (CTRs) using large language models (LLMs). This edition introduces interventions specifically targeting the numerical, vocabulary, and semantic aspects of CTRs. Our proposed system harnesses the capabilities of the state-of-the-art Mistral model, complemented by an auxiliary model, to focus on the intricate input space of the NLI4CT dataset. Through the incorporation of numerical and acronym-based perturbations to the data, we train a robust system capable of handling both semantic-altering and numerical contradiction interventions. Our analysis on the dataset sheds light on the challenging sections of the CTRs for reasoning.
☆ Generating Feedback-Ladders for Logical Errors in Programming using Large Language Models
In feedback generation for logical errors in programming assignments, large language model (LLM)-based methods have shown great promise. These methods ask the LLM to generate feedback given the problem statement and a student's (buggy) submission. There are several issues with these types of methods. First, the generated feedback messages are often too direct in revealing the error in the submission and thus diminish valuable opportunities for the student to learn. Second, they do not consider the student's learning context, i.e., their previous submissions, current knowledge, etc. Third, they are not layered since existing methods use a single, shared prompt for all student submissions. In this paper, we explore using LLMs to generate a "feedback-ladder", i.e., multiple levels of feedback for the same problem-submission pair. We evaluate the quality of the generated feedback-ladder via a user study with students, educators, and researchers. We have observed diminishing effectiveness for higher-level feedback and higher-scoring submissions overall in the study. In practice, our method enables teachers to select an appropriate level of feedback to show to a student based on their personal learning context, or in a progressive manner to go more detailed if a higher-level feedback fails to correct the student's error.
☆ LITO: Learnable Intervention for Truthfulness Optimization
Large language models (LLMs) can generate long-form and coherent text, but they still frequently hallucinate facts, thus limiting their reliability. To address this issue, inference-time methods that elicit truthful responses have been proposed by shifting LLM representations towards learned "truthful directions". However, applying the truthful directions with the same intensity fails to generalize across different question contexts. We propose LITO, a Learnable Intervention method for Truthfulness Optimization that automatically identifies the optimal intervention intensity tailored to a specific context. LITO explores a sequence of model generations based on increasing levels of intervention intensities. It selects the most accurate response or refuses to answer when the predictions are highly uncertain. Experiments on multiple LLMs and question-answering datasets demonstrate that LITO improves truthfulness while preserving task accuracy. The adaptive nature of LITO counters issues with one-size-fits-all intervention-based solutions, maximizing model truthfulness by reflecting internal knowledge only when the model is confident.
comment: 14 pages, 5 figures
☆ How Can I Improve? Using GPT to Highlight the Desired and Undesired Parts of Open-ended Responses
Automated explanatory feedback systems play a crucial role in facilitating learning for a large cohort of learners by offering feedback that incorporates explanations, significantly enhancing the learning process. However, delivering such explanatory feedback in real-time poses challenges, particularly when high classification accuracy for domain-specific, nuanced responses is essential. Our study leverages the capabilities of large language models, specifically Generative Pre-Trained Transformers (GPT), to explore a sequence labeling approach focused on identifying components of desired and less desired praise for providing explanatory feedback within a tutor training dataset. Our aim is to equip tutors with actionable, explanatory feedback during online training lessons. To investigate the potential of GPT models for providing the explanatory feedback, we employed two commonly-used approaches: prompting and fine-tuning. To quantify the quality of highlighted praise components identified by GPT models, we introduced a Modified Intersection over Union (M-IoU) score. Our findings demonstrate that: (1) the M-IoU score effectively correlates with human judgment in evaluating sequence quality; (2) using two-shot prompting on GPT-3.5 resulted in decent performance in recognizing effort-based (M-IoU of 0.46) and outcome-based praise (M-IoU of 0.68); and (3) our optimally fine-tuned GPT-3.5 model achieved M-IoU scores of 0.64 for effort-based praise and 0.84 for outcome-based praise, aligning with the satisfaction levels evaluated by human coders. Our results show promise for using GPT models to provide feedback that focuses on specific elements in their open-ended responses that are desirable or could use improvement.
comment: 11 pages, full research paper, EDM 2024
☆ Adversarial Attacks and Defense for Conversation Entailment Task
Large language models (LLMs) that are proved to be very powerful on different NLP tasks. However, there are still many ways to attack the model with very low costs. How to defend the model becomes an important problem. In our work, we treat adversarial attack results as a new (unseen) domain of the model, and we frame the defending problem into how to improve the robustness of the model on the new domain. We focus on the task of conversation entailment, where multi-turn natural language dialogues are the premise, and the transformer model is fine-tuned to predict whether a given hypothesis about the given dialogue is true or false. The adversary would attack the hypothesis to fool the model to make the wrong predictions. We apply synonym-swapping as the attack method. To show the robustness of the model, we implement some fine-tuning strategies and propose the embedding perturbation loss as a method to improve the robustness of the model. Finally, we show the importance of our work by discussing the adversarial attacks in NLP in the real world.
☆ Social Life Simulation for Non-Cognitive Skills Learning
Non-cognitive skills are crucial for personal and social life well-being, and such skill development can be supported by narrative-based (e.g., storytelling) technologies. While generative AI enables interactive and role-playing storytelling, little is known about how users engage with and perceive the use of AI in social life simulation for non-cognitive skills learning. To this end, we introduced SimuLife++, an interactive platform enabled by a large language model (LLM). The system allows users to act as protagonists, creating stories with one or multiple AI-based characters in diverse social scenarios. In particular, we expanded the Human-AI interaction to a Human-AI-AI collaboration by including a sage agent, who acts as a bystander to provide users with more insightful perspectives on their choices and conversations. Through a within-subject user study, we found that the inclusion of the sage agent significantly enhanced narrative immersion, according to the narrative transportation scale, leading to more messages, particularly in group chats. Participants' interactions with the sage agent were also associated with significantly higher scores in their perceived motivation, self-perceptions, and resilience and coping, indicating positive impacts on non-cognitive skills reflection. Participants' interview results further explained the sage agent's aid in decision-making, solving ethical dilemmas, and problem-solving; on the other hand, they suggested improvements in user control and balanced responses from multiple characters. We provide design implications on the application of generative AI in narrative solutions for non-cognitive skill development in broader social contexts.
☆ Clover: Regressive Lightweight Speculative Decoding with Sequential Knowledge
Large language models (LLMs) suffer from low efficiency as the mismatch between the requirement of auto-regressive decoding and the design of most contemporary GPUs. Specifically, billions to trillions of parameters must be loaded to the GPU cache through its limited memory bandwidth for computation, but only a small batch of tokens is actually computed. Consequently, the GPU spends most of its time on memory transfer instead of computation. Recently, parallel decoding, a type of speculative decoding algorithms, is becoming more popular and has demonstrated impressive efficiency improvement in generation. It introduces extra decoding heads to large models, enabling them to predict multiple subsequent tokens simultaneously and verify these candidate continuations in a single decoding step. However, this approach deviates from the training objective of next token prediction used during pre-training, resulting in a low hit rate for candidate tokens. In this paper, we propose a new speculative decoding algorithm, Clover, which integrates sequential knowledge into the parallel decoding process. This enhancement improves the hit rate of speculators and thus boosts the overall efficiency. Clover transmits the sequential knowledge from pre-speculated tokens via the Regressive Connection, then employs an Attention Decoder to integrate these speculated tokens. Additionally, Clover incorporates an Augmenting Block that modifies the hidden states to better align with the purpose of speculative generation rather than next token prediction. The experiment results demonstrate that Clover outperforms the baseline by up to 91% on Baichuan-Small and 146% on Baichuan-Large, respectively, and exceeds the performance of the previously top-performing method, Medusa, by up to 37% on Baichuan-Small and 57% on Baichuan-Large, respectively.
☆ A Named Entity Recognition and Topic Modeling-based Solution for Locating and Better Assessment of Natural Disasters in Social Media
Over the last decade, similar to other application domains, social media content has been proven very effective in disaster informatics. However, due to the unstructured nature of the data, several challenges are associated with disaster analysis in social media content. To fully explore the potential of social media content in disaster informatics, access to relevant content and the correct geo-location information is very critical. In this paper, we propose a three-step solution to tackling these challenges. Firstly, the proposed solution aims to classify social media posts into relevant and irrelevant posts followed by the automatic extraction of location information from the posts' text through Named Entity Recognition (NER) analysis. Finally, to quickly analyze the topics covered in large volumes of social media posts, we perform topic modeling resulting in a list of top keywords, that highlight the issues discussed in the tweet. For the Relevant Classification of Twitter Posts (RCTP), we proposed a merit-based fusion framework combining the capabilities of four different models namely BERT, RoBERTa, Distil BERT, and ALBERT obtaining the highest F1-score of 0.933 on a benchmark dataset. For the Location Extraction from Twitter Text (LETT), we evaluated four models namely BERT, RoBERTa, Distil BERTA, and Electra in an NER framework obtaining the highest F1-score of 0.960. For topic modeling, we used the BERTopic library to discover the hidden topic patterns in the relevant tweets. The experimental results of all the components of the proposed end-to-end solution are very encouraging and hint at the potential of social media content and NLP in disaster management.
comment: 15 pages; 4 tables; 4 figures
☆ Characterising the Creative Process in Humans and Large Language Models
Large language models appear quite creative, often performing on par with the average human on creative tasks. However, research on LLM creativity has focused solely on \textit{products}, with little attention on the creative \textit{process}. Process analyses of human creativity often require hand-coded categories or exploit response times, which do not apply to LLMs. We provide an automated method to characterise how humans and LLMs explore semantic spaces on the Alternate Uses Task, and contrast with behaviour in a Verbal Fluency Task. We use sentence embeddings to identify response categories and compute semantic similarities, which we use to generate jump profiles. Our results corroborate earlier work in humans reporting both persistent (deep search in few semantic spaces) and flexible (broad search across multiple semantic spaces) pathways to creativity, where both pathways lead to similar creativity scores. LLMs were found to be biased towards either persistent or flexible paths, that varied across tasks. Though LLMs as a population match human profiles, their relationship with creativity is different, where the more flexible models score higher on creativity. Our dataset and scripts are available on \href{https://github.com/surabhisnath/Creative_Process}{GitHub}.
☆ DynaMo: Accelerating Language Model Inference with Dynamic Multi-Token Sampling NAACL 2024
Traditional language models operate autoregressively, i.e., they predict one token at a time. Rapid explosion in model sizes has resulted in high inference times. In this work, we propose DynaMo, a suite of multi-token prediction language models that reduce net inference times. Our models $\textit{dynamically}$ predict multiple tokens based on their confidence in the predicted joint probability distribution. We propose a lightweight technique to train these models, leveraging the weights of traditional autoregressive counterparts. Moreover, we propose novel ways to enhance the estimated joint probability to improve text generation quality, namely co-occurrence weighted masking and adaptive thresholding. We also propose systematic qualitative and quantitative methods to rigorously test the quality of generated text for non-autoregressive generation. One of the models in our suite, DynaMo-7.3B-T3, achieves same-quality generated text as the baseline (Pythia-6.9B) while achieving 2.57$\times$ speed-up with only 5.87% and 2.67% parameter and training time overheads, respectively.
comment: Accepted at NAACL 2024
☆ Math Multiple Choice Question Generation via Human-Large Language Model Collaboration
Multiple choice questions (MCQs) are a popular method for evaluating students' knowledge due to their efficiency in administration and grading. Crafting high-quality math MCQs is a labor-intensive process that requires educators to formulate precise stems and plausible distractors. Recent advances in large language models (LLMs) have sparked interest in automating MCQ creation, but challenges persist in ensuring mathematical accuracy and addressing student errors. This paper introduces a prototype tool designed to facilitate collaboration between LLMs and educators for streamlining the math MCQ generation process. We conduct a pilot study involving math educators to investigate how the tool can help them simplify the process of crafting high-quality math MCQs. We found that while LLMs can generate well-formulated question stems, their ability to generate distractors that capture common student errors and misconceptions is limited. Nevertheless, a human-AI collaboration has the potential to enhance the efficiency and effectiveness of MCQ generation.
comment: 17th International Conference on Educational Data Mining (EDM 2024)
☆ WIBA: What Is Being Argued? A Comprehensive Approach to Argument Mining
We propose WIBA, a novel framework and suite of methods that enable the comprehensive understanding of "What Is Being Argued" across contexts. Our approach develops a comprehensive framework that detects: (a) the existence, (b) the topic, and (c) the stance of an argument, correctly accounting for the logical dependence among the three tasks. Our algorithm leverages the fine-tuning and prompt-engineering of Large Language Models. We evaluate our approach and show that it performs well in all the three capabilities. First, we develop and release an Argument Detection model that can classify a piece of text as an argument with an F1 score between 79% and 86% on three different benchmark datasets. Second, we release a language model that can identify the topic being argued in a sentence, be it implicit or explicit, with an average similarity score of 71%, outperforming current naive methods by nearly 40%. Finally, we develop a method for Argument Stance Classification, and evaluate the capability of our approach, showing it achieves a classification F1 score between 71% and 78% across three diverse benchmark datasets. Our evaluation demonstrates that WIBA allows the comprehensive understanding of What Is Being Argued in large corpora across diverse contexts, which is of core interest to many applications in linguistics, communication, and social and computer science. To facilitate accessibility to the advancements outlined in this work, we release WIBA as a free open access platform (wiba.dev).
comment: 8 pages, 2 figures, submitted to The 16th International Conference on Advances in Social Networks Analysis and Mining (ASONAM) '24
☆ WorkBench: a Benchmark Dataset for Agents in a Realistic Workplace Setting
We introduce WorkBench: a benchmark dataset for evaluating agents' ability to execute tasks in a workplace setting. WorkBench contains a sandbox environment with five databases, 26 tools, and 690 tasks. These tasks represent common business activities, such as sending emails and scheduling meetings. The tasks in WorkBench are challenging as they require planning, tool selection, and often multiple actions. If a task has been successfully executed, one (or more) of the database values may change. The correct outcome for each task is unique and unambiguous, which allows for robust, automated evaluation. We call this key contribution outcome-centric evaluation. We evaluate five existing ReAct agents on WorkBench, finding they successfully complete as few as 3% of tasks (Llama2-70B), and just 43% for the best-performing (GPT-4). We further find that agents' errors can result in the wrong action being taken, such as an email being sent to the wrong person. WorkBench reveals weaknesses in agents' ability to undertake common business activities, raising questions about their use in high-stakes workplace settings. WorkBench is publicly available as a free resource at https://github.com/olly-styles/WorkBench.
☆ Uncovering Agendas: A Novel French & English Dataset for Agenda Detection on Social Media
The behavior and decision making of groups or communities can be dramatically influenced by individuals pushing particular agendas, e.g., to promote or disparage a person or an activity, to call for action, etc.. In the examination of online influence campaigns, particularly those related to important political and social events, scholars often concentrate on identifying the sources responsible for setting and controlling the agenda (e.g., public media). In this article we present a methodology for detecting specific instances of agenda control through social media where annotated data is limited or non-existent. By using a modest corpus of Twitter messages centered on the 2022 French Presidential Elections, we carry out a comprehensive evaluation of various approaches and techniques that can be applied to this problem. Our findings demonstrate that by treating the task as a textual entailment problem, it is possible to overcome the requirement for a large annotated training dataset.
☆ "Ask Me Anything": How Comcast Uses LLMs to Assist Agents in Real Time
Customer service is how companies interface with their customers. It can contribute heavily towards the overall customer satisfaction. However, high-quality service can become expensive, creating an incentive to make it as cost efficient as possible and prompting most companies to utilize AI-powered assistants, or "chat bots". On the other hand, human-to-human interaction is still desired by customers, especially when it comes to complex scenarios such as disputes and sensitive topics like bill payment. This raises the bar for customer service agents. They need to accurately understand the customer's question or concern, identify a solution that is acceptable yet feasible (and within the company's policy), all while handling multiple conversations at once. In this work, we introduce "Ask Me Anything" (AMA) as an add-on feature to an agent-facing customer service interface. AMA allows agents to ask questions to a large language model (LLM) on demand, as they are handling customer conversations -- the LLM provides accurate responses in real-time, reducing the amount of context switching the agent needs. In our internal experiments, we find that agents using AMA versus a traditional search experience spend approximately 10% fewer seconds per conversation containing a search, translating to millions of dollars of savings annually. Agents that used the AMA feature provided positive feedback nearly 80% of the time, demonstrating its usefulness as an AI-assisted feature for customer care.
☆ DAM: A Universal Dual Attention Mechanism for Multimodal Timeseries Cryptocurrency Trend Forecasting
In the distributed systems landscape, Blockchain has catalyzed the rise of cryptocurrencies, merging enhanced security and decentralization with significant investment opportunities. Despite their potential, current research on cryptocurrency trend forecasting often falls short by simplistically merging sentiment data without fully considering the nuanced interplay between financial market dynamics and external sentiment influences. This paper presents a novel Dual Attention Mechanism (DAM) for forecasting cryptocurrency trends using multimodal time-series data. Our approach, which integrates critical cryptocurrency metrics with sentiment data from news and social media analyzed through CryptoBERT, addresses the inherent volatility and prediction challenges in cryptocurrency markets. By combining elements of distributed systems, natural language processing, and financial forecasting, our method outperforms conventional models like LSTM and Transformer by up to 20\% in prediction accuracy. This advancement deepens the understanding of distributed systems and has practical implications in financial markets, benefiting stakeholders in cryptocurrency and blockchain technologies. Moreover, our enhanced forecasting approach can significantly support decentralized science (DeSci) by facilitating strategic planning and the efficient adoption of blockchain technologies, improving operational efficiency and financial risk management in the rapidly evolving digital asset domain, thus ensuring optimal resource allocation.
♻ ☆ Large Language Models as Zero-shot Dialogue State Tracker through Function Calling
Large language models (LLMs) are increasingly prevalent in conversational systems due to their advanced understanding and generative capabilities in general contexts. However, their effectiveness in task-oriented dialogues (TOD), which requires not only response generation but also effective dialogue state tracking (DST) within specific tasks and domains, remains less satisfying. In this work, we propose a novel approach FnCTOD for solving DST with LLMs through function calling. This method improves zero-shot DST, allowing adaptation to diverse domains without extensive data collection or model tuning. Our experimental results demonstrate that our approach achieves exceptional performance with both modestly sized open-source and also proprietary LLMs: with in-context prompting it enables various 7B or 13B parameter models to surpass the previous state-of-the-art (SOTA) achieved by ChatGPT, and improves ChatGPT's performance beating the SOTA by 5.6% average joint goal accuracy (JGA). Individual model results for GPT-3.5 and GPT-4 are boosted by 4.8% and 14%, respectively. We also show that by fine-tuning on a small collection of diverse task-oriented dialogues, we can equip modest at https://github.com/facebookresearch/FnCTOD
comment: More results in the next version. Code available at: https://github.com/facebookresearch/FnCTOD
♻ ☆ GRASP: A Rehearsal Policy for Efficient Online Continual Learning
Continual learning (CL) in deep neural networks (DNNs) involves incrementally accumulating knowledge in a DNN from a growing data stream. A major challenge in CL is that non-stationary data streams cause catastrophic forgetting of previously learned abilities. A popular solution is rehearsal: storing past observations in a buffer and then sampling the buffer to update the DNN. Uniform sampling in a class-balanced manner is highly effective, and better sample selection policies have been elusive. Here, we propose a new sample selection policy called GRASP that selects the most prototypical (easy) samples first and then gradually selects less prototypical (harder) examples. GRASP has little additional compute or memory overhead compared to uniform selection, enabling it to scale to large datasets. Compared to 17 other rehearsal policies, GRASP achieves higher accuracy in CL experiments on ImageNet. Compared to uniform balanced sampling, GRASP achieves the same performance with 40% fewer updates. We also show that GRASP is effective for CL on five text classification datasets.
comment: Accepted to the Conference on Lifelong Learning Agents (CoLLAs) 2024
♻ ☆ Capabilities of Gemini Models in Medicine
Excellence in a wide variety of medical applications poses considerable challenges for AI, requiring advanced reasoning, access to up-to-date medical knowledge and understanding of complex multimodal data. Gemini models, with strong general capabilities in multimodal and long-context reasoning, offer exciting possibilities in medicine. Building on these core strengths of Gemini, we introduce Med-Gemini, a family of highly capable multimodal models that are specialized in medicine with the ability to seamlessly use web search, and that can be efficiently tailored to novel modalities using custom encoders. We evaluate Med-Gemini on 14 medical benchmarks, establishing new state-of-the-art (SoTA) performance on 10 of them, and surpass the GPT-4 model family on every benchmark where a direct comparison is viable, often by a wide margin. On the popular MedQA (USMLE) benchmark, our best-performing Med-Gemini model achieves SoTA performance of 91.1% accuracy, using a novel uncertainty-guided search strategy. On 7 multimodal benchmarks including NEJM Image Challenges and MMMU (health & medicine), Med-Gemini improves over GPT-4V by an average relative margin of 44.5%. We demonstrate the effectiveness of Med-Gemini's long-context capabilities through SoTA performance on a needle-in-a-haystack retrieval task from long de-identified health records and medical video question answering, surpassing prior bespoke methods using only in-context learning. Finally, Med-Gemini's performance suggests real-world utility by surpassing human experts on tasks such as medical text summarization, alongside demonstrations of promising potential for multimodal medical dialogue, medical research and education. Taken together, our results offer compelling evidence for Med-Gemini's potential, although further rigorous evaluation will be crucial before real-world deployment in this safety-critical domain.
♻ ☆ Measuring and Controlling Instruction (In)Stability in Language Model Dialogs
System-prompting is a standard tool for customizing language-model chatbots, enabling them to follow a specific instruction. An implicit assumption in the use of system prompts is that they will be stable, so the chatbot will continue to generate text according to the stipulated instructions for the duration of a conversation. We propose a quantitative benchmark to test this assumption, evaluating instruction stability via self-chats between two instructed chatbots. Testing popular models like LLaMA2-chat-70B and GPT-3.5, we reveal a significant instruction drift within eight rounds of conversations. An empirical and theoretical analysis of this phenomenon suggests the transformer attention mechanism plays a role, due to attention decay over long exchanges. To combat attention decay and instruction drift, we propose a lightweight method called split-softmax, which compares favorably against two strong baselines.
comment: Code: https://github.com/likenneth/persona_drift
♻ ☆ Reverse Training to Nurse the Reversal Curse
Large language models (LLMs) have a surprising failure: when trained on "A has a feature B", they do not generalize to "B is a feature of A", which is termed the Reversal Curse. Even when training with trillions of tokens this issue still appears due to Zipf's law - hence even if we train on the entire internet. This work proposes an alternative training scheme, called reverse training, whereby all words are used twice, doubling the amount of available tokens. The LLM is trained in both forward and reverse directions by reversing the training strings while preserving (i.e., not reversing) chosen substrings, such as entities. We show that data-matched reverse-trained models provide superior performance to standard models on standard tasks, and compute-matched reverse-trained models provide far superior performance on reversal tasks, helping resolve the reversal curse issue.
♻ ☆ Replacing Judges with Juries: Evaluating LLM Generations with a Panel of Diverse Models
As Large Language Models (LLMs) have become more advanced, they have outpaced our abilities to accurately evaluate their quality. Not only is finding data to adequately probe particular model properties difficult, but evaluating the correctness of a model's freeform generation alone is a challenge. To address this, many evaluations now rely on using LLMs themselves as judges to score the quality of outputs from other LLMs. Evaluations most commonly use a single large model like GPT4. While this method has grown in popularity, it is costly, has been shown to introduce intramodel bias, and in this work, we find that very large models are often unnecessary. We propose instead to evaluate models using a Panel of LLm evaluators (PoLL). Across three distinct judge settings and spanning six different datasets, we find that using a PoLL composed of a larger number of smaller models outperforms a single large judge, exhibits less intra-model bias due to its composition of disjoint model families, and does so while being over seven times less expensive.
♻ ☆ Exploring the Robustness of In-Context Learning with Noisy Labels ICLR 2024
Recently, the mysterious In-Context Learning (ICL) ability exhibited by Transformer architectures, especially in large language models (LLMs), has sparked significant research interest. However, the resilience of Transformers' in-context learning capabilities in the presence of noisy samples, prevalent in both training corpora and prompt demonstrations, remains underexplored. In this paper, inspired by prior research that studies ICL ability using simple function classes, we take a closer look at this problem by investigating the robustness of Transformers against noisy labels. Specifically, we first conduct a thorough evaluation and analysis of the robustness of Transformers against noisy labels during in-context learning and show that they exhibit notable resilience against diverse types of noise in demonstration labels. Furthermore, we delve deeper into this problem by exploring whether introducing noise into the training set, akin to a form of data augmentation, enhances such robustness during inference, and find that such noise can indeed improve the robustness of ICL. Overall, our fruitful analysis and findings provide a comprehensive understanding of the resilience of Transformer models against label noises during ICL and provide valuable insights into the research on Transformers in natural language processing. Our code is available at https://github.com/InezYu0928/in-context-learning.
comment: ICLR 2024 Workshop on Reliable and Responsible Foundation Models
♻ ☆ ProCoT: Stimulating Critical Thinking and Writing of Students through Engagement with Large Language Models (LLMs)
We introduce a novel writing method called Probing Chain-of-Thought (ProCoT), which potentially prevents students from cheating using a Large Language Model (LLM), such as ChatGPT, while enhancing their active learning. LLMs have disrupted education and many other fields. For fear of students cheating, many have resorted to banning their use. These LLMs are also known for hallucinations. We conduct studies with ProCoT in two different courses with 65 students. The students in each course were asked to prompt an LLM of their choice with one question from a set of four and required to affirm or refute statements in the LLM output by using peer-reviewed references. The results show two things: (1) ProCoT stimulates creative/critical thinking and writing of students through engagement with LLMs when we compare the LLM-only output to ProCoT output and (2) ProCoT can prevent cheating because of clear limitations in existing LLMs, particularly ChatGPT, when we compare students' ProCoT output to LLM ProCoT output. We also discover that most students prefer to give answers in fewer words than LLMs, which are typically verbose. The average word counts for students in the first course, ChatGPT (v3.5), and Phind (v8) are 208, 391 and 383, respectively.
comment: 8 pages, 4 figures
♻ ☆ The Power of Noise: Redefining Retrieval for RAG Systems
Retrieval-Augmented Generation (RAG) has recently emerged as a method to extend beyond the pre-trained knowledge of Large Language Models by augmenting the original prompt with relevant passages or documents retrieved by an Information Retrieval (IR) system. RAG has become increasingly important for Generative AI solutions, especially in enterprise settings or in any domain in which knowledge is constantly refreshed and cannot be memorized in the LLM. We argue here that the retrieval component of RAG systems, be it dense or sparse, deserves increased attention from the research community, and accordingly, we conduct the first comprehensive and systematic examination of the retrieval strategy of RAG systems. We focus, in particular, on the type of passages IR systems within a RAG solution should retrieve. Our analysis considers multiple factors, such as the relevance of the passages included in the prompt context, their position, and their number. One counter-intuitive finding of this work is that the retriever's highest-scoring documents that are not directly relevant to the query (e.g., do not contain the answer) negatively impact the effectiveness of the LLM. Even more surprising, we discovered that adding random documents in the prompt improves the LLM accuracy by up to 35%. These results highlight the need to investigate the appropriate strategies when integrating retrieval with LLMs, thereby laying the groundwork for future research in this area.
♻ ☆ Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems
Conversational recommender systems (CRS) utilize natural language interactions and dialogue history to infer user preferences and provide accurate recommendations. Due to the limited conversation context and background knowledge, existing CRSs rely on external sources such as knowledge graphs to enrich the context and model entities based on their inter-relations. However, these methods ignore the rich intrinsic information within entities. To address this, we introduce the Knowledge-Enhanced Entity Representation Learning (KERL) framework, which leverages both the knowledge graph and a pre-trained language model to improve the semantic understanding of entities for CRS. In our KERL framework, entity textual descriptions are encoded via a pre-trained language model, while a knowledge graph helps reinforce the representation of these entities. We also employ positional encoding to effectively capture the temporal information of entities in a conversation. The enhanced entity representation is then used to develop a recommender component that fuses both entity and contextual representations for more informed recommendations, as well as a dialogue component that generates informative entity-related information in the response text. A high-quality knowledge graph with aligned entity descriptions is constructed to facilitate our study, namely the Wiki Movie Knowledge Graph (WikiMKG). The experimental results show that KERL achieves state-of-the-art results in both recommendation and response generation tasks.
comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
♻ ☆ QuanTemp: A real-world open-domain benchmark for fact-checking numerical claims SIGIR
Automated fact checking has gained immense interest to tackle the growing misinformation in the digital era. Existing systems primarily focus on synthetic claims on Wikipedia, and noteworthy progress has also been made on real-world claims. In this work, we release QuanTemp, a diverse, multi-domain dataset focused exclusively on numerical claims, encompassing temporal, statistical and diverse aspects with fine-grained metadata and an evidence collection without leakage. This addresses the challenge of verifying real-world numerical claims, which are complex and often lack precise information, not addressed by existing works that mainly focus on synthetic claims. We evaluate and quantify the limitations of existing solutions for the task of verifying numerical claims. We also evaluate claim decomposition based methods, numerical understanding based models and our best baselines achieves a macro-F1 of 58.32. This demonstrates that QuanTemp serves as a challenging evaluation set for numerical claim verification.
comment: 11 pages, 1 figure,Accepted for publication at the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2024)
♻ ☆ UNcommonsense Reasoning: Abductive Reasoning about Uncommon Situations NAACL'24
Language technologies that accurately model the dynamics of events must perform commonsense reasoning. Existing work evaluating commonsense reasoning focuses on making inferences about common, everyday situations. To instead investigate the ability to model unusual, unexpected, and unlikely situations, we explore the task of uncommonsense abductive reasoning. Given a piece of context with an unexpected outcome, this task requires reasoning abductively to generate an explanation that makes the unexpected outcome more likely in the context. To this end, we curate and release a new English language corpus called UNcommonsense. We characterize the performance differences between human explainers and the best-performing large language models, finding that model-enhanced human-written explanations achieve the highest quality by trading off between specificity and diversity. Finally, we experiment with several imitation learning algorithms to train open and accessible language models on this task. When compared with the vanilla supervised fine-tuning approach, these methods consistently reduce lose rates on both common and uncommonsense abductive reasoning judged by human evaluators.
comment: accepted at NAACL'24
♻ ☆ DINOISER: Diffused Conditional Sequence Learning by Manipulating Noises ACL
While diffusion models have achieved great success in generating continuous signals such as images and audio, it remains elusive for diffusion models in learning discrete sequence data like natural languages. Although recent advances circumvent this challenge of discreteness by embedding discrete tokens as continuous surrogates, they still fall short of satisfactory generation quality. To understand this, we first dive deep into the denoised training protocol of diffusion-based sequence generative models and determine their three severe problems, i.e., 1) failing to learn, 2) lack of scalability, and 3) neglecting source conditions. We argue that these problems can be boiled down to the pitfall of the not completely eliminated discreteness in the embedding space, and the scale of noises is decisive herein. In this paper, we introduce DINOISER to facilitate diffusion models for sequence generation by manipulating noises. We propose to adaptively determine the range of sampled noise scales for counter-discreteness training; and encourage the proposed diffused sequence learner to leverage source conditions with amplified noise scales during inference. Experiments show that DINOISER enables consistent improvement over the baselines of previous diffusion-based sequence generative models on several conditional sequence modeling benchmarks thanks to both effective training and inference strategies. Analyses further verify that DINOISER can make better use of source conditions to govern its generative process.
comment: camera-ready version, accepted by Transaction of ACL (TACL)
♻ ☆ Graphene: Infrastructure Security Posture Analysis with AI-generated Attack Graphs
The rampant occurrence of cybersecurity breaches imposes substantial limitations on the progress of network infrastructures, leading to compromised data, financial losses, potential harm to individuals, and disruptions in essential services. The current security landscape demands the urgent development of a holistic security assessment solution that encompasses vulnerability analysis and investigates the potential exploitation of these vulnerabilities as attack paths. In this paper, we propose Graphene, an advanced system designed to provide a detailed analysis of the security posture of computing infrastructures. Using user-provided information, such as device details and software versions, Graphene performs a comprehensive security assessment. This assessment includes identifying associated vulnerabilities and constructing potential attack graphs that adversaries can exploit. Furthermore, Graphene evaluates the exploitability of these attack paths and quantifies the overall security posture through a scoring mechanism. The system takes a holistic approach by analyzing security layers encompassing hardware, system, network, and cryptography. Furthermore, Graphene delves into the interconnections between these layers, exploring how vulnerabilities in one layer can be leveraged to exploit vulnerabilities in others. In this paper, we present the end-to-end pipeline implemented in Graphene, showcasing the systematic approach adopted for conducting this thorough security analysis.
♻ ☆ Response: Emergent analogical reasoning in large language models
In their recent Nature Human Behaviour paper, "Emergent analogical reasoning in large language models," (Webb, Holyoak, and Lu, 2023) the authors argue that "large language models such as GPT-3 have acquired an emergent ability to find zero-shot solutions to a broad range of analogy problems." In this response, we provide counterexamples of the letter string analogies. In our tests, GPT-3 fails to solve simplest variations of the original tasks, whereas human performance remains consistently high across all modified versions. Zero-shot reasoning is an extraordinary claim that requires extraordinary evidence. We do not see that evidence in our experiments. To strengthen claims of humanlike reasoning such as zero-shot reasoning, it is important that the field develop approaches that rule out data memorization.
comment: Response to publication in Nature Human Behaviour titled "Emergent analogical reasoning in large language models," (Webb, Holyoak, and Lu, 2023, arXiv:2212.09196). 14 pages
♻ ☆ A Watermark for Large Language Models ICML 2023
Potential harms of large language models can be mitigated by watermarking model output, i.e., embedding signals into generated text that are invisible to humans but algorithmically detectable from a short span of tokens. We propose a watermarking framework for proprietary language models. The watermark can be embedded with negligible impact on text quality, and can be detected using an efficient open-source algorithm without access to the language model API or parameters. The watermark works by selecting a randomized set of "green" tokens before a word is generated, and then softly promoting use of green tokens during sampling. We propose a statistical test for detecting the watermark with interpretable p-values, and derive an information-theoretic framework for analyzing the sensitivity of the watermark. We test the watermark using a multi-billion parameter model from the Open Pretrained Transformer (OPT) family, and discuss robustness and security.
comment: 13 pages in the main body. Published at ICML 2023. Code is available at github.com/jwkirchenbauer/lm-watermarking
♻ ☆ Robust Pronoun Fidelity with English LLMs: Are they Reasoning, Repeating, or Just Biased?
Robust, faithful and harm-free pronoun use for individuals is an important goal for language models as their use increases, but prior work tends to study only one or two of these characteristics at a time. To measure progress towards the combined goal, we introduce the task of pronoun fidelity: given a context introducing a co-referring entity and pronoun, the task is to reuse the correct pronoun later. We present RUFF, a carefully-designed dataset of over 5 million instances to measure robust pronoun fidelity in English, and we evaluate 37 popular large language models across architectures (encoder-only, decoder-only and encoder-decoder) and scales (11M-70B parameters). When an individual is introduced with a pronoun, models can mostly faithfully reuse this pronoun in the next sentence, but they are significantly worse with she/her/her, singular they and neopronouns. Moreover, models are easily distracted by non-adversarial sentences discussing other people; even one additional sentence with a distractor pronoun causes accuracy to drop on average by 34%. Our results show that pronoun fidelity is neither robust, nor due to reasoning, in a simple, naturalistic setting where humans achieve nearly 100% accuracy. We encourage researchers to bridge the gaps we find and to carefully evaluate reasoning in settings where superficial repetition might inflate perceptions of model performance.
♻ ☆ On the Reliability of Watermarks for Large Language Models ICLR 2024
As LLMs become commonplace, machine-generated text has the potential to flood the internet with spam, social media bots, and valueless content. Watermarking is a simple and effective strategy for mitigating such harms by enabling the detection and documentation of LLM-generated text. Yet a crucial question remains: How reliable is watermarking in realistic settings in the wild? There, watermarked text may be modified to suit a user's needs, or entirely rewritten to avoid detection. We study the robustness of watermarked text after it is re-written by humans, paraphrased by a non-watermarked LLM, or mixed into a longer hand-written document. We find that watermarks remain detectable even after human and machine paraphrasing. While these attacks dilute the strength of the watermark, paraphrases are statistically likely to leak n-grams or even longer fragments of the original text, resulting in high-confidence detections when enough tokens are observed. For example, after strong human paraphrasing the watermark is detectable after observing 800 tokens on average, when setting a 1e-5 false positive rate. We also consider a range of new detection schemes that are sensitive to short spans of watermarked text embedded inside a large document, and we compare the robustness of watermarking to other kinds of detectors.
comment: 9 pages in the main body. Published at ICLR 2024. Code is available at https://github.com/jwkirchenbauer/lm-watermarking
♻ ☆ Iterative Translation Refinement with Large Language Models
We propose iteratively prompting a large language model to self-correct a translation, with inspiration from their strong language understanding and translation capability as well as a human-like translation approach. Interestingly, multi-turn querying reduces the output's string-based metric scores, but neural metrics suggest comparable or improved quality. Human evaluations indicate better fluency and naturalness compared to initial translations and even human references, all while maintaining quality. Ablation studies underscore the importance of anchoring the refinement to the source and a reasonable seed translation for quality considerations. We also discuss the challenges in evaluation and relation to human performance and translationese.
♻ ☆ LLM Inference Unveiled: Survey and Roofline Model Insights
The field of efficient Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges. Although the field has expanded and is vibrant, there hasn't been a concise framework that analyzes the various methods of LLM Inference to provide a clear understanding of this domain. Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model for systematic analysis of LLM inference techniques. This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems, such as why LLMs are memory-bound, how much memory and computation they need, and how to choose the right hardware. We systematically collate the latest advancements in efficient LLM inference, covering crucial areas such as model compression (e.g., Knowledge Distillation and Quantization), algorithm improvements (e.g., Early Exit and Mixture-of-Expert), and both hardware and system-level enhancements. Our survey stands out by analyzing these methods with roofline model, helping us understand their impact on memory access and computation. This distinctive approach not only showcases the current research landscape but also delivers valuable insights for practical implementation, positioning our work as an indispensable resource for researchers new to the field as well as for those seeking to deepen their understanding of efficient LLM deployment. The analyze tool, LLM-Viewer, is open-sourced.
♻ ☆ A Framework for Real-time Safeguarding the Text Generation of Large Language Model
Large Language Models (LLMs) have significantly advanced natural language processing (NLP) tasks but also pose ethical and societal risks due to their propensity to generate harmful content. To address this, various approaches have been developed to safeguard LLMs from producing unsafe content. However, existing methods have limitations, including the need for training specific control models and proactive intervention during text generation, that lead to quality degradation and increased computational overhead. To mitigate those limitations, we propose LLMSafeGuard, a lightweight framework to safeguard LLM text generation in real-time. LLMSafeGuard integrates an external validator into the beam search algorithm during decoding, rejecting candidates that violate safety constraints while allowing valid ones to proceed. We introduce a similarity based validation approach, simplifying constraint introduction and eliminating the need for control model training. Additionally, LLMSafeGuard employs a context-wise timing selection strategy, intervening LLMs only when necessary. We evaluate LLMSafeGuard on two tasks, detoxification and copyright safeguarding, and demonstrate its superior performance over SOTA baselines. For instance, LLMSafeGuard reduces the average toxic score of. LLM output by 29.7% compared to the best baseline meanwhile preserving similar linguistic quality as natural output in detoxification task. Similarly, in the copyright task, LLMSafeGuard decreases the Longest Common Subsequence (LCS) by 56.2% compared to baselines. Moreover, our context-wise timing selection strategy reduces inference time by at least 24% meanwhile maintaining comparable effectiveness as validating each time step. LLMSafeGuard also offers tunable parameters to balance its effectiveness and efficiency.
♻ ☆ Identifying Fairness Issues in Automatically Generated Testing Content
Natural language generation tools are powerful and effective for generating content. However, language models are known to display bias and fairness issues, making them impractical to deploy for many use cases. We here focus on how fairness issues impact automatically generated test content, which can have stringent requirements to ensure the test measures only what it was intended to measure. Specifically, we review test content generated for a large-scale standardized English proficiency test with the goal of identifying content that only pertains to a certain subset of the test population as well as content that has the potential to be upsetting or distracting to some test takers. Issues like these could inadvertently impact a test taker's score and thus should be avoided. This kind of content does not reflect the more commonly-acknowledged biases, making it challenging even for modern models that contain safeguards. We build a dataset of 601 generated texts annotated for fairness and explore a variety of methods for classification: fine-tuning, topic-based classification, and prompting, including few-shot and self-correcting prompts. We find that combining prompt self-correction and few-shot learning performs best, yielding an F1 score of 0.79 on our held-out test set, while much smaller BERT- and topic-based models have competitive performance on out-of-domain data.
comment: 19 pages, 4 figures, accepted to the 19th Workshop on Innovative Use of NLP for Building Educational Applications
♻ ☆ Loose LIPS Sink Ships: Asking Questions in Battleship with Language-Informed Program Sampling
Questions combine our mastery of language with our remarkable facility for reasoning about uncertainty. How do people navigate vast hypothesis spaces to pose informative questions given limited cognitive resources? We study these tradeoffs in a classic grounded question-asking task based on the board game Battleship. Our language-informed program sampling (LIPS) model uses large language models (LLMs) to generate natural language questions, translate them into symbolic programs, and evaluate their expected information gain. We find that with a surprisingly modest resource budget, this simple Monte Carlo optimization strategy yields informative questions that mirror human performance across varied Battleship board scenarios. In contrast, LLM-only baselines struggle to ground questions in the board state; notably, GPT-4V provides no improvement over non-visual baselines. Our results illustrate how Bayesian models of question-asking can leverage the statistics of language to capture human priors, while highlighting some shortcomings of pure LLMs as grounded reasoners.
comment: Accepted to CogSci 2024
♻ ☆ Converting Representational Counterfactuals to Natural Language
Interventions targeting the representation space of language models (LMs) have emerged as an effective means to influence model behavior. Such methods are employed, for example, to eliminate or alter the encoding of demographic information such as gender within the model's representations and, in so doing, create a counterfactual representation. However, because the intervention operates within the representation space, understanding precisely what aspects of the text it modifies poses a challenge. In this paper, we give a method to convert representation counterfactuals into string counterfactuals. We demonstrate that this approach enables us to analyze the linguistic alterations corresponding to a given representation space intervention and to interpret the features utilized to encode a specific concept. Moreover, the resulting counterfactuals can be used to mitigate bias in classification through data augmentation.
comment: Preprint
Computer Vision and Pattern Recognition 103
☆ Spectrally Pruned Gaussian Fields with Neural Compensation
Recently, 3D Gaussian Splatting, as a novel 3D representation, has garnered attention for its fast rendering speed and high rendering quality. However, this comes with high memory consumption, e.g., a well-trained Gaussian field may utilize three million Gaussian primitives and over 700 MB of memory. We credit this high memory footprint to the lack of consideration for the relationship between primitives. In this paper, we propose a memory-efficient Gaussian field named SUNDAE with spectral pruning and neural compensation. On one hand, we construct a graph on the set of Gaussian primitives to model their relationship and design a spectral down-sampling module to prune out primitives while preserving desired signals. On the other hand, to compensate for the quality loss of pruning Gaussians, we exploit a lightweight neural network head to mix splatted features, which effectively compensates for quality losses while capturing the relationship between primitives in its weights. We demonstrate the performance of SUNDAE with extensive results. For example, SUNDAE can achieve 26.80 PSNR at 145 FPS using 104 MB memory while the vanilla Gaussian splatting algorithm achieves 25.60 PSNR at 160 FPS using 523 MB memory, on the Mip-NeRF360 dataset. Codes are publicly available at https://runyiyang.github.io/projects/SUNDAE/.
comment: Code: https://github.com/RunyiYang/SUNDAE Project page: https://runyiyang.github.io/projects/SUNDAE/
☆ TexSliders: Diffusion-Based Texture Editing in CLIP Space SIGGRAPH 2024
Generative models have enabled intuitive image creation and manipulation using natural language. In particular, diffusion models have recently shown remarkable results for natural image editing. In this work, we propose to apply diffusion techniques to edit textures, a specific class of images that are an essential part of 3D content creation pipelines. We analyze existing editing methods and show that they are not directly applicable to textures, since their common underlying approach, manipulating attention maps, is unsuitable for the texture domain. To address this, we propose a novel approach that instead manipulates CLIP image embeddings to condition the diffusion generation. We define editing directions using simple text prompts (e.g., "aged wood" to "new wood") and map these to CLIP image embedding space using a texture prior, with a sampling-based approach that gives us identity-preserving directions in CLIP space. To further improve identity preservation, we project these directions to a CLIP subspace that minimizes identity variations resulting from entangled texture attributes. Our editing pipeline facilitates the creation of arbitrary sliders using natural language prompts only, with no ground-truth annotated data necessary.
comment: SIGGRAPH 2024 Conference Proceedings
☆ Adapting Pretrained Networks for Image Quality Assessment on High Dynamic Range Displays
Conventional image quality metrics (IQMs), such as PSNR and SSIM, are designed for perceptually uniform gamma-encoded pixel values and cannot be directly applied to perceptually non-uniform linear high-dynamic-range (HDR) colors. Similarly, most of the available datasets consist of standard-dynamic-range (SDR) images collected in standard and possibly uncontrolled viewing conditions. Popular pre-trained neural networks are likewise intended for SDR inputs, restricting their direct application to HDR content. On the other hand, training HDR models from scratch is challenging due to limited available HDR data. In this work, we explore more effective approaches for training deep learning-based models for image quality assessment (IQA) on HDR data. We leverage networks pre-trained on SDR data (source domain) and re-target these models to HDR (target domain) with additional fine-tuning and domain adaptation. We validate our methods on the available HDR IQA datasets, demonstrating that models trained with our combined recipe outperform previous baselines, converge much quicker, and reliably generalize to HDR inputs.
comment: 7 pages, 3 figures, 3 tables. Submitted to Human Vision and Electronic Imaging 2024 (HVEI)
☆ RGB$\leftrightarrow$X: Image decomposition and synthesis using material- and lighting-aware diffusion models
The three areas of realistic forward rendering, per-pixel inverse rendering, and generative image synthesis may seem like separate and unrelated sub-fields of graphics and vision. However, recent work has demonstrated improved estimation of per-pixel intrinsic channels (albedo, roughness, metallicity) based on a diffusion architecture; we call this the RGB$\rightarrow$X problem. We further show that the reverse problem of synthesizing realistic images given intrinsic channels, X$\rightarrow$RGB, can also be addressed in a diffusion framework. Focusing on the image domain of interior scenes, we introduce an improved diffusion model for RGB$\rightarrow$X, which also estimates lighting, as well as the first diffusion X$\rightarrow$RGB model capable of synthesizing realistic images from (full or partial) intrinsic channels. Our X$\rightarrow$RGB model explores a middle ground between traditional rendering and generative models: we can specify only certain appearance properties that should be followed, and give freedom to the model to hallucinate a plausible version of the rest. This flexibility makes it possible to use a mix of heterogeneous training datasets, which differ in the available channels. We use multiple existing datasets and extend them with our own synthetic and real data, resulting in a model capable of extracting scene properties better than previous work and of generating highly realistic images of interior scenes.
☆ Grains of Saliency: Optimizing Saliency-based Training of Biometric Attack Detection Models
Incorporating human-perceptual intelligence into model training has shown to increase the generalization capability of models in several difficult biometric tasks, such as presentation attack detection (PAD) and detection of synthetic samples. After the initial collection phase, human visual saliency (e.g., eye-tracking data, or handwritten annotations) can be integrated into model training through attention mechanisms, augmented training samples, or through human perception-related components of loss functions. Despite their successes, a vital, but seemingly neglected, aspect of any saliency-based training is the level of salience granularity (e.g., bounding boxes, single saliency maps, or saliency aggregated from multiple subjects) necessary to find a balance between reaping the full benefits of human saliency and the cost of its collection. In this paper, we explore several different levels of salience granularity and demonstrate that increased generalization capabilities of PAD and synthetic face detection can be achieved by using simple yet effective saliency post-processing techniques across several different CNNs.
comment: 10 pages, 3 figures
☆ Learning to Compose: Improving Object Centric Learning by Injecting Compositionality
Learning compositional representation is a key aspect of object-centric learning as it enables flexible systematic generalization and supports complex visual reasoning. However, most of the existing approaches rely on auto-encoding objective, while the compositionality is implicitly imposed by the architectural or algorithmic bias in the encoder. This misalignment between auto-encoding objective and learning compositionality often results in failure of capturing meaningful object representations. In this study, we propose a novel objective that explicitly encourages compositionality of the representations. Built upon the existing object-centric learning framework (e.g., slot attention), our method incorporates additional constraints that an arbitrary mixture of object representations from two images should be valid by maximizing the likelihood of the composite data. We demonstrate that incorporating our objective to the existing framework consistently improves the objective-centric learning and enhances the robustness to the architectural choices.
☆ Deep Metric Learning-Based Out-of-Distribution Detection with Synthetic Outlier Exposure
In this paper, we present a novel approach that combines deep metric learning and synthetic data generation using diffusion models for out-of-distribution (OOD) detection. One popular approach for OOD detection is outlier exposure, where models are trained using a mixture of in-distribution (ID) samples and ``seen" OOD samples. For the OOD samples, the model is trained to minimize the KL divergence between the output probability and the uniform distribution while correctly classifying the in-distribution (ID) data. In this paper, we propose a label-mixup approach to generate synthetic OOD data using Denoising Diffusion Probabilistic Models (DDPMs). Additionally, we explore recent advancements in metric learning to train our models. In the experiments, we found that metric learning-based loss functions perform better than the softmax. Furthermore, the baseline models (including softmax, and metric learning) show a significant improvement when trained with the generated OOD data. Our approach outperforms strong baselines in conventional OOD detection metrics.
☆ Depth Priors in Removal Neural Radiance Fields
Neural Radiance Fields (NeRF) have shown impressive results in 3D reconstruction and generating novel views. A key challenge within NeRF is the editing of reconstructed scenes, such as object removal, which requires maintaining consistency across multiple views and ensuring high-quality synthesised perspectives. Previous studies have incorporated depth priors, typically from LiDAR or sparse depth measurements provided by COLMAP, to improve the performance of object removal in NeRF. However, these methods are either costly or time-consuming. In this paper, we propose a novel approach that integrates monocular depth estimates with NeRF-based object removal models to significantly reduce time consumption and enhance the robustness and quality of scene generation and object removal. We conducted a thorough evaluation of COLMAP's dense depth reconstruction on the KITTI dataset to verify its accuracy in depth map generation. Our findings suggest that COLMAP can serve as an effective alternative to a ground truth depth map where such information is missing or costly to obtain. Additionally, we integrated various monocular depth estimation methods into the removal NeRF model, i.e., SpinNeRF, to assess their capacity to improve object removal performance. Our experimental results highlight the potential of monocular depth estimation to substantially improve NeRF applications.
comment: 15 pages
☆ Lane Segmentation Refinement with Diffusion Models
The lane graph is a key component for building high-definition (HD) maps and crucial for downstream tasks such as autonomous driving or navigation planning. Previously, He et al. (2022) explored the extraction of the lane-level graph from aerial imagery utilizing a segmentation based approach. However, segmentation networks struggle to achieve perfect segmentation masks resulting in inaccurate lane graph extraction. We explore additional enhancements to refine this segmentation-based approach and extend it with a diffusion probabilistic model (DPM) component. This combination further improves the GEO F1 and TOPO F1 scores, which are crucial indicators of the quality of a lane graph, in the undirected graph in non-intersection areas. We conduct experiments on a publicly available dataset, demonstrating that our method outperforms the previous approach, particularly in enhancing the connectivity of such a graph, as measured by the TOPO F1 score. Moreover, we perform ablation studies on the individual components of our method to understand their contribution and evaluate their effectiveness.
☆ A Preprocessing and Evaluation Toolbox for Trajectory Prediction Research on the Drone Datasets
The availability of high-quality datasets is crucial for the development of behavior prediction algorithms in autonomous vehicles. This paper highlights the need for standardizing the use of certain datasets for motion forecasting research to simplify comparative analysis and proposes a set of tools and practices to achieve this. Drawing on extensive experience and a comprehensive review of current literature, we summarize our proposals for preprocessing, visualizing, and evaluation in the form of an open-sourced toolbox designed for researchers working on trajectory prediction problems. The clear specification of necessary preprocessing steps and evaluation metrics is intended to alleviate development efforts and facilitate the comparison of results across different studies. The toolbox is available at: https://github.com/westny/dronalize.
comment: https://github.com/westny/dronalize
☆ Are Models Biased on Text without Gender-related Language?
Gender bias research has been pivotal in revealing undesirable behaviors in large language models, exposing serious gender stereotypes associated with occupations, and emotions. A key observation in prior work is that models reinforce stereotypes as a consequence of the gendered correlations that are present in the training data. In this paper, we focus on bias where the effect from training data is unclear, and instead address the question: Do language models still exhibit gender bias in non-stereotypical settings? To do so, we introduce UnStereoEval (USE), a novel framework tailored for investigating gender bias in stereotype-free scenarios. USE defines a sentence-level score based on pretraining data statistics to determine if the sentence contain minimal word-gender associations. To systematically benchmark the fairness of popular language models in stereotype-free scenarios, we utilize USE to automatically generate benchmarks without any gender-related language. By leveraging USE's sentence-level score, we also repurpose prior gender bias benchmarks (Winobias and Winogender) for non-stereotypical evaluation. Surprisingly, we find low fairness across all 28 tested models. Concretely, models demonstrate fair behavior in only 9%-41% of stereotype-free sentences, suggesting that bias does not solely stem from the presence of gender-related words. These results raise important questions about where underlying model biases come from and highlight the need for more systematic and comprehensive bias evaluation. We release the full dataset and code at https://ucinlp.github.io/unstereo-eval.
comment: In International Conference on Learning Representations 2024
☆ GraCo: Granularity-Controllable Interactive Segmentation
Interactive Segmentation (IS) segments specific objects or parts in the image according to user input. Current IS pipelines fall into two categories: single-granularity output and multi-granularity output. The latter aims to alleviate the spatial ambiguity present in the former. However, the multi-granularity output pipeline suffers from limited interaction flexibility and produces redundant results. In this work, we introduce Granularity-Controllable Interactive Segmentation (GraCo), a novel approach that allows precise control of prediction granularity by introducing additional parameters to input. This enhances the customization of the interactive system and eliminates redundancy while resolving ambiguity. Nevertheless, the exorbitant cost of annotating multi-granularity masks and the lack of available datasets with granularity annotations make it difficult for models to acquire the necessary guidance to control output granularity. To address this problem, we design an any-granularity mask generator that exploits the semantic property of the pre-trained IS model to automatically generate abundant mask-granularity pairs without requiring additional manual annotation. Based on these pairs, we propose a granularity-controllable learning strategy that efficiently imparts the granularity controllability to the IS model. Extensive experiments on intricate scenarios at object and part levels demonstrate that our GraCo has significant advantages over previous methods. This highlights the potential of GraCo to be a flexible annotation tool, capable of adapting to diverse segmentation scenarios. The project page: https://zhao-yian.github.io/GraCo.
☆ EALD-MLLM: Emotion Analysis in Long-sequential and De-identity videos with Multi-modal Large Language Model
Emotion AI is the ability of computers to understand human emotional states. Existing works have achieved promising progress, but two limitations remain to be solved: 1) Previous studies have been more focused on short sequential video emotion analysis while overlooking long sequential video. However, the emotions in short sequential videos only reflect instantaneous emotions, which may be deliberately guided or hidden. In contrast, long sequential videos can reveal authentic emotions; 2) Previous studies commonly utilize various signals such as facial, speech, and even sensitive biological signals (e.g., electrocardiogram). However, due to the increasing demand for privacy, developing Emotion AI without relying on sensitive signals is becoming important. To address the aforementioned limitations, in this paper, we construct a dataset for Emotion Analysis in Long-sequential and De-identity videos called EALD by collecting and processing the sequences of athletes' post-match interviews. In addition to providing annotations of the overall emotional state of each video, we also provide the Non-Facial Body Language (NFBL) annotations for each player. NFBL is an inner-driven emotional expression and can serve as an identity-free clue to understanding the emotional state. Moreover, we provide a simple but effective baseline for further research. More precisely, we evaluate the Multimodal Large Language Models (MLLMs) with de-identification signals (e.g., visual, speech, and NFBLs) to perform emotion analysis. Our experimental results demonstrate that: 1) MLLMs can achieve comparable, even better performance than the supervised single-modal models, even in a zero-shot scenario; 2) NFBL is an important cue in long sequential emotion analysis. EALD will be available on the open-source platform.
☆ Spherical Linear Interpolation and Text-Anchoring for Zero-shot Composed Image Retrieval
Composed Image Retrieval (CIR) is a complex task that retrieves images using a query, which is configured with an image and a caption that describes desired modifications to that image. Supervised CIR approaches have shown strong performance, but their reliance on expensive manually-annotated datasets restricts their scalability and broader applicability. To address these issues, previous studies have proposed pseudo-word token-based Zero-Shot CIR (ZS-CIR) methods, which utilize a projection module to map images to word tokens. However, we conjecture that this approach has a downside: the projection module distorts the original image representation and confines the resulting composed embeddings to the text-side. In order to resolve this, we introduce a novel ZS-CIR method that uses Spherical Linear Interpolation (Slerp) to directly merge image and text representations by identifying an intermediate embedding of both. Furthermore, we introduce Text-Anchored-Tuning (TAT), a method that fine-tunes the image encoder while keeping the text encoder fixed. TAT closes the modality gap between images and text, making the Slerp process much more effective. Notably, the TAT method is not only efficient in terms of the scale of the training dataset and training time, but it also serves as an excellent initial checkpoint for training supervised CIR models, thereby highlighting its wider potential. The integration of the Slerp-based ZS-CIR with a TAT-tuned model enables our approach to deliver state-of-the-art retrieval performance across CIR benchmarks.
☆ UWAFA-GAN: Ultra-Wide-Angle Fluorescein Angiography Transformation via Multi-scale Generation and Registration Enhancement
Fundus photography, in combination with the ultra-wide-angle fundus (UWF) techniques, becomes an indispensable diagnostic tool in clinical settings by offering a more comprehensive view of the retina. Nonetheless, UWF fluorescein angiography (UWF-FA) necessitates the administration of a fluorescent dye via injection into the patient's hand or elbow unlike UWF scanning laser ophthalmoscopy (UWF-SLO). To mitigate potential adverse effects associated with injections, researchers have proposed the development of cross-modality medical image generation algorithms capable of converting UWF-SLO images into their UWF-FA counterparts. Current image generation techniques applied to fundus photography encounter difficulties in producing high-resolution retinal images, particularly in capturing minute vascular lesions. To address these issues, we introduce a novel conditional generative adversarial network (UWAFA-GAN) to synthesize UWF-FA from UWF-SLO. This approach employs multi-scale generators and an attention transmit module to efficiently extract both global structures and local lesions. Additionally, to counteract the image blurriness issue that arises from training with misaligned data, a registration module is integrated within this framework. Our method performs non-trivially on inception scores and details generation. Clinical user studies further indicate that the UWF-FA images generated by UWAFA-GAN are clinically comparable to authentic images in terms of diagnostic reliability. Empirical evaluations on our proprietary UWF image datasets elucidate that UWAFA-GAN outperforms extant methodologies. The code is accessible at https://github.com/Tinysqua/UWAFA-GAN.
☆ GAD-Generative Learning for HD Map-Free Autonomous Driving
Deep-learning-based techniques have been widely adopted for autonomous driving software stacks for mass production in recent years, focusing primarily on perception modules, with some work extending this method to prediction modules. However, the downstream planning and control modules are still designed with hefty handcrafted rules, dominated by optimization-based methods such as quadratic programming or model predictive control. This results in a performance bottleneck for autonomous driving systems in that corner cases simply cannot be solved by enumerating hand-crafted rules. We present a deep-learning-based approach that brings prediction, decision, and planning modules together with the attempt to overcome the rule-based methods' deficiency in real-world applications of autonomous driving, especially for urban scenes. The DNN model we proposed is solely trained with 10 hours of human driver data, and it supports all mass-production ADAS features available on the market to date. This method is deployed onto a Jiyue test car with no modification to its factory-ready sensor set and compute platform. the feasibility, usability, and commercial potential are demonstrated in this article.
☆ Get Your Embedding Space in Order: Domain-Adaptive Regression for Forest Monitoring
Image-level regression is an important task in Earth observation, where visual domain and label shifts are a core challenge hampering generalization. However, cross-domain regression with remote sensing data remains understudied due to the absence of suited datasets. We introduce a new dataset with aerial and satellite imagery in five countries with three forest-related regression tasks. To match real-world applicative interests, we compare methods through a restrictive setup where no prior on the target domain is available during training, and models are adapted with limited information during testing. Building on the assumption that ordered relationships generalize better, we propose manifold diffusion for regression as a strong baseline for transduction in low-data regimes. Our comparison highlights the comparative advantages of inductive and transductive methods in cross-domain regression.
☆ NeRF-Guided Unsupervised Learning of RGB-D Registration
This paper focuses on training a robust RGB-D registration model without ground-truth pose supervision. Existing methods usually adopt a pairwise training strategy based on differentiable rendering, which enforces the photometric and the geometric consistency between the two registered frames as supervision. However, this frame-to-frame framework suffers from poor multi-view consistency due to factors such as lighting changes, geometry occlusion and reflective materials. In this paper, we present NeRF-UR, a novel frame-to-model optimization framework for unsupervised RGB-D registration. Instead of frame-to-frame consistency, we leverage the neural radiance field (NeRF) as a global model of the scene and use the consistency between the input and the NeRF-rerendered frames for pose optimization. This design can significantly improve the robustness in scenarios with poor multi-view consistency and provides better learning signal for the registration model. Furthermore, to bootstrap the NeRF optimization, we create a synthetic dataset, Sim-RGBD, through a photo-realistic simulator to warm up the registration model. By first training the registration model on Sim-RGBD and later unsupervisedly fine-tuning on real data, our framework enables distilling the capability of feature extraction and registration from simulation to reality. Our method outperforms the state-of-the-art counterparts on two popular indoor RGB-D datasets, ScanNet and 3DMatch. Code and models will be released for paper reproduction.
☆ The Pyramid of Captions
We introduce a formal information-theoretic framework for image captioning by regarding it as a representation learning task. Our framework defines three key objectives: task sufficiency, minimal redundancy, and human interpretability. Building upon this foundation, we propose a novel Pyramid of Captions (PoCa) method, which constructs caption pyramids by generating localized captions for zoomed-in image patches and integrating them with global caption information using large language models. This approach leverages intuition that the detailed examination of local patches can reduce error risks and address inaccuracies in global captions, either by correcting the hallucination or adding missing details. Based on our theoretical framework, we formalize this intuition and provide formal proof demonstrating the effectiveness of PoCa under certain assumptions. Empirical tests with various image captioning models and large language models show that PoCa consistently yields more informative and semantically aligned captions, maintaining brevity and interpretability.
☆ In Anticipation of Perfect Deepfake: Identity-anchored Artifact-agnostic Detection under Rebalanced Deepfake Detection Protocol
As deep generative models advance, we anticipate deepfakes achieving "perfection"-generating no discernible artifacts or noise. However, current deepfake detectors, intentionally or inadvertently, rely on such artifacts for detection, as they are exclusive to deepfakes and absent in genuine examples. To bridge this gap, we introduce the Rebalanced Deepfake Detection Protocol (RDDP) to stress-test detectors under balanced scenarios where genuine and forged examples bear similar artifacts. We offer two RDDP variants: RDDP-WHITEHAT uses white-hat deepfake algorithms to create 'self-deepfakes,' genuine portrait videos with the resemblance of the underlying identity, yet carry similar artifacts to deepfake videos; RDDP-SURROGATE employs surrogate functions (e.g., Gaussian noise) to process both genuine and forged examples, introducing equivalent noise, thereby sidestepping the need of deepfake algorithms. Towards detecting perfect deepfake videos that aligns with genuine ones, we present ID-Miner, a detector that identifies the puppeteer behind the disguise by focusing on motion over artifacts or appearances. As an identity-based detector, it authenticates videos by comparing them with reference footage. Equipped with the artifact-agnostic loss at frame-level and the identity-anchored loss at video-level, ID-Miner effectively singles out identity signals amidst distracting variations. Extensive experiments comparing ID-Miner with 12 baseline detectors under both conventional and RDDP evaluations with two deepfake datasets, along with additional qualitative studies, affirm the superiority of our method and the necessity for detectors designed to counter perfect deepfakes.
☆ Enhanced Visual Question Answering: A Comparative Analysis and Textual Feature Extraction Via Convolutions
Visual Question Answering (VQA) has emerged as a highly engaging field in recent years, attracting increasing research efforts aiming to enhance VQA accuracy through the deployment of advanced models such as Transformers. Despite this growing interest, there has been limited exploration into the comparative analysis and impact of textual modalities within VQA, particularly in terms of model complexity and its effect on performance. In this work, we conduct a comprehensive comparison between complex textual models that leverage long dependency mechanisms and simpler models focusing on local textual features within a well-established VQA framework. Our findings reveal that employing complex textual encoders is not invariably the optimal approach for the VQA-v2 dataset. Motivated by this insight, we introduce an improved model, ConvGRU, which incorporates convolutional layers to enhance the representation of question text. Tested on the VQA-v2 dataset, ConvGRU achieves better performance without substantially increasing parameter complexity.
☆ DmADs-Net: Dense multiscale attention and depth-supervised network for medical image segmentation
Deep learning has made important contributions to the development of medical image segmentation. Convolutional neural networks, as a crucial branch, have attracted strong attention from researchers. Through the tireless efforts of numerous researchers, convolutional neural networks have yielded numerous outstanding algorithms for processing medical images. The ideas and architectures of these algorithms have also provided important inspiration for the development of later technologies.Through extensive experimentation, we have found that currently mainstream deep learning algorithms are not always able to achieve ideal results when processing complex datasets and different types of datasets. These networks still have room for improvement in lesion localization and feature extraction. Therefore, we have created the Dense Multiscale Attention and Depth-Supervised Network (DmADs-Net).We use ResNet for feature extraction at different depths and create a Multi-scale Convolutional Feature Attention Block to improve the network's attention to weak feature information. The Local Feature Attention Block is created to enable enhanced local feature attention for high-level semantic information. In addition, in the feature fusion phase, a Feature Refinement and Fusion Block is created to enhance the fusion of different semantic information.We validated the performance of the network using five datasets of varying sizes and types. Results from comparative experiments show that DmADs-Net outperformed mainstream networks. Ablation experiments further demonstrated the effectiveness of the created modules and the rationality of the network architecture.
☆ Feature-Aware Noise Contrastive Learning For Unsupervised Red Panda Re-Identification IJCNN2024
To facilitate the re-identification (Re-ID) of individual animals, existing methods primarily focus on maximizing feature similarity within the same individual and enhancing distinctiveness between different individuals. However, most of them still rely on supervised learning and require substantial labeled data, which is challenging to obtain. To avoid this issue, we propose a Feature-Aware Noise Contrastive Learning (FANCL) method to explore an unsupervised learning solution, which is then validated on the task of red panda re-ID. FANCL employs a Feature-Aware Noise Addition module to produce noised images that conceal critical features and designs two contrastive learning modules to calculate the losses. Firstly, a feature consistency module is designed to bridge the gap between the original and noised features. Secondly, the neural networks are trained through a cluster contrastive learning module. Through these more challenging learning tasks, FANCL can adaptively extract deeper representations of red pandas. The experimental results on a set of red panda images collected in both indoor and outdoor environments prove that FANCL outperforms several related state-of-the-art unsupervised methods, achieving high performance comparable to supervised learning methods.
comment: 7 pages, 5 figures, IJCNN2024
☆ Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable
Foundational generative models should be traceable to protect their owners and facilitate safety regulation. To achieve this, traditional approaches embed identifiers based on supervisory trigger-response signals, which are commonly known as backdoor watermarks. They are prone to failure when the model is fine-tuned with nontrigger data. Our experiments show that this vulnerability is due to energetic changes in only a few 'busy' layers during fine-tuning. This yields a novel arbitrary-in-arbitrary-out (AIAO) strategy that makes watermarks resilient to fine-tuning-based removal. The trigger-response pairs of AIAO samples across various neural network depths can be used to construct watermarked subpaths, employing Monte Carlo sampling to achieve stable verification results. In addition, unlike the existing methods of designing a backdoor for the input/output space of diffusion models, in our method, we propose to embed the backdoor into the feature space of sampled subpaths, where a mask-controlled trigger function is proposed to preserve the generation performance and ensure the invisibility of the embedded backdoor. Our empirical studies on the MS-COCO, AFHQ, LSUN, CUB-200, and DreamBooth datasets confirm the robustness of AIAO; while the verification rates of other trigger-based methods fall from ~90% to ~70% after fine-tuning, those of our method remain consistently above 90%.
☆ Predictive Accuracy-Based Active Learning for Medical Image Segmentation
Active learning is considered a viable solution to alleviate the contradiction between the high dependency of deep learning-based segmentation methods on annotated data and the expensive pixel-level annotation cost of medical images. However, most existing methods suffer from unreliable uncertainty assessment and the struggle to balance diversity and informativeness, leading to poor performance in segmentation tasks. In response, we propose an efficient Predictive Accuracy-based Active Learning (PAAL) method for medical image segmentation, first introducing predictive accuracy to define uncertainty. Specifically, PAAL mainly consists of an Accuracy Predictor (AP) and a Weighted Polling Strategy (WPS). The former is an attached learnable module that can accurately predict the segmentation accuracy of unlabeled samples relative to the target model with the predicted posterior probability. The latter provides an efficient hybrid querying scheme by combining predicted accuracy and feature representation, aiming to ensure the uncertainty and diversity of the acquired samples. Extensive experiment results on multiple datasets demonstrate the superiority of PAAL. PAAL achieves comparable accuracy to fully annotated data while reducing annotation costs by approximately 50% to 80%, showcasing significant potential in clinical applications. The code is available at https://github.com/shijun18/PAAL-MedSeg.
comment: 9 pages, 4 figures
☆ MMTryon: Multi-Modal Multi-Reference Control for High-Quality Fashion Generation
This paper introduces MMTryon, a multi-modal multi-reference VIrtual Try-ON (VITON) framework, which can generate high-quality compositional try-on results by taking as inputs a text instruction and multiple garment images. Our MMTryon mainly addresses two problems overlooked in prior literature: 1) Support of multiple try-on items and dressing styleExisting methods are commonly designed for single-item try-on tasks (e.g., upper/lower garments, dresses) and fall short on customizing dressing styles (e.g., zipped/unzipped, tuck-in/tuck-out, etc.) 2) Segmentation Dependency. They further heavily rely on category-specific segmentation models to identify the replacement regions, with segmentation errors directly leading to significant artifacts in the try-on results. For the first issue, our MMTryon introduces a novel multi-modality and multi-reference attention mechanism to combine the garment information from reference images and dressing-style information from text instructions. Besides, to remove the segmentation dependency, MMTryon uses a parsing-free garment encoder and leverages a novel scalable data generation pipeline to convert existing VITON datasets to a form that allows MMTryon to be trained without requiring any explicit segmentation. Extensive experiments on high-resolution benchmarks and in-the-wild test sets demonstrate MMTryon's superiority over existing SOTA methods both qualitatively and quantitatively. Besides, MMTryon's impressive performance on multi-items and style-controllable virtual try-on scenarios and its ability to try on any outfit in a large variety of scenarios from any source image, opens up a new avenue for future investigation in the fashion community.
☆ Detail-Enhancing Framework for Reference-Based Image Super-Resolution
Recent years have witnessed the prosperity of reference-based image super-resolution (Ref-SR). By importing the high-resolution (HR) reference images into the single image super-resolution (SISR) approach, the ill-posed nature of this long-standing field has been alleviated with the assistance of texture transferred from reference images. Although the significant improvement in quantitative and qualitative results has verified the superiority of Ref-SR methods, the presence of misalignment before texture transfer indicates room for further performance improvement. Existing methods tend to neglect the significance of details in the context of comparison, therefore not fully leveraging the information contained within low-resolution (LR) images. In this paper, we propose a Detail-Enhancing Framework (DEF) for reference-based super-resolution, which introduces the diffusion model to generate and enhance the underlying detail in LR images. If corresponding parts are present in the reference image, our method can facilitate rigorous alignment. In cases where the reference image lacks corresponding parts, it ensures a fundamental improvement while avoiding the influence of the reference image. Extensive experiments demonstrate that our proposed method achieves superior visual results while maintaining comparable numerical outcomes.
☆ Continuous sPatial-Temporal Deformable Image Registration (CPT-DIR) for motion modelling in radiotherapy: beyond classic voxel-based methods
Background and purpose: Deformable image registration (DIR) is a crucial tool in radiotherapy for extracting and modelling organ motion. However, when significant changes and sliding boundaries are present, it faces compromised accuracy and uncertainty, determining the subsequential contour propagation and dose accumulation procedures. Materials and methods: We propose an implicit neural representation (INR)-based approach modelling motion continuously in both space and time, named Continues-sPatial-Temporal DIR (CPT-DIR). This method uses a multilayer perception (MLP) network to map 3D coordinate (x,y,z) to its corresponding velocity vector (vx,vy,vz). The displacement vectors (dx,dy,dz) are then calculated by integrating velocity vectors over time. The MLP's parameters can rapidly adapt to new cases without pre-training, enhancing optimisation. The DIR's performance was tested on the DIR-Lab dataset of 10 lung 4DCT cases, using metrics of landmark accuracy (TRE), contour conformity (Dice) and image similarity (MAE). Results: The proposed CPT-DIR can reduce landmark TRE from 2.79mm to 0.99mm, outperforming B-splines' results for all cases. The MAE of the whole-body region improves from 35.46HU to 28.99HU. Furthermore, CPT-DIR surpasses B-splines for accuracy in the sliding boundary region, lowering MAE and increasing Dice coefficients for the ribcage from 65.65HU and 90.41% to 42.04HU and 90.56%, versus 75.40HU and 89.30% without registration. Meanwhile, CPT-DIR offers significant speed advantages, completing in under 15 seconds compared to a few minutes with the conventional B-splines method. Conclusion: Leveraging the continuous representations, the CPT-DIR method significantly enhances registration accuracy, automation and speed, outperforming traditional B-splines in landmark and contour precision, particularly in the challenging areas.
Self-supervised Pre-training of Text Recognizers ICDAR24
In this paper, we investigate self-supervised pre-training methods for document text recognition. Nowadays, large unlabeled datasets can be collected for many research tasks, including text recognition, but it is costly to annotate them. Therefore, methods utilizing unlabeled data are researched. We study self-supervised pre-training methods based on masked label prediction using three different approaches -- Feature Quantization, VQ-VAE, and Post-Quantized AE. We also investigate joint-embedding approaches with VICReg and NT-Xent objectives, for which we propose an image shifting technique to prevent model collapse where it relies solely on positional encoding while completely ignoring the input image. We perform our experiments on historical handwritten (Bentham) and historical printed datasets mainly to investigate the benefits of the self-supervised pre-training techniques with different amounts of annotated target domain data. We use transfer learning as strong baselines. The evaluation shows that the self-supervised pre-training on data from the target domain is very effective, but it struggles to outperform transfer learning from closely related domains. This paper is one of the first researches exploring self-supervised pre-training in document text recognition, and we believe that it will become a cornerstone for future research in this area. We made our implementation of the investigated methods publicly available at https://github.com/DCGM/pero-pretraining.
comment: 18 pages, 6 figures, 4 tables, accepted to ICDAR24
☆ Visual and audio scene classification for detecting discrepancies in video: a baseline method and experimental protocol ICMR'24
This paper presents a baseline approach and an experimental protocol for a specific content verification problem: detecting discrepancies between the audio and video modalities in multimedia content. We first design and optimize an audio-visual scene classifier, to compare with existing classification baselines that use both modalities. Then, by applying this classifier separately to the audio and the visual modality, we can detect scene-class inconsistencies between them. To facilitate further research and provide a common evaluation platform, we introduce an experimental protocol and a benchmark dataset simulating such inconsistencies. Our approach achieves state-of-the-art results in scene classification and promising outcomes in audio-visual discrepancies detection, highlighting its potential in content verification applications.
comment: Accepted for publication, 3rd ACM Int. Workshop on Multimedia AI against Disinformation (MAD'24) at ACM ICMR'24, June 10, 2024, Phuket, Thailand. This is the "accepted version"
☆ Adaptive Bidirectional Displacement for Semi-Supervised Medical Image Segmentation CVPR 2024
Consistency learning is a central strategy to tackle unlabeled data in semi-supervised medical image segmentation (SSMIS), which enforces the model to produce consistent predictions under the perturbation. However, most current approaches solely focus on utilizing a specific single perturbation, which can only cope with limited cases, while employing multiple perturbations simultaneously is hard to guarantee the quality of consistency learning. In this paper, we propose an Adaptive Bidirectional Displacement (ABD) approach to solve the above challenge. Specifically, we first design a bidirectional patch displacement based on reliable prediction confidence for unlabeled data to generate new samples, which can effectively suppress uncontrollable regions and still retain the influence of input perturbations. Meanwhile, to enforce the model to learn the potentially uncontrollable content, a bidirectional displacement operation with inverse confidence is proposed for the labeled images, which generates samples with more unreliable information to facilitate model learning. Extensive experiments show that ABD achieves new state-of-the-art performances for SSMIS, significantly improving different baselines. Source code is available at https://github.com/chy-upc/ABD.
comment: Accepted to CVPR 2024
☆ Exploring Self-Supervised Vision Transformers for Deepfake Detection: A Comparative Analysis
This paper investigates the effectiveness of self-supervised pre-trained transformers compared to supervised pre-trained transformers and conventional neural networks (ConvNets) for detecting various types of deepfakes. We focus on their potential for improved generalization, particularly when training data is limited. Despite the notable success of large vision-language models utilizing transformer architectures in various tasks, including zero-shot and few-shot learning, the deepfake detection community has still shown some reluctance to adopt pre-trained vision transformers (ViTs), especially large ones, as feature extractors. One concern is their perceived excessive capacity, which often demands extensive data, and the resulting suboptimal generalization when training or fine-tuning data is small or less diverse. This contrasts poorly with ConvNets, which have already established themselves as robust feature extractors. Additionally, training and optimizing transformers from scratch requires significant computational resources, making this accessible primarily to large companies and hindering broader investigation within the academic community. Recent advancements in using self-supervised learning (SSL) in transformers, such as DINO and its derivatives, have showcased significant adaptability across diverse vision tasks and possess explicit semantic segmentation capabilities. By leveraging DINO for deepfake detection with modest training data and implementing partial fine-tuning, we observe comparable adaptability to the task and the natural explainability of the detection result via the attention mechanism. Moreover, partial fine-tuning of transformers for deepfake detection offers a more resource-efficient alternative, requiring significantly fewer computational resources.
☆ CrossMatch: Enhance Semi-Supervised Medical Image Segmentation with Perturbation Strategies and Knowledge Distillation
Semi-supervised learning for medical image segmentation presents a unique challenge of efficiently using limited labeled data while leveraging abundant unlabeled data. Despite advancements, existing methods often do not fully exploit the potential of the unlabeled data for enhancing model robustness and accuracy. In this paper, we introduce CrossMatch, a novel framework that integrates knowledge distillation with dual perturbation strategies-image-level and feature-level-to improve the model's learning from both labeled and unlabeled data. CrossMatch employs multiple encoders and decoders to generate diverse data streams, which undergo self-knowledge distillation to enhance consistency and reliability of predictions across varied perturbations. Our method significantly surpasses other state-of-the-art techniques in standard benchmarks by effectively minimizing the gap between training on labeled and unlabeled data and improving edge accuracy and generalization in medical image segmentation. The efficacy of CrossMatch is demonstrated through extensive experimental validations, showing remarkable performance improvements without increasing computational costs. Code for this implementation is made available at https://github.com/AiEson/CrossMatch.git.
☆ Learning High-Quality Navigation and Zooming on Omnidirectional Images in Virtual Reality
Viewing omnidirectional images (ODIs) in virtual reality (VR) represents a novel form of media that provides immersive experiences for users to navigate and interact with digital content. Nonetheless, this sense of immersion can be greatly compromised by a blur effect that masks details and hampers the user's ability to engage with objects of interest. In this paper, we present a novel system, called OmniVR, designed to enhance visual clarity during VR navigation. Our system enables users to effortlessly locate and zoom in on the objects of interest in VR. It captures user commands for navigation and zoom, converting these inputs into parameters for the Mobius transformation matrix. Leveraging these parameters, the ODI is refined using a learning-based algorithm. The resultant ODI is presented within the VR media, effectively reducing blur and increasing user engagement. To verify the effectiveness of our system, we first evaluate our algorithm with state-of-the-art methods on public datasets, which achieves the best performance. Furthermore, we undertake a comprehensive user study to evaluate viewer experiences across diverse scenarios and to gather their qualitative feedback from multiple perspectives. The outcomes reveal that our system enhances user engagement by improving the viewers' recognition, reducing discomfort, and improving the overall immersive experience. Our system makes the navigation and zoom more user-friendly.
comment: 11 pages
☆ NC-SDF: Enhancing Indoor Scene Reconstruction Using Neural SDFs with View-Dependent Normal Compensation
State-of-the-art neural implicit surface representations have achieved impressive results in indoor scene reconstruction by incorporating monocular geometric priors as additional supervision. However, we have observed that multi-view inconsistency between such priors poses a challenge for high-quality reconstructions. In response, we present NC-SDF, a neural signed distance field (SDF) 3D reconstruction framework with view-dependent normal compensation (NC). Specifically, we integrate view-dependent biases in monocular normal priors into the neural implicit representation of the scene. By adaptively learning and correcting the biases, our NC-SDF effectively mitigates the adverse impact of inconsistent supervision, enhancing both the global consistency and local details in the reconstructions. To further refine the details, we introduce an informative pixel sampling strategy to pay more attention to intricate geometry with higher information content. Additionally, we design a hybrid geometry modeling approach to improve the neural implicit representation. Experiments on synthetic and real-world datasets demonstrate that NC-SDF outperforms existing approaches in terms of reconstruction quality.
☆ Covariant spatio-temporal receptive fields for neuromorphic computing
Biological nervous systems constitute important sources of inspiration towards computers that are faster, cheaper, and more energy efficient. Neuromorphic disciplines view the brain as a coevolved system, simultaneously optimizing the hardware and the algorithms running on it. There are clear efficiency gains when bringing the computations into a physical substrate, but we presently lack theories to guide efficient implementations. Here, we present a principled computational model for neuromorphic systems in terms of spatio-temporal receptive fields, based on affine Gaussian kernels over space and leaky-integrator and leaky integrate-and-fire models over time. Our theory is provably covariant to spatial affine and temporal scaling transformations, and with close similarities to the visual processing in mammalian brains. We use these spatio-temporal receptive fields as a prior in an event-based vision task, and show that this improves the training of spiking networks, which otherwise is known as problematic for event-based vision. This work combines efforts within scale-space theory and computational neuroscience to identify theoretically well-founded ways to process spatio-temporal signals in neuromorphic systems. Our contributions are immediately relevant for signal processing and event-based vision, and can be extended to other processing tasks over space and time, such as memory and control.
comment: Code available at https://github.com/jegp/nrf
☆ Model Quantization and Hardware Acceleration for Vision Transformers: A Comprehensive Survey
Vision Transformers (ViTs) have recently garnered considerable attention, emerging as a promising alternative to convolutional neural networks (CNNs) in several vision-related applications. However, their large model sizes and high computational and memory demands hinder deployment, especially on resource-constrained devices. This underscores the necessity of algorithm-hardware co-design specific to ViTs, aiming to optimize their performance by tailoring both the algorithmic structure and the underlying hardware accelerator to each other's strengths. Model quantization, by converting high-precision numbers to lower-precision, reduces the computational demands and memory needs of ViTs, allowing the creation of hardware specifically optimized for these quantized algorithms, boosting efficiency. This article provides a comprehensive survey of ViTs quantization and its hardware acceleration. We first delve into the unique architectural attributes of ViTs and their runtime characteristics. Subsequently, we examine the fundamental principles of model quantization, followed by a comparative analysis of the state-of-the-art quantization techniques for ViTs. Additionally, we explore the hardware acceleration of quantized ViTs, highlighting the importance of hardware-friendly algorithm design. In conclusion, this article will discuss ongoing challenges and future research paths. We consistently maintain the related open-source materials at https://github.com/DD-DuDa/awesome-vit-quantization-acceleration.
☆ Streamlining Image Editing with Layered Diffusion Brushes
Denoising diffusion models have recently gained prominence as powerful tools for a variety of image generation and manipulation tasks. Building on this, we propose a novel tool for real-time editing of images that provides users with fine-grained region-targeted supervision in addition to existing prompt-based controls. Our novel editing technique, termed Layered Diffusion Brushes, leverages prompt-guided and region-targeted alteration of intermediate denoising steps, enabling precise modifications while maintaining the integrity and context of the input image. We provide an editor based on Layered Diffusion Brushes modifications, which incorporates well-known image editing concepts such as layer masks, visibility toggles, and independent manipulation of layers; regardless of their order. Our system renders a single edit on a 512x512 image within 140 ms using a high-end consumer GPU, enabling real-time feedback and rapid exploration of candidate edits. We validated our method and editing system through a user study involving both natural images (using inversion) and generated images, showcasing its usability and effectiveness compared to existing techniques such as InstructPix2Pix and Stable Diffusion Inpainting for refining images. Our approach demonstrates efficacy across a range of tasks, including object attribute adjustments, error correction, and sequential prompt-based object placement and manipulation, demonstrating its versatility and potential for enhancing creative workflows.
comment: arXiv admin note: text overlap with arXiv:2306.00219
☆ MoPEFT: A Mixture-of-PEFTs for the Segment Anything Model CVPR 2024
The emergence of foundation models, such as the Segment Anything Model (SAM), has sparked interest in Parameter-Efficient Fine-Tuning (PEFT) methods that tailor these large models to application domains outside their training data. However, different PEFT techniques modify the representation of a model differently, making it a non-trivial task to select the most appropriate method for the domain of interest. We propose a new framework, Mixture-of-PEFTs methods (MoPEFT), that is inspired by traditional Mixture-of-Experts (MoE) methodologies and is utilized for fine-tuning SAM. Our MoPEFT framework incorporates three different PEFT techniques as submodules and dynamically learns to activate the ones that are best suited for a given data-task setup. We test our method on the Segment Anything Model and show that MoPEFT consistently outperforms other fine-tuning methods on the MESS benchmark.
comment: Workshop on Foundation Models, CVPR 2024
☆ Using Texture to Classify Forests Separately from Vegetation
Identifying terrain within satellite image data is a key issue in geographical information sciences, with numerous environmental and safety implications. Many techniques exist to derive classifications from spectral data captured by satellites. However, the ability to reliably classify vegetation remains a challenge. In particular, no precise methods exist for classifying forest vs. non-forest vegetation in high-level satellite images. This paper provides an initial proposal for a static, algorithmic process to identify forest regions in satellite image data through texture features created from detected edges and the NDVI ratio captured by Sentinel-2 satellite images. With strong initial results, this paper also identifies the next steps to improve the accuracy of the classification and verification processes.
☆ CREPE: Coordinate-Aware End-to-End Document Parser ICDAR 2024
In this study, we formulate an OCR-free sequence generation model for visual document understanding (VDU). Our model not only parses text from document images but also extracts the spatial coordinates of the text based on the multi-head architecture. Named as Coordinate-aware End-to-end Document Parser (CREPE), our method uniquely integrates these capabilities by introducing a special token for OCR text, and token-triggered coordinate decoding. We also proposed a weakly-supervised framework for cost-efficient training, requiring only parsing annotations without high-cost coordinate annotations. Our experimental evaluations demonstrate CREPE's state-of-the-art performances on document parsing tasks. Beyond that, CREPE's adaptability is further highlighted by its successful usage in other document understanding tasks such as layout analysis, document visual question answering, and so one. CREPE's abilities including OCR and semantic parsing not only mitigate error propagation issues in existing OCR-dependent methods, it also significantly enhance the functionality of sequence generation models, ushering in a new era for document understanding studies.
comment: Accepted at the International Conference on Document Analysis and Recognition (ICDAR 2024) main conference
☆ ASAM: Boosting Segment Anything Model with Adversarial Tuning CVPR2024
In the evolving landscape of computer vision, foundation models have emerged as pivotal tools, exhibiting exceptional adaptability to a myriad of tasks. Among these, the Segment Anything Model (SAM) by Meta AI has distinguished itself in image segmentation. However, SAM, like its counterparts, encounters limitations in specific niche applications, prompting a quest for enhancement strategies that do not compromise its inherent capabilities. This paper introduces ASAM, a novel methodology that amplifies SAM's performance through adversarial tuning. We harness the potential of natural adversarial examples, inspired by their successful implementation in natural language processing. By utilizing a stable diffusion model, we augment a subset (1%) of the SA-1B dataset, generating adversarial instances that are more representative of natural variations rather than conventional imperceptible perturbations. Our approach maintains the photorealism of adversarial examples and ensures alignment with original mask annotations, thereby preserving the integrity of the segmentation task. The fine-tuned ASAM demonstrates significant improvements across a diverse range of segmentation tasks without necessitating additional data or architectural modifications. The results of our extensive evaluations confirm that ASAM establishes new benchmarks in segmentation tasks, thereby contributing to the advancement of foundational models in computer vision. Our project page is in https://asam2024.github.io/.
comment: This paper is accepted by CVPR2024
Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin
Background and Purpose: Identifying the thromboembolism source in ischemic stroke is crucial for treatment and secondary prevention yet is often undetermined. This study describes a self-supervised deep learning approach in digital pathology of emboli for classifying ischemic stroke clot origin from histopathological images. Methods: The dataset included whole slide images (WSI) from the STRIP AI Kaggle challenge, consisting of retrieved clots from ischemic stroke patients following mechanical thrombectomy. Transformer-based deep learning models were developed using transfer learning and self-supervised pretraining for classifying WSI. Customizations included an attention pooling layer, weighted loss function, and threshold optimization. Various model architectures were tested and compared, and model performances were primarily evaluated using weighted logarithmic loss. Results: The model achieved a logloss score of 0.662 in cross-validation and 0.659 on the test set. Different model backbones were compared, with the swin_large_patch4_window12_384 showed higher performance. Thresholding techniques for clot origin classification were employed to balance false positives and negatives. Conclusion: The study demonstrates the extent of efficacy of transformer-based deep learning models in identifying ischemic stroke clot origins from histopathological images and emphasizes the need for refined modeling techniques specifically adapted to thrombi WSI. Further research is needed to improve model performance, interpretability, validate its effectiveness. Future enhancement could include integrating larger patient cohorts, advanced preprocessing strategies, and exploring ensemble multimodal methods for enhanced diagnostic accuracy.
☆ LOTUS: Improving Transformer Efficiency with Sparsity Pruning and Data Lottery Tickets
Vision transformers have revolutionized computer vision, but their computational demands present challenges for training and deployment. This paper introduces LOTUS (LOttery Transformers with Ultra Sparsity), a novel method that leverages data lottery ticket selection and sparsity pruning to accelerate vision transformer training while maintaining accuracy. Our approach focuses on identifying and utilizing the most informative data subsets and eliminating redundant model parameters to optimize the training process. Through extensive experiments, we demonstrate the effectiveness of LOTUS in achieving rapid convergence and high accuracy with significantly reduced computational requirements. This work highlights the potential of combining data selection and sparsity techniques for efficient vision transformer training, opening doors for further research and development in this area.
comment: 3 pages, 5 figures
☆ DiL-NeRF: Delving into Lidar for Neural Radiance Field on Street Scenes CVPR2024
Photorealistic simulation plays a crucial role in applications such as autonomous driving, where advances in neural radiance fields (NeRFs) may allow better scalability through the automatic creation of digital 3D assets. However, reconstruction quality suffers on street scenes due to largely collinear camera motions and sparser samplings at higher speeds. On the other hand, the application often demands rendering from camera views that deviate from the inputs to accurately simulate behaviors like lane changes. In this paper, we propose several insights that allow a better utilization of Lidar data to improve NeRF quality on street scenes. First, our framework learns a geometric scene representation from Lidar, which is fused with the implicit grid-based representation for radiance decoding, thereby supplying stronger geometric information offered by explicit point cloud. Second, we put forth a robust occlusion-aware depth supervision scheme, which allows utilizing densified Lidar points by accumulation. Third, we generate augmented training views from Lidar points for further improvement. Our insights translate to largely improved novel view synthesis under real driving scenes.
comment: CVPR2024 Highlights
☆ Wake Vision: A Large-scale, Diverse Dataset and Benchmark Suite for TinyML Person Detection
Machine learning applications on extremely low-power devices, commonly referred to as tiny machine learning (TinyML), promises a smarter and more connected world. However, the advancement of current TinyML research is hindered by the limited size and quality of pertinent datasets. To address this challenge, we introduce Wake Vision, a large-scale, diverse dataset tailored for person detection -- the canonical task for TinyML visual sensing. Wake Vision comprises over 6 million images, which is a hundredfold increase compared to the previous standard, and has undergone thorough quality filtering. Using Wake Vision for training results in a 2.41\% increase in accuracy compared to the established benchmark. Alongside the dataset, we provide a collection of five detailed benchmark sets that assess model performance on specific segments of the test data, such as varying lighting conditions, distances from the camera, and demographic characteristics of subjects. These novel fine-grained benchmarks facilitate the evaluation of model quality in challenging real-world scenarios that are often ignored when focusing solely on overall accuracy. Through an evaluation of a MobileNetV2 TinyML model on the benchmarks, we show that the input resolution plays a more crucial role than the model width in detecting distant subjects and that the impact of quantization on model robustness is minimal, thanks to the dataset quality. These findings underscore the importance of a detailed evaluation to identify essential factors for model development. The dataset, benchmark suite, code, and models are publicly available under the CC-BY 4.0 license, enabling their use for commercial use cases.
☆ SonicDiffusion: Audio-Driven Image Generation and Editing with Pretrained Diffusion Models
We are witnessing a revolution in conditional image synthesis with the recent success of large scale text-to-image generation methods. This success also opens up new opportunities in controlling the generation and editing process using multi-modal input. While spatial control using cues such as depth, sketch, and other images has attracted a lot of research, we argue that another equally effective modality is audio since sound and sight are two main components of human perception. Hence, we propose a method to enable audio-conditioning in large scale image diffusion models. Our method first maps features obtained from audio clips to tokens that can be injected into the diffusion model in a fashion similar to text tokens. We introduce additional audio-image cross attention layers which we finetune while freezing the weights of the original layers of the diffusion model. In addition to audio conditioned image generation, our method can also be utilized in conjuction with diffusion based editing methods to enable audio conditioned image editing. We demonstrate our method on a wide range of audio and image datasets. We perform extensive comparisons with recent methods and show favorable performance.
☆ Beyond Human Vision: The Role of Large Vision Language Models in Microscope Image Analysis
Vision language models (VLMs) have recently emerged and gained the spotlight for their ability to comprehend the dual modality of image and textual data. VLMs such as LLaVA, ChatGPT-4, and Gemini have recently shown impressive performance on tasks such as natural image captioning, visual question answering (VQA), and spatial reasoning. Additionally, a universal segmentation model by Meta AI, Segment Anything Model (SAM) shows unprecedented performance at isolating objects from unforeseen images. Since medical experts, biologists, and materials scientists routinely examine microscopy or medical images in conjunction with textual information in the form of captions, literature, or reports, and draw conclusions of great importance and merit, it is indubitably essential to test the performance of VLMs and foundation models such as SAM, on these images. In this study, we charge ChatGPT, LLaVA, Gemini, and SAM with classification, segmentation, counting, and VQA tasks on a variety of microscopy images. We observe that ChatGPT and Gemini are impressively able to comprehend the visual features in microscopy images, while SAM is quite capable at isolating artefacts in a general sense. However, the performance is not close to that of a domain expert - the models are readily encumbered by the introduction of impurities, defects, artefact overlaps and diversity present in the images.
☆ Guided Conditional Diffusion Classifier (ConDiff) for Enhanced Prediction of Infection in Diabetic Foot Ulcers
To detect infected wounds in Diabetic Foot Ulcers (DFUs) from photographs, preventing severe complications and amputations. Methods: This paper proposes the Guided Conditional Diffusion Classifier (ConDiff), a novel deep-learning infection detection model that combines guided image synthesis with a denoising diffusion model and distance-based classification. The process involves (1) generating guided conditional synthetic images by injecting Gaussian noise to a guide image, followed by denoising the noise-perturbed image through a reverse diffusion process, conditioned on infection status and (2) classifying infections based on the minimum Euclidean distance between synthesized images and the original guide image in embedding space. Results: ConDiff demonstrated superior performance with an accuracy of 83% and an F1-score of 0.858, outperforming state-of-the-art models by at least 3%. The use of a triplet loss function reduces overfitting in the distance-based classifier. Conclusions: ConDiff not only enhances diagnostic accuracy for DFU infections but also pioneers the use of generative discriminative models for detailed medical image analysis, offering a promising approach for improving patient outcomes.
☆ Brighteye: Glaucoma Screening with Color Fundus Photographs based on Vision Transformer
Differences in image quality, lighting conditions, and patient demographics pose challenges to automated glaucoma detection from color fundus photography. Brighteye, a method based on Vision Transformer, is proposed for glaucoma detection and glaucomatous feature classification. Brighteye learns long-range relationships among pixels within large fundus images using a self-attention mechanism. Prior to being input into Brighteye, the optic disc is localized using YOLOv8, and the region of interest (ROI) around the disc center is cropped to ensure alignment with clinical practice. Optic disc detection improves the sensitivity at 95% specificity from 79.20% to 85.70% for glaucoma detection and the Hamming distance from 0.2470 to 0.1250 for glaucomatous feature classification. In the developmental stage of the Justified Referral in AI Glaucoma Screening (JustRAIGS) challenge, the overall outcome secured the fifth position out of 226 entries.
comment: ISBI 2024, JustRAIGS challenge, glaucoma detection
☆ ADM: Accelerated Diffusion Model via Estimated Priors for Robust Motion Prediction under Uncertainties
Motion prediction is a challenging problem in autonomous driving as it demands the system to comprehend stochastic dynamics and the multi-modal nature of real-world agent interactions. Diffusion models have recently risen to prominence, and have proven particularly effective in pedestrian motion prediction tasks. However, the significant time consumption and sensitivity to noise have limited the real-time predictive capability of diffusion models. In response to these impediments, we propose a novel diffusion-based, acceleratable framework that adeptly predicts future trajectories of agents with enhanced resistance to noise. The core idea of our model is to learn a coarse-grained prior distribution of trajectory, which can skip a large number of denoise steps. This advancement not only boosts sampling efficiency but also maintains the fidelity of prediction accuracy. Our method meets the rigorous real-time operational standards essential for autonomous vehicles, enabling prompt trajectory generation that is vital for secure and efficient navigation. Through extensive experiments, our method speeds up the inference time to 136ms compared to standard diffusion model, and achieves significant improvement in multi-agent motion prediction on the Argoverse 1 motion forecasting dataset.
comment: 7 pages, 4 figures
☆ Coherent 3D Portrait Video Reconstruction via Triplane Fusion
Recent breakthroughs in single-image 3D portrait reconstruction have enabled telepresence systems to stream 3D portrait videos from a single camera in real-time, potentially democratizing telepresence. However, per-frame 3D reconstruction exhibits temporal inconsistency and forgets the user's appearance. On the other hand, self-reenactment methods can render coherent 3D portraits by driving a personalized 3D prior, but fail to faithfully reconstruct the user's per-frame appearance (e.g., facial expressions and lighting). In this work, we recognize the need to maintain both coherent identity and dynamic per-frame appearance to enable the best possible realism. To this end, we propose a new fusion-based method that fuses a personalized 3D subject prior with per-frame information, producing temporally stable 3D videos with faithful reconstruction of the user's per-frame appearances. Trained only using synthetic data produced by an expression-conditioned 3D GAN, our encoder-based method achieves both state-of-the-art 3D reconstruction accuracy and temporal consistency on in-studio and in-the-wild datasets.
☆ Obtaining Favorable Layouts for Multiple Object Generation
Large-scale text-to-image models that can generate high-quality and diverse images based on textual prompts have shown remarkable success. These models aim ultimately to create complex scenes, and addressing the challenge of multi-subject generation is a critical step towards this goal. However, the existing state-of-the-art diffusion models face difficulty when generating images that involve multiple subjects. When presented with a prompt containing more than one subject, these models may omit some subjects or merge them together. To address this challenge, we propose a novel approach based on a guiding principle. We allow the diffusion model to initially propose a layout, and then we rearrange the layout grid. This is achieved by enforcing cross-attention maps (XAMs) to adhere to proposed masks and by migrating pixels from latent maps to new locations determined by us. We introduce new loss terms aimed at reducing XAM entropy for clearer spatial definition of subjects, reduce the overlap between XAMs, and ensure that XAMs align with their respective masks. We contrast our approach with several alternative methods and show that it more faithfully captures the desired concepts across a variety of text prompts.
♻ ☆ GRASP: A Rehearsal Policy for Efficient Online Continual Learning
Continual learning (CL) in deep neural networks (DNNs) involves incrementally accumulating knowledge in a DNN from a growing data stream. A major challenge in CL is that non-stationary data streams cause catastrophic forgetting of previously learned abilities. A popular solution is rehearsal: storing past observations in a buffer and then sampling the buffer to update the DNN. Uniform sampling in a class-balanced manner is highly effective, and better sample selection policies have been elusive. Here, we propose a new sample selection policy called GRASP that selects the most prototypical (easy) samples first and then gradually selects less prototypical (harder) examples. GRASP has little additional compute or memory overhead compared to uniform selection, enabling it to scale to large datasets. Compared to 17 other rehearsal policies, GRASP achieves higher accuracy in CL experiments on ImageNet. Compared to uniform balanced sampling, GRASP achieves the same performance with 40% fewer updates. We also show that GRASP is effective for CL on five text classification datasets.
comment: Accepted to the Conference on Lifelong Learning Agents (CoLLAs) 2024
♻ ☆ Capabilities of Gemini Models in Medicine
Excellence in a wide variety of medical applications poses considerable challenges for AI, requiring advanced reasoning, access to up-to-date medical knowledge and understanding of complex multimodal data. Gemini models, with strong general capabilities in multimodal and long-context reasoning, offer exciting possibilities in medicine. Building on these core strengths of Gemini, we introduce Med-Gemini, a family of highly capable multimodal models that are specialized in medicine with the ability to seamlessly use web search, and that can be efficiently tailored to novel modalities using custom encoders. We evaluate Med-Gemini on 14 medical benchmarks, establishing new state-of-the-art (SoTA) performance on 10 of them, and surpass the GPT-4 model family on every benchmark where a direct comparison is viable, often by a wide margin. On the popular MedQA (USMLE) benchmark, our best-performing Med-Gemini model achieves SoTA performance of 91.1% accuracy, using a novel uncertainty-guided search strategy. On 7 multimodal benchmarks including NEJM Image Challenges and MMMU (health & medicine), Med-Gemini improves over GPT-4V by an average relative margin of 44.5%. We demonstrate the effectiveness of Med-Gemini's long-context capabilities through SoTA performance on a needle-in-a-haystack retrieval task from long de-identified health records and medical video question answering, surpassing prior bespoke methods using only in-context learning. Finally, Med-Gemini's performance suggests real-world utility by surpassing human experts on tasks such as medical text summarization, alongside demonstrations of promising potential for multimodal medical dialogue, medical research and education. Taken together, our results offer compelling evidence for Med-Gemini's potential, although further rigorous evaluation will be crucial before real-world deployment in this safety-critical domain.
♻ ☆ NeRF as a Non-Distant Environment Emitter in Physics-based Inverse Rendering SIGGRAPH 2024
Physics-based inverse rendering enables joint optimization of shape, material, and lighting based on captured 2D images. To ensure accurate reconstruction, using a light model that closely resembles the captured environment is essential. Although the widely adopted distant environmental lighting model is adequate in many cases, we demonstrate that its inability to capture spatially varying illumination can lead to inaccurate reconstructions in many real-world inverse rendering scenarios. To address this limitation, we incorporate NeRF as a non-distant environment emitter into the inverse rendering pipeline. Additionally, we introduce an emitter importance sampling technique for NeRF to reduce the rendering variance. Through comparisons on both real and synthetic datasets, our results demonstrate that our NeRF-based emitter offers a more precise representation of scene lighting, thereby improving the accuracy of inverse rendering.
comment: SIGGRAPH 2024. Project page and video: https://nerfemitterpbir.github.io/
♻ ☆ HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach
Our paper addresses the complex task of transferring a hairstyle from a reference image to an input photo for virtual hair try-on. This task is challenging due to the need to adapt to various photo poses, the sensitivity of hairstyles, and the lack of objective metrics. The current state of the art hairstyle transfer methods use an optimization process for different parts of the approach, making them inexcusably slow. At the same time, faster encoder-based models are of very low quality because they either operate in StyleGAN's W+ space or use other low-dimensional image generators. Additionally, both approaches have a problem with hairstyle transfer when the source pose is very different from the target pose, because they either don't consider the pose at all or deal with it inefficiently. In our paper, we present the HairFast model, which uniquely solves these problems and achieves high resolution, near real-time performance, and superior reconstruction compared to optimization problem-based methods. Our solution includes a new architecture operating in the FS latent space of StyleGAN, an enhanced inpainting approach, and improved encoders for better alignment, color transfer, and a new encoder for post-processing. The effectiveness of our approach is demonstrated on realism metrics after random hairstyle transfer and reconstruction when the original hairstyle is transferred. In the most difficult scenario of transferring both shape and color of a hairstyle from different images, our method performs in less than a second on the Nvidia V100. Our code is available at https://github.com/AIRI-Institute/HairFastGAN.
♻ ☆ The R2D2 deep neural network series paradigm for fast precision imaging in radio astronomy
Radio-interferometric (RI) imaging entails solving high-resolution high-dynamic range inverse problems from large data volumes. Recent image reconstruction techniques grounded in optimization theory have demonstrated remarkable capability for imaging precision, well beyond CLEAN's capability. These range from advanced proximal algorithms propelled by handcrafted regularization operators, such as the SARA family, to hybrid plug-and-play (PnP) algorithms propelled by learned regularization denoisers, such as AIRI. Optimization and PnP structures are however highly iterative, which hinders their ability to handle the extreme data sizes expected from future instruments. To address this scalability challenge, we introduce a novel deep learning approach, dubbed "Residual-to-Residual DNN series for high-Dynamic range imaging". R2D2's reconstruction is formed as a series of residual images, iteratively estimated as outputs of Deep Neural Networks (DNNs) taking the previous iteration's image estimate and associated data residual as inputs. It thus takes a hybrid structure between a PnP algorithm and a learned version of the matching pursuit algorithm that underpins CLEAN. We present a comprehensive study of our approach, featuring its multiple incarnations distinguished by their DNN architectures. We provide a detailed description of its training process, targeting a telescope-specific approach. R2D2's capability to deliver high precision is demonstrated in simulation, across a variety of image and observation settings using the Very Large Array (VLA). Its reconstruction speed is also demonstrated: with only few iterations required to clean data residuals at dynamic ranges up to 100000, R2D2 opens the door to fast precision imaging. R2D2 codes are available in the BASPLib library on GitHub.
comment: Accepted for publication in ApJS
♻ ☆ Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing CVPR 2024
Adiabatic quantum computing (AQC) is a promising approach for discrete and often NP-hard optimization problems. Current AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for many computer vision tasks. Despite requiring multiple measurements from the noisy AQC, current approaches only utilize the best measurement, discarding information contained in the remaining ones. In this work, we explore the potential of using this information for probabilistic balanced k-means clustering. Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost. This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
comment: Accepted at CVPR 2024
♻ ☆ A Minimal Set of Parameters Based Depth-Dependent Distortion Model and Its Calibration Method for Stereo Vision Systems
Depth position highly affects lens distortion, especially in close-range photography, which limits the measurement accuracy of existing stereo vision systems. Moreover, traditional depth-dependent distortion models and their calibration methods have remained complicated. In this work, we propose a minimal set of parameters based depth-dependent distortion model (MDM), which considers the radial and decentering distortions of the lens to improve the accuracy of stereo vision systems and simplify their calibration process. In addition, we present an easy and flexible calibration method for the MDM of stereo vision systems with a commonly used planar pattern, which requires cameras to observe the planar pattern in different orientations. The proposed technique is easy to use and flexible compared with classical calibration techniques for depth-dependent distortion models in which the lens must be perpendicular to the planar pattern. The experimental validation of the MDM and its calibration method showed that the MDM improved the calibration accuracy by 56.55% and 74.15% compared with the Li's distortion model and traditional Brown's distortion model. Besides, an iteration-based reconstruction method is proposed to iteratively estimate the depth information in the MDM during three-dimensional reconstruction. The results showed that the accuracy of the iteration-based reconstruction method was improved by 9.08% compared with that of the non-iteration reconstruction method.
comment: This paper has been accepted for publication in IEEE Transactions on Instrumentation and Measurement
♻ ☆ Learning to Complement with Multiple Humans
Real-world image classification tasks tend to be complex, where expert labellers are sometimes unsure about the classes present in the images, leading to the issue of learning with noisy labels (LNL). The ill-posedness of the LNL task requires the adoption of strong assumptions or the use of multiple noisy labels per training image, resulting in accurate models that work well in isolation but fail to optimise human-AI collaborative classification (HAI-CC). Unlike such LNL methods, HAI-CC aims to leverage the synergies between human expertise and AI capabilities but requires clean training labels, limiting its real-world applicability. This paper addresses this gap by introducing the innovative Learning to Complement with Multiple Humans (LECOMH) approach. LECOMH is designed to learn from noisy labels without depending on clean labels, simultaneously maximising collaborative accuracy while minimising the cost of human collaboration, measured by the number of human expert annotations required per image. Additionally, new benchmarks featuring multiple noisy labels for both training and testing are proposed to evaluate HAI-CC methods. Through quantitative comparisons on these benchmarks, LECOMH consistently outperforms competitive HAI-CC approaches, human labellers, multi-rater learning, and noisy-label learning methods across various datasets, offering a promising solution for addressing real-world image classification challenges.
comment: Under review
♻ ☆ RTG-SLAM: Real-time 3D Reconstruction at Scale using Gaussian Splatting SIGGRAPH 2024
We present Real-time Gaussian SLAM (RTG-SLAM), a real-time 3D reconstruction system with an RGBD camera for large-scale environments using Gaussian splatting. The system features a compact Gaussian representation and a highly efficient on-the-fly Gaussian optimization scheme. We force each Gaussian to be either opaque or nearly transparent, with the opaque ones fitting the surface and dominant colors, and transparent ones fitting residual colors. By rendering depth in a different way from color rendering, we let a single opaque Gaussian well fit a local surface region without the need of multiple overlapping Gaussians, hence largely reducing the memory and computation cost. For on-the-fly Gaussian optimization, we explicitly add Gaussians for three types of pixels per frame: newly observed, with large color errors, and with large depth errors. We also categorize all Gaussians into stable and unstable ones, where the stable Gaussians are expected to well fit previously observed RGBD images and otherwise unstable. We only optimize the unstable Gaussians and only render the pixels occupied by unstable Gaussians. In this way, both the number of Gaussians to be optimized and pixels to be rendered are largely reduced, and the optimization can be done in real time. We show real-time reconstructions of a variety of large scenes. Compared with the state-of-the-art NeRF-based RGBD SLAM, our system achieves comparable high-quality reconstruction but with around twice the speed and half the memory cost, and shows superior performance in the realism of novel view synthesis and camera tracking accuracy.
comment: To be published in ACM SIGGRAPH 2024
♻ ☆ Attention is All They Need: Exploring the Media Archaeology of the Computer Vision Research Paper
Research papers, in addition to textual documents, are a designed interface through which researchers communicate. Recently, rapid growth has transformed that interface in many fields of computing. In this work, we examine the effects of this growth from a media archaeology perspective, through the changes to figures and tables in research papers. Specifically, we study these changes in computer vision over the past decade, as the deep learning revolution has driven unprecedented growth in the discipline. We ground our investigation through interviews with veteran researchers spanning computer vision, graphics and visualization. Our analysis focuses on the research attention economy: how research paper elements contribute towards advertising, measuring and disseminating an increasingly commodified ``contribution.'' Through this work, we seek to motivate future discussion surrounding the design of both the research paper itself as well as the larger sociotechnical research publishing system, including tools for finding, reading and writing research papers.
♻ ☆ Image-Based Virtual Try-On: A Survey
Image-based virtual try-on aims to synthesize a naturally dressed person image with a clothing image, which revolutionizes online shopping and inspires related topics within image generation, showing both research significance and commercial potential. However, there is a gap between current research progress and commercial applications and an absence of comprehensive overview of this field to accelerate the development. In this survey, we provide a comprehensive analysis of the state-of-the-art techniques and methodologies in aspects of pipeline architecture, person representation and key modules such as try-on indication, clothing warping and try-on stage. We propose a new semantic criteria with CLIP, and evaluate representative methods with uniformly implemented evaluation metrics on the same dataset. In addition to quantitative and qualitative evaluation of current open-source methods, unresolved issues are highlighted and future research directions are prospected to identify key trends and inspire further exploration. The uniformly implemented evaluation metrics, dataset and collected methods will be made public available at https://github.com/little-misfit/Survey-Of-Virtual-Try-On.
comment: 30 pages, 18 figures
♻ ☆ DSI2I: Dense Style for Unpaired Image-to-Image Translation
Unpaired exemplar-based image-to-image (UEI2I) translation aims to translate a source image to a target image domain with the style of a target image exemplar, without ground-truth input-translation pairs. Existing UEI2I methods represent style using one vector per image or rely on semantic supervision to define one style vector per object. Here, in contrast, we propose to represent style as a dense feature map, allowing for a finer-grained transfer to the source image without requiring any external semantic information. We then rely on perceptual and adversarial losses to disentangle our dense style and content representations. To stylize the source content with the exemplar style, we extract unsupervised cross-domain semantic correspondences and warp the exemplar style to the source content. We demonstrate the effectiveness of our method on four datasets using standard metrics together with a localized style metric we propose, which measures style similarity in a class-wise manner. Our results show that the translations produced by our approach are more diverse, preserve the source content better, and are closer to the exemplars when compared to the state-of-the-art methods. Project page: https://github.com/IVRL/dsi2i
comment: To appear on TMLR '24, Reviewed on OpenReview: https://openreview.net/forum?id=mrJi5kdKA4
♻ ☆ DressCode: Autoregressively Sewing and Generating Garments from Text Guidance
Apparel's significant role in human appearance underscores the importance of garment digitalization for digital human creation. Recent advances in 3D content creation are pivotal for digital human creation. Nonetheless, garment generation from text guidance is still nascent. We introduce a text-driven 3D garment generation framework, DressCode, which aims to democratize design for novices and offer immense potential in fashion design, virtual try-on, and digital human creation. We first introduce SewingGPT, a GPT-based architecture integrating cross-attention with text-conditioned embedding to generate sewing patterns with text guidance. We then tailor a pre-trained Stable Diffusion to generate tile-based Physically-based Rendering (PBR) textures for the garments. By leveraging a large language model, our framework generates CG-friendly garments through natural language interaction. It also facilitates pattern completion and texture editing, streamlining the design process through user-friendly interaction. This framework fosters innovation by allowing creators to freely experiment with designs and incorporate unique elements into their work. With comprehensive evaluations and comparisons with other state-of-the-art methods, our method showcases superior quality and alignment with input prompts. User studies further validate our high-quality rendering results, highlighting its practical utility and potential in production settings. Our project page is https://IHe-KaiI.github.io/DressCode/.
comment: Project page: https://IHe-KaiI.github.io/DressCode/
♻ ☆ Benchmarking Deep Learning Architectures for Urban Vegetation Point Cloud Semantic Segmentation from MLS
Vegetation is crucial for sustainable and resilient cities providing various ecosystem services and well-being of humans. However, vegetation is under critical stress with rapid urbanization and expanding infrastructure footprints. Consequently, mapping of this vegetation is essential in the urban environment. Recently, deep learning for point cloud semantic segmentation has shown significant progress. Advanced models attempt to obtain state-of-the-art performance on benchmark datasets, comprising multiple classes and representing real world scenarios. However, class specific segmentation with respect to vegetation points has not been explored. Therefore, selection of a deep learning model for vegetation points segmentation is ambiguous. To address this problem, we provide a comprehensive assessment of point-based deep learning models for semantic segmentation of vegetation class. We have selected seven representative point-based models, namely PointCNN, KPConv (omni-supervised), RandLANet, SCFNet, PointNeXt, SPoTr and PointMetaBase. These models are investigated on three different datasets, specifically Chandigarh, Toronto3D and Kerala, which are characterized by diverse nature of vegetation and varying scene complexity combined with changing per-point features and class-wise composition. PointMetaBase and KPConv (omni-supervised) achieve the highest mIoU on the Chandigarh (95.24%) and Toronto3D datasets (91.26%), respectively while PointCNN provides the highest mIoU on the Kerala dataset (85.68%). The paper develops a deeper insight, hitherto not reported, into the working of these models for vegetation segmentation and outlines the ingredients that should be included in a model specifically for vegetation segmentation. This paper is a step towards the development of a novel architecture for vegetation points segmentation.
comment: The paper has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. DOI: 10.1109/TGRS.2024.3381976
♻ ☆ Semantic-guided modeling of spatial relation and object co-occurrence for indoor scene recognition
Exploring the semantic context in scene images is essential for indoor scene recognition. However, due to the diverse intra-class spatial layouts and the coexisting inter-class objects, modeling contextual relationships to adapt various image characteristics is a great challenge. Existing contextual modeling methods for scene recognition exhibit two limitations: 1) They typically model only one kind of spatial relationship among objects within scenes in an artificially predefined manner, with limited exploration of diverse spatial layouts. 2) They often overlook the differences in coexisting objects across different scenes, suppressing scene recognition performance. To overcome these limitations, we propose SpaCoNet, which simultaneously models Spatial relation and Co-occurrence of objects guided by semantic segmentation. Firstly, the Semantic Spatial Relation Module (SSRM) is constructed to model scene spatial features. With the help of semantic segmentation, this module decouples the spatial information from the scene image and thoroughly explores all spatial relationships among objects in an end-to-end manner. Secondly, both spatial features from the SSRM and deep features from the Image Feature Extraction Module are allocated to each object, so as to distinguish the coexisting object across different scenes. Finally, utilizing the discriminative features above, we design a Global-Local Dependency Module to explore the long-range co-occurrence among objects, and further generate a semantic-guided feature representation for indoor scene recognition. Experimental results on three widely used scene datasets demonstrate the effectiveness and generality of the proposed method.
♻ ☆ Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models
Contrast agents in dynamic contrast enhanced magnetic resonance imaging allow to localize tumors and observe their contrast kinetics, which is essential for cancer characterization and respective treatment decision-making. However, contrast agent administration is not only associated with adverse health risks, but also restricted for patients during pregnancy, and for those with kidney malfunction, or other adverse reactions. With contrast uptake as key biomarker for lesion malignancy, cancer recurrence risk, and treatment response, it becomes pivotal to reduce the dependency on intravenous contrast agent administration. To this end, we propose a multi-conditional latent diffusion model capable of acquisition time-conditioned image synthesis of DCE-MRI temporal sequences. To evaluate medical image synthesis, we additionally propose and validate the Fr\'echet radiomics distance as an image quality measure based on biomarker variability between synthetic and real imaging data. Our results demonstrate our method's ability to generate realistic multi-sequence fat-saturated breast DCE-MRI and uncover the emerging potential of deep learning based contrast kinetics simulation. We publicly share our accessible codebase at https://github.com/RichardObi/ccnet and provide a user-friendly library for Fr\'echet radiomics distance calculation at https://pypi.org/project/frd-score.
♻ ☆ SeaTurtleID2022: A long-span dataset for reliable sea turtle re-identification
This paper introduces the first public large-scale, long-span dataset with sea turtle photographs captured in the wild -- \href{https://www.kaggle.com/datasets/wildlifedatasets/seaturtleid2022}{SeaTurtleID2022}. The dataset contains 8729 photographs of 438 unique individuals collected within 13 years, making it the longest-spanned dataset for animal re-identification. All photographs include various annotations, e.g., identity, encounter timestamp, and body parts segmentation masks. Instead of standard "random" splits, the dataset allows for two realistic and ecologically motivated splits: (i) a \textit{time-aware closed-set} with training, validation, and test data from different days/years, and (ii) a \textit{time-aware open-set} with new unknown individuals in test and validation sets. We show that time-aware splits are essential for benchmarking re-identification methods, as random splits lead to performance overestimation. Furthermore, a baseline instance segmentation and re-identification performance over various body parts is provided. Finally, an end-to-end system for sea turtle re-identification is proposed and evaluated. The proposed system based on Hybrid Task Cascade for head instance segmentation and ArcFace-trained feature-extractor achieved an accuracy of 86.8\%.
comment: The SeaTurtleID2022 dataset is the latest version of the SeaTurtleID dataset which was described in the previous versions of this arXiv submission. Notice the change of title in the latest version
♻ ☆ FusionVision: A comprehensive approach of 3D object reconstruction and segmentation from RGB-D cameras using YOLO and fast segment anything
In the realm of computer vision, the integration of advanced techniques into the processing of RGB-D camera inputs poses a significant challenge, given the inherent complexities arising from diverse environmental conditions and varying object appearances. Therefore, this paper introduces FusionVision, an exhaustive pipeline adapted for the robust 3D segmentation of objects in RGB-D imagery. Traditional computer vision systems face limitations in simultaneously capturing precise object boundaries and achieving high-precision object detection on depth map as they are mainly proposed for RGB cameras. To address this challenge, FusionVision adopts an integrated approach by merging state-of-the-art object detection techniques, with advanced instance segmentation methods. The integration of these components enables a holistic (unified analysis of information obtained from both color \textit{RGB} and depth \textit{D} channels) interpretation of RGB-D data, facilitating the extraction of comprehensive and accurate object information. The proposed FusionVision pipeline employs YOLO for identifying objects within the RGB image domain. Subsequently, FastSAM, an innovative semantic segmentation model, is applied to delineate object boundaries, yielding refined segmentation masks. The synergy between these components and their integration into 3D scene understanding ensures a cohesive fusion of object detection and segmentation, enhancing overall precision in 3D object segmentation. The code and pre-trained models are publicly available at https://github.com/safouaneelg/FusionVision/.
comment: 14 pages, 9 figures, 1 table
♻ ☆ Blurring Diffusion Models
Recently, Rissanen et al., (2022) have presented a new type of diffusion process for generative modeling based on heat dissipation, or blurring, as an alternative to isotropic Gaussian diffusion. Here, we show that blurring can equivalently be defined through a Gaussian diffusion process with non-isotropic noise. In making this connection, we bridge the gap between inverse heat dissipation and denoising diffusion, and we shed light on the inductive bias that results from this modeling choice. Finally, we propose a generalized class of diffusion models that offers the best of both standard Gaussian denoising diffusion and inverse heat dissipation, which we call Blurring Diffusion Models.
♻ ☆ FlightScope: A Deep Comprehensive Assessment of Aircraft Detection Algorithms in Satellite Imagery
Object detection in remotely sensed satellite pictures is fundamental in many fields such as biophysical, and environmental monitoring. While deep learning algorithms are constantly evolving, they have been mostly implemented and tested on popular ground-based taken photos. This paper critically evaluates and compares a suite of advanced object detection algorithms customized for the task of identifying aircraft within satellite imagery. Using the large HRPlanesV2 dataset, together with a rigorous validation with the GDIT dataset, this research encompasses an array of methodologies including YOLO versions 5 and 8, Faster RCNN, CenterNet, RetinaNet, RTMDet, and DETR, all trained from scratch. This exhaustive training and validation study reveal YOLOv5 as the preeminent model for the specific case of identifying airplanes from remote sensing data, showcasing high precision and adaptability across diverse imaging conditions. This research highlight the nuanced performance landscapes of these algorithms, with YOLOv5 emerging as a robust solution for aerial object detection, underlining its importance through superior mean average precision, Recall, and Intersection over Union scores. The findings described here underscore the fundamental role of algorithm selection aligned with the specific demands of satellite imagery analysis and extend a comprehensive framework to evaluate model efficacy. The benchmark toolkit and codes, available via https://github.com/toelt-llc/FlightScope_Bench, aims to further exploration and innovation in the realm of remote sensing object detection, paving the way for improved analytical methodologies in satellite imagery applications.
comment: 15 figures, 4 tables, comprehensive survey, comparative study
♻ ☆ IMITATE: Clinical Prior Guided Hierarchical Vision-Language Pre-training
In the field of medical Vision-Language Pre-training (VLP), significant efforts have been devoted to deriving text and image features from both clinical reports and associated medical images. However, most existing methods may have overlooked the opportunity in leveraging the inherent hierarchical structure of clinical reports, which are generally split into `findings' for descriptive content and `impressions' for conclusive observation. Instead of utilizing this rich, structured format, current medical VLP approaches often simplify the report into either a unified entity or fragmented tokens. In this work, we propose a novel clinical prior guided VLP framework named IMITATE to learn the structure information from medical reports with hierarchical vision-language alignment. The framework derives multi-level visual features from the chest X-ray (CXR) images and separately aligns these features with the descriptive and the conclusive text encoded in the hierarchical medical report. Furthermore, a new clinical-informed contrastive loss is introduced for cross-modal learning, which accounts for clinical prior knowledge in formulating sample correlations in contrastive learning. The proposed model, IMITATE, outperforms baseline VLP methods across six different datasets, spanning five medical imaging downstream tasks. Comprehensive experimental results highlight the advantages of integrating the hierarchical structure of medical reports for vision-language alignment.
comment: Under Review
♻ ☆ Rethinking Real-world Image Deraining via An Unpaired Degradation-Conditioned Diffusion Model
Recent diffusion models have exhibited great potential in generative modeling tasks. Part of their success can be attributed to the ability of training stable on huge sets of paired synthetic data. However, adapting these models to real-world image deraining remains difficult for two aspects. First, collecting a large-scale paired real-world clean/rainy dataset is unavailable while regular conditional diffusion models heavily rely on paired data for training. Second, real-world rain usually reflects real-world scenarios with a variety of unknown rain degradation types, which poses a significant challenge for the generative modeling process. To meet these challenges, we propose RainDiff, the first real-world image deraining paradigm based on diffusion models, serving as a new standard bar for real-world image deraining. We address the first challenge by introducing a stable and non-adversarial unpaired cycle-consistent architecture that can be trained, end-to-end, with only unpaired data for supervision; and the second challenge by proposing a degradation-conditioned diffusion model that refines the desired output via a diffusive generative process conditioned by learned priors of multiple rain degradations. Extensive experiments confirm the superiority of our RainDiff over existing unpaired/semi-supervised methods and show its competitive advantages over several fully-supervised ones.
comment: 18 pages
♻ ☆ A Novel Spike Transformer Network for Depth Estimation from Event Cameras via Cross-modality Knowledge Distillation
Depth estimation is crucial for interpreting complex environments, especially in areas such as autonomous vehicle navigation and robotics. Nonetheless, obtaining accurate depth readings from event camera data remains a formidable challenge. Event cameras operate differently from traditional digital cameras, continuously capturing data and generating asynchronous binary spikes that encode time, location, and light intensity. Yet, the unique sampling mechanisms of event cameras render standard image based algorithms inadequate for processing spike data. This necessitates the development of innovative, spike-aware algorithms tailored for event cameras, a task compounded by the irregularity, continuity, noise, and spatial and temporal characteristics inherent in spiking data.Harnessing the strong generalization capabilities of transformer neural networks for spatiotemporal data, we propose a purely spike-driven spike transformer network for depth estimation from spiking camera data. To address performance limitations with Spiking Neural Networks (SNN), we introduce a novel single-stage cross-modality knowledge transfer framework leveraging knowledge from a large vision foundational model of artificial neural networks (ANN) (DINOv2) to enhance the performance of SNNs with limited data. Our experimental results on both synthetic and real datasets show substantial improvements over existing models, with notable gains in Absolute Relative and Square Relative errors (49% and 39.77% improvements over the benchmark model Spike-T, respectively). Besides accuracy, the proposed model also demonstrates reduced power consumptions, a critical factor for practical applications.
comment: 16 pages
♻ ☆ Part-Attention Based Model Make Occluded Person Re-Identification Stronger
The goal of occluded person re-identification (ReID) is to retrieve specific pedestrians in occluded situations. However, occluded person ReID still suffers from background clutter and low-quality local feature representations, which limits model performance. In our research, we introduce a new framework called PAB-ReID, which is a novel ReID model incorporating part-attention mechanisms to tackle the aforementioned issues effectively. Firstly, we introduce the human parsing label to guide the generation of more accurate human part attention maps. In addition, we propose a fine-grained feature focuser for generating fine-grained human local feature representations while suppressing background interference. Moreover, We also design a part triplet loss to supervise the learning of human local features, which optimizes intra/inter-class distance. We conducted extensive experiments on specialized occlusion and regular ReID datasets, showcasing that our approach outperforms the existing state-of-the-art methods.
comment: Accepted By International Joint Conference on Neural Networks 2024
♻ ☆ FLIQS: One-Shot Mixed-Precision Floating-Point and Integer Quantization Search
Quantization has become a mainstream compression technique for reducing model size, computational requirements, and energy consumption for modern deep neural networks (DNNs). With improved numerical support in recent hardware, including multiple variants of integer and floating point, mixed-precision quantization has become necessary to achieve high-quality results with low model cost. Prior mixed-precision methods have performed either a post-training quantization search, which compromises on accuracy, or a differentiable quantization search, which leads to high memory usage from branching. Therefore, we propose the first one-shot mixed-precision quantization search that eliminates the need for retraining in both integer and low-precision floating point models. We evaluate our search (FLIQS) on multiple convolutional and vision transformer networks to discover Pareto-optimal models. Our approach improves upon uniform precision, manual mixed-precision, and recent integer quantization search methods. With integer models, we increase the accuracy of ResNet-18 on ImageNet by 1.31% and ResNet-50 by 0.90% with equivalent model cost over previous methods. Additionally, for the first time, we explore a novel mixed-precision floating-point search and improve MobileNetV2 by up to 0.98% compared to prior state-of-the-art FP8 models. Finally, we extend FLIQS to simultaneously search a joint quantization and neural architecture space and improve the ImageNet accuracy by 2.69% with similar model cost on a MobileNetV2 search space.
comment: Accepted to AutoML 2024
♻ ☆ HiH: A Multi-modal Hierarchy in Hierarchy Network for Unconstrained Gait Recognition
Gait recognition has achieved promising advances in controlled settings, yet it significantly struggles in unconstrained environments due to challenges such as view changes, occlusions, and varying walking speeds. Additionally, efforts to fuse multiple modalities often face limited improvements because of cross-modality incompatibility, particularly in outdoor scenarios. To address these issues, we present a multi-modal Hierarchy in Hierarchy network (HiH) that integrates silhouette and pose sequences for robust gait recognition. HiH features a main branch that utilizes Hierarchical Gait Decomposer (HGD) modules for depth-wise and intra-module hierarchical examination of general gait patterns from silhouette data. This approach captures motion hierarchies from overall body dynamics to detailed limb movements, facilitating the representation of gait attributes across multiple spatial resolutions. Complementing this, an auxiliary branch, based on 2D joint sequences, enriches the spatial and temporal aspects of gait analysis. It employs a Deformable Spatial Enhancement (DSE) module for pose-guided spatial attention and a Deformable Temporal Alignment (DTA) module for aligning motion dynamics through learned temporal offsets. Extensive evaluations across diverse indoor and outdoor datasets demonstrate HiH's state-of-the-art performance, affirming a well-balanced trade-off between accuracy and efficiency.
♻ ☆ Relaxometry Guided Quantitative Cardiac Magnetic Resonance Image Reconstruction
Deep learning-based methods have achieved prestigious performance for magnetic resonance imaging (MRI) reconstruction, enabling fast imaging for many clinical applications. Previous methods employ convolutional networks to learn the image prior as the regularization term. In quantitative MRI, the physical model of nuclear magnetic resonance relaxometry is known, providing additional prior knowledge for image reconstruction. However, traditional reconstruction networks are limited to learning the spatial domain prior knowledge, ignoring the relaxometry prior. Therefore, we propose a relaxometry-guided quantitative MRI reconstruction framework to learn the spatial prior from data and the relaxometry prior from MRI physics. Additionally, we also evaluated the performance of two popular reconstruction backbones, namely, recurrent variational networks (RVN) and variational networks (VN) with U- Net. Experiments demonstrate that the proposed method achieves highly promising results in quantitative MRI reconstruction.
♻ ☆ Efficient Bayesian Uncertainty Estimation for nnU-Net
The self-configuring nnU-Net has achieved leading performance in a large range of medical image segmentation challenges. It is widely considered as the model of choice and a strong baseline for medical image segmentation. However, despite its extraordinary performance, nnU-Net does not supply a measure of uncertainty to indicate its possible failure. This can be problematic for large-scale image segmentation applications, where data are heterogeneous and nnU-Net may fail without notice. In this work, we introduce a novel method to estimate nnU-Net uncertainty for medical image segmentation. We propose a highly effective scheme for posterior sampling of weight space for Bayesian uncertainty estimation. Different from previous baseline methods such as Monte Carlo Dropout and mean-field Bayesian Neural Networks, our proposed method does not require a variational architecture and keeps the original nnU-Net architecture intact, thereby preserving its excellent performance and ease of use. Additionally, we boost the segmentation performance over the original nnU-Net via marginalizing multi-modal posterior models. We applied our method on the public ACDC and M&M datasets of cardiac MRI and demonstrated improved uncertainty estimation over a range of baseline methods. The proposed method further strengthens nnU-Net for medical image segmentation in terms of both segmentation accuracy and quality control.
♻ ☆ Expert-Adaptive Medical Image Segmentation
Medical image segmentation (MIS) plays an instrumental role in medical image analysis, where considerable effort has been devoted to automating the process. Currently, mainstream MIS approaches are based on deep neural networks (DNNs), which are typically trained on a dataset with annotations produced by certain medical experts. In the medical domain, the annotations generated by different experts can be inherently distinct due to complexity of medical images and variations in expertise and post-segmentation missions. Consequently, the DNN model trained on the data annotated by some experts may hardly adapt to a new expert. In this work, we evaluate a customised expert-adaptive method, characterised by multi-expert annotation, multi-task DNN-based model training, and lightweight model fine-tuning, to investigate model's adaptivity to a new expert in the situation where the amount and mobility of training images are limited. Experiments conducted on brain MRI segmentation tasks with limited training data demonstrate its effectiveness and the impact of its key parameters.
♻ ☆ ChartReformer: Natural Language-Driven Chart Image Editing ICDAR 2024
Chart visualizations are essential for data interpretation and communication; however, most charts are only accessible in image format and lack the corresponding data tables and supplementary information, making it difficult to alter their appearance for different application scenarios. To eliminate the need for original underlying data and information to perform chart editing, we propose ChartReformer, a natural language-driven chart image editing solution that directly edits the charts from the input images with the given instruction prompts. The key in this method is that we allow the model to comprehend the chart and reason over the prompt to generate the corresponding underlying data table and visual attributes for new charts, enabling precise edits. Additionally, to generalize ChartReformer, we define and standardize various types of chart editing, covering style, layout, format, and data-centric edits. The experiments show promising results for the natural language-driven chart image editing.
comment: Published in ICDAR 2024. Code and model are available at https://github.com/pengyu965/ChartReformer
♻ ☆ Automatic Segmentation of the Spinal Cord Nerve Rootlets
Precise identification of spinal nerve rootlets is relevant to delineate spinal levels for the study of functional activity in the spinal cord. The goal of this study was to develop an automatic method for the semantic segmentation of spinal nerve rootlets from T2-weighted magnetic resonance imaging (MRI) scans. Images from two open-access MRI datasets were used to train a 3D multi-class convolutional neural network using an active learning approach to segment C2-C8 dorsal nerve rootlets. Each output class corresponds to a spinal level. The method was tested on 3T T2-weighted images from datasets unseen during training to assess inter-site, inter-session, and inter-resolution variability. The test Dice score was 0.67 +- 0.16 (mean +- standard deviation across testing images and rootlets levels), suggesting a good performance. The method also demonstrated low inter-vendor and inter-site variability (coefficient of variation <= 1.41 %), as well as low inter-session variability (coefficient of variation <= 1.30 %) indicating stable predictions across different MRI vendors, sites, and sessions. The proposed methodology is open-source and readily available in the Spinal Cord Toolbox (SCT) v6.2 and higher.
♻ ☆ Orientation-conditioned Facial Texture Mapping for Video-based Facial Remote Photoplethysmography Estimation
Camera-based remote photoplethysmography (rPPG) enables contactless measurement of important physiological signals such as pulse rate (PR). However, dynamic and unconstrained subject motion introduces significant variability into the facial appearance in video, confounding the ability of video-based methods to accurately extract the rPPG signal. In this study, we leverage the 3D facial surface to construct a novel orientation-conditioned facial texture video representation which improves the motion robustness of existing video-based facial rPPG estimation methods. Our proposed method achieves a significant 18.2% performance improvement in cross-dataset testing on MMPD over our baseline using the PhysNet model trained on PURE, highlighting the efficacy and generalization benefits of our designed video representation. We demonstrate significant performance improvements of up to 29.6% in all tested motion scenarios in cross-dataset testing on MMPD, even in the presence of dynamic and unconstrained subject motion, emphasizing the benefits of disentangling motion through modeling the 3D facial surface for motion robust facial rPPG estimation. We validate the efficacy of our design decisions and the impact of different video processing steps through an ablation study. Our findings illustrate the potential strengths of exploiting the 3D facial surface as a general strategy for addressing dynamic and unconstrained subject motion in videos. The code is available at https://samcantrill.github.io/orientation-uv-rppg/.
comment: 12 pages, 8 figures, 6 tables; minor corrections
♻ ☆ Anticipating Next Active Objects for Egocentric Videos
This paper addresses the problem of anticipating the next-active-object location in the future, for a given egocentric video clip where the contact might happen, before any action takes place. The problem is considerably hard, as we aim at estimating the position of such objects in a scenario where the observed clip and the action segment are separated by the so-called ``time to contact'' (TTC) segment. Many methods have been proposed to anticipate the action of a person based on previous hand movements and interactions with the surroundings. However, there have been no attempts to investigate the next possible interactable object, and its future location with respect to the first-person's motion and the field-of-view drift during the TTC window. We define this as the task of Anticipating the Next ACTive Object (ANACTO). To this end, we propose a transformer-based self-attention framework to identify and locate the next-active-object in an egocentric clip. We benchmark our method on three datasets: EpicKitchens-100, EGTEA+ and Ego4D. We also provide annotations for the first two datasets. Our approach performs best compared to relevant baseline methods. We also conduct ablation studies to understand the effectiveness of the proposed and baseline methods on varying conditions. Code and ANACTO task annotations will be made available upon paper acceptance.
comment: Accepted by IEEE ACCESS, this paper carries the Manuscript DOI: 10.1109/ACCESS.2024.3395282. The complete peer-reviewed version is available via this DOI, while the arXiv version is a post-author manuscript without peer-review
♻ ☆ LISA: Reasoning Segmentation via Large Language Model
Although perception systems have made remarkable advancements in recent years, they still rely on explicit human instruction or pre-defined categories to identify the target objects before executing visual recognition tasks. Such systems cannot actively reason and comprehend implicit user intention. In this work, we propose a new segmentation task -- reasoning segmentation. The task is designed to output a segmentation mask given a complex and implicit query text. Furthermore, we establish a benchmark comprising over one thousand image-instruction-mask data samples, incorporating intricate reasoning and world knowledge for evaluation purposes. Finally, we present LISA: large Language Instructed Segmentation Assistant, which inherits the language generation capabilities of multimodal Large Language Models (LLMs) while also possessing the ability to produce segmentation masks. We expand the original vocabulary with a token and propose the embedding-as-mask paradigm to unlock the segmentation capability. Remarkably, LISA can handle cases involving complex reasoning and world knowledge. Also, it demonstrates robust zero-shot capability when trained exclusively on reasoning-free datasets. In addition, fine-tuning the model with merely 239 reasoning segmentation data samples results in further performance enhancement. Both quantitative and qualitative experiments show our method effectively unlocks new reasoning segmentation capabilities for multimodal LLMs. Code, models, and data are available at https://github.com/dvlab-research/LISA.
comment: Code, models, and data are available at https://github.com/dvlab-research/LISA
♻ ☆ Semantic Line Combination Detector CVPR 2024
A novel algorithm, called semantic line combination detector (SLCD), to find an optimal combination of semantic lines is proposed in this paper. It processes all lines in each line combination at once to assess the overall harmony of the lines. First, we generate various line combinations from reliable lines. Second, we estimate the score of each line combination and determine the best one. Experimental results demonstrate that the proposed SLCD outperforms existing semantic line detectors on various datasets. Moreover, it is shown that SLCD can be applied effectively to three vision tasks of vanishing point detection, symmetry axis detection, and composition-based image retrieval. Our codes are available at https://github.com/Jinwon-Ko/SLCD.
comment: CVPR 2024 accepted
♻ ☆ Resource-Aware Heterogeneous Federated Learning using Neural Architecture Search
Federated Learning (FL) is extensively used to train AI/ML models in distributed and privacy-preserving settings. Participant edge devices in FL systems typically contain non-independent and identically distributed (Non-IID) private data and unevenly distributed computational resources. Preserving user data privacy while optimizing AI/ML models in a heterogeneous federated network requires us to address data and system/resource heterogeneity. To address these challenges, we propose Resource-aware Federated Learning (RaFL). RaFL allocates resource-aware specialized models to edge devices using Neural Architecture Search (NAS) and allows heterogeneous model architecture deployment by knowledge extraction and fusion. Combining NAS and FL enables on-demand customized model deployment for resource-diverse edge devices. Furthermore, we propose a multi-model architecture fusion scheme allowing the aggregation of the distributed learning results. Results demonstrate RaFL's superior resource efficiency compared to SoTA.
comment: Accepted at the 30th International European Conference on Parallel and Distributed Computing (Euro-Par 2024)
♻ ☆ MotionMaster: Training-free Camera Motion Transfer For Video Generation
The emergence of diffusion models has greatly propelled the progress in image and video generation. Recently, some efforts have been made in controllable video generation, including text-to-video generation and video motion control, among which camera motion control is an important topic. However, existing camera motion control methods rely on training a temporal camera module, and necessitate substantial computation resources due to the large amount of parameters in video generation models. Moreover, existing methods pre-define camera motion types during training, which limits their flexibility in camera control. Therefore, to reduce training costs and achieve flexible camera control, we propose COMD, a novel training-free video motion transfer model, which disentangles camera motions and object motions in source videos and transfers the extracted camera motions to new videos. We first propose a one-shot camera motion disentanglement method to extract camera motion from a single source video, which separates the moving objects from the background and estimates the camera motion in the moving objects region based on the motion in the background by solving a Poisson equation. Furthermore, we propose a few-shot camera motion disentanglement method to extract the common camera motion from multiple videos with similar camera motions, which employs a window-based clustering technique to extract the common features in temporal attention maps of multiple videos. Finally, we propose a motion combination method to combine different types of camera motions together, enabling our model a more controllable and flexible camera control. Extensive experiments demonstrate that our training-free approach can effectively decouple camera-object motion and apply the decoupled camera motion to a wide range of controllable video generation tasks, achieving flexible and diverse camera motion control.
♻ ☆ Enhancing Super-Resolution Networks through Realistic Thick-Slice CT Simulation
Deep learning-based Generative Models have the potential to convert low-resolution CT images into high-resolution counterparts without long acquisition times and increased radiation exposure in thin-slice CT imaging. However, procuring appropriate training data for these Super-Resolution (SR) models is challenging. Previous SR research has simulated thick-slice CT images from thin-slice CT images to create training pairs. However, these methods either rely on simplistic interpolation techniques that lack realism or sinogram reconstruction, which require the release of raw data and complex reconstruction algorithms. Thus, we introduce a simple yet realistic method to generate thick CT images from thin-slice CT images, facilitating the creation of training pairs for SR algorithms. The training pairs produced by our method closely resemble real data distributions (PSNR=49.74 vs. 40.66, p$<$0.05). A multivariate Cox regression analysis involving thick slice CT images with lung fibrosis revealed that only the radiomics features extracted using our method demonstrated a significant correlation with mortality (HR=1.19 and HR=1.14, p$<$0.005). This paper represents the first to identify and address the challenge of generating appropriate paired training data for Deep Learning-based CT SR models, which enhances the efficacy and applicability of SR models in real-world scenarios.
comment: 11 pages, 4 figures
♻ ☆ Pit30M: A Benchmark for Global Localization in the Age of Self-Driving Cars IROS 2020
We are interested in understanding whether retrieval-based localization approaches are good enough in the context of self-driving vehicles. Towards this goal, we introduce Pit30M, a new image and LiDAR dataset with over 30 million frames, which is 10 to 100 times larger than those used in previous work. Pit30M is captured under diverse conditions (i.e., season, weather, time of the day, traffic), and provides accurate localization ground truth. We also automatically annotate our dataset with historical weather and astronomical data, as well as with image and LiDAR semantic segmentation as a proxy measure for occlusion. We benchmark multiple existing methods for image and LiDAR retrieval and, in the process, introduce a simple, yet effective convolutional network-based LiDAR retrieval method that is competitive with the state of the art. Our work provides, for the first time, a benchmark for sub-metre retrieval-based localization at city scale. The dataset, its Python SDK, as well as more information about the sensors, calibration, and metadata, are available on the project website: https://pit30m.github.io/
comment: Published at IROS 2020
♻ ☆ Attention-based Shape-Deformation Networks for Artifact-Free Geometry Reconstruction of Lumbar Spine from MR Images
Lumbar disc degeneration, a progressive structural wear and tear of lumbar intervertebral disc, is regarded as an essential role on low back pain, a significant global health concern. Automated lumbar spine geometry reconstruction from MR images will enable fast measurement of medical parameters to evaluate the lumbar status, in order to determine a suitable treatment. Existing image segmentation-based techniques often generate erroneous segments or unstructured point clouds, unsuitable for medical parameter measurement. In this work, we present $\textit{UNet-DeformSA}$ and $\textit{TransDeformer}$: novel attention-based deep neural networks that reconstruct the geometry of the lumbar spine with high spatial accuracy and mesh correspondence across patients, and we also present a variant of $\textit{TransDeformer}$ for error estimation. Specially, we devise new attention modules with a new attention formula, which integrate image features and tokenized contour features to predict the displacements of the points on a shape template without the need for image segmentation. The deformed template reveals the lumbar spine geometry in an image. Experiment results show that our networks generate artifact-free geometry outputs, and the variant of $\textit{TransDeformer}$ can predict the errors of a reconstructed geometry. Our code is available at https://github.com/linchenq/TransDeformer-Mesh.
♻ ☆ FairSeg: A Large-Scale Medical Image Segmentation Dataset for Fairness Learning Using Segment Anything Model with Fair Error-Bound Scaling ICLR 2024
Fairness in artificial intelligence models has gained significantly more attention in recent years, especially in the area of medicine, as fairness in medical models is critical to people's well-being and lives. High-quality medical fairness datasets are needed to promote fairness learning research. Existing medical fairness datasets are all for classification tasks, and no fairness datasets are available for medical segmentation, while medical segmentation is an equally important clinical task as classifications, which can provide detailed spatial information on organ abnormalities ready to be assessed by clinicians. In this paper, we propose the first fairness dataset for medical segmentation named Harvard-FairSeg with 10,000 subject samples. In addition, we propose a fair error-bound scaling approach to reweight the loss function with the upper error-bound in each identity group, using the segment anything model (SAM). We anticipate that the segmentation performance equity can be improved by explicitly tackling the hard cases with high training errors in each identity group. To facilitate fair comparisons, we utilize a novel equity-scaled segmentation performance metric to compare segmentation metrics in the context of fairness, such as the equity-scaled Dice coefficient. Through comprehensive experiments, we demonstrate that our fair error-bound scaling approach either has superior or comparable fairness performance to the state-of-the-art fairness learning models. The dataset and code are publicly accessible via https://ophai.hms.harvard.edu/datasets/harvard-fairseg10k.
comment: ICLR 2024; Codes available at https://github.com/Harvard-Ophthalmology-AI-Lab/FairSeg
♻ ☆ LVOS: A Benchmark for Large-scale Long-term Video Object Segmentation
Video object segmentation (VOS) aims to distinguish and track target objects in a video. Despite the excellent performance achieved by off-the-shell VOS models, existing VOS benchmarks mainly focus on short-term videos lasting about 5 seconds, where objects remain visible most of the time. However, these benchmarks poorly represent practical applications, and the absence of long-term datasets restricts further investigation of VOS in realistic scenarios. Thus, we propose a novel benchmark named LVOS, comprising 720 videos with 296,401 frames and 407,945 high-quality annotations. Videos in LVOS last 1.14 minutes on average, approximately 5 times longer than videos in existing datasets. Each video includes various attributes, especially challenges deriving from the wild, such as long-term reappearing and cross-temporal similar objects. Compared to previous benchmarks, our LVOS better reflects VOS models' performance in real scenarios. Based on LVOS, we evaluate 20 existing VOS models under 4 different settings and conduct a comprehensive analysis. On LVOS, these models suffer a large performance drop, highlighting the challenge of achieving precise tracking and segmentation in real-world scenarios. Attribute-based analysis indicates that key factor to accuracy decline is the increased video length, emphasizing LVOS's crucial role. We hope our LVOS can advance development of VOS in real scenes. Data and code are available at https://lingyihongfd.github.io/lvos.github.io/.
comment: LVOS V2
♻ ☆ Mapping New Realities: Ground Truth Image Creation with Pix2Pix Image-to-Image Translation
Generative Adversarial Networks (GANs) have significantly advanced image processing, with Pix2Pix being a notable framework for image-to-image translation. This paper explores a novel application of Pix2Pix to transform abstract map images into realistic ground truth images, addressing the scarcity of such images crucial for domains like urban planning and autonomous vehicle training. We detail the Pix2Pix model's utilization for generating high-fidelity datasets, supported by a dataset of paired map and aerial images, and enhanced by a tailored training regimen. The results demonstrate the model's capability to accurately render complex urban features, establishing its efficacy and potential for broad real-world applications.
♻ ☆ Survey of Bias In Text-to-Image Generation: Definition, Evaluation, and Mitigation
The recent advancement of large and powerful models with Text-to-Image (T2I) generation abilities -- such as OpenAI's DALLE-3 and Google's Gemini -- enables users to generate high-quality images from textual prompts. However, it has become increasingly evident that even simple prompts could cause T2I models to exhibit conspicuous social bias in generated images. Such bias might lead to both allocational and representational harms in society, further marginalizing minority groups. Noting this problem, a large body of recent works has been dedicated to investigating different dimensions of bias in T2I systems. However, an extensive review of these studies is lacking, hindering a systematic understanding of current progress and research gaps. We present the first extensive survey on bias in T2I generative models. In this survey, we review prior studies on dimensions of bias: Gender, Skintone, and Geo-Culture. Specifically, we discuss how these works define, evaluate, and mitigate different aspects of bias. We found that: (1) while gender and skintone biases are widely studied, geo-cultural bias remains under-explored; (2) most works on gender and skintone bias investigated occupational association, while other aspects are less frequently studied; (3) almost all gender bias works overlook non-binary identities in their studies; (4) evaluation datasets and metrics are scattered, with no unified framework for measuring biases; and (5) current mitigation methods fail to resolve biases comprehensively. Based on current limitations, we point out future research directions that contribute to human-centric definitions, evaluations, and mitigation of biases. We hope to highlight the importance of studying biases in T2I systems, as well as encourage future efforts to holistically understand and tackle biases, building fair and trustworthy T2I technologies for everyone.
♻ ☆ Domain-Specific Block Selection and Paired-View Pseudo-Labeling for Online Test-Time Adaptation CVPR 2024
Test-time adaptation (TTA) aims to adapt a pre-trained model to a new test domain without access to source data after deployment. Existing approaches typically rely on self-training with pseudo-labels since ground-truth cannot be obtained from test data. Although the quality of pseudo labels is important for stable and accurate long-term adaptation, it has not been previously addressed. In this work, we propose DPLOT, a simple yet effective TTA framework that consists of two components: (1) domain-specific block selection and (2) pseudo-label generation using paired-view images. Specifically, we select blocks that involve domain-specific feature extraction and train these blocks by entropy minimization. After blocks are adjusted for current test domain, we generate pseudo-labels by averaging given test images and corresponding flipped counterparts. By simply using flip augmentation, we prevent a decrease in the quality of the pseudo-labels, which can be caused by the domain gap resulting from strong augmentation. Our experimental results demonstrate that DPLOT outperforms previous TTA methods in CIFAR10-C, CIFAR100-C, and ImageNet-C benchmarks, reducing error by up to 5.4%, 9.1%, and 2.9%, respectively. Also, we provide an extensive analysis to demonstrate effectiveness of our framework. Code is available at https://github.com/gist-ailab/domain-specific-block-selection-and-paired-view-pseudo-labeling-for-online-TTA.
comment: Accepted at CVPR 2024
♻ ☆ Adaptive aggregation of Monte Carlo augmented decomposed filters for efficient group-equivariant convolutional neural network
Group-equivariant convolutional neural networks (G-CNN) heavily rely on parameter sharing to increase CNN's data efficiency and performance. However, the parameter-sharing strategy greatly increases the computational burden for each added parameter, which hampers its application to deep neural network models. In this paper, we address these problems by proposing a non-parameter-sharing approach for group equivariant neural networks. The proposed methods adaptively aggregate a diverse range of filters by a weighted sum of stochastically augmented decomposed filters. We give theoretical proof about how the continuous group convolution can be approximated by our methods. Our method applies to both continuous and discrete groups, where the augmentation is implemented using Monte Carlo sampling and bootstrap resampling, respectively. We demonstrate that our methods serve as an efficient extension of standard CNN. Experiments on group equivariance tests show how our methods can achieve superior performance to parameter-sharing group equivariant networks. Experiments on image classification and image denoising tasks show that in certain scenarios, with a suitable set of filter bases, our method helps improve the performance of standard CNNs and build efficient lightweight image denoising networks. The code will be available at https://github.com/ZhaoWenzhao/MCG_CNN.
♻ ☆ VideoGigaGAN: Towards Detail-rich Video Super-Resolution
Video super-resolution (VSR) approaches have shown impressive temporal consistency in upsampled videos. However, these approaches tend to generate blurrier results than their image counterparts as they are limited in their generative capability. This raises a fundamental question: can we extend the success of a generative image upsampler to the VSR task while preserving the temporal consistency? We introduce VideoGigaGAN, a new generative VSR model that can produce videos with high-frequency details and temporal consistency. VideoGigaGAN builds upon a large-scale image upsampler -- GigaGAN. Simply inflating GigaGAN to a video model by adding temporal modules produces severe temporal flickering. We identify several key issues and propose techniques that significantly improve the temporal consistency of upsampled videos. Our experiments show that, unlike previous VSR methods, VideoGigaGAN generates temporally consistent videos with more fine-grained appearance details. We validate the effectiveness of VideoGigaGAN by comparing it with state-of-the-art VSR models on public datasets and showcasing video results with $8\times$ super-resolution.
comment: project page: https://videogigagan.github.io/
♻ ☆ Zero-shot generalization across architectures for visual classification ICLR 2024
Generalization to unseen data is a key desideratum for deep networks, but its relation to classification accuracy is unclear. Using a minimalist vision dataset and a measure of generalizability, we show that popular networks, from deep convolutional networks (CNNs) to transformers, vary in their power to extrapolate to unseen classes both across layers and across architectures. Accuracy is not a good predictor of generalizability, and generalization varies non-monotonically with layer depth.
comment: Accepted as a Tiny Paper at ICLR 2024
♻ ☆ Espresso: Robust Concept Filtering in Text-to-Image Models
Diffusion-based text-to-image (T2I) models generate high-fidelity images for given textual prompts. They are trained on large datasets scraped from the Internet, potentially containing unacceptable concepts (e.g., copyright infringing or unsafe). Retraining T2I models after filtering out unacceptable concepts in the training data is inefficient and degrades utility. Hence, there is a need for concept removal techniques (CRTs) which are effective in removing unacceptable concepts, utility-preserving on acceptable concepts, and robust against evasion with adversarial prompts. None of the prior filtering and fine-tuning CRTs satisfy all these requirements simultaneously. We introduce Espresso, the first robust concept filter based on Contrastive Language-Image Pre-Training (CLIP). It identifies unacceptable concepts by projecting the generated image's embedding onto the vector connecting unacceptable and acceptable concepts in the joint text-image embedding space. This ensures robustness by restricting the adversary to adding noise only along this vector, in the direction of the acceptable concept. Further fine-tuning Espresso to separate embeddings of acceptable and unacceptable concepts, while preserving their pairing with image embeddings, ensures both effectiveness and utility. We evaluate Espresso on eleven concepts to show that it is effective (~5% CLIP accuracy on unacceptable concepts), utility-preserving (~93% normalized CLIP score on acceptable concepts), and robust (~4% CLIP accuracy on adversarial prompts for unacceptable concepts). Finally, we present theoretical bounds for the certified robustness of Espresso against adversarial prompts, and an empirical analysis.
♻ ☆ One Model to Rule them All: Towards Universal Segmentation for Medical Images with Text Prompts
In this study, we focus on building up a model that aims to Segment Anything in medical scenarios, driven by Text prompts, termed as SAT. Our main contributions are three folds: (i) for dataset construction, we combine multiple knowledge sources to construct the first multi-modal knowledge tree on human anatomy, including 6502 anatomical terminologies; Then we build up the largest and most comprehensive segmentation dataset for training, by collecting over 22K 3D medical image scans from 72 segmentation datasets with careful standardization on both image scans and label space; (ii) for architecture design, we formulate a universal segmentation model, that can be prompted by inputting medical terminologies in text form. We present knowledge-enhanced representation learning on the combination of a large number of datasets; (iii) for model evaluation, we train a SAT-Pro with only 447M parameters, to segment 72 different segmentation datasets with text prompt, resulting in 497 classes. We have thoroughly evaluated the model from three aspects: averaged by body regions, averaged by classes, and average by datasets, demonstrating comparable performance to 72 specialist nnU-Nets, i.e., we train nnU-Net models on each dataset/subset, resulting in 72 nnU-Nets with around 2.2B parameters for the 72 datasets. We will release all the codes, and models in this work.
comment: 53 pages
Information Retrieval 17
☆ A First Look at Selection Bias in Preference Elicitation for Recommendation RecSys '23
Preference elicitation explicitly asks users what kind of recommendations they would like to receive. It is a popular technique for conversational recommender systems to deal with cold-starts. Previous work has studied selection bias in implicit feedback, e.g., clicks, and in some forms of explicit feedback, i.e., ratings on items. Despite the fact that the extreme sparsity of preference elicitation interactions make them severely more prone to selection bias than natural interactions, the effect of selection bias in preference elicitation on the resulting recommendations has not been studied yet. To address this gap, we take a first look at the effects of selection bias in preference elicitation and how they may be further investigated in the future. We find that a big hurdle is the current lack of any publicly available dataset that has preference elicitation interactions. As a solution, we propose a simulation of a topic-based preference elicitation process. The results from our simulation-based experiments indicate (i) that ignoring the effect of selection bias early in preference elicitation can lead to an exacerbation of overrepresentation in subsequent item recommendations, and (ii) that debiasing methods can alleviate this effect, which leads to significant improvements in subsequent item recommendation performance. Our aim is for the proposed simulator and initial results to provide a starting point and motivation for future research into this important but overlooked problem setting.
comment: Accepted at the CONSEQUENCES'23 workshop at RecSys '23
☆ KVP10k : A Comprehensive Dataset for Key-Value Pair Extraction in Business Documents ICDAR2024
In recent years, the challenge of extracting information from business documents has emerged as a critical task, finding applications across numerous domains. This effort has attracted substantial interest from both industry and academy, highlighting its significance in the current technological landscape. Most datasets in this area are primarily focused on Key Information Extraction (KIE), where the extraction process revolves around extracting information using a specific, predefined set of keys. Unlike most existing datasets and benchmarks, our focus is on discovering key-value pairs (KVPs) without relying on predefined keys, navigating through an array of diverse templates and complex layouts. This task presents unique challenges, primarily due to the absence of comprehensive datasets and benchmarks tailored for non-predetermined KVP extraction. To address this gap, we introduce KVP10k , a new dataset and benchmark specifically designed for KVP extraction. The dataset contains 10707 richly annotated images. In our benchmark, we also introduce a new challenging task that combines elements of KIE as well as KVP in a single task. KVP10k sets itself apart with its extensive diversity in data and richly detailed annotations, paving the way for advancements in the field of information extraction from complex business documents.
comment: accepted ICDAR2024
☆ Exploiting Positional Bias for Query-Agnostic Generative Content in Search
In recent years, neural ranking models (NRMs) have been shown to substantially outperform their lexical counterparts in text retrieval. In traditional search pipelines, a combination of features leads to well-defined behaviour. However, as neural approaches become increasingly prevalent as the final scoring component of engines or as standalone systems, their robustness to malicious text and, more generally, semantic perturbation needs to be better understood. We posit that the transformer attention mechanism can induce exploitable defects through positional bias in search models, leading to an attack that could generalise beyond a single query or topic. We demonstrate such defects by showing that non-relevant text--such as promotional content--can be easily injected into a document without adversely affecting its position in search results. Unlike previous gradient-based attacks, we demonstrate these biases in a query-agnostic fashion. In doing so, without the knowledge of topicality, we can still reduce the negative effects of non-relevant content injection by controlling injection position. Our experiments are conducted with simulated on-topic promotional text automatically generated by prompting LLMs with topical context from target documents. We find that contextualisation of a non-relevant text further reduces negative effects whilst likely circumventing existing content filtering mechanisms. In contrast, lexical models are found to be more resilient to such content injection attacks. We then investigate a simple yet effective compensation for the weaknesses of the NRMs in search, validating our hypotheses regarding transformer bias.
comment: 8 pages, 4 main figures, 7 appendix pages, 2 appendix figures
☆ RAG-based Explainable Prediction of Road Users Behaviors for Automated Driving using Knowledge Graphs and Large Language Models
Prediction of road users' behaviors in the context of autonomous driving has gained considerable attention by the scientific community in the last years. Most works focus on predicting behaviors based on kinematic information alone, a simplification of the reality since road users are humans, and as such they are highly influenced by their surrounding context. In addition, a large plethora of research works rely on powerful Deep Learning techniques, which exhibit high performance metrics in prediction tasks but may lack the ability to fully understand and exploit the contextual semantic information contained in the road scene, not to mention their inability to provide explainable predictions that can be understood by humans. In this work, we propose an explainable road users' behavior prediction system that integrates the reasoning abilities of Knowledge Graphs (KG) and the expressiveness capabilities of Large Language Models (LLM) by using Retrieval Augmented Generation (RAG) techniques. For that purpose, Knowledge Graph Embeddings (KGE) and Bayesian inference are combined to allow the deployment of a fully inductive reasoning system that enables the issuing of predictions that rely on legacy information contained in the graph as well as on current evidence gathered in real time by onboard sensors. Two use cases have been implemented following the proposed approach: 1) Prediction of pedestrians' crossing actions; 2) Prediction of lane change maneuvers. In both cases, the performance attained surpasses the current state of the art in terms of anticipation and F1-score, showing a promising avenue for future research in this field.
☆ Distance Sampling-based Paraphraser Leveraging ChatGPT for Text Data Manipulation SIGIR 2024
There has been growing interest in audio-language retrieval research, where the objective is to establish the correlation between audio and text modalities. However, most audio-text paired datasets often lack rich expression of the text data compared to the audio samples. One of the significant challenges facing audio-text datasets is the presence of similar or identical captions despite different audio samples. Therefore, under many-to-one mapping conditions, audio-text datasets lead to poor performance of retrieval tasks. In this paper, we propose a novel approach to tackle the data imbalance problem in audio-language retrieval task. To overcome the limitation, we introduce a method that employs a distance sampling-based paraphraser leveraging ChatGPT, utilizing distance function to generate a controllable distribution of manipulated text data. For a set of sentences with the same context, the distance is used to calculate a degree of manipulation for any two sentences, and ChatGPT's few-shot prompting is performed using a text cluster with a similar distance defined by the Jaccard similarity. Therefore, ChatGPT, when applied to few-shot prompting with text clusters, can adjust the diversity of the manipulated text based on the distance. The proposed approach is shown to significantly enhance performance in audio-text retrieval, outperforming conventional text augmentation techniques.
comment: Accepted at SIGIR 2024 short paper track
☆ Distillation Matters: Empowering Sequential Recommenders to Match the Performance of Large Language Model
Owing to their powerful semantic reasoning capabilities, Large Language Models (LLMs) have been effectively utilized as recommenders, achieving impressive performance. However, the high inference latency of LLMs significantly restricts their practical deployment. To address this issue, this work investigates knowledge distillation from cumbersome LLM-based recommendation models to lightweight conventional sequential models. It encounters three challenges: 1) the teacher's knowledge may not always be reliable; 2) the capacity gap between the teacher and student makes it difficult for the student to assimilate the teacher's knowledge; 3) divergence in semantic space poses a challenge to distill the knowledge from embeddings. To tackle these challenges, this work proposes a novel distillation strategy, DLLM2Rec, specifically tailored for knowledge distillation from LLM-based recommendation models to conventional sequential models. DLLM2Rec comprises: 1) Importance-aware ranking distillation, which filters reliable and student-friendly knowledge by weighting instances according to teacher confidence and student-teacher consistency; 2) Collaborative embedding distillation integrates knowledge from teacher embeddings with collaborative signals mined from the data. Extensive experiments demonstrate the effectiveness of the proposed DLLM2Rec, boosting three typical sequential models with an average improvement of 47.97%, even enabling them to surpass LLM-based recommenders in some cases.
comment: 10 pages, 2 figures
☆ Characterizing Information Seeking Processes with Multiple Physiological Signals
Information access systems are getting complex, and our understanding of user behavior during information seeking processes is mainly drawn from qualitative methods, such as observational studies or surveys. Leveraging the advances in sensing technologies, our study aims to characterize user behaviors with physiological signals, particularly in relation to cognitive load, affective arousal, and valence. We conduct a controlled lab study with 26 participants, and collect data including Electrodermal Activities, Photoplethysmogram, Electroencephalogram, and Pupillary Responses. This study examines informational search with four stages: the realization of Information Need (IN), Query Formulation (QF), Query Submission (QS), and Relevance Judgment (RJ). We also include different interaction modalities to represent modern systems, e.g., QS by text-typing or verbalizing, and RJ with text or audio information. We analyze the physiological signals across these stages and report outcomes of pairwise non-parametric repeated-measure statistical tests. The results show that participants experience significantly higher cognitive loads at IN with a subtle increase in alertness, while QF requires higher attention. QS involves demanding cognitive loads than QF. Affective responses are more pronounced at RJ than QS or IN, suggesting greater interest and engagement as knowledge gaps are resolved. To the best of our knowledge, this is the first study that explores user behaviors in a search process employing a more nuanced quantitative analysis of physiological signals. Our findings offer valuable insights into user behavior and emotional responses in information seeking processes. We believe our proposed methodology can inform the characterization of more complex processes, such as conversational information seeking.
☆ Stochastic Sampling for Contrastive Views and Hard Negative Samples in Graph-based Collaborative Filtering
Graph-based collaborative filtering (CF) has emerged as a promising approach in recommendation systems. Despite its achievements, graph-based CF models face challenges due to data sparsity and negative sampling. In this paper, we propose a novel Stochastic sampling for i) COntrastive views and ii) hard NEgative samples (SCONE) to overcome these issues. By considering that they are both sampling tasks, we generate dynamic augmented views and diverse hard negative samples via our unified stochastic sampling framework based on score-based generative models. In our comprehensive evaluations with 6 benchmark datasets, our proposed SCONE significantly improves recommendation accuracy and robustness, and demonstrates the superiority of our approach over existing CF models. Furthermore, we prove the efficacy of user-item specific stochastic sampling for addressing the user sparsity and item popularity issues. The integration of the stochastic sampling and graph-based CF obtains the state-of-the-art in personalized recommendation systems, making significant strides in information-rich environments.
☆ Global News Synchrony and Diversity During the Start of the COVID-19 Pandemic
News coverage profoundly affects how countries and individuals behave in international relations. Yet, we have little empirical evidence of how news coverage varies across countries. To enable studies of global news coverage, we develop an efficient computational methodology that comprises three components: (i) a transformer model to estimate multilingual news similarity; (ii) a global event identification system that clusters news based on a similarity network of news articles; and (iii) measures of news synchrony across countries and news diversity within a country, based on country-specific distributions of news coverage of the global events. Each component achieves state-of-the art performance, scaling seamlessly to massive datasets of millions of news articles. We apply the methodology to 60 million news articles published globally between January 1 and June 30, 2020, across 124 countries and 10 languages, detecting 4357 news events. We identify the factors explaining diversity and synchrony of news coverage across countries. Our study reveals that news media tend to cover a more diverse set of events in countries with larger Internet penetration, more official languages, larger religious diversity, higher economic inequality, and larger populations. Coverage of news events is more synchronized between countries that not only actively participate in commercial and political relations -- such as, pairs of countries with high bilateral trade volume, and countries that belong to the NATO military alliance or BRICS group of major emerging economies -- but also countries that share certain traits: an official language, high GDP, and high democracy indices.
☆ Efficient and Responsible Adaptation of Large Language Models for Robust Top-k Recommendations
Conventional recommendation systems (RSs) are typically optimized to enhance performance metrics uniformly across all training samples. This makes it hard for data-driven RSs to cater to a diverse set of users due to the varying properties of these users. The performance disparity among various populations can harm the model's robustness with respect to sub-populations. While recent works have shown promising results in adapting large language models (LLMs) for recommendation to address hard samples, long user queries from millions of users can degrade the performance of LLMs and elevate costs, processing times and inference latency. This challenges the practical applicability of LLMs for recommendations. To address this, we propose a hybrid task allocation framework that utilizes the capabilities of both LLMs and traditional RSs. By adopting a two-phase approach to improve robustness to sub-populations, we promote a strategic assignment of tasks for efficient and responsible adaptation of LLMs. Our strategy works by first identifying the weak and inactive users that receive a suboptimal ranking performance by RSs. Next, we use an in-context learning approach for such users, wherein each user interaction history is contextualized as a distinct ranking task and given to an LLM. We test our hybrid framework by incorporating various recommendation algorithms -- collaborative filtering and learning-to-rank recommendation models -- and two LLMs -- both open and close-sourced. Our results on three real-world datasets show a significant reduction in weak users and improved robustness of RSs to sub-populations $(\approx12\%)$ and overall performance without disproportionately escalating costs.
♻ ☆ A Survey of Graph Neural Networks for Social Recommender Systems
Social recommender systems (SocialRS) simultaneously leverage the user-to-item interactions as well as the user-to-user social relations for the task of generating item recommendations to users. Additionally exploiting social relations is clearly effective in understanding users' tastes due to the effects of homophily and social influence. For this reason, SocialRS has increasingly attracted attention. In particular, with the advance of graph neural networks (GNN), many GNN-based SocialRS methods have been developed recently. Therefore, we conduct a comprehensive and systematic review of the literature on GNN-based SocialRS. In this survey, we first identify 84 papers on GNN-based SocialRS after annotating 2151 papers by following the PRISMA framework (preferred reporting items for systematic reviews and meta-analyses). Then, we comprehensively review them in terms of their inputs and architectures to propose a novel taxonomy: (1) input taxonomy includes 5 groups of input type notations and 7 groups of input representation notations; (2) architecture taxonomy includes 8 groups of GNN encoder notations, 2 groups of decoder notations, and 12 groups of loss function notations. We classify the GNN-based SocialRS methods into several categories as per the taxonomy and describe their details. Furthermore, we summarize benchmark datasets and metrics widely used to evaluate the GNN-based SocialRS methods. Finally, we conclude this survey by presenting some future research directions. GitHub repository with the curated list of papers are available at https://github.com/claws-lab/awesome-GNN-social-recsys.
comment: Published in ACM CSUR April 2024. GitHub repository with the curated list of papers: https://github.com/claws-lab/awesome-GNN-social-recsys
♻ ☆ Unbiased Learning to Rank Meets Reality: Lessons from Baidu's Large-Scale Search Dataset
Unbiased learning-to-rank (ULTR) is a well-established framework for learning from user clicks, which are often biased by the ranker collecting the data. While theoretically justified and extensively tested in simulation, ULTR techniques lack empirical validation, especially on modern search engines. The Baidu-ULTR dataset released for the WSDM Cup 2023, collected from Baidu's search engine, offers a rare opportunity to assess the real-world performance of prominent ULTR techniques. Despite multiple submissions during the WSDM Cup 2023 and the subsequent NTCIR ULTRE-2 task, it remains unclear whether the observed improvements stem from applying ULTR or other learning techniques. In this work, we revisit and extend the available experiments on the Baidu-ULTR dataset. We find that standard unbiased learning-to-rank techniques robustly improve click predictions but struggle to consistently improve ranking performance, especially considering the stark differences obtained by choice of ranking loss and query-document features. Our experiments reveal that gains in click prediction do not necessarily translate to enhanced ranking performance on expert relevance annotations, implying that conclusions strongly depend on how success is measured in this benchmark.
♻ ☆ Course Recommender Systems Need to Consider the Job Market SIGIR 2024
Current course recommender systems primarily leverage learner-course interactions, course content, learner preferences, and supplementary course details like instructor, institution, ratings, and reviews, to make their recommendation. However, these systems often overlook a critical aspect: the evolving skill demand of the job market. This paper focuses on the perspective of academic researchers, working in collaboration with the industry, aiming to develop a course recommender system that incorporates job market skill demands. In light of the job market's rapid changes and the current state of research in course recommender systems, we outline essential properties for course recommender systems to address these demands effectively, including explainable, sequential, unsupervised, and aligned with the job market and user's goals. Our discussion extends to the challenges and research questions this objective entails, including unsupervised skill extraction from job listings, course descriptions, and resumes, as well as predicting recommendations that align with learner objectives and the job market and designing metrics to evaluate this alignment. Furthermore, we introduce an initial system that addresses some existing limitations of course recommender systems using large Language Models (LLMs) for skill extraction and Reinforcement Learning (RL) for alignment with the job market. We provide empirical results using open-source data to demonstrate its effectiveness.
comment: accepted at SIGIR 2024 as a perspective paper. Camera Ready will come soon
♻ ☆ The Power of Noise: Redefining Retrieval for RAG Systems
Retrieval-Augmented Generation (RAG) has recently emerged as a method to extend beyond the pre-trained knowledge of Large Language Models by augmenting the original prompt with relevant passages or documents retrieved by an Information Retrieval (IR) system. RAG has become increasingly important for Generative AI solutions, especially in enterprise settings or in any domain in which knowledge is constantly refreshed and cannot be memorized in the LLM. We argue here that the retrieval component of RAG systems, be it dense or sparse, deserves increased attention from the research community, and accordingly, we conduct the first comprehensive and systematic examination of the retrieval strategy of RAG systems. We focus, in particular, on the type of passages IR systems within a RAG solution should retrieve. Our analysis considers multiple factors, such as the relevance of the passages included in the prompt context, their position, and their number. One counter-intuitive finding of this work is that the retriever's highest-scoring documents that are not directly relevant to the query (e.g., do not contain the answer) negatively impact the effectiveness of the LLM. Even more surprising, we discovered that adding random documents in the prompt improves the LLM accuracy by up to 35%. These results highlight the need to investigate the appropriate strategies when integrating retrieval with LLMs, thereby laying the groundwork for future research in this area.
♻ ☆ Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems
Conversational recommender systems (CRS) utilize natural language interactions and dialogue history to infer user preferences and provide accurate recommendations. Due to the limited conversation context and background knowledge, existing CRSs rely on external sources such as knowledge graphs to enrich the context and model entities based on their inter-relations. However, these methods ignore the rich intrinsic information within entities. To address this, we introduce the Knowledge-Enhanced Entity Representation Learning (KERL) framework, which leverages both the knowledge graph and a pre-trained language model to improve the semantic understanding of entities for CRS. In our KERL framework, entity textual descriptions are encoded via a pre-trained language model, while a knowledge graph helps reinforce the representation of these entities. We also employ positional encoding to effectively capture the temporal information of entities in a conversation. The enhanced entity representation is then used to develop a recommender component that fuses both entity and contextual representations for more informed recommendations, as well as a dialogue component that generates informative entity-related information in the response text. A high-quality knowledge graph with aligned entity descriptions is constructed to facilitate our study, namely the Wiki Movie Knowledge Graph (WikiMKG). The experimental results show that KERL achieves state-of-the-art results in both recommendation and response generation tasks.
comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
♻ ☆ Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation EACL 2024
Predicting next visit diagnosis using Electronic Health Records (EHR) is an essential task in healthcare, critical for devising proactive future plans for both healthcare providers and patients. Nonetheless, many preceding studies have not sufficiently addressed the heterogeneous and hierarchical characteristics inherent in EHR data, inevitably leading to sub-optimal performance. To this end, we propose NECHO, a novel medical code-centric multimodal contrastive EHR learning framework with hierarchical regularisation. First, we integrate multifaceted information encompassing medical codes, demographics, and clinical notes using a tailored network design and a pair of bimodal contrastive losses, all of which pivot around a medical codes representation. We also regularise modality-specific encoders using a parental level information in medical ontology to learn hierarchical structure of EHR data. A series of experiments on MIMIC-III data demonstrates effectiveness of our approach.
comment: Accepted to EACL 2024 (The 18th Conference of the European Chapter of the Association for Computational Linguistics)
♻ ☆ What Are We Optimizing For? A Human-centric Evaluation of Deep Learning-based Movie Recommenders
In the past decade, deep learning (DL) models have gained prominence for their exceptional accuracy on benchmark datasets in recommender systems (RecSys). However, their evaluation has primarily relied on offline metrics, overlooking direct user perception and experience. To address this gap, we conduct a human-centric evaluation case study of four leading DL-RecSys models in the movie domain. We test how different DL-RecSys models perform in personalized recommendation generation by conducting survey study with 445 real active users. We find some DL-RecSys models to be superior in recommending novel and unexpected items and weaker in diversity, trustworthiness, transparency, accuracy, and overall user satisfaction compared to classic collaborative filtering (CF) methods. To further explain the reasons behind the underperformance, we apply a comprehensive path analysis. We discover that the lack of diversity and too much serendipity from DL models can negatively impact the consequent perceived transparency and personalization of recommendations. Such a path ultimately leads to lower summative user satisfaction. Qualitatively, we confirm with real user quotes that accuracy plus at least one other attribute is necessary to ensure a good user experience, while their demands for transparency and trust can not be neglected. Based on our findings, we discuss future human-centric DL-RecSys design and optimization strategies.
Machine Learning 111
☆ Self-Play Preference Optimization for Language Model Alignment
Traditional reinforcement learning from human feedback (RLHF) approaches relying on parametric models like the Bradley-Terry model fall short in capturing the intransitivity and irrationality in human preferences. Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences, enabling more flexible and accurate language model alignment. In this paper, we propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game aimed at identifying the Nash equilibrium policy. Our approach, dubbed \textit{Self-Play Preference Optimization} (SPPO), approximates the Nash equilibrium through iterative policy updates and enjoys theoretical convergence guarantee. Our method can effectively increase the log-likelihood of the chosen response and decrease that of the rejected response, which cannot be trivially achieved by symmetric pairwise loss such as Direct Preference Optimization (DPO) and Identity Preference Optimization (IPO). In our experiments, using only 60k prompts (without responses) from the UltraFeedback dataset and without any prompt augmentation, by leveraging a pre-trained preference model PairRM with only 0.4B parameters, SPPO can obtain a model from fine-tuning Mistral-7B-Instruct-v0.2 that achieves the state-of-the-art length-controlled win-rate of 28.53% against GPT-4-Turbo on AlpacaEval 2.0. It also outperforms the (iterative) DPO and IPO on MT-Bench and the Open LLM Leaderboard. Notably, the strong performance of SPPO is achieved without additional external supervision (e.g., responses, preferences, etc.) from GPT-4 or other stronger language models.
comment: 25 pages, 4 figures, 5 tables
☆ Is Bigger Edit Batch Size Always Better? -- An Empirical Study on Model Editing with Llama-3
This study presents a targeted model editing analysis focused on the latest large language model, Llama-3. We explore the efficacy of popular model editing techniques - ROME, MEMIT, and EMMET, which are designed for precise layer interventions. We identify the most effective layers for targeted edits through an evaluation that encompasses up to 4096 edits across three distinct strategies: sequential editing, batch editing, and a hybrid approach we call as sequential-batch editing. Our findings indicate that increasing edit batch-sizes may degrade model performance more significantly than using smaller edit batches sequentially for equal number of edits. With this, we argue that sequential model editing is an important component for scaling model editing methods and future research should focus on methods that combine both batched and sequential editing. This observation suggests a potential limitation in current model editing methods which push towards bigger edit batch sizes, and we hope it paves way for future investigations into optimizing batch sizes and model editing performance.
☆ No Representation, No Trust: Connecting Representation, Collapse, and Trust Issues in PPO
Reinforcement learning (RL) is inherently rife with non-stationarity since the states and rewards the agent observes during training depend on its changing policy. Therefore, networks in deep RL must be capable of adapting to new observations and fitting new targets. However, previous works have observed that networks in off-policy deep value-based methods exhibit a decrease in representation rank, often correlated with an inability to continue learning or a collapse in performance. Although this phenomenon has generally been attributed to neural network learning under non-stationarity, it has been overlooked in on-policy policy optimization methods which are often thought capable of training indefinitely. In this work, we empirically study representation dynamics in Proximal Policy Optimization (PPO) on the Atari and MuJoCo environments, revealing that PPO agents are also affected by feature rank deterioration and loss of plasticity. We show that this is aggravated with stronger non-stationarity, ultimately driving the actor's performance to collapse, regardless of the performance of the critic. We draw connections between representation collapse, performance collapse, and trust region issues in PPO, and present Proximal Feature Optimization (PFO), a novel auxiliary loss, that along with other interventions shows that regularizing the representation dynamics improves the performance of PPO agents.
comment: Code and run histories are available at https://github.com/CLAIRE-Labo/no-representation-no-trust
☆ RST-LoRA: A Discourse-Aware Low-Rank Adaptation for Long Document Abstractive Summarization NAACL 2024
For long document summarization, discourse structure is important to discern the key content of the text and the differences in importance level between sentences. Unfortunately, the integration of rhetorical structure theory (RST) into parameter-efficient fine-tuning strategies for long document summarization remains unexplored. Therefore, this paper introduces RST-LoRA and proposes four RST-aware variants to explicitly incorporate RST into the LoRA model. Our empirical evaluation demonstrates that incorporating the type and uncertainty of rhetorical relations can complementarily enhance the performance of LoRA in summarization tasks. Furthermore, the best-performing variant we introduced outperforms the vanilla LoRA and full-parameter fine-tuning models, as confirmed by multiple automatic and human evaluations, and even surpasses previous state-of-the-art methods.
comment: NAACL 2024 Main & Long Conference Paper (Oral Presentation)
☆ Screening of BindingDB database ligands against EGFR, HER2, Estrogen, Progesterone and NF-kB receptors based on machine learning and molecular docking
Breast cancer, the second most prevalent cancer among women worldwide, necessitates the exploration of novel therapeutic approaches. To target the four subgroups of breast cancer "hormone receptor-positive and HER2-negative, hormone receptor-positive and HER2-positive, hormone receptor-negative and HER2-positive, and hormone receptor-negative and HER2-negative" it is crucial to inhibit specific targets such as EGFR, HER2, ER, NF-kB, and PR. In this study, we evaluated various methods for binary and multiclass classification. Among them, the GA-SVM-SVM:GA-SVM-SVM model was selected with an accuracy of 0.74, an F1-score of 0.73, and an AUC of 0.94 for virtual screening of ligands from the BindingDB database. This model successfully identified 4454, 803, 438, and 378 ligands with over 90% precision in both active/inactive and target prediction for the classes of EGFR+HER2, ER, NF-kB, and PR, respectively, from the BindingDB database. Based on to the selected ligands, we created a dendrogram that categorizes different ligands based on their targets. This dendrogram aims to facilitate the exploration of chemical space for various therapeutic targets. Ligands that surpassed a 90% threshold in the product of activity probability and correct target selection probability were chosen for further investigation using molecular docking. The binding energy range for these ligands against their respective targets was calculated to be between -15 and -5 kcal/mol. Finally, based on general and common rules in medicinal chemistry, we selected 2, 3, 3, and 8 new ligands with high priority for further studies in the EGFR+HER2, ER, NF-kB, and PR classes, respectively.
☆ Learning to Compose: Improving Object Centric Learning by Injecting Compositionality
Learning compositional representation is a key aspect of object-centric learning as it enables flexible systematic generalization and supports complex visual reasoning. However, most of the existing approaches rely on auto-encoding objective, while the compositionality is implicitly imposed by the architectural or algorithmic bias in the encoder. This misalignment between auto-encoding objective and learning compositionality often results in failure of capturing meaningful object representations. In this study, we propose a novel objective that explicitly encourages compositionality of the representations. Built upon the existing object-centric learning framework (e.g., slot attention), our method incorporates additional constraints that an arbitrary mixture of object representations from two images should be valid by maximizing the likelihood of the composite data. We demonstrate that incorporating our objective to the existing framework consistently improves the objective-centric learning and enhances the robustness to the architectural choices.
☆ Gradient-based Automatic Per-Weight Mixed Precision Quantization for Neural Networks On-Chip
Model size and inference speed at deployment time, are major challenges in many deep learning applications. A promising strategy to overcome these challenges is quantization. However, a straightforward uniform quantization to very low precision can result in significant accuracy loss. Mixed-precision quantization, based on the idea that certain parts of the network can accommodate lower precision without compromising performance compared to other parts, offers a potential solution. In this work, we present High Granularity Quantization (HGQ), an innovative quantization-aware training method designed to fine-tune the per-weight and per-activation precision in an automatic way for ultra-low latency and low power neural networks which are to be deployed on FPGAs. We demonstrate that HGQ can outperform existing methods by a substantial margin, achieving resource reduction by up to a factor of 20 and latency improvement by a factor of 5 while preserving accuracy.
☆ From Empirical Observations to Universality: Dynamics of Deep Learning with Inputs Built on Gaussian mixture
This study broadens the scope of theoretical frameworks in deep learning by delving into the dynamics of neural networks with inputs that demonstrate the structural characteristics to Gaussian Mixture (GM). We analyzed how the dynamics of neural networks under GM-structured inputs diverge from the predictions of conventional theories based on simple Gaussian structures. A revelation of our work is the observed convergence of neural network dynamics towards conventional theory even with standardized GM inputs, highlighting an unexpected universality. We found that standardization, especially in conjunction with certain nonlinear functions, plays a critical role in this phenomena. Consequently, despite the complex and varied nature of GM distributions, we demonstrate that neural networks exhibit asymptotic behaviors in line with predictions under simple Gaussian frameworks.
comment: 19 pages, 9 figures
☆ Robustness of graph embedding methods for community detection
This study investigates the robustness of graph embedding methods for community detection in the face of network perturbations, specifically edge deletions. Graph embedding techniques, which represent nodes as low-dimensional vectors, are widely used for various graph machine learning tasks due to their ability to capture structural properties of networks effectively. However, the impact of perturbations on the performance of these methods remains relatively understudied. The research considers state-of-the-art graph embedding methods from two families: matrix factorization (e.g., LE, LLE, HOPE, M-NMF) and random walk-based (e.g., DeepWalk, LINE, node2vec). Through experiments conducted on both synthetic and real-world networks, the study reveals varying degrees of robustness within each family of graph embedding methods. The robustness is found to be influenced by factors such as network size, initial community partition strength, and the type of perturbation. Notably, node2vec and LLE consistently demonstrate higher robustness for community detection across different scenarios, including networks with degree and community size heterogeneity. These findings highlight the importance of selecting an appropriate graph embedding method based on the specific characteristics of the network and the task at hand, particularly in scenarios where robustness to perturbations is crucial.
comment: 17 pages, 26 figures, 3 tables. Comments are welcome
☆ HUGO -- Highlighting Unseen Grid Options: Combining Deep Reinforcement Learning with a Heuristic Target Topology Approach
With the growth of Renewable Energy (RE) generation, the operation of power grids has become increasingly complex. One solution is automated grid operation, where Deep Reinforcement Learning (DRL) has repeatedly shown significant potential in Learning to Run a Power Network (L2RPN) challenges. However, only individual actions at the substation level have been subjected to topology optimization by most existing DRL algorithms. In contrast, we propose a more holistic approach in this paper by proposing specific Target Topologies (TTs) as actions. These topologies are selected based on their robustness. As part of this paper, we present a search algorithm to find the TTs and upgrade our previously developed DRL agent CurriculumAgent (CAgent) to a novel topology agent. We compare the upgrade to the previous CAgent agent and can increase their scores significantly by 10%. Further, we achieve a 25% better median survival with our TTs included. Later analysis shows that almost all TTs are close to the base topology, explaining their robustness.
comment: 12 pages + 2 pages references, 9 Figures, submission planed in Sustainable Energy, Grids and Networks
☆ Koopman-based Deep Learning for Nonlinear System Estimation
Nonlinear differential equations are encountered as models of fluid flow, spiking neurons, and many other systems of interest in the real world. Common features of these systems are that their behaviors are difficult to describe exactly and invariably unmodeled dynamics present challenges in making precise predictions. In many cases the models exhibit extremely complicated behavior due to bifurcations and chaotic regimes. In this paper, we present a novel data-driven linear estimator that uses Koopman operator theory to extract finite-dimensional representations of complex nonlinear systems. The extracted model is used together with a deep reinforcement learning network that learns the optimal stepwise actions to predict future states of the original nonlinear system. Our estimator is also adaptive to a diffeomorphic transformation of the nonlinear system which enables transfer learning to compute state estimates of the transformed system without relearning from scratch.
comment: 11 pages
☆ Queue-based Eco-Driving at Roundabouts with Reinforcement Learning
We address eco-driving at roundabouts in mixed traffic to enhance traffic flow and traffic efficiency in urban areas. The aim is to proactively optimize speed of automated or non-automated connected vehicles (CVs), ensuring both an efficient approach and smooth entry into roundabouts. We incorporate the traffic situation ahead, i.e. preceding vehicles and waiting queues. Further, we develop two approaches: a rule-based and an Reinforcement Learning (RL) based eco-driving system, with both using the approach link and information from conflicting CVs for speed optimization. A fair comparison of rule-based and RL-based approaches is performed to explore RL as a viable alternative to classical optimization. Results show that both approaches outperform the baseline. Improvements significantly increase with growing traffic volumes, leading to best results on average being obtained at high volumes. Near capacity, performance deteriorates, indicating limited applicability at capacity limits. Examining different CV penetration rates, a decline in performance is observed, but with substantial results still being achieved at lower CV rates. RL agents can discover effective policies for speed optimization in dynamic roundabout settings, but they do not offer a substantial advantage over classical approaches, especially at higher traffic volumes or lower CV penetration rates.
☆ Causal Evaluation of Language Models
Causal reasoning is viewed as crucial for achieving human-level machine intelligence. Recent advances in language models have expanded the horizons of artificial intelligence across various domains, sparking inquiries into their potential for causal reasoning. In this work, we introduce Causal evaluation of Language Models (CaLM), which, to the best of our knowledge, is the first comprehensive benchmark for evaluating the causal reasoning capabilities of language models. First, we propose the CaLM framework, which establishes a foundational taxonomy consisting of four modules: causal target (i.e., what to evaluate), adaptation (i.e., how to obtain the results), metric (i.e., how to measure the results), and error (i.e., how to analyze the bad results). This taxonomy defines a broad evaluation design space while systematically selecting criteria and priorities. Second, we compose the CaLM dataset, comprising 126,334 data samples, to provide curated sets of causal targets, adaptations, metrics, and errors, offering extensive coverage for diverse research pursuits. Third, we conduct an extensive evaluation of 28 leading language models on a core set of 92 causal targets, 9 adaptations, 7 metrics, and 12 error types. Fourth, we perform detailed analyses of the evaluation results across various dimensions (e.g., adaptation, scale). Fifth, we present 50 high-level empirical findings across 9 dimensions (e.g., model), providing valuable guidance for future language model development. Finally, we develop a multifaceted platform, including a website, leaderboards, datasets, and toolkits, to support scalable and adaptable assessments. We envision CaLM as an ever-evolving benchmark for the community, systematically updated with new causal targets, adaptations, models, metrics, and error types to reflect ongoing research advancements. Project website is at https://opencausalab.github.io/CaLM.
comment: 315 pages, 230 figures, 21 tables. Project website: https://opencausalab.github.io/CaLM
☆ Multigroup Robustness
To address the shortcomings of real-world datasets, robust learning algorithms have been designed to overcome arbitrary and indiscriminate data corruption. However, practical processes of gathering data may lead to patterns of data corruption that are localized to specific partitions of the training dataset. Motivated by critical applications where the learned model is deployed to make predictions about people from a rich collection of overlapping subpopulations, we initiate the study of multigroup robust algorithms whose robustness guarantees for each subpopulation only degrade with the amount of data corruption inside that subpopulation. When the data corruption is not distributed uniformly over subpopulations, our algorithms provide more meaningful robustness guarantees than standard guarantees that are oblivious to how the data corruption and the affected subpopulations are related. Our techniques establish a new connection between multigroup fairness and robustness.
☆ Investigating Automatic Scoring and Feedback using Large Language Models
Automatic grading and feedback have been long studied using traditional machine learning and deep learning techniques using language models. With the recent accessibility to high performing large language models (LLMs) like LLaMA-2, there is an opportunity to investigate the use of these LLMs for automatic grading and feedback generation. Despite the increase in performance, LLMs require significant computational resources for fine-tuning and additional specific adjustments to enhance their performance for such tasks. To address these issues, Parameter Efficient Fine-tuning (PEFT) methods, such as LoRA and QLoRA, have been adopted to decrease memory and computational requirements in model fine-tuning. This paper explores the efficacy of PEFT-based quantized models, employing classification or regression head, to fine-tune LLMs for automatically assigning continuous numerical grades to short answers and essays, as well as generating corresponding feedback. We conducted experiments on both proprietary and open-source datasets for our tasks. The results show that prediction of grade scores via finetuned LLMs are highly accurate, achieving less than 3% error in grade percentage on average. For providing graded feedback fine-tuned 4-bit quantized LLaMA-2 13B models outperform competitive base models and achieve high similarity with subject matter expert feedback in terms of high BLEU and ROUGE scores and qualitatively in terms of feedback. The findings from this study provide important insights into the impacts of the emerging capabilities of using quantization approaches to fine-tune LLMs for various downstream tasks, such as automatic short answer scoring and feedback generation at comparatively lower costs and latency.
☆ Scaling and renormalization in high-dimensional regression
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models using the basic tools of random matrix theory and free probability. We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning. Analytic formulas for the training and generalization errors are obtained in a few lines of algebra directly from the properties of the $S$-transform of free probability. This allows for a straightforward identification of the sources of power-law scaling in model performance. We compute the generalization error of a broad class of random feature models. We find that in all models, the $S$-transform corresponds to the train-test generalization gap, and yields an analogue of the generalized-cross-validation estimator. Using these techniques, we derive fine-grained bias-variance decompositions for a very general class of random feature models with structured covariates. These novel results allow us to discover a scaling regime for random feature models where the variance due to the features limits performance in the overparameterized setting. We also demonstrate how anisotropic weight structure in random feature models can limit performance and lead to nontrivial exponents for finite-width corrections in the overparameterized setting. Our results extend and provide a unifying perspective on earlier models of neural scaling laws.
comment: 64 pages, 16 figures
☆ Are Models Biased on Text without Gender-related Language?
Gender bias research has been pivotal in revealing undesirable behaviors in large language models, exposing serious gender stereotypes associated with occupations, and emotions. A key observation in prior work is that models reinforce stereotypes as a consequence of the gendered correlations that are present in the training data. In this paper, we focus on bias where the effect from training data is unclear, and instead address the question: Do language models still exhibit gender bias in non-stereotypical settings? To do so, we introduce UnStereoEval (USE), a novel framework tailored for investigating gender bias in stereotype-free scenarios. USE defines a sentence-level score based on pretraining data statistics to determine if the sentence contain minimal word-gender associations. To systematically benchmark the fairness of popular language models in stereotype-free scenarios, we utilize USE to automatically generate benchmarks without any gender-related language. By leveraging USE's sentence-level score, we also repurpose prior gender bias benchmarks (Winobias and Winogender) for non-stereotypical evaluation. Surprisingly, we find low fairness across all 28 tested models. Concretely, models demonstrate fair behavior in only 9%-41% of stereotype-free sentences, suggesting that bias does not solely stem from the presence of gender-related words. These results raise important questions about where underlying model biases come from and highlight the need for more systematic and comprehensive bias evaluation. We release the full dataset and code at https://ucinlp.github.io/unstereo-eval.
comment: In International Conference on Learning Representations 2024
☆ Discovering robust biomarkers of neurological disorders from functional MRI using graph neural networks: A Review
Graph neural networks (GNN) have emerged as a popular tool for modelling functional magnetic resonance imaging (fMRI) datasets. Many recent studies have reported significant improvements in disorder classification performance via more sophisticated GNN designs and highlighted salient features that could be potential biomarkers of the disorder. In this review, we provide an overview of how GNN and model explainability techniques have been applied on fMRI datasets for disorder prediction tasks, with a particular emphasis on the robustness of biomarkers produced for neurodegenerative diseases and neuropsychiatric disorders. We found that while most studies have performant models, salient features highlighted in these studies vary greatly across studies on the same disorder and little has been done to evaluate their robustness. To address these issues, we suggest establishing new standards that are based on objective evaluation metrics to determine the robustness of these potential biomarkers. We further highlight gaps in the existing literature and put together a prediction-attribution-evaluation framework that could set the foundations for future research on improving the robustness of potential biomarkers discovered via GNNs.
☆ WEST GCN-LSTM: Weighted Stacked Spatio-Temporal Graph Neural Networks for Regional Traffic Forecasting
Regional traffic forecasting is a critical challenge in urban mobility, with applications to various fields such as the Internet of Everything. In recent years, spatio-temporal graph neural networks have achieved state-of-the-art results in the context of numerous traffic forecasting challenges. This work aims at expanding upon the conventional spatio-temporal graph neural network architectures in a manner that may facilitate the inclusion of information regarding the examined regions, as well as the populations that traverse them, in order to establish a more efficient prediction model. The end-product of this scientific endeavour is a novel spatio-temporal graph neural network architecture that is referred to as WEST (WEighted STacked) GCN-LSTM. Furthermore, the inclusion of the aforementioned information is conducted via the use of two novel dedicated algorithms that are referred to as the Shared Borders Policy and the Adjustable Hops Policy. Through information fusion and distillation, the proposed solution manages to significantly outperform its competitors in the frame of an experimental evaluation that consists of 19 forecasting models, across several datasets. Finally, an additional ablation study determined that each of the components of the proposed solution contributes towards enhancing its overall performance.
☆ Swarm Learning: A Survey of Concepts, Applications, and Trends
Deep learning models have raised privacy and security concerns due to their reliance on large datasets on central servers. As the number of Internet of Things (IoT) devices increases, artificial intelligence (AI) will be crucial for resource management, data processing, and knowledge acquisition. To address those issues, federated learning (FL) has introduced a novel approach to building a versatile, large-scale machine learning framework that operates in a decentralized and hardware-agnostic manner. However, FL faces network bandwidth limitations and data breaches. To reduce the central dependency in FL and increase scalability, swarm learning (SL) has been proposed in collaboration with Hewlett Packard Enterprise (HPE). SL represents a decentralized machine learning framework that leverages blockchain technology for secure, scalable, and private data management. A blockchain-based network enables the exchange and aggregation of model parameters among participants, thus mitigating the risk of a single point of failure and eliminating communication bottlenecks. To the best of our knowledge, this survey is the first to introduce the principles of Swarm Learning, its architectural design, and its fields of application. In addition, it highlights numerous research avenues that require further exploration by academic and industry communities to unlock the full potential and applications of SL.
comment: 31 pages
☆ Derivative-based regularization for regression
In this work, we introduce a novel approach to regularization in multivariable regression problems. Our regularizer, called DLoss, penalises differences between the model's derivatives and derivatives of the data generating function as estimated from the training data. We call these estimated derivatives data derivatives. The goal of our method is to align the model to the data, not only in terms of target values but also in terms of the derivatives involved. To estimate data derivatives, we select (from the training data) 2-tuples of input-value pairs, using either nearest neighbour or random, selection. On synthetic and real datasets, we evaluate the effectiveness of adding DLoss, with different weights, to the standard mean squared error loss. The experimental results show that with DLoss (using nearest neighbour selection) we obtain, on average, the best rank with respect to MSE on validation data sets, compared to no regularization, L2 regularization, and Dropout.
☆ ULLER: A Unified Language for Learning and Reasoning
The field of neuro-symbolic artificial intelligence (NeSy), which combines learning and reasoning, has recently experienced significant growth. There now are a wide variety of NeSy frameworks, each with its own specific language for expressing background knowledge and how to relate it to neural networks. This heterogeneity hinders accessibility for newcomers and makes comparing different NeSy frameworks challenging. We propose a unified language for NeSy, which we call ULLER, a Unified Language for LEarning and Reasoning. ULLER encompasses a wide variety of settings, while ensuring that knowledge described in it can be used in existing NeSy systems. ULLER has a neuro-symbolic first-order syntax for which we provide example semantics including classical, fuzzy, and probabilistic logics. We believe ULLER is a first step towards making NeSy research more accessible and comparable, paving the way for libraries that streamline training and evaluation across a multitude of semantics, knowledge bases, and NeSy systems.
☆ FMLFS: A federated multi-label feature selection based on information theory in IoT environment
In certain emerging applications such as health monitoring wearable and traffic monitoring systems, Internet-of-Things (IoT) devices generate or collect a huge amount of multi-label datasets. Within these datasets, each instance is linked to a set of labels. The presence of noisy, redundant, or irrelevant features in these datasets, along with the curse of dimensionality, poses challenges for multi-label classifiers. Feature selection (FS) proves to be an effective strategy in enhancing classifier performance and addressing these challenges. Yet, there is currently no existing distributed multi-label FS method documented in the literature that is suitable for distributed multi-label datasets within IoT environments. This paper introduces FMLFS, the first federated multi-label feature selection method. Here, mutual information between features and labels serves as the relevancy metric, while the correlation distance between features, derived from mutual information and joint entropy, is utilized as the redundancy measure. Following aggregation of these metrics on the edge server and employing Pareto-based bi-objective and crowding distance strategies, the sorted features are subsequently sent back to the IoT devices. The proposed method is evaluated through two scenarios: 1) transmitting reduced-size datasets to the edge server for centralized classifier usage, and 2) employing federated learning with reduced-size datasets. Evaluation across three metrics - performance, time complexity, and communication cost - demonstrates that FMLFS outperforms five other comparable methods in the literature and provides a good trade-off on three real-world datasets.
comment: This paper has been accepted by IEEE SmartComp 2024
☆ Navigating WebAI: Training Agents to Complete Web Tasks with Large Language Models and Reinforcement Learning
Recent advancements in language models have demonstrated remarkable improvements in various natural language processing (NLP) tasks such as web navigation. Supervised learning (SL) approaches have achieved impressive performance while utilizing significantly less training data compared to previous methods. However, these SL-based models fall short when compared to reinforcement learning (RL) approaches, which have shown superior results. In this paper, we propose a novel approach that combines SL and RL techniques over the MiniWoB benchmark to leverage the strengths of both methods. We also address a critical limitation in previous models' understanding of HTML content, revealing a tendency to memorize target elements rather than comprehend the underlying structure. To rectify this, we propose methods to enhance true understanding and present a new baseline of results. Our experiments demonstrate that our approach outperforms previous SL methods on certain tasks using less data and narrows the performance gap with RL models, achieving 43.58\% average accuracy in SL and 36.69\% when combined with a multimodal RL approach. This study sets a new direction for future web navigation and offers insights into the limitations and potential of language modeling for computer tasks.
comment: ACM 2024, Avila Spain. 9 pages
☆ KVP10k : A Comprehensive Dataset for Key-Value Pair Extraction in Business Documents ICDAR2024
In recent years, the challenge of extracting information from business documents has emerged as a critical task, finding applications across numerous domains. This effort has attracted substantial interest from both industry and academy, highlighting its significance in the current technological landscape. Most datasets in this area are primarily focused on Key Information Extraction (KIE), where the extraction process revolves around extracting information using a specific, predefined set of keys. Unlike most existing datasets and benchmarks, our focus is on discovering key-value pairs (KVPs) without relying on predefined keys, navigating through an array of diverse templates and complex layouts. This task presents unique challenges, primarily due to the absence of comprehensive datasets and benchmarks tailored for non-predetermined KVP extraction. To address this gap, we introduce KVP10k , a new dataset and benchmark specifically designed for KVP extraction. The dataset contains 10707 richly annotated images. In our benchmark, we also introduce a new challenging task that combines elements of KIE as well as KVP in a single task. KVP10k sets itself apart with its extensive diversity in data and richly detailed annotations, paving the way for advancements in the field of information extraction from complex business documents.
comment: accepted ICDAR2024
☆ On the Relevance of Byzantine Robust Optimization Against Data Poisoning
The success of machine learning (ML) has been intimately linked with the availability of large amounts of data, typically collected from heterogeneous sources and processed on vast networks of computing devices (also called {\em workers}). Beyond accuracy, the use of ML in critical domains such as healthcare and autonomous driving calls for robustness against {\em data poisoning}and some {\em faulty workers}. The problem of {\em Byzantine ML} formalizes these robustness issues by considering a distributed ML environment in which workers (storing a portion of the global dataset) can deviate arbitrarily from the prescribed algorithm. Although the problem has attracted a lot of attention from a theoretical point of view, its practical importance for addressing realistic faults (where the behavior of any worker is locally constrained) remains unclear. It has been argued that the seemingly weaker threat model where only workers' local datasets get poisoned is more reasonable. We prove that, while tolerating a wider range of faulty behaviors, Byzantine ML yields solutions that are, in a precise sense, optimal even under the weaker data poisoning threat model. Then, we study a generic data poisoning model wherein some workers have {\em fully-poisonous local data}, i.e., their datasets are entirely corruptible, and the remainders have {\em partially-poisonous local data}, i.e., only a fraction of their local datasets is corruptible. We prove that Byzantine-robust schemes yield optimal solutions against both these forms of data poisoning, and that the former is more harmful when workers have {\em heterogeneous} local data.
comment: 38 pages
☆ Explainable Automatic Grading with Neural Additive Models
The use of automatic short answer grading (ASAG) models may help alleviate the time burden of grading while encouraging educators to frequently incorporate open-ended items in their curriculum. However, current state-of-the-art ASAG models are large neural networks (NN) often described as "black box", providing no explanation for which characteristics of an input are important for the produced output. This inexplicable nature can be frustrating to teachers and students when trying to interpret, or learn from an automatically-generated grade. To create a powerful yet intelligible ASAG model, we experiment with a type of model called a Neural Additive Model that combines the performance of a NN with the explainability of an additive model. We use a Knowledge Integration (KI) framework from the learning sciences to guide feature engineering to create inputs that reflect whether a student includes certain ideas in their response. We hypothesize that indicating the inclusion (or exclusion) of predefined ideas as features will be sufficient for the NAM to have good predictive power and interpretability, as this may guide a human scorer using a KI rubric. We compare the performance of the NAM with another explainable model, logistic regression, using the same features, and to a non-explainable neural model, DeBERTa, that does not require feature engineering.
☆ PackVFL: Efficient HE Packing for Vertical Federated Learning
As an essential tool of secure distributed machine learning, vertical federated learning (VFL) based on homomorphic encryption (HE) suffers from severe efficiency problems due to data inflation and time-consuming operations. To this core, we propose PackVFL, an efficient VFL framework based on packed HE (PackedHE), to accelerate the existing HE-based VFL algorithms. PackVFL packs multiple cleartexts into one ciphertext and supports single-instruction-multiple-data (SIMD)-style parallelism. We focus on designing a high-performant matrix multiplication (MatMult) method since it takes up most of the ciphertext computation time in HE-based VFL. Besides, devising the MatMult method is also challenging for PackedHE because a slight difference in the packing way could predominantly affect its computation and communication costs. Without domain-specific design, directly applying SOTA MatMult methods is hard to achieve optimal. Therefore, we make a three-fold design: 1) we systematically explore the current design space of MatMult and quantify the complexity of existing approaches to provide guidance; 2) we propose a hybrid MatMult method according to the unique characteristics of VFL; 3) we adaptively apply our hybrid method in representative VFL algorithms, leveraging distinctive algorithmic properties to further improve efficiency. As the batch size, feature dimension and model size of VFL scale up to large sizes, PackVFL consistently delivers enhanced performance. Empirically, PackVFL propels existing VFL algorithms to new heights, achieving up to a 51.52X end-to-end speedup. This represents a substantial 34.51X greater speedup compared to the direct application of SOTA MatMult methods.
comment: 12 pages excluding references
☆ A Comprehensive Survey of Dynamic Graph Neural Networks: Models, Frameworks, Benchmarks, Experiments and Challenges VLDB2025
Dynamic Graph Neural Networks (GNNs) combine temporal information with GNNs to capture structural, temporal, and contextual relationships in dynamic graphs simultaneously, leading to enhanced performance in various applications. As the demand for dynamic GNNs continues to grow, numerous models and frameworks have emerged to cater to different application needs. There is a pressing need for a comprehensive survey that evaluates the performance, strengths, and limitations of various approaches in this domain. This paper aims to fill this gap by offering a thorough comparative analysis and experimental evaluation of dynamic GNNs. It covers 81 dynamic GNN models with a novel taxonomy, 12 dynamic GNN training frameworks, and commonly used benchmarks. We also conduct experimental results from testing representative nine dynamic GNN models and three frameworks on six standard graph datasets. Evaluation metrics focus on convergence accuracy, training efficiency, and GPU memory usage, enabling a thorough comparison of performance across various models and frameworks. From the analysis and evaluation results, we identify key challenges and offer principles for future research to enhance the design of models and frameworks in the dynamic GNNs field.
comment: Under review of PVLDB2025
☆ Counterfactual Explanations for Deep Learning-Based Traffic Forecasting
Deep learning models are widely used in traffic forecasting and have achieved state-of-the-art prediction accuracy. However, the black-box nature of those models makes the results difficult to interpret by users. This study aims to leverage an Explainable AI approach, counterfactual explanations, to enhance the explainability and usability of deep learning-based traffic forecasting models. Specifically, the goal is to elucidate relationships between various input contextual features and their corresponding predictions. We present a comprehensive framework that generates counterfactual explanations for traffic forecasting and provides usable insights through the proposed scenario-driven counterfactual explanations. The study first implements a deep learning model to predict traffic speed based on historical traffic data and contextual variables. Counterfactual explanations are then used to illuminate how alterations in these input variables affect predicted outcomes, thereby enhancing the transparency of the deep learning model. We investigated the impact of contextual features on traffic speed prediction under varying spatial and temporal conditions. The scenario-driven counterfactual explanations integrate two types of user-defined constraints, directional and weighting constraints, to tailor the search for counterfactual explanations to specific use cases. These tailored explanations benefit machine learning practitioners who aim to understand the model's learning mechanisms and domain experts who seek insights for real-world applications. The results showcase the effectiveness of counterfactual explanations in revealing traffic patterns learned by deep learning models, showing its potential for interpreting black-box deep learning models used for spatiotemporal predictions in general.
comment: 24 pages
☆ Robust Semi-supervised Learning via $f$-Divergence and $α$-Rényi Divergence
This paper investigates a range of empirical risk functions and regularization methods suitable for self-training methods in semi-supervised learning. These approaches draw inspiration from various divergence measures, such as $f$-divergences and $\alpha$-R\'enyi divergences. Inspired by the theoretical foundations rooted in divergences, i.e., $f$-divergences and $\alpha$-R\'enyi divergence, we also provide valuable insights to enhance the understanding of our empirical risk functions and regularization techniques. In the pseudo-labeling and entropy minimization techniques as self-training methods for effective semi-supervised learning, the self-training process has some inherent mismatch between the true label and pseudo-label (noisy pseudo-labels) and some of our empirical risk functions are robust, concerning noisy pseudo-labels. Under some conditions, our empirical risk functions demonstrate better performance when compared to traditional self-training methods.
comment: Accepted in ISIT 2024
☆ Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process inspired by the successful strategy employed by AlphaZero. Our work leverages Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals. To enhance consistency in intermediate steps, we combine outcome validation and stepwise self-evaluation, continually updating the quality assessment of newly generated data. The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data. Theoretical analysis reveals the critical importance of using on-policy sampled data for successful self-improving. Extensive evaluations on various arithmetic and commonsense reasoning tasks demonstrate remarkable performance improvements over existing models. For instance, our approach outperforms the Mistral-7B Supervised Fine-Tuning (SFT) baseline on GSM8K, MATH, and SciQ, with substantial percentage increases in accuracy to $80.7\%$ (+$4.8\%$), $32.2\%$ (+$3.3\%$), and $88.5\%$ (+$7.7\%$), respectively. Additionally, our research delves into the training and inference compute tradeoff, providing insights into how our method effectively maximizes performance gains.
☆ RAG-based Explainable Prediction of Road Users Behaviors for Automated Driving using Knowledge Graphs and Large Language Models
Prediction of road users' behaviors in the context of autonomous driving has gained considerable attention by the scientific community in the last years. Most works focus on predicting behaviors based on kinematic information alone, a simplification of the reality since road users are humans, and as such they are highly influenced by their surrounding context. In addition, a large plethora of research works rely on powerful Deep Learning techniques, which exhibit high performance metrics in prediction tasks but may lack the ability to fully understand and exploit the contextual semantic information contained in the road scene, not to mention their inability to provide explainable predictions that can be understood by humans. In this work, we propose an explainable road users' behavior prediction system that integrates the reasoning abilities of Knowledge Graphs (KG) and the expressiveness capabilities of Large Language Models (LLM) by using Retrieval Augmented Generation (RAG) techniques. For that purpose, Knowledge Graph Embeddings (KGE) and Bayesian inference are combined to allow the deployment of a fully inductive reasoning system that enables the issuing of predictions that rely on legacy information contained in the graph as well as on current evidence gathered in real time by onboard sensors. Two use cases have been implemented following the proposed approach: 1) Prediction of pedestrians' crossing actions; 2) Prediction of lane change maneuvers. In both cases, the performance attained surpasses the current state of the art in terms of anticipation and F1-score, showing a promising avenue for future research in this field.
☆ Geometric Insights into Focal Loss: Reducing Curvature for Enhanced Model Calibration
The key factor in implementing machine learning algorithms in decision-making situations is not only the accuracy of the model but also its confidence level. The confidence level of a model in a classification problem is often given by the output vector of a softmax function for convenience. However, these values are known to deviate significantly from the actual expected model confidence. This problem is called model calibration and has been studied extensively. One of the simplest techniques to tackle this task is focal loss, a generalization of cross-entropy by introducing one positive parameter. Although many related studies exist because of the simplicity of the idea and its formalization, the theoretical analysis of its behavior is still insufficient. In this study, our objective is to understand the behavior of focal loss by reinterpreting this function geometrically. Our analysis suggests that focal loss reduces the curvature of the loss surface in training the model. This indicates that curvature may be one of the essential factors in achieving model calibration. We design numerical experiments to support this conjecture to reveal the behavior of focal loss and the relationship between calibration performance and curvature.
comment: This paper is under consideration at Pattern Recognition Letters
☆ MetaRM: Shifted Distributions Alignment via Meta-Learning
The success of Reinforcement Learning from Human Feedback (RLHF) in language model alignment is critically dependent on the capability of the reward model (RM). However, as the training process progresses, the output distribution of the policy model shifts, leading to the RM's reduced ability to distinguish between responses. This issue is further compounded when the RM, trained on a specific data distribution, struggles to generalize to examples outside of that distribution. These two issues can be united as a challenge posed by the shifted distribution of the environment. To surmount this challenge, we introduce MetaRM, a method leveraging meta-learning to align the RM with the shifted environment distribution. MetaRM is designed to train the RM by minimizing data loss, particularly for data that can improve the differentiation ability to examples of the shifted target distribution. Extensive experiments demonstrate that MetaRM significantly improves the RM's distinguishing ability in iterative RLHF optimization, and also provides the capacity to identify subtle differences in out-of-distribution samples.
comment: 11 pages, 6 figures. arXiv admin note: text overlap with arXiv:2401.06080
☆ Weight Sparsity Complements Activity Sparsity in Neuromorphic Language Models
Activity and parameter sparsity are two standard methods of making neural networks computationally more efficient. Event-based architectures such as spiking neural networks (SNNs) naturally exhibit activity sparsity, and many methods exist to sparsify their connectivity by pruning weights. While the effect of weight pruning on feed-forward SNNs has been previously studied for computer vision tasks, the effects of pruning for complex sequence tasks like language modeling are less well studied since SNNs have traditionally struggled to achieve meaningful performance on these tasks. Using a recently published SNN-like architecture that works well on small-scale language modeling, we study the effects of weight pruning when combined with activity sparsity. Specifically, we study the trade-off between the multiplicative efficiency gains the combination affords and its effect on task performance for language modeling. To dissect the effects of the two sparsities, we conduct a comparative analysis between densely activated models and sparsely activated event-based models across varying degrees of connectivity sparsity. We demonstrate that sparse activity and sparse connectivity complement each other without a proportional drop in task performance for an event-based neural network trained on the Penn Treebank and WikiText-2 language modeling datasets. Our results suggest sparsely connected event-based neural networks are promising candidates for effective and efficient sequence modeling.
comment: arXiv admin note: text overlap with arXiv:2311.07625
Self-supervised Pre-training of Text Recognizers ICDAR24
In this paper, we investigate self-supervised pre-training methods for document text recognition. Nowadays, large unlabeled datasets can be collected for many research tasks, including text recognition, but it is costly to annotate them. Therefore, methods utilizing unlabeled data are researched. We study self-supervised pre-training methods based on masked label prediction using three different approaches -- Feature Quantization, VQ-VAE, and Post-Quantized AE. We also investigate joint-embedding approaches with VICReg and NT-Xent objectives, for which we propose an image shifting technique to prevent model collapse where it relies solely on positional encoding while completely ignoring the input image. We perform our experiments on historical handwritten (Bentham) and historical printed datasets mainly to investigate the benefits of the self-supervised pre-training techniques with different amounts of annotated target domain data. We use transfer learning as strong baselines. The evaluation shows that the self-supervised pre-training on data from the target domain is very effective, but it struggles to outperform transfer learning from closely related domains. This paper is one of the first researches exploring self-supervised pre-training in document text recognition, and we believe that it will become a cornerstone for future research in this area. We made our implementation of the investigated methods publicly available at https://github.com/DCGM/pero-pretraining.
comment: 18 pages, 6 figures, 4 tables, accepted to ICDAR24
☆ Conformal Risk Control for Ordinal Classification
As a natural extension to the standard conformal prediction method, several conformal risk control methods have been recently developed and applied to various learning problems. In this work, we seek to control the conformal risk in expectation for ordinal classification tasks, which have broad applications to many real problems. For this purpose, we firstly formulated the ordinal classification task in the conformal risk control framework, and provided theoretic risk bounds of the risk control method. Then we proposed two types of loss functions specially designed for ordinal classification tasks, and developed corresponding algorithms to determine the prediction set for each case to control their risks at a desired level. We demonstrated the effectiveness of our proposed methods, and analyzed the difference between the two types of risks on three different datasets, including a simulated dataset, the UTKFace dataset and the diabetic retinopathy detection dataset.
comment: 17 pages, 8 figures, 2 table; 1 supplementary page
☆ UCB-driven Utility Function Search for Multi-objective Reinforcement Learning
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours that trade-off between multiple, possibly conflicting, objectives. MORL based on decomposition is a family of solution methods that employ a number of utility functions to decompose the multi-objective problem into individual single-objective problems solved simultaneously in order to approximate a Pareto front of policies. We focus on the case of linear utility functions parameterised by weight vectors w. We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process, with the aim of maximising the hypervolume of the resulting Pareto front. The proposed method is shown to outperform various MORL baselines on Mujoco benchmark problems across different random seeds. The code is online at: https://github.com/SYCAMORE-1/ucb-MOPPO.
☆ Enhancing Mutual Trustworthiness in Federated Learning for Data-Rich Smart Cities
Federated learning is a promising collaborative and privacy-preserving machine learning approach in data-rich smart cities. Nevertheless, the inherent heterogeneity of these urban environments presents a significant challenge in selecting trustworthy clients for collaborative model training. The usage of traditional approaches, such as the random client selection technique, poses several threats to the system's integrity due to the possibility of malicious client selection. Primarily, the existing literature focuses on assessing the trustworthiness of clients, neglecting the crucial aspect of trust in federated servers. To bridge this gap, in this work, we propose a novel framework that addresses the mutual trustworthiness in federated learning by considering the trust needs of both the client and the server. Our approach entails: (1) Creating preference functions for servers and clients, allowing them to rank each other based on trust scores, (2) Establishing a reputation-based recommendation system leveraging multiple clients to assess newly connected servers, (3) Assigning credibility scores to recommending devices for better server trustworthiness measurement, (4) Developing a trust assessment mechanism for smart devices using a statistical Interquartile Range (IQR) method, (5) Designing intelligent matching algorithms considering the preferences of both parties. Based on simulation and experimental results, our approach outperforms baseline methods by increasing trust levels, global model accuracy, and reducing non-trustworthy clients in the system.
☆ Employing Federated Learning for Training Autonomous HVAC Systems
Buildings account for 40 % of global energy consumption. A considerable portion of building energy consumption stems from heating, ventilation, and air conditioning (HVAC), and thus implementing smart, energy-efficient HVAC systems has the potential to significantly impact the course of climate change. In recent years, model-free reinforcement learning algorithms have been increasingly assessed for this purpose due to their ability to learn and adapt purely from experience. They have been shown to outperform classical controllers in terms of energy cost and consumption, as well as thermal comfort. However, their weakness lies in their relatively poor data efficiency, requiring long periods of training to reach acceptable policies, making them inapplicable to real-world controllers directly. Hence, common research goals are to improve the learning speed, as well as to improve their ability to generalize, in order to facilitate transfer learning to unseen building environments. In this paper, we take a federated learning approach to training the reinforcement learning controller of an HVAC system. A global control policy is learned by aggregating local policies trained on multiple data centers located in different climate zones. The goal of the policy is to simultaneously minimize energy consumption and maximize thermal comfort. The federated optimization strategy indirectly increases both the rate at which experience data is collected and the variation in the data. We demonstrate through experimental evaluation that these effects lead to a faster learning speed, as well as greater generalization capabilities in the federated policy compared to any individually trained policy.
☆ Cell Switching in HAPS-Aided Networking: How the Obscurity of Traffic Loads Affects the Decision
This study aims to introduce the cell load estimation problem of cell switching approaches in cellular networks specially-presented in a high-altitude platform station (HAPS)-assisted network. The problem arises from the fact that the traffic loads of sleeping base stations for the next time slot cannot be perfectly known, but they can rather be estimated, and any estimation error could result in divergence from the optimal decision, which subsequently affects the performance of energy efficiency. The traffic loads of the sleeping base stations for the next time slot are required because the switching decisions are made proactively in the current time slot. Two different Q-learning algorithms are developed; one is full-scale, focusing solely on the performance, while the other one is lightweight and addresses the computational cost. Results confirm that the estimation error is capable of changing cell switching decisions that yields performance divergence compared to no-error scenarios. Moreover, the developed Q-learning algorithms perform well since an insignificant difference (i.e., 0.3%) is observed between them and the optimum algorithm.
☆ Variational Bayesian Methods for a Tree-Structured Stick-Breaking Process Mixture of Gaussians
The Bayes coding algorithm for context tree source is a successful example of Bayesian tree estimation in text compression in information theory. This algorithm provides an efficient parametric representation of the posterior tree distribution and exact updating of its parameters. We apply this algorithm to a clustering task in machine learning. More specifically, we apply it to Bayesian estimation of the tree-structured stick-breaking process (TS-SBP) mixture models. For TS-SBP mixture models, only Markov chain Monte Carlo methods have been proposed so far, but any variational Bayesian methods have not been proposed yet. In this paper, we propose a variational Bayesian method that has a subroutine similar to the Bayes coding algorithm for context tree sources. We confirm its behavior by a numerical experiment on a toy example.
☆ Arbitrary Time Information Modeling via Polynomial Approximation for Temporal Knowledge Graph Embedding LREC
Distinguished from traditional knowledge graphs (KGs), temporal knowledge graphs (TKGs) must explore and reason over temporally evolving facts adequately. However, existing TKG approaches still face two main challenges, i.e., the limited capability to model arbitrary timestamps continuously and the lack of rich inference patterns under temporal constraints. In this paper, we propose an innovative TKGE method (PTBox) via polynomial decomposition-based temporal representation and box embedding-based entity representation to tackle the above-mentioned problems. Specifically, we decompose time information by polynomials and then enhance the model's capability to represent arbitrary timestamps flexibly by incorporating the learnable temporal basis tensor. In addition, we model every entity as a hyperrectangle box and define each relation as a transformation on the head and tail entity boxes. The entity boxes can capture complex geometric structures and learn robust representations, improving the model's inductive capability for rich inference patterns. Theoretically, our PTBox can encode arbitrary time information or even unseen timestamps while capturing rich inference patterns and higher-arity relations of the knowledge base. Extensive experiments on real-world datasets demonstrate the effectiveness of our method.
comment: Accepted by LREC-COLING 2024 (long paper, camera-ready version)
☆ A Self-explaining Neural Architecture for Generalizable Concept Learning IJCAI 2024
With the wide proliferation of Deep Neural Networks in high-stake applications, there is a growing demand for explainability behind their decision-making process. Concept learning models attempt to learn high-level 'concepts' - abstract entities that align with human understanding, and thus provide interpretability to DNN architectures. However, in this paper, we demonstrate that present SOTA concept learning approaches suffer from two major problems - lack of concept fidelity wherein the models fail to learn consistent concepts among similar classes and limited concept interoperability wherein the models fail to generalize learned concepts to new domains for the same task. Keeping these in mind, we propose a novel self-explaining architecture for concept learning across domains which - i) incorporates a new concept saliency network for representative concept selection, ii) utilizes contrastive learning to capture representative domain invariant concepts, and iii) uses a novel prototype-based concept grounding regularization to improve concept alignment across domains. We demonstrate the efficacy of our proposed approach over current SOTA concept learning approaches on four widely used real-world datasets. Empirical results show that our method improves both concept fidelity measured through concept overlap and concept interoperability measured through domain adaptation performance.
comment: IJCAI 2024
☆ Practical Dataset Distillation Based on Deep Support Vectors
Conventional dataset distillation requires significant computational resources and assumes access to the entire dataset, an assumption impractical as it presumes all data resides on a central server. In this paper, we focus on dataset distillation in practical scenarios with access to only a fraction of the entire dataset. We introduce a novel distillation method that augments the conventional process by incorporating general model knowledge via the addition of Deep KKT (DKKT) loss. In practical settings, our approach showed improved performance compared to the baseline distribution matching distillation method on the CIFAR-10 dataset. Additionally, we present experimental evidence that Deep Support Vectors (DSVs) offer unique information to the original distillation, and their integration results in enhanced performance.
☆ A Survey on Deep Active Learning: Recent Advances and New Frontiers
Active learning seeks to achieve strong performance with fewer training samples. It does this by iteratively asking an oracle to label new selected samples in a human-in-the-loop manner. This technique has gained increasing popularity due to its broad applicability, yet its survey papers, especially for deep learning-based active learning (DAL), remain scarce. Therefore, we conduct an advanced and comprehensive survey on DAL. We first introduce reviewed paper collection and filtering. Second, we formally define the DAL task and summarize the most influential baselines and widely used datasets. Third, we systematically provide a taxonomy of DAL methods from five perspectives, including annotation types, query strategies, deep model architectures, learning paradigms, and training processes, and objectively analyze their strengths and weaknesses. Then, we comprehensively summarize main applications of DAL in Natural Language Processing (NLP), Computer Vision (CV), and Data Mining (DM), etc. Finally, we discuss challenges and perspectives after a detailed analysis of current studies. This work aims to serve as a useful and quick guide for researchers in overcoming difficulties in DAL. We hope that this survey will spur further progress in this burgeoning field.
comment: This paper is accepted by IEEE Transactions on Neural Networks and Learning Systems
☆ A Careful Examination of Large Language Model Performance on Grade School Arithmetic
Large language models (LLMs) have achieved impressive success on many benchmarks for mathematical reasoning. However, there is growing concern that some of this performance actually reflects dataset contamination, where data closely resembling benchmark questions leaks into the training data, instead of true reasoning ability. To investigate this claim rigorously, we commission Grade School Math 1000 (GSM1k). GSM1k is designed to mirror the style and complexity of the established GSM8k benchmark, the gold standard for measuring elementary mathematical reasoning. We ensure that the two benchmarks are comparable across important metrics such as human solve rates, number of steps in solution, answer magnitude, and more. When evaluating leading open- and closed-source LLMs on GSM1k, we observe accuracy drops of up to 13%, with several families of models (e.g., Phi and Mistral) showing evidence of systematic overfitting across almost all model sizes. At the same time, many models, especially those on the frontier, (e.g., Gemini/GPT/Claude) show minimal signs of overfitting. Further analysis suggests a positive relationship (Spearman's r^2=0.32) between a model's probability of generating an example from GSM8k and its performance gap between GSM8k and GSM1k, suggesting that many models may have partially memorized GSM8k.
☆ Data Augmentation Policy Search for Long-Term Forecasting
Data augmentation serves as a popular regularization technique to combat overfitting challenges in neural networks. While automatic augmentation has demonstrated success in image classification tasks, its application to time-series problems, particularly in long-term forecasting, has received comparatively less attention. To address this gap, we introduce a time-series automatic augmentation approach named TSAA, which is both efficient and easy to implement. The solution involves tackling the associated bilevel optimization problem through a two-step process: initially training a non-augmented model for a limited number of epochs, followed by an iterative split procedure. During this iterative process, we alternate between identifying a robust augmentation policy through Bayesian optimization and refining the model while discarding suboptimal runs. Extensive evaluations on challenging univariate and multivariate forecasting benchmark problems demonstrate that TSAA consistently outperforms several robust baselines, suggesting its potential integration into prediction pipelines.
☆ Covariant spatio-temporal receptive fields for neuromorphic computing
Biological nervous systems constitute important sources of inspiration towards computers that are faster, cheaper, and more energy efficient. Neuromorphic disciplines view the brain as a coevolved system, simultaneously optimizing the hardware and the algorithms running on it. There are clear efficiency gains when bringing the computations into a physical substrate, but we presently lack theories to guide efficient implementations. Here, we present a principled computational model for neuromorphic systems in terms of spatio-temporal receptive fields, based on affine Gaussian kernels over space and leaky-integrator and leaky integrate-and-fire models over time. Our theory is provably covariant to spatial affine and temporal scaling transformations, and with close similarities to the visual processing in mammalian brains. We use these spatio-temporal receptive fields as a prior in an event-based vision task, and show that this improves the training of spiking networks, which otherwise is known as problematic for event-based vision. This work combines efforts within scale-space theory and computational neuroscience to identify theoretically well-founded ways to process spatio-temporal signals in neuromorphic systems. Our contributions are immediately relevant for signal processing and event-based vision, and can be extended to other processing tasks over space and time, such as memory and control.
comment: Code available at https://github.com/jegp/nrf
☆ Model Quantization and Hardware Acceleration for Vision Transformers: A Comprehensive Survey
Vision Transformers (ViTs) have recently garnered considerable attention, emerging as a promising alternative to convolutional neural networks (CNNs) in several vision-related applications. However, their large model sizes and high computational and memory demands hinder deployment, especially on resource-constrained devices. This underscores the necessity of algorithm-hardware co-design specific to ViTs, aiming to optimize their performance by tailoring both the algorithmic structure and the underlying hardware accelerator to each other's strengths. Model quantization, by converting high-precision numbers to lower-precision, reduces the computational demands and memory needs of ViTs, allowing the creation of hardware specifically optimized for these quantized algorithms, boosting efficiency. This article provides a comprehensive survey of ViTs quantization and its hardware acceleration. We first delve into the unique architectural attributes of ViTs and their runtime characteristics. Subsequently, we examine the fundamental principles of model quantization, followed by a comparative analysis of the state-of-the-art quantization techniques for ViTs. Additionally, we explore the hardware acceleration of quantized ViTs, highlighting the importance of hardware-friendly algorithm design. In conclusion, this article will discuss ongoing challenges and future research paths. We consistently maintain the related open-source materials at https://github.com/DD-DuDa/awesome-vit-quantization-acceleration.
☆ Three-layer deep learning network random trees for fault diagnosis in chemical production process
With the development of technology, the chemical production process is becoming increasingly complex and large-scale, making fault diagnosis particularly important. However, current diagnostic methods struggle to address the complexities of large-scale production processes. In this paper, we integrate the strengths of deep learning and machine learning technologies, combining the advantages of bidirectional long and short-term memory neural networks, fully connected neural networks, and the extra trees algorithm to propose a novel fault diagnostic model named three-layer deep learning network random trees (TDLN-trees). First, the deep learning component extracts temporal features from industrial data, combining and transforming them into a higher-level data representation. Second, the machine learning component processes and classifies the features extracted in the first step. An experimental analysis based on the Tennessee Eastman process verifies the superiority of the proposed method.
☆ QUACK: Quantum Aligned Centroid Kernel
Quantum computing (QC) seems to show potential for application in machine learning (ML). In particular quantum kernel methods (QKM) exhibit promising properties for use in supervised ML tasks. However, a major disadvantage of kernel methods is their unfavorable quadratic scaling with the number of training samples. Together with the limits imposed by currently available quantum hardware (NISQ devices) with their low qubit coherence times, small number of qubits, and high error rates, the use of QC in ML at an industrially relevant scale is currently impossible. As a small step in improving the potential applications of QKMs, we introduce QUACK, a quantum kernel algorithm whose time complexity scales linear with the number of samples during training, and independent of the number of training samples in the inference stage. In the training process, only the kernel entries for the samples and the centers of the classes are calculated, i.e. the maximum shape of the kernel for n samples and c classes is (n, c). During training, the parameters of the quantum kernel and the positions of the centroids are optimized iteratively. In the inference stage, for every new sample the circuit is only evaluated for every centroid, i.e. c times. We show that the QUACK algorithm nevertheless provides satisfactory results and can perform at a similar level as classical kernel methods with quadratic scaling during training. In addition, our (simulated) algorithm is able to handle high-dimensional datasets such as MNIST with 784 features without any dimensionality reduction.
comment: Submitted to IEEE International Conference on Quantum Computing and Engineering (QCE) 2024
☆ Joint Optimization of Piecewise Linear Ensembles SP 2024
Tree ensembles achieve state-of-the-art performance despite being greedily optimized. Global refinement (GR) reduces greediness by jointly and globally optimizing all constant leaves. We propose Joint Optimization of Piecewise Linear ENsembles (JOPLEN), a piecewise-linear extension of GR. Compared to GR, JOPLEN improves model flexibility and can apply common penalties, including sparsity-promoting matrix norms and subspace-norms, to nonlinear prediction. We evaluate the Frobenius norm, $\ell_{2,1}$ norm, and Laplacian regularization for 146 regression and classification datasets; JOPLEN, combined with GB trees and RF, achieves superior performance in both settings. Additionally, JOPLEN with a nuclear norm penalty empirically learns smooth and subspace-aligned functions. Finally, we perform multitask feature selection by extending the Dirty LASSO. JOPLEN Dirty LASSO achieves a superior feature sparsity/performance tradeoff to linear and gradient boosted approaches. We anticipate that JOPLEN will improve regression, classification, and feature selection across many fields.
comment: 7 pages, 4 figures, submitted to IEEE MLSP 2024
☆ Stochastic Sampling for Contrastive Views and Hard Negative Samples in Graph-based Collaborative Filtering
Graph-based collaborative filtering (CF) has emerged as a promising approach in recommendation systems. Despite its achievements, graph-based CF models face challenges due to data sparsity and negative sampling. In this paper, we propose a novel Stochastic sampling for i) COntrastive views and ii) hard NEgative samples (SCONE) to overcome these issues. By considering that they are both sampling tasks, we generate dynamic augmented views and diverse hard negative samples via our unified stochastic sampling framework based on score-based generative models. In our comprehensive evaluations with 6 benchmark datasets, our proposed SCONE significantly improves recommendation accuracy and robustness, and demonstrates the superiority of our approach over existing CF models. Furthermore, we prove the efficacy of user-item specific stochastic sampling for addressing the user sparsity and item popularity issues. The integration of the stochastic sampling and graph-based CF obtains the state-of-the-art in personalized recommendation systems, making significant strides in information-rich environments.
☆ iMTSP: Solving Min-Max Multiple Traveling Salesman Problem with Imperative Learning
This paper considers a Min-Max Multiple Traveling Salesman Problem (MTSP), where the goal is to find a set of tours, one for each agent, to collectively visit all the cities while minimizing the length of the longest tour. Though MTSP has been widely studied, obtaining near-optimal solutions for large-scale problems is still challenging due to its NP-hardness. Recent efforts in data-driven methods face challenges of the need for hard-to-obtain supervision and issues with high variance in gradient estimations, leading to slow convergence and highly suboptimal solutions. We address these issues by reformulating MTSP as a bilevel optimization problem, using the concept of imperative learning (IL). This involves introducing an allocation network that decomposes the MTSP into multiple single-agent traveling salesman problems (TSPs). The longest tour from these TSP solutions is then used to self-supervise the allocation network, resulting in a new self-supervised, bilevel, end-to-end learning framework, which we refer to as imperative MTSP (iMTSP). Additionally, to tackle the high-variance gradient issues during the optimization, we introduce a control variate-based gradient estimation algorithm. Our experiments showed that these innovative designs enable our gradient estimator to converge 20% faster than the advanced reinforcement learning baseline and find up to 80% shorter tour length compared with Google OR-Tools MTSP solver, especially in large-scale problems (e.g. 1000 cities and 15 agents).
comment: 8 pages, 3 figures, 3 tables
☆ MF-OML: Online Mean-Field Reinforcement Learning with Occupation Measures for Large Population Games
Reinforcement learning for multi-agent games has attracted lots of attention recently. However, given the challenge of solving Nash equilibria for large population games, existing works with guaranteed polynomial complexities either focus on variants of zero-sum and potential games, or aim at solving (coarse) correlated equilibria, or require access to simulators, or rely on certain assumptions that are hard to verify. This work proposes MF-OML (Mean-Field Occupation-Measure Learning), an online mean-field reinforcement learning algorithm for computing approximate Nash equilibria of large population sequential symmetric games. MF-OML is the first fully polynomial multi-agent reinforcement learning algorithm for provably solving Nash equilibria (up to mean-field approximation gaps that vanish as the number of players $N$ goes to infinity) beyond variants of zero-sum and potential games. When evaluated by the cumulative deviation from Nash equilibria, the algorithm is shown to achieve a high probability regret bound of $\tilde{O}(M^{3/4}+N^{-1/2}M)$ for games with the strong Lasry-Lions monotonicity condition, and a regret bound of $\tilde{O}(M^{11/12}+N^{- 1/6}M)$ for games with only the Lasry-Lions monotonicity condition, where $M$ is the total number of episodes and $N$ is the number of agents of the game. As a byproduct, we also obtain the first tractable globally convergent computational algorithm for computing approximate Nash equilibria of monotone mean-field games.
☆ Clover: Regressive Lightweight Speculative Decoding with Sequential Knowledge
Large language models (LLMs) suffer from low efficiency as the mismatch between the requirement of auto-regressive decoding and the design of most contemporary GPUs. Specifically, billions to trillions of parameters must be loaded to the GPU cache through its limited memory bandwidth for computation, but only a small batch of tokens is actually computed. Consequently, the GPU spends most of its time on memory transfer instead of computation. Recently, parallel decoding, a type of speculative decoding algorithms, is becoming more popular and has demonstrated impressive efficiency improvement in generation. It introduces extra decoding heads to large models, enabling them to predict multiple subsequent tokens simultaneously and verify these candidate continuations in a single decoding step. However, this approach deviates from the training objective of next token prediction used during pre-training, resulting in a low hit rate for candidate tokens. In this paper, we propose a new speculative decoding algorithm, Clover, which integrates sequential knowledge into the parallel decoding process. This enhancement improves the hit rate of speculators and thus boosts the overall efficiency. Clover transmits the sequential knowledge from pre-speculated tokens via the Regressive Connection, then employs an Attention Decoder to integrate these speculated tokens. Additionally, Clover incorporates an Augmenting Block that modifies the hidden states to better align with the purpose of speculative generation rather than next token prediction. The experiment results demonstrate that Clover outperforms the baseline by up to 91% on Baichuan-Small and 146% on Baichuan-Large, respectively, and exceeds the performance of the previously top-performing method, Medusa, by up to 37% on Baichuan-Small and 57% on Baichuan-Large, respectively.
♻ ☆ Bridging Dimensions: Confident Reachability for High-Dimensional Controllers
Autonomous systems are increasingly implemented using end-to-end learning-based controllers. Such controllers make decisions that are executed on the real system, with images as one of the primary sensing modalities. Deep neural networks form a fundamental building block of such controllers. Unfortunately, the existing neural-network verification tools do not scale to inputs with thousands of dimensions -- especially when the individual inputs (such as pixels) are devoid of clear physical meaning. This paper takes a step towards connecting exhaustive closed-loop verification with high-dimensional controllers. Our key insight is that the behavior of a high-dimensional controller can be approximated with several low-dimensional controllers. To balance the approximation accuracy and verifiability of our low-dimensional controllers, we leverage the latest verification-aware knowledge distillation. Then, we inflate low-dimensional reachability results with statistical approximation errors, yielding a high-confidence reachability guarantee for the high-dimensional controller. We investigate two inflation techniques -- based on trajectories and control actions -- both of which show convincing performance in three OpenAI gym benchmarks.
♻ ☆ Closed-Loop Koopman Operator Approximation
This paper proposes a method to identify a Koopman model of a feedback-controlled system given a known controller. The Koopman operator allows a nonlinear system to be rewritten as an infinite-dimensional linear system by viewing it in terms of an infinite set of lifting functions. A finite-dimensional approximation of the Koopman operator can be identified from data by choosing a finite subset of lifting functions and solving a regression problem in the lifted space. Existing methods are designed to identify open-loop systems. However, it is impractical or impossible to run experiments on some systems, such as unstable systems, in an open-loop fashion. The proposed method leverages the linearity of the Koopman operator, along with knowledge of the controller and the structure of the closed-loop system, to simultaneously identify the closed-loop and plant systems. The advantages of the proposed closed-loop Koopman operator approximation method are demonstrated in simulation using a Duffing oscillator and experimentally using a rotary inverted pendulum system. An open-source software implementation of the proposed method is publicly available, along with the experimental dataset generated for this paper.
comment: 13 pages, 11 figures, 3 tables, accepted for accepted for publication in Machine Learning: Science and Technology
♻ ☆ GRASP: A Rehearsal Policy for Efficient Online Continual Learning
Continual learning (CL) in deep neural networks (DNNs) involves incrementally accumulating knowledge in a DNN from a growing data stream. A major challenge in CL is that non-stationary data streams cause catastrophic forgetting of previously learned abilities. A popular solution is rehearsal: storing past observations in a buffer and then sampling the buffer to update the DNN. Uniform sampling in a class-balanced manner is highly effective, and better sample selection policies have been elusive. Here, we propose a new sample selection policy called GRASP that selects the most prototypical (easy) samples first and then gradually selects less prototypical (harder) examples. GRASP has little additional compute or memory overhead compared to uniform selection, enabling it to scale to large datasets. Compared to 17 other rehearsal policies, GRASP achieves higher accuracy in CL experiments on ImageNet. Compared to uniform balanced sampling, GRASP achieves the same performance with 40% fewer updates. We also show that GRASP is effective for CL on five text classification datasets.
comment: Accepted to the Conference on Lifelong Learning Agents (CoLLAs) 2024
♻ ☆ Capabilities of Gemini Models in Medicine
Excellence in a wide variety of medical applications poses considerable challenges for AI, requiring advanced reasoning, access to up-to-date medical knowledge and understanding of complex multimodal data. Gemini models, with strong general capabilities in multimodal and long-context reasoning, offer exciting possibilities in medicine. Building on these core strengths of Gemini, we introduce Med-Gemini, a family of highly capable multimodal models that are specialized in medicine with the ability to seamlessly use web search, and that can be efficiently tailored to novel modalities using custom encoders. We evaluate Med-Gemini on 14 medical benchmarks, establishing new state-of-the-art (SoTA) performance on 10 of them, and surpass the GPT-4 model family on every benchmark where a direct comparison is viable, often by a wide margin. On the popular MedQA (USMLE) benchmark, our best-performing Med-Gemini model achieves SoTA performance of 91.1% accuracy, using a novel uncertainty-guided search strategy. On 7 multimodal benchmarks including NEJM Image Challenges and MMMU (health & medicine), Med-Gemini improves over GPT-4V by an average relative margin of 44.5%. We demonstrate the effectiveness of Med-Gemini's long-context capabilities through SoTA performance on a needle-in-a-haystack retrieval task from long de-identified health records and medical video question answering, surpassing prior bespoke methods using only in-context learning. Finally, Med-Gemini's performance suggests real-world utility by surpassing human experts on tasks such as medical text summarization, alongside demonstrations of promising potential for multimodal medical dialogue, medical research and education. Taken together, our results offer compelling evidence for Med-Gemini's potential, although further rigorous evaluation will be crucial before real-world deployment in this safety-critical domain.
♻ ☆ U-Nets as Belief Propagation: Efficient Classification, Denoising, and Diffusion in Generative Hierarchical Models
U-Nets are among the most widely used architectures in computer vision, renowned for their exceptional performance in applications such as image segmentation, denoising, and diffusion modeling. However, a theoretical explanation of the U-Net architecture design has not yet been fully established. This paper introduces a novel interpretation of the U-Net architecture by studying certain generative hierarchical models, which are tree-structured graphical models extensively utilized in both language and image domains. With their encoder-decoder structure, long skip connections, and pooling and up-sampling layers, we demonstrate how U-Nets can naturally implement the belief propagation denoising algorithm in such generative hierarchical models, thereby efficiently approximating the denoising functions. This leads to an efficient sample complexity bound for learning the denoising function using U-Nets within these models. Additionally, we discuss the broader implications of these findings for diffusion models in generative hierarchical models. We also demonstrate that the conventional architecture of convolutional neural networks (ConvNets) is ideally suited for classification tasks within these models. This offers a unified view of the roles of ConvNets and U-Nets, highlighting the versatility of generative hierarchical models in modeling complex data distributions across language and image domains.
comment: v2 updated discussions of related literature
♻ ☆ Measuring and Controlling Instruction (In)Stability in Language Model Dialogs
System-prompting is a standard tool for customizing language-model chatbots, enabling them to follow a specific instruction. An implicit assumption in the use of system prompts is that they will be stable, so the chatbot will continue to generate text according to the stipulated instructions for the duration of a conversation. We propose a quantitative benchmark to test this assumption, evaluating instruction stability via self-chats between two instructed chatbots. Testing popular models like LLaMA2-chat-70B and GPT-3.5, we reveal a significant instruction drift within eight rounds of conversations. An empirical and theoretical analysis of this phenomenon suggests the transformer attention mechanism plays a role, due to attention decay over long exchanges. To combat attention decay and instruction drift, we propose a lightweight method called split-softmax, which compares favorably against two strong baselines.
comment: Code: https://github.com/likenneth/persona_drift
♻ ☆ Prediction without Preclusion: Recourse Verification with Reachable Sets ICLR 2024
Machine learning models are often used to decide who receives a loan, a job interview, or a public benefit. Models in such settings use features without considering their actionability. As a result, they can assign predictions that are fixed $-$ meaning that individuals who are denied loans and interviews are, in fact, precluded from access to credit and employment. In this work, we introduce a procedure called recourse verification to test if a model assigns fixed predictions to its decision subjects. We propose a model-agnostic approach for recourse verification with reachable sets $-$ i.e., the set of all points that a person can reach through their actions in feature space. We develop methods to construct reachable sets for discrete feature spaces, which can certify the responsiveness of any model by simply querying its predictions. We conduct a comprehensive empirical study on the infeasibility of recourse on datasets from consumer finance. Our results highlight how models can inadvertently preclude access by assigning fixed predictions and underscore the need to account for actionability in model development.
comment: ICLR 2024 Spotlight. The first two authors contributed equally
♻ ☆ GenCast: Diffusion-based ensemble forecasting for medium-range weather
Weather forecasts are fundamentally uncertain, so predicting the range of probable weather scenarios is crucial for important decisions, from warning the public about hazardous weather, to planning renewable energy use. Here, we introduce GenCast, a probabilistic weather model with greater skill and speed than the top operational medium-range weather forecast in the world, the European Centre for Medium-Range Forecasts (ECMWF)'s ensemble forecast, ENS. Unlike traditional approaches, which are based on numerical weather prediction (NWP), GenCast is a machine learning weather prediction (MLWP) method, trained on decades of reanalysis data. GenCast generates an ensemble of stochastic 15-day global forecasts, at 12-hour steps and 0.25 degree latitude-longitude resolution, for over 80 surface and atmospheric variables, in 8 minutes. It has greater skill than ENS on 97.4% of 1320 targets we evaluated, and better predicts extreme weather, tropical cyclones, and wind power production. This work helps open the next chapter in operational weather forecasting, where critical weather-dependent decisions are made with greater accuracy and efficiency.
comment: Main text 11 pages, Appendices 76 pages
♻ ☆ PPG-to-ECG Signal Translation for Continuous Atrial Fibrillation Detection via Attention-based Deep State-Space Modeling
Photoplethysmography (PPG) is a cost-effective and non-invasive technique that utilizes optical methods to measure cardiac physiology. PPG has become increasingly popular in health monitoring and is used in various commercial and clinical wearable devices. Compared to electrocardiography (ECG), PPG does not provide substantial clinical diagnostic value, despite the strong correlation between the two. Here, we propose a subject-independent attention-based deep state-space model (ADSSM) to translate PPG signals to corresponding ECG waveforms. The model is not only robust to noise but also data-efficient by incorporating probabilistic prior knowledge. To evaluate our approach, 55 subjects' data from the MIMIC-III database were used in their original form, and then modified with noise, mimicking real-world scenarios. Our approach was proven effective as evidenced by the PR-AUC of 0.986 achieved when inputting the translated ECG signals into an existing atrial fibrillation (AFib) detector. ADSSM enables the integration of ECG's extensive knowledge base and PPG's continuous measurement for early diagnosis of cardiovascular disease.
comment: Accepted to 46th IEEE EMBC
♻ ☆ Unconstrained Stochastic CCA: Unifying Multiview and Self-Supervised Learning
The Canonical Correlation Analysis (CCA) family of methods is foundational in multiview learning. Regularised linear CCA methods can be seen to generalise Partial Least Squares (PLS) and be unified with a Generalized Eigenvalue Problem (GEP) framework. However, classical algorithms for these linear methods are computationally infeasible for large-scale data. Extensions to Deep CCA show great promise, but current training procedures are slow and complicated. First we propose a novel unconstrained objective that characterizes the top subspace of GEPs. Our core contribution is a family of fast algorithms for stochastic PLS, stochastic CCA, and Deep CCA, simply obtained by applying stochastic gradient descent (SGD) to the corresponding CCA objectives. Our algorithms show far faster convergence and recover higher correlations than the previous state-of-the-art on all standard CCA and Deep CCA benchmarks. These improvements allow us to perform a first-of-its-kind PLS analysis of an extremely large biomedical dataset from the UK Biobank, with over 33,000 individuals and 500,000 features. Finally, we apply our algorithms to match the performance of `CCA-family' Self-Supervised Learning (SSL) methods on CIFAR-10 and CIFAR-100 with minimal hyper-parameter tuning, and also present theory to clarify the links between these methods and classical CCA, laying the groundwork for future insights.
♻ ☆ The R2D2 deep neural network series paradigm for fast precision imaging in radio astronomy
Radio-interferometric (RI) imaging entails solving high-resolution high-dynamic range inverse problems from large data volumes. Recent image reconstruction techniques grounded in optimization theory have demonstrated remarkable capability for imaging precision, well beyond CLEAN's capability. These range from advanced proximal algorithms propelled by handcrafted regularization operators, such as the SARA family, to hybrid plug-and-play (PnP) algorithms propelled by learned regularization denoisers, such as AIRI. Optimization and PnP structures are however highly iterative, which hinders their ability to handle the extreme data sizes expected from future instruments. To address this scalability challenge, we introduce a novel deep learning approach, dubbed "Residual-to-Residual DNN series for high-Dynamic range imaging". R2D2's reconstruction is formed as a series of residual images, iteratively estimated as outputs of Deep Neural Networks (DNNs) taking the previous iteration's image estimate and associated data residual as inputs. It thus takes a hybrid structure between a PnP algorithm and a learned version of the matching pursuit algorithm that underpins CLEAN. We present a comprehensive study of our approach, featuring its multiple incarnations distinguished by their DNN architectures. We provide a detailed description of its training process, targeting a telescope-specific approach. R2D2's capability to deliver high precision is demonstrated in simulation, across a variety of image and observation settings using the Very Large Array (VLA). Its reconstruction speed is also demonstrated: with only few iterations required to clean data residuals at dynamic ranges up to 100000, R2D2 opens the door to fast precision imaging. R2D2 codes are available in the BASPLib library on GitHub.
comment: Accepted for publication in ApJS
♻ ☆ Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing CVPR 2024
Adiabatic quantum computing (AQC) is a promising approach for discrete and often NP-hard optimization problems. Current AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for many computer vision tasks. Despite requiring multiple measurements from the noisy AQC, current approaches only utilize the best measurement, discarding information contained in the remaining ones. In this work, we explore the potential of using this information for probabilistic balanced k-means clustering. Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost. This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
comment: Accepted at CVPR 2024
♻ ☆ Separation capacity of linear reservoirs with random connectivity matrix
We argue that the success of reservoir computing lies within the separation capacity of the reservoirs and show that the expected separation capacity of random linear reservoirs is fully characterised by the spectral decomposition of an associated generalised matrix of moments. Of particular interest are reservoirs with Gaussian matrices that are either symmetric or whose entries are all independent. In the symmetric case, we prove that the separation capacity always deteriorates with time; while for short inputs, separation with large reservoirs is best achieved when the entries of the matrix are scaled with a factor $\rho_T/\sqrt{N}$, where $N$ is the dimension of the reservoir and $\rho_T$ depends on the maximum length of the input time series. In the i.i.d. case, we establish that optimal separation with large reservoirs is consistently achieved when the entries of the reservoir matrix are scaled with the exact factor $1/\sqrt{N}$. We further give upper bounds on the quality of separation in function of the length of the time series. We complement this analysis with an investigation of the likelihood of this separation and the impact of the chosen architecture on separation consistency.
♻ ☆ Multi-objective optimisation via the R2 utilities
The goal of multi-objective optimisation is to identify a collection of points which describe the best possible trade-offs between the multiple objectives. In order to solve this vector-valued optimisation problem, practitioners often appeal to the use of scalarisation functions in order to transform the multi-objective problem into a collection of single-objective problems. This set of scalarised problems can then be solved using traditional single-objective optimisation techniques. In this work, we formalise this convention into a general mathematical framework. We show how this strategy effectively recasts the original multi-objective optimisation problem into a single-objective optimisation problem defined over sets. An appropriate class of objective functions for this new problem are the R2 utilities, which are utility functions that are defined as a weighted integral over the scalarised optimisation problems. As part of our work, we show that these utilities are monotone and submodular set functions which can be optimised effectively using greedy optimisation algorithms. We then analyse the performance of these greedy algorithms both theoretically and empirically. Our analysis largely focusses on Bayesian optimisation, which is a popular probabilistic framework for black-box optimisation.
comment: The code is available at: https://github.com/benmltu/scalarize
♻ ☆ Volume-Preserving Transformers for Learning Time Series Data with Structure
Two of the many trends in neural network research of the past few years have been (i) the learning of dynamical systems, especially with recurrent neural networks such as long short-term memory networks (LSTMs) and (ii) the introduction of transformer neural networks for natural language processing (NLP) tasks. Both of these trends have created enormous amounts of traction, particularly the second one: transformer networks now dominate the field of NLP. Even though some work has been performed on the intersection of these two trends, those efforts was largely limited to using the vanilla transformer directly without adjusting its architecture for the setting of a physical system. In this work we use a transformer-inspired neural network to learn a dynamical system and furthermore (for the first time) imbue it with structure-preserving properties to improve long-term stability. This is shown to be of great advantage when applying the neural network to real world applications.
♻ ☆ Cross-Validation Conformal Risk Control
Conformal risk control (CRC) is a recently proposed technique that applies post-hoc to a conventional point predictor to provide calibration guarantees. Generalizing conformal prediction (CP), with CRC, calibration is ensured for a set predictor that is extracted from the point predictor to control a risk function such as the probability of miscoverage or the false negative rate. The original CRC requires the available data set to be split between training and validation data sets. This can be problematic when data availability is limited, resulting in inefficient set predictors. In this paper, a novel CRC method is introduced that is based on cross-validation, rather than on validation as the original CRC. The proposed cross-validation CRC (CV-CRC) extends a version of the jackknife-minmax from CP to CRC, allowing for the control of a broader range of risk functions. CV-CRC is proved to offer theoretical guarantees on the average risk of the set predictor. Furthermore, numerical experiments show that CV-CRC can reduce the average set size with respect to CRC when the available data are limited.
comment: accepted for presentation at 2024 IEEE International Symposium on Information Theory (ISIT 2024)
♻ ☆ A Survey of Graph Neural Networks for Social Recommender Systems
Social recommender systems (SocialRS) simultaneously leverage the user-to-item interactions as well as the user-to-user social relations for the task of generating item recommendations to users. Additionally exploiting social relations is clearly effective in understanding users' tastes due to the effects of homophily and social influence. For this reason, SocialRS has increasingly attracted attention. In particular, with the advance of graph neural networks (GNN), many GNN-based SocialRS methods have been developed recently. Therefore, we conduct a comprehensive and systematic review of the literature on GNN-based SocialRS. In this survey, we first identify 84 papers on GNN-based SocialRS after annotating 2151 papers by following the PRISMA framework (preferred reporting items for systematic reviews and meta-analyses). Then, we comprehensively review them in terms of their inputs and architectures to propose a novel taxonomy: (1) input taxonomy includes 5 groups of input type notations and 7 groups of input representation notations; (2) architecture taxonomy includes 8 groups of GNN encoder notations, 2 groups of decoder notations, and 12 groups of loss function notations. We classify the GNN-based SocialRS methods into several categories as per the taxonomy and describe their details. Furthermore, we summarize benchmark datasets and metrics widely used to evaluate the GNN-based SocialRS methods. Finally, we conclude this survey by presenting some future research directions. GitHub repository with the curated list of papers are available at https://github.com/claws-lab/awesome-GNN-social-recsys.
comment: Published in ACM CSUR April 2024. GitHub repository with the curated list of papers: https://github.com/claws-lab/awesome-GNN-social-recsys
♻ ☆ On the Impact of Data Heterogeneity in Federated Learning Environments with Application to Healthcare Networks
Federated Learning (FL) allows multiple privacy-sensitive applications to leverage their dataset for a global model construction without any disclosure of the information. One of those domains is healthcare, where groups of silos collaborate in order to generate a global predictor with improved accuracy and generalization. However, the inherent challenge lies in the high heterogeneity of medical data, necessitating sophisticated techniques for assessment and compensation. This paper presents a comprehensive exploration of the mathematical formalization and taxonomy of heterogeneity within FL environments, focusing on the intricacies of medical data. In particular, we address the evaluation and comparison of the most popular FL algorithms with respect to their ability to cope with quantity-based, feature and label distribution-based heterogeneity. The goal is to provide a quantitative evaluation of the impact of data heterogeneity in FL systems for healthcare networks as well as a guideline on FL algorithm selection. Our research extends beyond existing studies by benchmarking seven of the most common FL algorithms against the unique challenges posed by medical data use cases. The paper targets the prediction of the risk of stroke recurrence through a set of tabular clinical reports collected by different federated hospital silos: data heterogeneity frequently encountered in this scenario and its impact on FL performance are discussed.
♻ ☆ ODBO: Bayesian Optimization with Search Space Prescreening for Directed Protein Evolution
Directed evolution is a versatile technique in protein engineering that mimics the process of natural selection by iteratively alternating between mutagenesis and screening in order to search for sequences that optimize a given property of interest, such as catalytic activity and binding affinity to a specified target. However, the space of possible proteins is too large to search exhaustively in the laboratory, and functional proteins are scarce in the vast sequence space. Machine learning (ML) approaches can accelerate directed evolution by learning to map protein sequences to functions without building a detailed model of the underlying physics, chemistry and biological pathways. Despite the great potentials held by these ML methods, they encounter severe challenges in identifying the most suitable sequences for a targeted function. These failures can be attributed to the common practice of adopting a high-dimensional feature representation for protein sequences and inefficient search methods. To address these issues, we propose an efficient, experimental design-oriented closed-loop optimization framework for protein directed evolution, termed ODBO, which employs a combination of novel low-dimensional protein encoding strategy and Bayesian optimization enhanced with search space prescreening via outlier detection. We further design an initial sample selection strategy to minimize the number of experimental samples for training ML models. We conduct and report four protein directed evolution experiments that substantiate the capability of the proposed framework for finding of the variants with properties of interest. We expect the ODBO framework to greatly reduce the experimental cost and time cost of directed evolution, and can be further generalized as a powerful tool for adaptive experimental design in a broader context.
comment: 27 pages, 13 figures
♻ ☆ Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint
This paper studies the alignment process of generative models with Reinforcement Learning from Human Feedback (RLHF). We first identify the primary challenges of existing popular methods like offline PPO and offline DPO as lacking in strategical exploration of the environment. Then, to understand the mathematical principle of RLHF, we consider a standard mathematical formulation, the reverse-KL regularized contextual bandit for RLHF. Despite its widespread practical application, a rigorous theoretical analysis of this formulation remains open. We investigate its behavior in three distinct settings -- offline, online, and hybrid -- and propose efficient algorithms with finite-sample theoretical guarantees. Moving towards practical applications, our framework, with a robust approximation of the information-theoretical policy improvement oracle, naturally gives rise to several novel RLHF algorithms. This includes an iterative version of the Direct Preference Optimization (DPO) algorithm for online settings, and a multi-step rejection sampling strategy for offline scenarios. Our empirical evaluations on real-world alignment experiment of large language model demonstrate that these proposed methods significantly surpass existing strong baselines, such as DPO and Rejection Sampling Optimization (RSO), showcasing the connections between solid theoretical foundations and their potent practical implementations.
comment: 53 pages; theoretical study and algorithmic design of iterative RLHF and DPO
♻ ☆ Machine Learning for Synthetic Data Generation: A Review
Machine learning heavily relies on data, but real-world applications often encounter various data-related issues. These include data of poor quality, insufficient data points leading to under-fitting of machine learning models, and difficulties in data access due to concerns surrounding privacy, safety, and regulations. In light of these challenges, the concept of synthetic data generation emerges as a promising alternative that allows for data sharing and utilization in ways that real-world data cannot facilitate. This paper presents a comprehensive systematic review of existing studies that employ machine learning models for the purpose of generating synthetic data. The review encompasses various perspectives, starting with the applications of synthetic data generation, spanning computer vision, speech, natural language processing, healthcare, and business domains. Additionally, it explores different machine learning methods, with particular emphasis on neural network architectures and deep generative models. The paper also addresses the crucial aspects of privacy and fairness concerns related to synthetic data generation. Furthermore, this study identifies the challenges and opportunities prevalent in this emerging field, shedding light on the potential avenues for future research. By delving into the intricacies of synthetic data generation, this paper aims to contribute to the advancement of knowledge and inspire further exploration in synthetic data generation.
♻ ☆ Why You Should Not Trust Interpretations in Machine Learning: Adversarial Attacks on Partial Dependence Plots
The adoption of artificial intelligence (AI) across industries has led to the widespread use of complex black-box models and interpretation tools for decision making. This paper proposes an adversarial framework to uncover the vulnerability of permutation-based interpretation methods for machine learning tasks, with a particular focus on partial dependence (PD) plots. This adversarial framework modifies the original black box model to manipulate its predictions for instances in the extrapolation domain. As a result, it produces deceptive PD plots that can conceal discriminatory behaviors while preserving most of the original model's predictions. This framework can produce multiple fooled PD plots via a single model. By using real-world datasets including an auto insurance claims dataset and COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) dataset, our results show that it is possible to intentionally hide the discriminatory behavior of a predictor and make the black-box model appear neutral through interpretation tools like PD plots while retaining almost all the predictions of the original black-box model. Managerial insights for regulators and practitioners are provided based on the findings.
♻ ☆ A Statistical-Modelling Approach to Feedforward Neural Network Model Selection
Feedforward neural networks (FNNs) can be viewed as non-linear regression models, where covariates enter the model through a combination of weighted summations and non-linear functions. Although these models have some similarities to the approaches used within statistical modelling, the majority of neural network research has been conducted outside of the field of statistics. This has resulted in a lack of statistically-based methodology, and, in particular, there has been little emphasis on model parsimony. Determining the input layer structure is analogous to variable selection, while the structure for the hidden layer relates to model complexity. In practice, neural network model selection is often carried out by comparing models using out-of-sample performance. However, in contrast, the construction of an associated likelihood function opens the door to information-criteria-based variable and architecture selection. A novel model selection method, which performs both input- and hidden-node selection, is proposed using the Bayesian information criterion (BIC) for FNNs. The choice of BIC over out-of-sample performance as the model selection objective function leads to an increased probability of recovering the true model, while parsimoniously achieving favourable out-of-sample performance. Simulation studies are used to evaluate and justify the proposed method, and applications on real data are investigated.
♻ ☆ Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models
Contrast agents in dynamic contrast enhanced magnetic resonance imaging allow to localize tumors and observe their contrast kinetics, which is essential for cancer characterization and respective treatment decision-making. However, contrast agent administration is not only associated with adverse health risks, but also restricted for patients during pregnancy, and for those with kidney malfunction, or other adverse reactions. With contrast uptake as key biomarker for lesion malignancy, cancer recurrence risk, and treatment response, it becomes pivotal to reduce the dependency on intravenous contrast agent administration. To this end, we propose a multi-conditional latent diffusion model capable of acquisition time-conditioned image synthesis of DCE-MRI temporal sequences. To evaluate medical image synthesis, we additionally propose and validate the Fr\'echet radiomics distance as an image quality measure based on biomarker variability between synthetic and real imaging data. Our results demonstrate our method's ability to generate realistic multi-sequence fat-saturated breast DCE-MRI and uncover the emerging potential of deep learning based contrast kinetics simulation. We publicly share our accessible codebase at https://github.com/RichardObi/ccnet and provide a user-friendly library for Fr\'echet radiomics distance calculation at https://pypi.org/project/frd-score.
♻ ☆ Unsupervised Representation Learning in Deep Reinforcement Learning: A Review
This review addresses the problem of learning abstract representations of the measurement data in the context of Deep Reinforcement Learning (DRL). While the data are often ambiguous, high-dimensional, and complex to interpret, many dynamical systems can be effectively described by a low-dimensional set of state variables. Discovering these state variables from the data is a crucial aspect for (i) improving the data efficiency, robustness, and generalization of DRL methods, (ii) tackling the curse of dimensionality, and (iii) bringing interpretability and insights into black-box DRL. This review provides a comprehensive and complete overview of unsupervised representation learning in DRL by describing the main Deep Learning tools used for learning representations of the world, providing a systematic view of the method and principles, summarizing applications, benchmarks and evaluation strategies, and discussing open challenges and future directions.
♻ ☆ Fast Abstracts and Student Forum Proceedings -- EDCC 2024 -- 19th European Dependable Computing Conference
The goal of the Fast Abstracts track is to bring together researchers and practitioners working on dependable computing to discuss work in progress or opinion pieces. Contributions are welcome from academia and industry. Fast Abstracts aim to serve as a rapid and flexible mechanism to: (i) Report on current work that may or may not be complete; (ii) Introduce new ideas to the community; (iii) State positions on controversial issues or open problems; (iv) Share lessons learnt from real-word dependability engineering; and (v) Debunk or question results from other papers based on contra-indications. The Student Forum aims at creating a vibrant and friendly environment where students can present and discuss their work, and exchange ideas and experiences with other students, researchers and industry. One of the key goals of the Forum is to provide students with feedback on their preliminary results that might help with their future research directions.
♻ ☆ Blurring Diffusion Models
Recently, Rissanen et al., (2022) have presented a new type of diffusion process for generative modeling based on heat dissipation, or blurring, as an alternative to isotropic Gaussian diffusion. Here, we show that blurring can equivalently be defined through a Gaussian diffusion process with non-isotropic noise. In making this connection, we bridge the gap between inverse heat dissipation and denoising diffusion, and we shed light on the inductive bias that results from this modeling choice. Finally, we propose a generalized class of diffusion models that offers the best of both standard Gaussian denoising diffusion and inverse heat dissipation, which we call Blurring Diffusion Models.
♻ ☆ Hidden yet quantifiable: A lower bound for confounding strength using randomized trials AISTATS
In the era of fast-paced precision medicine, observational studies play a major role in properly evaluating new treatments in clinical practice. Yet, unobserved confounding can significantly compromise causal conclusions drawn from non-randomized data. We propose a novel strategy that leverages randomized trials to quantify unobserved confounding. First, we design a statistical test to detect unobserved confounding with strength above a given threshold. Then, we use the test to estimate an asymptotically valid lower bound on the unobserved confounding strength. We evaluate the power and validity of our statistical test on several synthetic and semi-synthetic datasets. Further, we show how our lower bound can correctly identify the absence and presence of unobserved confounding in a real-world setting.
comment: Accepted for presentation at the International Conference on Artificial Intelligence and Statistics (AISTATS) 2024
♻ ☆ Federated Transfer Component Analysis Towards Effective VNF Profiling
The increasing concerns of knowledge transfer and data privacy challenge the traditional gather-and-analyse paradigm in networks. Specifically, the intelligent orchestration of Virtual Network Functions (VNFs) requires understanding and profiling the resource consumption. However, profiling all kinds of VNFs is time-consuming. It is important to consider transferring the well-profiled VNF knowledge to other lack-profiled VNF types while keeping data private. To this end, this paper proposes a Federated Transfer Component Analysis (FTCA) method between the source and target VNFs. FTCA first trains Generative Adversarial Networks (GANs) based on the source VNF profiling data, and the trained GANs model is sent to the target VNF domain. Then, FTCA realizes federated domain adaptation by using the generated source VNF data and less target VNF profiling data, while keeping the raw data locally. Experiments show that the proposed FTCA can effectively predict the required resources for the target VNF. Specifically, the RMSE index of the regression model decreases by 38.5% and the R-squared metric advances up to 68.6%.
♻ ☆ ResQuNNs:Towards Enabling Deep Learning in Quantum Convolution Neural Networks
In this paper, we present a novel framework for enhancing the performance of Quanvolutional Neural Networks (QuNNs) by introducing trainable quanvolutional layers and addressing the critical challenges associated with them. Traditional quanvolutional layers, although beneficial for feature extraction, have largely been static, offering limited adaptability. Unlike state-of-the-art, our research overcomes this limitation by enabling training within these layers, significantly increasing the flexibility and potential of QuNNs. However, the introduction of multiple trainable quanvolutional layers induces complexities in gradient-based optimization, primarily due to the difficulty in accessing gradients across these layers. To resolve this, we propose a novel architecture, Residual Quanvolutional Neural Networks (ResQuNNs), leveraging the concept of residual learning, which facilitates the flow of gradients by adding skip connections between layers. By inserting residual blocks between quanvolutional layers, we ensure enhanced gradient access throughout the network, leading to improved training performance. Moreover, we provide empirical evidence on the strategic placement of these residual blocks within QuNNs. Through extensive experimentation, we identify an efficient configuration of residual blocks, which enables gradients across all the layers in the network that eventually results in efficient training. Our findings suggest that the precise location of residual blocks plays a crucial role in maximizing the performance gains in QuNNs. Our results mark a substantial step forward in the evolution of quantum deep learning, offering new avenues for both theoretical development and practical quantum computing applications.
♻ ☆ Federated Learning with Convex Global and Local Constraints
In practice, many machine learning (ML) problems come with constraints, and their applied domains involve distributed sensitive data that cannot be shared with others, e.g., in healthcare. Collaborative learning in such practical scenarios entails federated learning (FL) for ML problems with constraints, or FL with constraints for short. Despite the extensive developments of FL techniques in recent years, these techniques only deal with unconstrained FL problems or FL problems with simple constraints that are amenable to easy projections. There is little work dealing with FL problems with general constraints. To fill this gap, we take the first step toward building an algorithmic framework for solving FL problems with general constraints. In particular, we propose a new FL algorithm for constrained ML problems based on the proximal augmented Lagrangian (AL) method. Assuming convex objective and convex constraints plus other mild conditions, we establish the worst-case complexity of the proposed algorithm. Our numerical experiments show the effectiveness of our algorithm in performing Neyman-Pearson classification and fairness-aware learning with nonconvex constraints, in an FL setting.
comment: Accepted by Transactions on Machine Learning Research. Code associated with this paper can be found in https://github.com/PL97/Constr_FL
♻ ☆ IMITATE: Clinical Prior Guided Hierarchical Vision-Language Pre-training
In the field of medical Vision-Language Pre-training (VLP), significant efforts have been devoted to deriving text and image features from both clinical reports and associated medical images. However, most existing methods may have overlooked the opportunity in leveraging the inherent hierarchical structure of clinical reports, which are generally split into `findings' for descriptive content and `impressions' for conclusive observation. Instead of utilizing this rich, structured format, current medical VLP approaches often simplify the report into either a unified entity or fragmented tokens. In this work, we propose a novel clinical prior guided VLP framework named IMITATE to learn the structure information from medical reports with hierarchical vision-language alignment. The framework derives multi-level visual features from the chest X-ray (CXR) images and separately aligns these features with the descriptive and the conclusive text encoded in the hierarchical medical report. Furthermore, a new clinical-informed contrastive loss is introduced for cross-modal learning, which accounts for clinical prior knowledge in formulating sample correlations in contrastive learning. The proposed model, IMITATE, outperforms baseline VLP methods across six different datasets, spanning five medical imaging downstream tasks. Comprehensive experimental results highlight the advantages of integrating the hierarchical structure of medical reports for vision-language alignment.
comment: Under Review
♻ ☆ QFNN-FFD: Quantum Federated Neural Network for Financial Fraud Detection
This study introduces the Quantum Federated Neural Network for Financial Fraud Detection (QFNN-FFD), a cutting-edge framework merging Quantum Machine Learning (QML) and quantum computing with Federated Learning (FL) for financial fraud detection. Using quantum technologies' computational power and the robust data privacy protections offered by FL, QFNN-FFD emerges as a secure and efficient method for identifying fraudulent transactions within the financial sector. Implementing a dual-phase training model across distributed clients enhances data integrity and enables superior performance metrics, achieving precision rates consistently above 95%. Additionally, QFNN-FFD demonstrates exceptional resilience by maintaining an impressive 80% accuracy, highlighting its robustness and readiness for real-world applications. This combination of high performance, security, and robustness against noise positions QFNN-FFD as a transformative advancement in financial technology solutions and establishes it as a new benchmark for privacy-focused fraud detection systems. This framework facilitates the broader adoption of secure, quantum-enhanced financial services and inspires future innovations that could use QML to tackle complex challenges in other areas requiring high confidentiality and accuracy.
♻ ☆ Course Recommender Systems Need to Consider the Job Market SIGIR 2024
Current course recommender systems primarily leverage learner-course interactions, course content, learner preferences, and supplementary course details like instructor, institution, ratings, and reviews, to make their recommendation. However, these systems often overlook a critical aspect: the evolving skill demand of the job market. This paper focuses on the perspective of academic researchers, working in collaboration with the industry, aiming to develop a course recommender system that incorporates job market skill demands. In light of the job market's rapid changes and the current state of research in course recommender systems, we outline essential properties for course recommender systems to address these demands effectively, including explainable, sequential, unsupervised, and aligned with the job market and user's goals. Our discussion extends to the challenges and research questions this objective entails, including unsupervised skill extraction from job listings, course descriptions, and resumes, as well as predicting recommendations that align with learner objectives and the job market and designing metrics to evaluate this alignment. Furthermore, we introduce an initial system that addresses some existing limitations of course recommender systems using large Language Models (LLMs) for skill extraction and Reinforcement Learning (RL) for alignment with the job market. We provide empirical results using open-source data to demonstrate its effectiveness.
comment: accepted at SIGIR 2024 as a perspective paper. Camera Ready will come soon
♻ ☆ Exploring the Robustness of In-Context Learning with Noisy Labels ICLR 2024
Recently, the mysterious In-Context Learning (ICL) ability exhibited by Transformer architectures, especially in large language models (LLMs), has sparked significant research interest. However, the resilience of Transformers' in-context learning capabilities in the presence of noisy samples, prevalent in both training corpora and prompt demonstrations, remains underexplored. In this paper, inspired by prior research that studies ICL ability using simple function classes, we take a closer look at this problem by investigating the robustness of Transformers against noisy labels. Specifically, we first conduct a thorough evaluation and analysis of the robustness of Transformers against noisy labels during in-context learning and show that they exhibit notable resilience against diverse types of noise in demonstration labels. Furthermore, we delve deeper into this problem by exploring whether introducing noise into the training set, akin to a form of data augmentation, enhances such robustness during inference, and find that such noise can indeed improve the robustness of ICL. Overall, our fruitful analysis and findings provide a comprehensive understanding of the resilience of Transformer models against label noises during ICL and provide valuable insights into the research on Transformers in natural language processing. Our code is available at https://github.com/InezYu0928/in-context-learning.
comment: ICLR 2024 Workshop on Reliable and Responsible Foundation Models
♻ ☆ FLIQS: One-Shot Mixed-Precision Floating-Point and Integer Quantization Search
Quantization has become a mainstream compression technique for reducing model size, computational requirements, and energy consumption for modern deep neural networks (DNNs). With improved numerical support in recent hardware, including multiple variants of integer and floating point, mixed-precision quantization has become necessary to achieve high-quality results with low model cost. Prior mixed-precision methods have performed either a post-training quantization search, which compromises on accuracy, or a differentiable quantization search, which leads to high memory usage from branching. Therefore, we propose the first one-shot mixed-precision quantization search that eliminates the need for retraining in both integer and low-precision floating point models. We evaluate our search (FLIQS) on multiple convolutional and vision transformer networks to discover Pareto-optimal models. Our approach improves upon uniform precision, manual mixed-precision, and recent integer quantization search methods. With integer models, we increase the accuracy of ResNet-18 on ImageNet by 1.31% and ResNet-50 by 0.90% with equivalent model cost over previous methods. Additionally, for the first time, we explore a novel mixed-precision floating-point search and improve MobileNetV2 by up to 0.98% compared to prior state-of-the-art FP8 models. Finally, we extend FLIQS to simultaneously search a joint quantization and neural architecture space and improve the ImageNet accuracy by 2.69% with similar model cost on a MobileNetV2 search space.
comment: Accepted to AutoML 2024
♻ ☆ ClustML: A Measure of Cluster Pattern Complexity in Scatterplots Learnt from Human-labeled Groupings
Visual quality measures (VQMs) are designed to support analysts by automatically detecting and quantifying patterns in visualizations. We propose a new VQM for visual grouping patterns in scatterplots, called ClustML, which is trained on previously collected human subject judgments. Our model encodes scatterplots in the parametric space of a Gaussian Mixture Model and uses a classifier trained on human judgment data to estimate the perceptual complexity of grouping patterns. The numbers of initial mixture components and final combined groups. It improves on existing VQMs, first, by better estimating human judgments on two-Gaussian cluster patterns and, second, by giving higher accuracy when ranking general cluster patterns in scatterplots. We use it to analyze kinship data for genome-wide association studies, in which experts rely on the visual analysis of large sets of scatterplots. We make the benchmark datasets and the new VQM available for practical use and further improvements.
comment: Published in SAGE Information Visualization journal
♻ ☆ SOFIM: Stochastic Optimization Using Regularized Fisher Information Matrix
This paper introduces a new stochastic optimization method based on the regularized Fisher information matrix (FIM), named SOFIM, which can efficiently utilize the FIM to approximate the Hessian matrix for finding Newton's gradient update in large-scale stochastic optimization of machine learning models. It can be viewed as a variant of natural gradient descent, where the challenge of storing and calculating the full FIM is addressed through making use of the regularized FIM and directly finding the gradient update direction via Sherman-Morrison matrix inversion. Additionally, like the popular Adam method, SOFIM uses the first moment of the gradient to address the issue of non-stationary objectives across mini-batches due to heterogeneous data. The utilization of the regularized FIM and Sherman-Morrison matrix inversion leads to the improved convergence rate with the same space and time complexities as stochastic gradient descent (SGD) with momentum. The extensive experiments on training deep learning models using several benchmark image classification datasets demonstrate that the proposed SOFIM outperforms SGD with momentum and several state-of-the-art Newton optimization methods in term of the convergence speed for achieving the pre-specified objectives of training and test losses as well as test accuracy.
♻ ☆ Facilitating Reinforcement Learning for Process Control Using Transfer Learning: Perspectives SC
This paper provides insights into deep reinforcement learning (DRL) for process control from the perspective of transfer learning. We analyze the challenges of applying DRL in the field of process industries and the necessity of introducing transfer learning. Furthermore, recommendations and prospects are provided for future research directions on how transfer learning can be integrated with DRL to empower process control.
comment: Final Version of Asian Control Conference (ASCC 2024)
♻ ☆ Automatic Segmentation of the Spinal Cord Nerve Rootlets
Precise identification of spinal nerve rootlets is relevant to delineate spinal levels for the study of functional activity in the spinal cord. The goal of this study was to develop an automatic method for the semantic segmentation of spinal nerve rootlets from T2-weighted magnetic resonance imaging (MRI) scans. Images from two open-access MRI datasets were used to train a 3D multi-class convolutional neural network using an active learning approach to segment C2-C8 dorsal nerve rootlets. Each output class corresponds to a spinal level. The method was tested on 3T T2-weighted images from datasets unseen during training to assess inter-site, inter-session, and inter-resolution variability. The test Dice score was 0.67 +- 0.16 (mean +- standard deviation across testing images and rootlets levels), suggesting a good performance. The method also demonstrated low inter-vendor and inter-site variability (coefficient of variation <= 1.41 %), as well as low inter-session variability (coefficient of variation <= 1.30 %) indicating stable predictions across different MRI vendors, sites, and sessions. The proposed methodology is open-source and readily available in the Spinal Cord Toolbox (SCT) v6.2 and higher.
♻ ☆ An Efficient Difference-of-Convex Solver for Privacy Funnel
We propose an efficient solver for the privacy funnel (PF) method, leveraging its difference-of-convex (DC) structure. The proposed DC separation results in a closed-form update equation, which allows straightforward application to both known and unknown distribution settings. For known distribution case, we prove the convergence (local stationary points) of the proposed non-greedy solver, and empirically show that it outperforms the state-of-the-art approaches in characterizing the privacy-utility trade-off. The insights of our DC approach apply to unknown distribution settings where labeled empirical samples are available instead. Leveraging the insights, our alternating minimization solver satisfies the fundamental Markov relation of PF in contrast to previous variational inference-based solvers. Empirically, we evaluate the proposed solver with MNIST and Fashion-MNIST datasets. Our results show that under a comparable reconstruction quality, an adversary suffers from higher prediction error from clustering our compressed codes than that with the compared methods. Most importantly, our solver is independent to private information in inference phase contrary to the baselines.
♻ ☆ Tractable MCMC for Private Learning with Pure and Gaussian Differential Privacy
Posterior sampling, i.e., exponential mechanism to sample from the posterior distribution, provides $\varepsilon$-pure differential privacy (DP) guarantees and does not suffer from potentially unbounded privacy breach introduced by $(\varepsilon,\delta)$-approximate DP. In practice, however, one needs to apply approximate sampling methods such as Markov chain Monte Carlo (MCMC), thus re-introducing the unappealing $\delta$-approximation error into the privacy guarantees. To bridge this gap, we propose the Approximate SAample Perturbation (abbr. ASAP) algorithm which perturbs an MCMC sample with noise proportional to its Wasserstein-infinity ($W_\infty$) distance from a reference distribution that satisfies pure DP or pure Gaussian DP (i.e., $\delta=0$). We then leverage a Metropolis-Hastings algorithm to generate the sample and prove that the algorithm converges in $W_\infty$ distance. We show that by combining our new techniques with a localization step, we obtain the first nearly linear-time algorithm that achieves the optimal rates in the DP-ERM problem with strongly convex and smooth losses.
♻ ☆ The Shape of Money Laundering: Subgraph Representation Learning on the Blockchain with the Elliptic2 Dataset
Subgraph representation learning is a technique for analyzing local structures (or shapes) within complex networks. Enabled by recent developments in scalable Graph Neural Networks (GNNs), this approach encodes relational information at a subgroup level (multiple connected nodes) rather than at a node level of abstraction. We posit that certain domain applications, such as anti-money laundering (AML), are inherently subgraph problems and mainstream graph techniques have been operating at a suboptimal level of abstraction. This is due in part to the scarcity of annotated datasets of real-world size and complexity, as well as the lack of software tools for managing subgraph GNN workflows at scale. To enable work in fundamental algorithms as well as domain applications in AML and beyond, we introduce Elliptic2, a large graph dataset containing 122K labeled subgraphs of Bitcoin clusters within a background graph consisting of 49M node clusters and 196M edge transactions. The dataset provides subgraphs known to be linked to illicit activity for learning the set of "shapes" that money laundering exhibits in cryptocurrency and accurately classifying new criminal activity. Along with the dataset we share our graph techniques, software tooling, promising early experimental results, and new domain insights already gleaned from this approach. Taken together, we find immediate practical value in this approach and the potential for a new standard in anti-money laundering and forensic analytics in cryptocurrencies and other financial networks.
♻ ☆ Resource-Aware Heterogeneous Federated Learning using Neural Architecture Search
Federated Learning (FL) is extensively used to train AI/ML models in distributed and privacy-preserving settings. Participant edge devices in FL systems typically contain non-independent and identically distributed (Non-IID) private data and unevenly distributed computational resources. Preserving user data privacy while optimizing AI/ML models in a heterogeneous federated network requires us to address data and system/resource heterogeneity. To address these challenges, we propose Resource-aware Federated Learning (RaFL). RaFL allocates resource-aware specialized models to edge devices using Neural Architecture Search (NAS) and allows heterogeneous model architecture deployment by knowledge extraction and fusion. Combining NAS and FL enables on-demand customized model deployment for resource-diverse edge devices. Furthermore, we propose a multi-model architecture fusion scheme allowing the aggregation of the distributed learning results. Results demonstrate RaFL's superior resource efficiency compared to SoTA.
comment: Accepted at the 30th International European Conference on Parallel and Distributed Computing (Euro-Par 2024)
♻ ☆ DINOISER: Diffused Conditional Sequence Learning by Manipulating Noises ACL
While diffusion models have achieved great success in generating continuous signals such as images and audio, it remains elusive for diffusion models in learning discrete sequence data like natural languages. Although recent advances circumvent this challenge of discreteness by embedding discrete tokens as continuous surrogates, they still fall short of satisfactory generation quality. To understand this, we first dive deep into the denoised training protocol of diffusion-based sequence generative models and determine their three severe problems, i.e., 1) failing to learn, 2) lack of scalability, and 3) neglecting source conditions. We argue that these problems can be boiled down to the pitfall of the not completely eliminated discreteness in the embedding space, and the scale of noises is decisive herein. In this paper, we introduce DINOISER to facilitate diffusion models for sequence generation by manipulating noises. We propose to adaptively determine the range of sampled noise scales for counter-discreteness training; and encourage the proposed diffused sequence learner to leverage source conditions with amplified noise scales during inference. Experiments show that DINOISER enables consistent improvement over the baselines of previous diffusion-based sequence generative models on several conditional sequence modeling benchmarks thanks to both effective training and inference strategies. Analyses further verify that DINOISER can make better use of source conditions to govern its generative process.
comment: camera-ready version, accepted by Transaction of ACL (TACL)
♻ ☆ High-probability Convergence Bounds for Nonlinear Stochastic Gradient Descent Under Heavy-tailed Noise
We study high-probability convergence guarantees of learning on streaming data in the presence of heavy-tailed noise. In the proposed scenario, the model is updated in an online fashion, as new information is observed, without storing any additional data. To combat the heavy-tailed noise, we consider a general framework of nonlinear stochastic gradient descent (SGD), providing several strong results. First, for non-convex costs and component-wise nonlinearities, we establish a convergence rate arbitrarily close to $\mathcal{O}\left(t^{-\frac{1}{4}}\right)$, whose exponent is independent of noise and problem parameters. Second, for strongly convex costs and component-wise nonlinearities, we establish a rate arbitrarily close to $\mathcal{O}\left(t^{-\frac{1}{2}}\right)$ for the weighted average of iterates, with exponent again independent of noise and problem parameters. Finally, for strongly convex costs and a broader class of nonlinearities, we establish convergence of the last iterate, with a rate $\mathcal{O}\left(t^{-\zeta} \right)$, where $\zeta \in (0,1)$ depends on problem parameters, noise and nonlinearity. As we show analytically and numerically, $\zeta$ can be used to inform the preferred choice of nonlinearity for given problem settings. Compared to state-of-the-art, who only consider clipping, require bounded noise moments of order $\eta \in (1,2]$, and establish convergence rates whose exponents go to zero as $\eta \rightarrow 1$, we provide high-probability guarantees for a much broader class of nonlinearities and symmetric density noise, with convergence rates whose exponents are bounded away from zero, even when the noise has finite first moment only. Moreover, in the case of strongly convex functions, we demonstrate analytically and numerically that clipping is not always the optimal nonlinearity, further underlining the value of our general framework.
comment: 30 pages, 3 figures
♻ ☆ Orthogonal Bootstrap: Efficient Simulation of Input Uncertainty
Bootstrap is a popular methodology for simulating input uncertainty. However, it can be computationally expensive when the number of samples is large. We propose a new approach called \textbf{Orthogonal Bootstrap} that reduces the number of required Monte Carlo replications. We decomposes the target being simulated into two parts: the \textit{non-orthogonal part} which has a closed-form result known as Infinitesimal Jackknife and the \textit{orthogonal part} which is easier to be simulated. We theoretically and numerically show that Orthogonal Bootstrap significantly reduces the computational cost of Bootstrap while improving empirical accuracy and maintaining the same width of the constructed interval.
♻ ☆ Graphene: Infrastructure Security Posture Analysis with AI-generated Attack Graphs
The rampant occurrence of cybersecurity breaches imposes substantial limitations on the progress of network infrastructures, leading to compromised data, financial losses, potential harm to individuals, and disruptions in essential services. The current security landscape demands the urgent development of a holistic security assessment solution that encompasses vulnerability analysis and investigates the potential exploitation of these vulnerabilities as attack paths. In this paper, we propose Graphene, an advanced system designed to provide a detailed analysis of the security posture of computing infrastructures. Using user-provided information, such as device details and software versions, Graphene performs a comprehensive security assessment. This assessment includes identifying associated vulnerabilities and constructing potential attack graphs that adversaries can exploit. Furthermore, Graphene evaluates the exploitability of these attack paths and quantifies the overall security posture through a scoring mechanism. The system takes a holistic approach by analyzing security layers encompassing hardware, system, network, and cryptography. Furthermore, Graphene delves into the interconnections between these layers, exploring how vulnerabilities in one layer can be leveraged to exploit vulnerabilities in others. In this paper, we present the end-to-end pipeline implemented in Graphene, showcasing the systematic approach adopted for conducting this thorough security analysis.
♻ ☆ Double Descent and Other Interpolation Phenomena in GANs
We study overparameterization in generative adversarial networks (GANs) that can interpolate the training data. We show that overparameterization can improve generalization performance and accelerate the training process. We study the generalization error as a function of latent space dimension and identify two main behaviors, depending on the learning setting. First, we show that overparameterized generative models that learn distributions by minimizing a metric or $f$-divergence do not exhibit double descent in generalization errors; specifically, all the interpolating solutions achieve the same generalization error. Second, we develop a novel pseudo-supervised learning approach for GANs where the training utilizes pairs of fabricated (noise) inputs in conjunction with real output samples. Our pseudo-supervised setting exhibits double descent (and in some cases, triple descent) of generalization errors. We combine pseudo-supervision with overparameterization (i.e., overly large latent space dimension) to accelerate training while matching or even surpassing generalization performance without pseudo-supervision. While our analysis focuses mostly on linear models, we also apply important insights for improving generalization of nonlinear, multilayer GANs.
♻ ☆ Attention-based Shape-Deformation Networks for Artifact-Free Geometry Reconstruction of Lumbar Spine from MR Images
Lumbar disc degeneration, a progressive structural wear and tear of lumbar intervertebral disc, is regarded as an essential role on low back pain, a significant global health concern. Automated lumbar spine geometry reconstruction from MR images will enable fast measurement of medical parameters to evaluate the lumbar status, in order to determine a suitable treatment. Existing image segmentation-based techniques often generate erroneous segments or unstructured point clouds, unsuitable for medical parameter measurement. In this work, we present $\textit{UNet-DeformSA}$ and $\textit{TransDeformer}$: novel attention-based deep neural networks that reconstruct the geometry of the lumbar spine with high spatial accuracy and mesh correspondence across patients, and we also present a variant of $\textit{TransDeformer}$ for error estimation. Specially, we devise new attention modules with a new attention formula, which integrate image features and tokenized contour features to predict the displacements of the points on a shape template without the need for image segmentation. The deformed template reveals the lumbar spine geometry in an image. Experiment results show that our networks generate artifact-free geometry outputs, and the variant of $\textit{TransDeformer}$ can predict the errors of a reconstructed geometry. Our code is available at https://github.com/linchenq/TransDeformer-Mesh.
♻ ☆ Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation EACL 2024
Predicting next visit diagnosis using Electronic Health Records (EHR) is an essential task in healthcare, critical for devising proactive future plans for both healthcare providers and patients. Nonetheless, many preceding studies have not sufficiently addressed the heterogeneous and hierarchical characteristics inherent in EHR data, inevitably leading to sub-optimal performance. To this end, we propose NECHO, a novel medical code-centric multimodal contrastive EHR learning framework with hierarchical regularisation. First, we integrate multifaceted information encompassing medical codes, demographics, and clinical notes using a tailored network design and a pair of bimodal contrastive losses, all of which pivot around a medical codes representation. We also regularise modality-specific encoders using a parental level information in medical ontology to learn hierarchical structure of EHR data. A series of experiments on MIMIC-III data demonstrates effectiveness of our approach.
comment: Accepted to EACL 2024 (The 18th Conference of the European Chapter of the Association for Computational Linguistics)
♻ ☆ Gaussian random field approximation via Stein's method with applications to wide random neural networks
We derive upper bounds on the Wasserstein distance ($W_1$), with respect to $\sup$-norm, between any continuous $\mathbb{R}^d$ valued random field indexed by the $n$-sphere and the Gaussian, based on Stein's method. We develop a novel Gaussian smoothing technique that allows us to transfer a bound in a smoother metric to the $W_1$ distance. The smoothing is based on covariance functions constructed using powers of Laplacian operators, designed so that the associated Gaussian process has a tractable Cameron-Martin or Reproducing Kernel Hilbert Space. This feature enables us to move beyond one dimensional interval-based index sets that were previously considered in the literature. Specializing our general result, we obtain the first bounds on the Gaussian random field approximation of wide random neural networks of any depth and Lipschitz activation functions at the random field level. Our bounds are explicitly expressed in terms of the widths of the network and moments of the random weights. We also obtain tighter bounds when the activation function has three bounded derivatives.
comment: To appear in Applied and Computational Harmonic Analysis
♻ ☆ Offline Policy Evaluation for Reinforcement Learning with Adaptively Collected Data
Developing theoretical guarantees on the sample complexity of offline RL methods is an important step towards making data-hungry RL algorithms practically viable. Currently, most results hinge on unrealistic assumptions about the data distribution -- namely that it comprises a set of i.i.d. trajectories collected by a single logging policy. We consider a more general setting where the dataset may have been gathered adaptively. We develop theory for the TMIS Offline Policy Evaluation (OPE) estimator in this generalized setting for tabular MDPs, deriving high-probability, instance-dependent bounds on its estimation error. We also recover minimax-optimal offline learning in the adaptive setting. Finally, we conduct simulations to empirically analyze the behavior of these estimators under adaptive and non-adaptive regimes.
Multimedia 5
☆ EALD-MLLM: Emotion Analysis in Long-sequential and De-identity videos with Multi-modal Large Language Model
Emotion AI is the ability of computers to understand human emotional states. Existing works have achieved promising progress, but two limitations remain to be solved: 1) Previous studies have been more focused on short sequential video emotion analysis while overlooking long sequential video. However, the emotions in short sequential videos only reflect instantaneous emotions, which may be deliberately guided or hidden. In contrast, long sequential videos can reveal authentic emotions; 2) Previous studies commonly utilize various signals such as facial, speech, and even sensitive biological signals (e.g., electrocardiogram). However, due to the increasing demand for privacy, developing Emotion AI without relying on sensitive signals is becoming important. To address the aforementioned limitations, in this paper, we construct a dataset for Emotion Analysis in Long-sequential and De-identity videos called EALD by collecting and processing the sequences of athletes' post-match interviews. In addition to providing annotations of the overall emotional state of each video, we also provide the Non-Facial Body Language (NFBL) annotations for each player. NFBL is an inner-driven emotional expression and can serve as an identity-free clue to understanding the emotional state. Moreover, we provide a simple but effective baseline for further research. More precisely, we evaluate the Multimodal Large Language Models (MLLMs) with de-identification signals (e.g., visual, speech, and NFBLs) to perform emotion analysis. Our experimental results demonstrate that: 1) MLLMs can achieve comparable, even better performance than the supervised single-modal models, even in a zero-shot scenario; 2) NFBL is an important cue in long sequential emotion analysis. EALD will be available on the open-source platform.
☆ In Anticipation of Perfect Deepfake: Identity-anchored Artifact-agnostic Detection under Rebalanced Deepfake Detection Protocol
As deep generative models advance, we anticipate deepfakes achieving "perfection"-generating no discernible artifacts or noise. However, current deepfake detectors, intentionally or inadvertently, rely on such artifacts for detection, as they are exclusive to deepfakes and absent in genuine examples. To bridge this gap, we introduce the Rebalanced Deepfake Detection Protocol (RDDP) to stress-test detectors under balanced scenarios where genuine and forged examples bear similar artifacts. We offer two RDDP variants: RDDP-WHITEHAT uses white-hat deepfake algorithms to create 'self-deepfakes,' genuine portrait videos with the resemblance of the underlying identity, yet carry similar artifacts to deepfake videos; RDDP-SURROGATE employs surrogate functions (e.g., Gaussian noise) to process both genuine and forged examples, introducing equivalent noise, thereby sidestepping the need of deepfake algorithms. Towards detecting perfect deepfake videos that aligns with genuine ones, we present ID-Miner, a detector that identifies the puppeteer behind the disguise by focusing on motion over artifacts or appearances. As an identity-based detector, it authenticates videos by comparing them with reference footage. Equipped with the artifact-agnostic loss at frame-level and the identity-anchored loss at video-level, ID-Miner effectively singles out identity signals amidst distracting variations. Extensive experiments comparing ID-Miner with 12 baseline detectors under both conventional and RDDP evaluations with two deepfake datasets, along with additional qualitative studies, affirm the superiority of our method and the necessity for detectors designed to counter perfect deepfakes.
☆ Visual and audio scene classification for detecting discrepancies in video: a baseline method and experimental protocol ICMR'24
This paper presents a baseline approach and an experimental protocol for a specific content verification problem: detecting discrepancies between the audio and video modalities in multimedia content. We first design and optimize an audio-visual scene classifier, to compare with existing classification baselines that use both modalities. Then, by applying this classifier separately to the audio and the visual modality, we can detect scene-class inconsistencies between them. To facilitate further research and provide a common evaluation platform, we introduce an experimental protocol and a benchmark dataset simulating such inconsistencies. Our approach achieves state-of-the-art results in scene classification and promising outcomes in audio-visual discrepancies detection, highlighting its potential in content verification applications.
comment: Accepted for publication, 3rd ACM Int. Workshop on Multimedia AI against Disinformation (MAD'24) at ACM ICMR'24, June 10, 2024, Phuket, Thailand. This is the "accepted version"
☆ Learning High-Quality Navigation and Zooming on Omnidirectional Images in Virtual Reality
Viewing omnidirectional images (ODIs) in virtual reality (VR) represents a novel form of media that provides immersive experiences for users to navigate and interact with digital content. Nonetheless, this sense of immersion can be greatly compromised by a blur effect that masks details and hampers the user's ability to engage with objects of interest. In this paper, we present a novel system, called OmniVR, designed to enhance visual clarity during VR navigation. Our system enables users to effortlessly locate and zoom in on the objects of interest in VR. It captures user commands for navigation and zoom, converting these inputs into parameters for the Mobius transformation matrix. Leveraging these parameters, the ODI is refined using a learning-based algorithm. The resultant ODI is presented within the VR media, effectively reducing blur and increasing user engagement. To verify the effectiveness of our system, we first evaluate our algorithm with state-of-the-art methods on public datasets, which achieves the best performance. Furthermore, we undertake a comprehensive user study to evaluate viewer experiences across diverse scenarios and to gather their qualitative feedback from multiple perspectives. The outcomes reveal that our system enhances user engagement by improving the viewers' recognition, reducing discomfort, and improving the overall immersive experience. Our system makes the navigation and zoom more user-friendly.
comment: 11 pages
☆ Expert Insight-Enhanced Follow-up Chest X-Ray Summary Generation
A chest X-ray radiology report describes abnormal findings not only from X-ray obtained at current examination, but also findings on disease progression or change in device placement with reference to the X-ray from previous examination. Majority of the efforts on automatic generation of radiology report pertain to reporting the former, but not the latter, type of findings. To the best of the authors' knowledge, there is only one work dedicated to generating summary of the latter findings, i.e., follow-up summary. In this study, we therefore propose a transformer-based framework to tackle this task. Motivated by our observations on the significance of medical lexicon on the fidelity of summary generation, we introduce two mechanisms to bestow expert insight to our model, namely expert soft guidance and masked entity modeling loss. The former mechanism employs a pretrained expert disease classifier to guide the presence level of specific abnormalities, while the latter directs the model's attention toward medical lexicon. Extensive experiments were conducted to demonstrate that the performance of our model is competitive with or exceeds the state-of-the-art.
comment: accepted by 22nd International Conference on Artificial Intelligence in medicine (AIME2024)
Performance 4
☆ A Communication Avoiding and Reducing Algorithm for Symmetric Eigenproblem for Very Small Matrices
In this paper, a parallel symmetric eigensolver with very small matrices in massively parallel processing is considered. We define very small matrices that fit the sizes of caches per node in a supercomputer. We assume that the sizes also fit the exa-scale computing requirements of current production runs of an application. To minimize communication time, we added several communication avoiding and communication reducing algorithms based on Message Passing Interface (MPI) non-blocking implementations. A performance evaluation with up to full nodes of the FX10 system indicates that (1) the MPI non-blocking implementation is 3x as efficient as the baseline implementation, (2) the hybrid MPI execution is 1.9x faster than the pure MPI execution, (3) our proposed solver is 2.3x and 22x faster than a ScaLAPACK routine with optimized blocking size and cyclic-cyclic distribution, respectively.
comment: This article was submitted to Parallel Computing in December 9, 2013.This article was also published in IPSJ SIG Notes, Vol. 2015-HPC-148, Vol.2, pp.1-17 (February 23, 2015). (a non-reviewed technical report)
☆ Model Quantization and Hardware Acceleration for Vision Transformers: A Comprehensive Survey
Vision Transformers (ViTs) have recently garnered considerable attention, emerging as a promising alternative to convolutional neural networks (CNNs) in several vision-related applications. However, their large model sizes and high computational and memory demands hinder deployment, especially on resource-constrained devices. This underscores the necessity of algorithm-hardware co-design specific to ViTs, aiming to optimize their performance by tailoring both the algorithmic structure and the underlying hardware accelerator to each other's strengths. Model quantization, by converting high-precision numbers to lower-precision, reduces the computational demands and memory needs of ViTs, allowing the creation of hardware specifically optimized for these quantized algorithms, boosting efficiency. This article provides a comprehensive survey of ViTs quantization and its hardware acceleration. We first delve into the unique architectural attributes of ViTs and their runtime characteristics. Subsequently, we examine the fundamental principles of model quantization, followed by a comparative analysis of the state-of-the-art quantization techniques for ViTs. Additionally, we explore the hardware acceleration of quantized ViTs, highlighting the importance of hardware-friendly algorithm design. In conclusion, this article will discuss ongoing challenges and future research paths. We consistently maintain the related open-source materials at https://github.com/DD-DuDa/awesome-vit-quantization-acceleration.
☆ Communication-Efficient Training Workload Balancing for Decentralized Multi-Agent Learning
Decentralized Multi-agent Learning (DML) enables collaborative model training while preserving data privacy. However, inherent heterogeneity in agents' resources (computation, communication, and task size) may lead to substantial variations in training time. This heterogeneity creates a bottleneck, lengthening the overall training time due to straggler effects and potentially wasting spare resources of faster agents. To minimize training time in heterogeneous environments, we present a Communication-Efficient Training Workload Balancing for Decentralized Multi-Agent Learning (ComDML), which balances the workload among agents through a decentralized approach. Leveraging local-loss split training, ComDML enables parallel updates, where slower agents offload part of their workload to faster agents. To minimize the overall training time, ComDML optimizes the workload balancing by jointly considering the communication and computation capacities of agents, which hinges upon integer programming. A dynamic decentralized pairing scheduler is developed to efficiently pair agents and determine optimal offloading amounts. We prove that in ComDML, both slower and faster agents' models converge, for convex and non-convex functions. Furthermore, extensive experimental results on popular datasets (CIFAR-10, CIFAR-100, and CINIC-10) and their non-I.I.D. variants, with large models such as ResNet-56 and ResNet-110, demonstrate that ComDML can significantly reduce the overall training time while maintaining model accuracy, compared to state-of-the-art methods. ComDML demonstrates robustness in heterogeneous environments, and privacy measures can be seamlessly integrated for enhanced data protection.
comment: This paper has been accepted for presentation at ICDCS (44th IEEE International Conference on Distributed Computing Systems). Keywords: decentralized multi-agent learning, federated learning, edge computing, heterogeneous agents, workload balancing, and communication-efficient training )
☆ SCAR: Scheduling Multi-Model AI Workloads on Heterogeneous Multi-Chiplet Module Accelerators
Emerging multi-model workloads with heavy models like recent large language models significantly increased the compute and memory demands on hardware. To address such increasing demands, designing a scalable hardware architecture became a key problem. Among recent solutions, the 2.5D silicon interposer multi-chip module (MCM)-based AI accelerator has been actively explored as a promising scalable solution due to their significant benefits in the low engineering cost and composability. However, previous MCM accelerators are based on homogeneous architectures with fixed dataflow, which encounter major challenges from highly heterogeneous multi-model workloads due to their limited workload adaptivity. Therefore, in this work, we explore the opportunity in the heterogeneous dataflow MCM AI accelerators. We identify the scheduling of multi-model workload on heterogeneous dataflow MCM AI accelerator is an important and challenging problem due to its significance and scale, which reaches O(10^18) scale even for a single model case on 6x6 chiplets. We develop a set of heuristics to navigate the huge scheduling space and codify them into a scheduler with advanced techniques such as inter-chiplet pipelining. Our evaluation on ten multi-model workload scenarios for datacenter multitenancy and AR/VR use-cases has shown the efficacy of our approach, achieving on average 35.3% and 31.4% less energy-delay product (EDP) for the respective applications settings compared to homogeneous baselines.
Database 5
☆ Powering In-Database Dynamic Model Slicing for Structured Data Analytics
Relational database management systems (RDBMS) are widely used for the storage and retrieval of structured data. To derive insights beyond statistical aggregation, we typically have to extract specific subdatasets from the database using conventional database operations, and then apply deep neural networks (DNN) training and inference on these respective subdatasets in a separate machine learning system. The process can be prohibitively expensive, especially when there are a combinatorial number of subdatasets extracted for different analytical purposes. This calls for efficient in-database support of advanced analytical methods In this paper, we introduce LEADS, a novel SQL-aware dynamic model slicing technique to customize models for subdatasets specified by SQL queries. LEADS improves the predictive modeling of structured data via the mixture of experts (MoE) technique and maintains inference efficiency by a SQL-aware gating network. At the core of LEADS is the construction of a general model with multiple expert sub-models via MoE trained over the entire database. This SQL-aware MoE technique scales up the modeling capacity, enhances effectiveness, and preserves efficiency by activating only necessary experts via the gating network during inference. Additionally, we introduce two regularization terms during the training process of LEADS to strike a balance between effectiveness and efficiency. We also design and build an in-database inference system, called INDICES, to support end-to-end advanced structured data analytics by non-intrusively incorporating LEADS onto PostgreSQL. Our extensive experiments on real-world datasets demonstrate that LEADS consistently outperforms baseline models, and INDICES delivers effective in-database analytics with a considerable reduction in inference latency compared to traditional solutions.
☆ ChatBI: Towards Natural Language to Complex Business Intelligence SQL
The Natural Language to SQL (NL2SQL) technology provides non-expert users who are unfamiliar with databases the opportunity to use SQL for data analysis.Converting Natural Language to Business Intelligence (NL2BI) is a popular practical scenario for NL2SQL in actual production systems. Compared to NL2SQL, NL2BI introduces more challenges. In this paper, we propose ChatBI, a comprehensive and efficient technology for solving the NL2BI task. First, we analyze the interaction mode, an important module where NL2SQL and NL2BI differ in use, and design a smaller and cheaper model to match this interaction mode. In BI scenarios, tables contain a huge number of columns, making it impossible for existing NL2SQL methods that rely on Large Language Models (LLMs) for schema linking to proceed due to token limitations. The higher proportion of ambiguous columns in BI scenarios also makes schema linking difficult. ChatBI combines existing view technology in the database community to first decompose the schema linking problem into a Single View Selection problem and then uses a smaller and cheaper machine learning model to select the single view with a significantly reduced number of columns. The columns of this single view are then passed as the required columns for schema linking into the LLM. Finally, ChatBI proposes a phased process flow different from existing process flows, which allows ChatBI to generate SQL containing complex semantics and comparison relations more accurately. We have deployed ChatBI on Baidu's data platform and integrated it into multiple product lines for large-scale production task evaluation. The obtained results highlight its superiority in practicality, versatility, and efficiency. At the same time, compared with the current mainstream NL2SQL technology under our real BI scenario data tables and queries, it also achieved the best results.
☆ Improving Data Cleaning Using Discrete Optimization
One of the most important processing steps in any analysis pipeline is handling missing data. Traditional approaches simply delete any sample or feature with missing elements. Recent imputation methods replace missing data based on assumed relationships between observed data and the missing elements. However, there is a largely under-explored alternative amid these extremes. Partial deletion approaches remove excessive amounts of missing data, as defined by the user. They can be used in place of traditional deletion or as a precursor to imputation. In this manuscript, we expand upon the Mr. Clean suite of algorithms, focusing on the scenario where all missing data is removed. We show that the RowCol Integer Program can be recast as a Linear Program, thereby reducing runtime. Additionally, the Element Integer Program can be reformulated to reduce the number of variables and allow for high levels of parallelization. Using real-world data sets from genetic, gene expression, and single cell RNA-seq experiments we demonstrate that our algorithms outperform existing deletion techniques over several missingness values, balancing runtime and data retention. Our combined greedy algorithm retains the maximum number of valid elements in 126 of 150 scenarios and stays within 1\% of maximum in 23 of the remaining experiments. The reformulated Element IP complements the greedy algorithm when removing all missing data, boasting a reduced runtime and increase in valid elements in larger data sets, over its generic counterpart. These two programs greatly increase the amount of valid data retained over traditional deletion techniques and further improve on existing partial deletion algorithms.
comment: 11 pages, 6 figures
♻ ☆ Raster Interval Object Approximations for Spatial Intersection Joins
Spatial join processing techniques that identify intersections between complex geometries (e.g.,polygons) commonly follow a two-step filter-and-refine pipeline; the filter step evaluates the query predicate on the minimum bounding rectangles (MBRs) of objects and the refinement step eliminates false positives by applying the query on the exact geometries. We propose a raster intervals approximation of object geometries and introduce a powerful intermediate step in pipeline. In a preprocessing phase, our method (i) rasterizes each object geometry using a fine grid, (ii) models groups of nearby cells that intersect the polygon as an interval, and (iii) encodes each interval by a bitstring that captures the overlap of each cell in it with the polygon. Going one step further, we improve our approach to approximate each object by two sets of intervals that succintly capture the raster cells which (i) intersect with the object and (ii) are fully contained in the object. Using this representation, we show that we can verify whether two polygons intersect by a sequence of joins between the interval sets that take linear time. Our approximations can effectively be compressed and can be customized for use on partitioned data and polygons of varying sizes, rasterized at different granularities. Finally, we propose a novel algorithm that computes the interval approximation of a polygon without fully rasterizing it first, rendering the computation of approximations orders of magnitude faster. Experiments on real data demonstrate the effectiveness and efficiency of our proposal over previous work.
comment: 34 pages
♻ ☆ A Universal Scheme for Dynamic Partitioned Shortest Path Index
Shortest path (SP) computation is the fundamental operation in various networks such as urban networks, logistic networks, communication networks, social networks, etc. With the development of technology and societal expansions, those networks tend to be massive. This, in turn, causes deteriorated performance of SP computation, and graph partitioning is commonly leveraged to scale up the SP algorithms. However, the partitioned shortest path (PSP) index has never been systematically investigated and theoretically analyzed, and there is a lack of experimental comparison among different PSP indexes. Moreover, few studies have explored PSP index maintenance in dynamic networks. Therefore, in this paper, we systematically analyze the dynamic PSP index by proposing a universal scheme for it. Specifically, we first propose two novel partitioned shortest path strategies (No-boundary and Post-boundary strategies) to improve the performance of PSP indexes and design the corresponding index maintenance approaches to deal with dynamic scenarios. Then we categorize the partition methods from the perspective of partition structure to facilitate the selection of partition methods in the PSP index. Furthermore, we propose a universal scheme for designing the PSP index by coupling its three dimensions (i.e. PSP strategy, partition structure, and SP algorithm). Based on this scheme, we propose five new PSP indexes with prominent performance in either query or update efficiency. Lastly, extensive experiments are implemented to demonstrate the effectiveness of the proposed PSP scheme, with valuable guidance provided on the PSP index design.
Computation and Language 83
☆ DOCCI: Descriptions of Connected and Contrasting Images
Vision-language datasets are vital for both text-to-image (T2I) and image-to-text (I2T) research. However, current datasets lack descriptions with fine-grained detail that would allow for richer associations to be learned by models. To fill the gap, we introduce Descriptions of Connected and Contrasting Images (DOCCI), a dataset with long, human-annotated English descriptions for 15k images that were taken, curated and donated by a single researcher intent on capturing key challenges such as spatial relations, counting, text rendering, world knowledge, and more. We instruct human annotators to create comprehensive descriptions for each image; these average 136 words in length and are crafted to clearly distinguish each image from those that are related or similar. Each description is highly compositional and typically encompasses multiple challenges. Through both quantitative and qualitative analyses, we demonstrate that DOCCI serves as an effective training resource for image-to-text generation -- a PaLI 5B model finetuned on DOCCI shows equal or superior results compared to highly-performant larger models like LLaVA-1.5 7B and InstructBLIP 7B. Furthermore, we show that DOCCI is a useful testbed for text-to-image generation, highlighting the limitations of current text-to-image models in capturing long descriptions and fine details.
☆ Better & Faster Large Language Models via Multi-token Prediction
Large language models such as GPT and Llama are trained with a next-token prediction loss. In this work, we suggest that training language models to predict multiple future tokens at once results in higher sample efficiency. More specifically, at each position in the training corpus, we ask the model to predict the following n tokens using n independent output heads, operating on top of a shared model trunk. Considering multi-token prediction as an auxiliary training task, we measure improved downstream capabilities with no overhead in training time for both code and natural language models. The method is increasingly useful for larger model sizes, and keeps its appeal when training for multiple epochs. Gains are especially pronounced on generative benchmarks like coding, where our models consistently outperform strong baselines by several percentage points. Our 13B parameter models solves 12 % more problems on HumanEval and 17 % more on MBPP than comparable next-token models. Experiments on small algorithmic tasks demonstrate that multi-token prediction is favorable for the development of induction heads and algorithmic reasoning capabilities. As an additional benefit, models trained with 4-token prediction are up to 3 times faster at inference, even with large batch sizes.
☆ Iterative Reasoning Preference Optimization
Iterative preference optimization methods have recently been shown to perform well for general instruction tuning tasks, but typically make little improvement on reasoning tasks (Yuan et al., 2024, Chen et al., 2024). In this work we develop an iterative approach that optimizes the preference between competing generated Chain-of-Thought (CoT) candidates by optimizing for winning vs. losing reasoning steps that lead to the correct answer. We train using a modified DPO loss (Rafailov et al., 2023) with an additional negative log-likelihood term, which we find to be crucial. We show reasoning improves across repeated iterations of this scheme. While only relying on examples in the training set, our approach results in increasing accuracy for Llama-2-70B-Chat from 55.6% to 81.6% on GSM8K (and 88.7% with majority voting out of 32 samples), from 12.5% to 20.8% on MATH, and from 77.8% to 86.7% on ARC-Challenge, which outperforms other Llama-2-based models not relying on additionally sourced datasets.
☆ PANGeA: Procedural Artificial Narrative using Generative AI for Turn-Based Video Games
This research introduces Procedural Artificial Narrative using Generative AI (PANGeA), a structured approach for leveraging large language models (LLMs), guided by a game designer's high-level criteria, to generate narrative content for turn-based role-playing video games (RPGs). Distinct from prior applications of LLMs used for video game design, PANGeA innovates by not only generating game level data (which includes, but is not limited to, setting, key items, and non-playable characters (NPCs)), but by also fostering dynamic, free-form interactions between the player and the environment that align with the procedural game narrative. The NPCs generated by PANGeA are personality-biased and express traits from the Big 5 Personality Model in their generated responses. PANGeA addresses challenges behind ingesting free-form text input, which can prompt LLM responses beyond the scope of the game narrative. A novel validation system that uses the LLM's intelligence evaluates text input and aligns generated responses with the unfolding narrative. Making these interactions possible, PANGeA is supported by a server that hosts a custom memory system that supplies context for augmenting generated responses thus aligning them with the procedural narrative. For its broad application, the server has a REST interface enabling any game engine to integrate directly with PANGeA, as well as an LLM interface adaptable with local or private LLMs. PANGeA's ability to foster dynamic narrative generation by aligning responses with the procedural narrative is demonstrated through an empirical study and ablation test of two versions of a demo game. These are, a custom, browser-based GPT and a Unity demo. As the results show, PANGeA holds potential to assist game designers in using LLMs to generate narrative-consistent content even when provided varied and unpredictable, free-form text input.
☆ ThangDLU at #SMM4H 2024: Encoder-decoder models for classifying text data on social disorders in children and adolescents
This paper describes our participation in Task 3 and Task 5 of the #SMM4H (Social Media Mining for Health) 2024 Workshop, explicitly targeting the classification challenges within tweet data. Task 3 is a multi-class classification task centered on tweets discussing the impact of outdoor environments on symptoms of social anxiety. Task 5 involves a binary classification task focusing on tweets reporting medical disorders in children. We applied transfer learning from pre-trained encoder-decoder models such as BART-base and T5-small to identify the labels of a set of given tweets. We also presented some data augmentation methods to see their impact on the model performance. Finally, the systems obtained the best F1 score of 0.627 in Task 3 and the best F1 score of 0.841 in Task 5.
comment: 4 pages
☆ Automated Generation of High-Quality Medical Simulation Scenarios Through Integration of Semi-Structured Data and Large Language Models
This study introduces a transformative framework for medical education by integrating semi-structured data with Large Language Models (LLMs), primarily OpenAIs ChatGPT3.5, to automate the creation of medical simulation scenarios. Traditionally, developing these scenarios was a time-intensive process with limited flexibility to meet diverse educational needs. The proposed approach utilizes AI to efficiently generate detailed, clinically relevant scenarios that are tailored to specific educational objectives. This innovation has significantly reduced the time and resources required for scenario development, allowing for a broader variety of simulations. Preliminary feedback from educators and learners has shown enhanced engagement and improved knowledge acquisition, confirming the effectiveness of this AI-enhanced methodology in simulation-based learning. The integration of structured data with LLMs not only streamlines the creation process but also offers a scalable, dynamic solution that could revolutionize medical training, highlighting the critical role of AI in advancing educational outcomes and patient care standards.
comment: 22 pages but 12 are appendices which are examples of the main text. 3 figures, 4 tables
☆ Harmonic LLMs are Trustworthy
We introduce an intuitive method to test the robustness (stability and explainability) of any black-box LLM in real-time, based upon the local deviation from harmoniticity, denoted as $\gamma$. To the best of our knowledge this is the first completely model-agnostic and unsupervised method of measuring the robustness of any given response from an LLM, based upon the model itself conforming to a purely mathematical standard. We conduct human annotation experiments to show the positive correlation of $\gamma$ with false or misleading answers, and demonstrate that following the gradient of $\gamma$ in stochastic gradient ascent efficiently exposes adversarial prompts. Measuring $\gamma$ across thousands of queries in popular LLMs (GPT-4, ChatGPT, Claude-2.1, Mixtral-8x7B, Smaug-72B, Llama2-7B, and MPT-7B) allows us to estimate the liklihood of wrong or hallucinatory answers automatically and quantitatively rank the reliability of these models in various objective domains (Web QA, TruthfulQA, and Programming QA). Across all models and domains tested, human ratings confirm that $\gamma \to 0$ indicates trustworthiness, and the low-$\gamma$ leaders among these models are GPT-4, ChatGPT, and Smaug-72B.
comment: 15 pages, 4 figures, 14 tables
☆ When to Retrieve: Teaching LLMs to Utilize Information Retrieval Effectively
In this paper, we demonstrate how Large Language Models (LLMs) can effectively learn to use an off-the-shelf information retrieval (IR) system specifically when additional context is required to answer a given question. Given the performance of IR systems, the optimal strategy for question answering does not always entail external information retrieval; rather, it often involves leveraging the parametric memory of the LLM itself. Prior research has identified this phenomenon in the PopQA dataset, wherein the most popular questions are effectively addressed using the LLM's parametric memory, while less popular ones require IR system usage. Following this, we propose a tailored training approach for LLMs, leveraging existing open-domain question answering datasets. Here, LLMs are trained to generate a special token, , when they do not know the answer to a question. Our evaluation of the Adaptive Retrieval LLM (Adapt-LLM) on the PopQA dataset showcases improvements over the same LLM under three configurations: (i) retrieving information for all the questions, (ii) using always the parametric memory of the LLM, and (iii) using a popularity threshold to decide when to use a retriever. Through our analysis, we demonstrate that Adapt-LLM is able to generate the token when it determines that it does not know how to answer a question, indicating the need for IR, while it achieves notably high accuracy levels when it chooses to rely only on its parametric memory.
☆ Naturally Supervised 3D Visual Grounding with Language-Regularized Concept Learners CVPR 2024
3D visual grounding is a challenging task that often requires direct and dense supervision, notably the semantic label for each object in the scene. In this paper, we instead study the naturally supervised setting that learns from only 3D scene and QA pairs, where prior works underperform. We propose the Language-Regularized Concept Learner (LARC), which uses constraints from language as regularization to significantly improve the accuracy of neuro-symbolic concept learners in the naturally supervised setting. Our approach is based on two core insights: the first is that language constraints (e.g., a word's relation to another) can serve as effective regularization for structured representations in neuro-symbolic models; the second is that we can query large language models to distill such constraints from language properties. We show that LARC improves performance of prior works in naturally supervised 3D visual grounding, and demonstrates a wide range of 3D visual reasoning capabilities-from zero-shot composition, to data efficiency and transferability. Our method represents a promising step towards regularizing structured visual reasoning frameworks with language-based priors, for learning in settings without dense supervision.
comment: CVPR 2024. The first two authors contributed equally
☆ Transferring Troubles: Cross-Lingual Transferability of Backdoor Attacks in LLMs with Instruction Tuning
The implications of backdoor attacks on English-centric large language models (LLMs) have been widely examined - such attacks can be achieved by embedding malicious behaviors during training and activated under specific conditions that trigger malicious outputs. However, the impact of backdoor attacks on multilingual models remains under-explored. Our research focuses on cross-lingual backdoor attacks against multilingual LLMs, particularly investigating how poisoning the instruction-tuning data in one or two languages can affect the outputs in languages whose instruction-tuning data was not poisoned. Despite its simplicity, our empirical analysis reveals that our method exhibits remarkable efficacy in models like mT5, BLOOM, and GPT-3.5-turbo, with high attack success rates, surpassing 95% in several languages across various scenarios. Alarmingly, our findings also indicate that larger models show increased susceptibility to transferable cross-lingual backdoor attacks, which also applies to LLMs predominantly pre-trained on English data, such as Llama2, Llama3, and Gemma. Moreover, our experiments show that triggers can still work even after paraphrasing, and the backdoor mechanism proves highly effective in cross-lingual response settings across 25 languages, achieving an average attack success rate of 50%. Our study aims to highlight the vulnerabilities and significant security risks present in current multilingual LLMs, underscoring the emergent need for targeted security measures.
comment: work in progress
☆ RepEval: Effective Text Evaluation with LLM Representation
Automatic evaluation metrics for generated texts play an important role in the NLG field, especially with the rapid growth of LLMs. However, existing metrics are often limited to specific scenarios, making it challenging to meet the evaluation requirements of expanding LLM applications. Therefore, there is a demand for new, flexible, and effective metrics. In this study, we introduce RepEval, the first metric leveraging the projection of LLM representations for evaluation. RepEval requires minimal sample pairs for training, and through simple prompt modifications, it can easily transition to various tasks. Results on ten datasets from three tasks demonstrate the high effectiveness of our method, which exhibits stronger correlations with human judgments compared to previous metrics, even outperforming GPT-4. Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
☆ Extending Llama-3's Context Ten-Fold Overnight
We extend the context length of Llama-3-8B-Instruct from 8K to 80K via QLoRA fine-tuning. The entire training cycle is super efficient, which takes 8 hours on one 8xA800 (80G) GPU machine. The resulted model exhibits superior performances across a broad range of evaluation tasks, such as NIHS, topic retrieval, and long-context language understanding; meanwhile, it also well preserves the original capability over short contexts. The dramatic context extension is mainly attributed to merely 3.5K synthetic training samples generated by GPT-4 , which indicates the LLMs' inherent (yet largely underestimated) potential to extend its original context length. In fact, the context length could be extended far beyond 80K with more computation resources. Therefore, the team will publicly release the entire resources (including data, model, data generation pipeline, training code) so as to facilitate the future research from the community: \url{https://github.com/FlagOpen/FlagEmbedding}.
☆ RAG and RAU: A Survey on Retrieval-Augmented Language Model in Natural Language Processing
Large Language Models (LLMs) have catalyzed significant advancements in Natural Language Processing (NLP), yet they encounter challenges such as hallucination and the need for domain-specific knowledge. To mitigate these, recent methodologies have integrated information retrieved from external resources with LLMs, substantially enhancing their performance across NLP tasks. This survey paper addresses the absence of a comprehensive overview on Retrieval-Augmented Language Models (RALMs), both Retrieval-Augmented Generation (RAG) and Retrieval-Augmented Understanding (RAU), providing an in-depth examination of their paradigm, evolution, taxonomy, and applications. The paper discusses the essential components of RALMs, including Retrievers, Language Models, and Augmentations, and how their interactions lead to diverse model structures and applications. RALMs demonstrate utility in a spectrum of tasks, from translation and dialogue systems to knowledge-intensive applications. The survey includes several evaluation methods of RALMs, emphasizing the importance of robustness, accuracy, and relevance in their assessment. It also acknowledges the limitations of RALMs, particularly in retrieval quality and computational efficiency, offering directions for future research. In conclusion, this survey aims to offer a structured insight into RALMs, their potential, and the avenues for their future development in NLP. The paper is supplemented with a Github Repository containing the surveyed works and resources for further study: https://github.com/2471023025/RALM_Survey.
comment: 30 pages, 7 figures. Draft version 1
☆ Do Large Language Models Understand Conversational Implicature -- A case study with a chinese sitcom
Understanding the non-literal meaning of an utterance is critical for large language models (LLMs) to become human-like social communicators. In this work, we introduce SwordsmanImp, the first Chinese multi-turn-dialogue-based dataset aimed at conversational implicature, sourced from dialogues in the Chinese sitcom $\textit{My Own Swordsman}$. It includes 200 carefully handcrafted questions, all annotated on which Gricean maxims have been violated. We test eight close-source and open-source LLMs under two tasks: a multiple-choice question task and an implicature explanation task. Our results show that GPT-4 attains human-level accuracy (94%) on multiple-choice questions. CausalLM demonstrates a 78.5% accuracy following GPT-4. Other models, including GPT-3.5 and several open-source models, demonstrate a lower accuracy ranging from 20% to 60% on multiple-choice questions. Human raters were asked to rate the explanation of the implicatures generated by LLMs on their reasonability, logic and fluency. While all models generate largely fluent and self-consistent text, their explanations score low on reasonability except for GPT-4, suggesting that most LLMs cannot produce satisfactory explanations of the implicatures in the conversation. Moreover, we find LLMs' performance does not vary significantly by Gricean maxims, suggesting that LLMs do not seem to process implicatures derived from different maxims differently. Our data and code are available at https://github.com/sjtu-compling/llm-pragmatics.
comment: 14 pages, 8 tables and 5 figures
☆ Context-Aware Machine Translation with Source Coreference Explanation ACL
Despite significant improvements in enhancing the quality of translation, context-aware machine translation (MT) models underperform in many cases. One of the main reasons is that they fail to utilize the correct features from context when the context is too long or their models are overly complex. This can lead to the explain-away effect, wherein the models only consider features easier to explain predictions, resulting in inaccurate translations. To address this issue, we propose a model that explains the decisions made for translation by predicting coreference features in the input. We construct a model for input coreference by exploiting contextual features from both the input and translation output representations on top of an existing MT model. We evaluate and analyze our method in the WMT document-level translation task of English-German dataset, the English-Russian dataset, and the multilingual TED talk dataset, demonstrating an improvement of over 1.0 BLEU score when compared with other context-aware models.
comment: Accepted to TACL. This is a pre-MIT Press publication version
☆ Safe Training with Sensitive In-domain Data: Leveraging Data Fragmentation To Mitigate Linkage Attacks
Current text generation models are trained using real data which can potentially contain sensitive information, such as confidential patient information and the like. Under certain conditions output of the training data which they have memorised can be triggered, exposing sensitive data. To mitigate against this risk we propose a safer alternative which sees fragmented data in the form of domain-specific short phrases randomly grouped together shared instead of full texts. Thus, text fragments that could re-identify an individual cannot be reproduced by the model in one sequence, giving significant protection against linkage attacks. We fine-tune several state-of-the-art LLMs using meaningful syntactic chunks to explore their utility. In particular, we fine-tune BERT-based models to predict two cardiovascular diagnoses. Our results demonstrate the capacity of LLMs to benefit from the pre-trained knowledge and deliver classification results when fine-tuned with fragmented data comparable to fine-tuning with full training data.
☆ More Compute Is What You Need
Large language model pre-training has become increasingly expensive, with most practitioners relying on scaling laws to allocate compute budgets for model size and training tokens, commonly referred to as Compute-Optimal or Chinchilla Optimal. In this paper, we hypothesize a new scaling law that suggests model performance depends mostly on the amount of compute spent for transformer-based models, independent of the specific allocation to model size and dataset size. Using this unified scaling law, we predict that (a) for inference efficiency, training should prioritize smaller model sizes and larger training datasets, and (b) assuming the exhaustion of available web datasets, scaling the model size might be the only way to further improve model performance.
☆ FactCheck Editor: Multilingual Text Editor with End-to-End fact-checking SIGIR 2024
We introduce 'FactCheck Editor', an advanced text editor designed to automate fact-checking and correct factual inaccuracies. Given the widespread issue of misinformation, often a result of unintentional mistakes by content creators, our tool aims to address this challenge. It supports over 90 languages and utilizes transformer models to assist humans in the labor-intensive process of fact verification. This demonstration showcases a complete workflow that detects text claims in need of verification, generates relevant search engine queries, and retrieves appropriate documents from the web. It employs Natural Language Inference (NLI) to predict the veracity of claims and uses LLMs to summarize the evidence and suggest textual revisions to correct any errors in the text. Additionally, the effectiveness of models used in claim detection and veracity assessment is evaluated across multiple languages.
comment: Accepted in SIGIR 2024 (demo track)
☆ Which Nigerian-Pidgin does Generative AI speak?: Issues about Representativeness and Bias for Multilingual and Low Resource Languages
Naija is the Nigerian-Pidgin spoken by approx. 120M speakers in Nigeria and it is a mixed language (e.g., English, Portuguese and Indigenous languages). Although it has mainly been a spoken language until recently, there are currently two written genres (BBC and Wikipedia) in Naija. Through statistical analyses and Machine Translation experiments, we prove that these two genres do not represent each other (i.e., there are linguistic differences in word order and vocabulary) and Generative AI operates only based on Naija written in the BBC genre. In other words, Naija written in Wikipedia genre is not represented in Generative AI.
comment: Working paper
☆ Can Large Language Models put 2 and 2 together? Probing for Entailed Arithmetical Relationships
Two major areas of interest in the era of Large Language Models regard questions of what do LLMs know, and if and how they may be able to reason (or rather, approximately reason). Since to date these lines of work progressed largely in parallel (with notable exceptions), we are interested in investigating the intersection: probing for reasoning about the implicitly-held knowledge. Suspecting the performance to be lacking in this area, we use a very simple set-up of comparisons between cardinalities associated with elements of various subjects (e.g. the number of legs a bird has versus the number of wheels on a tricycle). We empirically demonstrate that although LLMs make steady progress in knowledge acquisition and (pseudo)reasoning with each new GPT release, their capabilities are limited to statistical inference only. It is difficult to argue that pure statistical learning can cope with the combinatorial explosion inherent in many commonsense reasoning tasks, especially once arithmetical notions are involved. Further, we argue that bigger is not always better and chasing purely statistical improvements is flawed at the core, since it only exacerbates the dangerous conflation of the production of correct answers with genuine reasoning ability.
☆ Sõnajaht: Definition Embeddings and Semantic Search for Reverse Dictionary Creation
We present an information retrieval based reverse dictionary system using modern pre-trained language models and approximate nearest neighbors search algorithms. The proposed approach is applied to an existing Estonian language lexicon resource, S\~onaveeb (word web), with the purpose of enhancing and enriching it by introducing cross-lingual reverse dictionary functionality powered by semantic search. The performance of the system is evaluated using both an existing labeled English dataset of words and definitions that is extended to contain also Estonian and Russian translations, and a novel unlabeled evaluation approach that extracts the evaluation data from the lexicon resource itself using synonymy relations. Evaluation results indicate that the information retrieval based semantic search approach without any model training is feasible, producing median rank of 1 in the monolingual setting and median rank of 2 in the cross-lingual setting using the unlabeled evaluation approach, with models trained for cross-lingual retrieval and including Estonian in their training data showing superior performance in our particular task.
comment: Accepted to *SEM 2024
☆ Countering Reward Over-optimization in LLM with Demonstration-Guided Reinforcement Learning
While Reinforcement Learning (RL) has been proven essential for tuning large language models (LLMs), it can lead to reward over-optimization (ROO). Existing approaches address ROO by adding KL regularization, requiring computationally expensive hyperparameter tuning. Additionally, KL regularization focuses solely on regularizing the language policy, neglecting a potential source of regularization: the reward function itself. Inspired by demonstration-guided RL, we here introduce the Reward Calibration from Demonstration (RCfD), which leverages human demonstrations and a reward model to recalibrate the reward objective. Formally, given a prompt, the RCfD objective minimizes the distance between the demonstrations' and LLM's rewards rather than directly maximizing the reward function. This objective shift avoids incentivizing the LLM to exploit the reward model and promotes more natural and diverse language generation. We show the effectiveness of RCfD on three language tasks, which achieves comparable performance to carefully tuned baselines while mitigating ROO.
☆ Evaluating Telugu Proficiency in Large Language Models_ A Comparative Analysis of ChatGPT and Gemini
The growing prominence of large language models (LLMs) necessitates the exploration of their capabilities beyond English. This research investigates the Telugu language proficiency of ChatGPT and Gemini, two leading LLMs. Through a designed set of 20 questions encompassing greetings, grammar, vocabulary, common phrases, task completion, and situational reasoning, the study delves into their strengths and weaknesses in handling Telugu. The analysis aims to identify the LLM that demonstrates a deeper understanding of Telugu grammatical structures, possesses a broader vocabulary, and exhibits superior performance in tasks like writing and reasoning. By comparing their ability to comprehend and use everyday Telugu expressions, the research sheds light on their suitability for real-world language interaction. Furthermore, the evaluation of adaptability and reasoning capabilities provides insights into how each LLM leverages Telugu to respond to dynamic situations. This comparative analysis contributes to the ongoing discussion on multilingual capabilities in AI and paves the way for future research in developing LLMs that can seamlessly integrate with Telugu-speaking communities.
☆ Navigating Brain Language Representations: A Comparative Analysis of Neural Language Models and Psychologically Plausible Models
Neural language models, particularly large-scale ones, have been consistently proven to be most effective in predicting brain neural activity across a range of studies. However, previous research overlooked the comparison of these models with psychologically plausible ones. Moreover, evaluations were reliant on limited, single-modality, and English cognitive datasets. To address these questions, we conducted an analysis comparing encoding performance of various neural language models and psychologically plausible models. Our study utilized extensive multi-modal cognitive datasets, examining bilingual word and discourse levels. Surprisingly, our findings revealed that psychologically plausible models outperformed neural language models across diverse contexts, encompassing different modalities such as fMRI and eye-tracking, and spanning languages from English to Chinese. Among psychologically plausible models, the one incorporating embodied information emerged as particularly exceptional. This model demonstrated superior performance at both word and discourse levels, exhibiting robust prediction of brain activation across numerous regions in both English and Chinese.
☆ Expressivity and Speech Synthesis
Imbuing machines with the ability to talk has been a longtime pursuit of artificial intelligence (AI) research. From the very beginning, the community has not only aimed to synthesise high-fidelity speech that accurately conveys the semantic meaning of an utterance, but also to colour it with inflections that cover the same range of affective expressions that humans are capable of. After many years of research, it appears that we are on the cusp of achieving this when it comes to single, isolated utterances. This unveils an abundance of potential avenues to explore when it comes to combining these single utterances with the aim of synthesising more complex, longer-term behaviours. In the present chapter, we outline the methodological advances that brought us so far and sketch out the ongoing efforts to reach that coveted next level of artificial expressivity. We also discuss the societal implications coupled with rapidly advancing expressive speech synthesis (ESS) technology and highlight ways to mitigate those risks and ensure the alignment of ESS capabilities with ethical norms.
comment: Invited contribution. Under review
☆ Large Language Model Informed Patent Image Retrieval
In patent prosecution, image-based retrieval systems for identifying similarities between current patent images and prior art are pivotal to ensure the novelty and non-obviousness of patent applications. Despite their growing popularity in recent years, existing attempts, while effective at recognizing images within the same patent, fail to deliver practical value due to their limited generalizability in retrieving relevant prior art. Moreover, this task inherently involves the challenges posed by the abstract visual features of patent images, the skewed distribution of image classifications, and the semantic information of image descriptions. Therefore, we propose a language-informed, distribution-aware multimodal approach to patent image feature learning, which enriches the semantic understanding of patent image by integrating Large Language Models and improves the performance of underrepresented classes with our proposed distribution-aware contrastive losses. Extensive experiments on DeepPatent2 dataset show that our proposed method achieves state-of-the-art or comparable performance in image-based patent retrieval with mAP +53.3%, Recall@10 +41.8%, and MRR@10 +51.9%. Furthermore, through an in-depth user analysis, we explore our model in aiding patent professionals in their image retrieval efforts, highlighting the model's real-world applicability and effectiveness.
comment: 8 pages. Under review
☆ Evaluating Lexicon Incorporation for Depression Symptom Estimation NAACL 2024
This paper explores the impact of incorporating sentiment, emotion, and domain-specific lexicons into a transformer-based model for depression symptom estimation. Lexicon information is added by marking the words in the input transcripts of patient-therapist conversations as well as in social media posts. Overall results show that the introduction of external knowledge within pre-trained language models can be beneficial for prediction performance, while different lexicons show distinct behaviours depending on the targeted task. Additionally, new state-of-the-art results are obtained for the estimation of depression level over patient-therapist interviews.
comment: Accepted to Clinical NLP workshop at NAACL 2024
☆ StablePT: Towards Stable Prompting for Few-shot Learning via Input Separation ACL 2024
Large language models have shown their ability to become effective few-shot learners with prompting, revoluting the paradigm of learning with data scarcity. However, this approach largely depends on the quality of prompt initialization, and always exhibits large variability among different runs. Such property makes prompt tuning highly unreliable and vulnerable to poorly constructed prompts, which limits its extension to more real-world applications. To tackle this issue, we propose to treat the hard prompt and soft prompt as separate inputs to mitigate noise brought by the prompt initialization. Furthermore, we optimize soft prompts with contrastive learning for utilizing class-aware information in the training process to maintain model performance. Experimental results demonstrate that \sysname outperforms state-of-the-art methods by 7.20% in accuracy and reduces the standard deviation by 2.02 on average. Furthermore, extensive experiments underscore its robustness and stability across 7 datasets covering various tasks.
comment: Submitted to ACL 2024
☆ Computational Approaches for Integrating out Subjectivity in Cognate Synonym Selection
Working with cognate data involves handling synonyms, that is, multiple words that describe the same concept in a language. In the early days of language phylogenetics it was recommended to select one synonym only. However, as we show here, binary character matrices, which are used as input for computational methods, do allow for representing the entire dataset including all synonyms. Here we address the question how one can and if one should include all synonyms or whether it is preferable to select synonyms a priori. To this end, we perform maximum likelihood tree inferences with the widely used RAxML-NG tool and show that it yields plausible trees when all synonyms are used as input. Furthermore, we show that a priori synonym selection can yield topologically substantially different trees and we therefore advise against doing so. To represent cognate data including all synonyms, we introduce two types of character matrices beyond the standard binary ones: probabilistic binary and probabilistic multi-valued character matrices. We further show that it is dataset-dependent for which character matrix type the inferred RAxML-NG tree is topologically closest to the gold standard. We also make available a Python interface for generating all of the above character matrix types for cognate data provided in CLDF format.
comment: Experiments available on GitHub (https://github.com/luisevonderwiese/synonyms, https://github.com/luisevonderwiese/lingdata)
☆ Knowledge Distillation vs. Pretraining from Scratch under a Fixed (Computation) Budget NAACL 2024
Compared to standard language model (LM) pretraining (i.e., from scratch), Knowledge Distillation (KD) entails an additional forward pass through a teacher model that is typically substantially larger than the target student model. As such, KD in LM pretraining materially slows down throughput of pretraining instances vis-a-vis pretraining from scratch. Scaling laws of LM pretraining suggest that smaller models can close the gap to larger counterparts if trained on more data (i.e., processing more tokens)-and under a fixed computation budget, smaller models are able be process more data than larger models. We thus hypothesize that KD might, in fact, be suboptimal to pretraining from scratch for obtaining smaller LMs, when appropriately accounting for the compute budget. To test this, we compare pretraining from scratch against several KD strategies for masked language modeling (MLM) in a fair experimental setup, with respect to amount of computation as well as pretraining data. Downstream results on GLUE, however, do not confirm our hypothesis: while pretraining from scratch performs comparably to ordinary KD under a fixed computation budget, more sophisticated KD strategies, namely TinyBERT (Jiao et al., 2020) and MiniLM (Wang et al., 2023), outperform it by a notable margin. We further find that KD yields larger gains over pretraining from scratch when the data must be repeated under the fixed computation budget.
comment: Accepted to the 5th Workshop on Insights from Negative Results in NLP at NAACL 2024
☆ Enhancing Trust in LLM-Generated Code Summaries with Calibrated Confidence Scores
A good summary can often be very useful during program comprehension. While a brief, fluent, and relevant summary can be helpful, it does require significant human effort to produce. Often, good summaries are unavailable in software projects, thus making maintenance more difficult. There has been a considerable body of research into automated AI-based methods, using Large Language models (LLMs), to generate summaries of code; there also has been quite a bit work on ways to measure the performance of such summarization methods, with special attention paid to how closely these AI-generated summaries resemble a summary a human might have produced. Measures such as BERTScore and BLEU have been suggested and evaluated with human-subject studies. However, LLMs often err and generate something quite unlike what a human might say. Given an LLM-produced code summary, is there a way to gauge whether it's likely to be sufficiently similar to a human produced summary, or not? In this paper, we study this question, as a calibration problem: given a summary from an LLM, can we compute a confidence measure, which is a good indication of whether the summary is sufficiently similar to what a human would have produced in this situation? We examine this question using several LLMs, for several languages, and in several different settings. We suggest an approach which provides well-calibrated predictions of likelihood of similarity to human summaries.
☆ Revisiting N-Gram Models: Their Impact in Modern Neural Networks for Handwritten Text Recognition
In recent advances in automatic text recognition (ATR), deep neural networks have demonstrated the ability to implicitly capture language statistics, potentially reducing the need for traditional language models. This study directly addresses whether explicit language models, specifically n-gram models, still contribute to the performance of state-of-the-art deep learning architectures in the field of handwriting recognition. We evaluate two prominent neural network architectures, PyLaia and DAN, with and without the integration of explicit n-gram language models. Our experiments on three datasets - IAM, RIMES, and NorHand v2 - at both line and page level, investigate optimal parameters for n-gram models, including their order, weight, smoothing methods and tokenization level. The results show that incorporating character or subword n-gram models significantly improves the performance of ATR models on all datasets, challenging the notion that deep learning models alone are sufficient for optimal performance. In particular, the combination of DAN with a character language model outperforms current benchmarks, confirming the value of hybrid approaches in modern document analysis systems.
☆ QLSC: A Query Latent Semantic Calibrator for Robust Extractive Question Answering IJCNN 2024
Extractive Question Answering (EQA) in Machine Reading Comprehension (MRC) often faces the challenge of dealing with semantically identical but format-variant inputs. Our work introduces a novel approach, called the ``Query Latent Semantic Calibrator (QLSC)'', designed as an auxiliary module for existing MRC models. We propose a unique scaling strategy to capture latent semantic center features of queries. These features are then seamlessly integrated into traditional query and passage embeddings using an attention mechanism. By deepening the comprehension of the semantic queries-passage relationship, our approach diminishes sensitivity to variations in text format and boosts the model's capability in pinpointing accurate answers. Experimental results on robust Question-Answer datasets confirm that our approach effectively handles format-variant but semantically identical queries, highlighting the effectiveness and adaptability of our proposed method.
comment: Accepted by the 2024 International Joint Conference on Neural Networks (IJCNN 2024)
☆ Modeling Orthographic Variation in Occitan's Dialects
Effectively normalizing textual data poses a considerable challenge, especially for low-resource languages lacking standardized writing systems. In this study, we fine-tuned a multilingual model with data from several Occitan dialects and conducted a series of experiments to assess the model's representations of these dialects. For evaluation purposes, we compiled a parallel lexicon encompassing four Occitan dialects. Intrinsic evaluations of the model's embeddings revealed that surface similarity between the dialects strengthened representations. When the model was further fine-tuned for part-of-speech tagging and Universal Dependency parsing, its performance was robust to dialectical variation, even when trained solely on part-of-speech data from a single dialect. Our findings suggest that large multilingual models minimize the need for spelling normalization during pre-processing.
comment: Accepted at VarDial 2024: The Eleventh Workshop on NLP for Similar Languages, Varieties and Dialects
☆ Does Whisper understand Swiss German? An automatic, qualitative, and human evaluation
Whisper is a state-of-the-art automatic speech recognition (ASR) model (Radford et al., 2022). Although Swiss German dialects are allegedly not part of Whisper's training data, preliminary experiments showed that Whisper can transcribe Swiss German quite well, with the output being a speech translation into Standard German. To gain a better understanding of Whisper's performance on Swiss German, we systematically evaluate it using automatic, qualitative, and human evaluation. We test its performance on three existing test sets: SwissDial (Dogan-Sch\"onberger et al., 2021), STT4SG-350 (Pl\"uss et al., 2023), and Swiss Parliaments Corpus (Pl\"uss et al., 2021). In addition, we create a new test set for this work, based on short mock clinical interviews. For automatic evaluation, we used word error rate (WER) and BLEU. In the qualitative analysis, we discuss Whisper's strengths and weaknesses and anylyze some output examples. For the human evaluation, we conducted a survey with 28 participants who were asked to evaluate Whisper's performance. All of our evaluations suggest that Whisper is a viable ASR system for Swiss German, so long as the Standard German output is desired.
comment: Accepted to VarDial 2024 (the eleventh Workshop on NLP for Similar Languages, Varieties and Dialects 2024), Mexico City
☆ Octopus v4: Graph of language models
Language models have been effective in a wide range of applications, yet the most sophisticated models are often proprietary. For example, GPT-4 by OpenAI and various models by Anthropic are expensive and consume substantial energy. In contrast, the open-source community has produced competitive models, like Llama3. Furthermore, niche-specific smaller language models, such as those tailored for legal, medical or financial tasks, have outperformed their proprietary counterparts. This paper introduces a novel approach that employs \textit{functional tokens} to integrate \textbf{multiple open-source models}, each optimized for particular tasks. Our newly developed Octopus v4 model leverages \textit{functional tokens} to intelligently direct user queries to the most appropriate vertical model and reformat the query to achieve the best performance. Octopus v4, an evolution of the Octopus v1, v2, and v3 models, excels in selection and parameter understanding and reformatting. Additionally, we explore the use of graph as a versatile data structure that effectively coordinates multiple open-source models by harnessing the capabilities of the Octopus model and \textit{functional tokens}. Use our open-sourced GitHub (\url{https://www.nexa4ai.com/}) to try Octopus v4 models (\url{https://huggingface.co/NexaAIDev/Octopus-v4}), and contrite to a larger graph of language models. By activating models less than 10B parameters, we achieved SOTA MMLU score of 74.8 among the same level models.
☆ Aspect and Opinion Term Extraction Using Graph Attention Network
In this work we investigate the capability of Graph Attention Network for extracting aspect and opinion terms. Aspect and opinion term extraction is posed as a token-level classification task akin to named entity recognition. We use the dependency tree of the input query as additional feature in a Graph Attention Network along with the token and part-of-speech features. We show that the dependency structure is a powerful feature that in the presence of a CRF layer substantially improves the performance and generates the best result on the commonly used datasets from SemEval 2014, 2015 and 2016. We experiment with additional layers like BiLSTM and Transformer in addition to the CRF layer. We also show that our approach works well in the presence of multiple aspects or sentiments in the same query and it is not necessary to modify the dependency tree based on a single aspect as was the original application for sentiment classification.
☆ Suvach -- Generated Hindi QA benchmark
Current evaluation benchmarks for question answering (QA) in Indic languages often rely on machine translation of existing English datasets. This approach suffers from bias and inaccuracies inherent in machine translation, leading to datasets that may not reflect the true capabilities of EQA models for Indic languages. This paper proposes a new benchmark specifically designed for evaluating Hindi EQA models and discusses the methodology to do the same for any task. This method leverages large language models (LLMs) to generate a high-quality dataset in an extractive setting, ensuring its relevance for the target language. We believe this new resource will foster advancements in Hindi NLP research by providing a more accurate and reliable evaluation tool.
☆ Exploiting Hatred by Targets for Hate Speech Detection on Vietnamese Social Media Texts
The growth of social networks makes toxic content spread rapidly. Hate speech detection is a task to help decrease the number of harmful comments. With the diversity in the hate speech created by users, it is necessary to interpret the hate speech besides detecting it. Hence, we propose a methodology to construct a system for targeted hate speech detection from online streaming texts from social media. We first introduce the ViTHSD - a targeted hate speech detection dataset for Vietnamese Social Media Texts. The dataset contains 10K comments, each comment is labeled to specific targets with three levels: clean, offensive, and hate. There are 5 targets in the dataset, and each target is labeled with the corresponding level manually by humans with strict annotation guidelines. The inter-annotator agreement obtained from the dataset is 0.45 by Cohen's Kappa index, which is indicated as a moderate level. Then, we construct a baseline for this task by combining the Bi-GRU-LSTM-CNN with the pre-trained language model to leverage the power of text representation of BERTology. Finally, we suggest a methodology to integrate the baseline model for targeted hate speech detection into the online streaming system for practical application in preventing hateful and offensive content on social media.
☆ HydraLoRA: An Asymmetric LoRA Architecture for Efficient Fine-Tuning
Adapting Large Language Models (LLMs) to new tasks through fine-tuning has been made more efficient by the introduction of Parameter-Efficient Fine-Tuning (PEFT) techniques, such as LoRA. However, these methods often underperform compared to full fine-tuning, particularly in scenarios involving complex datasets. This issue becomes even more pronounced in complex domains, highlighting the need for improved PEFT approaches that can achieve better performance. Through a series of experiments, we have uncovered two critical insights that shed light on the training and parameter inefficiency of LoRA. Building on these insights, we have developed HydraLoRA, a LoRA framework with an asymmetric structure that eliminates the need for domain expertise. Our experiments demonstrate that HydraLoRA outperforms other PEFT approaches, even those that rely on domain knowledge during the training and inference phases. \href{https://github.com/Clin0212/HydraLoRA}{Code}.
comment: 19 pages, 7 figures
☆ Multi-hop Question Answering over Knowledge Graphs using Large Language Models
Knowledge graphs (KGs) are large datasets with specific structures representing large knowledge bases (KB) where each node represents a key entity and relations amongst them are typed edges. Natural language queries formed to extract information from a KB entail starting from specific nodes and reasoning over multiple edges of the corresponding KG to arrive at the correct set of answer nodes. Traditional approaches of question answering on KG are based on (a) semantic parsing (SP), where a logical form (e.g., S-expression, SPARQL query, etc.) is generated using node and edge embeddings and then reasoning over these representations or tuning language models to generate the final answer directly, or (b) information-retrieval based that works by extracting entities and relations sequentially. In this work, we evaluate the capability of (LLMs) to answer questions over KG that involve multiple hops. We show that depending upon the size and nature of the KG we need different approaches to extract and feed the relevant information to an LLM since every LLM comes with a fixed context window. We evaluate our approach on six KGs with and without the availability of example-specific sub-graphs and show that both the IR and SP-based methods can be adopted by LLMs resulting in an extremely competitive performance.
☆ GRAMMAR: Grounded and Modular Evaluation of Domain-Specific Retrieval-Augmented Language Models
Retrieval-augmented Generation (RAG) systems have been actively studied and deployed across various industries to query on domain-specific knowledge base. However, evaluating these systems presents unique challenges due to the scarcity of domain-specific queries and corresponding ground truths, as well as a lack of systematic approaches to diagnosing the cause of failure cases -- whether they stem from knowledge deficits or issues related to system robustness. To address these challenges, we introduce GRAMMAR (GRounded And Modular Methodology for Assessment of RAG), an evaluation framework comprising two key elements: 1) a data generation process that leverages relational databases and LLMs to efficiently produce scalable query-answer pairs. This method facilitates the separation of query logic from linguistic variations for enhanced debugging capabilities; and 2) an evaluation framework that differentiates knowledge gaps from robustness and enables the identification of defective modules. Our empirical results underscore the limitations of current reference-free evaluation approaches and the reliability of GRAMMAR to accurately identify model vulnerabilities.
☆ Transcrib3D: 3D Referring Expression Resolution through Large Language Models
If robots are to work effectively alongside people, they must be able to interpret natural language references to objects in their 3D environment. Understanding 3D referring expressions is challenging -- it requires the ability to both parse the 3D structure of the scene and correctly ground free-form language in the presence of distraction and clutter. We introduce Transcrib3D, an approach that brings together 3D detection methods and the emergent reasoning capabilities of large language models (LLMs). Transcrib3D uses text as the unifying medium, which allows us to sidestep the need to learn shared representations connecting multi-modal inputs, which would require massive amounts of annotated 3D data. As a demonstration of its effectiveness, Transcrib3D achieves state-of-the-art results on 3D reference resolution benchmarks, with a great leap in performance from previous multi-modality baselines. To improve upon zero-shot performance and facilitate local deployment on edge computers and robots, we propose self-correction for fine-tuning that trains smaller models, resulting in performance close to that of large models. We show that our method enables a real robot to perform pick-and-place tasks given queries that contain challenging referring expressions. Project site is at https://ripl.github.io/Transcrib3D.
comment: CORLW 2023
☆ Mix of Experts Language Model for Named Entity Recognition
Named Entity Recognition (NER) is an essential steppingstone in the field of natural language processing. Although promising performance has been achieved by various distantly supervised models, we argue that distant supervision inevitably introduces incomplete and noisy annotations, which may mislead the model training process. To address this issue, we propose a robust NER model named BOND-MoE based on Mixture of Experts (MoE). Instead of relying on a single model for NER prediction, multiple models are trained and ensembled under the Expectation-Maximization (EM) framework, so that noisy supervision can be dramatically alleviated. In addition, we introduce a fair assignment module to balance the document-model assignment process. Extensive experiments on real-world datasets show that the proposed method achieves state-of-the-art performance compared with other distantly supervised NER.
☆ Revenge of the Fallen? Recurrent Models Match Transformers at Predicting Human Language Comprehension Metrics
Transformers have supplanted Recurrent Neural Networks as the dominant architecture for both natural language processing tasks and, despite criticisms of cognitive implausibility, for modelling the effect of predictability on online human language comprehension. However, two recently developed recurrent neural network architectures, RWKV and Mamba, appear to perform natural language tasks comparably to or better than transformers of equivalent scale. In this paper, we show that contemporary recurrent models are now also able to match - and in some cases, exceed - performance of comparably sized transformers at modeling online human language comprehension. This suggests that transformer language models are not uniquely suited to this task, and opens up new directions for debates about the extent to which architectural features of language models make them better or worse models of human language comprehension.
☆ Game-MUG: Multimodal Oriented Game Situation Understanding and Commentary Generation Dataset
The dynamic nature of esports makes the situation relatively complicated for average viewers. Esports broadcasting involves game expert casters, but the caster-dependent game commentary is not enough to fully understand the game situation. It will be richer by including diverse multimodal esports information, including audiences' talks/emotions, game audio, and game match event information. This paper introduces GAME-MUG, a new multimodal game situation understanding and audience-engaged commentary generation dataset and its strong baseline. Our dataset is collected from 2020-2022 LOL game live streams from YouTube and Twitch, and includes multimodal esports game information, including text, audio, and time-series event logs, for detecting the game situation. In addition, we also propose a new audience conversation augmented commentary dataset by covering the game situation and audience conversation understanding, and introducing a robust joint multimodal dual learning model as a baseline. We examine the model's game situation/event understanding ability and commentary generation capability to show the effectiveness of the multimodal aspects coverage and the joint integration learning approach.
☆ CodeHalu: Code Hallucinations in LLMs Driven by Execution-based Verification
Large Language Models (LLMs) have made significant advancements in the field of code generation, offering unprecedented support for automated programming and assisting developers. However, LLMs sometimes generate code that appears plausible but fails to meet the expected requirements or executes incorrectly. This phenomenon of hallucinations in the coding field has not been explored. To advance the community's understanding and research on code hallucinations in LLMs, we propose a definition method for these hallucinations based on execution verification and introduce the concept of code hallucinations for the first time. We categorize code hallucinations into four main types: mapping, naming, resource, and logic hallucinations, each further divided into different subcategories to better understand and address the unique challenges faced by LLMs during code generation. To systematically evaluate code hallucinations, we propose a dynamic detection algorithm for code hallucinations and construct the CodeHalu benchmark, which includes 8,883 samples from 699 tasks, to actively detect hallucination phenomena in LLMs during programming. We tested 16 popular LLMs on this benchmark to evaluate the frequency and nature of their hallucinations during code generation. The findings reveal significant variations in the accuracy and reliability of LLMs in generating code, highlighting the urgent need to improve models and training methods to ensure the functional correctness and safety of automatically generated code. This study not only classifies and quantifies code hallucinations but also provides insights for future improvements in LLM-based code generation research. The CodeHalu benchmark and code are publicly available at https://github.com/yuchen814/CodeHalu.
Graphical Reasoning: LLM-based Semi-Open Relation Extraction
This paper presents a comprehensive exploration of relation extraction utilizing advanced language models, specifically Chain of Thought (CoT) and Graphical Reasoning (GRE) techniques. We demonstrate how leveraging in-context learning with GPT-3.5 can significantly enhance the extraction process, particularly through detailed example-based reasoning. Additionally, we introduce a novel graphical reasoning approach that dissects relation extraction into sequential sub-tasks, improving precision and adaptability in processing complex relational data. Our experiments, conducted on multiple datasets, including manually annotated data, show considerable improvements in performance metrics, underscoring the effectiveness of our methodologies.
☆ A Primer on the Inner Workings of Transformer-based Language Models
The rapid progress of research aimed at interpreting the inner workings of advanced language models has highlighted a need for contextualizing the insights gained from years of work in this area. This primer provides a concise technical introduction to the current techniques used to interpret the inner workings of Transformer-based language models, focusing on the generative decoder-only architecture. We conclude by presenting a comprehensive overview of the known internal mechanisms implemented by these models, uncovering connections across popular approaches and active research directions in this area.
☆ General Purpose Verification for Chain of Thought Prompting
Many of the recent capabilities demonstrated by Large Language Models (LLMs) arise primarily from their ability to exploit contextual information. In this paper, we explore ways to improve reasoning capabilities of LLMs through (1) exploration of different chains of thought and (2) validation of the individual steps of the reasoning process. We propose three general principles that a model should adhere to while reasoning: (i) Relevance, (ii) Mathematical Accuracy, and (iii) Logical Consistency. We apply these constraints to the reasoning steps generated by the LLM to improve the accuracy of the final generation. The constraints are applied in the form of verifiers: the model itself is asked to verify if the generated steps satisfy each constraint. To further steer the generations towards high-quality solutions, we use the perplexity of the reasoning steps as an additional verifier. We evaluate our method on 4 distinct types of reasoning tasks, spanning a total of 9 different datasets. Experiments show that our method is always better than vanilla generation, and, in 6 out of the 9 datasets, it is better than best-of N sampling which samples N reasoning chains and picks the lowest perplexity generation.
comment: 22 pages, preprint
☆ SPAFIT: Stratified Progressive Adaptation Fine-tuning for Pre-trained Large Language Models
Full fine-tuning is a popular approach to adapt Transformer-based pre-trained large language models to a specific downstream task. However, the substantial requirements for computational power and storage have discouraged its widespread use. Moreover, increasing evidence of catastrophic forgetting and overparameterization in the Transformer architecture has motivated researchers to seek more efficient fine-tuning (PEFT) methods. Commonly known parameter-efficient fine-tuning methods like LoRA and BitFit are typically applied across all layers of the model. We propose a PEFT method, called Stratified Progressive Adaptation Fine-tuning (SPAFIT), based on the localization of different types of linguistic knowledge to specific layers of the model. Our experiments, conducted on nine tasks from the GLUE benchmark, show that our proposed SPAFIT method outperforms other PEFT methods while fine-tuning only a fraction of the parameters adjusted by other methods.
☆ In-Context Learning with Long-Context Models: An In-Depth Exploration
As model context lengths continue to increase, the number of demonstrations that can be provided in-context approaches the size of entire training datasets. We study the behavior of in-context learning (ICL) at this extreme scale on multiple datasets and models. We show that, for many datasets with large label spaces, performance continues to increase with hundreds or thousands of demonstrations. We contrast this with example retrieval and finetuning: example retrieval shows excellent performance at low context lengths but has diminished gains with more demonstrations; finetuning is more data hungry than ICL but can sometimes exceed long-context ICL performance with additional data. We use this ICL setting as a testbed to study several properties of both in-context learning and long-context models. We show that long-context ICL is less sensitive to random input shuffling than short-context ICL, that grouping of same-label examples can negatively impact performance, and that the performance boosts we see do not arise from cumulative gain from encoding many examples together. We conclude that although long-context ICL can be surprisingly effective, most of this gain comes from attending back to similar examples rather than task learning.
comment: 27 pages; preprint
☆ Towards a Search Engine for Machines: Unified Ranking for Multiple Retrieval-Augmented Large Language Models
This paper introduces uRAG--a framework with a unified retrieval engine that serves multiple downstream retrieval-augmented generation (RAG) systems. Each RAG system consumes the retrieval results for a unique purpose, such as open-domain question answering, fact verification, entity linking, and relation extraction. We introduce a generic training guideline that standardizes the communication between the search engine and the downstream RAG systems that engage in optimizing the retrieval model. This lays the groundwork for us to build a large-scale experimentation ecosystem consisting of 18 RAG systems that engage in training and 18 unknown RAG systems that use the uRAG as the new users of the search engine. Using this experimentation ecosystem, we answer a number of fundamental research questions that improve our understanding of promises and challenges in developing search engines for machines.
☆ HistNERo: Historical Named Entity Recognition for the Romanian Language ICDAR 2024
This work introduces HistNERo, the first Romanian corpus for Named Entity Recognition (NER) in historical newspapers. The dataset contains 323k tokens of text, covering more than half of the 19th century (i.e., 1817) until the late part of the 20th century (i.e., 1990). Eight native Romanian speakers annotated the dataset with five named entities. The samples belong to one of the following four historical regions of Romania, namely Bessarabia, Moldavia, Transylvania, and Wallachia. We employed this proposed dataset to perform several experiments for NER using Romanian pre-trained language models. Our results show that the best model achieved a strict F1-score of 55.69%. Also, by reducing the discrepancies between regions through a novel domain adaption technique, we improved the performance on this corpus to a strict F1-score of 66.80%, representing an absolute gain of more than 10%.
comment: Accepted at the International Conference on Document Analysis and Recognition (ICDAR 2024)
☆ Transforming Dutch: Debiasing Dutch Coreference Resolution Systems for Non-binary Pronouns
Gender-neutral pronouns are increasingly being introduced across Western languages. Recent evaluations have however demonstrated that English NLP systems are unable to correctly process gender-neutral pronouns, with the risk of erasing and misgendering non-binary individuals. This paper examines a Dutch coreference resolution system's performance on gender-neutral pronouns, specifically hen and die. In Dutch, these pronouns were only introduced in 2016, compared to the longstanding existence of singular they in English. We additionally compare two debiasing techniques for coreference resolution systems in non-binary contexts: Counterfactual Data Augmentation (CDA) and delexicalisation. Moreover, because pronoun performance can be hard to interpret from a general evaluation metric like LEA, we introduce an innovative evaluation metric, the pronoun score, which directly represents the portion of correctly processed pronouns. Our results reveal diminished performance on gender-neutral pronouns compared to gendered counterparts. Nevertheless, although delexicalisation fails to yield improvements, CDA substantially reduces the performance gap between gendered and gender-neutral pronouns. We further show that CDA remains effective in low-resource settings, in which a limited set of debiasing documents is used. This efficacy extends to previously unseen neopronouns, which are currently infrequently used but may gain popularity in the future, underscoring the viability of effective debiasing with minimal resources and low computational costs.
comment: 22 pages, 2 figures. Accepted at the 2024 ACM Conference on Fairness, Accountability, and Transparency (FAccT '24)
Graph Neural Network Approach to Semantic Type Detection in Tables
This study addresses the challenge of detecting semantic column types in relational tables, a key task in many real-world applications. While language models like BERT have improved prediction accuracy, their token input constraints limit the simultaneous processing of intra-table and inter-table information. We propose a novel approach using Graph Neural Networks (GNNs) to model intra-table dependencies, allowing language models to focus on inter-table information. Our proposed method not only outperforms existing state-of-the-art algorithms but also offers novel insights into the utility and functionality of various GNN types for semantic type detection. The code is available at https://github.com/hoseinzadeehsan/GAIT
☆ Creative Beam Search
Large language models are revolutionizing several areas, including artificial creativity. However, the process of generation in machines profoundly diverges from that observed in humans. In particular, machine generation is characterized by a lack of intentionality and an underlying creative process. We propose a method called Creative Beam Search that uses Diverse Beam Search and LLM-as-a-Judge to perform response generation and response validation. The results of a qualitative experiment show how our approach can provide better output than standard sampling techniques. We also show that the response validation step is a necessary complement to the response generation step.
♻ ☆ Linguacodus: A Synergistic Framework for Transformative Code Generation in Machine Learning Pipelines
In the ever-evolving landscape of machine learning, seamless translation of natural language descriptions into executable code remains a formidable challenge. This paper introduces Linguacodus, an innovative framework designed to tackle this challenge by deploying a dynamic pipeline that iteratively transforms natural language task descriptions into code through high-level data-shaping instructions. The core of Linguacodus is a fine-tuned large language model (LLM), empowered to evaluate diverse solutions for various problems and select the most fitting one for a given task. This paper details the fine-tuning process, and sheds light on how natural language descriptions can be translated into functional code. Linguacodus represents a substantial leap towards automated code generation, effectively bridging the gap between task descriptions and executable code. It holds great promise for advancing machine learning applications across diverse domains. Additionally, we propose an algorithm capable of transforming a natural description of an ML task into code with minimal human interaction. In extensive experiments on a vast machine learning code dataset originating from Kaggle, we showcase the effectiveness of Linguacodus. The investigations highlight its potential applications across diverse domains, emphasizing its impact on applied machine learning in various scientific fields.
♻ ☆ How good are Large Language Models on African Languages?
Recent advancements in natural language processing have led to the proliferation of large language models (LLMs). These models have been shown to yield good performance, using in-context learning, even on tasks and languages they are not trained on. However, their performance on African languages is largely understudied relative to high-resource languages. We present an analysis of four popular large language models (mT0, Aya, LLaMa 2, and GPT-4) on six tasks (topic classification, sentiment classification, machine translation, summarization, question answering, and named entity recognition) across 60 African languages, spanning different language families and geographical regions. Our results suggest that all LLMs produce lower performance for African languages, and there is a large gap in performance compared to high-resource languages (such as English) for most tasks. We find that GPT-4 has an average to good performance on classification tasks, yet its performance on generative tasks such as machine translation and summarization is significantly lacking. Surprisingly, we find that mT0 had the best overall performance for cross-lingual QA, better than the state-of-the-art supervised model (i.e. fine-tuned mT5) and GPT-4 on African languages. Similarly, we find the recent Aya model to have comparable result to mT0 in almost all tasks except for topic classification where it outperform mT0. Overall, LLaMa 2 showed the worst performance, which we believe is due to its English and code-centric~(around 98%) pre-training corpus. Our findings confirms that performance on African languages continues to remain a hurdle for the current LLMs, underscoring the need for additional efforts to close this gap.
comment: Under review
♻ ☆ Open Information Extraction from 2007 to 2022 -- A Survey
Open information extraction is an important NLP task that targets extracting structured information from unstructured text without limitations on the relation type or the domain of the text. This survey paper covers open information extraction technologies from 2007 to 2022 with a focus on new models not covered by previous surveys. We propose a new categorization method from the source of information perspective to accommodate the development of recent OIE technologies. In addition, we summarize three major approaches based on task settings as well as current popular datasets and model evaluation metrics. Given the comprehensive review, several future directions are shown from datasets, source of information, output form, method, and evaluation metric aspects.
comment: The first three authors contributed to this work equally. Names are ordered randomly
♻ ☆ FeDeRA:Efficient Fine-tuning of Language Models in Federated Learning Leveraging Weight Decomposition
Pre-trained Language Models (PLMs) have shown excellent performance on various downstream tasks after fine-tuning. Nevertheless, the escalating concerns surrounding user privacy have posed significant challenges to centralized training reliant on extensive data collection. Federated learning, which only requires training on the clients and aggregates weights on the server without sharing data, has emerged as a solution. However, the substantial parameter size of PLMs places a significant burden on the computational resources of client devices, while also leading to costly communication expenses. Introducing Parameter-Efficient Fine-Tuning(PEFT) into federated learning can effectively address this problem. However, we observe that the non-IID data in federated learning leads to a gap in performance between the PEFT method and full parameter fine-tuning(FFT). To overcome this, we propose FeDeRA, an improvement over the Low-Rank Adaption(LoRA) method in federated learning. FeDeRA uses the same adapter module as LoRA. However, the difference lies in FeDeRA's initialization of the adapter module by performing Singular Value Decomposition (SVD) on the pre-trained matrix and selecting its principal components. We conducted extensive experiments, using RoBERTa and DeBERTaV3, on six datasets, comparing the methods including FFT and the other three different PEFT methods. FeDeRA outperforms all other PEFT methods and is comparable to or even surpasses the performance of FFT method. We also deployed federated learning on Jetson AGX Orin and compared the time required by different methods to achieve the target accuracy on specific tasks. Compared to FFT, FeDeRA reduces the training time by 95.9\%, 97.9\%, 96.9\% and 97.3\%, 96.5\%, 96.5\% respectively on three tasks using RoBERTa and DeBERTaV3. The overall experiments indicate that FeDeRA achieves good performance while also maintaining efficiency.
♻ ☆ Improving Language Model Reasoning with Self-motivated Learning LREC
Large-scale high-quality training data is important for improving the performance of models. After trained with data that has rationales (reasoning steps), models gain reasoning capability. However, the dataset with high-quality rationales is relatively scarce due to the high annotation cost. To address this issue, we propose \textit{Self-motivated Learning} framework. The framework motivates the model itself to automatically generate rationales on existing datasets. Based on the inherent rank from correctness across multiple rationales, the model learns to generate better rationales, leading to higher reasoning capability. Specifically, we train a reward model with the rank to evaluate the quality of rationales, and improve the performance of reasoning through reinforcement learning. Experiment results of Llama2 7B on multiple reasoning datasets show that our method significantly improves the reasoning ability of models, even outperforming text-davinci-002 in some datasets.
comment: Accepted at LREC-COLING 2024
♻ ☆ ComposerX: Multi-Agent Symbolic Music Composition with LLMs
Music composition represents the creative side of humanity, and itself is a complex task that requires abilities to understand and generate information with long dependency and harmony constraints. While demonstrating impressive capabilities in STEM subjects, current LLMs easily fail in this task, generating ill-written music even when equipped with modern techniques like In-Context-Learning and Chain-of-Thoughts. To further explore and enhance LLMs' potential in music composition by leveraging their reasoning ability and the large knowledge base in music history and theory, we propose ComposerX, an agent-based symbolic music generation framework. We find that applying a multi-agent approach significantly improves the music composition quality of GPT-4. The results demonstrate that ComposerX is capable of producing coherent polyphonic music compositions with captivating melodies, while adhering to user instructions.
♻ ☆ Comparing LLM prompting with Cross-lingual transfer performance on Indigenous and Low-resource Brazilian Languages NAACL 2024
Large Language Models are transforming NLP for a variety of tasks. However, how LLMs perform NLP tasks for low-resource languages (LRLs) is less explored. In line with the goals of the AmericasNLP workshop, we focus on 12 LRLs from Brazil, 2 LRLs from Africa and 2 high-resource languages (HRLs) (e.g., English and Brazilian Portuguese). Our results indicate that the LLMs perform worse for the part of speech (POS) labeling of LRLs in comparison to HRLs. We explain the reasons behind this failure and provide an error analysis through examples observed in our data set.
comment: Accepted to the Americas NLP Workshop at NAACL 2024 (https://turing.iimas.unam.mx/americasnlp/2024_workshop.html)
♻ ☆ Does Instruction Tuning Make LLMs More Consistent?
The purpose of instruction tuning is enabling zero-shot performance, but instruction tuning has also been shown to improve chain-of-thought reasoning and value alignment (Si et al., 2023). Here we consider the impact on $\textit{consistency}$, i.e., the sensitivity of language models to small perturbations in the input. We compare 10 instruction-tuned LLaMA models to the original LLaMA-7b model and show that almost across-the-board they become more consistent, both in terms of their representations and their predictions in zero-shot and downstream tasks. We explain these improvements through mechanistic analyses of factual recall.
♻ ☆ Detecting Generated Native Ads in Conversational Search WWW'24
Conversational search engines such as YouChat and Microsoft Copilot use large language models (LLMs) to generate responses to queries. It is only a small step to also let the same technology insert ads within the generated responses - instead of separately placing ads next to a response. Inserted ads would be reminiscent of native advertising and product placement, both of which are very effective forms of subtle and manipulative advertising. Considering the high computational costs associated with LLMs, for which providers need to develop sustainable business models, users of conversational search engines may very well be confronted with generated native ads in the near future. In this paper, we thus take a first step to investigate whether LLMs can also be used as a countermeasure, i.e., to block generated native ads. We compile the Webis Generated Native Ads 2024 dataset of queries and generated responses with automatically inserted ads, and evaluate whether LLMs or fine-tuned sentence transformers can detect the ads. In our experiments, the investigated LLMs struggle with the task but sentence transformers achieve precision and recall values above 0.9.
comment: WWW'24 Short Papers Track; 4 pages
♻ ☆ Surprising Efficacy of Fine-Tuned Transformers for Fact-Checking over Larger Language Models SIGIR 2024
In this paper, we explore the challenges associated with establishing an end-to-end fact-checking pipeline in a real-world context, covering over 90 languages. Our real-world experimental benchmarks demonstrate that fine-tuning Transformer models specifically for fact-checking tasks, such as claim detection and veracity prediction, provide superior performance over large language models (LLMs) like GPT-4, GPT-3.5-Turbo, and Mistral-7b. However, we illustrate that LLMs excel in generative tasks such as question decomposition for evidence retrieval. Through extensive evaluation, we show the efficacy of fine-tuned models for fact-checking in a multilingual setting and complex claims that include numerical quantities.
comment: Accepted in SIGIR 2024 (industry track)
♻ ☆ QuanTemp: A real-world open-domain benchmark for fact-checking numerical claims SIGIR
Automated fact checking has gained immense interest to tackle the growing misinformation in the digital era. Existing systems primarily focus on synthetic claims on Wikipedia, and noteworthy progress has also been made on real-world claims. In this work, we release Numtemp, a diverse, multi-domain dataset focused exclusively on numerical claims, encompassing temporal, statistical and diverse aspects with fine-grained metadata and an evidence collection without leakage. This addresses the challenge of verifying real-world numerical claims, which are complex and often lack precise information, not addressed by existing works that mainly focus on synthetic claims. We evaluate and quantify the limitations of existing solutions for the task of verifying numerical claims. We also evaluate claim decomposition based methods, numerical understanding based models and our best baselines achieves a macro-F1 of 58.32. This demonstrates that Numtemp serves as a challenging evaluation set for numerical claim verification.
comment: 11 pages, 1 figure,Accepted for publication at the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2024)
♻ ☆ EAMA : Entity-Aware Multimodal Alignment Based Approach for News Image Captioning
News image captioning requires model to generate an informative caption rich in entities, with the news image and the associated news article. Though Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in addressing various vision-language tasks, our research finds that current MLLMs still bear limitations in handling entity information on news image captioning task. Besides, while MLLMs have the ability to process long inputs, generating high-quality news image captions still requires a trade-off between sufficiency and conciseness of textual input information. To explore the potential of MLLMs and address problems we discovered, we propose : an Entity-Aware Multimodal Alignment based approach for news image captioning. Our approach first aligns the MLLM through Balance Training Strategy with two extra alignment tasks: Entity-Aware Sentence Selection task and Entity Selection task, together with News Image Captioning task, to enhance its capability in handling multimodal entity information. The aligned MLLM will utilizes the additional entity-related information it explicitly extracts to supplement its textual input while generating news image captions. Our approach achieves better results than all previous models in CIDEr score on GoodNews dataset (72.33 -> 88.39) and NYTimes800k dataset (70.83 -> 85.61).
♻ ☆ From Words to Numbers: Your Large Language Model Is Secretly A Capable Regressor When Given In-Context Examples
We analyze how well pre-trained large language models (e.g., Llama2, GPT-4, Claude 3, etc) can do linear and non-linear regression when given in-context examples, without any additional training or gradient updates. Our findings reveal that several large language models (e.g., GPT-4, Claude 3) are able to perform regression tasks with a performance rivaling (or even outperforming) that of traditional supervised methods such as Random Forest, Bagging, or Gradient Boosting. For example, on the challenging Friedman #2 regression dataset, Claude 3 outperforms many supervised methods such as AdaBoost, SVM, Random Forest, KNN, or Gradient Boosting. We then investigate how well the performance of large language models scales with the number of in-context exemplars. We borrow from the notion of regret from online learning and empirically show that LLMs are capable of obtaining a sub-linear regret.
comment: 50 pages, 48 figures, preprint; Fixed typos
♻ ☆ Learning Approximate and Exact Numeral Systems via Reinforcement Learning
Recent work (Xu et al., 2020) has suggested that numeral systems in different languages are shaped by a functional need for efficient communication in an information-theoretic sense. Here we take a learning-theoretic approach and show how efficient communication emerges via reinforcement learning. In our framework, two artificial agents play a Lewis signaling game where the goal is to convey a numeral concept. The agents gradually learn to communicate using reinforcement learning and the resulting numeral systems are shown to be efficient in the information-theoretic framework of Regier et al. (2015); Gibson et al. (2017). They are also shown to be similar to human numeral systems of same type. Our results thus provide a mechanistic explanation via reinforcement learning of the recent results in Xu et al. (2020) and can potentially be generalized to other semantic domains.
comment: CogSci 2021. Fixed typos
♻ ☆ Stick to Your Role! Context-dependence and Stability of Personal Value Expression in Large Language Models
The standard way to study Large Language Models (LLMs) with benchmarks or psychology questionnaires is to provide many different queries from similar minimal contexts (e.g. multiple choice questions). However, due to LLMs' highly context-dependent nature, conclusions from such minimal-context evaluations may be little informative about the model's behavior in deployment (where it will be exposed to many new contexts). We argue that context-dependence (specifically, value stability) should be studied a specific property of LLMs and used as another dimension of LLM comparison (alongside others such as cognitive abilities, knowledge, or model size). We present a case-study on the stability of value expression over different contexts (simulated conversations on different topics) as measured using a standard psychology questionnaire (PVQ) and on behavioral downstream tasks. Reusing methods from psychology, we study Rank-order stability on the population (interpersonal) level, and Ipsative stability on the individual (intrapersonal) level. We consider two settings (with and without instructing LLMs to simulate particular personas), two simulated populations, and three downstream tasks. We observe consistent trends in the stability of models and model families - Mixtral, Mistral, GPT-3.5 and Qwen families are more stable than LLaMa-2 and Phi. The consistency of these trends implies that some models exhibit higher value-stability than others, and that value stability can be estimated with the set of introduced methodological tools. When instructed to simulate particular personas, LLMs exhibit low Rank-Order stability, which further diminishes with conversation length. This highlights the need for future research on LLMs that coherently simulate different personas. This paper provides a foundational step in that direction, and, to our knowledge, it is the first study of value stability in LLMs.
comment: The project website and code are available at https://sites.google.com/view/llmvaluestability
♻ ☆ Using Letter Positional Probabilities to Assess Word Complexity
Word complexity is defined in a number of different ways. Psycholinguistic, morphological and lexical proxies are often used. Human ratings are also used. The problem here is that these proxies do not measure complexity directly, and human ratings are susceptible to subjective bias. In this study we contend that some form of 'latent complexity' can be approximated by using samples of simple and complex words. We use a sample of 'simple' words from primary school picture books and a sample of 'complex' words from high school and academic settings. In order to analyse the differences between these classes, we look at the letter positional probabilities (LPPs). We find strong statistical associations between several LPPs and complexity. For example, simple words are significantly (p<.001) more likely to start with w, b, s, h, g, k, j, t, y or f, while complex words are significantly (p<.001) more likely to start with i, a, e, r, v, u or d. We find similar strong associations for subsequent letter positions, with 84 letter-position variables in the first 6 positions being significant at the p<.001 level. We then use LPPs as variables in creating a classifier which can classify the two classes with an 83% accuracy. We test these findings using a second data set, with 66 LPPs significant (p<.001) in the first 6 positions common to both datasets. We use these 66 variables to create a classifier that is able to classify a third dataset with an accuracy of 70%. Finally, we create a fourth sample by combining the extreme high and low scoring words generated by three classifiers built on the first three separate datasets and use this sample to build a classifier which has an accuracy of 97%. We use this to score the four levels of English word groups from an ESL program.
comment: 30 Pages, 15 Tables
♻ ☆ I Have an Attention Bridge to Sell You: Generalization Capabilities of Modular Translation Architectures
Modularity is a paradigm of machine translation with the potential of bringing forth models that are large at training time and small during inference. Within this field of study, modular approaches, and in particular attention bridges, have been argued to improve the generalization capabilities of models by fostering language-independent representations. In the present paper, we study whether modularity affects translation quality; as well as how well modular architectures generalize across different evaluation scenarios. For a given computational budget, we find non-modular architectures to be always comparable or preferable to all modular designs we study.
♻ ☆ PatentGPT: A Large Language Model for Intellectual Property
In recent years, large language models have attracted significant attention due to their exceptional performance across a multitude of natural language process tasks, and have been widely applied in various fields. However, the application of large language models in the Intellectual Property (IP) space is challenging due to the strong need for specialized knowledge, privacy protection, processing of extremely long text in this field. In this technical report, we present for the first time a low-cost, standardized procedure for training IP-oriented LLMs, meeting the unique requirements of the IP domain. Using this standard process, we have trained the PatentGPT series models based on open-source pretrained models. By evaluating them on the open-source IP-oriented benchmark MOZIP, our domain-specific LLMs outperforms GPT-4, indicating the effectiveness of the proposed training procedure and the expertise of the PatentGPT models in the IP demain. What is impressive is that our model significantly outperformed GPT-4 on the 2019 China Patent Agent Qualification Examination by achieving a score of 65, reaching the level of human experts. Additionally, the PatentGPT model, which utilizes the SMoE architecture, achieves performance comparable to that of GPT-4 in the IP domain and demonstrates a better cost-performance ratio on long-text tasks, potentially serving as an alternative to GPT-4 within the IP domain.
comment: 19 pages, 9 figures
♻ ☆ Towards Real-time Learning in Large Language Models: A Critical Review
Real-time learning concerns the ability of learning systems to acquire knowledge over time, enabling their adaptation and generalization to novel tasks. It is a critical ability for intelligent, real-world systems, especially when data may be insufficient or difficult to obtain. This review provides a comprehensive analysis of real-time learning in Large Language Models. It synthesizes the state-of-the-art real-time learning paradigms, including continual learning, meta-learning, parameter-efficient learning, and mixture-of-experts learning. We demonstrate their utility for real-time learning by describing specific achievements from these related topics and their critical factors. Finally, the paper highlights current problems and challenges for future research in the field. By consolidating the latest relevant research developments, this review offers a comprehensive understanding of real-time learning and its implications for designing and developing LLM-based learning systems addressing real-world problems.
♻ ☆ NOLA: Compressing LoRA using Linear Combination of Random Basis ICLR 2024
Fine-tuning Large Language Models (LLMs) and storing them for each downstream task or domain is impractical because of the massive model size (e.g., 350GB in GPT-3). Current literature, such as LoRA, showcases the potential of low-rank modifications to the original weights of an LLM, enabling efficient adaptation and storage for task-specific models. These methods can reduce the number of parameters needed to fine-tune an LLM by several orders of magnitude. Yet, these methods face two primary limitations: (1) the parameter count is lower-bounded by the rank one decomposition, and (2) the extent of reduction is heavily influenced by both the model architecture and the chosen rank. We introduce NOLA, which overcomes the rank one lower bound present in LoRA. It achieves this by re-parameterizing the low-rank matrices in LoRA using linear combinations of randomly generated matrices (basis) and optimizing the linear mixture coefficients only. This approach allows us to decouple the number of trainable parameters from both the choice of rank and the network architecture. We present adaptation results using GPT-2, LLaMA-2, and ViT in natural language and computer vision tasks. NOLA performs as well as LoRA models with much fewer number of parameters compared to LoRA with rank one, the best compression LoRA can archive. Particularly, on LLaMA-2 70B, our method is almost 20 times more compact than the most compressed LoRA without degradation in accuracy. Our code is available here: https://github.com/UCDvision/NOLA
comment: ICLR 2024. Our code is available here: https://github.com/UCDvision/NOLA
♻ ☆ Retroformer: Retrospective Large Language Agents with Policy Gradient Optimization
Recent months have seen the emergence of a powerful new trend in which large language models (LLMs) are augmented to become autonomous language agents capable of performing objective oriented multi-step tasks on their own, rather than merely responding to queries from human users. Most existing language agents, however, are not optimized using environment-specific rewards. Although some agents enable iterative refinement through verbal feedback, they do not reason and plan in ways that are compatible with gradient-based learning from rewards. This paper introduces a principled framework for reinforcing large language agents by learning a retrospective model, which automatically tunes the language agent prompts from environment feedback through policy gradient. Specifically, our proposed agent architecture learns from rewards across multiple environments and tasks, for fine-tuning a pre-trained language model which refines the language agent prompt by summarizing the root cause of prior failed attempts and proposing action plans. Experimental results on various tasks demonstrate that the language agents improve over time and that our approach considerably outperforms baselines that do not properly leverage gradients from the environment. This demonstrates that using policy gradient optimization to improve language agents, for which we believe our work is one of the first, seems promising and can be applied to optimize other models in the agent architecture to enhance agent performances over time.
♻ ☆ The Role of $n$-gram Smoothing in the Age of Neural Networks NAACL 2024
For nearly three decades, language models derived from the $n$-gram assumption held the state of the art on the task. The key to their success lay in the application of various smoothing techniques that served to combat overfitting. However, when neural language models toppled $n$-gram models as the best performers, $n$-gram smoothing techniques became less relevant. Indeed, it would hardly be an understatement to suggest that the line of inquiry into $n$-gram smoothing techniques became dormant. This paper re-opens the role classical $n$-gram smoothing techniques may play in the age of neural language models. First, we draw a formal equivalence between label smoothing, a popular regularization technique for neural language models, and add-$\lambda$ smoothing. Second, we derive a generalized framework for converting any $n$-gram smoothing technique into a regularizer compatible with neural language models. Our empirical results find that our novel regularizers are comparable to and, indeed, sometimes outperform label smoothing on language modeling and machine translation.
comment: NAACL 2024
♻ ☆ Correcting misinformation on social media with a large language model
Real-world misinformation can be partially correct and even factual but misleading. It undermines public trust in science and democracy, particularly on social media, where it can spread rapidly. High-quality and timely correction of misinformation that identifies and explains its (in)accuracies has been shown to effectively reduce false beliefs. Despite the wide acceptance of manual correction, it is difficult to be timely and scalable, a concern as technologies like large language models (LLMs) make misinformation easier to produce. LLMs also have versatile capabilities that could accelerate misinformation correction-however, they struggle due to a lack of recent information, a tendency to produce false content, and limitations in addressing multimodal information. We propose MUSE, an LLM augmented with access to and credibility evaluation of up-to-date information. By retrieving evidence as refutations or contexts, MUSE identifies and explains (in)accuracies in a piece of content-not presupposed to be misinformation-with references. It also describes images and conducts multimodal searches to verify and correct multimodal content. Fact-checking experts evaluate responses to social media content that are not presupposed to be (non-)misinformation but broadly include incorrect, partially correct, and correct posts, that may or may not be misleading. We propose and evaluate 13 dimensions of misinformation correction quality, ranging from the accuracy of identifications and factuality of explanations to the relevance and credibility of references. The results demonstrate MUSE's ability to promptly write high-quality responses to potential misinformation on social media-overall, MUSE outperforms GPT-4 by 37% and even high-quality responses from laypeople by 29%. This work reveals LLMs' potential to help combat real-world misinformation effectively and efficiently.
comment: 53 pages
♻ ☆ Brilla AI: AI Contestant for the National Science and Maths Quiz
The African continent lacks enough qualified teachers which hampers the provision of adequate learning support. An AI could potentially augment the efforts of the limited number of teachers, leading to better learning outcomes. Towards that end, this work describes and evaluates the first key output for the NSMQ AI Grand Challenge, which proposes a robust, real-world benchmark for such an AI: "Build an AI to compete live in Ghana's National Science and Maths Quiz (NSMQ) competition and win - performing better than the best contestants in all rounds and stages of the competition". The NSMQ is an annual live science and mathematics competition for senior secondary school students in Ghana in which 3 teams of 2 students compete by answering questions across biology, chemistry, physics, and math in 5 rounds over 5 progressive stages until a winning team is crowned for that year. In this work, we built Brilla AI, an AI contestant that we deployed to unofficially compete remotely and live in the Riddles round of the 2023 NSMQ Grand Finale, the first of its kind in the 30-year history of the competition. Brilla AI is currently available as a web app that livestreams the Riddles round of the contest, and runs 4 machine learning systems: (1) speech to text (2) question extraction (3) question answering and (4) text to speech that work together in real-time to quickly and accurately provide an answer, and then say it with a Ghanaian accent. In its debut, our AI answered one of the 4 riddles ahead of the 3 human contesting teams, unofficially placing second (tied). Improvements and extensions of this AI could potentially be deployed to offer science tutoring to students and eventually enable millions across Africa to have one-on-one learning interactions, democratizing science education.
comment: 14 pages. Accepted for the WideAIED track at the 25th International Conference on AI in Education (AIED 2024)
♻ ☆ Doing Experiments and Revising Rules with Natural Language and Probabilistic Reasoning
We build a computational model of how humans actively infer hidden rules by doing experiments. The basic principles behind the model is that, even if the rule is deterministic, the learner considers a broader space of fuzzy probabilistic rules, which it represents in natural language, and updates its hypotheses online after each experiment according to approximately Bayesian principles. In the same framework we also model experiment design according to information-theoretic criteria. We find that the combination of these three principles -- explicit hypotheses, probabilistic rules, and online updates -- can explain human performance on a Zendo-style task, and that removing any of these components leaves the model unable to account for the data.
♻ ☆ Exploring Concept Depth: How Large Language Models Acquire Knowledge at Different Layers?
Large language models (LLMs) have shown remarkable performances across a wide range of tasks. However, the mechanisms by which these models encode tasks of varying complexities remain poorly understood. In this paper, we explore the hypothesis that LLMs process concepts of varying complexities in different layers, introducing the idea of "Concept Depth" to suggest that more complex concepts are typically acquired in deeper layers. Specifically, we categorize concepts based on their level of abstraction, defining them in the order of increasing complexity within factual, emotional, and inferential tasks. We conduct extensive probing experiments using layer-wise representations across various LLM families (Gemma, LLaMA, QWen) on various datasets spanning the three domains of tasks. Our findings reveal that models could efficiently conduct probing for simpler tasks in shallow layers, and more complex tasks typically necessitate deeper layers for accurate understanding. Additionally, we examine how external factors, such as adding noise to the input and quantizing the model weights, might affect layer-wise representations. Our findings suggest that these factors can impede the development of a conceptual understanding of LLMs until deeper layers are explored. We hope that our proposed concept and experimental insights will enhance the understanding of the mechanisms underlying LLMs. Our codes are available at https://github.com/Luckfort/CD.
comment: 12 pages
Computer Vision and Pattern Recognition 160
☆ Lightplane: Highly-Scalable Components for Neural 3D Fields
Contemporary 3D research, particularly in reconstruction and generation, heavily relies on 2D images for inputs or supervision. However, current designs for these 2D-3D mapping are memory-intensive, posing a significant bottleneck for existing methods and hindering new applications. In response, we propose a pair of highly scalable components for 3D neural fields: Lightplane Render and Splatter, which significantly reduce memory usage in 2D-3D mapping. These innovations enable the processing of vastly more and higher resolution images with small memory and computational costs. We demonstrate their utility in various applications, from benefiting single-scene optimization with image-level losses to realizing a versatile pipeline for dramatically scaling 3D reconstruction and generation. Code: \url{https://github.com/facebookresearch/lightplane}.
comment: Project Page: https://lightplane.github.io/ Code: https://github.com/facebookresearch/lightplane
☆ MotionLCM: Real-time Controllable Motion Generation via Latent Consistency Model
This work introduces MotionLCM, extending controllable motion generation to a real-time level. Existing methods for spatial control in text-conditioned motion generation suffer from significant runtime inefficiency. To address this issue, we first propose the motion latent consistency model (MotionLCM) for motion generation, building upon the latent diffusion model (MLD). By employing one-step (or few-step) inference, we further improve the runtime efficiency of the motion latent diffusion model for motion generation. To ensure effective controllability, we incorporate a motion ControlNet within the latent space of MotionLCM and enable explicit control signals (e.g., pelvis trajectory) in the vanilla motion space to control the generation process directly, similar to controlling other latent-free diffusion models for motion generation. By employing these techniques, our approach can generate human motions with text and control signals in real-time. Experimental results demonstrate the remarkable generation and controlling capabilities of MotionLCM while maintaining real-time runtime efficiency.
comment: MotionLCM project version 1.0
☆ Invisible Stitch: Generating Smooth 3D Scenes with Depth Inpainting
3D scene generation has quickly become a challenging new research direction, fueled by consistent improvements of 2D generative diffusion models. Most prior work in this area generates scenes by iteratively stitching newly generated frames with existing geometry. These works often depend on pre-trained monocular depth estimators to lift the generated images into 3D, fusing them with the existing scene representation. These approaches are then often evaluated via a text metric, measuring the similarity between the generated images and a given text prompt. In this work, we make two fundamental contributions to the field of 3D scene generation. First, we note that lifting images to 3D with a monocular depth estimation model is suboptimal as it ignores the geometry of the existing scene. We thus introduce a novel depth completion model, trained via teacher distillation and self-training to learn the 3D fusion process, resulting in improved geometric coherence of the scene. Second, we introduce a new benchmarking scheme for scene generation methods that is based on ground truth geometry, and thus measures the quality of the structure of the scene.
comment: Project page: https://research.paulengstler.com/invisible-stitch/
☆ DOCCI: Descriptions of Connected and Contrasting Images
Vision-language datasets are vital for both text-to-image (T2I) and image-to-text (I2T) research. However, current datasets lack descriptions with fine-grained detail that would allow for richer associations to be learned by models. To fill the gap, we introduce Descriptions of Connected and Contrasting Images (DOCCI), a dataset with long, human-annotated English descriptions for 15k images that were taken, curated and donated by a single researcher intent on capturing key challenges such as spatial relations, counting, text rendering, world knowledge, and more. We instruct human annotators to create comprehensive descriptions for each image; these average 136 words in length and are crafted to clearly distinguish each image from those that are related or similar. Each description is highly compositional and typically encompasses multiple challenges. Through both quantitative and qualitative analyses, we demonstrate that DOCCI serves as an effective training resource for image-to-text generation -- a PaLI 5B model finetuned on DOCCI shows equal or superior results compared to highly-performant larger models like LLaVA-1.5 7B and InstructBLIP 7B. Furthermore, we show that DOCCI is a useful testbed for text-to-image generation, highlighting the limitations of current text-to-image models in capturing long descriptions and fine details.
☆ Visual Fact Checker: Enabling High-Fidelity Detailed Caption Generation CVPR 2024
Existing automatic captioning methods for visual content face challenges such as lack of detail, content hallucination, and poor instruction following. In this work, we propose VisualFactChecker (VFC), a flexible training-free pipeline that generates high-fidelity and detailed captions for both 2D images and 3D objects. VFC consists of three steps: 1) proposal, where image-to-text captioning models propose multiple initial captions; 2) verification, where a large language model (LLM) utilizes tools such as object detection and VQA models to fact-check proposed captions; 3) captioning, where an LLM generates the final caption by summarizing caption proposals and the fact check verification results. In this step, VFC can flexibly generate captions in various styles following complex instructions. We conduct comprehensive captioning evaluations using four metrics: 1) CLIP-Score for image-text similarity; 2) CLIP-Image-Score for measuring the image-image similarity between the original and the reconstructed image generated by a text-to-image model using the caption. 3) human study on Amazon Mechanical Turk; 4) GPT-4V for fine-grained evaluation. Evaluation results show that VFC outperforms state-of-the-art open-sourced captioning methods for 2D images on the COCO dataset and 3D assets on the Objaverse dataset. Our study demonstrates that by combining open-source models into a pipeline, we can attain captioning capability comparable to proprietary models such as GPT-4V, despite being over 10x smaller in model size.
comment: CVPR 2024
☆ Quantifying Nematodes through Images: Datasets, Models, and Baselines of Deep Learning
Every year, plant parasitic nematodes, one of the major groups of plant pathogens, cause a significant loss of crops worldwide. To mitigate crop yield losses caused by nematodes, an efficient nematode monitoring method is essential for plant and crop disease management. In other respects, efficient nematode detection contributes to medical research and drug discovery, as nematodes are model organisms. With the rapid development of computer technology, computer vision techniques provide a feasible solution for quantifying nematodes or nematode infections. In this paper, we survey and categorise the studies and available datasets on nematode detection through deep-learning models. To stimulate progress in related research, this survey presents the potential state-of-the-art object detection models, training techniques, optimisation techniques, and evaluation metrics for deep learning beginners. Moreover, seven state-of-the-art object detection models are validated on three public datasets and the AgriNema dataset for plant parasitic nematodes to construct a baseline for nematode detection.
comment: The 26th IEEE International Conference on Computational Science and Engineering (CSE-2023)
☆ PACER+: On-Demand Pedestrian Animation Controller in Driving Scenarios
We address the challenge of content diversity and controllability in pedestrian simulation for driving scenarios. Recent pedestrian animation frameworks have a significant limitation wherein they primarily focus on either following trajectory [46] or the content of the reference video [57], consequently overlooking the potential diversity of human motion within such scenarios. This limitation restricts the ability to generate pedestrian behaviors that exhibit a wider range of variations and realistic motions and therefore restricts its usage to provide rich motion content for other components in the driving simulation system, e.g., suddenly changed motion to which the autonomous vehicle should respond. In our approach, we strive to surpass the limitation by showcasing diverse human motions obtained from various sources, such as generated human motions, in addition to following the given trajectory. The fundamental contribution of our framework lies in combining the motion tracking task with trajectory following, which enables the tracking of specific motion parts (e.g., upper body) while simultaneously following the given trajectory by a single policy. This way, we significantly enhance both the diversity of simulated human motion within the given scenario and the controllability of the content, including language-based control. Our framework facilitates the generation of a wide range of human motions, contributing to greater realism and adaptability in pedestrian simulations for driving scenarios. More information is on our project page https://wangjingbo1219.github.io/papers/CVPR2024_PACER_PLUS/PACERPLUSPage.html .
☆ RTG-SLAM: Real-time 3D Reconstruction at Scale using Gaussian Splatting SIGGRAPH 2024
We propose RTG-SLAM, a real-time 3D reconstruction system with an RGBD camera for large-scale environments using Gaussian splatting. RTG-SLAM features a compact Gaussian representation and a highly efficient on-the-fly Gaussian optimization scheme. We force each Gaussian to be either opaque or nearly transparent, with the opaque ones fitting the surface and dominant colors, and transparent ones fitting residual colors. By rendering depth in a different way from color rendering, we let a single opaque Gaussian well fit a local surface region without the need of multiple overlapping Gaussians, hence largely reducing the memory and computation cost. For on-the-fly Gaussian optimization, we explicitly add Gaussians for three types of pixels per frame: newly observed, with large color errors and with large depth errors. We also categorize all Gaussians into stable and unstable ones, where the stable Gaussians are expected to well fit previously observed RGBD images and otherwise unstable. We only optimize the unstable Gaussians and only render the pixels occupied by unstable Gaussians. In this way, both the number of Gaussians to be optimized and pixels to be rendered are largely reduced, and the optimization can be done in real time. We show real-time reconstructions of a variety of real large scenes. Compared with the state-of-the-art NeRF-based RGBD SLAM, our system achieves comparable high-quality reconstruction but with around twice the speed and half the memory cost, and shows superior performance in the realism of novel view synthesis and camera tracking accuracy.
comment: To be published in ACM SIGGRAPH 2024
☆ GS-LRM: Large Reconstruction Model for 3D Gaussian Splatting
We propose GS-LRM, a scalable large reconstruction model that can predict high-quality 3D Gaussian primitives from 2-4 posed sparse images in 0.23 seconds on single A100 GPU. Our model features a very simple transformer-based architecture; we patchify input posed images, pass the concatenated multi-view image tokens through a sequence of transformer blocks, and decode final per-pixel Gaussian parameters directly from these tokens for differentiable rendering. In contrast to previous LRMs that can only reconstruct objects, by predicting per-pixel Gaussians, GS-LRM naturally handles scenes with large variations in scale and complexity. We show that our model can work on both object and scene captures by training it on Objaverse and RealEstate10K respectively. In both scenarios, the models outperform state-of-the-art baselines by a wide margin. We also demonstrate applications of our model in downstream 3D generation tasks. Our project webpage is available at: https://sai-bi.github.io/project/gs-lrm/ .
comment: Project webpage: https://sai-bi.github.io/project/gs-lrm/
☆ Naturally Supervised 3D Visual Grounding with Language-Regularized Concept Learners CVPR 2024
3D visual grounding is a challenging task that often requires direct and dense supervision, notably the semantic label for each object in the scene. In this paper, we instead study the naturally supervised setting that learns from only 3D scene and QA pairs, where prior works underperform. We propose the Language-Regularized Concept Learner (LARC), which uses constraints from language as regularization to significantly improve the accuracy of neuro-symbolic concept learners in the naturally supervised setting. Our approach is based on two core insights: the first is that language constraints (e.g., a word's relation to another) can serve as effective regularization for structured representations in neuro-symbolic models; the second is that we can query large language models to distill such constraints from language properties. We show that LARC improves performance of prior works in naturally supervised 3D visual grounding, and demonstrates a wide range of 3D visual reasoning capabilities-from zero-shot composition, to data efficiency and transferability. Our method represents a promising step towards regularizing structured visual reasoning frameworks with language-based priors, for learning in settings without dense supervision.
comment: CVPR 2024. The first two authors contributed equally
☆ SwipeGANSpace: Swipe-to-Compare Image Generation via Efficient Latent Space Exploration
Generating preferred images using generative adversarial networks (GANs) is challenging owing to the high-dimensional nature of latent space. In this study, we propose a novel approach that uses simple user-swipe interactions to generate preferred images for users. To effectively explore the latent space with only swipe interactions, we apply principal component analysis to the latent space of the StyleGAN, creating meaningful subspaces. We use a multi-armed bandit algorithm to decide the dimensions to explore, focusing on the preferences of the user. Experiments show that our method is more efficient in generating preferred images than the baseline methods. Furthermore, changes in preferred images during image generation or the display of entirely different image styles were observed to provide new inspirations, subsequently altering user preferences. This highlights the dynamic nature of user preferences, which our proposed approach recognizes and enhances.
comment: 11 pages, 13 figures
☆ Beyond MOS: Subjective Image Quality Score Preprocessing Method Based on Perceptual Similarity
Image quality assessment often relies on raw opinion scores provided by subjects in subjective experiments, which can be noisy and unreliable. To address this issue, postprocessing procedures such as ITU-R BT.500, ITU-T P.910, and ITU-T P.913 have been standardized to clean up the original opinion scores. These methods use annotator-based statistical priors, but they do not take into account extensive information about the image itself, which limits their performance in less annotated scenarios. Generally speaking, image quality datasets usually contain similar scenes or distortions, and it is inevitable for subjects to compare images to score a reasonable score when scoring. Therefore, In this paper, we proposed Subjective Image Quality Score Preprocessing Method perceptual similarity Subjective Preprocessing (PSP), which exploit the perceptual similarity between images to alleviate subjective bias in less annotated scenarios. Specifically, we model subjective scoring as a conditional probability model based on perceptual similarity with previously scored images, called subconscious reference scoring. The reference images are stored by a neighbor dictionary, which is obtained by a normalized vector dot-product based nearest neighbor search of the images' perceptual depth features. Then the preprocessed score is updated by the exponential moving average (EMA) of the subconscious reference scoring, called similarity regularized EMA. Our experiments on multiple datasets (LIVE, TID2013, CID2013) show that this method can effectively remove the bias of the subjective scores. Additionally, Experiments prove that the Preprocesed dataset can improve the performance of downstream IQA tasks very well.
☆ Towards Scenario- and Capability-Driven Dataset Development and Evaluation: An Approach in the Context of Mapless Automated Driving
The foundational role of datasets in defining the capabilities of deep learning models has led to their rapid proliferation. At the same time, published research focusing on the process of dataset development for environment perception in automated driving has been scarce, thereby reducing the applicability of openly available datasets and impeding the development of effective environment perception systems. Sensor-based, mapless automated driving is one of the contexts where this limitation is evident. While leveraging real-time sensor data, instead of pre-defined HD maps promises enhanced adaptability and safety by effectively navigating unexpected environmental changes, it also increases the demands on the scope and complexity of the information provided by the perception system. To address these challenges, we propose a scenario- and capability-based approach to dataset development. Grounded in the principles of ISO 21448 (safety of the intended functionality, SOTIF), extended by ISO/TR 4804, our approach facilitates the structured derivation of dataset requirements. This not only aids in the development of meaningful new datasets but also enables the effective comparison of existing ones. Applying this methodology to a broad range of existing lane detection datasets, we identify significant limitations in current datasets, particularly in terms of real-world applicability, a lack of labeling of critical features, and an absence of comprehensive information for complex driving maneuvers.
comment: Accepted to be published at the 2024 35th IEEE Intelligent Vehicles Symposium (IV), Jeju Island, Korea, June 2 - 5, 2024
☆ Masked Multi-Query Slot Attention for Unsupervised Object Discovery IJCNN 2024
Unsupervised object discovery is becoming an essential line of research for tackling recognition problems that require decomposing an image into entities, such as semantic segmentation and object detection. Recently, object-centric methods that leverage self-supervision have gained popularity, due to their simplicity and adaptability to different settings and conditions. However, those methods do not exploit effective techniques already employed in modern self-supervised approaches. In this work, we consider an object-centric approach in which DINO ViT features are reconstructed via a set of queried representations called slots. Based on that, we propose a masking scheme on input features that selectively disregards the background regions, inducing our model to focus more on salient objects during the reconstruction phase. Moreover, we extend the slot attention to a multi-query approach, allowing the model to learn multiple sets of slots, producing more stable masks. During training, these multiple sets of slots are learned independently while, at test time, these sets are merged through Hungarian matching to obtain the final slots. Our experimental results and ablations on the PASCAL-VOC 2012 dataset show the importance of each component and highlight how their combination consistently improves object localization. Our source code is available at: https://github.com/rishavpramanik/maskedmultiqueryslot
comment: Paper accepted for presentation at IJCNN 2024
☆ VimTS: A Unified Video and Image Text Spotter for Enhancing the Cross-domain Generalization
Text spotting, a task involving the extraction of textual information from image or video sequences, faces challenges in cross-domain adaption, such as image-to-image and image-to-video generalization. In this paper, we introduce a new method, termed VimTS, which enhances the generalization ability of the model by achieving better synergy among different tasks. Typically, we propose a Prompt Queries Generation Module and a Tasks-aware Adapter to effectively convert the original single-task model into a multi-task model suitable for both image and video scenarios with minimal additional parameters. The Prompt Queries Generation Module facilitates explicit interaction between different tasks, while the Tasks-aware Adapter helps the model dynamically learn suitable features for each task. Additionally, to further enable the model to learn temporal information at a lower cost, we propose a synthetic video text dataset (VTD-368k) by leveraging the Content Deformation Fields (CoDeF) algorithm. Notably, our method outperforms the state-of-the-art method by an average of 2.6% in six cross-domain benchmarks such as TT-to-IC15, CTW1500-to-TT, and TT-to-CTW1500. For video-level cross-domain adaption, our method even surpasses the previous end-to-end video spotting method in ICDAR2015 video and DSText v2 by an average of 5.5% on the MOTA metric, using only image-level data. We further demonstrate that existing Large Multimodal Models exhibit limitations in generating cross-domain scene text spotting, in contrast to our VimTS model which requires significantly fewer parameters and data. The code and datasets will be made available at the https://VimTextSpotter.github.io.
☆ Provably Robust Conformal Prediction with Improved Efficiency
Conformal prediction is a powerful tool to generate uncertainty sets with guaranteed coverage using any predictive model, under the assumption that the training and test data are i.i.d.. Recently, it has been shown that adversarial examples are able to manipulate conformal methods to construct prediction sets with invalid coverage rates, as the i.i.d. assumption is violated. To address this issue, a recent work, Randomized Smoothed Conformal Prediction (RSCP), was first proposed to certify the robustness of conformal prediction methods to adversarial noise. However, RSCP has two major limitations: (i) its robustness guarantee is flawed when used in practice and (ii) it tends to produce large uncertainty sets. To address these limitations, we first propose a novel framework called RSCP+ to provide provable robustness guarantee in evaluation, which fixes the issues in the original RSCP method. Next, we propose two novel methods, Post-Training Transformation (PTT) and Robust Conformal Training (RCT), to effectively reduce prediction set size with little computation overhead. Experimental results in CIFAR10, CIFAR100, and ImageNet suggest the baseline method only yields trivial predictions including full label set, while our methods could boost the efficiency by up to $4.36\times$, $5.46\times$, and $16.9\times$ respectively and provide practical robustness guarantee. Our codes are available at https://github.com/Trustworthy-ML-Lab/Provably-Robust-Conformal-Prediction.
☆ MetaCoCo: A New Few-Shot Classification Benchmark with Spurious Correlation ICLR 24
Out-of-distribution (OOD) problems in few-shot classification (FSC) occur when novel classes sampled from testing distributions differ from base classes drawn from training distributions, which considerably degrades the performance of deep learning models deployed in real-world applications. Recent studies suggest that the OOD problems in FSC mainly including: (a) cross-domain few-shot classification (CD-FSC) and (b) spurious-correlation few-shot classification (SC-FSC). Specifically, CD-FSC occurs when a classifier learns transferring knowledge from base classes drawn from seen training distributions but recognizes novel classes sampled from unseen testing distributions. In contrast, SC-FSC arises when a classifier relies on non-causal features (or contexts) that happen to be correlated with the labels (or concepts) in base classes but such relationships no longer hold during the model deployment. Despite CD-FSC has been extensively studied, SC-FSC remains understudied due to lack of the corresponding evaluation benchmarks. To this end, we present Meta Concept Context (MetaCoCo), a benchmark with spurious-correlation shifts collected from real-world scenarios. Moreover, to quantify the extent of spurious-correlation shifts of the presented MetaCoCo, we further propose a metric by using CLIP as a pre-trained vision-language model. Extensive experiments on the proposed benchmark are performed to evaluate the state-of-the-art methods in FSC, cross-domain shifts, and self-supervised learning. The experimental results show that the performance of the existing methods degrades significantly in the presence of spurious-correlation shifts. We open-source all codes of our benchmark and hope that the proposed MetaCoCo can facilitate future research on spurious-correlation shifts problems in FSC. The code is available at: https://github.com/remiMZ/MetaCoCo-ICLR24.
comment: ICLR 24
☆ ESP-Zero: Unsupervised enhancement of zero-shot classification for Extremely Sparse Point cloud
In recent years, zero-shot learning has attracted the focus of many researchers, due to its flexibility and generality. Many approaches have been proposed to achieve the zero-shot classification of the point clouds for 3D object understanding, following the schema of CLIP. However, in the real world, the point clouds could be extremely sparse, dramatically limiting the effectiveness of the 3D point cloud encoders, and resulting in the misalignment of point cloud features and text embeddings. To the point cloud encoders to fit the extremely sparse point clouds without re-running the pre-training procedure which could be time-consuming and expensive, in this work, we propose an unsupervised model adaptation approach to enhance the point cloud encoder for the extremely sparse point clouds. We propose a novel fused-cross attention layer that expands the pre-trained self-attention layer with additional learnable tokens and attention blocks, which effectively modifies the point cloud features while maintaining the alignment between point cloud features and text embeddings. We also propose a complementary learning-based self-distillation schema that encourages the modified features to be pulled apart from the irrelevant text embeddings without overfitting the feature space to the observed text embeddings. Extensive experiments demonstrate that the proposed approach effectively increases the zero-shot capability on extremely sparse point clouds, and overwhelms other state-of-the-art model adaptation approaches.
☆ Fake it to make it: Using synthetic data to remedy the data shortage in joint multimodal speech-and-gesture synthesis CVPR 2024
Although humans engaged in face-to-face conversation simultaneously communicate both verbally and non-verbally, methods for joint and unified synthesis of speech audio and co-speech 3D gesture motion from text are a new and emerging field. These technologies hold great promise for more human-like, efficient, expressive, and robust synthetic communication, but are currently held back by the lack of suitably large datasets, as existing methods are trained on parallel data from all constituent modalities. Inspired by student-teacher methods, we propose a straightforward solution to the data shortage, by simply synthesising additional training material. Specifically, we use unimodal synthesis models trained on large datasets to create multimodal (but synthetic) parallel training data, and then pre-train a joint synthesis model on that material. In addition, we propose a new synthesis architecture that adds better and more controllable prosody modelling to the state-of-the-art method in the field. Our results confirm that pre-training on large amounts of synthetic data improves the quality of both the speech and the motion synthesised by the multimodal model, with the proposed architecture yielding further benefits when pre-trained on the synthetic data. See https://shivammehta25.github.io/MAGI/ for example output.
comment: 13+1 pages, 2 figures, accepted at the Human Motion Generation workshop (HuMoGen) at CVPR 2024
☆ SemiPL: A Semi-supervised Method for Event Sound Source Localization
In recent years, Event Sound Source Localization has been widely applied in various fields. Recent works typically relying on the contrastive learning framework show impressive performance. However, all work is based on large relatively simple datasets. It's also crucial to understand and analyze human behaviors (actions and interactions of people), voices, and sounds in chaotic events in many applications, e.g., crowd management, and emergency response services. In this paper, we apply the existing model to a more complex dataset, explore the influence of parameters on the model, and propose a semi-supervised improvement method SemiPL. With the increase in data quantity and the influence of label quality, self-supervised learning will be an unstoppable trend. The experiment shows that the parameter adjustment will positively affect the existing model. In particular, SSPL achieved an improvement of 12.2% cIoU and 0.56% AUC in Chaotic World compared to the results provided. The code is available at: https://github.com/ly245422/SSPL
☆ Seeing Through the Clouds: Cloud Gap Imputation with Prithvi Foundation Model
Filling cloudy pixels in multispectral satellite imagery is essential for accurate data analysis and downstream applications, especially for tasks which require time series data. To address this issue, we compare the performance of a foundational Vision Transformer (ViT) model with a baseline Conditional Generative Adversarial Network (CGAN) model for missing value imputation in time series of multispectral satellite imagery. We randomly mask time series of satellite images using real-world cloud masks and train each model to reconstruct the missing pixels. The ViT model is fine-tuned from a pretrained model, while the CGAN is trained from scratch. Using quantitative evaluation metrics such as structural similarity index and mean absolute error as well as qualitative visual analysis, we assess imputation accuracy and contextual preservation.
☆ Data-Driven Invertible Neural Surrogates of Atmospheric Transmission
We present a framework for inferring an atmospheric transmission profile from a spectral scene. This framework leverages a lightweight, physics-based simulator that is automatically tuned - by virtue of autodifferentiation and differentiable programming - to construct a surrogate atmospheric profile to model the observed data. We demonstrate utility of the methodology by (i) performing atmospheric correction, (ii) recasting spectral data between various modalities (e.g. radiance and reflectance at the surface and at the sensor), and (iii) inferring atmospheric transmission profiles, such as absorbing bands and their relative magnitudes.
comment: Manuscript accepted for presentation and publication at the 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
☆ X-Diffusion: Generating Detailed 3D MRI Volumes From a Single Image Using Cross-Sectional Diffusion Models
In this work, we present X-Diffusion, a cross-sectional diffusion model tailored for Magnetic Resonance Imaging (MRI) data. X-Diffusion is capable of generating the entire MRI volume from just a single MRI slice or optionally from few multiple slices, setting new benchmarks in the precision of synthesized MRIs from extremely sparse observations. The uniqueness lies in the novel view-conditional training and inference of X-Diffusion on MRI volumes, allowing for generalized MRI learning. Our evaluations span both brain tumour MRIs from the BRATS dataset and full-body MRIs from the UK Biobank dataset. Utilizing the paired pre-registered Dual-energy X-ray Absorptiometry (DXA) and MRI modalities in the UK Biobank dataset, X-Diffusion is able to generate detailed 3D MRI volume from a single full-body DXA. Remarkably, the resultant MRIs not only stand out in precision on unseen examples (surpassing state-of-the-art results by large margins) but also flawlessly retain essential features of the original MRI, including tumour profiles, spine curvature, brain volume, and beyond. Furthermore, the trained X-Diffusion model on the MRI datasets attains a generalization capacity out-of-domain (e.g. generating knee MRIs even though it is trained on brains). The code is available on the project website https://emmanuelleb985.github.io/XDiffusion/ .
comment: preprint, project website: https://emmanuelleb985.github.io/XDiffusion/
☆ Artificial Intelligence in Bone Metastasis Analysis: Current Advancements, Opportunities and Challenges
In recent years, Artificial Intelligence (AI) has been widely used in medicine, particularly in the analysis of medical imaging, which has been driven by advances in computer vision and deep learning methods. This is particularly important in overcoming the challenges posed by diseases such as Bone Metastases (BM), a common and complex malignancy of the bones. Indeed, there have been an increasing interest in developing Machine Learning (ML) techniques into oncologic imaging for BM analysis. In order to provide a comprehensive overview of the current state-of-the-art and advancements for BM analysis using artificial intelligence, this review is conducted with the accordance with PRISMA guidelines. Firstly, this review highlights the clinical and oncologic perspectives of BM and the used medical imaging modalities, with discussing their advantages and limitations. Then the review focuses on modern approaches with considering the main BM analysis tasks, which includes: classification, detection and segmentation. The results analysis show that ML technologies can achieve promising performance for BM analysis and have significant potential to improve clinician efficiency and cope with time and cost limitations. Furthermore, there are requirements for further research to validate the clinical performance of ML tools and facilitate their integration into routine clinical practice.
☆ Perceptual Constancy Constrained Single Opinion Score Calibration for Image Quality Assessment
In this paper, we propose a highly efficient method to estimate an image's mean opinion score (MOS) from a single opinion score (SOS). Assuming that each SOS is the observed sample of a normal distribution and the MOS is its unknown expectation, the MOS inference is formulated as a maximum likelihood estimation problem, where the perceptual correlation of pairwise images is considered in modeling the likelihood of SOS. More specifically, by means of the quality-aware representations learned from the self-supervised backbone, we introduce a learnable relative quality measure to predict the MOS difference between two images. Then, the current image's maximum likelihood estimation towards MOS is represented by the sum of another reference image's estimated MOS and their relative quality. Ideally, no matter which image is selected as the reference, the MOS of the current image should remain unchanged, which is termed perceptual cons tancy constrained calibration (PC3). Finally, we alternatively optimize the relative quality measure's parameter and the current image's estimated MOS via backpropagation and Newton's method respectively. Experiments show that the proposed method is efficient in calibrating the biased SOS and significantly improves IQA model learning when only SOSs are available.
☆ AI techniques for near real-time monitoring of contaminants in coastal waters on board future Phisat-2 mission
Differently from conventional procedures, the proposed solution advocates for a groundbreaking paradigm in water quality monitoring through the integration of satellite Remote Sensing (RS) data, Artificial Intelligence (AI) techniques, and onboard processing. The objective is to offer nearly real-time detection of contaminants in coastal waters addressing a significant gap in the existing literature. Moreover, the expected outcomes include substantial advancements in environmental monitoring, public health protection, and resource conservation. The specific focus of our study is on the estimation of Turbidity and pH parameters, for their implications on human and aquatic health. Nevertheless, the designed framework can be extended to include other parameters of interest in the water environment and beyond. Originating from our participation in the European Space Agency (ESA) OrbitalAI Challenge, this article describes the distinctive opportunities and issues for the contaminants monitoring on the Phisat-2 mission. The specific characteristics of this mission, with the tools made available, will be presented, with the methodology proposed by the authors for the onboard monitoring of water contaminants in near real-time. Preliminary promising results are discussed and in progress and future work introduced.
comment: 11 pages, 9 figures, submitted to IEEE JSTARS
☆ Automatic Cardiac Pathology Recognition in Echocardiography Images Using Higher Order Dynamic Mode Decomposition and a Vision Transformer for Small Datasets
Heart diseases are the main international cause of human defunction. According to the WHO, nearly 18 million people decease each year because of heart diseases. Also considering the increase of medical data, much pressure is put on the health industry to develop systems for early and accurate heart disease recognition. In this work, an automatic cardiac pathology recognition system based on a novel deep learning framework is proposed, which analyses in real-time echocardiography video sequences. The system works in two stages. The first one transforms the data included in a database of echocardiography sequences into a machine-learning-compatible collection of annotated images which can be used in the training stage of any kind of machine learning-based framework, and more specifically with deep learning. This includes the use of the Higher Order Dynamic Mode Decomposition (HODMD) algorithm, for the first time to the authors' knowledge, for both data augmentation and feature extraction in the medical field. The second stage is focused on building and training a Vision Transformer (ViT), barely explored in the related literature. The ViT is adapted for an effective training from scratch, even with small datasets. The designed neural network analyses images from an echocardiography sequence to predict the heart state. The results obtained show the superiority of the proposed system and the efficacy of the HODMD algorithm, even outperforming pretrained Convolutional Neural Networks (CNNs), which are so far the method of choice in the literature.
☆ A Spatio-Temporal based Frame Indexing Algorithm for QoS Improvement in Live Low-Motion Video Streaming
Real-time video life streaming of events over a network continued to gain more popularity among the populace. However, there is need to ensure the judicious utilization of allocated bandwidth without compromising the Quality of Service (QoS) of the system. In this regard, this paper presents an approach based on spatio-temporal frame indexing that detects and eliminate redundancy within and across captured frame, prior transmission from the server to clients. The standard and local low motion videos were the two scenarios considered in evaluating the performance of the proposed algorithm. Results obtained showed that the proposed approach achieved an improvement of 5.13%, 15.8% and 5%, 15.6% improvement in terms of the buffer size and compression ratio. Though with a tradeoff of the frame-built time, where both the standard and local frame indexing outperforms the proposed scheme with 10.8% and 8.71% respectively.
☆ Enhancing Deep Learning Model Explainability in Brain Tumor Datasets using Post-Heuristic Approaches
The application of deep learning models in medical diagnosis has showcased considerable efficacy in recent years. Nevertheless, a notable limitation involves the inherent lack of explainability during decision-making processes. This study addresses such a constraint, by enhancing the interpretability robustness. The primary focus is directed towards refining the explanations generated by the LIME Library and LIME image explainer. This is achieved throuhg post-processing mechanisms, based on scenario-specific rules. Multiple experiments have been conducted using publicly accessible datasets related to brain tumor detection. Our proposed post-heuristic approach demonstrates significant advancements, yielding more robust and concrete results, in the context of medical diagnosis.
☆ Causal Perception Inspired Representation Learning for Trustworthy Image Quality Assessment
Despite great success in modeling visual perception, deep neural network based image quality assessment (IQA) still remains unreliable in real-world applications due to its vulnerability to adversarial perturbations and the inexplicit black-box structure. In this paper, we propose to build a trustworthy IQA model via Causal Perception inspired Representation Learning (CPRL), and a score reflection attack method for IQA model. More specifically, we assume that each image is composed of Causal Perception Representation (CPR) and non-causal perception representation (N-CPR). CPR serves as the causation of the subjective quality label, which is invariant to the imperceptible adversarial perturbations. Inversely, N-CPR presents spurious associations with the subjective quality label, which may significantly change with the adversarial perturbations. To extract the CPR from each input image, we develop a soft ranking based channel-wise activation function to mediate the causally sufficient (beneficial for high prediction accuracy) and necessary (beneficial for high robustness) deep features, and based on intervention employ minimax game to optimize. Experiments on four benchmark databases show that the proposed CPRL method outperforms many state-of-the-art adversarial defense methods and provides explicit model interpretation.
☆ One-Stage Open-Vocabulary Temporal Action Detection Leveraging Temporal Multi-scale and Action Label Features
Open-vocabulary Temporal Action Detection (Open-vocab TAD) is an advanced video analysis approach that expands Closed-vocabulary Temporal Action Detection (Closed-vocab TAD) capabilities. Closed-vocab TAD is typically confined to localizing and classifying actions based on a predefined set of categories. In contrast, Open-vocab TAD goes further and is not limited to these predefined categories. This is particularly useful in real-world scenarios where the variety of actions in videos can be vast and not always predictable. The prevalent methods in Open-vocab TAD typically employ a 2-stage approach, which involves generating action proposals and then identifying those actions. However, errors made during the first stage can adversely affect the subsequent action identification accuracy. Additionally, existing studies face challenges in handling actions of different durations owing to the use of fixed temporal processing methods. Therefore, we propose a 1-stage approach consisting of two primary modules: Multi-scale Video Analysis (MVA) and Video-Text Alignment (VTA). The MVA module captures actions at varying temporal resolutions, overcoming the challenge of detecting actions with diverse durations. The VTA module leverages the synergy between visual and textual modalities to precisely align video segments with corresponding action labels, a critical step for accurate action identification in Open-vocab scenarios. Evaluations on widely recognized datasets THUMOS14 and ActivityNet-1.3, showed that the proposed method achieved superior results compared to the other methods in both Open-vocab and Closed-vocab settings. This serves as a strong demonstration of the effectiveness of the proposed method in the TAD task.
comment: The 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)
☆ Ultra Inertial Poser: Scalable Motion Capture and Tracking from Sparse Inertial Sensors and Ultra-Wideband Ranging SIGGRAPH 2024
While camera-based capture systems remain the gold standard for recording human motion, learning-based tracking systems based on sparse wearable sensors are gaining popularity. Most commonly, they use inertial sensors, whose propensity for drift and jitter have so far limited tracking accuracy. In this paper, we propose Ultra Inertial Poser, a novel 3D full body pose estimation method that constrains drift and jitter in inertial tracking via inter-sensor distances. We estimate these distances across sparse sensor setups using a lightweight embedded tracker that augments inexpensive off-the-shelf 6D inertial measurement units with ultra-wideband radio-based ranging$-$dynamically and without the need for stationary reference anchors. Our method then fuses these inter-sensor distances with the 3D states estimated from each sensor Our graph-based machine learning model processes the 3D states and distances to estimate a person's 3D full body pose and translation. To train our model, we synthesize inertial measurements and distance estimates from the motion capture database AMASS. For evaluation, we contribute a novel motion dataset of 10 participants who performed 25 motion types, captured by 6 wearable IMU+UWB trackers and an optical motion capture system, totaling 200 minutes of synchronized sensor data (UIP-DB). Our extensive experiments show state-of-the-art performance for our method over PIP and TIP, reducing position error from $13.62$ to $10.65cm$ ($22\%$ better) and lowering jitter from $1.56$ to $0.055km/s^3$ (a reduction of $97\%$).
comment: Accepted by SIGGRAPH 2024, Code: https://github.com/eth-siplab/UltraInertialPoser
☆ MIPI 2024 Challenge on Nighttime Flare Removal: Methods and Results CVPR 2024
The increasing demand for computational photography and imaging on mobile platforms has led to the widespread development and integration of advanced image sensors with novel algorithms in camera systems. However, the scarcity of high-quality data for research and the rare opportunity for in-depth exchange of views from industry and academia constrain the development of mobile intelligent photography and imaging (MIPI). Building on the achievements of the previous MIPI Workshops held at ECCV 2022 and CVPR 2023, we introduce our third MIPI challenge including three tracks focusing on novel image sensors and imaging algorithms. In this paper, we summarize and review the Nighttime Flare Removal track on MIPI 2024. In total, 170 participants were successfully registered, and 14 teams submitted results in the final testing phase. The developed solutions in this challenge achieved state-of-the-art performance on Nighttime Flare Removal. More details of this challenge and the link to the dataset can be found at https://mipi-challenge.org/MIPI2024/.
comment: CVPR 2024 Mobile Intelligent Photography and Imaging (MIPI) Workshop--Nighttime Flare Removal Challenge Report. Website: https://mipi-challenge.org/MIPI2024/
☆ MoST: Multi-modality Scene Tokenization for Motion Prediction CVPR 2024
Many existing motion prediction approaches rely on symbolic perception outputs to generate agent trajectories, such as bounding boxes, road graph information and traffic lights. This symbolic representation is a high-level abstraction of the real world, which may render the motion prediction model vulnerable to perception errors (e.g., failures in detecting open-vocabulary obstacles) while missing salient information from the scene context (e.g., poor road conditions). An alternative paradigm is end-to-end learning from raw sensors. However, this approach suffers from the lack of interpretability and requires significantly more training resources. In this work, we propose tokenizing the visual world into a compact set of scene elements and then leveraging pre-trained image foundation models and LiDAR neural networks to encode all the scene elements in an open-vocabulary manner. The image foundation model enables our scene tokens to encode the general knowledge of the open world while the LiDAR neural network encodes geometry information. Our proposed representation can efficiently encode the multi-frame multi-modality observations with a few hundred tokens and is compatible with most transformer-based architectures. To evaluate our method, we have augmented Waymo Open Motion Dataset with camera embeddings. Experiments over Waymo Open Motion Dataset show that our approach leads to significant performance improvements over the state-of-the-art.
comment: CVPR 2024
☆ MicroDreamer: Zero-shot 3D Generation in $\sim$20 Seconds by Score-based Iterative Reconstruction
Optimization-based approaches, such as score distillation sampling (SDS), show promise in zero-shot 3D generation but suffer from low efficiency, primarily due to the high number of function evaluations (NFEs) required for each sample. In this paper, we introduce score-based iterative reconstruction (SIR), an efficient and general algorithm for 3D generation with a multi-view score-based diffusion model. Given the images produced by the diffusion model, SIR reduces NFEs by repeatedly optimizing 3D parameters, unlike the single optimization in SDS, mimicking the 3D reconstruction process. With other improvements including optimization in the pixel space, we present an efficient approach called MicroDreamer that generally applies to various 3D representations and 3D generation tasks. In particular, retaining a comparable performance, MicroDreamer is 5-20 times faster than SDS in generating neural radiance field and takes about 20 seconds to generate meshes from 3D Gaussian splitting on a single A100 GPU, halving the time of the fastest zero-shot baseline, DreamGaussian. Our code is available at https://github.com/ML-GSAI/MicroDreamer.
☆ A Smartphone-Based Method for Assessing Tomato Nutrient Status through Trichome Density Measurement
Accurately assessing tomato plant nutrient status is crucial for maintaining high yields. Consequently, accurately identifying fertilizer-induced stress through the morphological traits of tomato plants has become a critical agricultural challenge. Research and development efforts have focused on developing noninvasive diagnostic tools for nutrition that leverage a combination of morphological traits and advanced sensor technologies. Given these advancements, detecting fertilizer stress by observing morphological traits near the growth points of tomatoes is still a significant challenge. To address this challenge, we developed a simple and cost-effective smartphone-based method for measuring trichome density. This method involves transferring trichomes from the surface of a leaf onto cellophane tape and capturing images using a smartphone. The images are processed using computer vision techniques to calculate the trichome density. To assess the efficacy of this method, we performed experiments on hydroponically grown tomato plants subjected to varying fertilizer concentrations. Our results indicate that our novel method for measuring trichome density accurately reflects fertilizer stress in tomato plants. The predictive performance of our model, as evaluated by the mean area under the precision recall curve, was 0.824, despite variations in the measurement data caused by differences in optical conditions. This study introduces an innovative approach for designing diagnostic devices for detecting fertilizer stress in plants by considering the surface structures of plants. Our proposed method represents a straightforward, efficient, and economical approach for evaluating the nutrient status of tomato plants and has the potential to overcome the limitations of conventional noncontact optical methods.
☆ Towards Real-world Video Face Restoration: A New Benchmark
Blind face restoration (BFR) on images has significantly progressed over the last several years, while real-world video face restoration (VFR), which is more challenging for more complex face motions such as moving gaze directions and facial orientations involved, remains unsolved. Typical BFR methods are evaluated on privately synthesized datasets or self-collected real-world low-quality face images, which are limited in their coverage of real-world video frames. In this work, we introduced new real-world datasets named FOS with a taxonomy of "Full, Occluded, and Side" faces from mainly video frames to study the applicability of current methods on videos. Compared with existing test datasets, FOS datasets cover more diverse degradations and involve face samples from more complex scenarios, which helps to revisit current face restoration approaches more comprehensively. Given the established datasets, we benchmarked both the state-of-the-art BFR methods and the video super resolution (VSR) methods to comprehensively study current approaches, identifying their potential and limitations in VFR tasks. In addition, we studied the effectiveness of the commonly used image quality assessment (IQA) metrics and face IQA (FIQA) metrics by leveraging a subjective user study. With extensive experimental results and detailed analysis provided, we gained insights from the successes and failures of both current BFR and VSR methods. These results also pose challenges to current face restoration approaches, which we hope stimulate future advances in VFR research.
comment: Project page: https://ziyannchen.github.io/projects/VFRxBenchmark/
☆ EvGNN: An Event-driven Graph Neural Network Accelerator for Edge Vision
Edge vision systems combining sensing and embedded processing promise low-latency, decentralized, and energy-efficient solutions that forgo reliance on the cloud. As opposed to conventional frame-based vision sensors, event-based cameras deliver a microsecond-scale temporal resolution with sparse information encoding, thereby outlining new opportunities for edge vision systems. However, mainstream algorithms for frame-based vision, which mostly rely on convolutional neural networks (CNNs), can hardly exploit the advantages of event-based vision as they are typically optimized for dense matrix-vector multiplications. While event-driven graph neural networks (GNNs) have recently emerged as a promising solution for sparse event-based vision, their irregular structure is a challenge that currently hinders the design of efficient hardware accelerators. In this paper, we propose EvGNN, the first event-driven GNN accelerator for low-footprint, ultra-low-latency, and high-accuracy edge vision with event-based cameras. It relies on three central ideas: (i) directed dynamic graphs exploiting single-hop nodes with edge-free storage, (ii) event queues for the efficient identification of local neighbors within a spatiotemporally decoupled search range, and (iii) a novel layer-parallel processing scheme enabling the low-latency execution of multi-layer GNNs. We deployed EvGNN on a Xilinx KV260 Ultrascale+ MPSoC platform and benchmarked it on the N-CARS dataset for car recognition, demonstrating a classification accuracy of 87.8% and an average latency per event of 16$\mu$s, thereby enabling real-time, microsecond-resolution event-based vision at the edge.
comment: 12 pages, 14 figures
☆ SpecstatOR: Speckle statistics-based iOCT Segmentation Network for Ophthalmic Surgery
This paper presents an innovative approach to intraoperative Optical Coherence Tomography (iOCT) image segmentation in ophthalmic surgery, leveraging statistical analysis of speckle patterns to incorporate statistical pathology-specific prior knowledge. Our findings indicate statistically different speckle patterns within the retina and between retinal layers and surgical tools, facilitating the segmentation of previously unseen data without the necessity for manual labeling. The research involves fitting various statistical distributions to iOCT data, enabling the differentiation of different ocular structures and surgical tools. The proposed segmentation model aims to refine the statistical findings based on prior tissue understanding to leverage statistical and biological knowledge. Incorporating statistical parameters, physical analysis of light-tissue interaction, and deep learning informed by biological structures enhance segmentation accuracy, offering potential benefits to real-time applications in ophthalmic surgical procedures. The study demonstrates the adaptability and precision of using Gamma distribution parameters and the derived binary maps as sole inputs for segmentation, notably enhancing the model's inference performance on unseen data.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ TwinDiffusion: Enhancing Coherence and Efficiency in Panoramic Image Generation with Diffusion Models
Diffusion models have emerged as effective tools for generating diverse and high-quality content. However, their capability in high-resolution image generation, particularly for panoramic images, still faces challenges such as visible seams and incoherent transitions. In this paper, we propose TwinDiffusion, an optimized framework designed to address these challenges through two key innovations: Crop Fusion for quality enhancement and Cross Sampling for efficiency optimization. We introduce a training-free optimizing stage to refine the similarity of the adjacent image areas, as well as an interleaving sampling strategy to yield dynamic patches during the cropping process. A comprehensive evaluation is conducted to compare TwinDiffusion with the existing methods, considering factors including coherence, fidelity, compatibility, and efficiency. The results demonstrate the superior performance of our approach in generating seamless and coherent panoramas, setting a new standard in quality and efficiency for panoramic image generation.
☆ AttackBench: Evaluating Gradient-based Attacks for Adversarial Examples
Adversarial examples are typically optimized with gradient-based attacks. While novel attacks are continuously proposed, each is shown to outperform its predecessors using different experimental setups, hyperparameter settings, and number of forward and backward calls to the target models. This provides overly-optimistic and even biased evaluations that may unfairly favor one particular attack over the others. In this work, we aim to overcome these limitations by proposing AttackBench, i.e., the first evaluation framework that enables a fair comparison among different attacks. To this end, we first propose a categorization of gradient-based attacks, identifying their main components and differences. We then introduce our framework, which evaluates their effectiveness and efficiency. We measure these characteristics by (i) defining an optimality metric that quantifies how close an attack is to the optimal solution, and (ii) limiting the number of forward and backward queries to the model, such that all attacks are compared within a given maximum query budget. Our extensive experimental analysis compares more than 100 attack implementations with a total of over 800 different configurations against CIFAR-10 and ImageNet models, highlighting that only very few attacks outperform all the competing approaches. Within this analysis, we shed light on several implementation issues that prevent many attacks from finding better solutions or running at all. We release AttackBench as a publicly available benchmark, aiming to continuously update it to include and evaluate novel gradient-based attacks for optimizing adversarial examples.
comment: https://attackbench.github.io
☆ AnomalyXFusion: Multi-modal Anomaly Synthesis with Diffusion
Anomaly synthesis is one of the effective methods to augment abnormal samples for training. However, current anomaly synthesis methods predominantly rely on texture information as input, which limits the fidelity of synthesized abnormal samples. Because texture information is insufficient to correctly depict the pattern of anomalies, especially for logical anomalies. To surmount this obstacle, we present the AnomalyXFusion framework, designed to harness multi-modality information to enhance the quality of synthesized abnormal samples. The AnomalyXFusion framework comprises two distinct yet synergistic modules: the Multi-modal In-Fusion (MIF) module and the Dynamic Dif-Fusion (DDF) module. The MIF module refines modality alignment by aggregating and integrating various modality features into a unified embedding space, termed X-embedding, which includes image, text, and mask features. Concurrently, the DDF module facilitates controlled generation through an adaptive adjustment of X-embedding conditioned on the diffusion steps. In addition, to reveal the multi-modality representational power of AnomalyXFusion, we propose a new dataset, called MVTec Caption. More precisely, MVTec Caption extends 2.2k accurate image-mask-text annotations for the MVTec AD and LOCO datasets. Comprehensive evaluations demonstrate the effectiveness of AnomalyXFusion, especially regarding the fidelity and diversity for logical anomalies. Project page: http:github.com/hujiecpp/MVTec-Caption
☆ InstantFamily: Masked Attention for Zero-shot Multi-ID Image Generation
In the field of personalized image generation, the ability to create images preserving concepts has significantly improved. Creating an image that naturally integrates multiple concepts in a cohesive and visually appealing composition can indeed be challenging. This paper introduces "InstantFamily," an approach that employs a novel masked cross-attention mechanism and a multimodal embedding stack to achieve zero-shot multi-ID image generation. Our method effectively preserves ID as it utilizes global and local features from a pre-trained face recognition model integrated with text conditions. Additionally, our masked cross-attention mechanism enables the precise control of multi-ID and composition in the generated images. We demonstrate the effectiveness of InstantFamily through experiments showing its dominance in generating images with multi-ID, while resolving well-known multi-ID generation problems. Additionally, our model achieves state-of-the-art performance in both single-ID and multi-ID preservation. Furthermore, our model exhibits remarkable scalability with a greater number of ID preservation than it was originally trained with.
☆ Physical Backdoor: Towards Temperature-based Backdoor Attacks in the Physical World CVPR 2024
Backdoor attacks have been well-studied in visible light object detection (VLOD) in recent years. However, VLOD can not effectively work in dark and temperature-sensitive scenarios. Instead, thermal infrared object detection (TIOD) is the most accessible and practical in such environments. In this paper, our team is the first to investigate the security vulnerabilities associated with TIOD in the context of backdoor attacks, spanning both the digital and physical realms. We introduce two novel types of backdoor attacks on TIOD, each offering unique capabilities: Object-affecting Attack and Range-affecting Attack. We conduct a comprehensive analysis of key factors influencing trigger design, which include temperature, size, material, and concealment. These factors, especially temperature, significantly impact the efficacy of backdoor attacks on TIOD. A thorough understanding of these factors will serve as a foundation for designing physical triggers and temperature controlling experiments. Our study includes extensive experiments conducted in both digital and physical environments. In the digital realm, we evaluate our approach using benchmark datasets for TIOD, achieving an Attack Success Rate (ASR) of up to 98.21%. In the physical realm, we test our approach in two real-world settings: a traffic intersection and a parking lot, using a thermal infrared camera. Here, we attain an ASR of up to 98.38%.
comment: To appear in CVPR 2024.11pages, 8 figures and 4 tables
☆ UniFS: Universal Few-shot Instance Perception with Point Representations
Instance perception tasks (object detection, instance segmentation, pose estimation, counting) play a key role in industrial applications of visual models. As supervised learning methods suffer from high labeling cost, few-shot learning methods which effectively learn from a limited number of labeled examples are desired. Existing few-shot learning methods primarily focus on a restricted set of tasks, presumably due to the challenges involved in designing a generic model capable of representing diverse tasks in a unified manner. In this paper, we propose UniFS, a universal few-shot instance perception model that unifies a wide range of instance perception tasks by reformulating them into a dynamic point representation learning framework. Additionally, we propose Structure-Aware Point Learning (SAPL) to exploit the higher-order structural relationship among points to further enhance representation learning. Our approach makes minimal assumptions about the tasks, yet it achieves competitive results compared to highly specialized and well optimized specialist models. Codes will be released soon.
☆ 3D Gaussian Blendshapes for Head Avatar Animation SIGGRAPH
We introduce 3D Gaussian blendshapes for modeling photorealistic head avatars. Taking a monocular video as input, we learn a base head model of neutral expression, along with a group of expression blendshapes, each of which corresponds to a basis expression in classical parametric face models. Both the neutral model and expression blendshapes are represented as 3D Gaussians, which contain a few properties to depict the avatar appearance. The avatar model of an arbitrary expression can be effectively generated by combining the neutral model and expression blendshapes through linear blending of Gaussians with the expression coefficients. High-fidelity head avatar animations can be synthesized in real time using Gaussian splatting. Compared to state-of-the-art methods, our Gaussian blendshape representation better captures high-frequency details exhibited in input video, and achieves superior rendering performance.
comment: ACM SIGGRAPH Conference Proceedings 2024
☆ CLIP-Mamba: CLIP Pretrained Mamba Models with OOD and Hessian Evaluation
State space models and Mamba-based models have been increasingly applied across various domains, achieving state-of-the-art performance. This technical report introduces the first attempt to train a transferable Mamba model utilizing contrastive language-image pretraining (CLIP). We have trained Mamba models of varying sizes and undertaken comprehensive evaluations of these models on 26 zero-shot classification datasets and 16 out-of-distribution (OOD) datasets. Our findings reveal that a Mamba model with 67 million parameters is on par with a 307 million-parameter Vision Transformer (ViT) model in zero-shot classification tasks, highlighting the parameter efficiency of Mamba models. In tests of OOD generalization, Mamba-based models exhibit exceptional performance in conditions of OOD image contrast or when subjected to high-pass filtering. However, a Hessian analysis indicates that Mamba models feature a sharper and more non-convex landscape compared to ViT-based models, making them more challenging to train. The source code is available at https://github.com/raytrun/mamba-clip.
☆ Pseudo Label Refinery for Unsupervised Domain Adaptation on Cross-dataset 3D Object Detection CVPR2024
Recent self-training techniques have shown notable improvements in unsupervised domain adaptation for 3D object detection (3D UDA). These techniques typically select pseudo labels, i.e., 3D boxes, to supervise models for the target domain. However, this selection process inevitably introduces unreliable 3D boxes, in which 3D points cannot be definitively assigned as foreground or background. Previous techniques mitigate this by reweighting these boxes as pseudo labels, but these boxes can still poison the training process. To resolve this problem, in this paper, we propose a novel pseudo label refinery framework. Specifically, in the selection process, to improve the reliability of pseudo boxes, we propose a complementary augmentation strategy. This strategy involves either removing all points within an unreliable box or replacing it with a high-confidence box. Moreover, the point numbers of instances in high-beam datasets are considerably higher than those in low-beam datasets, also degrading the quality of pseudo labels during the training process. We alleviate this issue by generating additional proposals and aligning RoI features across different domains. Experimental results demonstrate that our method effectively enhances the quality of pseudo labels and consistently surpasses the state-of-the-art methods on six autonomous driving benchmarks. Code will be available at https://github.com/Zhanwei-Z/PERE.
comment: Accepted by CVPR2024
☆ Cross-Block Fine-Grained Semantic Cascade for Skeleton-Based Sports Action Recognition
Human action video recognition has recently attracted more attention in applications such as video security and sports posture correction. Popular solutions, including graph convolutional networks (GCNs) that model the human skeleton as a spatiotemporal graph, have proven very effective. GCNs-based methods with stacked blocks usually utilize top-layer semantics for classification/annotation purposes. Although the global features learned through the procedure are suitable for the general classification, they have difficulty capturing fine-grained action change across adjacent frames -- decisive factors in sports actions. In this paper, we propose a novel ``Cross-block Fine-grained Semantic Cascade (CFSC)'' module to overcome this challenge. In summary, the proposed CFSC progressively integrates shallow visual knowledge into high-level blocks to allow networks to focus on action details. In particular, the CFSC module utilizes the GCN feature maps produced at different levels, as well as aggregated features from proceeding levels to consolidate fine-grained features. In addition, a dedicated temporal convolution is applied at each level to learn short-term temporal features, which will be carried over from shallow to deep layers to maximize the leverage of low-level details. This cross-block feature aggregation methodology, capable of mitigating the loss of fine-grained information, has resulted in improved performance. Last, FD-7, a new action recognition dataset for fencing sports, was collected and will be made publicly available. Experimental results and empirical analysis on public benchmarks (FSD-10) and self-collected (FD-7) demonstrate the advantage of our CFSC module on learning discriminative patterns for action classification over others.
☆ Probing Unlearned Diffusion Models: A Transferable Adversarial Attack Perspective
Advanced text-to-image diffusion models raise safety concerns regarding identity privacy violation, copyright infringement, and Not Safe For Work content generation. Towards this, unlearning methods have been developed to erase these involved concepts from diffusion models. However, these unlearning methods only shift the text-to-image mapping and preserve the visual content within the generative space of diffusion models, leaving a fatal flaw for restoring these erased concepts. This erasure trustworthiness problem needs probe, but previous methods are sub-optimal from two perspectives: (1) Lack of transferability: Some methods operate within a white-box setting, requiring access to the unlearned model. And the learned adversarial input often fails to transfer to other unlearned models for concept restoration; (2) Limited attack: The prompt-level methods struggle to restore narrow concepts from unlearned models, such as celebrity identity. Therefore, this paper aims to leverage the transferability of the adversarial attack to probe the unlearning robustness under a black-box setting. This challenging scenario assumes that the unlearning method is unknown and the unlearned model is inaccessible for optimization, requiring the attack to be capable of transferring across different unlearned models. Specifically, we employ an adversarial search strategy to search for the adversarial embedding which can transfer across different unlearned models. This strategy adopts the original Stable Diffusion model as a surrogate model to iteratively erase and search for embeddings, enabling it to find the embedding that can restore the target concept for different unlearning methods. Extensive experiments demonstrate the transferability of the searched adversarial embedding across several state-of-the-art unlearning methods and its effectiveness for different levels of concepts.
☆ SemanticFormer: Holistic and Semantic Traffic Scene Representation for Trajectory Prediction using Knowledge Graphs
Trajectory prediction in autonomous driving relies on accurate representation of all relevant contexts of the driving scene including traffic participants, road topology, traffic signs as well as their semantic relations to each other. Despite increased attention to this issue, most approaches in trajectory prediction do not consider all of these factors sufficiently. This paper describes a method SemanticFormer to predict multimodal trajectories by reasoning over a semantic traffic scene graph using a hybrid approach. We extract high-level information in the form of semantic meta-paths from a knowledge graph which is then processed by a novel pipeline based on multiple attention mechanisms to predict accurate trajectories. The proposed architecture comprises a hierarchical heterogeneous graph encoder, which can capture spatio-temporal and relational information across agents and between agents and road elements, and a predictor that fuses the different encodings and decodes trajectories with probabilities. Finally, a refinement module evaluates permitted meta-paths of trajectories and speed profiles to obtain final predicted trajectories. Evaluation of the nuScenes benchmark demonstrates improved performance compared to the state-of-the-art methods.
comment: 8 pages, 6 figures, submitted to RA-L
☆ Large Language Model Informed Patent Image Retrieval
In patent prosecution, image-based retrieval systems for identifying similarities between current patent images and prior art are pivotal to ensure the novelty and non-obviousness of patent applications. Despite their growing popularity in recent years, existing attempts, while effective at recognizing images within the same patent, fail to deliver practical value due to their limited generalizability in retrieving relevant prior art. Moreover, this task inherently involves the challenges posed by the abstract visual features of patent images, the skewed distribution of image classifications, and the semantic information of image descriptions. Therefore, we propose a language-informed, distribution-aware multimodal approach to patent image feature learning, which enriches the semantic understanding of patent image by integrating Large Language Models and improves the performance of underrepresented classes with our proposed distribution-aware contrastive losses. Extensive experiments on DeepPatent2 dataset show that our proposed method achieves state-of-the-art or comparable performance in image-based patent retrieval with mAP +53.3%, Recall@10 +41.8%, and MRR@10 +51.9%. Furthermore, through an in-depth user analysis, we explore our model in aiding patent professionals in their image retrieval efforts, highlighting the model's real-world applicability and effectiveness.
comment: 8 pages. Under review
☆ Reliable or Deceptive? Investigating Gated Features for Smooth Visual Explanations in CNNs
Deep learning models have achieved remarkable success across diverse domains. However, the intricate nature of these models often impedes a clear understanding of their decision-making processes. This is where Explainable AI (XAI) becomes indispensable, offering intuitive explanations for model decisions. In this work, we propose a simple yet highly effective approach, ScoreCAM++, which introduces modifications to enhance the promising ScoreCAM method for visual explainability. Our proposed approach involves altering the normalization function within the activation layer utilized in ScoreCAM, resulting in significantly improved results compared to previous efforts. Additionally, we apply an activation function to the upsampled activation layers to enhance interpretability. This improvement is achieved by selectively gating lower-priority values within the activation layer. Through extensive experiments and qualitative comparisons, we demonstrate that ScoreCAM++ consistently achieves notably superior performance and fairness in interpreting the decision-making process compared to both ScoreCAM and previous methods.
☆ Multi-Scale Heterogeneity-Aware Hypergraph Representation for Histopathology Whole Slide Images ICME2024
Survival prediction is a complex ordinal regression task that aims to predict the survival coefficient ranking among a cohort of patients, typically achieved by analyzing patients' whole slide images. Existing deep learning approaches mainly adopt multiple instance learning or graph neural networks under weak supervision. Most of them are unable to uncover the diverse interactions between different types of biological entities(\textit{e.g.}, cell cluster and tissue block) across multiple scales, while such interactions are crucial for patient survival prediction. In light of this, we propose a novel multi-scale heterogeneity-aware hypergraph representation framework. Specifically, our framework first constructs a multi-scale heterogeneity-aware hypergraph and assigns each node with its biological entity type. It then mines diverse interactions between nodes on the graph structure to obtain a global representation. Experimental results demonstrate that our method outperforms state-of-the-art approaches on three benchmark datasets. Code is publicly available at \href{https://github.com/Hanminghao/H2GT}{https://github.com/Hanminghao/H2GT}.
comment: 9 pages, 6 figures, accepted by ICME2024
☆ G2LTraj: A Global-to-Local Generation Approach for Trajectory Prediction IJCAI 2024
Predicting future trajectories of traffic agents accurately holds substantial importance in various applications such as autonomous driving. Previous methods commonly infer all future steps of an agent either recursively or simultaneously. However, the recursive strategy suffers from the accumulated error, while the simultaneous strategy overlooks the constraints among future steps, resulting in kinematically infeasible predictions. To address these issues, in this paper, we propose G2LTraj, a plug-and-play global-to-local generation approach for trajectory prediction. Specifically, we generate a series of global key steps that uniformly cover the entire future time range. Subsequently, the local intermediate steps between the adjacent key steps are recursively filled in. In this way, we prevent the accumulated error from propagating beyond the adjacent key steps. Moreover, to boost the kinematical feasibility, we not only introduce the spatial constraints among key steps but also strengthen the temporal constraints among the intermediate steps. Finally, to ensure the optimal granularity of key steps, we design a selectable granularity strategy that caters to each predicted trajectory. Our G2LTraj significantly improves the performance of seven existing trajectory predictors across the ETH, UCY and nuScenes datasets. Experimental results demonstrate its effectiveness. Code will be available at https://github.com/Zhanwei-Z/G2LTraj.
comment: Accepted by IJCAI 2024
☆ End-to-end information extraction in handwritten documents: Understanding Paris marriage records from 1880 to 1940 ICDAR 2024
The EXO-POPP project aims to establish a comprehensive database comprising 300,000 marriage records from Paris and its suburbs, spanning the years 1880 to 1940, which are preserved in over 130,000 scans of double pages. Each marriage record may encompass up to 118 distinct types of information that require extraction from plain text. In this paper, we introduce the M-POPP dataset, a subset of the M-POPP database with annotations for full-page text recognition and information extraction in both handwritten and printed documents, and which is now publicly available. We present a fully end-to-end architecture adapted from the DAN, designed to perform both handwritten text recognition and information extraction directly from page images without the need for explicit segmentation. We showcase the information extraction capabilities of this architecture by achieving a new state of the art for full-page Information Extraction on Esposalles and we use this architecture as a baseline for the M-POPP dataset. We also assess and compare how different encoding strategies for named entities in the text affect the performance of jointly recognizing handwritten text and extracting information, from full pages.
comment: To be published in: International Conference on Document Analysis and Recognition - ICDAR 2024
☆ LVOS: A Benchmark for Large-scale Long-term Video Object Segmentation
Video object segmentation (VOS) aims to distinguish and track target objects in a video. Despite the excellent performance achieved by off-the-shell VOS models, existing VOS benchmarks mainly focus on short-term videos lasting about 5 seconds, where objects remain visible most of the time. However, these benchmarks poorly represent practical applications, and the absence of long-term datasets restricts further investigation of VOS in realistic scenarios. Thus, we propose a novel benchmark named LVOS, comprising 720 videos with 296,401 frames and 407,945 high-quality annotations. Videos in LVOS last 1.14 minutes on average, approximately 5 times longer than videos in existing datasets. Each video includes various attributes, especially challenges deriving from the wild, such as long-term reappearing and cross-temporal similar objects. Compared to previous benchmarks, our LVOS better reflects VOS models' performance in real scenarios. Based on LVOS, we evaluate 20 existing VOS models under 4 different settings and conduct a comprehensive analysis. On LVOS, these models suffer a large performance drop, highlighting the challenge of achieving precise tracking and segmentation in real-world scenarios. Attribute-based analysis indicates that key factor to accuracy decline is the increased video length, emphasizing LVOS's crucial role. We hope our LVOS can advance development of VOS in real scenes. Data and code are available at https://lingyihongfd.github.io/lvos.github.io/.
comment: LVOS V2
☆ Revisiting N-Gram Models: Their Impact in Modern Neural Networks for Handwritten Text Recognition
In recent advances in automatic text recognition (ATR), deep neural networks have demonstrated the ability to implicitly capture language statistics, potentially reducing the need for traditional language models. This study directly addresses whether explicit language models, specifically n-gram models, still contribute to the performance of state-of-the-art deep learning architectures in the field of handwriting recognition. We evaluate two prominent neural network architectures, PyLaia and DAN, with and without the integration of explicit n-gram language models. Our experiments on three datasets - IAM, RIMES, and NorHand v2 - at both line and page level, investigate optimal parameters for n-gram models, including their order, weight, smoothing methods and tokenization level. The results show that incorporating character or subword n-gram models significantly improves the performance of ATR models on all datasets, challenging the notion that deep learning models alone are sufficient for optimal performance. In particular, the combination of DAN with a character language model outperforms current benchmarks, confirming the value of hybrid approaches in modern document analysis systems.
☆ A Light-weight Transformer-based Self-supervised Matching Network for Heterogeneous Images
Matching visible and near-infrared (NIR) images remains a significant challenge in remote sensing image fusion. The nonlinear radiometric differences between heterogeneous remote sensing images make the image matching task even more difficult. Deep learning has gained substantial attention in computer vision tasks in recent years. However, many methods rely on supervised learning and necessitate large amounts of annotated data. Nevertheless, annotated data is frequently limited in the field of remote sensing image matching. To address this challenge, this paper proposes a novel keypoint descriptor approach that obtains robust feature descriptors via a self-supervised matching network. A light-weight transformer network, termed as LTFormer, is designed to generate deep-level feature descriptors. Furthermore, we implement an innovative triplet loss function, LT Loss, to enhance the matching performance further. Our approach outperforms conventional hand-crafted local feature descriptors and proves equally competitive compared to state-of-the-art deep learning-based methods, even amidst the shortage of annotated data.
comment: accepted by Information Fusion
☆ Data Set Terminology of Artificial Intelligence in Medicine: A Historical Review and Recommendation
Medicine and artificial intelligence (AI) engineering represent two distinct fields each with decades of published history. With such history comes a set of terminology that has a specific way in which it is applied. However, when two distinct fields with overlapping terminology start to collaborate, miscommunication and misunderstandings can occur. This narrative review aims to give historical context for these terms, accentuate the importance of clarity when these terms are used in medical AI contexts, and offer solutions to mitigate misunderstandings by readers from either field. Through an examination of historical documents, including articles, writing guidelines, and textbooks, this review traces the divergent evolution of terms for data sets and their impact. Initially, the discordant interpretations of the word 'validation' in medical and AI contexts are explored. Then the data sets used for AI evaluation are classified, namely random splitting, cross-validation, temporal, geographic, internal, and external sets. The accurate and standardized description of these data sets is crucial for demonstrating the robustness and generalizability of AI applications in medicine. This review clarifies existing literature to provide a comprehensive understanding of these classifications and their implications in AI evaluation. This review then identifies often misunderstood terms and proposes pragmatic solutions to mitigate terminological confusion. Among these solutions are the use of standardized terminology such as 'training set,' 'validation (or tuning) set,' and 'test set,' and explicit definition of data set splitting terminologies in each medical AI research publication. This review aspires to enhance the precision of communication in medical AI, thereby fostering more effective and transparent research methodologies in this interdisciplinary field.
comment: Totally 20 pages, 3 figures, 3 tables
☆ Robust Pedestrian Detection via Constructing Versatile Pedestrian Knowledge Bank
Pedestrian detection is a crucial field of computer vision research which can be adopted in various real-world applications (e.g., self-driving systems). However, despite noticeable evolution of pedestrian detection, pedestrian representations learned within a detection framework are usually limited to particular scene data in which they were trained. Therefore, in this paper, we propose a novel approach to construct versatile pedestrian knowledge bank containing representative pedestrian knowledge which can be applicable to various detection frameworks and adopted in diverse scenes. We extract generalized pedestrian knowledge from a large-scale pretrained model, and we curate them by quantizing most representative features and guiding them to be distinguishable from background scenes. Finally, we construct versatile pedestrian knowledge bank which is composed of such representations, and then we leverage it to complement and enhance pedestrian features within a pedestrian detection framework. Through comprehensive experiments, we validate the effectiveness of our method, demonstrating its versatility and outperforming state-of-the-art detection performances.
☆ Masked Spatial Propagation Network for Sparsity-Adaptive Depth Refinement
The main function of depth completion is to compensate for an insufficient and unpredictable number of sparse depth measurements of hardware sensors. However, existing research on depth completion assumes that the sparsity -- the number of points or LiDAR lines -- is fixed for training and testing. Hence, the completion performance drops severely when the number of sparse depths changes significantly. To address this issue, we propose the sparsity-adaptive depth refinement (SDR) framework, which refines monocular depth estimates using sparse depth points. For SDR, we propose the masked spatial propagation network (MSPN) to perform SDR with a varying number of sparse depths effectively by gradually propagating sparse depth information throughout the entire depth map. Experimental results demonstrate that MPSN achieves state-of-the-art performance on both SDR and conventional depth completion scenarios.
☆ On Improving the Algorithm-, Model-, and Data- Efficiency of Self-Supervised Learning
Self-supervised learning (SSL) has developed rapidly in recent years. However, most of the mainstream methods are computationally expensive and rely on two (or more) augmentations for each image to construct positive pairs. Moreover, they mainly focus on large models and large-scale datasets, which lack flexibility and feasibility in many practical applications. In this paper, we propose an efficient single-branch SSL method based on non-parametric instance discrimination, aiming to improve the algorithm, model, and data efficiency of SSL. By analyzing the gradient formula, we correct the update rule of the memory bank with improved performance. We further propose a novel self-distillation loss that minimizes the KL divergence between the probability distribution and its square root version. We show that this alleviates the infrequent updating problem in instance discrimination and greatly accelerates convergence. We systematically compare the training overhead and performance of different methods in different scales of data, and under different backbones. Experimental results show that our method outperforms various baselines with significantly less overhead, and is especially effective for limited amounts of data and small models.
comment: 13 pages, 7 figures
☆ Revisiting the Adversarial Robustness of Vision Language Models: a Multimodal Perspective
Pretrained vision-language models (VLMs) like CLIP have shown impressive generalization performance across various downstream tasks, yet they remain vulnerable to adversarial attacks. While prior research has primarily concentrated on improving the adversarial robustness of image encoders to guard against attacks on images, the exploration of text-based and multimodal attacks has largely been overlooked. In this work, we initiate the first known and comprehensive effort to study adapting vision-language models for adversarial robustness under the multimodal attack. Firstly, we introduce a multimodal attack strategy and investigate the impact of different attacks. We then propose a multimodal contrastive adversarial training loss, aligning the clean and adversarial text embeddings with the adversarial and clean visual features, to enhance the adversarial robustness of both image and text encoders of CLIP. Extensive experiments on 15 datasets across two tasks demonstrate that our method significantly improves the adversarial robustness of CLIP. Interestingly, we find that the model fine-tuned against multimodal adversarial attacks exhibits greater robustness than its counterpart fine-tuned solely against image-based attacks, even in the context of image attacks, which may open up new possibilities for enhancing the security of VLMs.
comment: 16 pages, 14 figures
☆ Soft Prompt Generation for Domain Generalization
Large pre-trained vision language models (VLMs) have shown impressive zero-shot ability on downstream tasks with manually designed prompt, which are not optimal for specific domains. To further adapt VLMs to downstream tasks, soft prompt is proposed to replace manually designed prompt, which acts as a learning vector that undergoes fine-tuning based on specific domain data. Prior prompt learning methods primarily learn a fixed prompt and residuled prompt from training samples. However, the learned prompts lack diversity and ignore information about unseen domains, potentially compromising the transferability of the prompts. In this paper, we reframe the prompt learning framework from a generative perspective and propose a simple yet efficient method for the Domain Generalization (DG) task, namely \textbf{S}oft \textbf{P}rompt \textbf{G}eneration (SPG). To the best of our knowledge, we are the first to introduce the generative model into prompt learning in VLMs and explore its potential for producing soft prompts by relying solely on the generative model, ensuring the diversity of prompts. Specifically, SPG consists of a two-stage training phase and an inference phase. During the training phase, we introduce soft prompt labels for each domain, aiming to incorporate the generative model domain knowledge. During the inference phase, the generator of the generative model is employed to obtain instance-specific soft prompts for the unseen target domain. Extensive experiments on five domain generalization benchmarks of three DG tasks demonstrate that our proposed SPG achieves state-of-the-art performance. The code will be available soon.
comment: 23 pages, 4 figures
☆ Quater-GCN: Enhancing 3D Human Pose Estimation with Orientation and Semi-supervised Training
3D human pose estimation is a vital task in computer vision, involving the prediction of human joint positions from images or videos to reconstruct a skeleton of a human in three-dimensional space. This technology is pivotal in various fields, including animation, security, human-computer interaction, and automotive safety, where it promotes both technological progress and enhanced human well-being. The advent of deep learning significantly advances the performance of 3D pose estimation by incorporating temporal information for predicting the spatial positions of human joints. However, traditional methods often fall short as they primarily focus on the spatial coordinates of joints and overlook the orientation and rotation of the connecting bones, which are crucial for a comprehensive understanding of human pose in 3D space. To address these limitations, we introduce Quater-GCN (Q-GCN), a directed graph convolutional network tailored to enhance pose estimation by orientation. Q-GCN excels by not only capturing the spatial dependencies among node joints through their coordinates but also integrating the dynamic context of bone rotations in 2D space. This approach enables a more sophisticated representation of human poses by also regressing the orientation of each bone in 3D space, moving beyond mere coordinate prediction. Furthermore, we complement our model with a semi-supervised training strategy that leverages unlabeled data, addressing the challenge of limited orientation ground truth data. Through comprehensive evaluations, Q-GCN has demonstrated outstanding performance against current state-of-the-art methods.
☆ Bridge to Non-Barrier Communication: Gloss-Prompted Fine-grained Cued Speech Gesture Generation with Diffusion Model
Cued Speech (CS) is an advanced visual phonetic encoding system that integrates lip reading with hand codings, enabling people with hearing impairments to communicate efficiently. CS video generation aims to produce specific lip and gesture movements of CS from audio or text inputs. The main challenge is that given limited CS data, we strive to simultaneously generate fine-grained hand and finger movements, as well as lip movements, meanwhile the two kinds of movements need to be asynchronously aligned. Existing CS generation methods are fragile and prone to poor performance due to template-based statistical models and careful hand-crafted pre-processing to fit the models. Therefore, we propose a novel Gloss-prompted Diffusion-based CS Gesture generation framework (called GlossDiff). Specifically, to integrate additional linguistic rules knowledge into the model. we first introduce a bridging instruction called \textbf{Gloss}, which is an automatically generated descriptive text to establish a direct and more delicate semantic connection between spoken language and CS gestures. Moreover, we first suggest rhythm is an important paralinguistic feature for CS to improve the communication efficacy. Therefore, we propose a novel Audio-driven Rhythmic Module (ARM) to learn rhythm that matches audio speech. Moreover, in this work, we design, record, and publish the first Chinese CS dataset with four CS cuers. Extensive experiments demonstrate that our method quantitatively and qualitatively outperforms current state-of-the-art (SOTA) methods. We release the code and data at https://glossdiff.github.io/.
☆ C2FDrone: Coarse-to-Fine Drone-to-Drone Detection using Vision Transformer Networks ICRA 2024
A vision-based drone-to-drone detection system is crucial for various applications like collision avoidance, countering hostile drones, and search-and-rescue operations. However, detecting drones presents unique challenges, including small object sizes, distortion, occlusion, and real-time processing requirements. Current methods integrating multi-scale feature fusion and temporal information have limitations in handling extreme blur and minuscule objects. To address this, we propose a novel coarse-to-fine detection strategy based on vision transformers. We evaluate our approach on three challenging drone-to-drone detection datasets, achieving F1 score enhancements of 7%, 3%, and 1% on the FL-Drones, AOT, and NPS-Drones datasets, respectively. Additionally, we demonstrate real-time processing capabilities by deploying our model on an edge-computing device. Our code will be made publicly available.
comment: Accepted at ICRA 2024
☆ Mapping New Realities: Ground Truth Image Creation with Pix2Pix Image-to-Image Translation
Generative Adversarial Networks (GANs) have significantly advanced image processing, with Pix2Pix being a notable framework for image-to-image translation. This paper explores a novel application of Pix2Pix to transform abstract map images into realistic ground truth images, addressing the scarcity of such images crucial for domains like urban planning and autonomous vehicle training. We detail the Pix2Pix model's utilization for generating high-fidelity datasets, supported by a dataset of paired map and aerial images, and enhanced by a tailored training regimen. The results demonstrate the model's capability to accurately render complex urban features, establishing its efficacy and potential for broad real-world applications.
☆ DELINE8K: A Synthetic Data Pipeline for the Semantic Segmentation of Historical Documents
Document semantic segmentation is a promising avenue that can facilitate document analysis tasks, including optical character recognition (OCR), form classification, and document editing. Although several synthetic datasets have been developed to distinguish handwriting from printed text, they fall short in class variety and document diversity. We demonstrate the limitations of training on existing datasets when solving the National Archives Form Semantic Segmentation dataset (NAFSS), a dataset which we introduce. To address these limitations, we propose the most comprehensive document semantic segmentation synthesis pipeline to date, incorporating preprinted text, handwriting, and document backgrounds from over 10 sources to create the Document Element Layer INtegration Ensemble 8K, or DELINE8K dataset. Our customized dataset exhibits superior performance on the NAFSS benchmark, demonstrating it as a promising tool in further research. The DELINE8K dataset is available at https://github.com/Tahlor/deline8k.
☆ Enhancing Intrinsic Features for Debiasing via Investigating Class-Discerning Common Attributes in Bias-Contrastive Pair CVPR 2024
In the image classification task, deep neural networks frequently rely on bias attributes that are spuriously correlated with a target class in the presence of dataset bias, resulting in degraded performance when applied to data without bias attributes. The task of debiasing aims to compel classifiers to learn intrinsic attributes that inherently define a target class rather than focusing on bias attributes. While recent approaches mainly focus on emphasizing the learning of data samples without bias attributes (i.e., bias-conflicting samples) compared to samples with bias attributes (i.e., bias-aligned samples), they fall short of directly guiding models where to focus for learning intrinsic features. To address this limitation, this paper proposes a method that provides the model with explicit spatial guidance that indicates the region of intrinsic features. We first identify the intrinsic features by investigating the class-discerning common features between a bias-aligned (BA) sample and a bias-conflicting (BC) sample (i.e., bias-contrastive pair). Next, we enhance the intrinsic features in the BA sample that are relatively under-exploited for prediction compared to the BC sample. To construct the bias-contrastive pair without using bias information, we introduce a bias-negative score that distinguishes BC samples from BA samples employing a biased model. The experiments demonstrate that our method achieves state-of-the-art performance on synthetic and real-world datasets with various levels of bias severity.
comment: Accepted to CVPR 2024
☆ Transition Rate Scheduling for Quantization-Aware Training
Quantization-aware training (QAT) simulates a quantization process during training to lower bit-precision of weights/activations. It learns quantized weights indirectly by updating latent weights, i.e., full-precision inputs to a quantizer, using gradient-based optimizers. We claim that coupling a user-defined learning rate (LR) with these optimizers is sub-optimal for QAT. Quantized weights transit discrete levels of a quantizer, only if corresponding latent weights pass transition points, where the quantizer changes discrete states. This suggests that the changes of quantized weights are affected by both the LR for latent weights and their distributions. It is thus difficult to control the degree of changes for quantized weights by scheduling the LR manually. We conjecture that the degree of parameter changes in QAT is related to the number of quantized weights transiting discrete levels. Based on this, we introduce a transition rate (TR) scheduling technique that controls the number of transitions of quantized weights explicitly. Instead of scheduling a LR for latent weights, we schedule a target TR of quantized weights, and update the latent weights with a novel transition-adaptive LR (TALR), enabling considering the degree of changes for the quantized weights during QAT. Experimental results demonstrate the effectiveness of our approach on standard benchmarks.
comment: Submitted to IEEE TPAMI on Apr. 03, 2023
☆ Improved AutoEncoder with LSTM module and KL divergence
The task of anomaly detection is to separate anomalous data from normal data in the dataset. Models such as deep convolutional autoencoder (CAE) network and deep supporting vector data description (SVDD) model have been universally employed and have demonstrated significant success in detecting anomalies. However, the over-reconstruction ability of CAE network for anomalous data can easily lead to high false negative rate in detecting anomalous data. On the other hand, the deep SVDD model has the drawback of feature collapse, which leads to a decrease of detection accuracy for anomalies. To address these problems, we propose the Improved AutoEncoder with LSTM module and Kullback-Leibler divergence (IAE-LSTM-KL) model in this paper. An LSTM network is added after the encoder to memorize feature representations of normal data. In the meanwhile, the phenomenon of feature collapse can also be mitigated by penalizing the featured input to SVDD module via KL divergence. The efficacy of the IAE-LSTM-KL model is validated through experiments on both synthetic and real-world datasets. Experimental results show that IAE-LSTM-KL model yields higher detection accuracy for anomalies. In addition, it is also found that the IAE-LSTM-KL model demonstrates enhanced robustness to contaminated outliers in the dataset.
☆ A Minimal Set of Parameters Based Depth-Dependent Distortion Model and Its Calibration Method for Stereo Vision Systems
Depth position highly affects lens distortion, especially in close-range photography, which limits the measurement accuracy of existing stereo vision systems. Moreover, traditional depth-dependent distortion models and their calibration methods have remained complicated. In this work, we propose a minimal set of parameters based depth-dependent distortion model (MDM), which considers the radial and decentering distortions of the lens to improve the accuracy of stereo vision systems and simplify their calibration process. In addition, we present an easy and flexible calibration method for the MDM of stereo vision systems with a commonly used planar pattern, which requires cameras to observe the planar pattern in different orientations. The proposed technique is easy to use and flexible compared with classical calibration techniques for depth-dependent distortion models in which the lens must be perpendicular to the planar pattern. The experimental validation of the MDM and its calibration method showed that the MDM improved the calibration accuracy by 56.55% and 74.15% compared with the Li's distortion model and traditional Brown's distortion model. Besides, an iteration-based reconstruction method is proposed to iteratively estimate the depth information in the MDM during three-dimensional reconstruction. The results showed that the accuracy of the iteration-based reconstruction method was improved by 9.08% compared with that of the non-iteration reconstruction method.
comment: This paper has been accepted for publication in IEEE Transactions on Instrumentation and Measurement
☆ Espresso: Robust Concept Filtering in Text-to-Image Models
Diffusion-based text-to-image (T2I) models generate high-fidelity images for given textual prompts. They are trained on large datasets scraped from the Internet, potentially containing unacceptable concepts (e.g., copyright infringing or unsafe). Retraining T2I models after filtering out unacceptable concepts in the training data is inefficient and degrades utility. Hence, there is a need for concept removal techniques (CRTs) which are effective in removing unacceptable concepts, utility-preserving on acceptable concepts, and robust against evasion with adversarial prompts. None of the prior filtering and fine-tuning CRTs satisfy all these requirements simultaneously. We introduce Espresso, the first robust concept filter based on Contrastive Language-Image Pre-Training (CLIP). It identifies unacceptable concepts by projecting the generated image's embedding onto the vector connecting unacceptable and acceptable concepts in the joint text-image embedding space. This ensures robustness by restricting the adversary to adding noise only along this vector, in the direction of the acceptable concept. Further fine-tuning Espresso to separate embeddings of acceptable and unacceptable concepts, while preserving their pairing with image embeddings, ensures both effectiveness and utility. We evaluate Espresso on eleven concepts to show that it is effective (~5% CLIP accuracy on unacceptable concepts), utility-preserving (~93% normalized CLIP score on acceptable concepts), and robust (~4% CLIP accuracy on adversarial prompts for unacceptable concepts). Finally, we present theoretical bounds for the certified robustness of Espresso against adversarial prompts, and an empirical analysis.
☆ Transcrib3D: 3D Referring Expression Resolution through Large Language Models
If robots are to work effectively alongside people, they must be able to interpret natural language references to objects in their 3D environment. Understanding 3D referring expressions is challenging -- it requires the ability to both parse the 3D structure of the scene and correctly ground free-form language in the presence of distraction and clutter. We introduce Transcrib3D, an approach that brings together 3D detection methods and the emergent reasoning capabilities of large language models (LLMs). Transcrib3D uses text as the unifying medium, which allows us to sidestep the need to learn shared representations connecting multi-modal inputs, which would require massive amounts of annotated 3D data. As a demonstration of its effectiveness, Transcrib3D achieves state-of-the-art results on 3D reference resolution benchmarks, with a great leap in performance from previous multi-modality baselines. To improve upon zero-shot performance and facilitate local deployment on edge computers and robots, we propose self-correction for fine-tuning that trains smaller models, resulting in performance close to that of large models. We show that our method enables a real robot to perform pick-and-place tasks given queries that contain challenging referring expressions. Project site is at https://ripl.github.io/Transcrib3D.
comment: CORLW 2023
☆ TableVQA-Bench: A Visual Question Answering Benchmark on Multiple Table Domains
In this paper, we establish a benchmark for table visual question answering, referred to as the TableVQA-Bench, derived from pre-existing table question-answering (QA) and table structure recognition datasets. It is important to note that existing datasets have not incorporated images or QA pairs, which are two crucial components of TableVQA. As such, the primary objective of this paper is to obtain these necessary components. Specifically, images are sourced either through the application of a \textit{stylesheet} or by employing the proposed table rendering system. QA pairs are generated by exploiting the large language model (LLM) where the input is a text-formatted table. Ultimately, the completed TableVQA-Bench comprises 1,500 QA pairs. We comprehensively compare the performance of various multi-modal large language models (MLLMs) on TableVQA-Bench. GPT-4V achieves the highest accuracy among commercial and open-sourced MLLMs from our experiments. Moreover, we discover that the number of vision queries plays a significant role in TableVQA performance. To further analyze the capabilities of MLLMs in comparison to their LLM backbones, we investigate by presenting image-formatted tables to MLLMs and text-formatted tables to LLMs, respectively. Our findings suggest that processing visual inputs is more challenging than text inputs, as evidenced by the lower performance of MLLMs, despite generally requiring higher computational costs than LLMs. The proposed TableVQA-Bench and evaluation codes are available at \href{https://github.com/naver-ai/tablevqabench}{https://github.com/naver-ai/tablevqabench}.
comment: Technical Report
☆ NeRF-Insert: 3D Local Editing with Multimodal Control Signals
We propose NeRF-Insert, a NeRF editing framework that allows users to make high-quality local edits with a flexible level of control. Unlike previous work that relied on image-to-image models, we cast scene editing as an in-painting problem, which encourages the global structure of the scene to be preserved. Moreover, while most existing methods use only textual prompts to condition edits, our framework accepts a combination of inputs of different modalities as reference. More precisely, a user may provide a combination of textual and visual inputs including images, CAD models, and binary image masks for specifying a 3D region. We use generic image generation models to in-paint the scene from multiple viewpoints, and lift the local edits to a 3D-consistent NeRF edit. Compared to previous methods, our results show better visual quality and also maintain stronger consistency with the original NeRF.
☆ Global Search Optics: Automatically Exploring Optimal Solutions to Compact Computational Imaging Systems
The popularity of mobile vision creates a demand for advanced compact computational imaging systems, which call for the development of both a lightweight optical system and an effective image reconstruction model. Recently, joint design pipelines come to the research forefront, where the two significant components are simultaneously optimized via data-driven learning to realize the optimal system design. However, the effectiveness of these designs largely depends on the initial setup of the optical system, complicated by a non-convex solution space that impedes reaching a globally optimal solution. In this work, we present Global Search Optics (GSO) to automatically design compact computational imaging systems through two parts: (i) Fused Optimization Method for Automatic Optical Design (OptiFusion), which searches for diverse initial optical systems under certain design specifications; and (ii) Efficient Physic-aware Joint Optimization (EPJO), which conducts parallel joint optimization of initial optical systems and image reconstruction networks with the consideration of physical constraints, culminating in the selection of the optimal solution. Extensive experimental results on the design of three-piece (3P) sphere computational imaging systems illustrate that the GSO serves as a transformative end-to-end lens design paradigm for superior global optimal structure searching ability, which provides compact computational imaging systems with higher imaging quality compared to traditional methods. The source code will be made publicly available at https://github.com/wumengshenyou/GSO.
comment: The source code will be made publicly available at https://github.com/wumengshenyou/GSO
☆ XFeat: Accelerated Features for Lightweight Image Matching CVPR 2024
We introduce a lightweight and accurate architecture for resource-efficient visual correspondence. Our method, dubbed XFeat (Accelerated Features), revisits fundamental design choices in convolutional neural networks for detecting, extracting, and matching local features. Our new model satisfies a critical need for fast and robust algorithms suitable to resource-limited devices. In particular, accurate image matching requires sufficiently large image resolutions - for this reason, we keep the resolution as large as possible while limiting the number of channels in the network. Besides, our model is designed to offer the choice of matching at the sparse or semi-dense levels, each of which may be more suitable for different downstream applications, such as visual navigation and augmented reality. Our model is the first to offer semi-dense matching efficiently, leveraging a novel match refinement module that relies on coarse local descriptors. XFeat is versatile and hardware-independent, surpassing current deep learning-based local features in speed (up to 5x faster) with comparable or better accuracy, proven in pose estimation and visual localization. We showcase it running in real-time on an inexpensive laptop CPU without specialized hardware optimizations. Code and weights are available at www.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24.
comment: CVPR 2024; Source code available at www.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24
☆ Explicit Correlation Learning for Generalizable Cross-Modal Deepfake Detection ICME 2024
With the rising prevalence of deepfakes, there is a growing interest in developing generalizable detection methods for various types of deepfakes. While effective in their specific modalities, traditional detection methods fall short in addressing the generalizability of detection across diverse cross-modal deepfakes. This paper aims to explicitly learn potential cross-modal correlation to enhance deepfake detection towards various generation scenarios. Our approach introduces a correlation distillation task, which models the inherent cross-modal correlation based on content information. This strategy helps to prevent the model from overfitting merely to audio-visual synchronization. Additionally, we present the Cross-Modal Deepfake Dataset (CMDFD), a comprehensive dataset with four generation methods to evaluate the detection of diverse cross-modal deepfakes. The experimental results on CMDFD and FakeAVCeleb datasets demonstrate the superior generalizability of our method over existing state-of-the-art methods. Our code and data can be found at \url{https://github.com/ljj898/CMDFD-Dataset-and-Deepfake-Detection}.
comment: accepted by ICME 2024
☆ PEVA-Net: Prompt-Enhanced View Aggregation Network for Zero/Few-Shot Multi-View 3D Shape Recognition
Large vision-language models have impressively promote the performance of 2D visual recognition under zero/few-shot scenarios. In this paper, we focus on exploiting the large vision-language model, i.e., CLIP, to address zero/few-shot 3D shape recognition based on multi-view representations. The key challenge for both tasks is to generate a discriminative descriptor of the 3D shape represented by multiple view images under the scenarios of either without explicit training (zero-shot 3D shape recognition) or training with a limited number of data (few-shot 3D shape recognition). We analyze that both tasks are relevant and can be considered simultaneously. Specifically, leveraging the descriptor which is effective for zero-shot inference to guide the tuning of the aggregated descriptor under the few-shot training can significantly improve the few-shot learning efficacy. Hence, we propose Prompt-Enhanced View Aggregation Network (PEVA-Net) to simultaneously address zero/few-shot 3D shape recognition. Under the zero-shot scenario, we propose to leverage the prompts built up from candidate categories to enhance the aggregation process of multiple view-associated visual features. The resulting aggregated feature serves for effective zero-shot recognition of the 3D shapes. Under the few-shot scenario, we first exploit a transformer encoder to aggregate the view-associated visual features into a global descriptor. To tune the encoder, together with the main classification loss, we propose a self-distillation scheme via a feature distillation loss by treating the zero-shot descriptor as the guidance signal for the few-shot descriptor. This scheme can significantly enhance the few-shot learning efficacy.
☆ Semantically Consistent Video Inpainting with Conditional Diffusion Models
Current state-of-the-art methods for video inpainting typically rely on optical flow or attention-based approaches to inpaint masked regions by propagating visual information across frames. While such approaches have led to significant progress on standard benchmarks, they struggle with tasks that require the synthesis of novel content that is not present in other frames. In this paper we reframe video inpainting as a conditional generative modeling problem and present a framework for solving such problems with conditional video diffusion models. We highlight the advantages of using a generative approach for this task, showing that our method is capable of generating diverse, high-quality inpaintings and synthesizing new content that is spatially, temporally, and semantically consistent with the provided context.
☆ SemVecNet: Generalizable Vector Map Generation for Arbitrary Sensor Configurations
Vector maps are essential in autonomous driving for tasks like localization and planning, yet their creation and maintenance are notably costly. While recent advances in online vector map generation for autonomous vehicles are promising, current models lack adaptability to different sensor configurations. They tend to overfit to specific sensor poses, leading to decreased performance and higher retraining costs. This limitation hampers their practical use in real-world applications. In response to this challenge, we propose a modular pipeline for vector map generation with improved generalization to sensor configurations. The pipeline leverages probabilistic semantic mapping to generate a bird's-eye-view (BEV) semantic map as an intermediate representation. This intermediate representation is then converted to a vector map using the MapTRv2 decoder. By adopting a BEV semantic map robust to different sensor configurations, our proposed approach significantly improves the generalization performance. We evaluate the model on datasets with sensor configurations not used during training. Our evaluation sets includes larger public datasets, and smaller scale private data collected on our platform. Our model generalizes significantly better than the state-of-the-art methods.
comment: 8 pages, 6 figures, Accepted to IV 2024
☆ Towards Real-World HDR Video Reconstruction: A Large-Scale Benchmark Dataset and A Two-Stage Alignment Network CVPR 2024
As an important and practical way to obtain high dynamic range (HDR) video, HDR video reconstruction from sequences with alternating exposures is still less explored, mainly due to the lack of large-scale real-world datasets. Existing methods are mostly trained on synthetic datasets, which perform poorly in real scenes. In this work, to facilitate the development of real-world HDR video reconstruction, we present Real-HDRV, a large-scale real-world benchmark dataset for HDR video reconstruction, featuring various scenes, diverse motion patterns, and high-quality labels. Specifically, our dataset contains 500 LDRs-HDRs video pairs, comprising about 28,000 LDR frames and 4,000 HDR labels, covering daytime, nighttime, indoor, and outdoor scenes. To our best knowledge, our dataset is the largest real-world HDR video reconstruction dataset. Correspondingly, we propose an end-to-end network for HDR video reconstruction, where a novel two-stage strategy is designed to perform alignment sequentially. Specifically, the first stage performs global alignment with the adaptively estimated global offsets, reducing the difficulty of subsequent alignment. The second stage implicitly performs local alignment in a coarse-to-fine manner at the feature level using the adaptive separable convolution. Extensive experiments demonstrate that: (1) models trained on our dataset can achieve better performance on real scenes than those trained on synthetic datasets; (2) our method outperforms previous state-of-the-art methods. Our dataset is available at https://github.com/yungsyu99/Real-HDRV.
comment: This paper has been accepted by CVPR 2024
☆ Guiding Attention in End-to-End Driving Models
Vision-based end-to-end driving models trained by imitation learning can lead to affordable solutions for autonomous driving. However, training these well-performing models usually requires a huge amount of data, while still lacking explicit and intuitive activation maps to reveal the inner workings of these models while driving. In this paper, we study how to guide the attention of these models to improve their driving quality and obtain more intuitive activation maps by adding a loss term during training using salient semantic maps. In contrast to previous work, our method does not require these salient semantic maps to be available during testing time, as well as removing the need to modify the model's architecture to which it is applied. We perform tests using perfect and noisy salient semantic maps with encouraging results in both, the latter of which is inspired by possible errors encountered with real data. Using CIL++ as a representative state-of-the-art model and the CARLA simulator with its standard benchmarks, we conduct experiments that show the effectiveness of our method in training better autonomous driving models, especially when data and computational resources are scarce.
comment: Accepted for publication at the 35th IEEE Intelligent Vehicles Symposium (IV 2024)
☆ IgCONDA-PET: Implicitly-Guided Counterfactual Diffusion for Detecting Anomalies in PET Images
Minimizing the need for pixel-level annotated data for training PET anomaly segmentation networks is crucial, particularly due to time and cost constraints related to expert annotations. Current un-/weakly-supervised anomaly detection methods rely on autoencoder or generative adversarial networks trained only on healthy data, although these are more challenging to train. In this work, we present a weakly supervised and Implicitly guided COuNterfactual diffusion model for Detecting Anomalies in PET images, branded as IgCONDA-PET. The training is conditioned on image class labels (healthy vs. unhealthy) along with implicit guidance to generate counterfactuals for an unhealthy image with anomalies. The counterfactual generation process synthesizes the healthy counterpart for a given unhealthy image, and the difference between the two facilitates the identification of anomaly locations. The code is available at: https://github.com/igcondapet/IgCONDA-PET.git
comment: 12 pages, 6 figures, 1 table
☆ STT: Stateful Tracking with Transformers for Autonomous Driving ICRA 2024
Tracking objects in three-dimensional space is critical for autonomous driving. To ensure safety while driving, the tracker must be able to reliably track objects across frames and accurately estimate their states such as velocity and acceleration in the present. Existing works frequently focus on the association task while either neglecting the model performance on state estimation or deploying complex heuristics to predict the states. In this paper, we propose STT, a Stateful Tracking model built with Transformers, that can consistently track objects in the scenes while also predicting their states accurately. STT consumes rich appearance, geometry, and motion signals through long term history of detections and is jointly optimized for both data association and state estimation tasks. Since the standard tracking metrics like MOTA and MOTP do not capture the combined performance of the two tasks in the wider spectrum of object states, we extend them with new metrics called S-MOTA and MOTPS that address this limitation. STT achieves competitive real-time performance on the Waymo Open Dataset.
comment: ICRA 2024
☆ Synthetic Face Datasets Generation via Latent Space Exploration from Brownian Identity Diffusion
Face Recognition (FR) models are trained on large-scale datasets, which have privacy and ethical concerns. Lately, the use of synthetic data to complement or replace genuine data for the training of FR models has been proposed. While promising results have been obtained, it still remains unclear if generative models can yield diverse enough data for such tasks. In this work, we introduce a new method, inspired by the physical motion of soft particles subjected to stochastic Brownian forces, allowing us to sample identities distributions in a latent space under various constraints. With this in hands, we generate several face datasets and benchmark them by training FR models, showing that data generated with our method exceeds the performance of previously GAN-based datasets and achieves competitive performance with state-of-the-art diffusion-based synthetic datasets. We also show that this method can be used to mitigate leakage from the generator's training set and explore the ability of generative models to generate data beyond it.
comment: 17 pages, 7 figures, 10 tables
☆ Synthetic Image Verification in the Era of Generative AI: What Works and What Isn't There Yet
In this work we present an overview of approaches for the detection and attribution of synthetic images and highlight their strengths and weaknesses. We also point out and discuss hot topics in this field and outline promising directions for future research.
☆ Towards End-to-End Semi-Supervised Table Detection with Semantic Aligned Matching Transformer ICDAR 2024
Table detection within document images is a crucial task in document processing, involving the identification and localization of tables. Recent strides in deep learning have substantially improved the accuracy of this task, but it still heavily relies on large labeled datasets for effective training. Several semi-supervised approaches have emerged to overcome this challenge, often employing CNN-based detectors with anchor proposals and post-processing techniques like non-maximal suppression (NMS). However, recent advancements in the field have shifted the focus towards transformer-based techniques, eliminating the need for NMS and emphasizing object queries and attention mechanisms. Previous research has focused on two key areas to improve transformer-based detectors: refining the quality of object queries and optimizing attention mechanisms. However, increasing object queries can introduce redundancy, while adjustments to the attention mechanism can increase complexity. To address these challenges, we introduce a semi-supervised approach employing SAM-DETR, a novel approach for precise alignment between object queries and target features. Our approach demonstrates remarkable reductions in false positives and substantial enhancements in table detection performance, particularly in complex documents characterized by diverse table structures. This work provides more efficient and accurate table detection in semi-supervised settings.
comment: ICDAR 2024
☆ Uncovering What, Why and How: A Comprehensive Benchmark for Causation Understanding of Video Anomaly
Video anomaly understanding (VAU) aims to automatically comprehend unusual occurrences in videos, thereby enabling various applications such as traffic surveillance and industrial manufacturing. While existing VAU benchmarks primarily concentrate on anomaly detection and localization, our focus is on more practicality, prompting us to raise the following crucial questions: "what anomaly occurred?", "why did it happen?", and "how severe is this abnormal event?". In pursuit of these answers, we present a comprehensive benchmark for Causation Understanding of Video Anomaly (CUVA). Specifically, each instance of the proposed benchmark involves three sets of human annotations to indicate the "what", "why" and "how" of an anomaly, including 1) anomaly type, start and end times, and event descriptions, 2) natural language explanations for the cause of an anomaly, and 3) free text reflecting the effect of the abnormality. In addition, we also introduce MMEval, a novel evaluation metric designed to better align with human preferences for CUVA, facilitating the measurement of existing LLMs in comprehending the underlying cause and corresponding effect of video anomalies. Finally, we propose a novel prompt-based method that can serve as a baseline approach for the challenging CUVA. We conduct extensive experiments to show the superiority of our evaluation metric and the prompt-based approach. Our code and dataset are available at https://github.com/fesvhtr/CUVA.
comment: Codebase: https://github.com/fesvhtr/CUVA
☆ Revisiting RGBT Tracking Benchmarks from the Perspective of Modality Validity: A New Benchmark, Problem, and Method
RGBT tracking draws increasing attention due to its robustness in multi-modality warranting (MMW) scenarios, such as nighttime and bad weather, where relying on a single sensing modality fails to ensure stable tracking results. However, the existing benchmarks predominantly consist of videos collected in common scenarios where both RGB and thermal infrared (TIR) information are of sufficient quality. This makes the data unrepresentative of severe imaging conditions, leading to tracking failures in MMW scenarios. To bridge this gap, we present a new benchmark, MV-RGBT, captured specifically in MMW scenarios. In contrast with the existing datasets, MV-RGBT comprises more object categories and scenes, providing a diverse and challenging benchmark. Furthermore, for severe imaging conditions of MMW scenarios, a new problem is posed, namely \textit{when to fuse}, to stimulate the development of fusion strategies for such data. We propose a new method based on a mixture of experts, namely MoETrack, as a baseline fusion strategy. In MoETrack, each expert generates independent tracking results along with the corresponding confidence score, which is used to control the fusion process. Extensive experimental results demonstrate the significant potential of MV-RGBT in advancing RGBT tracking and elicit the conclusion that fusion is not always beneficial, especially in MMW scenarios. Significantly, the proposed MoETrack method achieves new state-of-the-art results not only on MV-RGBT, but also on standard benchmarks, such as RGBT234, LasHeR, and the short-term split of VTUAV (VTUAV-ST). More information of MV-RGBT and the source code of MoETrack will be released at https://github.com/Zhangyong-Tang/MoETrack.
☆ Expanding the Horizon: Enabling Hybrid Quantum Transfer Learning for Long-Tailed Chest X-Ray Classification
Quantum machine learning (QML) has the potential for improving the multi-label classification of rare, albeit critical, diseases in large-scale chest x-ray (CXR) datasets due to theoretical quantum advantages over classical machine learning (CML) in sample efficiency and generalizability. While prior literature has explored QML with CXRs, it has focused on binary classification tasks with small datasets due to limited access to quantum hardware and computationally expensive simulations. To that end, we implemented a Jax-based framework that enables the simulation of medium-sized qubit architectures with significant improvements in wall-clock time over current software offerings. We evaluated the performance of our Jax-based framework in terms of efficiency and performance for hybrid quantum transfer learning for long-tailed classification across 8, 14, and 19 disease labels using large-scale CXR datasets. The Jax-based framework resulted in up to a 58% and 95% speed-up compared to PyTorch and TensorFlow implementations, respectively. However, compared to CML, QML demonstrated slower convergence and an average AUROC of 0.70, 0.73, and 0.74 for the classification of 8, 14, and 19 CXR disease labels. In comparison, the CML models had an average AUROC of 0.77, 0.78, and 0.80 respectively. In conclusion, our work presents an accessible implementation of hybrid quantum transfer learning for long-tailed CXR classification with a computationally efficient Jax-based framework.
comment: 11 pages, 13 figures, 3 tables
☆ GUing: A Mobile GUI Search Engine using a Vision-Language Model
App developers use the Graphical User Interface (GUI) of other apps as an important source of inspiration to design and improve their own apps. In recent years, research suggested various approaches to retrieve GUI designs that fit a certain text query from screenshot datasets acquired through automated GUI exploration. However, such text-to-GUI retrieval approaches only leverage the textual information of the GUI elements in the screenshots, neglecting visual information such as icons or background images. In addition, the retrieved screenshots are not steered by app developers and often lack important app features, e.g. whose UI pages require user authentication. To overcome these limitations, this paper proposes GUing, a GUI search engine based on a vision-language model called UIClip, which we trained specifically for the app GUI domain. For this, we first collected app introduction images from Google Play, which usually display the most representative screenshots selected and often captioned (i.e. labeled) by app vendors. Then, we developed an automated pipeline to classify, crop, and extract the captions from these images. This finally results in a large dataset which we share with this paper: including 303k app screenshots, out of which 135k have captions. We used this dataset to train a novel vision-language model, which is, to the best of our knowledge, the first of its kind in GUI retrieval. We evaluated our approach on various datasets from related work and in manual experiment. The results demonstrate that our model outperforms previous approaches in text-to-GUI retrieval achieving a Recall@10 of up to 0.69 and a HIT@10 of 0.91. We also explored the performance of UIClip for other GUI tasks including GUI classification and Sketch-to-GUI retrieval with encouraging results.
☆ Utilizing Machine Learning and 3D Neuroimaging to Predict Hearing Loss: A Comparative Analysis of Dimensionality Reduction and Regression Techniques
In this project, we have explored machine learning approaches for predicting hearing loss thresholds on the brain's gray matter 3D images. We have solved the problem statement in two phases. In the first phase, we used a 3D CNN model to reduce high-dimensional input into latent space and decode it into an original image to represent the input in rich feature space. In the second phase, we utilized this model to reduce input into rich features and used these features to train standard machine learning models for predicting hearing thresholds. We have experimented with autoencoders and variational autoencoders in the first phase for dimensionality reduction and explored random forest, XGBoost and multi-layer perceptron for regressing the thresholds. We split the given data set into training and testing sets and achieved an 8.80 range and 22.57 range for PT500 and PT4000 on the test set, respectively. We got the lowest RMSE using multi-layer perceptron among the other models. Our approach leverages the unique capabilities of VAEs to capture complex, non-linear relationships within high-dimensional neuroimaging data. We rigorously evaluated the models using various metrics, focusing on the root mean squared error (RMSE). The results highlight the efficacy of the multi-layer neural network model, which outperformed other techniques in terms of accuracy. This project advances the application of data mining in medical diagnostics and enhances our understanding of age-related hearing loss through innovative machine-learning frameworks.
☆ A Flexible 2.5D Medical Image Segmentation Approach with In-Slice and Cross-Slice Attention
Deep learning has become the de facto method for medical image segmentation, with 3D segmentation models excelling in capturing complex 3D structures and 2D models offering high computational efficiency. However, segmenting 2.5D images, which have high in-plane but low through-plane resolution, is a relatively unexplored challenge. While applying 2D models to individual slices of a 2.5D image is feasible, it fails to capture the spatial relationships between slices. On the other hand, 3D models face challenges such as resolution inconsistencies in 2.5D images, along with computational complexity and susceptibility to overfitting when trained with limited data. In this context, 2.5D models, which capture inter-slice correlations using only 2D neural networks, emerge as a promising solution due to their reduced computational demand and simplicity in implementation. In this paper, we introduce CSA-Net, a flexible 2.5D segmentation model capable of processing 2.5D images with an arbitrary number of slices through an innovative Cross-Slice Attention (CSA) module. This module uses the cross-slice attention mechanism to effectively capture 3D spatial information by learning long-range dependencies between the center slice (for segmentation) and its neighboring slices. Moreover, CSA-Net utilizes the self-attention mechanism to understand correlations among pixels within the center slice. We evaluated CSA-Net on three 2.5D segmentation tasks: (1) multi-class brain MRI segmentation, (2) binary prostate MRI segmentation, and (3) multi-class prostate MRI segmentation. CSA-Net outperformed leading 2D and 2.5D segmentation methods across all three tasks, demonstrating its efficacy and superiority. Our code is publicly available at https://github.com/mirthAI/CSA-Net.
☆ Training a high-performance retinal foundation model with half-the-data and 400 times less compute
Artificial Intelligence holds tremendous potential in medicine, but is traditionally limited by the lack of massive datasets to train models on. Foundation models, pre-trained models that can be adapted to downstream tasks with small datasets, could alleviate this problem. Researchers at Moorfields Eye Hospital (MEH) proposed RETFound-MEH, a foundation model for retinal imaging that was trained on 900,000 images, including private hospital data. Recently, data-efficient DERETFound was proposed that provides comparable performance while being trained on only 150,000 images that are all publicly available. However, both these models required very substantial resources to train initially and are resource-intensive in downstream use. We propose a novel Token Reconstruction objective that we use to train RETFound-Green, a retinal foundation model trained using only 75,000 publicly available images and 400 times less compute. We estimate the cost of training RETFound-MEH and DERETFound at $10,000 and $14,000, respectively, while RETFound-Green could be trained for less than $100, with equally reduced environmental impact. RETFound-Green is also far more efficient in downstream use: it can be downloaded 14 times faster, computes vector embeddings 2.7 times faster which then require 2.6 times less storage space. Despite this, RETFound-Green does not perform systematically worse. In fact, it performs best on 14 tasks, compared to six for DERETFound and two for RETFound-MEH. Our results suggest that RETFound-Green is a very efficient, high-performance retinal foundation model. We anticipate that our Token Reconstruction objective could be scaled up for even higher performance and be applied to other domains beyond retinal imaging.
♻ ☆ UnScene3D: Unsupervised 3D Instance Segmentation for Indoor Scenes CVPR24
3D instance segmentation is fundamental to geometric understanding of the world around us. Existing methods for instance segmentation of 3D scenes rely on supervision from expensive, manual 3D annotations. We propose UnScene3D, the first fully unsupervised 3D learning approach for class-agnostic 3D instance segmentation of indoor scans. UnScene3D first generates pseudo masks by leveraging self-supervised color and geometry features to find potential object regions. We operate on a basis of geometric oversegmentation, enabling efficient representation and learning on high-resolution 3D data. The coarse proposals are then refined through self-training our model on its predictions. Our approach improves over state-of-the-art unsupervised 3D instance segmentation methods by more than 300% Average Precision score, demonstrating effective instance segmentation even in challenging, cluttered 3D scenes.
comment: Project page: https://rozdavid.github.io/unscene3d, paper updated according to CVPR24 camera ready version
♻ ☆ Test-Time Adaptation with SaLIP: A Cascade of SAM and CLIP for Zero shot Medical Image Segmentation
The Segment Anything Model (SAM) and CLIP are remarkable vision foundation models (VFMs). SAM, a prompt driven segmentation model, excels in segmentation tasks across diverse domains, while CLIP is renowned for its zero shot recognition capabilities. However, their unified potential has not yet been explored in medical image segmentation. To adapt SAM to medical imaging, existing methods primarily rely on tuning strategies that require extensive data or prior prompts tailored to the specific task, making it particularly challenging when only a limited number of data samples are available. This work presents an in depth exploration of integrating SAM and CLIP into a unified framework for medical image segmentation. Specifically, we propose a simple unified framework, SaLIP, for organ segmentation. Initially, SAM is used for part based segmentation within the image, followed by CLIP to retrieve the mask corresponding to the region of interest (ROI) from the pool of SAM generated masks. Finally, SAM is prompted by the retrieved ROI to segment a specific organ. Thus, SaLIP is training and fine tuning free and does not rely on domain expertise or labeled data for prompt engineering. Our method shows substantial enhancements in zero shot segmentation, showcasing notable improvements in DICE scores across diverse segmentation tasks like brain (63.46%), lung (50.11%), and fetal head (30.82%), when compared to un prompted SAM. Code and text prompts are available at: https://github.com/aleemsidra/SaLIP.
♻ ☆ Enhancing Lip Reading with Multi-Scale Video and Multi-Encoder ICME
Automatic lip-reading (ALR) aims to automatically transcribe spoken content from a speaker's silent lip motion captured in video. Current mainstream lip-reading approaches only use a single visual encoder to model input videos of a single scale. In this paper, we propose to enhance lip-reading by incorporating multi-scale video data and multi-encoder. Specifically, we first propose a novel multi-scale lip motion extraction algorithm based on the size of the speaker's face and an Enhanced ResNet3D visual front-end (VFE) to extract lip features at different scales. For the multi-encoder, in addition to the mainstream Transformer and Conformer, we also incorporate the recently proposed Branchformer and E-Branchformer as visual encoders. In the experiments, we explore the influence of different video data scales and encoders on ALR system performance and fuse the texts transcribed by all ALR systems using recognizer output voting error reduction (ROVER). Finally, our proposed approach placed second in the ICME 2024 ChatCLR Challenge Task 2, with a 21.52% reduction in character error rate (CER) compared to the official baseline on the evaluation set.
comment: 6 pages, 3 figures, Accepted at ICMEW 2024
♻ ☆ ShadowMaskFormer: Mask Augmented Patch Embeddings for Shadow Removal
Transformer recently emerged as the de facto model for computer vision tasks and has also been successfully applied to shadow removal. However, these existing methods heavily rely on intricate modifications to the attention mechanisms within the transformer blocks while using a generic patch embedding. As a result, it often leads to complex architectural designs requiring additional computation resources. In this work, we aim to explore the efficacy of incorporating shadow information within the early processing stage. Accordingly, we propose a transformer-based framework with a novel patch embedding that is tailored for shadow removal, dubbed ShadowMaskFormer. Specifically, we present a simple and effective mask-augmented patch embedding to integrate shadow information and promote the model's emphasis on acquiring knowledge for shadow regions. Extensive experiments conducted on the ISTD, ISTD+, and SRD benchmark datasets demonstrate the efficacy of our method against state-of-the-art approaches while using fewer model parameters.
♻ ☆ Just Say the Name: Online Continual Learning with Category Names Only via Data Generation
In real-world scenarios, extensive manual annotation for continual learning is impractical due to prohibitive costs. Although prior arts, influenced by large-scale webly supervised training, suggest leveraging web-scraped data in continual learning, this poses challenges such as data imbalance, usage restrictions, and privacy concerns. Addressing the risks of continual webly supervised training, we present an online continual learning framework - Generative Name only Continual Learning (G-NoCL). The proposed G-NoCL uses a set of generators G along with the learner. When encountering new concepts (i.e., classes), G-NoCL employs the novel sample complexity-guided data ensembling technique DIverSity and COmplexity enhancing ensemBlER (DISCOBER) to optimally sample training data from generated data. Through extensive experimentation, we demonstrate superior performance of DISCOBER in G-NoCL online CL benchmarks, covering both In-Distribution (ID) and Out-of-Distribution (OOD) generalization evaluations, compared to naive generator-ensembling, web-supervised, and manually annotated data.
♻ ☆ ProgDTD: Progressive Learned Image Compression with Double-Tail-Drop Training
Progressive compression allows images to start loading as low-resolution versions, becoming clearer as more data is received. This increases user experience when, for example, network connections are slow. Today, most approaches for image compression, both classical and learned ones, are designed to be non-progressive. This paper introduces ProgDTD, a training method that transforms learned, non-progressive image compression approaches into progressive ones. The design of ProgDTD is based on the observation that the information stored within the bottleneck of a compression model commonly varies in importance. To create a progressive compression model, ProgDTD modifies the training steps to enforce the model to store the data in the bottleneck sorted by priority. We achieve progressive compression by transmitting the data in order of its sorted index. ProgDTD is designed for CNN-based learned image compression models, does not need additional parameters, and has a customizable range of progressiveness. For evaluation, we apply ProgDTDto the hyperprior model, one of the most common structures in learned image compression. Our experimental results show that ProgDTD performs comparably to its non-progressive counterparts and other state-of-the-art progressive models in terms of MS-SSIM and accuracy.
♻ ☆ PANDAS: Prototype-based Novel Class Discovery and Detection
Object detectors are typically trained once and for all on a fixed set of classes. However, this closed-world assumption is unrealistic in practice, as new classes will inevitably emerge after the detector is deployed in the wild. In this work, we look at ways to extend a detector trained for a set of base classes so it can i) spot the presence of novel classes, and ii) automatically enrich its repertoire to be able to detect those newly discovered classes together with the base ones. We propose PANDAS, a method for novel class discovery and detection. It discovers clusters representing novel classes from unlabeled data, and represents old and new classes with prototypes. During inference, a distance-based classifier uses these prototypes to assign a label to each detected object instance. The simplicity of our method makes it widely applicable. We experimentally demonstrate the effectiveness of PANDAS on the VOC 2012 and COCO-to-LVIS benchmarks. It performs favorably against the state of the art for this task while being computationally more affordable.
comment: Accepted to the Conference on Lifelong Learning Agents (CoLLAs 2024)
♻ ☆ SimAC: A Simple Anti-Customization Method for Protecting Face Privacy against Text-to-Image Synthesis of Diffusion Models
Despite the success of diffusion-based customization methods on visual content creation, increasing concerns have been raised about such techniques from both privacy and political perspectives. To tackle this issue, several anti-customization methods have been proposed in very recent months, predominantly grounded in adversarial attacks. Unfortunately, most of these methods adopt straightforward designs, such as end-to-end optimization with a focus on adversarially maximizing the original training loss, thereby neglecting nuanced internal properties intrinsic to the diffusion model, and even leading to ineffective optimization in some diffusion time steps.In this paper, we strive to bridge this gap by undertaking a comprehensive exploration of these inherent properties, to boost the performance of current anti-customization approaches. Two aspects of properties are investigated: 1) We examine the relationship between time step selection and the model's perception in the frequency domain of images and find that lower time steps can give much more contributions to adversarial noises. This inspires us to propose an adaptive greedy search for optimal time steps that seamlessly integrates with existing anti-customization methods. 2) We scrutinize the roles of features at different layers during denoising and devise a sophisticated feature-based optimization framework for anti-customization.Experiments on facial benchmarks demonstrate that our approach significantly increases identity disruption, thereby protecting user privacy and copyright. Our code is available at: https://github.com/somuchtome/SimAC.
♻ ☆ SeaTurtleID2022: A long-span dataset for reliable sea turtle re-identification WACV2024
This paper introduces the first public large-scale, long-span dataset with sea turtle photographs captured in the wild -- SeaTurtleID2022 (https://www.kaggle.com/datasets/wildlifedatasets/seaturtleid2022). The dataset contains 8729 photographs of 438 unique individuals collected within 13 years, making it the longest-spanned dataset for animal re-identification. All photographs include various annotations, e.g., identity, encounter timestamp, and body parts segmentation masks. Instead of standard "random" splits, the dataset allows for two realistic and ecologically motivated splits: (i) a time-aware closed-set with training, validation, and test data from different days/years, and (ii) a time-aware open-set with new unknown individuals in test and validation sets. We show that time-aware splits are essential for benchmarking re-identification methods, as random splits lead to performance overestimation. Furthermore, a baseline instance segmentation and re-identification performance over various body parts is provided. Finally, an end-to-end system for sea turtle re-identification is proposed and evaluated. The proposed system based on Hybrid Task Cascade for head instance segmentation and ArcFace-trained feature-extractor achieved an accuracy of 86.8%.
comment: This version is essentially an updated version of the initial SeaTurtleID paper (arXiv:2211.10307) and from now on it can be found as a replacement of the latter paper. You can also find the published version here: https://openaccess.thecvf.com/content/WACV2024/html/Adam_SeaTurtleID2022_A_Long-Span_Dataset_for_Reliable_Sea_Turtle_Re-Identification_WACV_2024_paper.html
♻ ☆ Object Detection for Automated Coronary Artery Using Deep Learning
In the era of digital medicine, medical imaging serves as a widespread technique for early disease detection, with a substantial volume of images being generated and stored daily in electronic patient records. X-ray angiography imaging is a standard and one of the most common methods for rapidly diagnosing coronary artery diseases. The notable achievements of recent deep learning algorithms align with the increased use of electronic health records and diagnostic imaging. Deep neural networks, leveraging abundant data, advanced algorithms, and powerful computational capabilities, prove highly effective in the analysis and interpretation of images. In this context, Object detection methods have become a promising approach, particularly through convolutional neural networks (CNN), streamlining medical image analysis by eliminating manual feature extraction. This allows for direct feature extraction from images, ensuring high accuracy in results. Therefore, in our paper, we utilized the object detection method on X-ray angiography images to precisely identify the location of coronary artery stenosis. As a result, this model enables automatic and real-time detection of stenosis locations, assisting in the crucial and sensitive decision-making process for healthcare professionals.
comment: The results in the article need fundamental corrections
♻ ☆ Fast and Accurate Unknown Object Instance Segmentation through Error-Informed Refinement
Accurate perception of unknown objects is essential for autonomous robots, particularly when manipulating novel items in unstructured environments. However, existing unknown object instance segmentation (UOIS) methods often have over-segmentation and under-segmentation problems, resulting in inaccurate instance boundaries and failures in subsequent robotic tasks such as grasping and placement. To address this challenge, this article introduces INSTA-BEER, a fast and accurate model-agnostic refinement method that enhances the UOIS performance. The model adopts an error-informed refinement approach, which first predicts pixel-wise errors in the initial segmentation and then refines the segmentation guided by these error estimates. We introduce the quad-metric boundary error, which quantifies pixel-wise true positives, true negatives, false positives, and false negatives at the boundaries of object instances, effectively capturing both fine-grained and instance-level segmentation errors. Additionally, the Error Guidance Fusion (EGF) module explicitly integrates error information into the refinement process, further improving segmentation quality. In comprehensive evaluations conducted on three widely used benchmark datasets, INSTA-BEER outperformed state-of-the-art models in both accuracy and inference time. Moreover, a real-world robotic experiment demonstrated the practical applicability of our method in improving the performance of target object grasping tasks in cluttered environments.
comment: 8 pages, 5 figures, project website: https://sites.google.com/view/insta-beer
♻ ☆ Do Diffusion Models Learn Semantically Meaningful and Efficient Representations?
Diffusion models are capable of impressive feats of image generation with uncommon juxtapositions such as astronauts riding horses on the moon with properly placed shadows. These outputs indicate the ability to perform compositional generalization, but how do the models do so? We perform controlled experiments on conditional DDPMs learning to generate 2D spherical Gaussian bumps centered at specified $x$- and $y$-positions. Our results show that the emergence of semantically meaningful latent representations is key to achieving high performance. En route to successful performance over learning, the model traverses three distinct phases of latent representations: (phase A) no latent structure, (phase B) a 2D manifold of disordered states, and (phase C) a 2D ordered manifold. Corresponding to each of these phases, we identify qualitatively different generation behaviors: 1) multiple bumps are generated, 2) one bump is generated but at inaccurate $x$ and $y$ locations, 3) a bump is generated at the correct $x$ and y location. Furthermore, we show that even under imbalanced datasets where features ($x$- versus $y$-positions) are represented with skewed frequencies, the learning process for $x$ and $y$ is coupled rather than factorized, demonstrating that simple vanilla-flavored diffusion models cannot learn efficient representations in which localization in $x$ and $y$ are factorized into separate 1D tasks. These findings suggest the need for future work to find inductive biases that will push generative models to discover and exploit factorizable independent structures in their inputs, which will be required to vault these models into more data-efficient regimes.
comment: 13 pages, 9 figures
♻ ☆ PoseAnimate: Zero-shot high fidelity pose controllable character animation
Image-to-video(I2V) generation aims to create a video sequence from a single image, which requires high temporal coherence and visual fidelity with the source image.However, existing approaches suffer from character appearance inconsistency and poor preservation of fine details. Moreover, they require a large amount of video data for training, which can be computationally demanding.To address these limitations,we propose PoseAnimate, a novel zero-shot I2V framework for character animation.PoseAnimate contains three key components: 1) Pose-Aware Control Module (PACM) incorporates diverse pose signals into conditional embeddings, to preserve character-independent content and maintain precise alignment of actions.2) Dual Consistency Attention Module (DCAM) enhances temporal consistency, and retains character identity and intricate background details.3) Mask-Guided Decoupling Module (MGDM) refines distinct feature perception, improving animation fidelity by decoupling the character and background.We also propose a Pose Alignment Transition Algorithm (PATA) to ensure smooth action transition.Extensive experiment results demonstrate that our approach outperforms the state-of-the-art training-based methods in terms of character consistency and detail fidelity. Moreover, it maintains a high level of temporal coherence throughout the generated animations.
♻ ☆ Adversarial Example Soups: Improving Transferability and Stealthiness for Free
Transferable adversarial examples cause practical security risks since they can mislead a target model without knowing its internal knowledge. A conventional recipe for maximizing transferability is to keep only the optimal adversarial example from all those obtained in the optimization pipeline. In this paper, for the first time, we question this convention and demonstrate that those discarded, sub-optimal adversarial examples can be reused to boost transferability. Specifically, we propose ``Adversarial Example Soups'' (AES), with AES-tune for averaging discarded adversarial examples in hyperparameter tuning and AES-rand for stability testing. In addition, our AES is inspired by ``model soups'', which averages weights of multiple fine-tuned models for improved accuracy without increasing inference time. Extensive experiments validate the global effectiveness of our AES, boosting 10 state-of-the-art transfer attacks and their combinations by up to 13% against 10 diverse (defensive) target models. We also show the possibility of generalizing AES to other types, e.g., directly averaging multiple in-the-wild adversarial examples that yield comparable success. A promising byproduct of AES is the improved stealthiness of adversarial examples since the perturbation variances are naturally reduced.
comment: Under review
♻ ☆ IMITATE: Clinical Prior Guided Hierarchical Vision-Language Pre-training
In the field of medical Vision-Language Pre-training (VLP), significant efforts have been devoted to deriving text and image features from both clinical reports and associated medical images. However, most existing methods may have overlooked the opportunity in leveraging the inherent hierarchical structure of clinical reports, which are generally split into `findings' for descriptive content and `impressions' for conclusive observation. Instead of utilizing this rich, structured format, current medical VLP approaches often simplify the report into either a unified entity or fragmented tokens. In this work, we propose a novel clinical prior guided VLP framework named IMITATE to learn the structure information from medical reports with hierarchical vision-language alignment. The framework derives multi-level visual features from the chest X-ray (CXR) images and separately aligns these features with the descriptive and the conclusive text encoded in the hierarchical medical report. Furthermore, a new clinical-informed contrastive loss is introduced for cross-modal learning, which accounts for clinical prior knowledge in formulating sample correlations in contrastive learning. The proposed model, IMITATE, outperforms baseline VLP methods across six different datasets, spanning five medical imaging downstream tasks. Comprehensive experimental results highlight the advantages of integrating the hierarchical structure of medical reports for vision-language alignment.
comment: Under Review
♻ ☆ Conditioning Generative Latent Optimization for Sparse-View CT Image Reconstruction
Computed Tomography (CT) is a prominent example of Imaging Inverse Problem highlighting the unrivaled performances of data-driven methods in degraded measurements setups like sparse X-ray projections. Although a significant proportion of deep learning approaches benefit from large supervised datasets, they cannot generalize to new experimental setups. In contrast, fully unsupervised techniques, most notably using score-based generative models, have recently demonstrated similar or better performances compared to supervised approaches while being flexible at test time. However, their use cases are limited as they need considerable amounts of training data to have good generalization properties. Another unsupervised approach taking advantage of the implicit natural bias of deep convolutional networks, Deep Image Prior, has recently been adapted to solve sparse CT by reparameterizing the reconstruction problem. Although this methodology does not require any training dataset, it enforces a weaker prior on the reconstructions when compared to data-driven methods. To fill the gap between these two strategies, we propose an unsupervised conditional approach to the Generative Latent Optimization framework (cGLO). Similarly to DIP, without any training dataset, cGLO benefits from the structural bias of a decoder network. However, the prior is further reinforced as the effect of a likelihood objective shared between multiple slices being reconstructed simultaneously through the same decoder network. In addition, the parameters of the decoder may be initialized on an unsupervised, and eventually very small, training dataset to enhance the reconstruction. The resulting approach is tested on full-dose sparse-view CT using multiple training dataset sizes and varying numbers of viewing angles.
♻ ☆ The Machine Vision Iceberg Explained: Advancing Dynamic Testing by Considering Holistic Environmental Relations SC 2024
Machine Vision (MV) is essential for solving driving automation. This paper examines potential shortcomings in current MV testing strategies for highly automated driving (HAD) systems. We argue for a more comprehensive understanding of the performance factors that must be considered during the MV evaluation process, noting that neglecting these factors can lead to significant risks. This is not only relevant to MV component testing, but also to integration testing. To illustrate this point, we draw an analogy to a ship navigating towards an iceberg to show potential hidden challenges in current MV testing strategies. The main contribution is a novel framework for black-box testing which observes environmental relations. This means it is designed to enhance MV assessments by considering the attributes and surroundings of relevant individual objects. The framework provides the identification of seven general concerns about the object recognition of MV, which are not addressed adequately in established test processes. To detect these deficits based on their performance factors, we propose the use of a taxonomy called "granularity orders" along with a graphical representation. This allows an identification of MV uncertainties across a range of driving scenarios. This approach aims to advance the precision, efficiency, and completeness of testing procedures for MV.
comment: Submitted at IEEE ITSC 2024
♻ ☆ Utilizing Synthetic Data for Medical Vision-Language Pre-training: Bypassing the Need for Real Images CVPR 2024
Medical Vision-Language Pre-training (VLP) learns representations jointly from medical images and paired radiology reports. It typically requires large-scale paired image-text datasets to achieve effective pre-training for both the image encoder and text encoder. The advent of text-guided generative models raises a compelling question: Can VLP be implemented solely with synthetic images generated from genuine radiology reports, thereby mitigating the need for extensively pairing and curating image-text datasets? In this work, we scrutinize this very question by examining the feasibility and effectiveness of employing synthetic images for medical VLP. We replace real medical images with their synthetic equivalents, generated from authentic medical reports. Utilizing three state-of-the-art VLP algorithms, we exclusively train on these synthetic samples. Our empirical evaluation across three subsequent tasks, namely image classification, semantic segmentation and object detection, reveals that the performance achieved through synthetic data is on par with or even exceeds that obtained with real images. As a pioneering contribution to this domain, we introduce a large-scale synthetic medical image dataset, paired with anonymized real radiology reports. This alleviates the need of sharing medical images, which are not easy to curate and share in practice. The code and the dataset can be found in \href{https://github.com/cheliu-computation/MedSyn-RepLearn/tree/main}{https://github.com/cheliu-computation/MedSyn-RepLearn/tree/main}.
comment: Accepted by CVPR 2024 Workshop Data Curation and Augmentation in Enhancing Medical Imaging Applications
♻ ☆ PASS: Peer-Agreement based Sample Selection for training with Noisy Labels
The prevalence of noisy-label samples poses a significant challenge in deep learning, inducing overfitting effects. This has, therefore, motivated the emergence of learning with noisy-label (LNL) techniques that focus on separating noisy- and clean-label samples to apply different learning strategies to each group of samples. Current methodologies often rely on the small-loss hypothesis or feature-based selection to separate noisy- and clean-label samples, yet our empirical observations reveal their limitations, especially for labels with instance dependent noise (IDN). An important characteristic of IDN is the difficulty to distinguish the clean-label samples that lie near the decision boundary (i.e., the hard samples) from the noisy-label samples. We, therefore, propose a new noisy-label detection method, termed Peer-Agreement based Sample Selection (PASS), to address this problem. Utilising a trio of classifiers, PASS employs consensus-driven peer-based agreement of two models to select the samples to train the remaining model. PASS is easily integrated into existing LNL models, enabling the improvement of the detection accuracy of noisy- and clean-label samples, which increases the classification accuracy across various LNL benchmarks.
comment: In Submission
♻ ☆ CLEAR: Cross-Transformers with Pre-trained Language Model is All you need for Person Attribute Recognition and Retrieval
Person attribute recognition and attribute-based retrieval are two core human-centric tasks. In the recognition task, the challenge is specifying attributes depending on a person's appearance, while the retrieval task involves searching for matching persons based on attribute queries. There is a significant relationship between recognition and retrieval tasks. In this study, we demonstrate that if there is a sufficiently robust network to solve person attribute recognition, it can be adapted to facilitate better performance for the retrieval task. Another issue that needs addressing in the retrieval task is the modality gap between attribute queries and persons' images. Therefore, in this paper, we present CLEAR, a unified network designed to address both tasks. We introduce a robust cross-transformers network to handle person attribute recognition. Additionally, leveraging a pre-trained language model, we construct pseudo-descriptions for attribute queries and introduce an effective training strategy to train only a few additional parameters for adapters, facilitating the handling of the retrieval task. Finally, the unified CLEAR model is evaluated on five benchmarks: PETA, PA100K, Market-1501, RAPv2, and UPAR-2024. Without bells and whistles, CLEAR achieves state-of-the-art performance or competitive results for both tasks, significantly outperforming other competitors in terms of person retrieval performance on the widely-used Market-1501 dataset.
♻ ☆ Learning Separable Hidden Unit Contributions for Speaker-Adaptive Lip-Reading BMVC 2023
In this paper, we propose a novel method for speaker adaptation in lip reading, motivated by two observations. Firstly, a speaker's own characteristics can always be portrayed well by his/her few facial images or even a single image with shallow networks, while the fine-grained dynamic features associated with speech content expressed by the talking face always need deep sequential networks to represent accurately. Therefore, we treat the shallow and deep layers differently for speaker adaptive lip reading. Secondly, we observe that a speaker's unique characteristics ( e.g. prominent oral cavity and mandible) have varied effects on lip reading performance for different words and pronunciations, necessitating adaptive enhancement or suppression of the features for robust lip reading. Based on these two observations, we propose to take advantage of the speaker's own characteristics to automatically learn separable hidden unit contributions with different targets for shallow layers and deep layers respectively. For shallow layers where features related to the speaker's characteristics are stronger than the speech content related features, we introduce speaker-adaptive features to learn for enhancing the speech content features. For deep layers where both the speaker's features and the speech content features are all expressed well, we introduce the speaker-adaptive features to learn for suppressing the speech content irrelevant noise for robust lip reading. Our approach consistently outperforms existing methods, as confirmed by comprehensive analysis and comparison across different settings. Besides the evaluation on the popular LRW-ID and GRID datasets, we also release a new dataset for evaluation, CAS-VSR-S68h, to further assess the performance in an extreme setting where just a few speakers are available but the speech content covers a large and diversified range.
comment: Accepted to BMVC 2023 20pages
♻ ☆ MambaPupil: Bidirectional Selective Recurrent model for Event-based Eye tracking CVPR 2024
Event-based eye tracking has shown great promise with the high temporal resolution and low redundancy provided by the event camera. However, the diversity and abruptness of eye movement patterns, including blinking, fixating, saccades, and smooth pursuit, pose significant challenges for eye localization. To achieve a stable event-based eye-tracking system, this paper proposes a bidirectional long-term sequence modeling and time-varying state selection mechanism to fully utilize contextual temporal information in response to the variability of eye movements. Specifically, the MambaPupil network is proposed, which consists of the multi-layer convolutional encoder to extract features from the event representations, a bidirectional Gated Recurrent Unit (GRU), and a Linear Time-Varying State Space Module (LTV-SSM), to selectively capture contextual correlation from the forward and backward temporal relationship. Furthermore, the Bina-rep is utilized as a compact event representation, and the tailor-made data augmentation, called as Event-Cutout, is proposed to enhance the model's robustness by applying spatial random masking to the event image. The evaluation on the ThreeET-plus benchmark shows the superior performance of the MambaPupil, which secured the 1st place in CVPR'2024 AIS Event-based Eye Tracking challenge.
comment: Accepted by CVPR 2024 Workshop (AIS: Vision, Graphics and AI for Streaming), top solution of challenge Event-based Eye Tracking, see https://www.kaggle.com/competitions/event-based-eye-tracking-ais2024
♻ ☆ Multi-Prompt with Depth Partitioned Cross-Modal Learning
In recent years, soft prompt learning methods have been proposed to fine-tune large-scale vision-language pre-trained models for various downstream tasks. These methods typically combine learnable textual tokens with class tokens as input for models with frozen parameters. However, they often employ a single prompt to describe class contexts, failing to capture categories' diverse attributes adequately. This study introduces the Partitioned Multi-modal Prompt (PMPO), a multi-modal prompting technique that extends the soft prompt from a single learnable prompt to multiple prompts. Our method divides the visual encoder depths and connects learnable prompts to the separated visual depths, enabling different prompts to capture the hierarchical contextual depths of visual representations. Furthermore, to maximize the advantages of multi-prompt learning, we incorporate prior information from manually designed templates and learnable multi-prompts, thus improving the generalization capabilities of our approach. We evaluate the effectiveness of our approach on three challenging tasks: new class generalization, cross-dataset evaluation, and domain generalization. For instance, our method achieves a $79.28$ harmonic mean, averaged over 11 diverse image recognition datasets ($+7.62$ compared to CoOp), demonstrating significant competitiveness compared to state-of-the-art prompting methods.
♻ ☆ Giving a Hand to Diffusion Models: a Two-Stage Approach to Improving Conditional Human Image Generation
Recent years have seen significant progress in human image generation, particularly with the advancements in diffusion models. However, existing diffusion methods encounter challenges when producing consistent hand anatomy and the generated images often lack precise control over the hand pose. To address this limitation, we introduce a novel approach to pose-conditioned human image generation, dividing the process into two stages: hand generation and subsequent body outpainting around the hands. We propose training the hand generator in a multi-task setting to produce both hand images and their corresponding segmentation masks, and employ the trained model in the first stage of generation. An adapted ControlNet model is then used in the second stage to outpaint the body around the generated hands, producing the final result. A novel blending technique is introduced to preserve the hand details during the second stage that combines the results of both stages in a coherent way. This involves sequential expansion of the outpainted region while fusing the latent representations, to ensure a seamless and cohesive synthesis of the final image. Experimental evaluations demonstrate the superiority of our proposed method over state-of-the-art techniques, in both pose accuracy and image quality, as validated on the HaGRID dataset. Our approach not only enhances the quality of the generated hands but also offers improved control over hand pose, advancing the capabilities of pose-conditioned human image generation. The source code of the proposed approach is available at https://github.com/apelykh/hand-to-diffusion.
♻ ☆ Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation
Deep learning faces a formidable challenge when handling noisy labels, as models tend to overfit samples affected by label noise. This challenge is further compounded by the presence of instance-dependent noise (IDN), a realistic form of label noise arising from ambiguous sample information. To address IDN, Label Noise Learning (LNL) incorporates a sample selection stage to differentiate clean and noisy-label samples. This stage uses an arbitrary criterion and a pre-defined curriculum that initially selects most samples as noisy and gradually decreases this selection rate during training. Such curriculum is sub-optimal since it does not consider the actual label noise rate in the training set. This paper addresses this issue with a new noise-rate estimation method that is easily integrated with most state-of-the-art (SOTA) LNL methods to produce a more effective curriculum. Synthetic and real-world benchmark results demonstrate that integrating our approach with SOTA LNL methods improves accuracy in most cases.
♻ ☆ CURSOR: Scalable Mixed-Order Hypergraph Matching with CUR Decomposition CVPR 2024
To achieve greater accuracy, hypergraph matching algorithms require exponential increases in computational resources. Recent kd-tree-based approximate nearest neighbor (ANN) methods, despite the sparsity of their compatibility tensor, still require exhaustive calculations for large-scale graph matching. This work utilizes CUR tensor decomposition and introduces a novel cascaded second and third-order hypergraph matching framework (CURSOR) for efficient hypergraph matching. A CUR-based second-order graph matching algorithm is used to provide a rough match, and then the core of CURSOR, a fiber-CUR-based tensor generation method, directly calculates entries of the compatibility tensor by leveraging the initial second-order match result. This significantly decreases the time complexity and tensor density. A probability relaxation labeling (PRL)-based matching algorithm, especially suitable for sparse tensors, is developed. Experiment results on large-scale synthetic datasets and widely-adopted benchmark sets demonstrate the superiority of CURSOR over existing methods. The tensor generation method in CURSOR can be integrated seamlessly into existing hypergraph matching methods to improve their performance and lower their computational costs.
comment: Accepted to CVPR 2024
♻ ☆ Visible-Infrared Person Re-Identification via Patch-Mixed Cross-Modality Learning
Visible-infrared person re-identification (VI-ReID) aims to retrieve images of the same pedestrian from different modalities, where the challenges lie in the significant modality discrepancy. To alleviate the modality gap, recent methods generate intermediate images by GANs, grayscaling, or mixup strategies. However, these methods could introduce extra data distribution, and the semantic correspondence between the two modalities is not well learned. In this paper, we propose a Patch-Mixed Cross-Modality framework (PMCM), where two images of the same person from two modalities are split into patches and stitched into a new one for model learning. A part-alignment loss is introduced to regularize representation learning, and a patch-mixed modality learning loss is proposed to align between the modalities. In this way, the model learns to recognize a person through patches of different styles, thereby the modality semantic correspondence can be inferred. In addition, with the flexible image generation strategy, the patch-mixed images freely adjust the ratio of different modality patches, which could further alleviate the modality imbalance problem. On two VI-ReID datasets, we report new state-of-the-art performance with the proposed method.
♻ ☆ SCTransNet: Spatial-channel Cross Transformer Network for Infrared Small Target Detection
Infrared small target detection (IRSTD) has recently benefitted greatly from U-shaped neural models. However, largely overlooking effective global information modeling, existing techniques struggle when the target has high similarities with the background. We present a Spatial-channel Cross Transformer Network (SCTransNet) that leverages spatial-channel cross transformer blocks (SCTBs) on top of long-range skip connections to address the aforementioned challenge. In the proposed SCTBs, the outputs of all encoders are interacted with cross transformer to generate mixed features, which are redistributed to all decoders to effectively reinforce semantic differences between the target and clutter at full scales. Specifically, SCTB contains the following two key elements: (a) spatial-embedded single-head channel-cross attention (SSCA) for exchanging local spatial features and full-level global channel information to eliminate ambiguity among the encoders and facilitate high-level semantic associations of the images, and (b) a complementary feed-forward network (CFN) for enhancing the feature discriminability via a multi-scale strategy and cross-spatial-channel information interaction to promote beneficial information transfer. Our SCTransNet effectively encodes the semantic differences between targets and backgrounds to boost its internal representation for detecting small infrared targets accurately. Extensive experiments on three public datasets, NUDT-SIRST, NUAA-SIRST, and IRSTD-1k, demonstrate that the proposed SCTransNet outperforms existing IRSTD methods. Our code will be made public at https://github.com/xdFai.
♻ ☆ CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement
Low-light image enhancement (LLIE) aims to improve low-illumination images. However, existing methods face two challenges: (1) uncertainty in restoration from diverse brightness degradations; (2) loss of texture and color information caused by noise suppression and light enhancement. In this paper, we propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement to address these challenges. In particular, we reframe LLIE as learning an image-to-code mapping from low-light images to discrete codebook, which has been learned from high-quality images. To enhance this process, a Semantic Embedding Module (SEM) is introduced to integrate semantic information with low-level features, and a Codebook Shift (CS) mechanism, designed to adapt the pre-learned codebook to better suit the distinct characteristics of our low-light dataset. Additionally, we present an Interactive Feature Transformation (IFT) module to refine texture and color information during image reconstruction, allowing for interactive enhancement based on user preferences. Extensive experiments on both real-world and synthetic benchmarks demonstrate that the incorporation of prior knowledge and controllable information transfer significantly enhances LLIE performance in terms of quality and fidelity. The proposed CodeEnhance exhibits superior robustness to various degradations, including uneven illumination, noise, and color distortion.
comment: 10 pages, 13 figures
♻ ☆ Rethinking Centered Kernel Alignment in Knowledge Distillation
Knowledge distillation has emerged as a highly effective method for bridging the representation discrepancy between large-scale models and lightweight models. Prevalent approaches involve leveraging appropriate metrics to minimize the divergence or distance between the knowledge extracted from the teacher model and the knowledge learned by the student model. Centered Kernel Alignment (CKA) is widely used to measure representation similarity and has been applied in several knowledge distillation methods. However, these methods are complex and fail to uncover the essence of CKA, thus not answering the question of how to use CKA to achieve simple and effective distillation properly. This paper first provides a theoretical perspective to illustrate the effectiveness of CKA, which decouples CKA to the upper bound of Maximum Mean Discrepancy~(MMD) and a constant term. Drawing from this, we propose a novel Relation-Centered Kernel Alignment~(RCKA) framework, which practically establishes a connection between CKA and MMD. Furthermore, we dynamically customize the application of CKA based on the characteristics of each task, with less computational source yet comparable performance than the previous methods. The extensive experiments on the CIFAR-100, ImageNet-1k, and MS-COCO demonstrate that our method achieves state-of-the-art performance on almost all teacher-student pairs for image classification and object detection, validating the effectiveness of our approaches. Our code is available in https://github.com/Klayand/PCKA
♻ ☆ Towards Accurate Post-training Quantization for Diffusion Models
In this paper, we propose an accurate data-free post-training quantization framework of diffusion models (ADP-DM) for efficient image generation. Conventional data-free quantization methods learn shared quantization functions for tensor discretization regardless of the generation timesteps, while the activation distribution differs significantly across various timesteps. The calibration images are acquired in random timesteps which fail to provide sufficient information for generalizable quantization function learning. Both issues cause sizable quantization errors with obvious image generation performance degradation. On the contrary, we design group-wise quantization functions for activation discretization in different timesteps and sample the optimal timestep for informative calibration image generation, so that our quantized diffusion model can reduce the discretization errors with negligible computational overhead. Specifically, we partition the timesteps according to the importance weights of quantization functions in different groups, which are optimized by differentiable search algorithms. We also select the optimal timestep for calibration image generation by structural risk minimizing principle in order to enhance the generalization ability in the deployment of quantized diffusion model. Extensive experimental results show that our method outperforms the state-of-the-art post-training quantization of diffusion model by a sizable margin with similar computational cost.
♻ ☆ EAMA : Entity-Aware Multimodal Alignment Based Approach for News Image Captioning
News image captioning requires model to generate an informative caption rich in entities, with the news image and the associated news article. Though Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in addressing various vision-language tasks, our research finds that current MLLMs still bear limitations in handling entity information on news image captioning task. Besides, while MLLMs have the ability to process long inputs, generating high-quality news image captions still requires a trade-off between sufficiency and conciseness of textual input information. To explore the potential of MLLMs and address problems we discovered, we propose : an Entity-Aware Multimodal Alignment based approach for news image captioning. Our approach first aligns the MLLM through Balance Training Strategy with two extra alignment tasks: Entity-Aware Sentence Selection task and Entity Selection task, together with News Image Captioning task, to enhance its capability in handling multimodal entity information. The aligned MLLM will utilizes the additional entity-related information it explicitly extracts to supplement its textual input while generating news image captions. Our approach achieves better results than all previous models in CIDEr score on GoodNews dataset (72.33 -> 88.39) and NYTimes800k dataset (70.83 -> 85.61).
♻ ☆ Beyond Known Clusters: Probe New Prototypes for Efficient Generalized Class Discovery
Generalized Class Discovery (GCD) aims to dynamically assign labels to unlabelled data partially based on knowledge learned from labelled data, where the unlabelled data may come from known or novel classes. The prevailing approach generally involves clustering across all data and learning conceptions by prototypical contrastive learning. However, existing methods largely hinge on the performance of clustering algorithms and are thus subject to their inherent limitations. Firstly, the estimated cluster number is often smaller than the ground truth, making the existing methods suffer from the lack of prototypes for comprehensive conception learning. To address this issue, we propose an adaptive probing mechanism that introduces learnable potential prototypes to expand cluster prototypes (centers). As there is no ground truth for the potential prototype, we develop a self-supervised prototype learning framework to optimize the potential prototype in an end-to-end fashion. Secondly, clustering is computationally intensive, and the conventional strategy of clustering both labelled and unlabelled instances exacerbates this issue. To counteract this inefficiency, we opt to cluster only the unlabelled instances and subsequently expand the cluster prototypes with our introduced potential prototypes to fast explore novel classes. Despite the simplicity of our proposed method, extensive empirical analysis on a wide range of datasets confirms that our method consistently delivers state-of-the-art results. Specifically, our method surpasses the nearest competitor by a significant margin of 9.7% within the Stanford Cars dataset and 12x clustering efficiency within the Herbarium 19 dataset. We will make the code and checkpoints publicly available at https://github.com/xjtuYW/PNP.git.
comment: 9 pages, 7 figures
♻ ☆ Integrating Language-Derived Appearance Elements with Visual Cues in Pedestrian Detection
Large language models (LLMs) have shown their capabilities in understanding contextual and semantic information regarding knowledge of instance appearances. In this paper, we introduce a novel approach to utilize the strengths of LLMs in understanding contextual appearance variations and to leverage this knowledge into a vision model (here, pedestrian detection). While pedestrian detection is considered one of the crucial tasks directly related to our safety (e.g., intelligent driving systems), it is challenging because of varying appearances and poses in diverse scenes. Therefore, we propose to formulate language-derived appearance elements and incorporate them with visual cues in pedestrian detection. To this end, we establish a description corpus that includes numerous narratives describing various appearances of pedestrians and other instances. By feeding them through an LLM, we extract appearance knowledge sets that contain the representations of appearance variations. Subsequently, we perform a task-prompting process to obtain appearance elements which are guided representative appearance knowledge relevant to a downstream pedestrian detection task. The obtained knowledge elements are adaptable to various detection frameworks, so that we can provide plentiful appearance information by integrating the language-derived appearance elements with visual cues within a detector. Through comprehensive experiments with various pedestrian detectors, we verify the adaptability and effectiveness of our method showing noticeable performance gains and achieving state-of-the-art detection performance on two public pedestrian detection benchmarks (i.e., CrowdHuman and WiderPedestrian).
♻ ☆ Human-annotated label noise and their impact on ConvNets for remote sensing image scene classification
Convolutional neural networks (ConvNets) have been successfully applied to satellite image scene classification. Human-labeled training datasets are essential for ConvNets to perform accurate classification. Errors in human-annotated training datasets are unavoidable due to the complexity of satellite images. However, the distribution of real-world human-annotated label noises on remote sensing images and their impact on ConvNets have not been investigated. To fill this research gap, this study, for the first time, collected real-world labels from 32 participants and explored how their annotated label noise affect three representative ConvNets (VGG16, GoogleNet, and ResNet-50) for remote sensing image scene classification. We found that: (1) human-annotated label noise exhibits significant class and instance dependence; (2) an additional 1% of human-annotated label noise in training data leads to 0.5% reduction in the overall accuracy of ConvNets classification; (3) the error pattern of ConvNet predictions was strongly correlated with that of participant's labels. To uncover the mechanism underlying the impact of human labeling errors on ConvNets, we further compared it with three types of simulated label noise: uniform noise, class-dependent noise and instance-dependent noise. Our results show that the impact of human-annotated label noise on ConvNets significantly differs from all three types of simulated label noise, while both class dependence and instance dependence contribute to the impact of human-annotated label noise on ConvNets. These observations necessitate a reevaluation of the handling of noisy labels, and we anticipate that our real-world label noise dataset would facilitate the future development and assessment of label-noise learning algorithms.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ Discrete approximations of Gaussian smoothing and Gaussian derivatives
This paper develops an in-depth treatment concerning the problem of approximating the Gaussian smoothing and Gaussian derivative computations in scale-space theory for application on discrete data. With close connections to previous axiomatic treatments of continuous and discrete scale-space theory, we consider three main ways discretizing these scale-space operations in terms of explicit discrete convolutions, based on either (i) sampling the Gaussian kernels and the Gaussian derivative kernels, (ii) locally integrating the Gaussian kernels and the Gaussian derivative kernels over each pixel support region and (iii) basing the scale-space analysis on the discrete analogue of the Gaussian kernel, and then computing derivative approximations by applying small-support central difference operators to the spatially smoothed image data. We study the properties of these three main discretization methods both theoretically and experimentally, and characterize their performance by quantitative measures, including the results they give rise to with respect to the task of scale selection, investigated for four different use cases, and with emphasis on the behaviour at fine scales. The results show that the sampled Gaussian kernels and derivatives as well as the integrated Gaussian kernels and derivatives perform very poorly at very fine scales. At very fine scales, the discrete analogue of the Gaussian kernel with its corresponding discrete derivative approximations performs substantially better. The sampled Gaussian kernel and the sampled Gaussian derivatives do, on the other hand, lead to numerically very good approximations of the corresponding continuous results, when the scale parameter is sufficiently large, in the experiments presented in the paper, when the scale parameter is greater than a value of about 1, in units of the grid spacing.
comment: 42 pages, 21 figures
♻ ☆ Cross-Task Multi-Branch Vision Transformer for Facial Expression and Mask Wearing Classification
With wearing masks becoming a new cultural norm, facial expression recognition (FER) while taking masks into account has become a significant challenge. In this paper, we propose a unified multi-branch vision transformer for facial expression recognition and mask wearing classification tasks. Our approach extracts shared features for both tasks using a dual-branch architecture that obtains multi-scale feature representations. Furthermore, we propose a cross-task fusion phase that processes tokens for each task with separate branches, while exchanging information using a cross attention module. Our proposed framework reduces the overall complexity compared with using separate networks for both tasks by the simple yet effective cross-task fusion phase. Extensive experiments demonstrate that our proposed model performs better than or on par with different state-of-the-art methods on both facial expression recognition and facial mask wearing classification task.
♻ ☆ Scaling up Multi-domain Semantic Segmentation with Sentence Embeddings
We propose an approach to semantic segmentation that achieves state-of-the-art supervised performance when applied in a zero-shot setting. It thus achieves results equivalent to those of the supervised methods, on each of the major semantic segmentation datasets, without training on those datasets. This is achieved by replacing each class label with a vector-valued embedding of a short paragraph that describes the class. The generality and simplicity of this approach enables merging multiple datasets from different domains, each with varying class labels and semantics. The resulting merged semantic segmentation dataset of over 2 Million images enables training a model that achieves performance equal to that of state-of-the-art supervised methods on 7 benchmark datasets, despite not using any images therefrom. By fine-tuning the model on standard semantic segmentation datasets, we also achieve a significant improvement over the state-of-the-art supervised segmentation on NYUD-V2 and PASCAL-context at 60% and 65% mIoU, respectively. Based on the closeness of language embeddings, our method can even segment unseen labels. Extensive experiments demonstrate strong generalization to unseen image domains and unseen labels, and that the method enables impressive performance improvements in downstream applications, including depth estimation and instance segmentation.
comment: 14 pages. Accepted to Int. J. Comp. Vis. (IJCV)
♻ ☆ An Animation-based Augmentation Approach for Action Recognition from Discontinuous Video
Action recognition, an essential component of computer vision, plays a pivotal role in multiple applications. Despite significant improvements brought by Convolutional Neural Networks (CNNs), these models suffer performance declines when trained with discontinuous video frames, which is a frequent scenario in real-world settings. This decline primarily results from the loss of temporal continuity, which is crucial for understanding the semantics of human actions. To overcome this issue, we introduce the 4A (Action Animation-based Augmentation Approach) pipeline, which employs a series of sophisticated techniques: starting with 2D human pose estimation from RGB videos, followed by Quaternion-based Graph Convolution Network for joint orientation and trajectory prediction, and Dynamic Skeletal Interpolation for creating smoother, diversified actions using game engine technology. This innovative approach generates realistic animations in varied game environments, viewed from multiple viewpoints. In this way, our method effectively bridges the domain gap between virtual and real-world data. In experimental evaluations, the 4A pipeline achieves comparable or even superior performance to traditional training approaches using real-world data, while requiring only 10% of the original data volume. Additionally, our approach demonstrates enhanced performance on In-the-wild videos, marking a significant advancement in the field of action recognition.
comment: arXiv admin note: text overlap with arXiv:2401.13414
♻ ☆ Efficient Bayesian Uncertainty Estimation for nnU-Net
The self-configuring nnU-Net has achieved leading performance in a large range of medical image segmentation challenges. It is widely considered as the model of choice and a strong baseline for medical image segmentation. However, despite its extraordinary performance, nnU-Net does not supply a measure of uncertainty to indicate its possible failure. This can be problematic for large-scale image segmentation applications, where data are heterogeneous and nnU-Net may fail without notice. In this work, we introduce a novel method to estimate nnU-Net uncertainty for medical image segmentation. We propose a highly effective scheme for posterior sampling of weight space for Bayesian uncertainty estimation. Different from previous baseline methods such as Monte Carlo Dropout and mean-field Bayesian Neural Networks, our proposed method does not require a variational architecture and keeps the original nnU-Net architecture intact, thereby preserving its excellent performance and ease of use. Additionally, we boost the segmentation performance over the original nnU-Net via marginalizing multi-modal posterior models. We applied our method on the public ACDC and M&M datasets of cardiac MRI and demonstrated improved uncertainty estimation over a range of baseline methods. The proposed method further strengthens nnU-Net for medical image segmentation in terms of both segmentation accuracy and quality control.
♻ ☆ Relaxometry Guided Quantitative Cardiac Magnetic Resonance Image Reconstruction
Deep learning-based methods have achieved prestigious performance for magnetic resonance imaging (MRI) reconstruction, enabling fast imaging for many clinical applications. Previous methods employ convolutional networks to learn the image prior as the regularization term. In quantitative MRI, the physical model of nuclear magnetic resonance relaxometry is known, providing additional prior knowledge for image reconstruction. However, traditional reconstruction networks are limited to learning the spatial domain prior knowledge, ignoring the relaxometry prior. Therefore, we propose a relaxometry-guided quantitative MRI reconstruction framework to learn the spatial prior from data and the relaxometry prior from MRI physics. Additionally, we also evaluated the performance of two popular reconstruction backbones, namely, recurrent variational networks (RVN) and variational networks (VN) with U- Net. Experiments demonstrate that the proposed method achieves highly promising results in quantitative MRI reconstruction.
♻ ☆ Characterization of dim light response in DVS pixel: Discontinuity of event triggering time
Dynamic Vision Sensors (DVS) have recently generated great interest because of the advantages of wide dynamic range and low latency compared with conventional frame-based cameras. However, the complicated behaviors in dim light conditions are still not clear, restricting the applications of DVS. In this paper, we analyze the typical DVS circuit, and find that there exists discontinuity of event triggering time. In dim light conditions, the discontinuity becomes prominent. We point out that the discontinuity depends exclusively on the changing speed of light intensity. Experimental results on real event data validate the analysis and the existence of discontinuity that reveals the non-first-order behaviors of DVS in dim light conditions.
comment: 6 pages, 4 figures
♻ ☆ HyperSDFusion: Bridging Hierarchical Structures in Language and Geometry for Enhanced 3D Text2Shape Generation
3D shape generation from text is a fundamental task in 3D representation learning. The text-shape pairs exhibit a hierarchical structure, where a general text like ``chair" covers all 3D shapes of the chair, while more detailed prompts refer to more specific shapes. Furthermore, both text and 3D shapes are inherently hierarchical structures. However, existing Text2Shape methods, such as SDFusion, do not exploit that. In this work, we propose HyperSDFusion, a dual-branch diffusion model that generates 3D shapes from a given text. Since hyperbolic space is suitable for handling hierarchical data, we propose to learn the hierarchical representations of text and 3D shapes in hyperbolic space. First, we introduce a hyperbolic text-image encoder to learn the sequential and multi-modal hierarchical features of text in hyperbolic space. In addition, we design a hyperbolic text-graph convolution module to learn the hierarchical features of text in hyperbolic space. In order to fully utilize these text features, we introduce a dual-branch structure to embed text features in 3D feature space. At last, to endow the generated 3D shapes with a hierarchical structure, we devise a hyperbolic hierarchical loss. Our method is the first to explore the hyperbolic hierarchical representation for text-to-shape generation. Experimental results on the existing text-to-shape paired dataset, Text2Shape, achieved state-of-the-art results. We release our implementation under HyperSDFusion.github.io.
♻ ☆ An Effective Image Copy-Move Forgery Detection Using Entropy Information
Image forensics has become increasingly crucial in our daily lives. Among various types of forgeries, copy-move forgery detection has received considerable attention within the academic community. Keypoint-based algorithms, particularly those based on Scale Invariant Feature Transform, have achieved promising outcomes. However, most of keypoint detection algorithms failed to generate sufficient matches when tampered patches were occurred in smooth areas, leading to insufficient matches. Therefore, this paper introduces entropy images to determine the coordinates and scales of keypoints based on Scale Invariant Feature Transform detector, which make the pre-processing more suitable for solving the above problems. Furthermore, an overlapped entropy level clustering algorithm is developed to mitigate the increased matching complexity caused by the non-ideal distribution of gray values in keypoints. Experimental results demonstrate that our algorithm achieves a good balance between performance and time efficiency.
♻ ☆ MVDiffusion++: A Dense High-resolution Multi-view Diffusion Model for Single or Sparse-view 3D Object Reconstruction
This paper presents a neural architecture MVDiffusion++ for 3D object reconstruction that synthesizes dense and high-resolution views of an object given one or a few images without camera poses. MVDiffusion++ achieves superior flexibility and scalability with two surprisingly simple ideas: 1) A ``pose-free architecture'' where standard self-attention among 2D latent features learns 3D consistency across an arbitrary number of conditional and generation views without explicitly using camera pose information; and 2) A ``view dropout strategy'' that discards a substantial number of output views during training, which reduces the training-time memory footprint and enables dense and high-resolution view synthesis at test time. We use the Objaverse for training and the Google Scanned Objects for evaluation with standard novel view synthesis and 3D reconstruction metrics, where MVDiffusion++ significantly outperforms the current state of the arts. We also demonstrate a text-to-3D application example by combining MVDiffusion++ with a text-to-image generative model. The project page is at https://mvdiffusion-plusplus.github.io.
comment: 3D generation, project page: https://mvdiffusion-plusplus.github.io/
♻ ☆ ReWiTe: Realistic Wide-angle and Telephoto Dual Camera Fusion Dataset via Beam Splitter Camera Rig
The fusion of images from dual camera systems featuring a wide-angle and a telephoto camera has become a hotspot problem recently. By integrating simultaneously captured wide-angle and telephoto images from these systems, the resulting fused image achieves a wide field of view (FOV) coupled with high-definition quality. Existing approaches are mostly deep learning methods, and predominantly rely on supervised learning, where the training dataset plays a pivotal role. However, current datasets typically adopt a data synthesis approach generate input pairs of wide-angle and telephoto images alongside ground-truth images. Notably, the wide-angle inputs are synthesized rather than captured using real wide-angle cameras, and the ground-truth image is captured by wide-angle camera whose quality is substantially lower than that of input telephoto images captured by telephoto cameras. To address these limitations, we introduce a novel hardware setup utilizing a beam splitter to simultaneously capture three images, i.e. input pairs and ground-truth images, from two authentic cellphones equipped with wide-angle and telephoto dual cameras. Specifically, the wide-angle and telephoto images captured by cellphone 2 serve as the input pair, while the telephoto image captured by cellphone 1, which is calibrated to match the optical path of the wide-angle image from cellphone 2, serves as the ground-truth image, maintaining quality on par with the input telephoto image. Experiments validate the efficacy of our newly introduced dataset, named ReWiTe, significantly enhances the performance of various existing methods for real-world wide-angle and telephoto dual image fusion tasks.
♻ ☆ TrACT: A Training Dynamics Aware Contrastive Learning Framework for Long-tail Trajectory Prediction
As a safety critical task, autonomous driving requires accurate predictions of road users' future trajectories for safe motion planning, particularly under challenging conditions. Yet, many recent deep learning methods suffer from a degraded performance on the challenging scenarios, mainly because these scenarios appear less frequently in the training data. To address such a long-tail issue, existing methods force challenging scenarios closer together in the feature space during training to trigger information sharing among them for more robust learning. These methods, however, primarily rely on the motion patterns to characterize scenarios, omitting more informative contextual information, such as interactions and scene layout. We argue that exploiting such information not only improves prediction accuracy but also scene compliance of the generated trajectories. In this paper, we propose to incorporate richer training dynamics information into a prototypical contrastive learning framework. More specifically, we propose a two-stage process. First, we generate rich contextual features using a baseline encoder-decoder framework. These features are split into clusters based on the model's output errors, using the training dynamics information, and a prototype is computed within each cluster. Second, we retrain the model using the prototypes in a contrastive learning framework. We conduct empirical evaluations of our approach using two large-scale naturalistic datasets and show that our method achieves state-of-the-art performance by improving accuracy and scene compliance on the long-tail samples. Furthermore, we perform experiments on a subset of the clusters to highlight the additional benefit of our approach in reducing training bias.
comment: 2024 IEEE Intelligent Vehicles Symposium (IV)
♻ ☆ Feature Density Estimation for Out-of-Distribution Detection via Normalizing Flows
Out-of-distribution (OOD) detection is a critical task for safe deployment of learning systems in the open world setting. In this work, we investigate the use of feature density estimation via normalizing flows for OOD detection and present a fully unsupervised approach which requires no exposure to OOD data, avoiding researcher bias in OOD sample selection. This is a post-hoc method which can be applied to any pretrained model, and involves training a lightweight auxiliary normalizing flow model to perform the out-of-distribution detection via density thresholding. Experiments on OOD detection in image classification show strong results for far-OOD data detection with only a single epoch of flow training, including 98.2% AUROC for ImageNet-1k vs. Textures, which exceeds the state of the art by 7.8%. We additionally explore the connection between the feature space distribution of the pretrained model and the performance of our method. Finally, we provide insights into training pitfalls that have plagued normalizing flows for use in OOD detection.
comment: Accepted to CRV 2024
♻ ☆ NOLA: Compressing LoRA using Linear Combination of Random Basis ICLR 2024
Fine-tuning Large Language Models (LLMs) and storing them for each downstream task or domain is impractical because of the massive model size (e.g., 350GB in GPT-3). Current literature, such as LoRA, showcases the potential of low-rank modifications to the original weights of an LLM, enabling efficient adaptation and storage for task-specific models. These methods can reduce the number of parameters needed to fine-tune an LLM by several orders of magnitude. Yet, these methods face two primary limitations: (1) the parameter count is lower-bounded by the rank one decomposition, and (2) the extent of reduction is heavily influenced by both the model architecture and the chosen rank. We introduce NOLA, which overcomes the rank one lower bound present in LoRA. It achieves this by re-parameterizing the low-rank matrices in LoRA using linear combinations of randomly generated matrices (basis) and optimizing the linear mixture coefficients only. This approach allows us to decouple the number of trainable parameters from both the choice of rank and the network architecture. We present adaptation results using GPT-2, LLaMA-2, and ViT in natural language and computer vision tasks. NOLA performs as well as LoRA models with much fewer number of parameters compared to LoRA with rank one, the best compression LoRA can archive. Particularly, on LLaMA-2 70B, our method is almost 20 times more compact than the most compressed LoRA without degradation in accuracy. Our code is available here: https://github.com/UCDvision/NOLA
comment: ICLR 2024. Our code is available here: https://github.com/UCDvision/NOLA
♻ ☆ High-quality Surface Reconstruction using Gaussian Surfels
We propose a novel point-based representation, Gaussian surfels, to combine the advantages of the flexible optimization procedure in 3D Gaussian points and the surface alignment property of surfels. This is achieved by directly setting the z-scale of 3D Gaussian points to 0, effectively flattening the original 3D ellipsoid into a 2D ellipse. Such a design provides clear guidance to the optimizer. By treating the local z-axis as the normal direction, it greatly improves optimization stability and surface alignment. While the derivatives to the local z-axis computed from the covariance matrix are zero in this setting, we design a self-supervised normal-depth consistency loss to remedy this issue. Monocular normal priors and foreground masks are incorporated to enhance the quality of the reconstruction, mitigating issues related to highlights and background. We propose a volumetric cutting method to aggregate the information of Gaussian surfels so as to remove erroneous points in depth maps generated by alpha blending. Finally, we apply screened Poisson reconstruction method to the fused depth maps to extract the surface mesh. Experimental results show that our method demonstrates superior performance in surface reconstruction compared to state-of-the-art neural volume rendering and point-based rendering methods.
comment: Results added and improved
♻ ☆ Vision-Language Generative Model for View-Specific Chest X-ray Generation
Synthetic medical data generation has opened up new possibilities in the healthcare domain, offering a powerful tool for simulating clinical scenarios, enhancing diagnostic and treatment quality, gaining granular medical knowledge, and accelerating the development of unbiased algorithms. In this context, we present a novel approach called ViewXGen, designed to overcome the limitations of existing methods that rely on general domain pipelines using only radiology reports to generate frontal-view chest X-rays. Our approach takes into consideration the diverse view positions found in the dataset, enabling the generation of chest X-rays with specific views, which marks a significant advancement in the field. To achieve this, we introduce a set of specially designed tokens for each view position, tailoring the generation process to the user's preferences. Furthermore, we leverage multi-view chest X-rays as input, incorporating valuable information from different views within the same study. This integration rectifies potential errors and contributes to faithfully capturing abnormal findings in chest X-ray generation. To validate the effectiveness of our approach, we conducted statistical analyses, evaluating its performance in a clinical efficacy metric on the MIMIC-CXR dataset. Also, human evaluation demonstrates the remarkable capabilities of ViewXGen, particularly in producing realistic view-specific X-rays that closely resemble the original images.
comment: Accepted at CHIL 2024
♻ ☆ An extended asymmetric sigmoid with Perceptron (SIGTRON) for imbalanced linear classification
This article presents a new polynomial parameterized sigmoid called SIGTRON, which is an extended asymmetric sigmoid with Perceptron, and its companion convex model called SIGTRON-imbalanced classification (SIC) model that employs a virtual SIGTRON-induced convex loss function. In contrast to the conventional $\pi$-weighted cost-sensitive learning model, the SIC model does not have an external $\pi$-weight on the loss function but has internal parameters in the virtual SIGTRON-induced loss function. As a consequence, when the given training dataset is close to the well-balanced condition considering the (scale-)class-imbalance ratio, we show that the proposed SIC model is more adaptive to variations of the dataset, such as the inconsistency of the (scale-)class-imbalance ratio between the training and test datasets. This adaptation is justified by a skewed hyperplane equation, created via linearization of the gradient satisfying $\epsilon$-optimal condition. Additionally, we present a quasi-Newton optimization(L-BFGS) framework for the virtual convex loss by developing an interval-based bisection line search. Empirically, we have observed that the proposed approach outperforms (or is comparable to) $\pi$-weighted convex focal loss and balanced classifier LIBLINEAR(logistic regression, SVM, and L2SVM) in terms of test classification accuracy with $51$ two-class and $67$ multi-class datasets. In binary classification problems, where the scale-class-imbalance ratio of the training dataset is not significant but the inconsistency exists, a group of SIC models with the best test accuracy for each dataset (TOP$1$) outperforms LIBSVM(C-SVC with RBF kernel), a well-known kernel-based classifier.
comment: 26 pages, 9 figures, revised version
♻ ☆ PuzzleVQA: Diagnosing Multimodal Reasoning Challenges of Language Models with Abstract Visual Patterns
Large multimodal models extend the impressive capabilities of large language models by integrating multimodal understanding abilities. However, it is not clear how they can emulate the general intelligence and reasoning ability of humans. As recognizing patterns and abstracting concepts are key to general intelligence, we introduce PuzzleVQA, a collection of puzzles based on abstract patterns. With this dataset, we evaluate large multimodal models with abstract patterns based on fundamental concepts, including colors, numbers, sizes, and shapes. Through our experiments on state-of-the-art large multimodal models, we find that they are not able to generalize well to simple abstract patterns. Notably, even GPT-4V cannot solve more than half of the puzzles. To diagnose the reasoning challenges in large multimodal models, we progressively guide the models with our ground truth reasoning explanations for visual perception, inductive reasoning, and deductive reasoning. Our systematic analysis finds that the main bottlenecks of GPT-4V are weaker visual perception and inductive reasoning abilities. Through this work, we hope to shed light on the limitations of large multimodal models and how they can better emulate human cognitive processes in the future (Our data and code will be released publicly at https://github.com/declare-lab/LLM-PuzzleTest).
♻ ☆ AM-RADIO: Agglomerative Vision Foundation Model -- Reduce All Domains Into One CVPR 2024
A handful of visual foundation models (VFMs) have recently emerged as the backbones for numerous downstream tasks. VFMs like CLIP, DINOv2, SAM are trained with distinct objectives, exhibiting unique characteristics for various downstream tasks. We find that despite their conceptual differences, these models can be effectively merged into a unified model through multi-teacher distillation. We name this approach AM-RADIO (Agglomerative Model -- Reduce All Domains Into One). This integrative approach not only surpasses the performance of individual teacher models but also amalgamates their distinctive features, such as zero-shot vision-language comprehension, detailed pixel-level understanding, and open vocabulary segmentation capabilities. In pursuit of the most hardware-efficient backbone, we evaluated numerous architectures in our multi-teacher distillation pipeline using the same training recipe. This led to the development of a novel architecture (E-RADIO) that exceeds the performance of its predecessors and is at least 7x faster than the teacher models. Our comprehensive benchmarking process covers downstream tasks including ImageNet classification, ADE20k semantic segmentation, COCO object detection and LLaVa-1.5 framework. Code: https://github.com/NVlabs/RADIO
comment: CVPR 2024 Version 3: CVPR Camera Ready, reconfigured full paper, table 1 is now more comprehensive Version 2: Added more acknowledgements and updated table 7 with more recent results. Ensured that the link in the abstract to our code is working properly Version 3: Fix broken hyperlinks
♻ ☆ Refining Remote Photoplethysmography Architectures using CKA and Empirical Methods
Model architecture refinement is a challenging task in deep learning research fields such as remote photoplethysmography (rPPG). One architectural consideration, the depth of the model, can have significant consequences on the resulting performance. In rPPG models that are overprovisioned with more layers than necessary, redundancies exist, the removal of which can result in faster training and reduced computational load at inference time. With too few layers the models may exhibit sub-optimal error rates. We apply Centered Kernel Alignment (CKA) to an array of rPPG architectures of differing depths, demonstrating that shallower models do not learn the same representations as deeper models, and that after a certain depth, redundant layers are added without significantly increased functionality. An empirical study confirms how the architectural deficiencies discovered using CKA impact performance, and we show how CKA as a diagnostic can be used to refine rPPG architectures.
♻ ☆ Hierarchical Hybrid Sliced Wasserstein: A Scalable Metric for Heterogeneous Joint Distributions
Sliced Wasserstein (SW) and Generalized Sliced Wasserstein (GSW) have been widely used in applications due to their computational and statistical scalability. However, the SW and the GSW are only defined between distributions supported on a homogeneous domain. This limitation prevents their usage in applications with heterogeneous joint distributions with marginal distributions supported on multiple different domains. Using SW and GSW directly on the joint domains cannot make a meaningful comparison since their homogeneous slicing operator i.e., Radon Transform (RT) and Generalized Radon Transform (GRT) are not expressive enough to capture the structure of the joint supports set. To address the issue, we propose two new slicing operators i.e., Partial Generalized Radon Transform (PGRT) and Hierarchical Hybrid Radon Transform (HHRT). In greater detail, PGRT is the generalization of Partial Radon Transform (PRT), which transforms a subset of function arguments non-linearly while HHRT is the composition of PRT and multiple domain-specific PGRT on marginal domain arguments. By using HHRT, we extend the SW into Hierarchical Hybrid Sliced Wasserstein (H2SW) distance which is designed specifically for comparing heterogeneous joint distributions. We then discuss the topological, statistical, and computational properties of H2SW. Finally, we demonstrate the favorable performance of H2SW in 3D mesh deformation, deep 3D mesh autoencoders, and datasets comparison.
comment: 28 pages, 11 figures, 4 tables
♻ ☆ TransRUPNet for Improved Polyp Segmentation
Colorectal cancer is among the most common cause of cancer worldwide. Removal of precancerous polyps through early detection is essential to prevent them from progressing to colon cancer. We develop an advanced deep learning-based architecture, Transformer based Residual Upsampling Network (TransRUPNet) for automatic and real-time polyp segmentation. The proposed architecture, TransRUPNet, is an encoder-decoder network consisting of three encoder and decoder blocks with additional upsampling blocks at the end of the network. With the image size of $256\times256$, the proposed method achieves an excellent real-time operation speed of 47.07 frames per second with an average mean dice coefficient score of 0.7786 and mean Intersection over Union of 0.7210 on the out-of-distribution polyp datasets. The results on the publicly available PolypGen dataset suggest that TransRUPNet can give real-time feedback while retaining high accuracy for in-distribution datasets. Furthermore, we demonstrate the generalizability of the proposed method by showing that it significantly improves performance on out-of-distribution datasets compared to the existing methods. The source code of our network is available at https://github.com/DebeshJha/TransRUPNet.
comment: Accepted at EMBC 2024
♻ ☆ A survey on deep learning in medical image registration: new technologies, uncertainty, evaluation metrics, and beyond
Deep learning technologies have dramatically reshaped the field of medical image registration over the past decade. The initial developments, such as regression-based and U-Net-based networks, established the foundation for deep learning in image registration. Subsequent progress has been made in various aspects of deep learning-based registration, including similarity measures, deformation regularizations, network architectures, and uncertainty estimation. These advancements have not only enriched the field of image registration but have also facilitated its application in a wide range of tasks, including atlas construction, multi-atlas segmentation, motion estimation, and 2D-3D registration. In this paper, we present a comprehensive overview of the most recent advancements in deep learning-based image registration. We begin with a concise introduction to the core concepts of deep learning-based image registration. Then, we delve into innovative network architectures, loss functions specific to registration, and methods for estimating registration uncertainty. Additionally, this paper explores appropriate evaluation metrics for assessing the performance of deep learning models in registration tasks. Finally, we highlight the practical applications of these novel techniques in medical imaging and discuss the future prospects of deep learning-based image registration.
comment: A list of open-sourced code from the papers reviewed has been organized and is available at https://bit.ly/3QgFJ9z
♻ ☆ A Hybrid Approach for Document Layout Analysis in Document images ICDAR 2024
Document layout analysis involves understanding the arrangement of elements within a document. This paper navigates the complexities of understanding various elements within document images, such as text, images, tables, and headings. The approach employs an advanced Transformer-based object detection network as an innovative graphical page object detector for identifying tables, figures, and displayed elements. We introduce a query encoding mechanism to provide high-quality object queries for contrastive learning, enhancing efficiency in the decoder phase. We also present a hybrid matching scheme that integrates the decoder's original one-to-one matching strategy with the one-to-many matching strategy during the training phase. This approach aims to improve the model's accuracy and versatility in detecting various graphical elements on a page. Our experiments on PubLayNet, DocLayNet, and PubTables benchmarks show that our approach outperforms current state-of-the-art methods. It achieves an average precision of 97.3% on PubLayNet, 81.6% on DocLayNet, and 98.6 on PubTables, demonstrating its superior performance in layout analysis. These advancements not only enhance the conversion of document images into editable and accessible formats but also streamline information retrieval and data extraction processes.
comment: ICDAR 2024
♻ ☆ GANsemble for Small and Imbalanced Data Sets: A Baseline for Synthetic Microplastics Data
Microplastic particle ingestion or inhalation by humans is a problem of growing concern. Unfortunately, current research methods that use machine learning to understand their potential harms are obstructed by a lack of available data. Deep learning techniques in particular are challenged by such domains where only small or imbalanced data sets are available. Overcoming this challenge often involves oversampling underrepresented classes or augmenting the existing data to improve model performance. This paper proposes GANsemble: a two-module framework connecting data augmentation with conditional generative adversarial networks (cGANs) to generate class-conditioned synthetic data. First, the data chooser module automates augmentation strategy selection by searching for the best data augmentation strategy. Next, the cGAN module uses this strategy to train a cGAN for generating enhanced synthetic data. We experiment with the GANsemble framework on a small and imbalanced microplastics data set. A Microplastic-cGAN (MPcGAN) algorithm is introduced, and baselines for synthetic microplastics (SYMP) data are established in terms of Frechet Inception Distance (FID) and Inception Scores (IS). We also provide a synthetic microplastics filter (SYMP-Filter) algorithm to increase the quality of generated SYMP. Additionally, we show the best amount of oversampling with augmentation to fix class imbalance in small microplastics data sets. To our knowledge, this study is the first application of generative AI to synthetically create microplastics data.
comment: Accepted to the 37th Canadian Artificial Intelligence Conference (2024), 12 pages, 4 figures
♻ ☆ An interpretable machine learning system for colorectal cancer diagnosis from pathology slides
Considering the profound transformation affecting pathology practice, we aimed to develop a scalable artificial intelligence (AI) system to diagnose colorectal cancer from whole-slide images (WSI). For this, we propose a deep learning (DL) system that learns from weak labels, a sampling strategy that reduces the number of training samples by a factor of six without compromising performance, an approach to leverage a small subset of fully annotated samples, and a prototype with explainable predictions, active learning features and parallelisation. Noting some problems in the literature, this study is conducted with one of the largest WSI colorectal samples dataset with approximately 10,500 WSIs. Of these samples, 900 are testing samples. Furthermore, the robustness of the proposed method is assessed with two additional external datasets (TCGA and PAIP) and a dataset of samples collected directly from the proposed prototype. Our proposed method predicts, for the patch-based tiles, a class based on the severity of the dysplasia and uses that information to classify the whole slide. It is trained with an interpretable mixed-supervision scheme to leverage the domain knowledge introduced by pathologists through spatial annotations. The mixed-supervision scheme allowed for an intelligent sampling strategy effectively evaluated in several different scenarios without compromising the performance. On the internal dataset, the method shows an accuracy of 93.44% and a sensitivity between positive (low-grade and high-grade dysplasia) and non-neoplastic samples of 0.996. On the external test samples varied with TCGA being the most challenging dataset with an overall accuracy of 84.91% and a sensitivity of 0.996.
comment: Accepted at npj Precision Oncology. Available at: https://www.nature.com/articles/s41698-024-00539-4
♻ ☆ Efficient Remote Sensing with Harmonized Transfer Learning and Modality Alignment ICLR
With the rise of Visual and Language Pretraining (VLP), an increasing number of downstream tasks are adopting the paradigm of pretraining followed by fine-tuning. Although this paradigm has demonstrated potential in various multimodal downstream tasks, its implementation in the remote sensing domain encounters some obstacles. Specifically, the tendency for same-modality embeddings to cluster together impedes efficient transfer learning. To tackle this issue, we review the aim of multimodal transfer learning for downstream tasks from a unified perspective, and rethink the optimization process based on three distinct objectives. We propose "Harmonized Transfer Learning and Modality Alignment (HarMA)", a method that simultaneously satisfies task constraints, modality alignment, and single-modality uniform alignment, while minimizing training overhead through parameter-efficient fine-tuning. Remarkably, without the need for external data for training, HarMA achieves state-of-the-art performance in two popular multimodal retrieval tasks in the field of remote sensing. Our experiments reveal that HarMA achieves competitive and even superior performance to fully fine-tuned models with only minimal adjustable parameters. Due to its simplicity, HarMA can be integrated into almost all existing multimodal pretraining models. We hope this method can facilitate the efficient application of large models to a wide range of downstream tasks while significantly reducing the resource consumption. Code is available at https://github.com/seekerhuang/HarMA.
comment: Accepted by the Twelfth International Conference on Learning Representations (ICLR) Workshop
Information Retrieval 14
☆ When to Retrieve: Teaching LLMs to Utilize Information Retrieval Effectively
In this paper, we demonstrate how Large Language Models (LLMs) can effectively learn to use an off-the-shelf information retrieval (IR) system specifically when additional context is required to answer a given question. Given the performance of IR systems, the optimal strategy for question answering does not always entail external information retrieval; rather, it often involves leveraging the parametric memory of the LLM itself. Prior research has identified this phenomenon in the PopQA dataset, wherein the most popular questions are effectively addressed using the LLM's parametric memory, while less popular ones require IR system usage. Following this, we propose a tailored training approach for LLMs, leveraging existing open-domain question answering datasets. Here, LLMs are trained to generate a special token, , when they do not know the answer to a question. Our evaluation of the Adaptive Retrieval LLM (Adapt-LLM) on the PopQA dataset showcases improvements over the same LLM under three configurations: (i) retrieving information for all the questions, (ii) using always the parametric memory of the LLM, and (iii) using a popularity threshold to decide when to use a retriever. Through our analysis, we demonstrate that Adapt-LLM is able to generate the token when it determines that it does not know how to answer a question, indicating the need for IR, while it achieves notably high accuracy levels when it chooses to rely only on its parametric memory.
☆ Be Aware of the Neighborhood Effect: Modeling Selection Bias under Interference ICLR 24
Selection bias in recommender system arises from the recommendation process of system filtering and the interactive process of user selection. Many previous studies have focused on addressing selection bias to achieve unbiased learning of the prediction model, but ignore the fact that potential outcomes for a given user-item pair may vary with the treatments assigned to other user-item pairs, named neighborhood effect. To fill the gap, this paper formally formulates the neighborhood effect as an interference problem from the perspective of causal inference and introduces a treatment representation to capture the neighborhood effect. On this basis, we propose a novel ideal loss that can be used to deal with selection bias in the presence of neighborhood effect. We further develop two new estimators for estimating the proposed ideal loss. We theoretically establish the connection between the proposed and previous debiasing methods ignoring the neighborhood effect, showing that the proposed methods can achieve unbiased learning when both selection bias and neighborhood effect are present, while the existing methods are biased. Extensive semi-synthetic and real-world experiments are conducted to demonstrate the effectiveness of the proposed methods.
comment: ICLR 24
☆ Debiased Collaborative Filtering with Kernel-Based Causal Balancing ICLR 24
Debiased collaborative filtering aims to learn an unbiased prediction model by removing different biases in observational datasets. To solve this problem, one of the simple and effective methods is based on the propensity score, which adjusts the observational sample distribution to the target one by reweighting observed instances. Ideally, propensity scores should be learned with causal balancing constraints. However, existing methods usually ignore such constraints or implement them with unreasonable approximations, which may affect the accuracy of the learned propensity scores. To bridge this gap, in this paper, we first analyze the gaps between the causal balancing requirements and existing methods such as learning the propensity with cross-entropy loss or manually selecting functions to balance. Inspired by these gaps, we propose to approximate the balancing functions in reproducing kernel Hilbert space and demonstrate that, based on the universal property and representer theorem of kernel functions, the causal balancing constraints can be better satisfied. Meanwhile, we propose an algorithm that adaptively balances the kernel function and theoretically analyze the generalization error bound of our methods. We conduct extensive experiments to demonstrate the effectiveness of our methods, and to promote this research direction, we have released our project at https://github.com/haoxuanli-pku/ICLR24-Kernel-Balancing.
comment: ICLR 24 Spotlight
☆ Large Language Model Informed Patent Image Retrieval
In patent prosecution, image-based retrieval systems for identifying similarities between current patent images and prior art are pivotal to ensure the novelty and non-obviousness of patent applications. Despite their growing popularity in recent years, existing attempts, while effective at recognizing images within the same patent, fail to deliver practical value due to their limited generalizability in retrieving relevant prior art. Moreover, this task inherently involves the challenges posed by the abstract visual features of patent images, the skewed distribution of image classifications, and the semantic information of image descriptions. Therefore, we propose a language-informed, distribution-aware multimodal approach to patent image feature learning, which enriches the semantic understanding of patent image by integrating Large Language Models and improves the performance of underrepresented classes with our proposed distribution-aware contrastive losses. Extensive experiments on DeepPatent2 dataset show that our proposed method achieves state-of-the-art or comparable performance in image-based patent retrieval with mAP +53.3%, Recall@10 +41.8%, and MRR@10 +51.9%. Furthermore, through an in-depth user analysis, we explore our model in aiding patent professionals in their image retrieval efforts, highlighting the model's real-world applicability and effectiveness.
comment: 8 pages. Under review
☆ Interest Clock: Time Perception in Real-Time Streaming Recommendation System SIGIR 2024
User preferences follow a dynamic pattern over a day, e.g., at 8 am, a user might prefer to read news, while at 8 pm, they might prefer to watch movies. Time modeling aims to enable recommendation systems to perceive time changes to capture users' dynamic preferences over time, which is an important and challenging problem in recommendation systems. Especially, streaming recommendation systems in the industry, with only available samples of the current moment, present greater challenges for time modeling. There is still a lack of effective time modeling methods for streaming recommendation systems. In this paper, we propose an effective and universal method Interest Clock to perceive time information in recommendation systems. Interest Clock first encodes users' time-aware preferences into a clock (hour-level personalized features) and then uses Gaussian distribution to smooth and aggregate them into the final interest clock embedding according to the current time for the final prediction. By arming base models with Interest Clock, we conduct online A/B tests, obtaining +0.509% and +0.758% improvements on user active days and app duration respectively. Besides, the extended offline experiments show improvements as well. Interest Clock has been deployed on Douyin Music App.
comment: Accepted by SIGIR 2024
☆ Align-Free Multi-Plane Phase Retrieval
The multi-plane phase retrieval method provides a budget-friendly and effective way to perform phase imaging, yet it often encounters alignment challenges due to shifts along the optical axis in experiments. Traditional methods, such as employing beamsplitters instead of mechanical stage movements or adjusting focus using tunable light sources, add complexity to the setup required for multi-plane phase retrieval. Attempts to address these issues computationally face difficulties due to the variable impact of diffraction, which renders conventional homography techniques inadequate. In our research, we introduce a novel Adaptive Cascade Calibrated (ACC) strategy for multi-plane phase retrieval that overcomes misalignment issues. This technique detects feature points within the refocused sample space and calculates the transformation matrix for neighboring planes on-the-fly to digitally adjust measurements, facilitating alignment-free multi-plane phase retrieval. This approach not only avoids the need for complex and expensive optical hardware but also simplifies the imaging setup, reducing overall costs. The effectiveness of our method is validated through simulations and real-world optical experiments.
☆ Grounding Realizable Entities
Ontological representations of qualities, dispositions, and roles have been refined over the past decade, clarifying subtle distinctions in life science research. After articulating a widely-used characterization of these entities within the context of Basic Formal Ontology (BFO), we identify gaps in this treatment and motivate the need for supplementing the BFO characterization. By way of supplement, we propose definitions for grounding relations holding between qualities and dispositions, and dispositions and roles, illustrating our proposal by representing subtle aspects of host-pathogen interactions.
comment: 13
☆ Credentials in the Occupation Ontology
The term credential encompasses educational certificates, degrees, certifications, and government-issued licenses. An occupational credential is a verification of an individuals qualification or competence issued by a third party with relevant authority. Job seekers often leverage such credentials as evidence that desired qualifications are satisfied by their holders. Many U.S. education and workforce development organizations have recognized the importance of credentials for employment and the challenges of understanding the value of credentials. In this study, we identified and ontologically defined credential and credential-related terms at the textual and semantic levels based on the Occupation Ontology (OccO), a BFO-based ontology. Different credential types and their authorization logic are modeled. We additionally defined a high-level hierarchy of credential related terms and relations among many terms, which were initiated in concert with the Alabama Talent Triad (ATT) program, which aims to connect learners, earners, employers and education/training providers through credentials and skills. To our knowledge, our research provides for the first time systematic ontological modeling of the important domain of credentials and related contents, supporting enhanced credential data and knowledge integration in the future.
comment: 11
☆ Towards a Search Engine for Machines: Unified Ranking for Multiple Retrieval-Augmented Large Language Models
This paper introduces uRAG--a framework with a unified retrieval engine that serves multiple downstream retrieval-augmented generation (RAG) systems. Each RAG system consumes the retrieval results for a unique purpose, such as open-domain question answering, fact verification, entity linking, and relation extraction. We introduce a generic training guideline that standardizes the communication between the search engine and the downstream RAG systems that engage in optimizing the retrieval model. This lays the groundwork for us to build a large-scale experimentation ecosystem consisting of 18 RAG systems that engage in training and 18 unknown RAG systems that use the uRAG as the new users of the search engine. Using this experimentation ecosystem, we answer a number of fundamental research questions that improve our understanding of promises and challenges in developing search engines for machines.
☆ Recommenadation aided Caching using Combinatorial Multi-armed Bandits
We study content caching with recommendations in a wireless network where the users are connected through a base station equipped with a finite-capacity cache. We assume a fixed set of contents with unknown user preferences and content popularities. We can recommend a subset of the contents to the users which encourages the users to request these contents. Recommendation can thus be used to increase cache hits. We formulate the cache hit optimization problem as a combinatorial multi-armed bandit (CMAB). We propose a UCB-based algorithm to decide which contents to cache and recommend. We provide an upper bound on the regret of our algorithm. We numerically demonstrate the performance of our algorithm and compare it to state-of-the-art algorithms.
♻ ☆ Can Query Expansion Improve Generalization of Strong Cross-Encoder Rankers?
Query expansion has been widely used to improve the search results of first-stage retrievers, yet its influence on second-stage, cross-encoder rankers remains under-explored. A recent work of Weller et al. [44] shows that current expansion techniques benefit weaker models such as DPR and BM25 but harm stronger rankers such as MonoT5. In this paper, we re-examine this conclusion and raise the following question: Can query expansion improve generalization of strong cross-encoder rankers? To answer this question, we first apply popular query expansion methods to state-of-the-art cross-encoder rankers and verify the deteriorated zero-shot performance. We identify two vital steps for cross-encoders in the experiment: high-quality keyword generation and minimal-disruptive query modification. We show that it is possible to improve the generalization of a strong neural ranker, by prompt engineering and aggregating the ranking results of each expanded query via fusion. Specifically, we first call an instruction-following language model to generate keywords through a reasoning chain. Leveraging self-consistency and reciprocal rank weighting, we further combine the ranking results of each expanded query dynamically. Experiments on BEIR and TREC Deep Learning 2019/2020 show that the nDCG@10 scores of both MonoT5 and RankT5 following these steps are improved, which points out a direction for applying query expansion to strong cross-encoder rankers.
♻ ☆ Faithful Path Language Modeling for Explainable Recommendation over Knowledge Graph
The integration of path reasoning with language modeling in recommender systems has shown promise for enhancing explainability but often struggles with the authenticity of the explanations provided. Traditional models modify their architecture to produce entities and relations alternately--for example, employing separate heads for each in the model--which does not ensure the authenticity of paths reflective of actual Knowledge Graph (KG) connections. This misalignment can lead to user distrust due to the generation of corrupted paths. Addressing this, we introduce PEARLM (Path-based Explainable-Accurate Recommender based on Language Modelling), which innovates with a Knowledge Graph Constraint Decoding (KGCD) mechanism. This mechanism ensures zero incidence of corrupted paths by enforcing adherence to valid KG connections at the decoding level, agnostic of the underlying model architecture. By integrating direct token embedding learning from KG paths, PEARLM not only guarantees the generation of plausible and verifiable explanations but also highly enhances recommendation accuracy. We validate the effectiveness of our approach through a rigorous empirical assessment, employing a newly proposed metric that quantifies the integrity of explanation paths. Our results demonstrate a significant improvement over existing methods, effectively eliminating the generation of inaccurate paths and advancing the state-of-the-art in explainable recommender systems.
♻ ☆ Detecting Generated Native Ads in Conversational Search WWW'24
Conversational search engines such as YouChat and Microsoft Copilot use large language models (LLMs) to generate responses to queries. It is only a small step to also let the same technology insert ads within the generated responses - instead of separately placing ads next to a response. Inserted ads would be reminiscent of native advertising and product placement, both of which are very effective forms of subtle and manipulative advertising. Considering the high computational costs associated with LLMs, for which providers need to develop sustainable business models, users of conversational search engines may very well be confronted with generated native ads in the near future. In this paper, we thus take a first step to investigate whether LLMs can also be used as a countermeasure, i.e., to block generated native ads. We compile the Webis Generated Native Ads 2024 dataset of queries and generated responses with automatically inserted ads, and evaluate whether LLMs or fine-tuned sentence transformers can detect the ads. In our experiments, the investigated LLMs struggle with the task but sentence transformers achieve precision and recall values above 0.9.
comment: WWW'24 Short Papers Track; 4 pages
♻ ☆ Scenario-Adaptive Fine-Grained Personalization Network: Tailoring User Behavior Representation to the Scenario Context SIGIR 2024
Existing methods often adjust representations adaptively only after aggregating user behavior sequences. This coarse-grained approach to re-weighting the entire user sequence hampers the model's ability to accurately model the user interest migration across different scenarios. To enhance the model's capacity to capture user interests from historical behavior sequences in each scenario, we develop a ranking framework named the Scenario-Adaptive Fine-Grained Personalization Network (SFPNet), which designs a kind of fine-grained method for multi-scenario personalized recommendations. Specifically, SFPNet comprises a series of blocks named as Scenario-Tailoring Block, stacked sequentially. Each block initially deploys a parameter personalization unit to integrate scenario information at a coarse-grained level by redefining fundamental features. Subsequently, we consolidate scenario-adaptively adjusted feature representations to serve as context information. By employing residual connection, we incorporate this context into the representation of each historical behavior, allowing for context-aware fine-grained customization of the behavior representations at the scenario-level, which in turn supports scenario-aware user interest modeling.
comment: Accepted by SIGIR 2024, 10 pages, 5 figures, 5 tables
Machine Learning 160
☆ KAN: Kolmogorov-Arnold Networks
Inspired by the Kolmogorov-Arnold representation theorem, we propose Kolmogorov-Arnold Networks (KANs) as promising alternatives to Multi-Layer Perceptrons (MLPs). While MLPs have fixed activation functions on nodes ("neurons"), KANs have learnable activation functions on edges ("weights"). KANs have no linear weights at all -- every weight parameter is replaced by a univariate function parametrized as a spline. We show that this seemingly simple change makes KANs outperform MLPs in terms of accuracy and interpretability. For accuracy, much smaller KANs can achieve comparable or better accuracy than much larger MLPs in data fitting and PDE solving. Theoretically and empirically, KANs possess faster neural scaling laws than MLPs. For interpretability, KANs can be intuitively visualized and can easily interact with human users. Through two examples in mathematics and physics, KANs are shown to be useful collaborators helping scientists (re)discover mathematical and physical laws. In summary, KANs are promising alternatives for MLPs, opening opportunities for further improving today's deep learning models which rely heavily on MLPs.
comment: 48 pages, 20 figures. Codes are available at https://github.com/KindXiaoming/pykan
☆ DOCCI: Descriptions of Connected and Contrasting Images
Vision-language datasets are vital for both text-to-image (T2I) and image-to-text (I2T) research. However, current datasets lack descriptions with fine-grained detail that would allow for richer associations to be learned by models. To fill the gap, we introduce Descriptions of Connected and Contrasting Images (DOCCI), a dataset with long, human-annotated English descriptions for 15k images that were taken, curated and donated by a single researcher intent on capturing key challenges such as spatial relations, counting, text rendering, world knowledge, and more. We instruct human annotators to create comprehensive descriptions for each image; these average 136 words in length and are crafted to clearly distinguish each image from those that are related or similar. Each description is highly compositional and typically encompasses multiple challenges. Through both quantitative and qualitative analyses, we demonstrate that DOCCI serves as an effective training resource for image-to-text generation -- a PaLI 5B model finetuned on DOCCI shows equal or superior results compared to highly-performant larger models like LLaVA-1.5 7B and InstructBLIP 7B. Furthermore, we show that DOCCI is a useful testbed for text-to-image generation, highlighting the limitations of current text-to-image models in capturing long descriptions and fine details.
☆ Scale-Robust Timely Asynchronous Decentralized Learning
We consider an asynchronous decentralized learning system, which consists of a network of connected devices trying to learn a machine learning model without any centralized parameter server. The users in the network have their own local training data, which is used for learning across all the nodes in the network. The learning method consists of two processes, evolving simultaneously without any necessary synchronization. The first process is the model update, where the users update their local model via a fixed number of stochastic gradient descent steps. The second process is model mixing, where the users communicate with each other via randomized gossiping to exchange their models and average them to reach consensus. In this work, we investigate the staleness criteria for such a system, which is a sufficient condition for convergence of individual user models. We show that for network scaling, i.e., when the number of user devices $n$ is very large, if the gossip capacity of individual users scales as $\Omega(\log n)$, we can guarantee the convergence of user models in finite time. Furthermore, we show that the bounded staleness can only be guaranteed by any distributed opportunistic scheme by $\Omega(n)$ scaling.
☆ Mixed Continuous and Categorical Flow Matching for 3D De Novo Molecule Generation
Deep generative models that produce novel molecular structures have the potential to facilitate chemical discovery. Diffusion models currently achieve state of the art performance for 3D molecule generation. In this work, we explore the use of flow matching, a recently proposed generative modeling framework that generalizes diffusion models, for the task of de novo molecule generation. Flow matching provides flexibility in model design; however, the framework is predicated on the assumption of continuously-valued data. 3D de novo molecule generation requires jointly sampling continuous and categorical variables such as atom position and atom type. We extend the flow matching framework to categorical data by constructing flows that are constrained to exist on a continuous representation of categorical data known as the probability simplex. We call this extension SimplexFlow. We explore the use of SimplexFlow for de novo molecule generation. However, we find that, in practice, a simpler approach that makes no accommodations for the categorical nature of the data yields equivalent or superior performance. As a result of these experiments, we present FlowMol, a flow matching model for 3D de novo generative model that achieves improved performance over prior flow matching methods, and we raise important questions about the design of prior distributions for achieving strong performance in flow matching models. Code and trained models for reproducing this work are available at https://github.com/dunni3/FlowMol
☆ Fairness Without Demographics in Human-Centered Federated Learning
Federated learning (FL) enables collaborative model training while preserving data privacy, making it suitable for decentralized human-centered AI applications. However, a significant research gap remains in ensuring fairness in these systems. Current fairness strategies in FL require knowledge of bias-creating/sensitive attributes, clashing with FL's privacy principles. Moreover, in human-centered datasets, sensitive attributes may remain latent. To tackle these challenges, we present a novel bias mitigation approach inspired by "Fairness without Demographics" in machine learning. The presented approach achieves fairness without needing knowledge of sensitive attributes by minimizing the top eigenvalue of the Hessian matrix during training, ensuring equitable loss landscapes across FL participants. Notably, we introduce a novel FL aggregation scheme that promotes participating models based on error rates and loss landscape curvature attributes, fostering fairness across the FL system. This work represents the first approach to attaining "Fairness without Demographics" in human-centered FL. Through comprehensive evaluation, our approach demonstrates effectiveness in balancing fairness and efficacy across various real-world applications, FL setups, and scenarios involving single and multiple bias-inducing factors, representing a significant advancement in human-centered FL.
☆ The lazy (NTK) and rich ($μ$P) regimes: a gentle tutorial
A central theme of the modern machine learning paradigm is that larger neural networks achieve better performance on a variety of metrics. Theoretical analyses of these overparameterized models have recently centered around studying very wide neural networks. In this tutorial, we provide a nonrigorous but illustrative derivation of the following fact: in order to train wide networks effectively, there is only one degree of freedom in choosing hyperparameters such as the learning rate and the size of the initial weights. This degree of freedom controls the richness of training behavior: at minimum, the wide network trains lazily like a kernel machine, and at maximum, it exhibits feature learning in the so-called $\mu$P regime. In this paper, we explain this richness scale, synthesize recent research results into a coherent whole, offer new perspectives and intuitions, and provide empirical evidence supporting our claims. In doing so, we hope to encourage further study of the richness scale, as it may be key to developing a scientific theory of feature learning in practical deep neural networks.
comment: 22 pages, 7 figures
☆ A rank decomposition for the topological classification of neural representations
Neural networks can be thought of as applying a transformation to an input dataset. The way in which they change the topology of such a dataset often holds practical significance for many tasks, particularly those demanding non-homeomorphic mappings for optimal solutions, such as classification problems. In this work, we leverage the fact that neural networks are equivalent to continuous piecewise-affine maps, whose rank can be used to pinpoint regions in the input space that undergo non-homeomorphic transformations, leading to alterations in the topological structure of the input dataset. Our approach enables us to make use of the relative homology sequence, with which one can study the homology groups of the quotient of a manifold $\mathcal{M}$ and a subset $A$, assuming some minimal properties on these spaces. As a proof of principle, we empirically investigate the presence of low-rank (topology-changing) affine maps as a function of network width and mean weight. We show that in randomly initialized narrow networks, there will be regions in which the (co)homology groups of a data manifold can change. As the width increases, the homology groups of the input manifold become more likely to be preserved. We end this part of our work by constructing highly non-random wide networks that do not have this property and relating this non-random regime to Dale's principle, which is a defining characteristic of biological neural networks. Finally, we study simple feedforward networks trained on MNIST, as well as on toy classification and regression tasks, and show that networks manipulate the topology of data differently depending on the continuity of the task they are trained on.
☆ Harmonic LLMs are Trustworthy
We introduce an intuitive method to test the robustness (stability and explainability) of any black-box LLM in real-time, based upon the local deviation from harmoniticity, denoted as $\gamma$. To the best of our knowledge this is the first completely model-agnostic and unsupervised method of measuring the robustness of any given response from an LLM, based upon the model itself conforming to a purely mathematical standard. We conduct human annotation experiments to show the positive correlation of $\gamma$ with false or misleading answers, and demonstrate that following the gradient of $\gamma$ in stochastic gradient ascent efficiently exposes adversarial prompts. Measuring $\gamma$ across thousands of queries in popular LLMs (GPT-4, ChatGPT, Claude-2.1, Mixtral-8x7B, Smaug-72B, Llama2-7B, and MPT-7B) allows us to estimate the liklihood of wrong or hallucinatory answers automatically and quantitatively rank the reliability of these models in various objective domains (Web QA, TruthfulQA, and Programming QA). Across all models and domains tested, human ratings confirm that $\gamma \to 0$ indicates trustworthiness, and the low-$\gamma$ leaders among these models are GPT-4, ChatGPT, and Smaug-72B.
comment: 15 pages, 4 figures, 14 tables
☆ Naturally Supervised 3D Visual Grounding with Language-Regularized Concept Learners CVPR 2024
3D visual grounding is a challenging task that often requires direct and dense supervision, notably the semantic label for each object in the scene. In this paper, we instead study the naturally supervised setting that learns from only 3D scene and QA pairs, where prior works underperform. We propose the Language-Regularized Concept Learner (LARC), which uses constraints from language as regularization to significantly improve the accuracy of neuro-symbolic concept learners in the naturally supervised setting. Our approach is based on two core insights: the first is that language constraints (e.g., a word's relation to another) can serve as effective regularization for structured representations in neuro-symbolic models; the second is that we can query large language models to distill such constraints from language properties. We show that LARC improves performance of prior works in naturally supervised 3D visual grounding, and demonstrates a wide range of 3D visual reasoning capabilities-from zero-shot composition, to data efficiency and transferability. Our method represents a promising step towards regularizing structured visual reasoning frameworks with language-based priors, for learning in settings without dense supervision.
comment: CVPR 2024. The first two authors contributed equally
☆ Continuum limit of $p$-biharmonic equations on graphs
This paper studies the $p$-biharmonic equation on graphs, which arises in point cloud processing and can be interpreted as a natural extension of the graph $p$-Laplacian from the perspective of hypergraph. The asymptotic behavior of the solution is investigated when the random geometric graph is considered and the number of data points goes to infinity. We show that the continuum limit is an appropriately weighted $p$-biharmonic equation with homogeneous Neumann boundary conditions. The result relies on the uniform $L^p$ estimates for solutions and gradients of nonlocal and graph Poisson equations. The $L^\infty$ estimates of solutions are also obtained as a byproduct.
comment: 20 pages
☆ Neural Controlled Differential Equations with Quantum Hidden Evolutions
We introduce a class of neural controlled differential equation inspired by quantum mechanics. Neural quantum controlled differential equations (NQDEs) model the dynamics by analogue of the Schr\"{o}dinger equation. Specifically, the hidden state represents the wave function, and its collapse leads to an interpretation of the classification probability. We implement and compare the results of four variants of NQDEs on a toy spiral classification problem.
comment: Code available at: https://github.com/lingyiyang/NQDE
☆ Towards Generalist Robot Learning from Internet Video: A Survey
This survey presents an overview of methods for learning from video (LfV) in the context of reinforcement learning (RL) and robotics. We focus on methods capable of scaling to large internet video datasets and, in the process, extracting foundational knowledge about the world's dynamics and physical human behaviour. Such methods hold great promise for developing general-purpose robots. We open with an overview of fundamental concepts relevant to the LfV-for-robotics setting. This includes a discussion of the exciting benefits LfV methods can offer (e.g., improved generalization beyond the available robot data) and commentary on key LfV challenges (e.g., challenges related to missing information in video and LfV distribution shifts). Our literature review begins with an analysis of video foundation model techniques that can extract knowledge from large, heterogeneous video datasets. Next, we review methods that specifically leverage video data for robot learning. Here, we categorise work according to which RL knowledge modality benefits from the use of video data. We additionally highlight techniques for mitigating LfV challenges, including reviewing action representations that address the issue of missing action labels in video. Finally, we examine LfV datasets and benchmarks, before concluding the survey by discussing challenges and opportunities in LfV. Here, we advocate for scalable approaches that can leverage the full range of available data and that target the key benefits of LfV. Overall, we hope this survey will serve as a comprehensive reference for the emerging field of LfV, catalysing further research in the area, and ultimately facilitating progress towards obtaining general-purpose robots.
☆ Masked Multi-Query Slot Attention for Unsupervised Object Discovery IJCNN 2024
Unsupervised object discovery is becoming an essential line of research for tackling recognition problems that require decomposing an image into entities, such as semantic segmentation and object detection. Recently, object-centric methods that leverage self-supervision have gained popularity, due to their simplicity and adaptability to different settings and conditions. However, those methods do not exploit effective techniques already employed in modern self-supervised approaches. In this work, we consider an object-centric approach in which DINO ViT features are reconstructed via a set of queried representations called slots. Based on that, we propose a masking scheme on input features that selectively disregards the background regions, inducing our model to focus more on salient objects during the reconstruction phase. Moreover, we extend the slot attention to a multi-query approach, allowing the model to learn multiple sets of slots, producing more stable masks. During training, these multiple sets of slots are learned independently while, at test time, these sets are merged through Hungarian matching to obtain the final slots. Our experimental results and ablations on the PASCAL-VOC 2012 dataset show the importance of each component and highlight how their combination consistently improves object localization. Our source code is available at: https://github.com/rishavpramanik/maskedmultiqueryslot
comment: Paper accepted for presentation at IJCNN 2024
☆ Provably Robust Conformal Prediction with Improved Efficiency
Conformal prediction is a powerful tool to generate uncertainty sets with guaranteed coverage using any predictive model, under the assumption that the training and test data are i.i.d.. Recently, it has been shown that adversarial examples are able to manipulate conformal methods to construct prediction sets with invalid coverage rates, as the i.i.d. assumption is violated. To address this issue, a recent work, Randomized Smoothed Conformal Prediction (RSCP), was first proposed to certify the robustness of conformal prediction methods to adversarial noise. However, RSCP has two major limitations: (i) its robustness guarantee is flawed when used in practice and (ii) it tends to produce large uncertainty sets. To address these limitations, we first propose a novel framework called RSCP+ to provide provable robustness guarantee in evaluation, which fixes the issues in the original RSCP method. Next, we propose two novel methods, Post-Training Transformation (PTT) and Robust Conformal Training (RCT), to effectively reduce prediction set size with little computation overhead. Experimental results in CIFAR10, CIFAR100, and ImageNet suggest the baseline method only yields trivial predictions including full label set, while our methods could boost the efficiency by up to $4.36\times$, $5.46\times$, and $16.9\times$ respectively and provide practical robustness guarantee. Our codes are available at https://github.com/Trustworthy-ML-Lab/Provably-Robust-Conformal-Prediction.
☆ On Training a Neural Network to Explain Binaries
In this work, we begin to investigate the possibility of training a deep neural network on the task of binary code understanding. Specifically, the network would take, as input, features derived directly from binaries and output English descriptions of functionality to aid a reverse engineer in investigating the capabilities of a piece of closed-source software, be it malicious or benign. Given recent success in applying large language models (generative AI) to the task of source code summarization, this seems a promising direction. However, in our initial survey of the available datasets, we found nothing of sufficiently high quality and volume to train these complex models. Instead, we build our own dataset derived from a capture of Stack Overflow containing 1.1M entries. A major result of our work is a novel dataset evaluation method using the correlation between two distances on sample pairs: one distance in the embedding space of inputs and the other in the embedding space of outputs. Intuitively, if two samples have inputs close in the input embedding space, their outputs should also be close in the output embedding space. We found this Embedding Distance Correlation (EDC) test to be highly diagnostic, indicating that our collected dataset and several existing open-source datasets are of low quality as the distances are not well correlated. We proceed to explore the general applicability of EDC, applying it to a number of qualitatively known good datasets and a number of synthetically known bad ones and found it to be a reliable indicator of dataset value.
☆ Analyzing and Exploring Training Recipes for Large-Scale Transformer-Based Weather Prediction
The rapid rise of deep learning (DL) in numerical weather prediction (NWP) has led to a proliferation of models which forecast atmospheric variables with comparable or superior skill than traditional physics-based NWP. However, among these leading DL models, there is a wide variance in both the training settings and architecture used. Further, the lack of thorough ablation studies makes it hard to discern which components are most critical to success. In this work, we show that it is possible to attain high forecast skill even with relatively off-the-shelf architectures, simple training procedures, and moderate compute budgets. Specifically, we train a minimally modified SwinV2 transformer on ERA5 data, and find that it attains superior forecast skill when compared against IFS. We present some ablations on key aspects of the training pipeline, exploring different loss functions, model sizes and depths, and multi-step fine-tuning to investigate their effect. We also examine the model performance with metrics beyond the typical ACC and RMSE, and investigate how the performance scales with model size.
comment: 9 pages, 6 figures
☆ Be Aware of the Neighborhood Effect: Modeling Selection Bias under Interference ICLR 24
Selection bias in recommender system arises from the recommendation process of system filtering and the interactive process of user selection. Many previous studies have focused on addressing selection bias to achieve unbiased learning of the prediction model, but ignore the fact that potential outcomes for a given user-item pair may vary with the treatments assigned to other user-item pairs, named neighborhood effect. To fill the gap, this paper formally formulates the neighborhood effect as an interference problem from the perspective of causal inference and introduces a treatment representation to capture the neighborhood effect. On this basis, we propose a novel ideal loss that can be used to deal with selection bias in the presence of neighborhood effect. We further develop two new estimators for estimating the proposed ideal loss. We theoretically establish the connection between the proposed and previous debiasing methods ignoring the neighborhood effect, showing that the proposed methods can achieve unbiased learning when both selection bias and neighborhood effect are present, while the existing methods are biased. Extensive semi-synthetic and real-world experiments are conducted to demonstrate the effectiveness of the proposed methods.
comment: ICLR 24
☆ Data-Driven Invertible Neural Surrogates of Atmospheric Transmission
We present a framework for inferring an atmospheric transmission profile from a spectral scene. This framework leverages a lightweight, physics-based simulator that is automatically tuned - by virtue of autodifferentiation and differentiable programming - to construct a surrogate atmospheric profile to model the observed data. We demonstrate utility of the methodology by (i) performing atmospheric correction, (ii) recasting spectral data between various modalities (e.g. radiance and reflectance at the surface and at the sensor), and (iii) inferring atmospheric transmission profiles, such as absorbing bands and their relative magnitudes.
comment: Manuscript accepted for presentation and publication at the 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
☆ Debiased Collaborative Filtering with Kernel-Based Causal Balancing ICLR 24
Debiased collaborative filtering aims to learn an unbiased prediction model by removing different biases in observational datasets. To solve this problem, one of the simple and effective methods is based on the propensity score, which adjusts the observational sample distribution to the target one by reweighting observed instances. Ideally, propensity scores should be learned with causal balancing constraints. However, existing methods usually ignore such constraints or implement them with unreasonable approximations, which may affect the accuracy of the learned propensity scores. To bridge this gap, in this paper, we first analyze the gaps between the causal balancing requirements and existing methods such as learning the propensity with cross-entropy loss or manually selecting functions to balance. Inspired by these gaps, we propose to approximate the balancing functions in reproducing kernel Hilbert space and demonstrate that, based on the universal property and representer theorem of kernel functions, the causal balancing constraints can be better satisfied. Meanwhile, we propose an algorithm that adaptively balances the kernel function and theoretically analyze the generalization error bound of our methods. We conduct extensive experiments to demonstrate the effectiveness of our methods, and to promote this research direction, we have released our project at https://github.com/haoxuanli-pku/ICLR24-Kernel-Balancing.
comment: ICLR 24 Spotlight
☆ Towards Interactively Improving ML Data Preparation Code via "Shadow Pipelines"
Data scientists develop ML pipelines in an iterative manner: they repeatedly screen a pipeline for potential issues, debug it, and then revise and improve its code according to their findings. However, this manual process is tedious and error-prone. Therefore, we propose to support data scientists during this development cycle with automatically derived interactive suggestions for pipeline improvements. We discuss our vision to generate these suggestions with so-called shadow pipelines, hidden variants of the original pipeline that modify it to auto-detect potential issues, try out modifications for improvements, and suggest and explain these modifications to the user. We envision to apply incremental view maintenance-based optimisations to ensure low-latency computation and maintenance of the shadow pipelines. We conduct preliminary experiments to showcase the feasibility of our envisioned approach and the potential benefits of our proposed optimisations.
☆ Leveraging Label Information for Stealthy Data Stealing in Vertical Federated Learning
We develop DMAVFL, a novel attack strategy that evades current detection mechanisms. The key idea is to integrate a discriminator with auxiliary classifier that takes a full advantage of the label information (which was completely ignored in previous attacks): on one hand, label information helps to better characterize embeddings of samples from distinct classes, yielding an improved reconstruction performance; on the other hand, computing malicious gradients with label information better mimics the honest training, making the malicious gradients indistinguishable from the honest ones, and the attack much more stealthy. Our comprehensive experiments demonstrate that DMAVFL significantly outperforms existing attacks, and successfully circumvents SOTA defenses for malicious attacks. Additional ablation studies and evaluations on other defenses further underscore the robustness and effectiveness of DMAVFL.
☆ Automatic Cardiac Pathology Recognition in Echocardiography Images Using Higher Order Dynamic Mode Decomposition and a Vision Transformer for Small Datasets
Heart diseases are the main international cause of human defunction. According to the WHO, nearly 18 million people decease each year because of heart diseases. Also considering the increase of medical data, much pressure is put on the health industry to develop systems for early and accurate heart disease recognition. In this work, an automatic cardiac pathology recognition system based on a novel deep learning framework is proposed, which analyses in real-time echocardiography video sequences. The system works in two stages. The first one transforms the data included in a database of echocardiography sequences into a machine-learning-compatible collection of annotated images which can be used in the training stage of any kind of machine learning-based framework, and more specifically with deep learning. This includes the use of the Higher Order Dynamic Mode Decomposition (HODMD) algorithm, for the first time to the authors' knowledge, for both data augmentation and feature extraction in the medical field. The second stage is focused on building and training a Vision Transformer (ViT), barely explored in the related literature. The ViT is adapted for an effective training from scratch, even with small datasets. The designed neural network analyses images from an echocardiography sequence to predict the heart state. The results obtained show the superiority of the proposed system and the efficacy of the HODMD algorithm, even outperforming pretrained Convolutional Neural Networks (CNNs), which are so far the method of choice in the literature.
☆ Neural Dynamic Data Valuation
Data constitute the foundational component of the data economy and its marketplaces. Efficient and fair data valuation has emerged as a topic of significant interest.\ Many approaches based on marginal contribution have shown promising results in various downstream tasks. However, they are well known to be computationally expensive as they require training a large number of utility functions, which are used to evaluate the usefulness or value of a given dataset for a specific purpose. As a result, it has been recognized as infeasible to apply these methods to a data marketplace involving large-scale datasets. Consequently, a critical issue arises: how can the re-training of the utility function be avoided? To address this issue, we propose a novel data valuation method from the perspective of optimal control, named the neural dynamic data valuation (NDDV). Our method has solid theoretical interpretations to accurately identify the data valuation via the sensitivity of the data optimal control state. In addition, we implement a data re-weighting strategy to capture the unique features of data points, ensuring fairness through the interaction between data points and the mean-field states. Notably, our method requires only training once to estimate the value of all data points, significantly improving the computational efficiency. We conduct comprehensive experiments using different datasets and tasks. The results demonstrate that the proposed NDDV method outperforms the existing state-of-the-art data valuation methods in accurately identifying data points with either high or low values and is more computationally efficient.
comment: 43 pages, 19 figures
☆ Physics-Informed Machine Learning On Polar Ice: A Survey
The mass loss of the polar ice sheets contributes considerably to ongoing sea-level rise and changing ocean circulation, leading to coastal flooding and risking the homes and livelihoods of tens of millions of people globally. To address the complex problem of ice behavior, physical models and data-driven models have been proposed in the literature. Although traditional physical models can guarantee physically meaningful results, they have limitations in producing high-resolution results. On the other hand, data-driven approaches require large amounts of high-quality and labeled data, which is rarely available in the polar regions. Hence, as a promising framework that leverages the advantages of physical models and data-driven methods, physics-informed machine learning (PIML) has been widely studied in recent years. In this paper, we review the existing algorithms of PIML, provide our own taxonomy based on the methods of combining physics and data-driven approaches, and analyze the advantages of PIML in the aspects of accuracy and efficiency. Further, our survey discusses some current challenges and highlights future opportunities, including PIML on sea ice studies, PIML with different combination methods and backbone networks, and neural operator methods.
☆ Generating Robust Counterfactual Witnesses for Graph Neural Networks ICDE 2024
This paper introduces a new class of explanation structures, called robust counterfactual witnesses (RCWs), to provide robust, both counterfactual and factual explanations for graph neural networks. Given a graph neural network M, a robust counterfactual witness refers to the fraction of a graph G that are counterfactual and factual explanation of the results of M over G, but also remains so for any "disturbed" G by flipping up to k of its node pairs. We establish the hardness results, from tractable results to co-NP-hardness, for verifying and generating robust counterfactual witnesses. We study such structures for GNN-based node classification, and present efficient algorithms to verify and generate RCWs. We also provide a parallel algorithm to verify and generate RCWs for large graphs with scalability guarantees. We experimentally verify our explanation generation process for benchmark datasets, and showcase their applications.
comment: This paper has been accepted by ICDE 2024
☆ Temporal Graph ODEs for Irregularly-Sampled Time Series IJCAI 2024
Modern graph representation learning works mostly under the assumption of dealing with regularly sampled temporal graph snapshots, which is far from realistic, e.g., social networks and physical systems are characterized by continuous dynamics and sporadic observations. To address this limitation, we introduce the Temporal Graph Ordinary Differential Equation (TG-ODE) framework, which learns both the temporal and spatial dynamics from graph streams where the intervals between observations are not regularly spaced. We empirically validate the proposed approach on several graph benchmarks, showing that TG-ODE can achieve state-of-the-art performance in irregular graph stream tasks.
comment: Preprint. Accepted at IJCAI 2024
☆ A Unified Theory of Exact Inference and Learning in Exponential Family Latent Variable Models
Bayes' rule describes how to infer posterior beliefs about latent variables given observations, and inference is a critical step in learning algorithms for latent variable models (LVMs). Although there are exact algorithms for inference and learning for certain LVMs such as linear Gaussian models and mixture models, researchers must typically develop approximate inference and learning algorithms when applying novel LVMs. In this paper we study the line that separates LVMs that rely on approximation schemes from those that do not, and develop a general theory of exponential family, latent variable models for which inference and learning may be implemented exactly. Firstly, under mild assumptions about the exponential family form of a given LVM, we derive necessary and sufficient conditions under which the LVM prior is in the same exponential family as its posterior, such that the prior is conjugate to the posterior. We show that all models that satisfy these conditions are constrained forms of a particular class of exponential family graphical model. We then derive general inference and learning algorithms, and demonstrate them on a variety of example models. Finally, we show how to compose our models into graphical models that retain tractable inference and learning. In addition to our theoretical work, we have implemented our algorithms in a collection of libraries with which we provide numerous demonstrations of our theory, and with which researchers may apply our theory in novel statistical settings.
☆ Finetuning greedy kernel models by exchange algorithms
Kernel based approximation offers versatile tools for high-dimensional approximation, which can especially be leveraged for surrogate modeling. For this purpose, both "knot insertion" and "knot removal" approaches aim at choosing a suitable subset of the data, in order to obtain a sparse but nevertheless accurate kernel model. In the present work, focussing on kernel based interpolation, we aim at combining these two approaches to further improve the accuracy of kernel models, without increasing the computational complexity of the final kernel model. For this, we introduce a class of kernel exchange algorithms (KEA). The resulting KEA algorithm can be used for finetuning greedy kernel surrogate models, allowing for an reduction of the error up to 86.4% (17.2% on average) in our experiments.
☆ Safe Training with Sensitive In-domain Data: Leveraging Data Fragmentation To Mitigate Linkage Attacks
Current text generation models are trained using real data which can potentially contain sensitive information, such as confidential patient information and the like. Under certain conditions output of the training data which they have memorised can be triggered, exposing sensitive data. To mitigate against this risk we propose a safer alternative which sees fragmented data in the form of domain-specific short phrases randomly grouped together shared instead of full texts. Thus, text fragments that could re-identify an individual cannot be reproduced by the model in one sequence, giving significant protection against linkage attacks. We fine-tune several state-of-the-art LLMs using meaningful syntactic chunks to explore their utility. In particular, we fine-tune BERT-based models to predict two cardiovascular diagnoses. Our results demonstrate the capacity of LLMs to benefit from the pre-trained knowledge and deliver classification results when fine-tuned with fragmented data comparable to fine-tuning with full training data.
☆ More Compute Is What You Need
Large language model pre-training has become increasingly expensive, with most practitioners relying on scaling laws to allocate compute budgets for model size and training tokens, commonly referred to as Compute-Optimal or Chinchilla Optimal. In this paper, we hypothesize a new scaling law that suggests model performance depends mostly on the amount of compute spent for transformer-based models, independent of the specific allocation to model size and dataset size. Using this unified scaling law, we predict that (a) for inference efficiency, training should prioritize smaller model sizes and larger training datasets, and (b) assuming the exhaustion of available web datasets, scaling the model size might be the only way to further improve model performance.
☆ Bayesian Functional Connectivity and Graph Convolutional Network for Working Memory Load Classification
Brain responses related to working memory originate from distinct brain areas and oscillate at different frequencies. EEG signals with high temporal correlation can effectively capture these responses. Therefore, estimating the functional connectivity of EEG for working memory protocols in different frequency bands plays a significant role in analyzing the brain dynamics with increasing memory and cognitive loads, which remains largely unexplored. The present study introduces a Bayesian structure learning algorithm to learn the functional connectivity of EEG in sensor space. Next, the functional connectivity graphs are taken as input to the graph convolutional network to classify the working memory loads. The intrasubject (subject-specific) classification performed on 154 subjects for six different verbal working memory loads produced the highest classification accuracy of 96% and average classification accuracy of 89%, outperforming state-of-the-art classification models proposed in the literature. Furthermore, the proposed Bayesian structure learning algorithm is compared with state-of-the-art functional connectivity estimation methods through intersubject and intrasubject statistical analysis of variance. The results also show that the alpha and theta bands have better classification accuracy than the beta band.
☆ Continual Model-based Reinforcement Learning for Data Efficient Wireless Network Optimisation ECML 2023
We present a method that addresses the pain point of long lead-time required to deploy cell-level parameter optimisation policies to new wireless network sites. Given a sequence of action spaces represented by overlapping subsets of cell-level configuration parameters provided by domain experts, we formulate throughput optimisation as Continual Reinforcement Learning of control policies. Simulation results suggest that the proposed system is able to shorten the end-to-end deployment lead-time by two-fold compared to a reinitialise-and-retrain baseline without any drop in optimisation gain.
comment: Published at ECML 2023
☆ AttackBench: Evaluating Gradient-based Attacks for Adversarial Examples
Adversarial examples are typically optimized with gradient-based attacks. While novel attacks are continuously proposed, each is shown to outperform its predecessors using different experimental setups, hyperparameter settings, and number of forward and backward calls to the target models. This provides overly-optimistic and even biased evaluations that may unfairly favor one particular attack over the others. In this work, we aim to overcome these limitations by proposing AttackBench, i.e., the first evaluation framework that enables a fair comparison among different attacks. To this end, we first propose a categorization of gradient-based attacks, identifying their main components and differences. We then introduce our framework, which evaluates their effectiveness and efficiency. We measure these characteristics by (i) defining an optimality metric that quantifies how close an attack is to the optimal solution, and (ii) limiting the number of forward and backward queries to the model, such that all attacks are compared within a given maximum query budget. Our extensive experimental analysis compares more than 100 attack implementations with a total of over 800 different configurations against CIFAR-10 and ImageNet models, highlighting that only very few attacks outperform all the competing approaches. Within this analysis, we shed light on several implementation issues that prevent many attacks from finding better solutions or running at all. We release AttackBench as a publicly available benchmark, aiming to continuously update it to include and evaluate novel gradient-based attacks for optimizing adversarial examples.
comment: https://attackbench.github.io
☆ Imitation Learning: A Survey of Learning Methods, Environments and Metrics
Imitation learning is an approach in which an agent learns how to execute a task by trying to mimic how one or more teachers perform it. This learning approach offers a compromise between the time it takes to learn a new task and the effort needed to collect teacher samples for the agent. It achieves this by balancing learning from the teacher, who has some information on how to perform the task, and deviating from their examples when necessary, such as states not present in the teacher samples. Consequently, the field of imitation learning has received much attention from researchers in recent years, resulting in many new methods and applications. However, with this increase in published work and past surveys focusing mainly on methodology, a lack of standardisation became more prominent in the field. This non-standardisation is evident in the use of environments, which appear in no more than two works, and evaluation processes, such as qualitative analysis, that have become rare in current literature. In this survey, we systematically review current imitation learning literature and present our findings by (i) classifying imitation learning techniques, environments and metrics by introducing novel taxonomies; (ii) reflecting on main problems from the literature; and (iii) presenting challenges and future directions for researchers.
☆ How to Sustainably Monitor ML-Enabled Systems? Accuracy and Energy Efficiency Tradeoffs in Concept Drift Detection
ML-enabled systems that are deployed in a production environment typically suffer from decaying model prediction quality through concept drift, i.e., a gradual change in the statistical characteristics of a certain real-world domain. To combat this, a simple solution is to periodically retrain ML models, which unfortunately can consume a lot of energy. One recommended tactic to improve energy efficiency is therefore to systematically monitor the level of concept drift and only retrain when it becomes unavoidable. Different methods are available to do this, but we know very little about their concrete impact on the tradeoff between accuracy and energy efficiency, as these methods also consume energy themselves. To address this, we therefore conducted a controlled experiment to study the accuracy vs. energy efficiency tradeoff of seven common methods for concept drift detection. We used five synthetic datasets, each in a version with abrupt and one with gradual drift, and trained six different ML models as base classifiers. Based on a full factorial design, we tested 420 combinations (7 drift detectors * 5 datasets * 2 types of drift * 6 base classifiers) and compared energy consumption and drift detection accuracy. Our results indicate that there are three types of detectors: a) detectors that sacrifice energy efficiency for detection accuracy (KSWIN), b) balanced detectors that consume low to medium energy with good accuracy (HDDM_W, ADWIN), and c) detectors that consume very little energy but are unusable in practice due to very poor accuracy (HDDM_A, PageHinkley, DDM, EDDM). By providing rich evidence for this energy efficiency tactic, our findings support ML practitioners in choosing the best suited method of concept drift detection for their ML-enabled systems.
comment: Accepted for publication at the International Conference on Information and Communications Technology for Sustainability 2024 (ICT4S'24)
☆ Lancet: Accelerating Mixture-of-Experts Training via Whole Graph Computation-Communication Overlapping
The Mixture-of-Expert (MoE) technique plays a crucial role in expanding the size of DNN model parameters. However, it faces the challenge of extended all-to-all communication latency during the training process. Existing methods attempt to mitigate this issue by overlapping all-to-all with expert computation. Yet, these methods frequently fall short of achieving sufficient overlap, consequently restricting the potential for performance enhancements. In our study, we extend the scope of this challenge by considering overlap at the broader training graph level. During the forward pass, we enable non-MoE computations to overlap with all-to-all through careful partitioning and pipelining. In the backward pass, we achieve overlap with all-to-all by scheduling gradient weight computations. We implement these techniques in Lancet, a system using compiler-based optimization to automatically enhance MoE model training. Our extensive evaluation reveals that Lancet significantly reduces the time devoted to non-overlapping communication, by as much as 77%. Moreover, it achieves a notable end-to-end speedup of up to 1.3 times when compared to the state-of-the-art solutions.
comment: 11 pages, 16 figures. Published in MLSys'24
☆ Let's Focus: Focused Backdoor Attack against Federated Transfer Learning
Federated Transfer Learning (FTL) is the most general variation of Federated Learning. According to this distributed paradigm, a feature learning pre-step is commonly carried out by only one party, typically the server, on publicly shared data. After that, the Federated Learning phase takes place to train a classifier collaboratively using the learned feature extractor. Each involved client contributes by locally training only the classification layers on a private training set. The peculiarity of an FTL scenario makes it hard to understand whether poisoning attacks can be developed to craft an effective backdoor. State-of-the-art attack strategies assume the possibility of shifting the model attention toward relevant features introduced by a forged trigger injected in the input data by some untrusted clients. Of course, this is not feasible in FTL, as the learned features are fixed once the server performs the pre-training step. Consequently, in this paper, we investigate this intriguing Federated Learning scenario to identify and exploit a vulnerability obtained by combining eXplainable AI (XAI) and dataset distillation. In particular, the proposed attack can be carried out by one of the clients during the Federated Learning phase of FTL by identifying the optimal local for the trigger through XAI and encapsulating compressed information of the backdoor class. Due to its behavior, we refer to our approach as a focused backdoor approach (FB-FTL for short) and test its performance by explicitly referencing an image classification scenario. With an average 80% attack success rate, obtained results show the effectiveness of our attack also against existing defenses for Federated Learning.
☆ Can humans teach machines to code?
The goal of inductive program synthesis is for a machine to automatically generate a program from user-supplied examples of the desired behaviour of the program. A key underlying assumption is that humans can provide examples of sufficient quality to teach a concept to a machine. However, as far as we are aware, this assumption lacks both empirical and theoretical support. To address this limitation, we explore the question `Can humans teach machines to code?'. To answer this question, we conduct a study where we ask humans to generate examples for six programming tasks, such as finding the maximum element of a list. We compare the performance of a program synthesis system trained on (i) human-provided examples, (ii) randomly sampled examples, and (iii) expert-provided examples. Our results show that, on most of the tasks, non-expert participants did not provide sufficient examples for a program synthesis system to learn an accurate program. Our results also show that non-experts need to provide more examples than both randomly sampled and expert-provided examples.
☆ Numeric Reward Machines ICAPS 2024
Reward machines inform reinforcement learning agents about the reward structure of the environment and often drastically speed up the learning process. However, reward machines only accept Boolean features such as robot-reached-gold. Consequently, many inherently numeric tasks cannot profit from the guidance offered by reward machines. To address this gap, we aim to extend reward machines with numeric features such as distance-to-gold. For this, we present two types of reward machines: numeric-Boolean and numeric. In a numeric-Boolean reward machine, distance-to-gold is emulated by two Boolean features distance-to-gold-decreased and robot-reached-gold. In a numeric reward machine, distance-to-gold is used directly alongside the Boolean feature robot-reached-gold. We compare our new approaches to a baseline reward machine in the Craft domain, where the numeric feature is the agent-to-target distance. We use cross-product Q-learning, Q-learning with counter-factual experiences, and the options framework for learning. Our experimental results show that our new approaches significantly outperform the baseline approach. Extending reward machines with numeric features opens up new possibilities of using reward machines in inherently numeric tasks.
comment: ICAPS 2024; Workshop on Bridging the Gap Between AI Planning and Reinforcement Learning
☆ PEFSL: A deployment Pipeline for Embedded Few-Shot Learning on a FPGA SoC
This paper tackles the challenges of implementing few-shot learning on embedded systems, specifically FPGA SoCs, a vital approach for adapting to diverse classification tasks, especially when the costs of data acquisition or labeling prove to be prohibitively high. Our contributions encompass the development of an end-to-end open-source pipeline for a few-shot learning platform for object classification on a FPGA SoCs. The pipeline is built on top of the Tensil open-source framework, facilitating the design, training, evaluation, and deployment of DNN backbones tailored for few-shot learning. Additionally, we showcase our work's potential by building and deploying a low-power, low-latency demonstrator trained on the MiniImageNet dataset with a dataflow architecture. The proposed system has a latency of 30 ms while consuming 6.2 W on the PYNQ-Z1 board.
☆ Deep Learning Forecasts Caldera Collapse Events at Kīlauea Volcano
During the three month long eruption of K\=ilauea volcano, Hawaii in 2018, the pre-existing summit caldera collapsed in over 60 quasi-periodic failure events. The last 40 of these events, which generated Mw >5 very long period (VLP) earthquakes, had inter-event times between 0.8 - 2.2 days. These failure events offer a unique dataset for testing methods for predicting earthquake recurrence based on locally recorded GPS, tilt, and seismicity data. In this work, we train a deep learning graph neural network (GNN) to predict the time-to-failure of the caldera collapse events using only a fraction of the data recorded at the start of each cycle. We find that the GNN generalizes to unseen data and can predict the time-to-failure to within a few hours using only 0.5 days of data, substantially improving upon a null model based only on inter-event statistics. Predictions improve with increasing input data length, and are most accurate when using high-SNR tilt-meter data. Applying the trained GNN to synthetic data with different magma pressure decay times predicts failure at a nearly constant stress threshold, revealing that the GNN is sensing the underling physics of caldera collapse. These findings demonstrate the predictability of caldera collapse sequences under well monitored conditions, and highlight the potential of machine learning methods for forecasting real world catastrophic events with limited training data.
☆ Human-AI Interaction in Industrial Robotics: Design and Empirical Evaluation of a User Interface for Explainable AI-Based Robot Program Optimization
While recent advances in deep learning have demonstrated its transformative potential, its adoption for real-world manufacturing applications remains limited. We present an Explanation User Interface (XUI) for a state-of-the-art deep learning-based robot program optimizer which provides both naive and expert users with different user experiences depending on their skill level, as well as Explainable AI (XAI) features to facilitate the application of deep learning methods in real-world applications. To evaluate the impact of the XUI on task performance, user satisfaction and cognitive load, we present the results of a preliminary user survey and propose a study design for a large-scale follow-up study.
comment: 6 pages, 4 figures, accepted at the 2024 CIRP International Conference on Manufacturing Systems (CMS)
☆ Pessimistic Value Iteration for Multi-Task Data Sharing in Offline Reinforcement Learning
Offline Reinforcement Learning (RL) has shown promising results in learning a task-specific policy from a fixed dataset. However, successful offline RL often relies heavily on the coverage and quality of the given dataset. In scenarios where the dataset for a specific task is limited, a natural approach is to improve offline RL with datasets from other tasks, namely, to conduct Multi-Task Data Sharing (MTDS). Nevertheless, directly sharing datasets from other tasks exacerbates the distribution shift in offline RL. In this paper, we propose an uncertainty-based MTDS approach that shares the entire dataset without data selection. Given ensemble-based uncertainty quantification, we perform pessimistic value iteration on the shared offline dataset, which provides a unified framework for single- and multi-task offline RL. We further provide theoretical analysis, which shows that the optimality gap of our method is only related to the expected data coverage of the shared dataset, thus resolving the distribution shift issue in data sharing. Empirically, we release an MTDS benchmark and collect datasets from three challenging domains. The experimental results show our algorithm outperforms the previous state-of-the-art methods in challenging MTDS problems. See https://github.com/Baichenjia/UTDS for the datasets and code.
comment: Accepted by Artificial Intelligence (AIJ)
☆ Comprehensive Forecasting-Based Analysis of Hybrid and Stacked Stateful/ Stateless Models
Wind speed is a powerful source of renewable energy, which can be used as an alternative to the non-renewable resources for production of electricity. Renewable sources are clean, infinite and do not impact the environment negatively during production of electrical energy. However, while eliciting electrical energy from renewable resources viz. solar irradiance, wind speed, hydro should require special planning failing which may result in huge loss of labour and money for setting up the system. In this paper, we discuss four deep recurrent neural networks viz. Stacked Stateless LSTM, Stacked Stateless GRU, Stacked Stateful LSTM and Statcked Stateful GRU which will be used to predict wind speed on a short-term basis for the airport sites beside two campuses of Mississippi State University. The paper does a comprehensive analysis of the performance of the models used describing their architectures and how efficiently they elicit the results with the help of RMSE values. A detailed description of the time and space complexities of the above models has also been discussed.
comment: 8 pages, 14 figures
☆ Statistics and explainability: a fruitful alliance
In this paper, we propose standard statistical tools as a solution to commonly highlighted problems in the explainability literature. Indeed, leveraging statistical estimators allows for a proper definition of explanations, enabling theoretical guarantees and the formulation of evaluation metrics to quantitatively assess the quality of explanations. This approach circumvents, among other things, the subjective human assessment currently prevalent in the literature. Moreover, we argue that uncertainty quantification is essential for providing robust and trustworthy explanations, and it can be achieved in this framework through classical statistical procedures such as the bootstrap. However, it is crucial to note that while Statistics offers valuable contributions, it is not a panacea for resolving all the challenges. Future research avenues could focus on open problems, such as defining a purpose for the explanations or establishing a statistical framework for counterfactual or adversarial scenarios.
☆ Provably Efficient Information-Directed Sampling Algorithms for Multi-Agent Reinforcement Learning
This work designs and analyzes a novel set of algorithms for multi-agent reinforcement learning (MARL) based on the principle of information-directed sampling (IDS). These algorithms draw inspiration from foundational concepts in information theory, and are proven to be sample efficient in MARL settings such as two-player zero-sum Markov games (MGs) and multi-player general-sum MGs. For episodic two-player zero-sum MGs, we present three sample-efficient algorithms for learning Nash equilibrium. The basic algorithm, referred to as MAIDS, employs an asymmetric learning structure where the max-player first solves a minimax optimization problem based on the joint information ratio of the joint policy, and the min-player then minimizes the marginal information ratio with the max-player's policy fixed. Theoretical analyses show that it achieves a Bayesian regret of tilde{O}(sqrt{K}) for K episodes. To reduce the computational load of MAIDS, we develop an improved algorithm called Reg-MAIDS, which has the same Bayesian regret bound while enjoying less computational complexity. Moreover, by leveraging the flexibility of IDS principle in choosing the learning target, we propose two methods for constructing compressed environments based on rate-distortion theory, upon which we develop an algorithm Compressed-MAIDS wherein the learning target is a compressed environment. Finally, we extend Reg-MAIDS to multi-player general-sum MGs and prove that it can learn either the Nash equilibrium or coarse correlated equilibrium in a sample efficient manner.
☆ On Improving the Algorithm-, Model-, and Data- Efficiency of Self-Supervised Learning
Self-supervised learning (SSL) has developed rapidly in recent years. However, most of the mainstream methods are computationally expensive and rely on two (or more) augmentations for each image to construct positive pairs. Moreover, they mainly focus on large models and large-scale datasets, which lack flexibility and feasibility in many practical applications. In this paper, we propose an efficient single-branch SSL method based on non-parametric instance discrimination, aiming to improve the algorithm, model, and data efficiency of SSL. By analyzing the gradient formula, we correct the update rule of the memory bank with improved performance. We further propose a novel self-distillation loss that minimizes the KL divergence between the probability distribution and its square root version. We show that this alleviates the infrequent updating problem in instance discrimination and greatly accelerates convergence. We systematically compare the training overhead and performance of different methods in different scales of data, and under different backbones. Experimental results show that our method outperforms various baselines with significantly less overhead, and is especially effective for limited amounts of data and small models.
comment: 13 pages, 7 figures
☆ Training-free Graph Neural Networks and the Power of Labels as Features
We propose training-free graph neural networks (TFGNNs), which can be used without training and can also be improved with optional training, for transductive node classification. We first advocate labels as features (LaF), which is an admissible but not explored technique. We show that LaF provably enhances the expressive power of graph neural networks. We design TFGNNs based on this analysis. In the experiments, we confirm that TFGNNs outperform existing GNNs in the training-free setting and converge with much fewer training iterations than traditional GNNs.
☆ Approximate Nearest Neighbour Search on Dynamic Datasets: An Investigation
Approximate k-Nearest Neighbour (ANN) methods are often used for mining information and aiding machine learning on large scale high-dimensional datasets. ANN methods typically differ in the index structure used for accelerating searches, resulting in various recall/runtime trade-off points. For applications with static datasets, runtime constraints and dataset properties can be used to empirically select an ANN method with suitable operating characteristics. However, for applications with dynamic datasets, which are subject to frequent online changes (like addition of new samples), there is currently no consensus as to which ANN methods are most suitable. Traditional evaluation approaches do not consider the computational costs of updating the index structure, as well as the frequency and size of index updates. To address this, we empirically evaluate 5 popular ANN methods on two main applications (online data collection and online feature learning) while taking into account these considerations. Two dynamic datasets are used, derived from the SIFT1M dataset with 1 million samples and the DEEP1B dataset with 1 billion samples. The results indicate that the often used k-d trees method is not suitable on dynamic datasets as it is slower than a straightforward baseline exhaustive search method. For online data collection, the Hierarchical Navigable Small World Graphs method achieves a consistent speedup over baseline across a wide range of recall rates. For online feature learning, the Scalable Nearest Neighbours method is faster than baseline for recall rates below 75%.
☆ MAP-Former: Multi-Agent-Pair Gaussian Joint Prediction
There is a gap in risk assessment of trajectories between the trajectory information coming from a traffic motion prediction module and what is actually needed. Closing this gap necessitates advancements in prediction beyond current practices. Existing prediction models yield joint predictions of agents' future trajectories with uncertainty weights or marginal Gaussian probability density functions (PDFs) for single agents. Although, these methods achieve high accurate trajectory predictions, they only provide little or no information about the dependencies of interacting agents. Since traffic is a process of highly interdependent agents, whose actions directly influence their mutual behavior, the existing methods are not sufficient to reliably assess the risk of future trajectories. This paper addresses that gap by introducing a novel approach to motion prediction, focusing on predicting agent-pair covariance matrices in a ``scene-centric'' manner, which can then be used to model Gaussian joint PDFs for all agent-pairs in a scene. We propose a model capable of predicting those agent-pair covariance matrices, leveraging an enhanced awareness of interactions. Utilizing the prediction results of our model, this work forms the foundation for comprehensive risk assessment with statistically based methods for analyzing agents' relations by their joint PDFs.
comment: Accepted for publication in Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Jeju Island - Korea, 2-5 June 2024
☆ High dimensional analysis reveals conservative sharpening and a stochastic edge of stability
Recent empirical and theoretical work has shown that the dynamics of the large eigenvalues of the training loss Hessian have some remarkably robust features across models and datasets in the full batch regime. There is often an early period of progressive sharpening where the large eigenvalues increase, followed by stabilization at a predictable value known as the edge of stability. Previous work showed that in the stochastic setting, the eigenvalues increase more slowly - a phenomenon we call conservative sharpening. We provide a theoretical analysis of a simple high-dimensional model which shows the origin of this slowdown. We also show that there is an alternative stochastic edge of stability which arises at small batch size that is sensitive to the trace of the Neural Tangent Kernel rather than the large Hessian eigenvalues. We conduct an experimental study which highlights the qualitative differences from the full batch phenomenology, and suggests that controlling the stochastic edge of stability can help optimization.
☆ Bias Mitigation via Compensation: A Reinforcement Learning Perspective
As AI increasingly integrates with human decision-making, we must carefully consider interactions between the two. In particular, current approaches focus on optimizing individual agent actions but often overlook the nuances of collective intelligence. Group dynamics might require that one agent (e.g., the AI system) compensate for biases and errors in another agent (e.g., the human), but this compensation should be carefully developed. We provide a theoretical framework for algorithmic compensation that synthesizes game theory and reinforcement learning principles to demonstrate the natural emergence of deceptive outcomes from the continuous learning dynamics of agents. We provide simulation results involving Markov Decision Processes (MDP) learning to interact. This work then underpins our ethical analysis of the conditions in which AI agents should adapt to biases and behaviors of other agents in dynamic and complex decision-making environments. Overall, our approach addresses the nuanced role of strategic deception of humans, challenging previous assumptions about its detrimental effects. We assert that compensation for others' biases can enhance coordination and ethical alignment: strategic deception, when ethically managed, can positively shape human-AI interactions.
comment: 8 pages, 5 diagrams
☆ Improved AutoEncoder with LSTM module and KL divergence
The task of anomaly detection is to separate anomalous data from normal data in the dataset. Models such as deep convolutional autoencoder (CAE) network and deep supporting vector data description (SVDD) model have been universally employed and have demonstrated significant success in detecting anomalies. However, the over-reconstruction ability of CAE network for anomalous data can easily lead to high false negative rate in detecting anomalous data. On the other hand, the deep SVDD model has the drawback of feature collapse, which leads to a decrease of detection accuracy for anomalies. To address these problems, we propose the Improved AutoEncoder with LSTM module and Kullback-Leibler divergence (IAE-LSTM-KL) model in this paper. An LSTM network is added after the encoder to memorize feature representations of normal data. In the meanwhile, the phenomenon of feature collapse can also be mitigated by penalizing the featured input to SVDD module via KL divergence. The efficacy of the IAE-LSTM-KL model is validated through experiments on both synthetic and real-world datasets. Experimental results show that IAE-LSTM-KL model yields higher detection accuracy for anomalies. In addition, it is also found that the IAE-LSTM-KL model demonstrates enhanced robustness to contaminated outliers in the dataset.
☆ Pilot Contamination in Massive MIMO Systems: Challenges and Future Prospects SP
Massive multiple input multiple output (M-MIMO) technology plays a pivotal role in fifth-generation (5G) and beyond communication systems, offering a wide range of benefits, from increased spectral efficiency (SE) to enhanced energy efficiency and higher reliability. However, these advantages are contingent upon precise channel state information (CSI) availability at the base station (BS). Ensuring precise CSI is challenging due to the constrained size of the coherence interval and the resulting limitations on pilot sequence length. Therefore, reusing pilot sequences in adjacent cells introduces pilot contamination, hindering SE enhancement. This paper reviews recent advancements and addresses research challenges in mitigating pilot contamination and improving channel estimation, categorizing the existing research into three broader categories: pilot assignment schemes, advanced signal processing methods, and advanced channel estimation techniques. Salient representative pilot mitigation/assignment techniques are analyzed and compared in each category. Lastly, possible future research directions are discussed.
comment: Accepted At IWCMC 2024 Comm & SP Symposium
☆ Understanding Multimodal Contrastive Learning Through Pointwise Mutual Information
Multimodal representation learning to integrate different modalities, such as text, vision, and audio is important for real-world applications. The symmetric InfoNCE loss proposed in CLIP is a key concept in multimodal representation learning. In this work, we provide a theoretical understanding of the symmetric InfoNCE loss through the lens of the pointwise mutual information and show that encoders that achieve the optimal similarity in the pretraining provide a good representation for downstream classification tasks under mild assumptions. Based on our theoretical results, we also propose a new similarity metric for multimodal contrastive learning by utilizing a nonlinear kernel to enrich the capability. To verify the effectiveness of the proposed method, we demonstrate pretraining of multimodal representation models on the Conceptual Caption datasets and evaluate zero-shot classification and linear classification on common benchmark datasets.
☆ Regression for matrix-valued data via Kronecker products factorization
We study the matrix-variate regression problem $Y_i = \sum_{k} \beta_{1k} X_i \beta_{2k}^{\top} + E_i$ for $i=1,2\dots,n$ in the high dimensional regime wherein the response $Y_i$ are matrices whose dimensions $p_{1}\times p_{2}$ outgrow both the sample size $n$ and the dimensions $q_{1}\times q_{2}$ of the predictor variables $X_i$ i.e., $q_{1},q_{2} \ll n \ll p_{1},p_{2}$. We propose an estimation algorithm, termed KRO-PRO-FAC, for estimating the parameters $\{\beta_{1k}\} \subset \Re^{p_1 \times q_1}$ and $\{\beta_{2k}\} \subset \Re^{p_2 \times q_2}$ that utilizes the Kronecker product factorization and rearrangement operations from Van Loan and Pitsianis (1993). The KRO-PRO-FAC algorithm is computationally efficient as it does not require estimating the covariance between the entries of the $\{Y_i\}$. We establish perturbation bounds between $\hat{\beta}_{1k} -\beta_{1k}$ and $\hat{\beta}_{2k} - \beta_{2k}$ in spectral norm for the setting where either the rows of $E_i$ or the columns of $E_i$ are independent sub-Gaussian random vectors. Numerical studies on simulated and real data indicate that our procedure is competitive, in terms of both estimation error and predictive accuracy, compared to other existing methods.
☆ Flight Trajectory Prediction Using an Enhanced CNN-LSTM Network
Aiming at the problem of low accuracy of flight trajectory prediction caused by the high speed of fighters, the diversity of tactical maneuvers, and the transient nature of situational change in close range air combat, this paper proposes an enhanced CNN-LSTM network as a fighter flight trajectory prediction method. Firstly, we extract spatial features from fighter trajectory data using CNN, aggregate spatial features of multiple fighters using the social-pooling module to capture geographic information and positional relationships in the trajectories, and use the attention mechanism to capture mutated trajectory features in air combat; subsequently, we extract temporal features by using the memory nature of LSTM to capture long-term temporal dependence in the trajectories; and finally, we merge the temporal and spatial features to predict the flight trajectories of enemy fighters. Extensive simulation experiments verify that the proposed method improves the trajectory prediction accuracy compared to the original CNN-LSTM method, with the improvements of 32% and 34% in ADE and FDE indicators.
☆ DelGrad: Exact gradients in spiking networks for learning transmission delays and weights
Spiking neural networks (SNNs) inherently rely on the timing of signals for representing and processing information. Transmission delays play an important role in shaping these temporal characteristics. Recent work has demonstrated the substantial advantages of learning these delays along with synaptic weights, both in terms of accuracy and memory efficiency. However, these approaches suffer from drawbacks in terms of precision and efficiency, as they operate in discrete time and with approximate gradients, while also requiring membrane potential recordings for calculating parameter updates. To alleviate these issues, we propose an analytical approach for calculating exact loss gradients with respect to both synaptic weights and delays in an event-based fashion. The inclusion of delays emerges naturally within our proposed formalism, enriching the model's search space with a temporal dimension. Our algorithm is purely based on the timing of individual spikes and does not require access to other variables such as membrane potentials. We explicitly compare the impact on accuracy and parameter efficiency of different types of delays - axonal, dendritic and synaptic. Furthermore, while previous work on learnable delays in SNNs has been mostly confined to software simulations, we demonstrate the functionality and benefits of our approach on the BrainScaleS-2 neuromorphic platform.
comment: 15 pages, 7 figures
☆ Principled RLHF from Heterogeneous Feedback via Personalization and Preference Aggregation
Reinforcement learning from human feedback (RLHF) has been an effective technique for aligning AI systems with human values, with remarkable successes in fine-tuning large-language models recently. Most existing RLHF paradigms make the underlying assumption that human preferences are relatively homogeneous, and can be encoded by a single reward model. In this paper, we focus on addressing the issues due to the inherent heterogeneity in human preferences, as well as their potential strategic behavior in providing feedback. Specifically, we propose two frameworks to address heterogeneous human feedback in principled ways: personalization-based one and aggregation-based one. For the former, we propose two approaches based on representation learning and clustering, respectively, for learning multiple reward models that trades off the bias (due to preference heterogeneity) and variance (due to the use of fewer data for learning each model by personalization). We then establish sample complexity guarantees for both approaches. For the latter, we aim to adhere to the single-model framework, as already deployed in the current RLHF paradigm, by carefully aggregating diverse and truthful preferences from humans. We propose two approaches based on reward and preference aggregation, respectively: the former utilizes both utilitarianism and Leximin approaches to aggregate individual reward models, with sample complexity guarantees; the latter directly aggregates the human feedback in the form of probabilistic opinions. Under the probabilistic-opinion-feedback model, we also develop an approach to handle strategic human labelers who may bias and manipulate the aggregated preferences with untruthful feedback. Based on the ideas in mechanism design, our approach ensures truthful preference reporting, with the induced aggregation rule maximizing social welfare functions.
☆ Hybrid Quantum-Classical Scheduling for Accelerating Neural Network Training with Newton's Gradient Descent
Optimization techniques in deep learning are predominantly led by first-order gradient methodologies, such as SGD. However, neural network training can greatly benefit from the rapid convergence characteristics of second-order optimization. Newton's GD stands out in this category, by rescaling the gradient using the inverse Hessian. Nevertheless, one of its major bottlenecks is matrix inversion, which is notably time-consuming in $O(N^3)$ time with weak scalability. Matrix inversion can be translated into solving a series of linear equations. Given that quantum linear solver algorithms (QLSAs), leveraging the principles of quantum superposition and entanglement, can operate within a $\text{polylog}(N)$ time frame, they present a promising approach with exponential acceleration. Specifically, one of the most recent QLSAs demonstrates a complexity scaling of $O(d\cdot\kappa \log(N\cdot\kappa/\epsilon))$, depending on: {size~$N$, condition number~$\kappa$, error tolerance~$\epsilon$, quantum oracle sparsity~$d$} of the matrix. However, this also implies that their potential exponential advantage may be hindered by certain properties (i.e. $\kappa$ and $d$). We propose Q-Newton, a hybrid quantum-classical scheduler for accelerating neural network training with Newton's GD. Q-Newton utilizes a streamlined scheduling module that coordinates between quantum and classical linear solvers, by estimating & reducing $\kappa$ and constructing $d$ for the quantum solver. Our evaluation showcases the potential for Q-Newton to significantly reduce the total training time compared to commonly used optimizers like SGD. We hypothesize a future scenario where the gate time of quantum machines is reduced, possibly realized by attoseconds physics. Our evaluation establishes an ambitious and promising target for the evolution of quantum computing.
comment: Our code is provided at https://github.com/UNITES-Lab/q-newton
☆ Semantically Consistent Video Inpainting with Conditional Diffusion Models
Current state-of-the-art methods for video inpainting typically rely on optical flow or attention-based approaches to inpaint masked regions by propagating visual information across frames. While such approaches have led to significant progress on standard benchmarks, they struggle with tasks that require the synthesis of novel content that is not present in other frames. In this paper we reframe video inpainting as a conditional generative modeling problem and present a framework for solving such problems with conditional video diffusion models. We highlight the advantages of using a generative approach for this task, showing that our method is capable of generating diverse, high-quality inpaintings and synthesizing new content that is spatially, temporally, and semantically consistent with the provided context.
☆ IgCONDA-PET: Implicitly-Guided Counterfactual Diffusion for Detecting Anomalies in PET Images
Minimizing the need for pixel-level annotated data for training PET anomaly segmentation networks is crucial, particularly due to time and cost constraints related to expert annotations. Current un-/weakly-supervised anomaly detection methods rely on autoencoder or generative adversarial networks trained only on healthy data, although these are more challenging to train. In this work, we present a weakly supervised and Implicitly guided COuNterfactual diffusion model for Detecting Anomalies in PET images, branded as IgCONDA-PET. The training is conditioned on image class labels (healthy vs. unhealthy) along with implicit guidance to generate counterfactuals for an unhealthy image with anomalies. The counterfactual generation process synthesizes the healthy counterpart for a given unhealthy image, and the difference between the two facilitates the identification of anomaly locations. The code is available at: https://github.com/igcondapet/IgCONDA-PET.git
comment: 12 pages, 6 figures, 1 table
☆ STT: Stateful Tracking with Transformers for Autonomous Driving ICRA 2024
Tracking objects in three-dimensional space is critical for autonomous driving. To ensure safety while driving, the tracker must be able to reliably track objects across frames and accurately estimate their states such as velocity and acceleration in the present. Existing works frequently focus on the association task while either neglecting the model performance on state estimation or deploying complex heuristics to predict the states. In this paper, we propose STT, a Stateful Tracking model built with Transformers, that can consistently track objects in the scenes while also predicting their states accurately. STT consumes rich appearance, geometry, and motion signals through long term history of detections and is jointly optimized for both data association and state estimation tasks. Since the standard tracking metrics like MOTA and MOTP do not capture the combined performance of the two tasks in the wider spectrum of object states, we extend them with new metrics called S-MOTA and MOTPS that address this limitation. STT achieves competitive real-time performance on the Waymo Open Dataset.
comment: ICRA 2024
☆ Context-Aware Mobile Network Performance Prediction Using Network & Remote Sensing Data
Accurate estimation of Network Performance is crucial for several tasks in telecom networks. Telecom networks regularly serve a vast number of radio nodes. Each radio node provides services to end-users in the associated coverage areas. The task of predicting Network Performance for telecom networks necessitates considering complex spatio-temporal interactions and incorporating geospatial information where the radio nodes are deployed. Instead of relying on historical data alone, our approach augments network historical performance datasets with satellite imagery data. Our comprehensive experiments, using real-world data collected from multiple different regions of an operational network, show that the model is robust and can generalize across different scenarios. The results indicate that the model, utilizing satellite imagery, performs very well across the tested regions. Additionally, the model demonstrates a robust approach to the cold-start problem, offering a promising alternative for initial performance estimation in newly deployed sites.
comment: Accepted at the 17th International Workshop on AI-ML-Powered Autonomous Telco Networks - IEEE International Conference on Communications (ICC) 2024
☆ Machine Learning-based Estimation of Respiratory Fluctuations in a Healthy Adult Population using BOLD fMRI and Head Motion Parameters
Motivation: In many fMRI studies, respiratory signals are often missing or of poor quality. Therefore, it could be highly beneficial to have a tool to extract respiratory variation (RV) waveforms directly from fMRI data without the need for peripheral recording devices. Goal(s): Investigate the hypothesis that head motion parameters contain valuable information regarding respiratory patter, which can help machine learning algorithms estimate the RV waveform. Approach: This study proposes a CNN model for reconstruction of RV waveforms using head motion parameters and BOLD signals. Results: This study showed that combining head motion parameters with BOLD signals enhances RV waveform estimation. Impact: It is expected that application of the proposed method will lower the cost of fMRI studies, reduce complexity, and decrease the burden on participants as they will not be required to wear a respiratory bellows.
comment: 6 pages, 5 figure, conference abstract
☆ Constrained Decoding for Secure Code Generation
Code Large Language Models (Code LLMs) have been increasingly used by developers to boost productivity, but they often generate vulnerable code. Thus, there is an urgent need to ensure that code generated by Code LLMs is correct and secure. Previous research has primarily focused on generating secure code, overlooking the fact that secure code also needs to be correct. This oversight can lead to a false sense of security. Currently, the community lacks a method to measure actual progress in this area, and we need solutions that address both security and correctness of code generation. This paper introduces a new benchmark, CodeGuard+, along with two new metrics, secure-pass@k and secure@$k_{\text{pass}}$, to measure Code LLMs' ability to generate both secure and correct code. Using our new evaluation methods, we show that the state-of-the-art defense technique, prefix tuning, may not be as strong as previously believed, since it generates secure code but sacrifices functional correctness. We also demonstrate that different decoding methods significantly affect the security of Code LLMs. Furthermore, we explore a new defense direction: constrained decoding for secure code generation. We propose new constrained decoding techniques to generate code that satisfies security and correctness constraints simultaneously. Our results reveal that constrained decoding is more effective than prefix tuning to improve the security of Code LLMs, without requiring a specialized training dataset. Moreover, constrained decoding can be used together with prefix tuning to further improve the security of Code LLMs.
comment: 17 pages, 8 figures
☆ GMC-PINNs: A new general Monte Carlo PINNs method for solving fractional partial differential equations on irregular domains
Physics-Informed Neural Networks (PINNs) have been widely used for solving partial differential equations (PDEs) of different types, including fractional PDEs (fPDES) [29]. Herein, we propose a new general (quasi) Monte Carlo PINN for solving fPDEs on irregular domains. Specifically, instead of approximating fractional derivatives by Monte Carlo approximations of integrals as was done previously in [31], we use a more general Monte Carlo approximation method to solve different fPDEs, which is valid for fractional differentiation under any definition. Moreover, based on the ensemble probability density function, the generated nodes are all located in denser regions near the target point where we perform the differentiation. This has an unexpected connection with known finite difference methods on non-equidistant or nested grids, and hence our method inherits their advantages. At the same time, the generated nodes exhibit a block-like dense distribution, leading to a good computational efficiency of this approach. We present the framework for using this algorithm and apply it to several examples. Our results demonstrate the effectiveness of GMC-PINNs in dealing with irregular domain problems and show a higher computational efficiency compared to the original fPINN method. We also include comparisons with the Monte Carlo fPINN [31]. Finally, we use examples to demonstrate the effectiveness of the method in dealing with fuzzy boundary location problems, and then use the method to solve the coupled 3D fractional Bloch-Torrey equation defined in the ventricular domain of the human brain, and compare the results with classical numerical methods.
Graphical Reasoning: LLM-based Semi-Open Relation Extraction
This paper presents a comprehensive exploration of relation extraction utilizing advanced language models, specifically Chain of Thought (CoT) and Graphical Reasoning (GRE) techniques. We demonstrate how leveraging in-context learning with GPT-3.5 can significantly enhance the extraction process, particularly through detailed example-based reasoning. Additionally, we introduce a novel graphical reasoning approach that dissects relation extraction into sequential sub-tasks, improving precision and adaptability in processing complex relational data. Our experiments, conducted on multiple datasets, including manually annotated data, show considerable improvements in performance metrics, underscoring the effectiveness of our methodologies.
☆ Block-As-Domain Adaptation for Workload Prediction from fNIRS Data
Functional near-infrared spectroscopy (fNIRS) is a non-intrusive way to measure cortical hemodynamic activity. Predicting cognitive workload from fNIRS data has taken on a diffuse set of methods. To be applicable in real-world settings, models are needed, which can perform well across different sessions as well as different subjects. However, most existing works assume that training and testing data come from the same subjects and/or cannot generalize well across never-before-seen subjects. Additional challenges imposed by fNIRS data include the high variations in inter-subject fNIRS data and also in intra-subject data collected across different blocks of sessions. To address these issues, we propose an effective method, referred to as the class-aware-block-aware domain adaptation (CABA-DA) which explicitly minimize intra-session variance by viewing different blocks from the same subject same session as different domains. We minimize the intra-class domain discrepancy and maximize the inter-class domain discrepancy accordingly. In addition, we propose an MLPMixer-based model for cognitive load classification. Experimental results demonstrate the proposed model has better performance compared with three different baseline models on three public-available datasets of cognitive workload. Two of them are collected from n-back tasks and one of them is from finger tapping. From our experiments, we also show the proposed contrastive learning method can also improve baseline models we compared with.
☆ A Logic for Reasoning About Aggregate-Combine Graph Neural Networks
We propose a modal logic in which counting modalities appear in linear inequalities. We show that each formula can be transformed into an equivalent graph neural network (GNN). We also show that a broad class of GNNs can be transformed efficiently into a formula, thus significantly improving upon the literature about the logical expressiveness of GNNs. We also show that the satisfiability problem is PSPACE-complete. These results bring together the promise of using standard logical methods for reasoning about GNNs and their properties, particularly in applications such as GNN querying, equivalence checking, etc. We prove that such natural problems can be solved in polynomial space.
comment: arXiv admin note: text overlap with arXiv:2307.05150
☆ Leveraging Active Subspaces to Capture Epistemic Model Uncertainty in Deep Generative Models for Molecular Design
Deep generative models have been accelerating the inverse design process in material and drug design. Unlike their counterpart property predictors in typical molecular design frameworks, generative molecular design models have seen fewer efforts on uncertainty quantification (UQ) due to computational challenges in Bayesian inference posed by their large number of parameters. In this work, we focus on the junction-tree variational autoencoder (JT-VAE), a popular model for generative molecular design, and address this issue by leveraging the low dimensional active subspace to capture the uncertainty in the model parameters. Specifically, we approximate the posterior distribution over the active subspace parameters to estimate the epistemic model uncertainty in an extremely high dimensional parameter space. The proposed UQ scheme does not require alteration of the model architecture, making it readily applicable to any pre-trained model. Our experiments demonstrate the efficacy of the AS-based UQ and its potential impact on molecular optimization by exploring the model diversity under epistemic uncertainty.
☆ Semi-Supervised Hierarchical Multi-Label Classifier Based on Local Information
Scarcity of labeled data is a common problem in supervised classification, since hand-labeling can be time consuming, expensive or hard to label; on the other hand, large amounts of unlabeled information can be found. The problem of scarcity of labeled data is even more notorious in hierarchical classification, because the data of a node is split among its children, which results in few instances associated to the deepest nodes of the hierarchy. In this work it is proposed the semi-supervised hierarchical multi-label classifier based on local information (SSHMC-BLI) which can be trained with labeled and unlabeled data to perform hierarchical classification tasks. The method can be applied to any type of hierarchical problem, here we focus on the most difficult case: hierarchies of DAG type, where the instances can be associated to multiple paths of labels which can finish in an internal node. SSHMC-BLI builds pseudo-labels for each unlabeled instance from the paths of labels of its labeled neighbors, while it considers whether the unlabeled instance is similar to its neighbors. Experiments on 12 challenging datasets from functional genomics show that making use of unlabeled along with labeled data can help to improve the performance of a supervised hierarchical classifier trained only on labeled data, even with statistical significance.
☆ M-DEW: Extending Dynamic Ensemble Weighting to Handle Missing Values
Missing value imputation is a crucial preprocessing step for many machine learning problems. However, it is often considered as a separate subtask from downstream applications such as classification, regression, or clustering, and thus is not optimized together with them. We hypothesize that treating the imputation model and downstream task model together and optimizing over full pipelines will yield better results than treating them separately. Our work describes a novel AutoML technique for making downstream predictions with missing data that automatically handles preprocessing, model weighting, and selection during inference time, with minimal compute overhead. Specifically we develop M-DEW, a Dynamic missingness-aware Ensemble Weighting (DEW) approach, that constructs a set of two-stage imputation-prediction pipelines, trains each component separately, and dynamically calculates a set of pipeline weights for each sample during inference time. We thus extend previous work on dynamic ensemble weighting to handle missing data at the level of full imputation-prediction pipelines, improving performance and calibration on downstream machine learning tasks over standard model averaging techniques. M-DEW is shown to outperform the state-of-the-art in that it produces statistically significant reductions in model perplexity in 17 out of 18 experiments, while improving average precision in 13 out of 18 experiments.
☆ Re-visiting Skip-Gram Negative Sampling: Dimension Regularization for More Efficient Dissimilarity Preservation in Graph Embeddings
A wide range of graph embedding objectives decompose into two components: one that attracts the embeddings of nodes that are perceived as similar, and another that repels embeddings of nodes that are perceived as dissimilar. Because real-world graphs are sparse and the number of dissimilar pairs grows quadratically with the number of nodes, Skip-Gram Negative Sampling (SGNS) has emerged as a popular and efficient repulsion approach. SGNS repels each node from a sample of dissimilar nodes, as opposed to all dissimilar nodes. In this work, we show that node-wise repulsion is, in aggregate, an approximate re-centering of the node embedding dimensions. Such dimension operations are much more scalable than node operations. The dimension approach, in addition to being more efficient, yields a simpler geometric interpretation of the repulsion. Our result extends findings from the self-supervised learning literature to the skip-gram model, establishing a connection between skip-gram node contrast and dimension regularization. We show that in the limit of large graphs, under mild regularity conditions, the original node repulsion objective converges to optimization with dimension regularization. We use this observation to propose an algorithm augmentation framework that speeds up any existing algorithm, supervised or unsupervised, using SGNS. The framework prioritizes node attraction and replaces SGNS with dimension regularization. We instantiate this generic framework for LINE and node2vec and show that the augmented algorithms preserve downstream performance while dramatically increasing efficiency.
☆ Discovering intrinsic multi-compartment pharmacometric models using Physics Informed Neural Networks SC
Pharmacometric models are pivotal across drug discovery and development, playing a decisive role in determining the progression of candidate molecules. However, the derivation of mathematical equations governing the system is a labor-intensive trial-and-error process, often constrained by tight timelines. In this study, we introduce PKINNs, a novel purely data-driven pharmacokinetic-informed neural network model. PKINNs efficiently discovers and models intrinsic multi-compartment-based pharmacometric structures, reliably forecasting their derivatives. The resulting models are both interpretable and explainable through Symbolic Regression methods. Our computational framework demonstrates the potential for closed-form model discovery in pharmacometric applications, addressing the labor-intensive nature of traditional model derivation. With the increasing availability of large datasets, this framework holds the potential to significantly enhance model-informed drug discovery.
comment: Accepted into the International conference on Scientific Computation and Machine Learning 2024 (SCML 2024)
☆ BayesBlend: Easy Model Blending using Pseudo-Bayesian Model Averaging, Stacking and Hierarchical Stacking in Python
Averaging predictions from multiple competing inferential models frequently outperforms predictions from any single model, providing that models are optimally weighted to maximize predictive performance. This is particularly the case in so-called $\mathcal{M}$-open settings where the true model is not in the set of candidate models, and may be neither mathematically reifiable nor known precisely. This practice of model averaging has a rich history in statistics and machine learning, and there are currently a number of methods to estimate the weights for constructing model-averaged predictive distributions. Nonetheless, there are few existing software packages that can estimate model weights from the full variety of methods available, and none that blend model predictions into a coherent predictive distribution according to the estimated weights. In this paper, we introduce the BayesBlend Python package, which provides a user-friendly programming interface to estimate weights and blend multiple (Bayesian) models' predictive distributions. BayesBlend implements pseudo-Bayesian model averaging, stacking and, uniquely, hierarchical Bayesian stacking to estimate model weights. We demonstrate the usage of BayesBlend with examples of insurance loss modeling.
☆ Expanding the Horizon: Enabling Hybrid Quantum Transfer Learning for Long-Tailed Chest X-Ray Classification
Quantum machine learning (QML) has the potential for improving the multi-label classification of rare, albeit critical, diseases in large-scale chest x-ray (CXR) datasets due to theoretical quantum advantages over classical machine learning (CML) in sample efficiency and generalizability. While prior literature has explored QML with CXRs, it has focused on binary classification tasks with small datasets due to limited access to quantum hardware and computationally expensive simulations. To that end, we implemented a Jax-based framework that enables the simulation of medium-sized qubit architectures with significant improvements in wall-clock time over current software offerings. We evaluated the performance of our Jax-based framework in terms of efficiency and performance for hybrid quantum transfer learning for long-tailed classification across 8, 14, and 19 disease labels using large-scale CXR datasets. The Jax-based framework resulted in up to a 58% and 95% speed-up compared to PyTorch and TensorFlow implementations, respectively. However, compared to CML, QML demonstrated slower convergence and an average AUROC of 0.70, 0.73, and 0.74 for the classification of 8, 14, and 19 CXR disease labels. In comparison, the CML models had an average AUROC of 0.77, 0.78, and 0.80 respectively. In conclusion, our work presents an accessible implementation of hybrid quantum transfer learning for long-tailed CXR classification with a computationally efficient Jax-based framework.
comment: 11 pages, 13 figures, 3 tables
☆ Utilizing Machine Learning and 3D Neuroimaging to Predict Hearing Loss: A Comparative Analysis of Dimensionality Reduction and Regression Techniques
In this project, we have explored machine learning approaches for predicting hearing loss thresholds on the brain's gray matter 3D images. We have solved the problem statement in two phases. In the first phase, we used a 3D CNN model to reduce high-dimensional input into latent space and decode it into an original image to represent the input in rich feature space. In the second phase, we utilized this model to reduce input into rich features and used these features to train standard machine learning models for predicting hearing thresholds. We have experimented with autoencoders and variational autoencoders in the first phase for dimensionality reduction and explored random forest, XGBoost and multi-layer perceptron for regressing the thresholds. We split the given data set into training and testing sets and achieved an 8.80 range and 22.57 range for PT500 and PT4000 on the test set, respectively. We got the lowest RMSE using multi-layer perceptron among the other models. Our approach leverages the unique capabilities of VAEs to capture complex, non-linear relationships within high-dimensional neuroimaging data. We rigorously evaluated the models using various metrics, focusing on the root mean squared error (RMSE). The results highlight the efficacy of the multi-layer neural network model, which outperformed other techniques in terms of accuracy. This project advances the application of data mining in medical diagnostics and enhances our understanding of age-related hearing loss through innovative machine-learning frameworks.
☆ Data-Driven Permissible Safe Control with Barrier Certificates
This paper introduces a method of identifying a maximal set of safe strategies from data for stochastic systems with unknown dynamics using barrier certificates. The first step is learning the dynamics of the system via Gaussian process (GP) regression and obtaining probabilistic errors for this estimate. Then, we develop an algorithm for constructing piecewise stochastic barrier functions to find a maximal permissible strategy set using the learned GP model, which is based on sequentially pruning the worst controls until a maximal set is identified. The permissible strategies are guaranteed to maintain probabilistic safety for the true system. This is especially important for learning-enabled systems, because a rich strategy space enables additional data collection and complex behaviors while remaining safe. Case studies on linear and nonlinear systems demonstrate that increasing the size of the dataset for learning the system grows the permissible strategy set.
☆ A Flexible 2.5D Medical Image Segmentation Approach with In-Slice and Cross-Slice Attention
Deep learning has become the de facto method for medical image segmentation, with 3D segmentation models excelling in capturing complex 3D structures and 2D models offering high computational efficiency. However, segmenting 2.5D images, which have high in-plane but low through-plane resolution, is a relatively unexplored challenge. While applying 2D models to individual slices of a 2.5D image is feasible, it fails to capture the spatial relationships between slices. On the other hand, 3D models face challenges such as resolution inconsistencies in 2.5D images, along with computational complexity and susceptibility to overfitting when trained with limited data. In this context, 2.5D models, which capture inter-slice correlations using only 2D neural networks, emerge as a promising solution due to their reduced computational demand and simplicity in implementation. In this paper, we introduce CSA-Net, a flexible 2.5D segmentation model capable of processing 2.5D images with an arbitrary number of slices through an innovative Cross-Slice Attention (CSA) module. This module uses the cross-slice attention mechanism to effectively capture 3D spatial information by learning long-range dependencies between the center slice (for segmentation) and its neighboring slices. Moreover, CSA-Net utilizes the self-attention mechanism to understand correlations among pixels within the center slice. We evaluated CSA-Net on three 2.5D segmentation tasks: (1) multi-class brain MRI segmentation, (2) binary prostate MRI segmentation, and (3) multi-class prostate MRI segmentation. CSA-Net outperformed leading 2D and 2.5D segmentation methods across all three tasks, demonstrating its efficacy and superiority. Our code is publicly available at https://github.com/mirthAI/CSA-Net.
Graph Neural Network Approach to Semantic Type Detection in Tables
This study addresses the challenge of detecting semantic column types in relational tables, a key task in many real-world applications. While language models like BERT have improved prediction accuracy, their token input constraints limit the simultaneous processing of intra-table and inter-table information. We propose a novel approach using Graph Neural Networks (GNNs) to model intra-table dependencies, allowing language models to focus on inter-table information. Our proposed method not only outperforms existing state-of-the-art algorithms but also offers novel insights into the utility and functionality of various GNN types for semantic type detection. The code is available at https://github.com/hoseinzadeehsan/GAIT
♻ ☆ A Survey of Reinforcement Learning from Human Feedback
Reinforcement learning from human feedback (RLHF) is a variant of reinforcement learning (RL) that learns from human feedback instead of relying on an engineered reward function. Building on prior work on the related setting of preference-based reinforcement learning (PbRL), it stands at the intersection of artificial intelligence and human-computer interaction. This positioning offers a promising avenue to enhance the performance and adaptability of intelligent systems while also improving the alignment of their objectives with human values. The training of large language models (LLMs) has impressively demonstrated this potential in recent years, where RLHF played a decisive role in directing the model's capabilities toward human objectives. This article provides a comprehensive overview of the fundamentals of RLHF, exploring the intricate dynamics between RL agents and human input. While recent focus has been on RLHF for LLMs, our survey adopts a broader perspective, examining the diverse applications and wide-ranging impact of the technique. We delve into the core principles that underpin RLHF, shedding light on the symbiotic relationship between algorithms and human feedback, and discuss the main research trends in the field. By synthesizing the current landscape of RLHF research, this article aims to provide researchers as well as practitioners with a comprehensive understanding of this rapidly growing field of research.
♻ ☆ Linguacodus: A Synergistic Framework for Transformative Code Generation in Machine Learning Pipelines
In the ever-evolving landscape of machine learning, seamless translation of natural language descriptions into executable code remains a formidable challenge. This paper introduces Linguacodus, an innovative framework designed to tackle this challenge by deploying a dynamic pipeline that iteratively transforms natural language task descriptions into code through high-level data-shaping instructions. The core of Linguacodus is a fine-tuned large language model (LLM), empowered to evaluate diverse solutions for various problems and select the most fitting one for a given task. This paper details the fine-tuning process, and sheds light on how natural language descriptions can be translated into functional code. Linguacodus represents a substantial leap towards automated code generation, effectively bridging the gap between task descriptions and executable code. It holds great promise for advancing machine learning applications across diverse domains. Additionally, we propose an algorithm capable of transforming a natural description of an ML task into code with minimal human interaction. In extensive experiments on a vast machine learning code dataset originating from Kaggle, we showcase the effectiveness of Linguacodus. The investigations highlight its potential applications across diverse domains, emphasizing its impact on applied machine learning in various scientific fields.
♻ ☆ Kernel Density Matrices for Probabilistic Deep Learning
This paper introduces a novel approach to probabilistic deep learning, kernel density matrices, which provide a simpler yet effective mechanism for representing joint probability distributions of both continuous and discrete random variables. In quantum mechanics, a density matrix is the most general way to describe the state of a quantum system. This work extends the concept of density matrices by allowing them to be defined in a reproducing kernel Hilbert space. This abstraction allows the construction of differentiable models for density estimation, inference, and sampling, and enables their integration into end-to-end deep neural models. In doing so, we provide a versatile representation of marginal and joint probability distributions that allows us to develop a differentiable, compositional, and reversible inference procedure that covers a wide range of machine learning tasks, including density estimation, discriminative learning, and generative modeling. The broad applicability of the framework is illustrated by two examples: an image classification model that can be naturally transformed into a conditional generative model, and a model for learning with label proportions that demonstrates the framework's ability to deal with uncertainty in the training samples. The framework is implemented as a library and is available at: https://github.com/fagonzalezo/kdm.
♻ ☆ Improving Dictionary Learning with Gated Sparse Autoencoders
Recent work has found that sparse autoencoders (SAEs) are an effective technique for unsupervised discovery of interpretable features in language models' (LMs) activations, by finding sparse, linear reconstructions of LM activations. We introduce the Gated Sparse Autoencoder (Gated SAE), which achieves a Pareto improvement over training with prevailing methods. In SAEs, the L1 penalty used to encourage sparsity introduces many undesirable biases, such as shrinkage -- systematic underestimation of feature activations. The key insight of Gated SAEs is to separate the functionality of (a) determining which directions to use and (b) estimating the magnitudes of those directions: this enables us to apply the L1 penalty only to the former, limiting the scope of undesirable side effects. Through training SAEs on LMs of up to 7B parameters we find that, in typical hyper-parameter ranges, Gated SAEs solve shrinkage, are similarly interpretable, and require half as many firing features to achieve comparable reconstruction fidelity.
comment: 15 main text pages, 22 appendix pages
♻ ☆ Learning with Density Matrices and Random Features
A density matrix describes the statistical state of a quantum system. It is a powerful formalism to represent both the quantum and classical uncertainty of quantum systems and to express different statistical operations such as measurement, system combination and expectations as linear algebra operations. This paper explores how density matrices can be used as a building block for machine learning models exploiting their ability to straightforwardly combine linear algebra and probability. One of the main results of the paper is to show that density matrices coupled with random Fourier features could approximate arbitrary probability distributions over $\mathbb{R}^n$. Based on this finding the paper builds different models for density estimation, classification and regression. These models are differentiable, so it is possible to integrate them with other differentiable components, such as deep learning architectures and to learn their parameters using gradient-based optimization. In addition, the paper presents optimization-less training strategies based on estimation and model averaging. The models are evaluated in benchmark tasks and the results are reported and discussed.
comment: Final version published in Quantum Mach. Intell. 4, 23 (2022)
♻ ☆ Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators
Neural operators, serving as physics surrogate models, have recently gained increased interest. With ever increasing problem complexity, the natural question arises: what is an efficient way to scale neural operators to larger and more complex simulations - most importantly by taking into account different types of simulation datasets. This is of special interest since, akin to their numerical counterparts, different techniques are used across applications, even if the underlying dynamics of the systems are similar. Whereas the flexibility of transformers has enabled unified architectures across domains, neural operators mostly follow a problem specific design, where GNNs are commonly used for Lagrangian simulations and grid-based models predominate Eulerian simulations. We introduce Universal Physics Transformers (UPTs), an efficient and unified learning paradigm for a wide range of spatio-temporal problems. UPTs operate without grid- or particle-based latent structures, enabling flexibility and scalability across meshes and particles. UPTs efficiently propagate dynamics in the latent space, emphasized by inverse encoding and decoding techniques. Finally, UPTs allow for queries of the latent space representation at any point in space-time. We demonstrate diverse applicability and efficacy of UPTs in mesh-based fluid simulations, and steady-state Reynolds averaged Navier-Stokes simulations, and Lagrangian-based dynamics.
♻ ☆ Causal Discovery from Time Series with Hybrids of Constraint-Based and Noise-Based Algorithms
Constraint-based methods and noise-based methods are two distinct families of methods proposed for uncovering causal graphs from observational data. However, both operate under strong assumptions that may be challenging to validate or could be violated in real-world scenarios. In response to these challenges, there is a growing interest in hybrid methods that amalgamate principles from both methods, showing robustness to assumption violations. This paper introduces a novel comprehensive framework for hybridizing constraint-based and noise-based methods designed to uncover causal graphs from observational time series. The framework is structured into two classes. The first class employs a noise-based strategy to identify a super graph, containing the true graph, followed by a constraint-based strategy to eliminate unnecessary edges. In the second class, a constraint-based strategy is applied to identify a skeleton, which is then oriented using a noise-based strategy. The paper provides theoretical guarantees for each class under the condition that all assumptions are satisfied, and it outlines some properties when assumptions are violated. To validate the efficacy of the framework, two algorithms from each class are experimentally tested on simulated data, realistic ecological data, and real datasets sourced from diverse applications. Notably, two novel datasets related to Information Technology monitoring are introduced within the set of considered real datasets. The experimental results underscore the robustness and effectiveness of the hybrid approaches across a broad spectrum of datasets.
comment: Accepted in TMLR: https://openreview.net/forum?id=PGLbZpVk2n
♻ ☆ Balancing Spectral, Temporal and Spatial Information for EEG-based Alzheimer's Disease Classification
The prospect of future treatment warrants the development of cost-effective screening for Alzheimer's disease (AD). A promising candidate in this regard is electroencephalography (EEG), as it is one of the most economic imaging modalities. Recent efforts in EEG analysis have shifted towards leveraging spatial information, employing novel frameworks such as graph signal processing or graph neural networks. Here, we investigate the importance of spatial information relative to spectral or temporal information by varying the proportion of each dimension for AD classification. To do so, we systematically test various dimension resolution configurations on two routine EEG datasets. Our findings show that spatial information is more important than temporal information and equally valuable as spectral information. On the larger second dataset, substituting spectral with spatial information even led to an increase of 1.1% in accuracy, which emphasises the importance of spatial information for EEG-based AD classification. We argue that our resolution-based feature extraction has the potential to improve AD classification specifically, and multivariate signal classification generally.
comment: 4 pages, 3 figures, conference paper
♻ ☆ Tuning for the Unknown: Revisiting Evaluation Strategies for Lifelong RL
In continual or lifelong reinforcement learning access to the environment should be limited. If we aspire to design algorithms that can run for long-periods of time, continually adapting to new, unexpected situations then we must be willing to deploy our agents without tuning their hyperparameters over the agent's entire lifetime. The standard practice in deep RL -- and even continual RL -- is to assume unfettered access to deployment environment for the full lifetime of the agent. This paper explores the notion that progress in lifelong RL research has been held back by inappropriate empirical methodologies. In this paper we propose a new approach for tuning and evaluating lifelong RL agents where only one percent of the experiment data can be used for hyperparameter tuning. We then conduct an empirical study of DQN and Soft Actor Critic across a variety of continuing and non-stationary domains. We find both methods generally perform poorly when restricted to one-percent tuning, whereas several algorithmic mitigations designed to maintain network plasticity perform surprising well. In addition, we find that properties designed to measure the network's ability to learn continually indeed correlate with performance under one-percent tuning.
♻ ☆ How good are Large Language Models on African Languages?
Recent advancements in natural language processing have led to the proliferation of large language models (LLMs). These models have been shown to yield good performance, using in-context learning, even on tasks and languages they are not trained on. However, their performance on African languages is largely understudied relative to high-resource languages. We present an analysis of four popular large language models (mT0, Aya, LLaMa 2, and GPT-4) on six tasks (topic classification, sentiment classification, machine translation, summarization, question answering, and named entity recognition) across 60 African languages, spanning different language families and geographical regions. Our results suggest that all LLMs produce lower performance for African languages, and there is a large gap in performance compared to high-resource languages (such as English) for most tasks. We find that GPT-4 has an average to good performance on classification tasks, yet its performance on generative tasks such as machine translation and summarization is significantly lacking. Surprisingly, we find that mT0 had the best overall performance for cross-lingual QA, better than the state-of-the-art supervised model (i.e. fine-tuned mT5) and GPT-4 on African languages. Similarly, we find the recent Aya model to have comparable result to mT0 in almost all tasks except for topic classification where it outperform mT0. Overall, LLaMa 2 showed the worst performance, which we believe is due to its English and code-centric~(around 98%) pre-training corpus. Our findings confirms that performance on African languages continues to remain a hurdle for the current LLMs, underscoring the need for additional efforts to close this gap.
comment: Under review
♻ ☆ Conditional validity of heteroskedastic conformal regression
Conformal prediction, and split conformal prediction as a specific implementation, offer a distribution-free approach to estimating prediction intervals with statistical guarantees. Recent work has shown that split conformal prediction can produce state-of-the-art prediction intervals when focusing on marginal coverage, i.e. on a calibration dataset the method produces on average prediction intervals that contain the ground truth with a predefined coverage level. However, such intervals are often not adaptive, which can be problematic for regression problems with heteroskedastic noise. This paper tries to shed new light on how prediction intervals can be constructed, using methods such as normalized and Mondrian conformal prediction, in such a way that they adapt to the heteroskedasticity of the underlying process. Theoretical and experimental results are presented in which these methods are compared in a systematic way. In particular, it is shown how the conditional validity of a chosen conformal predictor can be related to (implicit) assumptions about the data-generating distribution.
comment: 36 pages
♻ ☆ auto-sktime: Automated Time Series Forecasting
In today's data-driven landscape, time series forecasting is pivotal in decision-making across various sectors. Yet, the proliferation of more diverse time series data, coupled with the expanding landscape of available forecasting methods, poses significant challenges for forecasters. To meet the growing demand for efficient forecasting, we introduce auto-sktime, a novel framework for automated time series forecasting. The proposed framework uses the power of automated machine learning (AutoML) techniques to automate the creation of the entire forecasting pipeline. The framework employs Bayesian optimization, to automatically construct pipelines from statistical, machine learning (ML) and deep neural network (DNN) models. Furthermore, we propose three essential improvements to adapt AutoML to time series data. First, pipeline templates to account for the different supported forecasting models. Second, a novel warm-starting technique to start the optimization from prior optimization runs. Third, we adapt multi-fidelity optimizations to make them applicable to a search space containing statistical, ML and DNN models. Experimental results on 64 diverse real-world time series datasets demonstrate the effectiveness and efficiency of the framework, outperforming traditional methods while requiring minimal human involvement.
comment: Accepted at LION18
♻ ☆ Just Say the Name: Online Continual Learning with Category Names Only via Data Generation
In real-world scenarios, extensive manual annotation for continual learning is impractical due to prohibitive costs. Although prior arts, influenced by large-scale webly supervised training, suggest leveraging web-scraped data in continual learning, this poses challenges such as data imbalance, usage restrictions, and privacy concerns. Addressing the risks of continual webly supervised training, we present an online continual learning framework - Generative Name only Continual Learning (G-NoCL). The proposed G-NoCL uses a set of generators G along with the learner. When encountering new concepts (i.e., classes), G-NoCL employs the novel sample complexity-guided data ensembling technique DIverSity and COmplexity enhancing ensemBlER (DISCOBER) to optimally sample training data from generated data. Through extensive experimentation, we demonstrate superior performance of DISCOBER in G-NoCL online CL benchmarks, covering both In-Distribution (ID) and Out-of-Distribution (OOD) generalization evaluations, compared to naive generator-ensembling, web-supervised, and manually annotated data.
♻ ☆ FeDeRA:Efficient Fine-tuning of Language Models in Federated Learning Leveraging Weight Decomposition
Pre-trained Language Models (PLMs) have shown excellent performance on various downstream tasks after fine-tuning. Nevertheless, the escalating concerns surrounding user privacy have posed significant challenges to centralized training reliant on extensive data collection. Federated learning, which only requires training on the clients and aggregates weights on the server without sharing data, has emerged as a solution. However, the substantial parameter size of PLMs places a significant burden on the computational resources of client devices, while also leading to costly communication expenses. Introducing Parameter-Efficient Fine-Tuning(PEFT) into federated learning can effectively address this problem. However, we observe that the non-IID data in federated learning leads to a gap in performance between the PEFT method and full parameter fine-tuning(FFT). To overcome this, we propose FeDeRA, an improvement over the Low-Rank Adaption(LoRA) method in federated learning. FeDeRA uses the same adapter module as LoRA. However, the difference lies in FeDeRA's initialization of the adapter module by performing Singular Value Decomposition (SVD) on the pre-trained matrix and selecting its principal components. We conducted extensive experiments, using RoBERTa and DeBERTaV3, on six datasets, comparing the methods including FFT and the other three different PEFT methods. FeDeRA outperforms all other PEFT methods and is comparable to or even surpasses the performance of FFT method. We also deployed federated learning on Jetson AGX Orin and compared the time required by different methods to achieve the target accuracy on specific tasks. Compared to FFT, FeDeRA reduces the training time by 95.9\%, 97.9\%, 96.9\% and 97.3\%, 96.5\%, 96.5\% respectively on three tasks using RoBERTa and DeBERTaV3. The overall experiments indicate that FeDeRA achieves good performance while also maintaining efficiency.
♻ ☆ Object Detection for Automated Coronary Artery Using Deep Learning
In the era of digital medicine, medical imaging serves as a widespread technique for early disease detection, with a substantial volume of images being generated and stored daily in electronic patient records. X-ray angiography imaging is a standard and one of the most common methods for rapidly diagnosing coronary artery diseases. The notable achievements of recent deep learning algorithms align with the increased use of electronic health records and diagnostic imaging. Deep neural networks, leveraging abundant data, advanced algorithms, and powerful computational capabilities, prove highly effective in the analysis and interpretation of images. In this context, Object detection methods have become a promising approach, particularly through convolutional neural networks (CNN), streamlining medical image analysis by eliminating manual feature extraction. This allows for direct feature extraction from images, ensuring high accuracy in results. Therefore, in our paper, we utilized the object detection method on X-ray angiography images to precisely identify the location of coronary artery stenosis. As a result, this model enables automatic and real-time detection of stenosis locations, assisting in the crucial and sensitive decision-making process for healthcare professionals.
comment: The results in the article need fundamental corrections
♻ ☆ Contrastive Preference Learning: Learning from Human Feedback without RL ICLR 2024
Reinforcement Learning from Human Feedback (RLHF) has emerged as a popular paradigm for aligning models with human intent. Typically RLHF algorithms operate in two phases: first, use human preferences to learn a reward function and second, align the model by optimizing the learned reward via reinforcement learning (RL). This paradigm assumes that human preferences are distributed according to reward, but recent work suggests that they instead follow the regret under the user's optimal policy. Thus, learning a reward function from feedback is not only based on a flawed assumption of human preference, but also leads to unwieldy optimization challenges that stem from policy gradients or bootstrapping in the RL phase. Because of these optimization challenges, contemporary RLHF methods restrict themselves to contextual bandit settings (e.g., as in large language models) or limit observation dimensionality (e.g., state-based robotics). We overcome these limitations by introducing a new family of algorithms for optimizing behavior from human feedback using the regret-based model of human preferences. Using the principle of maximum entropy, we derive Contrastive Preference Learning (CPL), an algorithm for learning optimal policies from preferences without learning reward functions, circumventing the need for RL. CPL is fully off-policy, uses only a simple contrastive objective, and can be applied to arbitrary MDPs. This enables CPL to elegantly scale to high-dimensional and sequential RLHF problems while being simpler than prior methods.
comment: ICLR 2024. Code released at https://github.com/jhejna/cpl
♻ ☆ Do Diffusion Models Learn Semantically Meaningful and Efficient Representations?
Diffusion models are capable of impressive feats of image generation with uncommon juxtapositions such as astronauts riding horses on the moon with properly placed shadows. These outputs indicate the ability to perform compositional generalization, but how do the models do so? We perform controlled experiments on conditional DDPMs learning to generate 2D spherical Gaussian bumps centered at specified $x$- and $y$-positions. Our results show that the emergence of semantically meaningful latent representations is key to achieving high performance. En route to successful performance over learning, the model traverses three distinct phases of latent representations: (phase A) no latent structure, (phase B) a 2D manifold of disordered states, and (phase C) a 2D ordered manifold. Corresponding to each of these phases, we identify qualitatively different generation behaviors: 1) multiple bumps are generated, 2) one bump is generated but at inaccurate $x$ and $y$ locations, 3) a bump is generated at the correct $x$ and y location. Furthermore, we show that even under imbalanced datasets where features ($x$- versus $y$-positions) are represented with skewed frequencies, the learning process for $x$ and $y$ is coupled rather than factorized, demonstrating that simple vanilla-flavored diffusion models cannot learn efficient representations in which localization in $x$ and $y$ are factorized into separate 1D tasks. These findings suggest the need for future work to find inductive biases that will push generative models to discover and exploit factorizable independent structures in their inputs, which will be required to vault these models into more data-efficient regimes.
comment: 13 pages, 9 figures
♻ ☆ ComposerX: Multi-Agent Symbolic Music Composition with LLMs
Music composition represents the creative side of humanity, and itself is a complex task that requires abilities to understand and generate information with long dependency and harmony constraints. While demonstrating impressive capabilities in STEM subjects, current LLMs easily fail in this task, generating ill-written music even when equipped with modern techniques like In-Context-Learning and Chain-of-Thoughts. To further explore and enhance LLMs' potential in music composition by leveraging their reasoning ability and the large knowledge base in music history and theory, we propose ComposerX, an agent-based symbolic music generation framework. We find that applying a multi-agent approach significantly improves the music composition quality of GPT-4. The results demonstrate that ComposerX is capable of producing coherent polyphonic music compositions with captivating melodies, while adhering to user instructions.
♻ ☆ Tabular Data Contrastive Learning via Class-Conditioned and Feature-Correlation Based Augmentation
Contrastive learning is a model pre-training technique by first creating similar views of the original data, and then encouraging the data and its corresponding views to be close in the embedding space. Contrastive learning has witnessed success in image and natural language data, thanks to the domain-specific augmentation techniques that are both intuitive and effective. Nonetheless, in tabular domain, the predominant augmentation technique for creating views is through corrupting tabular entries via swapping values, which is not as sound or effective. We propose a simple yet powerful improvement to this augmentation technique: corrupting tabular data conditioned on class identity. Specifically, when corrupting a specific tabular entry from an anchor row, instead of randomly sampling a value in the same feature column from the entire table uniformly, we only sample from rows that are identified to be within the same class as the anchor row. We assume the semi-supervised learning setting, and adopt the pseudo labeling technique for obtaining class identities over all table rows. We also explore the novel idea of selecting features to be corrupted based on feature correlation structures. Extensive experiments show that the proposed approach consistently outperforms the conventional corruption method for tabular data classification tasks. Our code is available at https://github.com/willtop/Tabular-Class-Conditioned-SSL.
comment: 14 pages, 4 algorithms, 3 figures, 5 tables
♻ ☆ Inductive biases in deep learning models for weather prediction
Deep learning has gained immense popularity in the Earth sciences as it enables us to formulate purely data-driven models of complex Earth system processes. Deep learning-based weather prediction (DLWP) models have made significant progress in the last few years, achieving forecast skills comparable to established numerical weather prediction models with comparatively lesser computational costs. In order to train accurate, reliable, and tractable DLWP models with several millions of parameters, the model design needs to incorporate suitable inductive biases that encode structural assumptions about the data and the modelled processes. When chosen appropriately, these biases enable faster learning and better generalisation to unseen data. Although inductive biases play a crucial role in successful DLWP models, they are often not stated explicitly and their contribution to model performance remains unclear. Here, we review and analyse the inductive biases of state-of-the-art DLWP models with respect to five key design elements: data selection, learning objective, loss function, architecture, and optimisation method. We identify the most important inductive biases and highlight potential avenues towards more efficient and probabilistic DLWP models.
♻ ☆ IMITATE: Clinical Prior Guided Hierarchical Vision-Language Pre-training
In the field of medical Vision-Language Pre-training (VLP), significant efforts have been devoted to deriving text and image features from both clinical reports and associated medical images. However, most existing methods may have overlooked the opportunity in leveraging the inherent hierarchical structure of clinical reports, which are generally split into `findings' for descriptive content and `impressions' for conclusive observation. Instead of utilizing this rich, structured format, current medical VLP approaches often simplify the report into either a unified entity or fragmented tokens. In this work, we propose a novel clinical prior guided VLP framework named IMITATE to learn the structure information from medical reports with hierarchical vision-language alignment. The framework derives multi-level visual features from the chest X-ray (CXR) images and separately aligns these features with the descriptive and the conclusive text encoded in the hierarchical medical report. Furthermore, a new clinical-informed contrastive loss is introduced for cross-modal learning, which accounts for clinical prior knowledge in formulating sample correlations in contrastive learning. The proposed model, IMITATE, outperforms baseline VLP methods across six different datasets, spanning five medical imaging downstream tasks. Comprehensive experimental results highlight the advantages of integrating the hierarchical structure of medical reports for vision-language alignment.
comment: Under Review
♻ ☆ MUTE-Reco: MUTual Information Assisted Ensemble Feature RECOmmender System for Healthcare Prognosis
Purpose: Health recommenders act as important decision support systems, aiding patients and medical professionals in taking actions that lead to patients' well-being. These systems extract the information which may be of particular relevance to the end-user, helping them in making appropriate decisions. The present study proposes a feature recommender that identifies and recommends the most important risk factors for healthcare prognosis. Methods: A novel mutual information and ensemble-based feature ranking approach (termed as, MUTE-Reco) considering the rank of features obtained from eight popular feature selection methods, is proposed. Results: To establish the effectiveness of the proposed method, the experiment has been conducted on four benchmark datasets of diverse diseases (clear cell renal cell carcinoma (ccRCC), chronic kidney disease, Indian liver patient, and cervical cancer risk factors). The performance of the proposed recommender is compared with four state-of-the-art methods using recommender systems' performance metrics like average precision@K, precision@K, recall@K, F1@K, reciprocal rank@K. Experimental results show that the model built with the recommended features can attain a higher accuracy (96.6% and 98.6% using support vector machine and neural network, respectively) for classifying different stages of ccRCC with a reduced feature set as compared to existing methods. Moreover, the top two features recommended using the proposed method with ccRCC, viz. size of tumor and metastasis status, are medically validated from the existing TNM system. Results are also found to be superior for the other three datasets. Conclusion: The proposed recommender, MUTE-Reco, can identify and recommend risk factors that have the most discriminating power for detecting diseases.
♻ ☆ A General Framework for Interpretable Neural Learning based on Local Information-Theoretic Goal Functions
Despite the impressive performance of biological and artificial networks, an intuitive understanding of how their local learning dynamics contribute to network-level task solutions remains a challenge to this date. Efforts to bring learning to a more local scale indeed lead to valuable insights, however, a general constructive approach to describe local learning goals that is both interpretable and adaptable across diverse tasks is still missing. We have previously formulated a local information processing goal that is highly adaptable and interpretable for a model neuron with compartmental structure. Building on recent advances in Partial Information Decomposition (PID), we here derive a corresponding parametric local learning rule, which allows us to introduce 'infomorphic' neural networks. We demonstrate the versatility of these networks to perform tasks from supervised, unsupervised and memory learning. By leveraging the interpretable nature of the PID framework, infomorphic networks represent a valuable tool to advance our understanding of the intricate structure of local learning.
comment: 26 pages, 12 figures
♻ ☆ Orthonormal Expansions for Translation-Invariant Kernels
We present a general Fourier analytic technique for constructing orthonormal basis expansions of translation-invariant kernels from orthonormal bases of $\mathscr{L}_2(\mathbb{R})$. This allows us to derive explicit expansions on the real line for (i) Mat\'ern kernels of all half-integer orders in terms of associated Laguerre functions, (ii) the Cauchy kernel in terms of rational functions, and (iii) the Gaussian kernel in terms of Hermite functions.
comment: 23 pages, 8 figures
♻ ☆ Approximation Theory, Computing, and Deep Learning on the Wasserstein Space
The challenge of approximating functions in infinite-dimensional spaces from finite samples is widely regarded as formidable. In this study, we delve into the challenging problem of the numerical approximation of Sobolev-smooth functions defined on probability spaces. Our particular focus centers on the Wasserstein distance function, which serves as a relevant example. In contrast to the existing body of literature focused on approximating efficiently pointwise evaluations, we chart a new course to define functional approximants by adopting three machine learning-based approaches: 1. Solving a finite number of optimal transport problems and computing the corresponding Wasserstein potentials. 2. Employing empirical risk minimization with Tikhonov regularization in Wasserstein Sobolev spaces. 3. Addressing the problem through the saddle point formulation that characterizes the weak form of the Tikhonov functional's Euler-Lagrange equation. As a theoretical contribution, we furnish explicit and quantitative bounds on generalization errors for each of these solutions. In the proofs, we leverage the theory of metric Sobolev spaces and we combine it with techniques of optimal transport, variational calculus, and large deviation bounds. In our numerical implementation, we harness appropriately designed neural networks to serve as basis functions. These networks undergo training using diverse methodologies. This approach allows us to obtain approximating functions that can be rapidly evaluated after training. Consequently, our constructive solutions significantly enhance at equal accuracy the evaluation speed, surpassing that of state-of-the-art methods by several orders of magnitude.
comment: Typos fixed
♻ ☆ Towards a Systems Theory of Algorithms
Traditionally, numerical algorithms are seen as isolated pieces of code confined to an {\em in silico} existence. However, this perspective is not appropriate for many modern computational approaches in control, learning, or optimization, wherein {\em in vivo} algorithms interact with their environment. Examples of such {\em open algorithms} include various real-time optimization-based control strategies, reinforcement learning, decision-making architectures, online optimization, and many more. Further, even {\em closed} algorithms in learning or optimization are increasingly abstracted in block diagrams with interacting dynamic modules and pipelines. In this opinion paper, we state our vision on a to-be-cultivated {\em systems theory of algorithms} and argue in favor of viewing algorithms as open dynamical systems interacting with other algorithms, physical systems, humans, or databases. Remarkably, the manifold tools developed under the umbrella of systems theory are well suited for addressing a range of challenges in the algorithmic domain. We survey various instances where the principles of algorithmic systems theory are being developed and outline pertinent modeling, analysis, and design challenges.
♻ ☆ Causal Inference with Differentially Private (Clustered) Outcomes
Estimating causal effects from randomized experiments is only feasible if participants agree to reveal their potentially sensitive responses. Of the many ways of ensuring privacy, label differential privacy is a widely used measure of an algorithm's privacy guarantee, which might encourage participants to share responses without running the risk of de-anonymization. Many differentially private mechanisms inject noise into the original data-set to achieve this privacy guarantee, which increases the variance of most statistical estimators and makes the precise measurement of causal effects difficult: there exists a fundamental privacy-variance trade-off to performing causal analyses from differentially private data. With the aim of achieving lower variance for stronger privacy guarantees, we suggest a new differential privacy mechanism, Cluster-DP, which leverages any given cluster structure of the data while still allowing for the estimation of causal effects. We show that, depending on an intuitive measure of cluster quality, we can improve the variance loss while maintaining our privacy guarantees. We compare its performance, theoretically and empirically, to that of its unclustered version and a more extreme uniform-prior version which does not use any of the original response distribution, both of which are special cases of the Cluster-DP algorithm.
comment: 41 pages, 10 figures
♻ ☆ Utilizing Synthetic Data for Medical Vision-Language Pre-training: Bypassing the Need for Real Images CVPR 2024
Medical Vision-Language Pre-training (VLP) learns representations jointly from medical images and paired radiology reports. It typically requires large-scale paired image-text datasets to achieve effective pre-training for both the image encoder and text encoder. The advent of text-guided generative models raises a compelling question: Can VLP be implemented solely with synthetic images generated from genuine radiology reports, thereby mitigating the need for extensively pairing and curating image-text datasets? In this work, we scrutinize this very question by examining the feasibility and effectiveness of employing synthetic images for medical VLP. We replace real medical images with their synthetic equivalents, generated from authentic medical reports. Utilizing three state-of-the-art VLP algorithms, we exclusively train on these synthetic samples. Our empirical evaluation across three subsequent tasks, namely image classification, semantic segmentation and object detection, reveals that the performance achieved through synthetic data is on par with or even exceeds that obtained with real images. As a pioneering contribution to this domain, we introduce a large-scale synthetic medical image dataset, paired with anonymized real radiology reports. This alleviates the need of sharing medical images, which are not easy to curate and share in practice. The code and the dataset can be found in \href{https://github.com/cheliu-computation/MedSyn-RepLearn/tree/main}{https://github.com/cheliu-computation/MedSyn-RepLearn/tree/main}.
comment: Accepted by CVPR 2024 Workshop Data Curation and Augmentation in Enhancing Medical Imaging Applications
♻ ☆ SIR-RL: Reinforcement Learning for Optimized Policy Control during Epidemiological Outbreaks in Emerging Market and Developing Economies
The outbreak of COVID-19 has highlighted the intricate interplay between public health and economic stability on a global scale. This study proposes a novel reinforcement learning framework designed to optimize health and economic outcomes during pandemics. The framework leverages the SIR model, integrating both lockdown measures (via a stringency index) and vaccination strategies to simulate disease dynamics. The stringency index, indicative of the severity of lockdown measures, influences both the spread of the disease and the economic health of a country. Developing nations, which bear a disproportionate economic burden under stringent lockdowns, are the primary focus of our study. By implementing reinforcement learning, we aim to optimize governmental responses and strike a balance between the competing costs associated with public health and economic stability. This approach also enhances transparency in governmental decision-making by establishing a well-defined reward function for the reinforcement learning agent. In essence, this study introduces an innovative and ethical strategy to navigate the challenge of balancing public health and economic stability amidst infectious disease outbreaks.
comment: 27 pages, 12 figures
♻ ☆ Faithful Path Language Modeling for Explainable Recommendation over Knowledge Graph
The integration of path reasoning with language modeling in recommender systems has shown promise for enhancing explainability but often struggles with the authenticity of the explanations provided. Traditional models modify their architecture to produce entities and relations alternately--for example, employing separate heads for each in the model--which does not ensure the authenticity of paths reflective of actual Knowledge Graph (KG) connections. This misalignment can lead to user distrust due to the generation of corrupted paths. Addressing this, we introduce PEARLM (Path-based Explainable-Accurate Recommender based on Language Modelling), which innovates with a Knowledge Graph Constraint Decoding (KGCD) mechanism. This mechanism ensures zero incidence of corrupted paths by enforcing adherence to valid KG connections at the decoding level, agnostic of the underlying model architecture. By integrating direct token embedding learning from KG paths, PEARLM not only guarantees the generation of plausible and verifiable explanations but also highly enhances recommendation accuracy. We validate the effectiveness of our approach through a rigorous empirical assessment, employing a newly proposed metric that quantifies the integrity of explanation paths. Our results demonstrate a significant improvement over existing methods, effectively eliminating the generation of inaccurate paths and advancing the state-of-the-art in explainable recommender systems.
♻ ☆ Spot The Odd One Out: Regularized Complete Cycle Consistent Anomaly Detector GAN
This study presents an adversarial method for anomaly detection in real-world applications, leveraging the power of generative adversarial neural networks (GANs) through cycle consistency in reconstruction error. Previous methods suffer from the high variance between class-wise accuracy which leads to not being applicable for all types of anomalies. The proposed method named RCALAD tries to solve this problem by introducing a novel discriminator to the structure, which results in a more efficient training process. Additionally, RCALAD employs a supplementary distribution in the input space to steer reconstructions toward the normal data distribution, effectively separating anomalous samples from their reconstructions and facilitating more accurate anomaly detection. To further enhance the performance of the model, two novel anomaly scores are introduced. The proposed model has been thoroughly evaluated through extensive experiments on six various datasets, yielding results that demonstrate its superiority over existing state-of-the-art models. The code is readily available to the research community at https://github.com/zahraDehghanian97/RCALAD.
♻ ☆ Evaluating ROCKET and Catch22 features for calf behaviour classification from accelerometer data using Machine Learning models
Monitoring calf behaviour continuously would be beneficial to identify routine practices (e.g., weaning, dehorning, etc.) that impact calf welfare in dairy farms. In that regard, accelerometer data collected from neck collars can be used along with Machine Learning models to classify calf behaviour automatically. Hand-crafted features are commonly used in Machine Learning models, while ROCKET and Catch22 features are specifically designed for time-series classification problems in related fields. This study aims to compare the performance of ROCKET and Catch22 features to Hand-Crafted features. 30 Irish Holstein Friesian and Jersey pre-weaned calves were monitored using accelerometer sensors allowing for 27.4 hours of annotated behaviors. Additional time-series were computed from the raw X, Y and Z-axis and split into 3-second time windows. ROCKET, Catch22 and Hand-Crafted features were calculated for each time window, and the dataset was then split into the train, validation and test sets. Each set of features was used to train three Machine Learning models (Random Forest, eXtreme Gradient Boosting, and RidgeClassifierCV) to classify six behaviours indicative of pre-weaned calf welfare (drinking milk, grooming, lying, running, walking and other). Models were tuned with the validation set, and the performance of each feature-model combination was evaluated with the test set. The best performance across the three models was obtained with ROCKET [average balanced accuracy +/- standard deviation] (0.70 +/- 0.07), followed by Catch22 (0.69 +/- 0.05), surpassing Hand-Crafted (0.65 +/- 0.034). The best balanced accuracy (0.77) was obtained with ROCKET and RidgeClassifierCV, followed by Catch22 and Random Forest (0.73). Thus, tailoring these approaches for specific behaviours and contexts will be crucial in advancing precision livestock farming and enhancing animal welfare on a larger scale.
comment: 45 pages, 8 figures, 11 tables (3 in the Appendix), Journal paper
♻ ☆ Estimating Causal Effects with Double Machine Learning -- A Method Evaluation
The estimation of causal effects with observational data continues to be a very active research area. In recent years, researchers have developed new frameworks which use machine learning to relax classical assumptions necessary for the estimation of causal effects. In this paper, we review one of the most prominent methods - "double/debiased machine learning" (DML) - and empirically evaluate it by comparing its performance on simulated data relative to more traditional statistical methods, before applying it to real-world data. Our findings indicate that the application of a suitably flexible machine learning algorithm within DML improves the adjustment for various nonlinear confounding relationships. This advantage enables a departure from traditional functional form assumptions typically necessary in causal effect estimation. However, we demonstrate that the method continues to critically depend on standard assumptions about causal structure and identification. When estimating the effects of air pollution on housing prices in our application, we find that DML estimates are consistently larger than estimates of less flexible methods. From our overall results, we provide actionable recommendations for specific choices researchers must make when applying DML in practice.
♻ ☆ Giving a Hand to Diffusion Models: a Two-Stage Approach to Improving Conditional Human Image Generation
Recent years have seen significant progress in human image generation, particularly with the advancements in diffusion models. However, existing diffusion methods encounter challenges when producing consistent hand anatomy and the generated images often lack precise control over the hand pose. To address this limitation, we introduce a novel approach to pose-conditioned human image generation, dividing the process into two stages: hand generation and subsequent body outpainting around the hands. We propose training the hand generator in a multi-task setting to produce both hand images and their corresponding segmentation masks, and employ the trained model in the first stage of generation. An adapted ControlNet model is then used in the second stage to outpaint the body around the generated hands, producing the final result. A novel blending technique is introduced to preserve the hand details during the second stage that combines the results of both stages in a coherent way. This involves sequential expansion of the outpainted region while fusing the latent representations, to ensure a seamless and cohesive synthesis of the final image. Experimental evaluations demonstrate the superiority of our proposed method over state-of-the-art techniques, in both pose accuracy and image quality, as validated on the HaGRID dataset. Our approach not only enhances the quality of the generated hands but also offers improved control over hand pose, advancing the capabilities of pose-conditioned human image generation. The source code of the proposed approach is available at https://github.com/apelykh/hand-to-diffusion.
♻ ☆ Neural Operator Learning for Long-Time Integration in Dynamical Systems with Recurrent Neural Networks
Deep neural networks are an attractive alternative for simulating complex dynamical systems, as in comparison to traditional scientific computing methods, they offer reduced computational costs during inference and can be trained directly from observational data. Existing methods, however, cannot extrapolate accurately and are prone to error accumulation in long-time integration. Herein, we address this issue by combining neural operators with recurrent neural networks, learning the operator mapping, while offering a recurrent structure to capture temporal dependencies. The integrated framework is shown to stabilize the solution and reduce error accumulation for both interpolation and extrapolation of the Korteweg-de Vries equation.
comment: 8 pages, 5 figures
♻ ☆ E-Valuating Classifier Two-Sample Tests
We introduce a powerful deep classifier two-sample test for high-dimensional data based on E-values, called E-value Classifier Two-Sample Test (E-C2ST). Our test combines ideas from existing work on split likelihood ratio tests and predictive independence tests. The resulting E-values are suitable for anytime-valid sequential two-sample tests. This feature allows for more effective use of data in constructing test statistics. Through simulations and real data applications, we empirically demonstrate that E-C2ST achieves enhanced statistical power by partitioning datasets into multiple batches beyond the conventional two-split (training and testing) approach of standard classifier two-sample tests. This strategy increases the power of the test while keeping the type I error well below the desired significance level.
♻ ☆ Dynamic Backtracking in GFlowNets: Enhancing Decision Steps with Reward-Dependent Adjustment Mechanisms
Generative Flow Networks (GFlowNets or GFNs) are probabilistic models predicated on Markov flows, and they employ specific amortization algorithms to learn stochastic policies that generate compositional substances including biomolecules, chemical materials, etc. With a strong ability to generate high-performance biochemical molecules, GFNs accelerate the discovery of scientific substances, effectively overcoming the time-consuming, labor-intensive, and costly shortcomings of conventional material discovery methods. However, previous studies rarely focus on accumulating exploratory experience by adjusting generative structures, which leads to disorientation in complex sampling spaces. Efforts to address this issue, such as LS-GFN, are limited to local greedy searches and lack broader global adjustments. This paper introduces a novel variant of GFNs, the Dynamic Backtracking GFN (DB-GFN), which improves the adaptability of decision-making steps through a reward-based dynamic backtracking mechanism. DB-GFN allows backtracking during the network construction process according to the current state's reward value, thereby correcting disadvantageous decisions and exploring alternative pathways during the exploration process. When applied to generative tasks involving biochemical molecules and genetic material sequences, DB-GFN outperforms GFN models such as LS-GFN and GTB, as well as traditional reinforcement learning methods, in sample quality, sample exploration quantity, and training convergence speed. Additionally, owing to its orthogonal nature, DB-GFN shows great potential in future improvements of GFNs, and it can be integrated with other strategies to achieve higher search performance.
♻ ☆ Control Policy Correction Framework for Reinforcement Learning-based Energy Arbitrage Strategies
A continuous rise in the penetration of renewable energy sources, along with the use of the single imbalance pricing, provides a new opportunity for balance responsible parties to reduce their cost through energy arbitrage in the imbalance settlement mechanism. Model-free reinforcement learning (RL) methods are an appropriate choice for solving the energy arbitrage problem due to their outstanding performance in solving complex stochastic sequential problems. However, RL is rarely deployed in real-world applications since its learned policy does not necessarily guarantee safety during the execution phase. In this paper, we propose a new RL-based control framework for batteries to obtain a safe energy arbitrage strategy in the imbalance settlement mechanism. In our proposed control framework, the agent initially aims to optimize the arbitrage revenue. Subsequently, in the post-processing step, we correct (constrain) the learned policy following a knowledge distillation process based on properties that follow human intuition. Our post-processing step is a generic method and is not restricted to the energy arbitrage domain. We use the Belgian imbalance price of 2023 to evaluate the performance of our proposed framework. Furthermore, we deploy our proposed control framework on a real battery to show its capability in the real world.
comment: ACM e-Energy 2024
♻ ☆ Rule-Based Error Detection and Correction to Operationalize Movement Trajectory Classification
Classification of movement trajectories has many applications in transportation. Supervised neural models represent the current state-of-the-art. Recent security applications require this task to be rapidly employed in environments that may differ from the data used to train such models for which there is little training data. We provide a neuro-symbolic rule-based framework to conduct error correction and detection of these models to support eventual deployment in security applications. We provide a suite of experiments on several recent and state-of-the-art models and show an accuracy improvement of 1.7% over the SOTA model in the case where all classes are present in training and when 40% of classes are omitted from training, we obtain a 5.2% improvement (zero-shot) and 23.9% (few-shot) improvement over the SOTA model without resorting to retraining of the base model.
♻ ☆ Mapping the Potential of Explainable Artificial Intelligence (XAI) for Fairness Along the AI Lifecycle
The widespread use of artificial intelligence (AI) systems across various domains is increasingly highlighting issues related to algorithmic fairness, especially in high-stakes scenarios. Thus, critical considerations of how fairness in AI systems might be improved, and what measures are available to aid this process, are overdue. Many researchers and policymakers see explainable AI (XAI) as a promising way to increase fairness in AI systems. However, there is a wide variety of XAI methods and fairness conceptions expressing different desiderata, and the precise connections between XAI and fairness remain largely nebulous. Besides, different measures to increase algorithmic fairness might be applicable at different points throughout an AI system's lifecycle. Yet, there currently is no coherent mapping of fairness desiderata along the AI lifecycle. In this paper, we set out to bridge both these gaps: We distill eight fairness desiderata, map them along the AI lifecycle, and discuss how XAI could help address each of them. We hope to provide orientation for practical applications and to inspire XAI research specifically focused on these fairness desiderata.
♻ ☆ A Platform-Agnostic Deep Reinforcement Learning Framework for Effective Sim2Real Transfer in Autonomous Driving
Deep Reinforcement Learning (DRL) has shown remarkable success in solving complex tasks across various research fields. However, transferring DRL agents to the real world is still challenging due to the significant discrepancies between simulation and reality. To address this issue, we propose a robust DRL framework that leverages platform-dependent perception modules to extract task-relevant information and train a lane-following and overtaking agent in simulation. This framework facilitates the seamless transfer of the DRL agent to new simulated environments and the real world with minimal effort. We evaluate the performance of the agent in various driving scenarios in both simulation and the real world, and compare it to human players and the PID baseline in simulation. Our proposed framework significantly reduces the gaps between different platforms and the Sim2Real gap, enabling the trained agent to achieve similar performance in both simulation and the real world, driving the vehicle effectively.
♻ ☆ A New Random Reshuffling Method for Nonsmooth Nonconvex Finite-sum Optimization
Random reshuffling techniques are prevalent in large-scale applications, such as training neural networks. While the convergence and acceleration effects of random reshuffling-type methods are fairly well understood in the smooth setting, much less studies seem available in the nonsmooth case. In this work, we design a new normal map-based proximal random reshuffling (norm-PRR) method for nonsmooth nonconvex finite-sum problems. We show that norm-PRR achieves the iteration complexity $O(n^{-1/3}T^{-2/3})$ where $n$ denotes the number of component functions $f(\cdot,i)$ and $T$ counts the total number of iterations. This improves the currently known complexity bounds for this class of problems by a factor of $n^{-1/3}$. In addition, we prove that norm-PRR converges linearly under the (global) Polyak-Lojasiewicz condition and in the interpolation setting. We further complement these non-asymptotic results and provide an in-depth analysis of the asymptotic properties of norm-PRR. Specifically, under the (local) Kurdyka-Lojasiewicz inequality, the whole sequence of iterates generated by norm-PRR is shown to converge to a single stationary point. Moreover, we derive last iterate convergence rates that can match those in the smooth, strongly convex setting. Finally, numerical experiments are performed on nonconvex classification tasks to illustrate the efficiency of the proposed approach.
comment: 43 pages, 4 figures
♻ ☆ Beyond Known Clusters: Probe New Prototypes for Efficient Generalized Class Discovery
Generalized Class Discovery (GCD) aims to dynamically assign labels to unlabelled data partially based on knowledge learned from labelled data, where the unlabelled data may come from known or novel classes. The prevailing approach generally involves clustering across all data and learning conceptions by prototypical contrastive learning. However, existing methods largely hinge on the performance of clustering algorithms and are thus subject to their inherent limitations. Firstly, the estimated cluster number is often smaller than the ground truth, making the existing methods suffer from the lack of prototypes for comprehensive conception learning. To address this issue, we propose an adaptive probing mechanism that introduces learnable potential prototypes to expand cluster prototypes (centers). As there is no ground truth for the potential prototype, we develop a self-supervised prototype learning framework to optimize the potential prototype in an end-to-end fashion. Secondly, clustering is computationally intensive, and the conventional strategy of clustering both labelled and unlabelled instances exacerbates this issue. To counteract this inefficiency, we opt to cluster only the unlabelled instances and subsequently expand the cluster prototypes with our introduced potential prototypes to fast explore novel classes. Despite the simplicity of our proposed method, extensive empirical analysis on a wide range of datasets confirms that our method consistently delivers state-of-the-art results. Specifically, our method surpasses the nearest competitor by a significant margin of 9.7% within the Stanford Cars dataset and 12x clustering efficiency within the Herbarium 19 dataset. We will make the code and checkpoints publicly available at https://github.com/xjtuYW/PNP.git.
comment: 9 pages, 7 figures
♻ ☆ Stick to Your Role! Context-dependence and Stability of Personal Value Expression in Large Language Models
The standard way to study Large Language Models (LLMs) with benchmarks or psychology questionnaires is to provide many different queries from similar minimal contexts (e.g. multiple choice questions). However, due to LLMs' highly context-dependent nature, conclusions from such minimal-context evaluations may be little informative about the model's behavior in deployment (where it will be exposed to many new contexts). We argue that context-dependence (specifically, value stability) should be studied a specific property of LLMs and used as another dimension of LLM comparison (alongside others such as cognitive abilities, knowledge, or model size). We present a case-study on the stability of value expression over different contexts (simulated conversations on different topics) as measured using a standard psychology questionnaire (PVQ) and on behavioral downstream tasks. Reusing methods from psychology, we study Rank-order stability on the population (interpersonal) level, and Ipsative stability on the individual (intrapersonal) level. We consider two settings (with and without instructing LLMs to simulate particular personas), two simulated populations, and three downstream tasks. We observe consistent trends in the stability of models and model families - Mixtral, Mistral, GPT-3.5 and Qwen families are more stable than LLaMa-2 and Phi. The consistency of these trends implies that some models exhibit higher value-stability than others, and that value stability can be estimated with the set of introduced methodological tools. When instructed to simulate particular personas, LLMs exhibit low Rank-Order stability, which further diminishes with conversation length. This highlights the need for future research on LLMs that coherently simulate different personas. This paper provides a foundational step in that direction, and, to our knowledge, it is the first study of value stability in LLMs.
comment: The project website and code are available at https://sites.google.com/view/llmvaluestability
♻ ☆ Underwater Acoustic Target Recognition based on Smoothness-inducing Regularization and Spectrogram-based Data Augmentation
Underwater acoustic target recognition is a challenging task owing to the intricate underwater environments and limited data availability. Insufficient data can hinder the ability of recognition systems to support complex modeling, thus impeding their advancement. To improve the generalization capacity of recognition models, techniques such as data augmentation have been employed to simulate underwater signals and diversify data distribution. However, the complexity of underwater environments can cause the simulated signals to deviate from real scenarios, resulting in biased models that are misguided by non-true data. In this study, we propose two strategies to enhance the generalization ability of models in the case of limited data while avoiding the risk of performance degradation. First, as an alternative to traditional data augmentation, we utilize smoothness-inducing regularization, which only incorporates simulated signals in the regularization term. Additionally, we propose a specialized spectrogram-based data augmentation strategy, namely local masking and replicating (LMR), to capture inter-class relationships. Our experiments and visualization analysis demonstrate the superiority of our proposed strategies.
♻ ☆ A Dual Curriculum Learning Framework for Multi-UAV Pursuit-Evasion in Diverse Environments
This paper addresses multi-UAV pursuit-evasion, where a group of drones cooperates to capture a fast evader in a confined environment with obstacles. Existing heuristic algorithms, which simplify the pursuit-evasion problem, often lack expressive coordination strategies and struggle to capture the evader in extreme scenarios, such as when the evader moves at high speeds. In contrast, reinforcement learning (RL) has been applied to this problem and has the potential to obtain highly cooperative capture strategies. However, RL-based methods face challenges in training for complex 3-dimensional scenarios with diverse task settings due to the vast exploration space. The dynamics constraints of drones further restrict the ability of reinforcement learning to acquire high-performance capture strategies. In this work, we introduce a dual curriculum learning framework, named DualCL, which addresses multi-UAV pursuit-evasion in diverse environments and demonstrates zero-shot transfer ability to unseen scenarios. DualCL comprises two main components: the Intrinsic Parameter Curriculum Proposer, which progressively suggests intrinsic parameters from easy to hard to improve the capture capability of drones, and the External Environment Generator, tasked with exploring unresolved scenarios and generating appropriate training distributions of external environment parameters. The simulation experimental results show that DualCL significantly outperforms baseline methods, achieving over 90% capture rate and reducing the capture timestep by at least 27.5% in the training scenarios. Additionally, it exhibits the best zero-shot generalization ability in unseen environments. Moreover, we demonstrate the transferability of our pursuit strategy from simulation to real-world environments. Further details can be found on the project website at https://sites.google.com/view/dualcl.
♻ ☆ CacheGen: KV Cache Compression and Streaming for Fast Language Model Serving
As large language models (LLMs) take on complex tasks, their inputs are supplemented with longer contexts that incorporate domain knowledge or user-specific information. Yet using long contexts poses a challenge for responsive LLM systems, as nothing can be generated until the whole context is processed by the LLM. . CacheGen is a fast context-loading module for LLM systems. First, CacheGen uses a custom tensor encoder, which embraces KV cache's distributional properties, to encode a KV cache into more compact bitstream representations with negligible encoding/decoding overhead. This reduces the bandwidth demand to fetch the KV cache. Second, to maintain low context-loading delay and high generation quality, CacheGen adapts the streaming strategies to cope with changes in available bandwidth. When available bandwidth drops, CacheGen may raise the compression level for a part of the context or choose to recompute its KV cache on the fly. We test CacheGen on four popular LLMs of various sizes and four datasets (662 contexts in total). Compared to the recent systems that reuse the KV cache, CacheGen reduces the KV cache size by 3.5-4.3x and the total delay in fetching and processing contexts by 3.2-3.7x while having negligible impact on the LLM response quality in accuracy or perplexity.
♻ ☆ Towards Real-time Learning in Large Language Models: A Critical Review
Real-time learning concerns the ability of learning systems to acquire knowledge over time, enabling their adaptation and generalization to novel tasks. It is a critical ability for intelligent, real-world systems, especially when data may be insufficient or difficult to obtain. This review provides a comprehensive analysis of real-time learning in Large Language Models. It synthesizes the state-of-the-art real-time learning paradigms, including continual learning, meta-learning, parameter-efficient learning, and mixture-of-experts learning. We demonstrate their utility for real-time learning by describing specific achievements from these related topics and their critical factors. Finally, the paper highlights current problems and challenges for future research in the field. By consolidating the latest relevant research developments, this review offers a comprehensive understanding of real-time learning and its implications for designing and developing LLM-based learning systems addressing real-world problems.
♻ ☆ Multi-task Learning for Radar Signal Characterisation
Radio signal recognition is a crucial task in both civilian and military applications, as accurate and timely identification of unknown signals is an essential part of spectrum management and electronic warfare. The majority of research in this field has focused on applying deep learning for modulation classification, leaving the task of signal characterisation as an understudied area. This paper addresses this gap by presenting an approach for tackling radar signal classification and characterisation as a multi-task learning (MTL) problem. We propose the IQ Signal Transformer (IQST) among several reference architectures that allow for simultaneous optimisation of multiple regression and classification tasks. We demonstrate the performance of our proposed MTL model on a synthetic radar dataset, while also providing a first-of-its-kind benchmark for radar signal characterisation.
comment: 5 pages, 3 figures
♻ ☆ Inference-Time Rule Eraser: Distilling and Removing Bias Rules to Mitigate Bias in Deployed Models
Machine learning models often make predictions based on biased features such as gender, race, and other social attributes, posing significant fairness risks, especially in societal applications, such as hiring, banking, and criminal justice. Traditional approaches to addressing this issue involve retraining or fine-tuning neural networks with fairness-aware optimization objectives. However, these methods can be impractical due to significant computational resources, complex industrial tests, and the associated CO2 footprint. Additionally, regular users aiming to use fair models often lack access to model parameters. In this paper, we introduce Inference-Time Rule Eraser (Eraser), a novel method focused on removing biased decision-making rules during inference to address fairness concerns without modifying model weights. We begin by establishing a theoretical foundation for modifying model outputs to eliminate biased rules through Bayesian analysis. Next, we present a specific implementation of Eraser that involves two stages: (1) querying the model to distill biased rules into a patched model, and (2) excluding these biased rules during inference. Extensive experiments validate the effectiveness of our approach, showcasing its superior performance in addressing fairness concerns in AI systems.
♻ ☆ Tracking Changing Probabilities via Dynamic Learners
Consider a predictor, a learner, whose input is a stream of discrete items. The predictor's task, at every time point, is probabilistic multiclass prediction, i.e., to predict which item may occur next by outputting zero or more candidate items, each with a probability, after which the actual item is revealed and the predictor learns from this observation. To output probabilities, the predictor keeps track of the proportions of the items it has seen. The stream is unbounded and the predictor has finite limited space and we seek efficient prediction and update techniques: the set of items is unknown to the predictor and their totality can also grow unbounded. Moreover, there is non-stationarity: the underlying frequencies of items may change, substantially, from time to time. For instance, new items may start appearing and a few recently frequent items may cease to occur again. The predictor, being space-bounded, need only provide probabilities for those items with (currently) sufficiently high frequency, i.e., the salient items. This problem is motivated in the setting of prediction games, a self-supervised learning regime where concepts serve as both the predictors and the predictands, and the set of concepts grows over time, resulting in non-stationarities as new concepts are generated and used. We develop sparse multiclass moving average techniques designed to respond to such non-stationarities in a timely manner. One technique is based on the exponentiated moving average (EMA) and another is based on queuing a few count snapshots. We show that the combination, and in particular supporting dynamic predictand-specific learning rates, offers advantages in terms of faster change detection and convergence.
comment: 63 pages, 24 figures, 17 tables
♻ ☆ A Novel Paradigm in Solving Multiscale Problems
Multiscale phenomena manifest across various scientific domains, presenting a ubiquitous challenge in accurately and effectively simulating multiscale dynamics in complex systems. In this paper, a novel decoupling solving paradigm is proposed through modelling large-scale dynamics independently and treating small-scale dynamics as a slaved system. A Spectral Physics-informed Neural Network (PINN) is developed to characterize the small-scale system in an efficient and accurate way, addressing the challenges posed by the representation of multiscale dynamics in neural networks. The effectiveness of the method is demonstrated through extensive numerical experiments, including one-dimensional Kuramot-Sivashinsky equation, two- and three-dimensional Navier-Stokes equations, showcasing its versatility in addressing problems of fluid dynamics. Furthermore, we also delve into the application of the proposed approach to more complex problems, including non-uniform meshes, complex geometries, large-scale data with noise, and high-dimensional small-scale dynamics. The discussions about these scenarios contribute to a comprehensive understanding of the method's capabilities and limitations. By enabling the acquisition of large-scale data with minimal computational demands, coupled with the efficient and accurate characterization of small-scale dynamics via Spectral PINN, our approach offers a valuable and promising approach for researchers seeking to tackle multiscale phenomena effectively.
♻ ☆ TrACT: A Training Dynamics Aware Contrastive Learning Framework for Long-tail Trajectory Prediction
As a safety critical task, autonomous driving requires accurate predictions of road users' future trajectories for safe motion planning, particularly under challenging conditions. Yet, many recent deep learning methods suffer from a degraded performance on the challenging scenarios, mainly because these scenarios appear less frequently in the training data. To address such a long-tail issue, existing methods force challenging scenarios closer together in the feature space during training to trigger information sharing among them for more robust learning. These methods, however, primarily rely on the motion patterns to characterize scenarios, omitting more informative contextual information, such as interactions and scene layout. We argue that exploiting such information not only improves prediction accuracy but also scene compliance of the generated trajectories. In this paper, we propose to incorporate richer training dynamics information into a prototypical contrastive learning framework. More specifically, we propose a two-stage process. First, we generate rich contextual features using a baseline encoder-decoder framework. These features are split into clusters based on the model's output errors, using the training dynamics information, and a prototype is computed within each cluster. Second, we retrain the model using the prototypes in a contrastive learning framework. We conduct empirical evaluations of our approach using two large-scale naturalistic datasets and show that our method achieves state-of-the-art performance by improving accuracy and scene compliance on the long-tail samples. Furthermore, we perform experiments on a subset of the clusters to highlight the additional benefit of our approach in reducing training bias.
comment: 2024 IEEE Intelligent Vehicles Symposium (IV)
♻ ☆ Diffusion Models as Constrained Samplers for Optimization with Unknown Constraints
Addressing real-world optimization problems becomes particularly challenging when analytic objective functions or constraints are unavailable. While numerous studies have addressed the issue of unknown objectives, limited research has focused on scenarios where feasibility constraints are not given explicitly. Overlooking these constraints can lead to spurious solutions that are unrealistic in practice. To deal with such unknown constraints, we propose to perform optimization within the data manifold using diffusion models. To constrain the optimization process to the data manifold, we reformulate the original optimization problem as a sampling problem from the product of the Boltzmann distribution defined by the objective function and the data distribution learned by the diffusion model. To enhance sampling efficiency, we propose a two-stage framework that begins with a guided diffusion process for warm-up, followed by a Langevin dynamics stage for further correction. Theoretical analysis shows that the initial stage results in a distribution focused on feasible solutions, thereby providing a better initialization for the later stage. Comprehensive experiments on a synthetic dataset, six real-world black-box optimization datasets, and a multi-objective optimization dataset show that our method achieves better or comparable performance with previous state-of-the-art baselines.
♻ ☆ Proof-of-Learning with Incentive Security
Most concurrent blockchain systems rely heavily on the Proof-of-Work (PoW) or Proof-of-Stake (PoS) mechanisms for decentralized consensus and security assurance. However, the substantial energy expenditure stemming from computationally intensive yet meaningless tasks has raised considerable concerns surrounding traditional PoW approaches, The PoS mechanism, while free of energy consumption, is subject to security and economic issues. Addressing these issues, the paradigm of Proof-of-Useful-Work (PoUW) seeks to employ challenges of practical significance as PoW, thereby imbuing energy consumption with tangible value. While previous efforts in Proof of Learning (PoL) explored the utilization of deep learning model training SGD tasks as PoUW challenges, recent research has revealed its vulnerabilities to adversarial attacks and the theoretical hardness in crafting a byzantine-secure PoL mechanism. In this paper, we introduce the concept of incentive-security that incentivizes rational provers to behave honestly for their best interest, bypassing the existing hardness to design a PoL mechanism with computational efficiency, a provable incentive-security guarantee and controllable difficulty. Particularly, our work is secure against two attacks to the recent work of Jia et al. [2021], and also improves the computational overhead from $\Theta(1)$ to $O(\frac{\log E}{E})$. Furthermore, while most recent research assumes trusted problem providers and verifiers, our design also guarantees frontend incentive-security even when problem providers are untrusted, and verifier incentive-security that bypasses the Verifier's Dilemma. By incorporating ML training into blockchain consensus mechanisms with provable guarantees, our research not only proposes an eco-friendly solution to blockchain systems, but also provides a proposal for a completely decentralized computing power market in the new AI age.
comment: 17 pages, 5 figures
♻ ☆ Impedance Matching: Enabling an RL-Based Running Jump in a Quadruped Robot
Replicating the remarkable athleticism seen in animals has long been a challenge in robotics control. Although Reinforcement Learning (RL) has demonstrated significant progress in dynamic legged locomotion control, the substantial sim-to-real gap often hinders the real-world demonstration of truly dynamic movements. We propose a new framework to mitigate this gap through frequency-domain analysis-based impedance matching between simulated and real robots. Our framework offers a structured guideline for parameter selection and the range for dynamics randomization in simulation, thus facilitating a safe sim-to-real transfer. The learned policy using our framework enabled jumps across distances of 55 cm and heights of 38 cm. The results are, to the best of our knowledge, one of the highest and longest running jumps demonstrated by an RL-based control policy in a real quadruped robot. Note that the achieved jumping height is approximately 85% of that obtained from a state-of-the-art trajectory optimization method, which can be seen as the physical limit for the given robot hardware. In addition, our control policy accomplished stable walking at speeds up to 2 m/s in the forward and backward directions, and 1 m/s in the sideway direction.
comment: Accepted by Ubiquitous Robots 2024
♻ ☆ Scenario-Adaptive Fine-Grained Personalization Network: Tailoring User Behavior Representation to the Scenario Context SIGIR 2024
Existing methods often adjust representations adaptively only after aggregating user behavior sequences. This coarse-grained approach to re-weighting the entire user sequence hampers the model's ability to accurately model the user interest migration across different scenarios. To enhance the model's capacity to capture user interests from historical behavior sequences in each scenario, we develop a ranking framework named the Scenario-Adaptive Fine-Grained Personalization Network (SFPNet), which designs a kind of fine-grained method for multi-scenario personalized recommendations. Specifically, SFPNet comprises a series of blocks named as Scenario-Tailoring Block, stacked sequentially. Each block initially deploys a parameter personalization unit to integrate scenario information at a coarse-grained level by redefining fundamental features. Subsequently, we consolidate scenario-adaptively adjusted feature representations to serve as context information. By employing residual connection, we incorporate this context into the representation of each historical behavior, allowing for context-aware fine-grained customization of the behavior representations at the scenario-level, which in turn supports scenario-aware user interest modeling.
comment: Accepted by SIGIR 2024, 10 pages, 5 figures, 5 tables
♻ ☆ Application of a Dense Fusion Attention Network in Fault Diagnosis of Centrifugal Fan
Although the deep learning recognition model has been widely used in the condition monitoring of rotating machinery. However, it is still a challenge to understand the correspondence between the structure and function of the model and the diagnosis process. Therefore, this paper discusses embedding distributed attention modules into dense connections instead of traditional dense cascading operations. It not only decouples the influence of space and channel on fault feature adaptive recalibration feature weights, but also forms a fusion attention function. The proposed dense fusion focuses on the visualization of the network diagnosis process, which increases the interpretability of model diagnosis. How to continuously and effectively integrate different functions to enhance the ability to extract fault features and the ability to resist noise is answered. Centrifugal fan fault data is used to verify this network. Experimental results show that the network has stronger diagnostic performance than other advanced fault diagnostic models.
comment: The research direction between authors needs to be adjusted, so the preprint is requested to be revoked
♻ ☆ Eigenpruning NAACL 2024
We introduce eigenpruning, a method that removes singular values from weight matrices in an LLM to improve its performance in a particular task. This method is inspired by interpretability methods designed to automatically find subnetworks of a model which solve a specific task. In our tests, the pruned model outperforms the original model by a large margin, while only requiring minimal computation to prune the weight matrices. In the case of a small synthetic task in integer multiplication, the Phi-2 model can improve its accuracy in the test set from 13.75% to 97.50%. Interestingly, these results seem to indicate the existence of a computation path that can solve the task very effectively, but it was not being used by the original model. Finally, we publicly release our implementation.
comment: Extended abstract accepted to LatinX at NAACL 2024
♻ ☆ A Non-autoregressive Multi-Horizon Flight Trajectory Prediction Framework with Gray Code Representation AAAI
Flight Trajectory Prediction (FTP) is an essential task in Air Traffic Control (ATC), which can assist air traffic controllers in managing airspace more safely and efficiently. Existing approaches generally perform multi-horizon FTP tasks in an autoregressive manner, thereby suffering from error accumulation and low-efficiency problems. In this paper, a novel framework, called FlightBERT++, is proposed to i) forecast multi-horizon flight trajectories directly in a non-autoregressive way, and ii) improve the limitation of the binary encoding (BE) representation in the FlightBERT framework. Specifically, the proposed framework is implemented by a generalized encoder-decoder architecture, in which the encoder learns the temporal-spatial patterns from historical observations and the decoder predicts the flight status for the future horizons. Compared to conventional architecture, an innovative horizon-aware contexts generator is dedicatedly designed to consider the prior horizon information, which further enables non-autoregressive multi-horizon prediction. Additionally, the Gray code representation and the differential prediction paradigm are designed to cope with the high-bit misclassifications of the BE representation, which significantly reduces the outliers in the predictions. Moreover, a differential prompted decoder is proposed to enhance the capability of the differential predictions by leveraging the stationarity of the differential sequence. Extensive experiments are conducted to validate the proposed framework on a real-world flight trajectory dataset. The experimental results demonstrated that the proposed framework outperformed the competitive baselines in both FTP performance and computational efficiency.
comment: An extend version based on the AAAI version
♻ ☆ Vision-Language Generative Model for View-Specific Chest X-ray Generation
Synthetic medical data generation has opened up new possibilities in the healthcare domain, offering a powerful tool for simulating clinical scenarios, enhancing diagnostic and treatment quality, gaining granular medical knowledge, and accelerating the development of unbiased algorithms. In this context, we present a novel approach called ViewXGen, designed to overcome the limitations of existing methods that rely on general domain pipelines using only radiology reports to generate frontal-view chest X-rays. Our approach takes into consideration the diverse view positions found in the dataset, enabling the generation of chest X-rays with specific views, which marks a significant advancement in the field. To achieve this, we introduce a set of specially designed tokens for each view position, tailoring the generation process to the user's preferences. Furthermore, we leverage multi-view chest X-rays as input, incorporating valuable information from different views within the same study. This integration rectifies potential errors and contributes to faithfully capturing abnormal findings in chest X-ray generation. To validate the effectiveness of our approach, we conducted statistical analyses, evaluating its performance in a clinical efficacy metric on the MIMIC-CXR dataset. Also, human evaluation demonstrates the remarkable capabilities of ViewXGen, particularly in producing realistic view-specific X-rays that closely resemble the original images.
comment: Accepted at CHIL 2024
♻ ☆ LW-FedSSL: Resource-efficient Layer-wise Federated Self-supervised Learning
Many studies integrate federated learning (FL) with self-supervised learning (SSL) to take advantage of raw training data distributed across edge devices. However, edge devices often struggle with high computation and communication costs imposed by SSL and FL algorithms. To tackle this hindrance, we propose LW-FedSSL, a layer-wise federated self-supervised learning approach that allows edge devices to incrementally train a single layer of the model at a time. Our LW-FedSSL comprises server-side calibration and representation alignment mechanisms to maintain comparable performance with end-to-end federated self-supervised learning (FedSSL) while significantly lowering clients' resource requirements. In a pure layer-wise training scheme, training one layer at a time may limit effective interaction between different layers of the model. The server-side calibration mechanism takes advantage of the resource-rich server in an FL environment to ensure smooth collaboration between different layers of the global model. During the local training process, the representation alignment mechanism encourages closeness between representations of FL local models and those of the global model, thereby preserving the layer cohesion established by server-side calibration. Our experiments show that LW-FedSSL has a $3.3 \times$ lower memory requirement and a $3.2 \times$ cheaper communication cost than its end-to-end counterpart. We also explore a progressive training strategy called Prog-FedSSL that outperforms end-to-end training with a similar memory requirement and a $1.8 \times$ cheaper communication cost.
♻ ☆ An extended asymmetric sigmoid with Perceptron (SIGTRON) for imbalanced linear classification
This article presents a new polynomial parameterized sigmoid called SIGTRON, which is an extended asymmetric sigmoid with Perceptron, and its companion convex model called SIGTRON-imbalanced classification (SIC) model that employs a virtual SIGTRON-induced convex loss function. In contrast to the conventional $\pi$-weighted cost-sensitive learning model, the SIC model does not have an external $\pi$-weight on the loss function but has internal parameters in the virtual SIGTRON-induced loss function. As a consequence, when the given training dataset is close to the well-balanced condition considering the (scale-)class-imbalance ratio, we show that the proposed SIC model is more adaptive to variations of the dataset, such as the inconsistency of the (scale-)class-imbalance ratio between the training and test datasets. This adaptation is justified by a skewed hyperplane equation, created via linearization of the gradient satisfying $\epsilon$-optimal condition. Additionally, we present a quasi-Newton optimization(L-BFGS) framework for the virtual convex loss by developing an interval-based bisection line search. Empirically, we have observed that the proposed approach outperforms (or is comparable to) $\pi$-weighted convex focal loss and balanced classifier LIBLINEAR(logistic regression, SVM, and L2SVM) in terms of test classification accuracy with $51$ two-class and $67$ multi-class datasets. In binary classification problems, where the scale-class-imbalance ratio of the training dataset is not significant but the inconsistency exists, a group of SIC models with the best test accuracy for each dataset (TOP$1$) outperforms LIBSVM(C-SVC with RBF kernel), a well-known kernel-based classifier.
comment: 26 pages, 9 figures, revised version
♻ ☆ Towards Lifecycle Unlearning Commitment Management: Measuring Sample-level Approximate Unlearning Completeness
By adopting a more flexible definition of unlearning and adjusting the model distribution to simulate training without the targeted data, approximate machine unlearning provides a less resource-demanding alternative to the more laborious exact unlearning methods. Yet, the unlearning completeness of target samples-even when the approximate algorithms are executed faithfully without external threats-remains largely unexamined, raising questions about those approximate algorithms' ability to fulfill their commitment of unlearning during the lifecycle. In this paper, we introduce the task of Lifecycle Unlearning Commitment Management (LUCM) for approximate unlearning and outline its primary challenges. We propose an efficient metric designed to assess the sample-level unlearning completeness. Our empirical results demonstrate its superiority over membership inference techniques in two key areas: the strong correlation of its measurements with unlearning completeness across various unlearning tasks, and its computational efficiency, making it suitable for real-time applications. Additionally, we show that this metric is able to serve as a tool for monitoring unlearning anomalies throughout the unlearning lifecycle, including both under-unlearning and over-unlearning. We apply this metric to evaluate the unlearning commitments of current approximate algorithms. Our analysis, conducted across multiple unlearning benchmarks, reveals that these algorithms inconsistently fulfill their unlearning commitments due to two main issues: 1) unlearning new data can significantly affect the unlearning utility of previously requested data, and 2) approximate algorithms fail to ensure equitable unlearning utility across different groups. These insights emphasize the crucial importance of LUCM throughout the unlearning lifecycle. We will soon open-source our newly developed benchmark.
♻ ☆ Addressing Loss of Plasticity and Catastrophic Forgetting in Continual Learning ICLR 2024
Deep representation learning methods struggle with continual learning, suffering from both catastrophic forgetting of useful units and loss of plasticity, often due to rigid and unuseful units. While many methods address these two issues separately, only a few currently deal with both simultaneously. In this paper, we introduce Utility-based Perturbed Gradient Descent (UPGD) as a novel approach for the continual learning of representations. UPGD combines gradient updates with perturbations, where it applies smaller modifications to more useful units, protecting them from forgetting, and larger modifications to less useful units, rejuvenating their plasticity. We use a challenging streaming learning setup where continual learning problems have hundreds of non-stationarities and unknown task boundaries. We show that many existing methods suffer from at least one of the issues, predominantly manifested by their decreasing accuracy over tasks. On the other hand, UPGD continues to improve performance and surpasses or is competitive with all methods in all problems. Finally, in extended reinforcement learning experiments with PPO, we show that while Adam exhibits a performance drop after initial learning, UPGD avoids it by addressing both continual learning issues.
comment: Published in the Proceedings of the 12th International Conference on Learning Representations (ICLR 2024). Code is available at https://github.com/mohmdelsayed/upgd
♻ ☆ Sup3r: A Semi-Supervised Algorithm for increasing Sparsity, Stability, and Separability in Hierarchy Of Time-Surfaces architectures
The Hierarchy Of Time-Surfaces (HOTS) algorithm, a neuromorphic approach for feature extraction from event data, presents promising capabilities but faces challenges in accuracy and compatibility with neuromorphic hardware. In this paper, we introduce Sup3r, a Semi-Supervised algorithm aimed at addressing these challenges. Sup3r enhances sparsity, stability, and separability in the HOTS networks. It enables end-to-end online training of HOTS networks replacing external classifiers, by leveraging semi-supervised learning. Sup3r learns class-informative patterns, mitigates confounding features, and reduces the number of processed events. Moreover, Sup3r facilitates continual and incremental learning, allowing adaptation to data distribution shifts and learning new tasks without forgetting. Preliminary results on N-MNIST demonstrate that Sup3r achieves comparable accuracy to similarly sized Artificial Neural Networks trained with back-propagation. This work showcases the potential of Sup3r to advance the capabilities of HOTS networks, offering a promising avenue for neuromorphic algorithms in real-world applications.
♻ ☆ MediTab: Scaling Medical Tabular Data Predictors via Data Consolidation, Enrichment, and Refinement IJCAI 2024
Tabular data prediction has been employed in medical applications such as patient health risk prediction. However, existing methods usually revolve around the algorithm design while overlooking the significance of data engineering. Medical tabular datasets frequently exhibit significant heterogeneity across different sources, with limited sample sizes per source. As such, previous predictors are often trained on manually curated small datasets that struggle to generalize across different tabular datasets during inference. This paper proposes to scale medical tabular data predictors (MediTab) to various tabular inputs with varying features. The method uses a data engine that leverages large language models (LLMs) to consolidate tabular samples to overcome the barrier across tables with distinct schema. It also aligns out-domain data with the target task using a "learn, annotate, and refinement" pipeline. The expanded training data then enables the pre-trained MediTab to infer for arbitrary tabular input in the domain without fine-tuning, resulting in significant improvements over supervised baselines: it reaches an average ranking of 1.57 and 1.00 on 7 patient outcome prediction datasets and 3 trial outcome prediction datasets, respectively. In addition, MediTab exhibits impressive zero-shot performances: it outperforms supervised XGBoost models by 8.9% and 17.2% on average in two prediction tasks, respectively.
comment: IJCAI 2024
♻ ☆ Reconstruction of Unstable Heavy Particles Using Deep Symmetry-Preserving Attention Networks
Reconstructing unstable heavy particles requires sophisticated techniques to sift through the large number of possible permutations for assignment of detector objects to the underlying partons. Anapproach based on a generalized attention mechanism, symmetry preserving attention networks (SPA-NET), has been previously applied to top quark pair decays at the Large Hadron Collider which produce only hadronic jets. Here we extend the SPA-NET architecture to consider multiple input object types, such as leptons, as well as global event features, such as the missing transverse momentum. Inaddition, we provide regression and classification outputs to supplement the parton assignment. We explore the performance of the extended capability of SPA-NET in the context of semi-leptonic decays of top quark pairs as well as top quark pairs produced in association with a Higgs boson. We find significant improvements in the power of three representative studies: a search for ttH, a measurement of the top quark mass, and a search for a heavy Z' decaying to top quark pairs. We present ablation studies to provide insight on what the network has learned in each case.
comment: Accepted by Nature Communications Physics, replaced with published version
♻ ☆ Eureka: Human-Level Reward Design via Coding Large Language Models ICLR 2024
Large Language Models (LLMs) have excelled as high-level semantic planners for sequential decision-making tasks. However, harnessing them to learn complex low-level manipulation tasks, such as dexterous pen spinning, remains an open problem. We bridge this fundamental gap and present Eureka, a human-level reward design algorithm powered by LLMs. Eureka exploits the remarkable zero-shot generation, code-writing, and in-context improvement capabilities of state-of-the-art LLMs, such as GPT-4, to perform evolutionary optimization over reward code. The resulting rewards can then be used to acquire complex skills via reinforcement learning. Without any task-specific prompting or pre-defined reward templates, Eureka generates reward functions that outperform expert human-engineered rewards. In a diverse suite of 29 open-source RL environments that include 10 distinct robot morphologies, Eureka outperforms human experts on 83% of the tasks, leading to an average normalized improvement of 52%. The generality of Eureka also enables a new gradient-free in-context learning approach to reinforcement learning from human feedback (RLHF), readily incorporating human inputs to improve the quality and the safety of the generated rewards without model updating. Finally, using Eureka rewards in a curriculum learning setting, we demonstrate for the first time, a simulated Shadow Hand capable of performing pen spinning tricks, adeptly manipulating a pen in circles at rapid speed.
comment: ICLR 2024. Project website and open-source code: https://eureka-research.github.io/
♻ ☆ $\texttt{immrax}$: A Parallelizable and Differentiable Toolbox for Interval Analysis and Mixed Monotone Reachability in JAX
We present an implementation of interval analysis and mixed monotone interval reachability analysis as function transforms in Python, fully composable with the computational framework JAX. The resulting toolbox inherits several key features from JAX, including computational efficiency through Just-In-Time Compilation, GPU acceleration for quick parallelized computations, and Automatic Differentiability. We demonstrate the toolbox's performance on several case studies, including a reachability problem on a vehicle model controlled by a neural network, and a robust closed-loop optimal control problem for a swinging pendulum.
♻ ☆ AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models
AutoGluon-Multimodal (AutoMM) is introduced as an open-source AutoML library designed specifically for multimodal learning. Distinguished by its exceptional ease of use, AutoMM enables fine-tuning of foundation models with just three lines of code. Supporting various modalities including image, text, and tabular data, both independently and in combination, the library offers a comprehensive suite of functionalities spanning classification, regression, object detection, semantic matching, and image segmentation. Experiments across diverse datasets and tasks showcases AutoMM's superior performance in basic classification and regression tasks compared to existing AutoML tools, while also demonstrating competitive results in advanced tasks, aligning with specialized toolboxes designed for such purposes.
comment: Accepted at AutoML 2024 Conference
♻ ☆ PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback
We present a novel unified bilevel optimization-based framework, \textsf{PARL}, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning using utility or preference-based feedback. We identify a major gap within current algorithmic designs for solving policy alignment due to a lack of precise characterization of the dependence of the alignment objective on the data generated by policy trajectories. This shortfall contributes to the sub-optimal performance observed in contemporary algorithms. Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable (optimal policy for the designed reward). Interestingly, from an optimization perspective, our formulation leads to a new class of stochastic bilevel problems where the stochasticity at the upper objective depends upon the lower-level variable. {True to our best knowledge, this work presents the first formulation of the RLHF as a bilevel optimization problem which generalizes the existing RLHF formulations and addresses the existing distribution shift issues in RLHF formulations.} To demonstrate the efficacy of our formulation in resolving alignment issues in RL, we devised an algorithm named \textsf{A-PARL} to solve PARL problem, establishing sample complexity bounds of order $\mathcal{O}(1/T)$. Our empirical results substantiate that the proposed \textsf{PARL} can address the alignment concerns in RL by showing significant improvements (up to 63\% in terms of required samples) for policy alignment in large-scale environments of the Deepmind control suite and Meta world tasks.
♻ ☆ Hierarchical Hybrid Sliced Wasserstein: A Scalable Metric for Heterogeneous Joint Distributions
Sliced Wasserstein (SW) and Generalized Sliced Wasserstein (GSW) have been widely used in applications due to their computational and statistical scalability. However, the SW and the GSW are only defined between distributions supported on a homogeneous domain. This limitation prevents their usage in applications with heterogeneous joint distributions with marginal distributions supported on multiple different domains. Using SW and GSW directly on the joint domains cannot make a meaningful comparison since their homogeneous slicing operator i.e., Radon Transform (RT) and Generalized Radon Transform (GRT) are not expressive enough to capture the structure of the joint supports set. To address the issue, we propose two new slicing operators i.e., Partial Generalized Radon Transform (PGRT) and Hierarchical Hybrid Radon Transform (HHRT). In greater detail, PGRT is the generalization of Partial Radon Transform (PRT), which transforms a subset of function arguments non-linearly while HHRT is the composition of PRT and multiple domain-specific PGRT on marginal domain arguments. By using HHRT, we extend the SW into Hierarchical Hybrid Sliced Wasserstein (H2SW) distance which is designed specifically for comparing heterogeneous joint distributions. We then discuss the topological, statistical, and computational properties of H2SW. Finally, we demonstrate the favorable performance of H2SW in 3D mesh deformation, deep 3D mesh autoencoders, and datasets comparison.
comment: 28 pages, 11 figures, 4 tables
♻ ☆ On the Scalability of GNNs for Molecular Graphs
Scaling deep learning models has been at the heart of recent revolutions in language modelling and image generation. Practitioners have observed a strong relationship between model size, dataset size, and performance. However, structure-based architectures such as Graph Neural Networks (GNNs) are yet to show the benefits of scale mainly due to the lower efficiency of sparse operations, large data requirements, and lack of clarity about the effectiveness of various architectures. We address this drawback of GNNs by studying their scaling behavior. Specifically, we analyze message-passing networks, graph Transformers, and hybrid architectures on the largest public collection of 2D molecular graphs. For the first time, we observe that GNNs benefit tremendously from the increasing scale of depth, width, number of molecules, number of labels, and the diversity in the pretraining datasets. We further demonstrate strong finetuning scaling behavior on 38 highly competitive downstream tasks, outclassing previous large models. This gives rise to MolGPS, a new graph foundation model that allows to navigate the chemical space, outperforming the previous state-of-the-arts on 26 out the 38 downstream tasks. We hope that our work paves the way for an era where foundational GNNs drive pharmaceutical drug discovery.
♻ ☆ Exploring Concept Depth: How Large Language Models Acquire Knowledge at Different Layers?
Large language models (LLMs) have shown remarkable performances across a wide range of tasks. However, the mechanisms by which these models encode tasks of varying complexities remain poorly understood. In this paper, we explore the hypothesis that LLMs process concepts of varying complexities in different layers, introducing the idea of "Concept Depth" to suggest that more complex concepts are typically acquired in deeper layers. Specifically, we categorize concepts based on their level of abstraction, defining them in the order of increasing complexity within factual, emotional, and inferential tasks. We conduct extensive probing experiments using layer-wise representations across various LLM families (Gemma, LLaMA, QWen) on various datasets spanning the three domains of tasks. Our findings reveal that models could efficiently conduct probing for simpler tasks in shallow layers, and more complex tasks typically necessitate deeper layers for accurate understanding. Additionally, we examine how external factors, such as adding noise to the input and quantizing the model weights, might affect layer-wise representations. Our findings suggest that these factors can impede the development of a conceptual understanding of LLMs until deeper layers are explored. We hope that our proposed concept and experimental insights will enhance the understanding of the mechanisms underlying LLMs. Our codes are available at https://github.com/Luckfort/CD.
comment: 12 pages
♻ ☆ GANsemble for Small and Imbalanced Data Sets: A Baseline for Synthetic Microplastics Data
Microplastic particle ingestion or inhalation by humans is a problem of growing concern. Unfortunately, current research methods that use machine learning to understand their potential harms are obstructed by a lack of available data. Deep learning techniques in particular are challenged by such domains where only small or imbalanced data sets are available. Overcoming this challenge often involves oversampling underrepresented classes or augmenting the existing data to improve model performance. This paper proposes GANsemble: a two-module framework connecting data augmentation with conditional generative adversarial networks (cGANs) to generate class-conditioned synthetic data. First, the data chooser module automates augmentation strategy selection by searching for the best data augmentation strategy. Next, the cGAN module uses this strategy to train a cGAN for generating enhanced synthetic data. We experiment with the GANsemble framework on a small and imbalanced microplastics data set. A Microplastic-cGAN (MPcGAN) algorithm is introduced, and baselines for synthetic microplastics (SYMP) data are established in terms of Frechet Inception Distance (FID) and Inception Scores (IS). We also provide a synthetic microplastics filter (SYMP-Filter) algorithm to increase the quality of generated SYMP. Additionally, we show the best amount of oversampling with augmentation to fix class imbalance in small microplastics data sets. To our knowledge, this study is the first application of generative AI to synthetically create microplastics data.
comment: Accepted to the 37th Canadian Artificial Intelligence Conference (2024), 12 pages, 4 figures
♻ ☆ Thousands of AI Authors on the Future of AI
In the largest survey of its kind, 2,778 researchers who had published in top-tier artificial intelligence (AI) venues gave predictions on the pace of AI progress and the nature and impacts of advanced AI systems The aggregate forecasts give at least a 50% chance of AI systems achieving several milestones by 2028, including autonomously constructing a payment processing site from scratch, creating a song indistinguishable from a new song by a popular musician, and autonomously downloading and fine-tuning a large language model. If science continues undisrupted, the chance of unaided machines outperforming humans in every possible task was estimated at 10% by 2027, and 50% by 2047. The latter estimate is 13 years earlier than that reached in a similar survey we conducted only one year earlier [Grace et al., 2022]. However, the chance of all human occupations becoming fully automatable was forecast to reach 10% by 2037, and 50% as late as 2116 (compared to 2164 in the 2022 survey). Most respondents expressed substantial uncertainty about the long-term value of AI progress: While 68.3% thought good outcomes from superhuman AI are more likely than bad, of these net optimists 48% gave at least a 5% chance of extremely bad outcomes such as human extinction, and 59% of net pessimists gave 5% or more to extremely good outcomes. Between 38% and 51% of respondents gave at least a 10% chance to advanced AI leading to outcomes as bad as human extinction. More than half suggested that "substantial" or "extreme" concern is warranted about six different AI-related scenarios, including misinformation, authoritarian control, and inequality. There was disagreement about whether faster or slower AI progress would be better for the future of humanity. However, there was broad agreement that research aimed at minimizing potential risks from AI systems ought to be prioritized more.
comment: The asterisk indicates the corresponding author. The dagger indicates equal contribution
♻ ☆ Model Collapse Demystified: The Case of Regression
In the era of proliferation of large language and image generation models, the phenomenon of "model collapse" refers to the situation whereby as a model is trained recursively on data generated from previous generations of itself over time, its performance degrades until the model eventually becomes completely useless, i.e the model collapses. In this work, we study this phenomenon in the setting of high-dimensional regression and obtain analytic formulae which quantitatively outline this phenomenon in a broad range of regimes. In the special case of polynomial decaying spectral and source conditions, we obtain modified scaling laws which exhibit new crossover phenomena from fast to slow rates. We also propose a simple strategy based on adaptive regularization to mitigate model collapse. Our theoretical results are validated with experiments.
♻ ☆ Efficient Remote Sensing with Harmonized Transfer Learning and Modality Alignment ICLR
With the rise of Visual and Language Pretraining (VLP), an increasing number of downstream tasks are adopting the paradigm of pretraining followed by fine-tuning. Although this paradigm has demonstrated potential in various multimodal downstream tasks, its implementation in the remote sensing domain encounters some obstacles. Specifically, the tendency for same-modality embeddings to cluster together impedes efficient transfer learning. To tackle this issue, we review the aim of multimodal transfer learning for downstream tasks from a unified perspective, and rethink the optimization process based on three distinct objectives. We propose "Harmonized Transfer Learning and Modality Alignment (HarMA)", a method that simultaneously satisfies task constraints, modality alignment, and single-modality uniform alignment, while minimizing training overhead through parameter-efficient fine-tuning. Remarkably, without the need for external data for training, HarMA achieves state-of-the-art performance in two popular multimodal retrieval tasks in the field of remote sensing. Our experiments reveal that HarMA achieves competitive and even superior performance to fully fine-tuned models with only minimal adjustable parameters. Due to its simplicity, HarMA can be integrated into almost all existing multimodal pretraining models. We hope this method can facilitate the efficient application of large models to a wide range of downstream tasks while significantly reducing the resource consumption. Code is available at https://github.com/seekerhuang/HarMA.
comment: Accepted by the Twelfth International Conference on Learning Representations (ICLR) Workshop
Multimedia 8
☆ SemiPL: A Semi-supervised Method for Event Sound Source Localization
In recent years, Event Sound Source Localization has been widely applied in various fields. Recent works typically relying on the contrastive learning framework show impressive performance. However, all work is based on large relatively simple datasets. It's also crucial to understand and analyze human behaviors (actions and interactions of people), voices, and sounds in chaotic events in many applications, e.g., crowd management, and emergency response services. In this paper, we apply the existing model to a more complex dataset, explore the influence of parameters on the model, and propose a semi-supervised improvement method SemiPL. With the increase in data quantity and the influence of label quality, self-supervised learning will be an unstoppable trend. The experiment shows that the parameter adjustment will positively affect the existing model. In particular, SSPL achieved an improvement of 12.2% cIoU and 0.56% AUC in Chaotic World compared to the results provided. The code is available at: https://github.com/ly245422/SSPL
☆ Towards Real-world Video Face Restoration: A New Benchmark
Blind face restoration (BFR) on images has significantly progressed over the last several years, while real-world video face restoration (VFR), which is more challenging for more complex face motions such as moving gaze directions and facial orientations involved, remains unsolved. Typical BFR methods are evaluated on privately synthesized datasets or self-collected real-world low-quality face images, which are limited in their coverage of real-world video frames. In this work, we introduced new real-world datasets named FOS with a taxonomy of "Full, Occluded, and Side" faces from mainly video frames to study the applicability of current methods on videos. Compared with existing test datasets, FOS datasets cover more diverse degradations and involve face samples from more complex scenarios, which helps to revisit current face restoration approaches more comprehensively. Given the established datasets, we benchmarked both the state-of-the-art BFR methods and the video super resolution (VSR) methods to comprehensively study current approaches, identifying their potential and limitations in VFR tasks. In addition, we studied the effectiveness of the commonly used image quality assessment (IQA) metrics and face IQA (FIQA) metrics by leveraging a subjective user study. With extensive experimental results and detailed analysis provided, we gained insights from the successes and failures of both current BFR and VSR methods. These results also pose challenges to current face restoration approaches, which we hope stimulate future advances in VFR research.
comment: Project page: https://ziyannchen.github.io/projects/VFRxBenchmark/
☆ A Light-weight Transformer-based Self-supervised Matching Network for Heterogeneous Images
Matching visible and near-infrared (NIR) images remains a significant challenge in remote sensing image fusion. The nonlinear radiometric differences between heterogeneous remote sensing images make the image matching task even more difficult. Deep learning has gained substantial attention in computer vision tasks in recent years. However, many methods rely on supervised learning and necessitate large amounts of annotated data. Nevertheless, annotated data is frequently limited in the field of remote sensing image matching. To address this challenge, this paper proposes a novel keypoint descriptor approach that obtains robust feature descriptors via a self-supervised matching network. A light-weight transformer network, termed as LTFormer, is designed to generate deep-level feature descriptors. Furthermore, we implement an innovative triplet loss function, LT Loss, to enhance the matching performance further. Our approach outperforms conventional hand-crafted local feature descriptors and proves equally competitive compared to state-of-the-art deep learning-based methods, even amidst the shortage of annotated data.
comment: accepted by Information Fusion
☆ Dual Dynamic Threshold Adjustment Strategy for Deep Metric Learning
Loss functions and sample mining strategies are essential components in deep metric learning algorithms. However, the existing loss function or mining strategy often necessitate the incorporation of additional hyperparameters, notably the threshold, which defines whether the sample pair is informative. The threshold provides a stable numerical standard for determining whether to retain the pairs. It is a vital parameter to reduce the redundant sample pairs participating in training. Nonetheless, finding the optimal threshold can be a time-consuming endeavor, often requiring extensive grid searches. Because the threshold cannot be dynamically adjusted in the training stage, we should conduct plenty of repeated experiments to determine the threshold. Therefore, we introduce a novel approach for adjusting the thresholds associated with both the loss function and the sample mining strategy. We design a static Asymmetric Sample Mining Strategy (ASMS) and its dynamic version Adaptive Tolerance ASMS (AT-ASMS), tailored for sample mining methods. ASMS utilizes differentiated thresholds to address the problems (too few positive pairs and too many redundant negative pairs) caused by only applying a single threshold to filter samples. AT-ASMS can adaptively regulate the ratio of positive and negative pairs during training according to the ratio of the currently mined positive and negative pairs. This meta-learning-based threshold generation algorithm utilizes a single-step gradient descent to obtain new thresholds. We combine these two threshold adjustment algorithms to form the Dual Dynamic Threshold Adjustment Strategy (DDTAS). Experimental results show that our algorithm achieves competitive performance on CUB200, Cars196, and SOP datasets.
comment: accepted by ACM Transactions on Multimedia Computing, Communications, and Applications
☆ Who is Authentic Speaker
Voice conversion (VC) using deep learning technologies can now generate high quality one-to-many voices and thus has been used in some practical application fields, such as entertainment and healthcare. However, voice conversion can pose potential social issues when manipulated voices are employed for deceptive purposes. Moreover, it is a big challenge to find who are real speakers from the converted voices as the acoustic characteristics of source speakers are changed greatly. In this paper we attempt to explore the feasibility of identifying authentic speakers from converted voices. This study is conducted with the assumption that certain information from the source speakers persists, even when their voices undergo conversion into different target voices. Therefore our experiments are geared towards recognising the source speakers given the converted voices, which are generated by using FragmentVC on the randomly paired utterances from source and target speakers. To improve the robustness against converted voices, our recognition model is constructed by using hierarchical vector of locally aggregated descriptors (VLAD) in deep neural networks. The authentic speaker recognition system is mainly tested in two aspects, including the impact of quality of converted voices and the variations of VLAD. The dataset used in this work is VCTK corpus, where source and target speakers are randomly paired. The results obtained on the converted utterances show promising performances in recognising authentic speakers from converted voices.
☆ SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound
Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modelling techniques to audio data. However, traditional codecs often operate at high bitrates or within narrow domains such as speech and lack the semantic clues required for efficient language modelling. Addressing these challenges, we introduce SemantiCodec, a novel codec designed to compress audio into fewer than a hundred tokens per second across diverse audio types, including speech, general audio, and music, without compromising quality. SemantiCodec features a dual-encoder architecture: a semantic encoder using a self-supervised AudioMAE, discretized using k-means clustering on extensive audio data, and an acoustic encoder to capture the remaining details. The semantic and acoustic encoder outputs are used to reconstruct audio via a diffusion-model-based decoder. SemantiCodec is presented in three variants with token rates of 25, 50, and 100 per second, supporting a range of ultra-low bit rates between 0.31 kbps and 1.43 kbps. Experimental results demonstrate that SemantiCodec significantly outperforms the state-of-the-art Descript codec on reconstruction quality. Our results also suggest that SemantiCodec contains significantly richer semantic information than all evaluated audio codecs, even at significantly lower bitrates. Our code and demos are available at https://haoheliu.github.io/SemantiCodec/.
comment: Demo and code: https://haoheliu.github.io/SemantiCodec/
♻ ☆ ComposerX: Multi-Agent Symbolic Music Composition with LLMs
Music composition represents the creative side of humanity, and itself is a complex task that requires abilities to understand and generate information with long dependency and harmony constraints. While demonstrating impressive capabilities in STEM subjects, current LLMs easily fail in this task, generating ill-written music even when equipped with modern techniques like In-Context-Learning and Chain-of-Thoughts. To further explore and enhance LLMs' potential in music composition by leveraging their reasoning ability and the large knowledge base in music history and theory, we propose ComposerX, an agent-based symbolic music generation framework. We find that applying a multi-agent approach significantly improves the music composition quality of GPT-4. The results demonstrate that ComposerX is capable of producing coherent polyphonic music compositions with captivating melodies, while adhering to user instructions.
♻ ☆ An Effective Image Copy-Move Forgery Detection Using Entropy Information
Image forensics has become increasingly crucial in our daily lives. Among various types of forgeries, copy-move forgery detection has received considerable attention within the academic community. Keypoint-based algorithms, particularly those based on Scale Invariant Feature Transform, have achieved promising outcomes. However, most of keypoint detection algorithms failed to generate sufficient matches when tampered patches were occurred in smooth areas, leading to insufficient matches. Therefore, this paper introduces entropy images to determine the coordinates and scales of keypoints based on Scale Invariant Feature Transform detector, which make the pre-processing more suitable for solving the above problems. Furthermore, an overlapped entropy level clustering algorithm is developed to mitigate the increased matching complexity caused by the non-ideal distribution of gray values in keypoints. Experimental results demonstrate that our algorithm achieves a good balance between performance and time efficiency.
Performance 2
☆ Selective Parallel Loading of Large-Scale Compressed Graphs with ParaGrapher
Comprehensive evaluation is one of the basis of experimental science. In High-Performance Graph Processing, a thorough evaluation of contributions becomes more achievable by supporting common input formats over different frameworks. However, each framework creates its specific format, which may not support reading large-scale real-world graph datasets. This shows a demand for high-performance libraries capable of loading graphs to (i)~accelerate designing new graph algorithms, (ii)~to evaluate the contributions on a wide range of graph algorithms, and (iii)~to facilitate easy and fast comparison over different graph frameworks. To that end, we present ParaGrapher, a high-performance API and library for loading large-scale and compressed graphs. ParaGrapher supports different types of requests for accessing graphs in shared- and distributed-memory and out-of-core graph processing. We explain the design of ParaGrapher and present a performance model of graph decompression, which is used for evaluation of ParaGrapher over three storage types. Our evaluation shows that by decompressing compressed graphs in WebGraph format, ParaGrapher delivers up to 3.2 times speedup in loading and up to 5.2 times speedup in end-to-end execution in comparison to the binary and textual formats. ParaGrapher is available online on https://blogs.qub.ac.uk/DIPSA/ParaGrapher/.
☆ Fusing Depthwise and Pointwise Convolutions for Efficient Inference on GPUs
Depthwise and pointwise convolutions have fewer parameters and perform fewer operations than standard convolutions. As a result, they have become increasingly used in various compact DNNs, including convolutional neural networks (CNNs) and vision transformers (ViTs). However, they have a lower compute-to-memory-access ratio than standard convolutions, making their memory accesses often the performance bottleneck. This paper explores fusing depthwise and pointwise convolutions to overcome the memory access bottleneck. The focus is on fusing these operators on GPUs. The prior art on GPU-based fusion suffers from one or more of the following: (1) fusing either a convolution with an element-wise or multiple non-convolutional operators, (2) not explicitly optimizing for memory accesses, (3) not supporting depthwise convolutions. This paper proposes Fused Convolutional Modules (FCMs), a set of novel fused depthwise and pointwise GPU kernels. FCMs significantly reduce pointwise and depthwise convolutions memory accesses, improving execution time and energy efficiency. To evaluate the trade-offs associated with fusion and determine which convolutions are beneficial to fuse and the optimal FCM parameters, we propose FusePlanner. FusePlanner consists of cost models to estimate the memory accesses of depthwise, pointwise, and FCM kernels given GPU characteristics. Our experiments on three GPUs using representative CNNs and ViTs demonstrate that FCMs save up to 83% of the memory accesses and achieve speedups of up to 3.7x compared to cuDNN. Complete model implementations of various CNNs using our modules outperform TVMs' achieving speedups of up to 1.8x and saving up to two-thirds of the energy.
Database 7
☆ Towards Interactively Improving ML Data Preparation Code via "Shadow Pipelines"
Data scientists develop ML pipelines in an iterative manner: they repeatedly screen a pipeline for potential issues, debug it, and then revise and improve its code according to their findings. However, this manual process is tedious and error-prone. Therefore, we propose to support data scientists during this development cycle with automatically derived interactive suggestions for pipeline improvements. We discuss our vision to generate these suggestions with so-called shadow pipelines, hidden variants of the original pipeline that modify it to auto-detect potential issues, try out modifications for improvements, and suggest and explain these modifications to the user. We envision to apply incremental view maintenance-based optimisations to ensure low-latency computation and maintenance of the shadow pipelines. We conduct preliminary experiments to showcase the feasibility of our envisioned approach and the potential benefits of our proposed optimisations.
☆ Generating Robust Counterfactual Witnesses for Graph Neural Networks ICDE 2024
This paper introduces a new class of explanation structures, called robust counterfactual witnesses (RCWs), to provide robust, both counterfactual and factual explanations for graph neural networks. Given a graph neural network M, a robust counterfactual witness refers to the fraction of a graph G that are counterfactual and factual explanation of the results of M over G, but also remains so for any "disturbed" G by flipping up to k of its node pairs. We establish the hardness results, from tractable results to co-NP-hardness, for verifying and generating robust counterfactual witnesses. We study such structures for GNN-based node classification, and present efficient algorithms to verify and generate RCWs. We also provide a parallel algorithm to verify and generate RCWs for large graphs with scalability guarantees. We experimentally verify our explanation generation process for benchmark datasets, and showcase their applications.
comment: This paper has been accepted by ICDE 2024
☆ Co-occurrence order-preserving pattern mining
Recently, order-preserving pattern (OPP) mining has been proposed to discover some patterns, which can be seen as trend changes in time series. Although existing OPP mining algorithms have achieved satisfactory performance, they discover all frequent patterns. However, in some cases, users focus on a particular trend and its associated trends. To efficiently discover trend information related to a specific prefix pattern, this paper addresses the issue of co-occurrence OPP mining (COP) and proposes an algorithm named COP-Miner to discover COPs from historical time series. COP-Miner consists of three parts: extracting keypoints, preparation stage, and iteratively calculating supports and mining frequent COPs. Extracting keypoints is used to obtain local extreme points of patterns and time series. The preparation stage is designed to prepare for the first round of mining, which contains four steps: obtaining the suffix OPP of the keypoint sub-time series, calculating the occurrences of the suffix OPP, verifying the occurrences of the keypoint sub-time series, and calculating the occurrences of all fusion patterns of the keypoint sub-time series. To further improve the efficiency of support calculation, we propose a support calculation method with an ending strategy that uses the occurrences of prefix and suffix patterns to calculate the occurrences of superpatterns. Experimental results indicate that COP-Miner outperforms the other competing algorithms in running time and scalability. Moreover, COPs with keypoint alignment yield better prediction performance.
☆ Multi-hop Question Answering over Knowledge Graphs using Large Language Models
Knowledge graphs (KGs) are large datasets with specific structures representing large knowledge bases (KB) where each node represents a key entity and relations amongst them are typed edges. Natural language queries formed to extract information from a KB entail starting from specific nodes and reasoning over multiple edges of the corresponding KG to arrive at the correct set of answer nodes. Traditional approaches of question answering on KG are based on (a) semantic parsing (SP), where a logical form (e.g., S-expression, SPARQL query, etc.) is generated using node and edge embeddings and then reasoning over these representations or tuning language models to generate the final answer directly, or (b) information-retrieval based that works by extracting entities and relations sequentially. In this work, we evaluate the capability of (LLMs) to answer questions over KG that involve multiple hops. We show that depending upon the size and nature of the KG we need different approaches to extract and feed the relevant information to an LLM since every LLM comes with a fixed context window. We evaluate our approach on six KGs with and without the availability of example-specific sub-graphs and show that both the IR and SP-based methods can be adopted by LLMs resulting in an extremely competitive performance.
☆ Grounding Realizable Entities
Ontological representations of qualities, dispositions, and roles have been refined over the past decade, clarifying subtle distinctions in life science research. After articulating a widely-used characterization of these entities within the context of Basic Formal Ontology (BFO), we identify gaps in this treatment and motivate the need for supplementing the BFO characterization. By way of supplement, we propose definitions for grounding relations holding between qualities and dispositions, and dispositions and roles, illustrating our proposal by representing subtle aspects of host-pathogen interactions.
comment: 13
☆ Credentials in the Occupation Ontology
The term credential encompasses educational certificates, degrees, certifications, and government-issued licenses. An occupational credential is a verification of an individuals qualification or competence issued by a third party with relevant authority. Job seekers often leverage such credentials as evidence that desired qualifications are satisfied by their holders. Many U.S. education and workforce development organizations have recognized the importance of credentials for employment and the challenges of understanding the value of credentials. In this study, we identified and ontologically defined credential and credential-related terms at the textual and semantic levels based on the Occupation Ontology (OccO), a BFO-based ontology. Different credential types and their authorization logic are modeled. We additionally defined a high-level hierarchy of credential related terms and relations among many terms, which were initiated in concert with the Alabama Talent Triad (ATT) program, which aims to connect learners, earners, employers and education/training providers through credentials and skills. To our knowledge, our research provides for the first time systematic ontological modeling of the important domain of credentials and related contents, supporting enhanced credential data and knowledge integration in the future.
comment: 11
☆ EEvA: Fast Expert-Based Algorithms for Buffer Page Replacement
Optimal page replacement is an important problem in efficient buffer management. The range of replacement strategies known in the literature varies from simple but efficient FIFO-based algorithms to more accurate but potentially costly methods tailored to specific data access patterns. The principal issue in adopting a pattern-specific replacement logic in a DB buffer manager is to guarantee non-degradation in general high-load regimes. In this paper, we propose a new family of page replacement algorithms for DB buffer manager which demonstrate a superior performance wrt competitors on custom data access patterns and imply a low computational overhead on TPC-C. We provide theoretical foundations and an extensive experimental study on the proposed algorithms which covers synthetic benchmarks and an implementation in an open-source DB kernel evaluated on TPC-C.
Computation and Language 93
☆ Stylus: Automatic Adapter Selection for Diffusion Models
Beyond scaling base models with more data or parameters, fine-tuned adapters provide an alternative way to generate high fidelity, custom images at reduced costs. As such, adapters have been widely adopted by open-source communities, accumulating a database of over 100K adapters-most of which are highly customized with insufficient descriptions. This paper explores the problem of matching the prompt to a set of relevant adapters, built on recent work that highlight the performance gains of composing adapters. We introduce Stylus, which efficiently selects and automatically composes task-specific adapters based on a prompt's keywords. Stylus outlines a three-stage approach that first summarizes adapters with improved descriptions and embeddings, retrieves relevant adapters, and then further assembles adapters based on prompts' keywords by checking how well they fit the prompt. To evaluate Stylus, we developed StylusDocs, a curated dataset featuring 75K adapters with pre-computed adapter embeddings. In our evaluation on popular Stable Diffusion checkpoints, Stylus achieves greater CLIP-FID Pareto efficiency and is twice as preferred, with humans and multimodal models as evaluators, over the base model. See stylus-diffusion.github.io for more.
comment: Project Website: https://stylus-diffusion.github.io
☆ Holmes: Benchmark the Linguistic Competence of Language Models
We introduce Holmes, a benchmark to assess the linguistic competence of language models (LMs) - their ability to grasp linguistic phenomena. Unlike prior prompting-based evaluations, Holmes assesses the linguistic competence of LMs via their internal representations using classifier-based probing. In doing so, we disentangle specific phenomena (e.g., part-of-speech of words) from other cognitive abilities, like following textual instructions, and meet recent calls to assess LMs' linguistic competence in isolation. Composing Holmes, we review over 250 probing studies and feature more than 200 datasets to assess syntax, morphology, semantics, reasoning, and discourse phenomena. Analyzing over 50 LMs reveals that, aligned with known trends, their linguistic competence correlates with model size. However, surprisingly, model architecture and instruction tuning also significantly influence performance, particularly in morphology and syntax. Finally, we propose FlashHolmes, a streamlined version of Holmes designed to lower the high computation load while maintaining high-ranking precision.
☆ DPO Meets PPO: Reinforced Token Optimization for RLHF
In the classical Reinforcement Learning from Human Feedback (RLHF) framework, Proximal Policy Optimization (PPO) is employed to learn from sparse, sentence-level rewards -- a challenging scenario in traditional deep reinforcement learning. Despite the great successes of PPO in the alignment of state-of-the-art closed-source large language models (LLMs), its open-source implementation is still largely sub-optimal, as widely reported by numerous research studies. To address these issues, we introduce a framework that models RLHF problems as a Markov decision process (MDP), enabling the capture of fine-grained token-wise information. Furthermore, we provide theoretical insights that demonstrate the superiority of our MDP framework over the previous sentence-level bandit formulation. Under this framework, we introduce an algorithm, dubbed as Reinforced Token Optimization (\texttt{RTO}), which learns the token-wise reward function from preference data and performs policy optimization based on this learned token-wise reward signal. Theoretically, \texttt{RTO} is proven to have the capability of finding the near-optimal policy sample-efficiently. For its practical implementation, \texttt{RTO} innovatively integrates Direct Preference Optimization (DPO) and PPO. DPO, originally derived from sparse sentence rewards, surprisingly provides us with a token-wise characterization of response quality, which is seamlessly incorporated into our subsequent PPO training stage. Extensive real-world alignment experiments verify the effectiveness of the proposed approach.
☆ Kangaroo: Lossless Self-Speculative Decoding via Double Early Exiting
Speculative decoding has demonstrated its effectiveness in accelerating the inference of large language models while maintaining a consistent sampling distribution. However, the conventional approach of training a separate draft model to achieve a satisfactory token acceptance rate can be costly. Drawing inspiration from early exiting, we propose a novel self-speculative decoding framework \emph{Kangaroo}, which uses a fixed shallow sub-network as a self-draft model, with the remaining layers serving as the larger target model. We train a lightweight and efficient adapter module on top of the sub-network to bridge the gap between the sub-network and the full model's representation ability. It is noteworthy that the inference latency of the self-draft model may no longer be negligible compared to the large model, necessitating strategies to increase the token acceptance rate while minimizing the drafting steps of the small model. To address this challenge, we introduce an additional early exiting mechanism for generating draft tokens. Specifically, we halt the small model's subsequent prediction during the drafting phase once the confidence level for the current token falls below a certain threshold. Extensive experiments on the Spec-Bench demonstrate the effectiveness of Kangaroo. Under single-sequence verification, Kangaroo achieves speedups up to $1.68\times$ on Spec-Bench, outperforming Medusa-1 with 88.7\% fewer additional parameters (67M compared to 591M). The code for Kangaroo is available at https://github.com/Equationliu/Kangaroo.
☆ Spivavtor: An Instruction Tuned Ukrainian Text Editing Model
We introduce Spivavtor, a dataset, and instruction-tuned models for text editing focused on the Ukrainian language. Spivavtor is the Ukrainian-focused adaptation of the English-only CoEdIT model. Similar to CoEdIT, Spivavtor performs text editing tasks by following instructions in Ukrainian. This paper describes the details of the Spivavtor-Instruct dataset and Spivavtor models. We evaluate Spivavtor on a variety of text editing tasks in Ukrainian, such as Grammatical Error Correction (GEC), Text Simplification, Coherence, and Paraphrasing, and demonstrate its superior performance on all of them. We publicly release our best-performing models and data as resources to the community to advance further research in this space.
comment: Accepted to UNLP Workshop 2024
☆ More RLHF, More Trust? On The Impact of Human Preference Alignment On Language Model Trustworthiness
The surge in Large Language Models (LLMs) development has led to improved performance on cognitive tasks as well as an urgent need to align these models with human values in order to safely exploit their power. Despite the effectiveness of preference learning algorithms like Reinforcement Learning From Human Feedback (RLHF) in aligning human preferences, their assumed improvements on model trustworthiness haven't been thoroughly testified. Toward this end, this study investigates how models that have been aligned with general-purpose preference data on helpfulness and harmlessness perform across five trustworthiness verticals: toxicity, stereotypical bias, machine ethics, truthfulness, and privacy. For model alignment, we focus on three widely used RLHF variants: Supervised Finetuning (SFT), Proximal Policy Optimization (PPO), and Direct Preference Optimization (DPO). Through extensive empirical investigations, we discover that the improvement in trustworthiness by RLHF is far from guaranteed, and there exists a complex interplay between preference data, alignment algorithms, and specific trustworthiness aspects. Together, our results underscore the need for more nuanced approaches for model alignment. By shedding light on the intricate dynamics of these components within model alignment, we hope this research will guide the community towards developing language models that are both capable and trustworthy.
☆ Truth-value judgment in language models: belief directions are context sensitive
Recent work has demonstrated that the latent spaces of large language models (LLMs) contain directions predictive of the truth of sentences. Multiple methods recover such directions and build probes that are described as getting at a model's "knowledge" or "beliefs". We investigate this phenomenon, looking closely at the impact of context on the probes. Our experiments establish where in the LLM the probe's predictions can be described as being conditional on the preceding (related) sentences. Specifically, we quantify the responsiveness of the probes to the presence of (negated) supporting and contradicting sentences, and score the probes on their consistency. We also perform a causal intervention experiment, investigating whether moving the representation of a premise along these belief directions influences the position of the hypothesis along that same direction. We find that the probes we test are generally context sensitive, but that contexts which should not affect the truth often still impact the probe outputs. Our experiments show that the type of errors depend on the layer, the (type of) model, and the kind of data. Finally, our results suggest that belief directions are (one of the) causal mediators in the inference process that incorporates in-context information.
☆ A Comprehensive Rubric for Annotating Pathological Speech LREC
Rubrics are a commonly used tool for labeling voice corpora in speech quality assessment, although their application in the context of pathological speech remains relatively limited. In this study, we introduce a comprehensive rubric based on various dimensions of speech quality, including phonetics, fluency, and prosody. The objective is to establish standardized criteria for identifying errors within the speech of individuals with Down syndrome, thereby enabling the development of automated assessment systems. To achieve this objective, we utilized the Prautocal corpus. To assess the quality of annotations using our rubric, two experiments were conducted, focusing on phonetics and fluency. For phonetic evaluation, we employed the Goodness of Pronunciation (GoP) metric, utilizing automatic segmentation systems and correlating the results with evaluations conducted by a specialized speech therapist. While the obtained correlation values were not notably high, a positive trend was observed. In terms of fluency assessment, deep learning models like wav2vec were used to extract audio features, and we employed an SVM classifier trained on a corpus focused on identifying fluency issues to categorize Prautocal corpus samples. The outcomes highlight the complexities of evaluating such phenomena, with variability depending on the specific type of disfluency detected.
comment: Submitted to LREC-Coling 2024
☆ It's Difficult to be Neutral -- Human and LLM-based Sentiment Annotation of Patient Comments
Sentiment analysis is an important tool for aggregating patient voices, in order to provide targeted improvements in healthcare services. A prerequisite for this is the availability of in-domain data annotated for sentiment. This article documents an effort to add sentiment annotations to free-text comments in patient surveys collected by the Norwegian Institute of Public Health (NIPH). However, annotation can be a time-consuming and resource-intensive process, particularly when it requires domain expertise. We therefore also evaluate a possible alternative to human annotation, using large language models (LLMs) as annotators. We perform an extensive evaluation of the approach for two openly available pretrained LLMs for Norwegian, experimenting with different configurations of prompts and in-context learning, comparing their performance to human annotators. We find that even for zero-shot runs, models perform well above the baseline for binary sentiment, but still cannot compete with human annotators on the full dataset.
☆ Benchmarking Benchmark Leakage in Large Language Models
Amid the expanding use of pre-training data, the phenomenon of benchmark dataset leakage has become increasingly prominent, exacerbated by opaque training processes and the often undisclosed inclusion of supervised data in contemporary Large Language Models (LLMs). This issue skews benchmark effectiveness and fosters potentially unfair comparisons, impeding the field's healthy development. To address this, we introduce a detection pipeline utilizing Perplexity and N-gram accuracy, two simple and scalable metrics that gauge a model's prediction precision on benchmark, to identify potential data leakages. By analyzing 31 LLMs under the context of mathematical reasoning, we reveal substantial instances of training even test set misuse, resulting in potentially unfair comparisons. These findings prompt us to offer several recommendations regarding model documentation, benchmark setup, and future evaluations. Notably, we propose the "Benchmark Transparency Card" to encourage clear documentation of benchmark utilization, promoting transparency and healthy developments of LLMs. we have made our leaderboard, pipeline implementation, and model predictions publicly available, fostering future research.
comment: 30 pages; Homepage: https://gair-nlp.github.io/benbench
☆ Unknown Script: Impact of Script on Cross-Lingual Transfer NAACL
Cross-lingual transfer has become an effective way of transferring knowledge between languages. In this paper, we explore an often-overlooked aspect in this domain: the influence of the source language of the base language model on transfer performance. We conduct a series of experiments to determine the effect of the script and tokenizer used in the pre-trained model on the performance of the downstream task. Our findings reveal the importance of the tokenizer as a stronger factor than the sharing of the script, the language typology match, and the model size.
comment: Paper accepted to NAACL Student Research Workshop (SRW) 2024
☆ Replacing Judges with Juries: Evaluating LLM Generations with a Panel of Diverse Models
As Large Language Models (LLMs) have become more advanced, they have outpaced our abilities to accurately evaluate their quality. Not only is finding data to adequately probe particular model properties difficult, but evaluating the correctness of a model's freeform generation alone is a challenge. To address this, many evaluations now rely on using LLMs themselves as judges to score the quality of outputs from other LLMs. Evaluations most commonly use a single large model like GPT4. While this method has grown in popularity, it is costly, has been shown to introduce intramodel bias, and in this work, we find that very large models are often unnecessary. We propose instead to evaluate models using a Panel of LLm evaluators (PoLL). Across three distinct judge settings and spanning six different datasets, we find that using a PoLL composed of a larger number of smaller models outperforms a single large judge, exhibits less intra-model bias due to its composition of disjoint model families, and does so while being over seven times less expensive.
☆ Where on Earth Do Users Say They Are?: Geo-Entity Linking for Noisy Multilingual User Input NAACL 2024
Geo-entity linking is the task of linking a location mention to the real-world geographic location. In this paper we explore the challenging task of geo-entity linking for noisy, multilingual social media data. There are few open-source multilingual geo-entity linking tools available and existing ones are often rule-based, which break easily in social media settings, or LLM-based, which are too expensive for large-scale datasets. We present a method which represents real-world locations as averaged embeddings from labeled user-input location names and allows for selective prediction via an interpretable confidence score. We show that our approach improves geo-entity linking on a global and multilingual social media dataset, and discuss progress and problems with evaluating at different geographic granularities.
comment: NLP+CSS workshop at NAACL 2024
☆ Towards A Structured Overview of Use Cases for Natural Language Processing in the Legal Domain: A German Perspective
In recent years, the field of Legal Tech has risen in prevalence, as the Natural Language Processing (NLP) and legal disciplines have combined forces to digitalize legal processes. Amidst the steady flow of research solutions stemming from the NLP domain, the study of use cases has fallen behind, leading to a number of innovative technical methods without a place in practice. In this work, we aim to build a structured overview of Legal Tech use cases, grounded in NLP literature, but also supplemented by voices from legal practice in Germany. Based upon a Systematic Literature Review, we identify seven categories of NLP technologies for the legal domain, which are then studied in juxtaposition to 22 legal use cases. In the investigation of these use cases, we identify 15 ethical, legal, and social aspects (ELSA), shedding light on the potential concerns of digitally transforming the legal domain.
comment: 10 pages, 6 tables, 30th Americas Conference on Information Systems (AMCIS 2024)
☆ Towards Dog Bark Decoding: Leveraging Human Speech Processing for Automated Bark Classification LREC
Similar to humans, animals make extensive use of verbal and non-verbal forms of communication, including a large range of audio signals. In this paper, we address dog vocalizations and explore the use of self-supervised speech representation models pre-trained on human speech to address dog bark classification tasks that find parallels in human-centered tasks in speech recognition. We specifically address four tasks: dog recognition, breed identification, gender classification, and context grounding. We show that using speech embedding representations significantly improves over simpler classification baselines. Further, we also find that models pre-trained on large human speech acoustics can provide additional performance boosts on several tasks.
comment: to be published in LREC-COLING 2024
☆ The Constant in HATE: Analyzing Toxicity in Reddit across Topics and Languages
Toxic language remains an ongoing challenge on social media platforms, presenting significant issues for users and communities. This paper provides a cross-topic and cross-lingual analysis of toxicity in Reddit conversations. We collect 1.5 million comment threads from 481 communities in six languages: English, German, Spanish, Turkish,Arabic, and Dutch, covering 80 topics such as Culture, Politics, and News. We thoroughly analyze how toxicity spikes within different communities in relation to specific topics. We observe consistent patterns of increased toxicity across languages for certain topics, while also noting significant variations within specific language communities.
comment: Accepted to TRAC 2024
☆ Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source Library
PyLaia is one of the most popular open-source software for Automatic Text Recognition (ATR), delivering strong performance in terms of speed and accuracy. In this paper, we outline our recent contributions to the PyLaia library, focusing on the incorporation of reliable confidence scores and the integration of statistical language modeling during decoding. Our implementation provides an easy way to combine PyLaia with n-grams language models at different levels. One of the highlights of this work is that language models are completely auto-tuned: they can be built and used easily without any expert knowledge, and without requiring any additional data. To demonstrate the significance of our contribution, we evaluate PyLaia's performance on twelve datasets, both with and without language modelling. The results show that decoding with small language models improves the Word Error Rate by 13% and the Character Error Rate by 12% in average. Additionally, we conduct an analysis of confidence scores and highlight the importance of calibration techniques. Our implementation is publicly available in the official PyLaia repository at https://gitlab.teklia.com/atr/pylaia, and twelve open-source models are released on Hugging Face.
☆ Iconic Gesture Semantics
The "meaning" of an iconic gesture is conditioned on its informational evaluation. Only informational evaluation lifts a gesture to a quasi-linguistic level that can interact with verbal content. Interaction is either vacuous or regimented by usual lexicon-driven inferences. Informational evaluation is spelled out as extended exemplification (extemplification) in terms of perceptual classification of a gesture's visual iconic model. The iconic model is derived from Frege/Montague-like truth-functional evaluation of a gesture's form within spatially extended domains. We further argue that the perceptual classification of instances of visual communication requires a notion of meaning different from Frege/Montague frameworks. Therefore, a heuristic for gesture interpretation is provided that can guide the working semanticist. In sum, an iconic gesture semantics is introduced which covers the full range from kinematic gesture representations over model-theoretic evaluation to inferential interpretation in dynamic semantic frameworks.
comment: 39 pages, 28 figures, under revision
☆ Work Smarter...Not Harder: Efficient Minimization of Dependency Length in SOV Languages
Dependency length minimization is a universally observed quantitative property of natural languages. However, the extent of dependency length minimization, and the cognitive mechanisms through which the language processor achieves this minimization remain unclear. This research offers mechanistic insights by postulating that moving a short preverbal constituent next to the main verb explains preverbal constituent ordering decisions better than global minimization of dependency length in SOV languages. This approach constitutes a least-effort strategy because it's just one operation but simultaneously reduces the length of all preverbal dependencies linked to the main verb. We corroborate this strategy using large-scale corpus evidence across all seven SOV languages that are prominently represented in the Universal Dependency Treebank. These findings align with the concept of bounded rationality, where decision-making is influenced by 'quick-yet-economical' heuristics rather than exhaustive searches for optimal solutions. Overall, this work sheds light on the role of bounded rationality in linguistic decision-making and language evolution.
comment: Accepted at CogSci-2024 as talk with full paper publication
☆ Revealing the Parametric Knowledge of Language Models: A Unified Framework for Attribution Methods
Language Models (LMs) acquire parametric knowledge from their training process, embedding it within their weights. The increasing scalability of LMs, however, poses significant challenges for understanding a model's inner workings and further for updating or correcting this embedded knowledge without the significant cost of retraining. This underscores the importance of unveiling exactly what knowledge is stored and its association with specific model components. Instance Attribution (IA) and Neuron Attribution (NA) offer insights into this training-acquired knowledge, though they have not been compared systematically. Our study introduces a novel evaluation framework to quantify and compare the knowledge revealed by IA and NA. To align the results of the methods we introduce the attribution method NA-Instances to apply NA for retrieving influential training instances, and IA-Neurons to discover important neurons of influential instances discovered by IA. We further propose a comprehensive list of faithfulness tests to evaluate the comprehensiveness and sufficiency of the explanations provided by both methods. Through extensive experiments and analysis, we demonstrate that NA generally reveals more diverse and comprehensive information regarding the LM's parametric knowledge compared to IA. Nevertheless, IA provides unique and valuable insights into the LM's parametric knowledge, which are not revealed by NA. Our findings further suggest the potential of a synergistic approach of combining the diverse findings of IA and NA for a more holistic understanding of an LM's parametric knowledge.
comment: 14 pages, 6 figures
☆ Do Vision & Language Decoders use Images and Text equally? How Self-consistent are their Explanations?
Vision and language models (VLMs) are currently the most generally performant architectures on multimodal tasks. Next to their predictions, they can also produce explanations, either in post-hoc or CoT settings. However, it is not clear how much they use the vision and text modalities when generating predictions or explanations. In this work, we investigate if VLMs rely on modalities differently when generating explanations as opposed to when they provide answers. We also evaluate the self-consistency of VLM decoders in both post-hoc and CoT explanation settings, by extending existing tests and measures to VLM decoders. We find that VLMs are less self-consistent than LLMs. The text contributions in VL decoders are much larger than the image contributions across all measured tasks. And the contributions of the image are significantly larger for explanation generations than for answer generation. This difference is even larger in CoT compared to the post-hoc explanation setting. We also provide an up-to-date benchmarking of state-of-the-art VL decoders on the VALSE benchmark, which to date focused only on VL encoders. We find that VL decoders are still struggling with most phenomena tested by VALSE.
comment: 27 pages, from which 12 pages contain the text of the main paper. 8 figures, 11 tables
☆ The SAMER Arabic Text Simplification Corpus LREC
We present the SAMER Corpus, the first manually annotated Arabic parallel corpus for text simplification targeting school-aged learners. Our corpus comprises texts of 159K words selected from 15 publicly available Arabic fiction novels most of which were published between 1865 and 1955. Our corpus includes readability level annotations at both the document and word levels, as well as two simplified parallel versions for each text targeting learners at two different readability levels. We describe the corpus selection process, and outline the guidelines we followed to create the annotations and ensure their quality. Our corpus is publicly available to support and encourage research on Arabic text simplification, Arabic automatic readability assessment, and the development of Arabic pedagogical language technologies.
comment: Accepted to LREC-COLING 2024. 15 pages, 6 tables, 1 figure
☆ FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering NAACL 2024
Table Question Answering (TQA) aims at composing an answer to a question based on tabular data. While prior research has shown that TQA models lack robustness, understanding the underlying cause and nature of this issue remains predominantly unclear, posing a significant obstacle to the development of robust TQA systems. In this paper, we formalize three major desiderata for a fine-grained evaluation of robustness of TQA systems. They should (i) answer questions regardless of alterations in table structure, (ii) base their responses on the content of relevant cells rather than on biases, and (iii) demonstrate robust numerical reasoning capabilities. To investigate these aspects, we create and publish a novel TQA evaluation benchmark in English. Our extensive experimental analysis reveals that none of the examined state-of-the-art TQA systems consistently excels in these three aspects. Our benchmark is a crucial instrument for monitoring the behavior of TQA systems and paves the way for the development of robust TQA systems. We release our benchmark publicly.
comment: Accepted at NAACL 2024
☆ Analyzing Semantic Change through Lexical Replacements
Modern language models are capable of contextualizing words based on their surrounding context. However, this capability is often compromised due to semantic change that leads to words being used in new, unexpected contexts not encountered during pre-training. In this paper, we model \textit{semantic change} by studying the effect of unexpected contexts introduced by \textit{lexical replacements}. We propose a \textit{replacement schema} where a target word is substituted with lexical replacements of varying relatedness, thus simulating different kinds of semantic change. Furthermore, we leverage the replacement schema as a basis for a novel \textit{interpretable} model for semantic change. We are also the first to evaluate the use of LLaMa for semantic change detection.
☆ Injecting Salesperson's Dialogue Strategies in Large Language Models with Chain-of-Thought Reasoning
Recent research in dialogue systems and corpora has focused on two main categories: task-oriented (TOD) and open-domain (chit-chat) dialogues. TOD systems help users accomplish specific tasks, while open-domain systems aim to create engaging conversations. However, in real-world scenarios, user intents are often revealed during interactions. A recent study introduced SalesBot, which simulates dialogues transitioning from chit-chat to task-oriented scenarios to train sales agents. Unfortunately, the initial data lacked smooth transitions and coherent long-turn dialogues, resulting in poor naturalness in sales-customer interactions. To address these issues, this paper presents SalesBot 2.0, an improved dataset. It leverages commonsense knowledge from large language models (LLMs) through strategic prompting. Additionally, we introduce a novel model called SalesAgent, trained on salesperson's interactions, using chain-of-thought (CoT) reasoning. This model excels in transitioning topics, understanding user intents, and selecting appropriate strategies. Experiments using diverse user simulations validate the effectiveness of our method in controlling dialogue strategies in LLMs. Furthermore, SalesBot 2.0 enhances coherence and reduces aggression, facilitating better model learning for sales-customer interactions.
comment: arXiv admin note: substantial text overlap with arXiv:2308.14266
☆ Can GPT-4 do L2 analytic assessment?
Automated essay scoring (AES) to evaluate second language (L2) proficiency has been a firmly established technology used in educational contexts for decades. Although holistic scoring has seen advancements in AES that match or even exceed human performance, analytic scoring still encounters issues as it inherits flaws and shortcomings from the human scoring process. The recent introduction of large language models presents new opportunities for automating the evaluation of specific aspects of L2 writing proficiency. In this paper, we perform a series of experiments using GPT-4 in a zero-shot fashion on a publicly available dataset annotated with holistic scores based on the Common European Framework of Reference and aim to extract detailed information about their underlying analytic components. We observe significant correlations between the automatically predicted analytic scores and multiple features associated with the individual proficiency components.
comment: Accepted for the 19th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2024)
☆ Time Machine GPT NAACL
Large language models (LLMs) are often trained on extensive, temporally indiscriminate text corpora, reflecting the lack of datasets with temporal metadata. This approach is not aligned with the evolving nature of language. Conventional methods for creating temporally adapted language models often depend on further pre-training static models on time-specific data. This paper presents a new approach: a series of point-in-time LLMs called Time Machine GPT (TiMaGPT), specifically designed to be nonprognosticative. This ensures they remain uninformed about future factual information and linguistic changes. This strategy is beneficial for understanding language evolution and is of critical importance when applying models in dynamic contexts, such as time-series forecasting, where foresight of future information can prove problematic. We provide access to both the models and training datasets.
comment: NAACL Findings 2024
☆ Evaluating and Mitigating Linguistic Discrimination in Large Language Models
By training on text in various languages, large language models (LLMs) typically possess multilingual support and demonstrate remarkable capabilities in solving tasks described in different languages. However, LLMs can exhibit linguistic discrimination due to the uneven distribution of training data across languages. That is, LLMs are hard to keep the consistency of responses when faced with the same task but depicted in different languages. In this study, we first explore the consistency in the LLMs' outputs responding to queries in various languages from two aspects: safety and quality. We conduct this analysis with two datasets (AdvBench and NQ) based on four LLMs (Llama2-13b, Gemma-7b, GPT-3.5-turbo and Gemini-pro). The results show that LLMs exhibit stronger human alignment capabilities with queries in English, French, Russian, and Spanish (only 1.04\% of harmful queries successfully jailbreak on average) compared to queries in Bengali, Georgian, Nepali and Maithili (27.7\% of harmful queries jailbreak successfully on average). Moreover, for queries in English, Danish, Czech and Slovenian, LLMs tend to produce responses with a higher quality (with 0.1494 $F_1$ score on average) compared to the other languages. Upon these findings, we propose LDFighter, a similarity-based voting, to mitigate the linguistic discrimination in LLMs. LDFighter ensures consistent service for different language speakers. We evaluate LDFighter with both benign queries and harmful queries. The results show that LDFighter not only significantly reduces the jailbreak success rate but also improve the response quality on average, demonstrating its effectiveness.
☆ MileBench: Benchmarking MLLMs in Long Context
Despite the advancements and impressive performance of Multimodal Large Language Models (MLLMs) on benchmarks, their effectiveness in real-world, long-context, and multi-image tasks is unclear due to the benchmarks' limited scope. Existing benchmarks often focus on single-image and short-text samples, and when assessing multi-image tasks, they either limit the image count or focus on specific task (e.g time-series captioning), potentially obscuring the performance challenges of MLLMs. To address these limitations, we introduce MileBench, a pioneering benchmark designed to test the MultImodal Long-contExt capabilities of MLLMs. This benchmark comprises not only multimodal long contexts, but also multiple tasks requiring both comprehension and generation. We establish two distinct evaluation sets, diagnostic and realistic, to systematically assess MLLMs' long-context adaptation capacity and their ability to complete tasks in long-context scenarios. Our experimental results, obtained from testing 20 models, revealed that while the closed-source GPT-4(Vision) and Gemini 1.5 outperform others, most open-source MLLMs struggle in long-context situations. Interestingly, the performance gap tends to widen with an increase in the number of images. We strongly encourage an intensification of research efforts towards enhancing MLLMs' long-context capabilities, especially in scenarios involving multiple images.
comment: 29 pages, 13 figures, 14 tables
☆ From ChatGPT, DALL-E 3 to Sora: How has Generative AI Changed Digital Humanities Research and Services?
Generative large-scale language models create the fifth paradigm of scientific research, organically combine data science and computational intelligence, transform the research paradigm of natural language processing and multimodal information processing, promote the new trend of AI-enabled social science research, and provide new ideas for digital humanities research and application. This article profoundly explores the application of large-scale language models in digital humanities research, revealing their significant potential in ancient book protection, intelligent processing, and academic innovation. The article first outlines the importance of ancient book resources and the necessity of digital preservation, followed by a detailed introduction to developing large-scale language models, such as ChatGPT, and their applications in document management, content understanding, and cross-cultural research. Through specific cases, the article demonstrates how AI can assist in the organization, classification, and content generation of ancient books. Then, it explores the prospects of AI applications in artistic innovation and cultural heritage preservation. Finally, the article explores the challenges and opportunities in the interaction of technology, information, and society in the digital humanities triggered by AI technologies.
comment: 21 pages, 3 figures
☆ Explainability of Machine Learning Approaches in Forensic Linguistics: A Case Study in Geolinguistic Authorship Profiling
Forensic authorship profiling uses linguistic markers to infer characteristics about an author of a text. This task is paralleled in dialect classification, where a prediction is made about the linguistic variety of a text based on the text itself. While there have been significant advances in the last years in variety classification (Jauhiainen et al., 2019) and state-of-the-art approaches reach accuracies of up to 100% depending on the similarity of varieties and the scope of prediction (e.g., Milne et al., 2012; Blodgett et al., 2017), forensic linguistics rarely relies on these approaches due to their lack of transparency (see Nini, 2023), amongst other reasons. In this paper we therefore explore explainability of machine learning approaches considering the forensic context. We focus on variety classification as a means of geolinguistic profiling of unknown texts. For this we work with an approach proposed by Xie et al. (2024) to extract the lexical items most relevant to the variety classifications. We find that the extracted lexical features are indeed representative of their respective varieties and note that the trained models also rely on place names for classifications.
☆ ECC Analyzer: Extract Trading Signal from Earnings Conference Calls using Large Language Model for Stock Performance Prediction
In the realm of financial analytics, leveraging unstructured data, such as earnings conference calls (ECCs), to forecast stock performance is a critical challenge that has attracted both academics and investors. While previous studies have used deep learning-based models to obtain a general view of ECCs, they often fail to capture detailed, complex information. Our study introduces a novel framework: \textbf{ECC Analyzer}, combining Large Language Models (LLMs) and multi-modal techniques to extract richer, more predictive insights. The model begins by summarizing the transcript's structure and analyzing the speakers' mode and confidence level by detecting variations in tone and pitch for audio. This analysis helps investors form an overview perception of the ECCs. Moreover, this model uses the Retrieval-Augmented Generation (RAG) based methods to meticulously extract the focuses that have a significant impact on stock performance from an expert's perspective, providing a more targeted analysis. The model goes a step further by enriching these extracted focuses with additional layers of analysis, such as sentiment and audio segment features. By integrating these insights, the ECC Analyzer performs multi-task predictions of stock performance, including volatility, value-at-risk (VaR), and return for different intervals. The results show that our model outperforms traditional analytic benchmarks, confirming the effectiveness of using advanced LLM techniques in financial analytics.
comment: 15 pages, 3 figures, 5 tables
☆ HFT: Half Fine-Tuning for Large Language Models
Large language models (LLMs) with one or more fine-tuning phases have become a necessary step to unlock various capabilities, enabling LLMs to follow natural language instructions or align with human preferences. However, it carries the risk of catastrophic forgetting during sequential training, the parametric knowledge or the ability learned in previous stages may be overwhelmed by incoming training data. In this paper, we find that by regularly resetting partial parameters, LLMs can restore some of the original knowledge. Inspired by this, we introduce Half Fine-Tuning (HFT) for LLMs, as a substitute for full fine-tuning (FFT), to mitigate the forgetting issues, where half of the parameters are selected to learn new tasks while the other half are frozen to remain previous knowledge. We provide a feasibility analysis from the perspective of optimization and interpret the parameter selection operation as a regularization term. Without changing the model architecture, HFT could be seamlessly integrated into existing fine-tuning frameworks. Extensive experiments and analysis on supervised fine-tuning, direct preference optimization, and continual learning consistently demonstrate the effectiveness, robustness, and efficiency of HFT. Compared with FFT, HFT not only significantly alleviates the forgetting problem, but also achieves the best performance in a series of downstream benchmarks, with an approximately 30% reduction in training time.
comment: Work in progress
☆ Ethical Reasoning and Moral Value Alignment of LLMs Depend on the Language we Prompt them in
Ethical reasoning is a crucial skill for Large Language Models (LLMs). However, moral values are not universal, but rather influenced by language and culture. This paper explores how three prominent LLMs -- GPT-4, ChatGPT, and Llama2-70B-Chat -- perform ethical reasoning in different languages and if their moral judgement depend on the language in which they are prompted. We extend the study of ethical reasoning of LLMs by Rao et al. (2023) to a multilingual setup following their framework of probing LLMs with ethical dilemmas and policies from three branches of normative ethics: deontology, virtue, and consequentialism. We experiment with six languages: English, Spanish, Russian, Chinese, Hindi, and Swahili. We find that GPT-4 is the most consistent and unbiased ethical reasoner across languages, while ChatGPT and Llama2-70B-Chat show significant moral value bias when we move to languages other than English. Interestingly, the nature of this bias significantly vary across languages for all LLMs, including GPT-4.
☆ BMRetriever: Tuning Large Language Models as Better Biomedical Text Retrievers
Developing effective biomedical retrieval models is important for excelling at knowledge-intensive biomedical tasks but still challenging due to the deficiency of sufficient publicly annotated biomedical data and computational resources. We present BMRetriever, a series of dense retrievers for enhancing biomedical retrieval via unsupervised pre-training on large biomedical corpora, followed by instruction fine-tuning on a combination of labeled datasets and synthetic pairs. Experiments on 5 biomedical tasks across 11 datasets verify BMRetriever's efficacy on various biomedical applications. BMRetriever also exhibits strong parameter efficiency, with the 410M variant outperforming baselines up to 11.7 times larger, and the 2B variant matching the performance of models with over 5B parameters. The training data and model checkpoints are released at \url{https://huggingface.co/BMRetriever} to ensure transparency, reproducibility, and application to new domains.
comment: Work in progress. The model and data will be uploaded to \url{https://github.com/ritaranx/BMRetriever}
☆ Capabilities of Gemini Models in Medicine
Excellence in a wide variety of medical applications poses considerable challenges for AI, requiring advanced reasoning, access to up-to-date medical knowledge and understanding of complex multimodal data. Gemini models, with strong general capabilities in multimodal and long-context reasoning, offer exciting possibilities in medicine. Building on these core strengths of Gemini, we introduce Med-Gemini, a family of highly capable multimodal models that are specialized in medicine with the ability to seamlessly use web search, and that can be efficiently tailored to novel modalities using custom encoders. We evaluate Med-Gemini on 14 medical benchmarks, establishing new state-of-the-art (SoTA) performance on 10 of them, and surpass the GPT-4 model family on every benchmark where a direct comparison is viable, often by a wide margin. On the popular MedQA (USMLE) benchmark, our best-performing Med-Gemini model achieves SoTA performance of 91.1% accuracy, using a novel uncertainty-guided search strategy. On 7 multimodal benchmarks including NEJM Image Challenges and MMMU (health & medicine), Med-Gemini improves over GPT-4V by an average relative margin of 44.5%. We demonstrate the effectiveness of Med-Gemini's long-context capabilities through SoTA performance on a needle-in-a-haystack retrieval task from long de-identified health records and medical video question answering, surpassing prior bespoke methods using only in-context learning. Finally, Med-Gemini's performance suggests real-world utility by surpassing human experts on tasks such as medical text summarization, alongside demonstrations of promising potential for multimodal medical dialogue, medical research and education. Taken together, our results offer compelling evidence for Med-Gemini's potential, although further rigorous evaluation will be crucial before real-world deployment in this safety-critical domain.
☆ Mixture-of-Instructions: Comprehensive Alignment of a Large Language Model through the Mixture of Diverse System Prompting Instructions
With the proliferation of large language models (LLMs), the comprehensive alignment of such models across multiple tasks has emerged as a critical area of research. Existing alignment methodologies primarily address single task, such as multi-turn dialogue, coding, mathematical problem-solving, and tool usage. However, AI-driven products that leverage language models usually necessitate a fusion of these abilities to function effectively in real-world scenarios. Moreover, the considerable computational resources required for proper alignment of LLMs underscore the need for a more robust, efficient, and encompassing approach to multi-task alignment, ensuring improved generative performance. In response to these challenges, we introduce a novel technique termed Mixture-of-Instructions (MoI), which employs a strategy of instruction concatenation combined with diverse system prompts to boost the alignment efficiency of language models. We have also compiled a diverse set of seven benchmark datasets to rigorously evaluate the alignment efficacy of the MoI-enhanced language model. Our methodology was applied to the open-source Qwen-7B-chat model, culminating in the development of Qwen-SFT-MoI. This enhanced model demonstrates significant advancements in generative capabilities across coding, mathematics, and tool use tasks.
☆ LLM-SR: Scientific Equation Discovery via Programming with Large Language Models
Mathematical equations have been unreasonably effective in describing complex natural phenomena across various scientific disciplines. However, discovering such insightful equations from data presents significant challenges due to the necessity of navigating extremely high-dimensional combinatorial and nonlinear hypothesis spaces. Traditional methods of equation discovery largely focus on extracting equations from data alone, often neglecting the rich domain-specific prior knowledge that scientists typically depend on. To bridge this gap, we introduce LLM-SR, a novel approach that leverages the extensive scientific knowledge and robust code generation capabilities of Large Language Models (LLMs) to discover scientific equations from data in an efficient manner. Specifically, LLM-SR treats equations as programs with mathematical operators and combines LLMs' scientific priors with evolutionary search over equation programs. The LLM iteratively proposes new equation skeletons, drawing from its physical understanding, which are then optimized against data to estimate skeleton parameters. We demonstrate LLM-SR's effectiveness across three diverse scientific domains, where it discovers physically accurate equations that provide significantly better fits to in-domain and out-of-domain data compared to the well-established equation discovery baselines
☆ MM-TTS: A Unified Framework for Multimodal, Prompt-Induced Emotional Text-to-Speech Synthesis
Emotional Text-to-Speech (E-TTS) synthesis has gained significant attention in recent years due to its potential to enhance human-computer interaction. However, current E-TTS approaches often struggle to capture the complexity of human emotions, primarily relying on oversimplified emotional labels or single-modality inputs. To address these limitations, we propose the Multimodal Emotional Text-to-Speech System (MM-TTS), a unified framework that leverages emotional cues from multiple modalities to generate highly expressive and emotionally resonant speech. MM-TTS consists of two key components: (1) the Emotion Prompt Alignment Module (EP-Align), which employs contrastive learning to align emotional features across text, audio, and visual modalities, ensuring a coherent fusion of multimodal information; and (2) the Emotion Embedding-Induced TTS (EMI-TTS), which integrates the aligned emotional embeddings with state-of-the-art TTS models to synthesize speech that accurately reflects the intended emotions. Extensive evaluations across diverse datasets demonstrate the superior performance of MM-TTS compared to traditional E-TTS models. Objective metrics, including Word Error Rate (WER) and Character Error Rate (CER), show significant improvements on ESD dataset, with MM-TTS achieving scores of 7.35% and 3.07%, respectively. Subjective assessments further validate that MM-TTS generates speech with emotional fidelity and naturalness comparable to human speech. Our code and pre-trained models are publicly available at https://anonymous.4open.science/r/MMTTS-D214
☆ Exploring the Limits of Fine-grained LLM-based Physics Inference via Premise Removal Interventions
Language models can hallucinate when performing complex and detailed mathematical reasoning. Physics provides a rich domain for assessing mathematical reasoning capabilities where physical context imbues the use of symbols which needs to satisfy complex semantics (\textit{e.g.,} units, tensorial order), leading to instances where inference may be algebraically coherent, yet unphysical. In this work, we assess the ability of Language Models (LMs) to perform fine-grained mathematical and physical reasoning using a curated dataset encompassing multiple notations and Physics subdomains. We improve zero-shot scores using synthetic in-context examples, and demonstrate non-linear degradation of derivation quality with perturbation strength via the progressive omission of supporting premises. We find that the models' mathematical reasoning is not physics-informed in this setting, where physical context is predominantly ignored in favour of reverse-engineering solutions.
☆ QANA: LLM-based Question Generation and Network Analysis for Zero-shot Key Point Analysis and Beyond
The proliferation of social media has led to information overload and increased interest in opinion mining. We propose "Question-Answering Network Analysis" (QANA), a novel opinion mining framework that utilizes Large Language Models (LLMs) to generate questions from users' comments, constructs a bipartite graph based on the comments' answerability to the questions, and applies centrality measures to examine the importance of opinions. We investigate the impact of question generation styles, LLM selections, and the choice of embedding model on the quality of the constructed QA networks by comparing them with annotated Key Point Analysis datasets. QANA achieves comparable performance to previous state-of-the-art supervised models in a zero-shot manner for Key Point Matching task, also reducing the computational cost from quadratic to linear. For Key Point Generation, questions with high PageRank or degree centrality align well with manually annotated key points. Notably, QANA enables analysts to assess the importance of key points from various aspects according to their selection of centrality measure. QANA's primary contribution lies in its flexibility to extract key points from a wide range of perspectives, which enhances the quality and impartiality of opinion mining.
comment: Under review as a conference paper at COLM 2024
☆ FoundaBench: Evaluating Chinese Fundamental Knowledge Capabilities of Large Language Models
In the burgeoning field of large language models (LLMs), the assessment of fundamental knowledge remains a critical challenge, particularly for models tailored to Chinese language and culture. This paper introduces FoundaBench, a pioneering benchmark designed to rigorously evaluate the fundamental knowledge capabilities of Chinese LLMs. FoundaBench encompasses a diverse array of 3354 multiple-choice questions across common sense and K-12 educational subjects, meticulously curated to reflect the breadth and depth of everyday and academic knowledge. We present an extensive evaluation of 12 state-of-the-art LLMs using FoundaBench, employing both traditional assessment methods and our CircularEval protocol to mitigate potential biases in model responses. Our results highlight the superior performance of models pre-trained on Chinese corpora, and reveal a significant disparity between models' reasoning and memory recall capabilities. The insights gleaned from FoundaBench evaluations set a new standard for understanding the fundamental knowledge of LLMs, providing a robust framework for future advancements in the field.
☆ What Drives Performance in Multilingual Language Models? NAACL 2024
This study investigates the factors influencing the performance of multilingual large language models (MLLMs) across diverse languages. We study 6 MLLMs, including masked language models, autoregressive models, and instruction-tuned LLMs, on the SIB-200 dataset, a topic classification dataset encompassing 204 languages. Our analysis considers three scenarios: ALL languages, SEEN languages (present in the model's pretraining data), and UNSEEN languages (not present or documented in the model's pretraining data in any meaningful way). We examine the impact of factors such as pretraining data size, general resource availability, language family, and script type on model performance. Decision tree analysis reveals that pretraining data size is the most influential factor for SEEN languages. However, interestingly, script type and language family are crucial for UNSEEN languages, highlighting the importance of cross-lingual transfer learning. Notably, model size and architecture do not significantly alter the most important features identified. Our findings provide valuable insights into the strengths and limitations of current MLLMs and hope to guide the development of more effective and equitable multilingual NLP systems.
comment: Accepted at VarDial @ NAACL 2024
☆ RTF: Region-based Table Filling Method for Relational Triple Extraction EMNLP 2023
Relational triple extraction is crucial work for the automatic construction of knowledge graphs. Existing methods only construct shallow representations from a token or token pair-level. However, previous works ignore local spatial dependencies of relational triples, resulting in a weakness of entity pair boundary detection. To tackle this problem, we propose a novel Region-based Table Filling method (RTF). We devise a novel region-based tagging scheme and bi-directional decoding strategy, which regard each relational triple as a region on the relation-specific table, and identifies triples by determining two endpoints of each region. We also introduce convolution to construct region-level table representations from a spatial perspective which makes triples easier to be captured. In addition, we share partial tagging scores among different relations to improve learning efficiency of relation classifier. Experimental results show that our method achieves state-of-the-art with better generalization capability on three variants of two widely used benchmark datasets.
comment: Rejected by EMNLP 2023
☆ Q-GroundCAM: Quantifying Grounding in Vision Language Models via GradCAM CVPR 2024
Vision and Language Models (VLMs) continue to demonstrate remarkable zero-shot (ZS) performance across various tasks. However, many probing studies have revealed that even the best-performing VLMs struggle to capture aspects of compositional scene understanding, lacking the ability to properly ground and localize linguistic phrases in images. Recent VLM advancements include scaling up both model and dataset sizes, additional training objectives and levels of supervision, and variations in the model architectures. To characterize the grounding ability of VLMs, such as phrase grounding, referring expressions comprehension, and relationship understanding, Pointing Game has been used as an evaluation metric for datasets with bounding box annotations. In this paper, we introduce a novel suite of quantitative metrics that utilize GradCAM activations to rigorously evaluate the grounding capabilities of pre-trained VLMs like CLIP, BLIP, and ALBEF. These metrics offer an explainable and quantifiable approach for a more detailed comparison of the zero-shot capabilities of VLMs and enable measuring models' grounding uncertainty. This characterization reveals interesting tradeoffs between the size of the model, the dataset size, and their performance.
comment: Accepted to CVPR 2024, Second Workshop on Foundation Models (WFM)
☆ Accelerating Production LLMs with Combined Token/Embedding Speculators
This technical report describes the design and training of novel speculative decoding draft models, for accelerating the inference speeds of large language models in a production environment. By conditioning draft predictions on both context vectors and sampled tokens, we can train our speculators to efficiently predict high-quality n-grams, which the base model then accepts or rejects. This allows us to effectively predict multiple tokens per inference forward pass, accelerating wall-clock inference speeds of highly optimized base model implementations by a factor of 2-3x. We explore these initial results and describe next steps for further improvements.
☆ Effects of Added Emphasis and Pause in Audio Delivery of Health Information
Health literacy is crucial to supporting good health and is a major national goal. Audio delivery of information is becoming more popular for informing oneself. In this study, we evaluate the effect of audio enhancements in the form of information emphasis and pauses with health texts of varying difficulty and we measure health information comprehension and retention. We produced audio snippets from difficult and easy text and conducted the study on Amazon Mechanical Turk (AMT). Our findings suggest that emphasis matters for both information comprehension and retention. When there is no added pause, emphasizing significant information can lower the perceived difficulty for difficult and easy texts. Comprehension is higher (54%) with correctly placed emphasis for the difficult texts compared to not adding emphasis (50%). Adding a pause lowers perceived difficulty and can improve retention but adversely affects information comprehension.
comment: This manuscript is accepted to American Medical Informatics Association summit, 2024
☆ In-Context Symbolic Regression: Leveraging Language Models for Function Discovery
Symbolic Regression (SR) is a task which aims to extract the mathematical expression underlying a set of empirical observations. Transformer-based methods trained on SR datasets detain the current state-of-the-art in this task, while the application of Large Language Models (LLMs) to SR remains unexplored. This work investigates the integration of pre-trained LLMs into the SR pipeline, utilizing an approach that iteratively refines a functional form based on the prediction error it achieves on the observation set, until it reaches convergence. Our method leverages LLMs to propose an initial set of possible functions based on the observations, exploiting their strong pre-training prior. These functions are then iteratively refined by the model itself and by an external optimizer for their coefficients. The process is repeated until the results are satisfactory. We then analyze Vision-Language Models in this context, exploring the inclusion of plots as visual inputs to aid the optimization process. Our findings reveal that LLMs are able to successfully recover good symbolic equations that fit the given data, outperforming SR baselines based on Genetic Programming, with the addition of images in the input showing promising results for the most complex benchmarks.
☆ Blind Spots and Biases: Exploring the Role of Annotator Cognitive Biases in NLP
With the rapid proliferation of artificial intelligence, there is growing concern over its potential to exacerbate existing biases and societal disparities and introduce novel ones. This issue has prompted widespread attention from academia, policymakers, industry, and civil society. While evidence suggests that integrating human perspectives can mitigate bias-related issues in AI systems, it also introduces challenges associated with cognitive biases inherent in human decision-making. Our research focuses on reviewing existing methodologies and ongoing investigations aimed at understanding annotation attributes that contribute to bias.
☆ HELPER-X: A Unified Instructable Embodied Agent to Tackle Four Interactive Vision-Language Domains with Memory-Augmented Language Models
Recent research on instructable agents has used memory-augmented Large Language Models (LLMs) as task planners, a technique that retrieves language-program examples relevant to the input instruction and uses them as in-context examples in the LLM prompt to improve the performance of the LLM in inferring the correct action and task plans. In this technical report, we extend the capabilities of HELPER, by expanding its memory with a wider array of examples and prompts, and by integrating additional APIs for asking questions. This simple expansion of HELPER into a shared memory enables the agent to work across the domains of executing plans from dialogue, natural language instruction following, active question asking, and commonsense room reorganization. We evaluate the agent on four diverse interactive visual-language embodied agent benchmarks: ALFRED, TEACh, DialFRED, and the Tidy Task. HELPER-X achieves few-shot, state-of-the-art performance across these benchmarks using a single agent, without requiring in-domain training, and remains competitive with agents that have undergone in-domain training.
comment: Videos and code https://helper-agent-llm.github.io/
☆ SuperCLUE-Fin: Graded Fine-Grained Analysis of Chinese LLMs on Diverse Financial Tasks and Applications
The SuperCLUE-Fin (SC-Fin) benchmark is a pioneering evaluation framework tailored for Chinese-native financial large language models (FLMs). It assesses FLMs across six financial application domains and twenty-five specialized tasks, encompassing theoretical knowledge and practical applications such as compliance, risk management, and investment analysis. Using multi-turn, open-ended conversations that mimic real-life scenarios, SC-Fin measures models on a range of criteria, including accurate financial understanding, logical reasoning, clarity, computational efficiency, business acumen, risk perception, and compliance with Chinese regulations. In a rigorous evaluation involving over a thousand questions, SC-Fin identifies a performance hierarchy where domestic models like GLM-4 and MoonShot-v1-128k outperform others with an A-grade, highlighting the potential for further development in transforming theoretical knowledge into pragmatic financial solutions. This benchmark serves as a critical tool for refining FLMs in the Chinese context, directing improvements in financial knowledge databases, standardizing financial interpretations, and promoting models that prioritize compliance, risk management, and secure practices. We create a contextually relevant and comprehensive benchmark that drives the development of AI in the Chinese financial sector. SC-Fin facilitates the advancement and responsible deployment of FLMs, offering valuable insights for enhancing model performance and usability for both individual and institutional users in the Chinese market..~\footnote{Our benchmark can be found at \url{https://www.CLUEbenchmarks.com}}.
comment: 11 pages, 19 figures, and tables
☆ Plan of Thoughts: Heuristic-Guided Problem Solving with Large Language Models
While language models (LMs) offer significant capability in zero-shot reasoning tasks across a wide range of domains, they do not perform satisfactorily in problems which requires multi-step reasoning. Previous approaches to mitigate this involves breaking a larger, multi-step task into sub-tasks and asking the language model to generate proposals ("thoughts") for each sub-task and using exhaustive planning approaches such as DFS to compose a solution. In this work, we leverage this idea to introduce two new contributions: first, we formalize a planning-based approach to perform multi-step problem solving with LMs via Partially Observable Markov Decision Processes (POMDPs), with the LM's own reflections about the value of a state used as a search heuristic; second, leveraging the online POMDP solver POMCP, we demonstrate a superior success rate of 89.4% on the Game of 24 task as compared to existing approaches while also offering better anytime performance characteristics than fixed tree-search which is used previously. Taken together, these contributions allow modern LMs to decompose and solve larger-scale reasoning tasks more effectively.
comment: 7 pages, 2 figures
☆ A Framework for Real-time Safeguarding the Text Generation of Large Language
Large Language Models (LLMs) have significantly advanced natural language processing (NLP) tasks but also pose ethical and societal risks due to their propensity to generate harmful content. To address this, various approaches have been developed to safeguard LLMs from producing unsafe content. However, existing methods have limitations, including the need for training specific control models and proactive intervention during text generation, that lead to quality degradation and increased computational overhead. To mitigate those limitations, we propose LLMSafeGuard, a lightweight framework to safeguard LLM text generation in real-time. LLMSafeGuard integrates an external validator into the beam search algorithm during decoding, rejecting candidates that violate safety constraints while allowing valid ones to proceed. We introduce a similarity based validation approach, simplifying constraint introduction and eliminating the need for control model training. Additionally, LLMSafeGuard employs a context-wise timing selection strategy, intervening LLMs only when necessary. We evaluate LLMSafe-Guard on two tasks, detoxification and copyright safeguarding, and demonstrate its superior performance over SOTA baselines. For instance, LLMSafeGuard reduces the average toxic score of. LLM output by 29.7% compared to the best baseline meanwhile preserving similar linguistic quality as natural output in detoxification task. Similarly, in the copyright task, LLMSafeGuard decreases the Longest Common Subsequence (LCS) by 56.2% compared to baselines. Moreover, our context-wise timing selection strategy reduces inference time by at least 24% meanwhile maintaining comparable effectiveness as validating each time step. LLMSafeGuard also offers tunable parameters to balance its effectiveness and efficiency.
☆ How Did We Get Here? Summarizing Conversation Dynamics NAACL 2024
Throughout a conversation, the way participants interact with each other is in constant flux: their tones may change, they may resort to different strategies to convey their points, or they might alter their interaction patterns. An understanding of these dynamics can complement that of the actual facts and opinions discussed, offering a more holistic view of the trajectory of the conversation: how it arrived at its current state and where it is likely heading. In this work, we introduce the task of summarizing the dynamics of conversations, by constructing a dataset of human-written summaries, and exploring several automated baselines. We evaluate whether such summaries can capture the trajectory of conversations via an established downstream task: forecasting whether an ongoing conversation will eventually derail into toxic behavior. We show that they help both humans and automated systems with this forecasting task. Humans make predictions three times faster, and with greater confidence, when reading the summaries than when reading the transcripts. Furthermore, automated forecasting systems are more accurate when constructing, and then predicting based on, summaries of conversation dynamics, compared to directly predicting on the transcripts.
comment: To appear in the Proceedings of NAACL 2024. Data available in ConvoKit https://convokit.cornell.edu/
☆ Markovian Agents for Truthful Language Modeling
Chain-of-Thought (CoT) reasoning could in principle enable a deeper understanding of a language model's (LM) internal reasoning. However, prior work suggests that some LMs answer questions similarly despite changes in their CoT, suggesting that those models are not truly using the CoT. We propose a training method to produce CoTs that are sufficient alone for predicting future text, independent of other context. This methodology gives a guarantee that if the LM can predict future tokens, then it must have used the CoT to understand its context. We formalize the idea that the truthfulness of a sender to a receiver LM is the degree to which the sender helps the receiver predict their future observations. Then we define a "Markovian" LM as one which predicts future text given only a CoT as context. We derive a "Markovian training" procedure by applying our definition of truthfulness to a Markovian LM and optimizing via policy gradient and Proximal Policy Optimization (PPO). We demonstrate the effectiveness of our training algorithm on long-context arithmetic problems, show that the model utilizes the CoT, and validate that the generated CoT is meaningful and usable by other models.
comment: 21 pages, 6 figures
☆ Computational Job Market Analysis with Natural Language Processing
[Abridged Abstract] Recent technological advances underscore labor market dynamics, yielding significant consequences for employment prospects and increasing job vacancy data across platforms and languages. Aggregating such data holds potential for valuable insights into labor market demands, new skills emergence, and facilitating job matching for various stakeholders. However, despite prevalent insights in the private sector, transparent language technology systems and data for this domain are lacking. This thesis investigates Natural Language Processing (NLP) technology for extracting relevant information from job descriptions, identifying challenges including scarcity of training data, lack of standardized annotation guidelines, and shortage of effective extraction methods from job ads. We frame the problem, obtaining annotated data, and introducing extraction methodologies. Our contributions include job description datasets, a de-identification dataset, and a novel active learning algorithm for efficient model training. We propose skill extraction using weak supervision, a taxonomy-aware pre-training methodology adapting multilingual language models to the job market domain, and a retrieval-augmented model leveraging multiple skill extraction datasets to enhance overall performance. Finally, we ground extracted information within a designated taxonomy.
comment: Ph.D. Thesis (315 total pages, 52 figures). The thesis slightly modified with https://github.com/google-research/arxiv-latex-cleaner. ISBN (electronic): 978-87-7949-414-5
Foundations of Multisensory Artificial Intelligence
Building multisensory AI systems that learn from multiple sensory inputs such as text, speech, video, real-world sensors, wearable devices, and medical data holds great promise for impact in many scientific areas with practical benefits, such as in supporting human health and well-being, enabling multimedia content processing, and enhancing real-world autonomous agents. By synthesizing a range of theoretical frameworks and application domains, this thesis aims to advance the machine learning foundations of multisensory AI. In the first part, we present a theoretical framework formalizing how modalities interact with each other to give rise to new information for a task. These interactions are the basic building blocks in all multimodal problems, and their quantification enables users to understand their multimodal datasets, design principled approaches to learn these interactions, and analyze whether their model has succeeded in learning. In the second part, we study the design of practical multimodal foundation models that generalize over many modalities and tasks, which presents a step toward grounding large language models to real-world sensory modalities. We introduce MultiBench, a unified large-scale benchmark across a wide range of modalities, tasks, and research areas, followed by the cross-modal attention and multimodal transformer architectures that now underpin many of today's multimodal foundation models. Scaling these architectures on MultiBench enables the creation of general-purpose multisensory AI systems, and we discuss our collaborative efforts in applying these models for real-world impact in affective computing, mental health, cancer prognosis, and robotics. Finally, we conclude this thesis by discussing how future work can leverage these ideas toward more general, interactive, and safe multisensory AI.
comment: CMU Machine Learning Department PhD Thesis
☆ Credible, Unreliable or Leaked?: Evidence Verification for Enhanced Automated Fact-checking
Automated fact-checking (AFC) is garnering increasing attention by researchers aiming to help fact-checkers combat the increasing spread of misinformation online. While many existing AFC methods incorporate external information from the Web to help examine the veracity of claims, they often overlook the importance of verifying the source and quality of collected "evidence". One overlooked challenge involves the reliance on "leaked evidence", information gathered directly from fact-checking websites and used to train AFC systems, resulting in an unrealistic setting for early misinformation detection. Similarly, the inclusion of information from unreliable sources can undermine the effectiveness of AFC systems. To address these challenges, we present a comprehensive approach to evidence verification and filtering. We create the "CREDible, Unreliable or LEaked" (CREDULE) dataset, which consists of 91,632 articles classified as Credible, Unreliable and Fact checked (Leaked). Additionally, we introduce the EVidence VERification Network (EVVER-Net), trained on CREDULE to detect leaked and unreliable evidence in both short and long texts. EVVER-Net can be used to filter evidence collected from the Web, thus enhancing the robustness of end-to-end AFC systems. We experiment with various language models and show that EVVER-Net can demonstrate impressive performance of up to 91.5% and 94.4% accuracy, while leveraging domain credibility scores along with short or long texts, respectively. Finally, we assess the evidence provided by widely-used fact-checking datasets including LIAR-PLUS, MOCHEG, FACTIFY, NewsCLIPpings+ and VERITE, some of which exhibit concerning rates of leaked and unreliable evidence.
☆ Reinforcement Learning Problem Solving with Large Language Models
Large Language Models (LLMs) encapsulate an extensive amount of world knowledge, and this has enabled their application in various domains to improve the performance of a variety of Natural Language Processing (NLP) tasks. This has also facilitated a more accessible paradigm of conversation-based interactions between humans and AI systems to solve intended problems. However, one interesting avenue that shows untapped potential is the use of LLMs as Reinforcement Learning (RL) agents to enable conversational RL problem solving. Therefore, in this study, we explore the concept of formulating Markov Decision Process-based RL problems as LLM prompting tasks. We demonstrate how LLMs can be iteratively prompted to learn and optimize policies for specific RL tasks. In addition, we leverage the introduced prompting technique for episode simulation and Q-Learning, facilitated by LLMs. We then show the practicality of our approach through two detailed case studies for "Research Scientist" and "Legal Matter Intake" workflows.
☆ RE-GrievanceAssist: Enhancing Customer Experience through ML-Powered Complaint Management
In recent years, digital platform companies have faced increasing challenges in managing customer complaints, driven by widespread consumer adoption. This paper introduces an end-to-end pipeline, named RE-GrievanceAssist, designed specifically for real estate customer complaint management. The pipeline consists of three key components: i) response/no-response ML model using TF-IDF vectorization and XGBoost classifier ; ii) user type classifier using fasttext classifier; iii) issue/sub-issue classifier using TF-IDF vectorization and XGBoost classifier. Finally, it has been deployed as a batch job in Databricks, resulting in a remarkable 40% reduction in overall manual effort with monthly cost reduction of Rs 1,50,000 since August 2023.
♻ ☆ Make-it-Real: Unleashing Large Multimodal Model's Ability for Painting 3D Objects with Realistic Materials
Physically realistic materials are pivotal in augmenting the realism of 3D assets across various applications and lighting conditions. However, existing 3D assets and generative models often lack authentic material properties. Manual assignment of materials using graphic software is a tedious and time-consuming task. In this paper, we exploit advancements in Multimodal Large Language Models (MLLMs), particularly GPT-4V, to present a novel approach, Make-it-Real: 1) We demonstrate that GPT-4V can effectively recognize and describe materials, allowing the construction of a detailed material library. 2) Utilizing a combination of visual cues and hierarchical text prompts, GPT-4V precisely identifies and aligns materials with the corresponding components of 3D objects. 3) The correctly matched materials are then meticulously applied as reference for the new SVBRDF material generation according to the original diffuse map, significantly enhancing their visual authenticity. Make-it-Real offers a streamlined integration into the 3D content creation workflow, showcasing its utility as an essential tool for developers of 3D assets.
comment: Project Page: https://sunzey.github.io/Make-it-Real/
♻ ☆ Talking Nonsense: Probing Large Language Models' Understanding of Adversarial Gibberish Inputs
Large language models (LLMs) exhibit excellent ability to understand human languages, but do they also understand their own language that appears gibberish to us? In this work we delve into this question, aiming to uncover the mechanisms underlying such behavior in LLMs. We employ the Greedy Coordinate Gradient optimizer to craft prompts that compel LLMs to generate coherent responses from seemingly nonsensical inputs. We call these inputs LM Babel and this work systematically studies the behavior of LLMs manipulated by these prompts. We find that the manipulation efficiency depends on the target text's length and perplexity, with the Babel prompts often located in lower loss minima compared to natural prompts. We further examine the structure of the Babel prompts and evaluate their robustness. Notably, we find that guiding the model to generate harmful texts is not more difficult than into generating benign texts, suggesting lack of alignment for out-of-distribution prompts.
♻ ☆ Stick to your Role! Context-dependence and Stability of Personal Values Expression in Large Language Models
The standard way to study Large Language Models (LLMs) with benchmarks or psychology questionnaires is to provide many different queries from similar minimal contexts (e.g. multiple choice questions). However, due to LLMs' highly context-dependent nature, conclusions from such minimal-context evaluations may be little informative about the model's behavior in deployment (where it will be exposed to many new contexts). We argue that context-dependence (specifically, value stability) should be studied a specific property of LLMs and used as another dimension of LLM comparison (alongside others such as cognitive abilities, knowledge, or model size). We present a case-study on the stability of value expression over different contexts (simulated conversations on different topics) as measured using a standard psychology questionnaire (PVQ) and on behavioral downstream tasks. Reusing methods from psychology, we study Rank-order stability on the population (interpersonal) level, and Ipsative stability on the individual (intrapersonal) level. We consider two settings (with and without instructing LLMs to simulate particular personas), two simulated populations, and three downstream tasks. We observe consistent trends in the stability of models and model families - Mixtral, Mistral, GPT-3.5 and Qwen families are more stable than LLaMa-2 and Phi. The consistency of these trends implies that some models exhibit higher value-stability than others, and that value stability can be estimated with the set of introduced methodological tools. When instructed to simulate particular personas, LLMs exhibit low Rank-Order stability, which further diminishes with conversation length. This highlights the need for future research on LLMs that coherently simulate different personas. This paper provides a foundational step in that direction, and, to our knowledge, it is the first study of value stability in LLMs.
comment: The project website and code are available at https://sites.google.com/view/llmvaluestability
♻ ☆ Intention Analysis Makes LLMs A Good Jailbreak Defender
Aligning large language models (LLMs) with human values, particularly in the face of complex and stealthy jailbreak attacks, presents a formidable challenge. In this study, we present a simple yet highly effective defense strategy, i.e., Intention Analysis ($\mathbb{IA}$). The principle behind this is to trigger LLMs' inherent self-correct and improve ability through a two-stage process: 1) essential intention analysis, and 2) policy-aligned response. Notably, $\mathbb{IA}$ is an inference-only method, thus could enhance the safety of LLMs without compromising their helpfulness. Extensive experiments on varying jailbreak benchmarks across ChatGLM, LLaMA2, Vicuna, MPT, DeepSeek, and GPT-3.5 show that $\mathbb{IA}$ could consistently and significantly reduce the harmfulness in responses (averagely -53.1% attack success rate) and maintain the general helpfulness. Encouragingly, with the help of our $\mathbb{IA}$, Vicuna-7B even outperforms GPT-3.5 in terms of attack success rate. Further analyses present some insights into how our method works. To facilitate reproducibility, we release our code and scripts at: https://github.com/alphadl/SafeLLM_with_IntentionAnalysis.
comment: 20 pages, 16 figures
♻ ☆ Explaining Text Classifiers with Counterfactual Representations
One well motivated explanation method for classifiers leverages counterfactuals which are hypothetical events identical to real observations in all aspects except for one categorical feature. Constructing such counterfactual poses specific challenges for texts, however, as some attribute values may not necessarily align with plausible real-world events. In this paper we propose a simple method for generating counterfactuals by intervening in the space of text representations which bypasses this limitation. We argue that our interventions are minimally disruptive and that they are theoretically sound as they align with counterfactuals as defined in Pearl's causal inference framework. To validate our method, we conducted experiments first on a synthetic dataset and then on a realistic dataset of counterfactuals. This allows for a direct comparison between classifier predictions based on ground truth counterfactuals - obtained through explicit text interventions - and our counterfactuals, derived through interventions in the representation space. Eventually, we study a real world scenario where our counterfactuals can be leveraged both for explaining a classifier and for bias mitigation.
comment: 24 pages, 4 figures
♻ ☆ MMBench: Is Your Multi-modal Model an All-around Player?
Large vision-language models have recently achieved remarkable progress, exhibiting great perception and reasoning abilities concerning visual information. However, how to effectively evaluate these large vision-language models remains a major obstacle, hindering future model development. Traditional benchmarks like VQAv2 or COCO Caption provide quantitative performance measurements but suffer from a lack of fine-grained ability assessment and non-robust evaluation metrics. Recent subjective benchmarks, such as OwlEval, offer comprehensive evaluations of a model's abilities by incorporating human labor, but they are not scalable and display significant bias. In response to these challenges, we propose MMBench, a novel multi-modality benchmark. MMBench methodically develops a comprehensive evaluation pipeline, primarily comprised of two elements. The first element is a meticulously curated dataset that surpasses existing similar benchmarks in terms of the number and variety of evaluation questions and abilities. The second element introduces a novel CircularEval strategy and incorporates the use of ChatGPT. This implementation is designed to convert free-form predictions into pre-defined choices, thereby facilitating a more robust evaluation of the model's predictions. MMBench is a systematically-designed objective benchmark for robustly evaluating the various abilities of vision-language models. We hope MMBench will assist the research community in better evaluating their models and encourage future advancements in this domain. Project page: https://opencompass.org.cn/mmbench.
♻ ☆ LayerSkip: Enabling Early Exit Inference and Self-Speculative Decoding
We present LayerSkip, an end-to-end solution to speed-up inference of large language models (LLMs). First, during training we apply layer dropout, with low dropout rates for earlier layers and higher dropout rates for later layers, and an early exit loss where all transformer layers share the same exit. Second, during inference, we show that this training recipe increases the accuracy of early exit at earlier layers, without adding any auxiliary layers or modules to the model. Third, we present a novel self-speculative decoding solution where we exit at early layers and verify and correct with remaining layers of the model. Our proposed self-speculative decoding approach has less memory footprint than other speculative decoding approaches and benefits from shared compute and activations of the draft and verification stages. We run experiments on different Llama model sizes on different types of training: pretraining from scratch, continual pretraining, finetuning on specific data domain, and finetuning on specific task. We implement our inference solution and show speedups of up to 2.16x on summarization for CNN/DM documents, 1.82x on coding, and 2.0x on TOPv2 semantic parsing task.
comment: Code open sourcing is in progress
♻ ☆ Surprising Efficacy of Fine-Tuned Transformers for Fact-Checking over Larger Language Models SIGIR 2024
In this paper, we explore the challenges associated with establishing an end-to-end fact-checking pipeline in a real-world context, covering over 90 languages. Our real-world experimental benchmarks demonstrate that fine-tuning Transformer models specifically for fact-checking tasks, such as claim detection and veracity prediction, provide superior performance over large language models (LLMs) like GPT-4, GPT-3.5-Turbo, and Mistral-7b. However, we illustrate that LLMs excel in generative tasks such as question decomposition for evidence retrieval. Through extensive evaluation, we show the efficacy of fine-tuned models for fact-checking in a multilingual setting and complex claims that include numerical quantities.
comment: Accepted in SIGIR 2024 (industry track)
♻ ☆ Prompt have evil twins
We discover that many natural-language prompts can be replaced by corresponding prompts that are unintelligible to humans but that provably elicit similar behavior in language models. We call these prompts "evil twins" because they are obfuscated and uninterpretable (evil), but at the same time mimic the functionality of the original natural-language prompts (twins). Remarkably, evil twins transfer between models. We find these prompts by solving a maximum-likelihood problem which has applications of independent interest.
comment: Preprint. Under review
♻ ☆ Universal Jailbreak Backdoors from Poisoned Human Feedback ICLR 2024
Reinforcement Learning from Human Feedback (RLHF) is used to align large language models to produce helpful and harmless responses. Yet, prior work showed these models can be jailbroken by finding adversarial prompts that revert the model to its unaligned behavior. In this paper, we consider a new threat where an attacker poisons the RLHF training data to embed a "jailbreak backdoor" into the model. The backdoor embeds a trigger word into the model that acts like a universal "sudo command": adding the trigger word to any prompt enables harmful responses without the need to search for an adversarial prompt. Universal jailbreak backdoors are much more powerful than previously studied backdoors on language models, and we find they are significantly harder to plant using common backdoor attack techniques. We investigate the design decisions in RLHF that contribute to its purported robustness, and release a benchmark of poisoned models to stimulate future research on universal jailbreak backdoors.
comment: Accepted as conference paper in ICLR 2024
♻ ☆ ProMoAI: Process Modeling with Generative AI
ProMoAI is a novel tool that leverages Large Language Models (LLMs) to automatically generate process models from textual descriptions, incorporating advanced prompt engineering, error handling, and code generation techniques. Beyond automating the generation of complex process models, ProMoAI also supports process model optimization. Users can interact with the tool by providing feedback on the generated model, which is then used for refining the process model. ProMoAI utilizes the capabilities LLMs to offer a novel, AI-driven approach to process modeling, significantly reducing the barrier to entry for users without deep technical knowledge in process modeling.
♻ ☆ Strong Priority and Determinacy in Timed CCS
Building on the standard theory of process algebra with priorities, we identify a new scheduling mechanism, called "constructive reduction" which is designed to capture the essence of synchronous programming. The distinctive property of this evaluation strategy is to achieve determinacy-by-construction for multi-cast concurrent communication with shared memory. In the technical setting of CCS extended by clocks and priorities, we prove for a large class of "coherent" processes a confluence property for constructive reductions. We show that under some restrictions, called "pivotability", coherence is preserved by the operators of prefix, summation, parallel composition, restriction and hiding. Since this permits memory and sharing, we are able to cover a strictly larger class of processes compared to those in Milner's classical confluence theory for CCS without priorities.
♻ ☆ Modeling Multimodal Social Interactions: New Challenges and Baselines with Densely Aligned Representations CVPR 2024
Understanding social interactions involving both verbal and non-verbal cues is essential for effectively interpreting social situations. However, most prior works on multimodal social cues focus predominantly on single-person behaviors or rely on holistic visual representations that are not aligned to utterances in multi-party environments. Consequently, they are limited in modeling the intricate dynamics of multi-party interactions. In this paper, we introduce three new challenging tasks to model the fine-grained dynamics between multiple people: speaking target identification, pronoun coreference resolution, and mentioned player prediction. We contribute extensive data annotations to curate these new challenges in social deduction game settings. Furthermore, we propose a novel multimodal baseline that leverages densely aligned language-visual representations by synchronizing visual features with their corresponding utterances. This facilitates concurrently capturing verbal and non-verbal cues pertinent to social reasoning. Experiments demonstrate the effectiveness of the proposed approach with densely aligned multimodal representations in modeling fine-grained social interactions. Project website: https://sangmin-git.github.io/projects/MMSI.
comment: CVPR 2024 Oral
♻ ☆ Recommender Systems in the Era of Large Language Models (LLMs)
With the prosperity of e-commerce and web applications, Recommender Systems (RecSys) have become an important component of our daily life, providing personalized suggestions that cater to user preferences. While Deep Neural Networks (DNNs) have made significant advancements in enhancing recommender systems by modeling user-item interactions and incorporating textual side information, DNN-based methods still face limitations, such as difficulties in understanding users' interests and capturing textual side information, inabilities in generalizing to various recommendation scenarios and reasoning on their predictions, etc. Meanwhile, the emergence of Large Language Models (LLMs), such as ChatGPT and GPT4, has revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI), due to their remarkable abilities in fundamental responsibilities of language understanding and generation, as well as impressive generalization and reasoning capabilities. As a result, recent studies have attempted to harness the power of LLMs to enhance recommender systems. Given the rapid evolution of this research direction in recommender systems, there is a pressing need for a systematic overview that summarizes existing LLM-empowered recommender systems, to provide researchers in relevant fields with an in-depth understanding. Therefore, in this paper, we conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting. More specifically, we first introduce representative methods to harness the power of LLMs (as a feature encoder) for learning representations of users and items. Then, we review recent techniques of LLMs for enhancing recommender systems from three paradigms, namely pre-training, fine-tuning, and prompting. Finally, we comprehensively discuss future directions in this emerging field.
comment: Accepted by IEEE TKDE
♻ ☆ On the Use of Large Language Models to Generate Capability Ontologies
Capability ontologies are increasingly used to model functionalities of systems or machines. The creation of such ontological models with all properties and constraints of capabilities is very complex and can only be done by ontology experts. However, Large Language Models (LLMs) have shown that they can generate machine-interpretable models from natural language text input and thus support engineers / ontology experts. Therefore, this paper investigates how LLMs can be used to create capability ontologies. We present a study with a series of experiments in which capabilities with varying complexities are generated using different prompting techniques and with different LLMs. Errors in the generated ontologies are recorded and compared. To analyze the quality of the generated ontologies, a semi-automated approach based on RDF syntax checking, OWL reasoning, and SHACL constraints is used. The results of this study are very promising because even for complex capabilities, the generated ontologies are almost free of errors.
♻ ☆ Neural-Symbolic Recursive Machine for Systematic Generalization ICLR 2024
Current learning models often struggle with human-like systematic generalization, particularly in learning compositional rules from limited data and extrapolating them to novel combinations. We introduce the Neural-Symbolic Recursive Machine (NSR), whose core is a Grounded Symbol System (GSS), allowing for the emergence of combinatorial syntax and semantics directly from training data. The NSR employs a modular design that integrates neural perception, syntactic parsing, and semantic reasoning. These components are synergistically trained through a novel deduction-abduction algorithm. Our findings demonstrate that NSR's design, imbued with the inductive biases of equivariance and compositionality, grants it the expressiveness to adeptly handle diverse sequence-to-sequence tasks and achieve unparalleled systematic generalization. We evaluate NSR's efficacy across four challenging benchmarks designed to probe systematic generalization capabilities: SCAN for semantic parsing, PCFG for string manipulation, HINT for arithmetic reasoning, and a compositional machine translation task. The results affirm NSR's superiority over contemporary neural and hybrid models in terms of generalization and transferability.
comment: ICLR 2024. Project website: https://liqing-ustc.github.io/NSR/
♻ ☆ Walia-LLM: Enhancing Amharic-LLaMA by Integrating Task-Specific and Generative Datasets
Large language models (LLMs) have received a lot of attention in natural language processing (NLP) research because of their exceptional performance in understanding and generating human languages. However, low-resource languages are left behind due to the unavailability of resources. In this work, we focus on enhancing the LLaMA-2-Amharic model by integrating task-specific and generative datasets to improve language model performance for Amharic. We compile an Amharic instruction fine-tuning dataset and fine-tuned LLaMA-2-Amharic model. The fine-tuned model shows promising results in different NLP tasks. We open-source our dataset creation pipeline, instruction datasets, trained models, and evaluation outputs to promote language-specific studies on these models.
♻ ☆ (Chat)GPT v BERT: Dawn of Justice for Semantic Change Detection EACL 2024
In the universe of Natural Language Processing, Transformer-based language models like BERT and (Chat)GPT have emerged as lexical superheroes with great power to solve open research problems. In this paper, we specifically focus on the temporal problem of semantic change, and evaluate their ability to solve two diachronic extensions of the Word-in-Context (WiC) task: TempoWiC and HistoWiC. In particular, we investigate the potential of a novel, off-the-shelf technology like ChatGPT (and GPT) 3.5 compared to BERT, which represents a family of models that currently stand as the state-of-the-art for modeling semantic change. Our experiments represent the first attempt to assess the use of (Chat)GPT for studying semantic change. Our results indicate that ChatGPT performs significantly worse than the foundational GPT version. Furthermore, our results demonstrate that (Chat)GPT achieves slightly lower performance than BERT in detecting long-term changes but performs significantly worse in detecting short-term changes.
comment: Accepted to the Findings of EACL 2024 (https://aclanthology.org/2024.findings-eacl.29.pdf)
♻ ☆ Holmes: Towards Distributed Training Across Clusters with Heterogeneous NIC Environment
Large language models (LLMs) such as GPT-3, OPT, and LLaMA have demonstrated remarkable accuracy in a wide range of tasks. However, training these models can incur significant expenses, often requiring tens of thousands of GPUs for months of continuous operation. Typically, this training is carried out in specialized GPU clusters equipped with homogeneous high-speed Remote Direct Memory Access (RDMA) network interface cards (NICs). The acquisition and maintenance of such dedicated clusters is challenging. Current LLM training frameworks, like Megatron-LM and Megatron-DeepSpeed, focus primarily on optimizing training within homogeneous cluster settings. In this paper, we introduce Holmes, a training framework for LLMs that employs thoughtfully crafted data and model parallelism strategies over the heterogeneous NIC environment. Our primary technical contribution lies in a novel scheduling method that intelligently allocates distinct computational tasklets in LLM training to specific groups of GPU devices based on the characteristics of their connected NICs. Furthermore, our proposed framework, utilizing pipeline parallel techniques, demonstrates scalability to multiple GPU clusters, even in scenarios without high-speed interconnects between nodes in distinct clusters. We conducted comprehensive experiments that involved various scenarios in the heterogeneous NIC environment. In most cases, our framework achieves performance levels close to those achievable with homogeneous RDMA-capable networks (InfiniBand or RoCE), significantly exceeding training efficiency within the pure Ethernet environment. Additionally, we verified that our framework outperforms other mainstream LLM frameworks under heterogeneous NIC environment in terms of training efficiency and can be seamlessly integrated with them.
comment: 12 pages
♻ ☆ Grounding Language Plans in Demonstrations Through Counterfactual Perturbations ICLR 2024
Grounding the common-sense reasoning of Large Language Models (LLMs) in physical domains remains a pivotal yet unsolved problem for embodied AI. Whereas prior works have focused on leveraging LLMs directly for planning in symbolic spaces, this work uses LLMs to guide the search of task structures and constraints implicit in multi-step demonstrations. Specifically, we borrow from manipulation planning literature the concept of mode families, which group robot configurations by specific motion constraints, to serve as an abstraction layer between the high-level language representations of an LLM and the low-level physical trajectories of a robot. By replaying a few human demonstrations with synthetic perturbations, we generate coverage over the demonstrations' state space with additional successful executions as well as counterfactuals that fail the task. Our explanation-based learning framework trains an end-to-end differentiable neural network to predict successful trajectories from failures and as a by-product learns classifiers that ground low-level states and images in mode families without dense labeling. The learned grounding classifiers can further be used to translate language plans into reactive policies in the physical domain in an interpretable manner. We show our approach improves the interpretability and reactivity of imitation learning through 2D navigation and simulated and real robot manipulation tasks. Website: https://yanweiw.github.io/glide
comment: ICLR 2024 Spotlight
♻ ☆ CT-GLIP: 3D Grounded Language-Image Pretraining with CT Scans and Radiology Reports for Full-Body Scenarios
Medical Vision-Language Pretraining (Med-VLP) establishes a connection between visual content from medical images and the relevant textual descriptions. Existing Med-VLP methods primarily focus on 2D images depicting a single body part, notably chest X-rays. In this paper, we extend the scope of Med-VLP to encompass 3D images, specifically targeting full-body scenarios, by using a multimodal dataset of CT images and reports. Compared with the 2D counterpart, 3D VLP is required to effectively capture essential semantics from significantly sparser representation in 3D imaging. In this paper, we introduce CT-GLIP (Grounded Language-Image Pretraining with CT scans), a novel method that constructs organ-level image-text pairs to enhance multimodal contrastive learning, aligning grounded visual features with precise diagnostic text. Additionally, we developed an abnormality dictionary to augment contrastive learning with diverse contrastive pairs. Our method, trained on a multimodal CT dataset comprising 44,011 organ-level vision-text pairs from 17,702 patients across 104 organs, demonstrates it can identify organs and abnormalities in a zero-shot manner using natural languages. The performance of CT-GLIP is validated on a separate test set of 1,130 patients, focusing on the 16 most frequent abnormalities across 7 organs. The experimental results show our model's superior performance over the standard CLIP framework across zero-shot and fine-tuning scenarios, using both CNN and ViT architectures.
comment: 12 pages, 5 figures, 3 tables
♻ ☆ Pruning for Protection: Increasing Jailbreak Resistance in Aligned LLMs Without Fine-Tuning
Large Language Models (LLMs) are susceptible to `jailbreaking' prompts, which can induce the generation of harmful content. This paper demonstrates that moderate WANDA pruning (Sun et al., 2023) can increase their resistance to such attacks without the need for fine-tuning, while maintaining performance on standard benchmarks. Our findings suggest that the benefits of pruning correlate with the initial safety levels of the model, indicating a regularizing effect of WANDA pruning. We introduce a dataset of 225 harmful tasks across five categories to systematically evaluate this safety enhancement. We argue that safety improvements can be understood through a regularization perspective. First, we show that pruning helps LLMs focus more effectively on task-relevant tokens within jailbreaking prompts. Then, we analyze the effects of pruning on the perplexity of malicious prompts before and after their integration into jailbreak templates. Finally, we demonstrate statistically significant performance improvements under domain shifts when applying WANDA to linear models.
♻ ☆ LDB: A Large Language Model Debugger via Verifying Runtime Execution Step-by-step
Large language models (LLMs) are leading significant progress in code generation. Beyond one-pass code generation, recent works further integrate unit tests and program verifiers into LLMs to iteratively refine the generated programs. However, these works consider the generated programs as an indivisible entity, which falls short for LLMs in debugging the programs, especially when the programs contain complex logic flows and data operations. In contrast, when human developers debug programs, they typically set breakpoints and selectively examine runtime execution information. The execution flow and the intermediate variables play a crucial role in the debugging process, yet they are underutilized in the existing literature on code generation. In this study, we introduce Large Language Model Debugger (LDB), a novel debugging framework that enables LLMs to refine their generated programs with the runtime execution information. Specifically, LDB segments the programs into basic blocks and tracks the values of intermediate variables after each block throughout the runtime execution. This allows LLMs to concentrate on simpler code units within the overall execution flow, verify their correctness against the task description block by block, and efficiently pinpoint any potential errors. Experiments demonstrate that LDB consistently enhances the baseline performance by up to 9.8% across the HumanEval, MBPP, and TransCoder benchmarks, archiving new state-of-the-art performance in code debugging for various LLM selections.
comment: Preprint
♻ ☆ TransformerFAM: Feedback attention is working memory
While Transformers have revolutionized deep learning, their quadratic attention complexity hinders their ability to process infinitely long inputs. We propose Feedback Attention Memory (FAM), a novel Transformer architecture that leverages a feedback loop to enable the network to attend to its own latent representations. This design fosters the emergence of working memory within the Transformer, allowing it to process indefinitely long sequences. TransformerFAM requires no additional weights, enabling seamless integration with pre-trained models. Our experiments show that TransformerFAM significantly improves Transformer performance on long-context tasks across various model sizes (1B, 8B, and 24B). These results showcase the potential to empower Large Language Models (LLMs) to process sequences of unlimited length.
comment: 24 pages, 12 figures, 14 tables
♻ ☆ Rethinking the Role of Proxy Rewards in Language Model Alignment
Learning from human feedback via proxy reward modeling has been studied to align Large Language Models (LLMs) with human values. However, achieving reliable training through that proxy reward model (RM) is not a trivial problem, and its behavior remained as a black-box. In this paper, we study the role of proxy rewards in the LLM alignment via `reverse reward engineering' by composing interpretable features as a white-box reward function. We aim to replicate the ground truth (gold) reward signal by achieving a monotonic relationship between the proxy and gold reward signals after training the model using the proxy reward in reinforcement learning (RL). Our findings indicate that successfully emulating the gold reward requires generating responses that are relevant with enough length to open-ended questions, while also ensuring response consistency in closed-ended questions. Furthermore, resulting models optimizing our devised white-box reward show competitive performances with strong open-source RMs in alignment benchmarks. We highlight its potential usage as a simple but strong reward baseline for the LLM alignment, not requiring explicit human feedback dataset and RM training. Our code is available at https://github.com/naver-ai/rethinking-proxy-reward.
comment: Under review; Preprint
♻ ☆ The Essential Role of Causality in Foundation World Models for Embodied AI
Recent advances in foundation models, especially in large multi-modal models and conversational agents, have ignited interest in the potential of generally capable embodied agents. Such agents will require the ability to perform new tasks in many different real-world environments. However, current foundation models fail to accurately model physical interactions and are therefore insufficient for Embodied AI. The study of causality lends itself to the construction of veridical world models, which are crucial for accurately predicting the outcomes of possible interactions. This paper focuses on the prospects of building foundation world models for the upcoming generation of embodied agents and presents a novel viewpoint on the significance of causality within these. We posit that integrating causal considerations is vital to facilitating meaningful physical interactions with the world. Finally, we demystify misconceptions about causality in this context and present our outlook for future research.
♻ ☆ Is Model Collapse Inevitable? Breaking the Curse of Recursion by Accumulating Real and Synthetic Data
The proliferation of generative models, combined with pretraining on web-scale data, raises a timely question: what happens when these models are trained on their own generated outputs? Recent investigations into model-data feedback loops proposed that such loops would lead to a phenomenon termed model collapse, under which performance progressively degrades with each model-data feedback iteration until fitted models become useless. However, those studies largely assumed that new data replace old data over time, where an arguably more realistic assumption is that data accumulate over time. In this paper, we ask: what effect does accumulating data have on model collapse? We empirically study this question by pretraining sequences of language models on text corpora. We confirm that replacing the original real data by each generation's synthetic data does indeed tend towards model collapse, then demonstrate that accumulating the successive generations of synthetic data alongside the original real data avoids model collapse; these results hold across a range of model sizes, architectures, and hyperparameters. We obtain similar results for deep generative models on other types of real data: diffusion models for molecule conformation generation and variational autoencoders for image generation. To understand why accumulating data can avoid model collapse, we use an analytically tractable framework introduced by prior work in which a sequence of linear models are fit to the previous models' outputs. Previous work used this framework to show that if data are replaced, the test error increases with the number of model-fitting iterations; we extend this argument to prove that if data instead accumulate, the test error has a finite upper bound independent of the number of iterations, meaning model collapse no longer occurs.
♻ ☆ Emergency Department Decision Support using Clinical Pseudo-notes
In this work, we introduce the Multiple Embedding Model for EHR (MEME), an approach that serializes multimodal EHR tabular data into text using pseudo-notes, mimicking clinical text generation. This conversion not only preserves better representations of categorical data and learns contexts but also enables the effective employment of pretrained foundation models for rich feature representation. To address potential issues with context length, our framework encodes embeddings for each EHR modality separately. We demonstrate the effectiveness of MEME by applying it to several decision support tasks within the Emergency Department across multiple hospital systems. Our findings indicate that MEME outperforms traditional machine learning, EHR-specific foundation models, and general LLMs, highlighting its potential as a general and extendible EHR representation strategy.
♻ ☆ Synthetic Data Generation and Joint Learning for Robust Code-Mixed Translation LREC
The widespread online communication in a modern multilingual world has provided opportunities to blend more than one language (aka code-mixed language) in a single utterance. This has resulted a formidable challenge for the computational models due to the scarcity of annotated data and presence of noise. A potential solution to mitigate the data scarcity problem in low-resource setup is to leverage existing data in resource-rich language through translation. In this paper, we tackle the problem of code-mixed (Hinglish and Bengalish) to English machine translation. First, we synthetically develop HINMIX, a parallel corpus of Hinglish to English, with ~4.2M sentence pairs. Subsequently, we propose RCMT, a robust perturbation based joint-training model that learns to handle noise in the real-world code-mixed text by parameter sharing across clean and noisy words. Further, we show the adaptability of RCMT in a zero-shot setup for Bengalish to English translation. Our evaluation and comprehensive analyses qualitatively and quantitatively demonstrate the superiority of RCMT over state-of-the-art code-mixed and robust translation methods.
comment: 9 pages, 2 figures, to be published in LREC-COLING 2024
♻ ☆ Evidence from counterfactual tasks supports emergent analogical reasoning in large language models
We recently reported evidence that large language models are capable of solving a wide range of text-based analogy problems in a zero-shot manner, indicating the presence of an emergent capacity for analogical reasoning. Two recent commentaries have challenged these results, citing evidence from so-called `counterfactual' tasks in which the standard sequence of the alphabet is arbitrarily permuted so as to decrease similarity with materials that may have been present in the language model's training data. Here, we reply to these critiques, clarifying some misunderstandings about the test materials used in our original work, and presenting evidence that language models are also capable of generalizing to these new counterfactual task variants.
♻ ☆ Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs SIGIR 2024
In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback. In a conversational setting such signals are usually unavailable due to the nature of the interactions, and, instead, the evaluation often relies on crowdsourced evaluation labels. The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied. We focus on how the evaluation of task-oriented dialogue systems (TDSs), is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated. We explore and compare two methodologies for assessing TDSs: one includes the user's follow-up utterance and one without. We use both crowdworkers and large language models (LLMs) as annotators to assess system responses across four aspects: relevance, usefulness, interestingness, and explanation quality. Our findings indicate that there is a distinct difference in ratings assigned by both annotator groups in the two setups, indicating user feedback does influence system evaluation. Workers are more susceptible to user feedback on usefulness and interestingness compared to LLMs on interestingness and relevance. User feedback leads to a more personalized assessment of usefulness by workers, aligning closely with the user's explicit feedback. Additionally, in cases of ambiguous or complex user requests, user feedback improves agreement among crowdworkers. These findings emphasize the significance of user feedback in refining system evaluations and suggest the potential for automated feedback integration in future research. We publicly release the annotated data to foster research in this area.
comment: Accepted at SIGIR 2024 long paper track
♻ ☆ LAB: Large-Scale Alignment for ChatBots
This work introduces LAB (Large-scale Alignment for chatBots), a novel methodology designed to overcome the scalability challenges in the instruction-tuning phase of large language model (LLM) training. Leveraging a taxonomy-guided synthetic data generation process and a multi-phase tuning framework, LAB significantly reduces reliance on expensive human annotations and proprietary models like GPT-4. We demonstrate that LAB-trained models can achieve competitive performance across several benchmarks compared to models trained with traditional human-annotated or GPT-4 generated synthetic data. Thus offering a scalable, cost-effective solution for enhancing LLM capabilities and instruction-following behaviors without the drawbacks of catastrophic forgetting, marking a step forward in the efficient training of LLMs for a wide range of applications.
comment: Corresponding Author: Akash Srivastava. Equal Contribution: Shivchander Sudalairaj, Abhishek Bhandwaldar, Aldo Pareja, Akash Srivastava, Code: https://github.com/instructlab
♻ ☆ nach0: Multimodal Natural and Chemical Languages Foundation Model
Large Language Models (LLMs) have substantially driven scientific progress in various domains, and many papers have demonstrated their ability to tackle complex problems with creative solutions. Our paper introduces a new foundation model, nach0, capable of solving various chemical and biological tasks: biomedical question answering, named entity recognition, molecular generation, molecular synthesis, attributes prediction, and others. nach0 is a multi-domain and multi-task encoder-decoder LLM pre-trained on unlabeled text from scientific literature, patents, and molecule strings to incorporate a range of chemical and linguistic knowledge. We employed instruction tuning, where specific task-related instructions are utilized to fine-tune nach0 for the final set of tasks. To train nach0 effectively, we leverage the NeMo framework, enabling efficient parallel optimization of both base and large model versions. Extensive experiments demonstrate that our model outperforms state-of-the-art baselines on single-domain and cross-domain tasks. Furthermore, it can generate high-quality outputs in molecular and textual formats, showcasing its effectiveness in multi-domain setups.
comment: Accepted to Chemical Science Journal
Computer Vision and Pattern Recognition 135
☆ Hallucination of Multimodal Large Language Models: A Survey
This survey presents a comprehensive analysis of the phenomenon of hallucination in multimodal large language models (MLLMs), also known as Large Vision-Language Models (LVLMs), which have demonstrated significant advancements and remarkable abilities in multimodal tasks. Despite these promising developments, MLLMs often generate outputs that are inconsistent with the visual content, a challenge known as hallucination, which poses substantial obstacles to their practical deployment and raises concerns regarding their reliability in real-world applications. This problem has attracted increasing attention, prompting efforts to detect and mitigate such inaccuracies. We review recent advances in identifying, evaluating, and mitigating these hallucinations, offering a detailed overview of the underlying causes, evaluation benchmarks, metrics, and strategies developed to address this issue. Additionally, we analyze the current challenges and limitations, formulating open questions that delineate potential pathways for future research. By drawing the granular classification and landscapes of hallucination causes, evaluation benchmarks, and mitigation methods, this survey aims to deepen the understanding of hallucinations in MLLMs and inspire further advancements in the field. Through our thorough and in-depth review, we contribute to the ongoing dialogue on enhancing the robustness and reliability of MLLMs, providing valuable insights and resources for researchers and practitioners alike. Resources are available at: https://github.com/showlab/Awesome-MLLM-Hallucination.
comment: 140 references
☆ DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing
We consider the problem of editing 3D objects and scenes based on open-ended language instructions. The established paradigm to solve this problem is to use a 2D image generator or editor to guide the 3D editing process. However, this is often slow as it requires do update a computationally expensive 3D representations such as a neural radiance field, and to do so by using contradictory guidance from a 2D model which is inherently not multi-view consistent. We thus introduce the Direct Gaussian Editor (DGE), a method that addresses these issues in two ways. First, we modify a given high-quality image editor like InstructPix2Pix to be multi-view consistent. We do so by utilizing a training-free approach which integrates cues from the underlying 3D geometry of the scene. Second, given a multi-view consistent edited sequence of images of the object, we directly and efficiently optimize the 3D object representation, which is based on 3D Gaussian Splatting. Because it does not require to apply edits incrementally and iteratively, DGE is significantly more efficient than existing approaches, and comes with other perks such as allowing selective editing of parts of the scene.
comment: Project Page: https://silent-chen.github.io/DGE/
☆ Stylus: Automatic Adapter Selection for Diffusion Models
Beyond scaling base models with more data or parameters, fine-tuned adapters provide an alternative way to generate high fidelity, custom images at reduced costs. As such, adapters have been widely adopted by open-source communities, accumulating a database of over 100K adapters-most of which are highly customized with insufficient descriptions. This paper explores the problem of matching the prompt to a set of relevant adapters, built on recent work that highlight the performance gains of composing adapters. We introduce Stylus, which efficiently selects and automatically composes task-specific adapters based on a prompt's keywords. Stylus outlines a three-stage approach that first summarizes adapters with improved descriptions and embeddings, retrieves relevant adapters, and then further assembles adapters based on prompts' keywords by checking how well they fit the prompt. To evaluate Stylus, we developed StylusDocs, a curated dataset featuring 75K adapters with pre-computed adapter embeddings. In our evaluation on popular Stable Diffusion checkpoints, Stylus achieves greater CLIP-FID Pareto efficiency and is twice as preferred, with humans and multimodal models as evaluators, over the base model. See stylus-diffusion.github.io for more.
comment: Project Website: https://stylus-diffusion.github.io
☆ Point Cloud Models Improve Visual Robustness in Robotic Learners
Visual control policies can encounter significant performance degradation when visual conditions like lighting or camera position differ from those seen during training -- often exhibiting sharp declines in capability even for minor differences. In this work, we examine robustness to a suite of these types of visual changes for RGB-D and point cloud based visual control policies. To perform these experiments on both model-free and model-based reinforcement learners, we introduce a novel Point Cloud World Model (PCWM) and point cloud based control policies. Our experiments show that policies that explicitly encode point clouds are significantly more robust than their RGB-D counterparts. Further, we find our proposed PCWM significantly outperforms prior works in terms of sample efficiency during training. Taken together, these results suggest reasoning about the 3D scene through point clouds can improve performance, reduce learning time, and increase robustness for robotic learners. Project Webpage: https://pvskand.github.io/projects/PCWM
comment: Accepted at International Conference on Robotics and Automation, 2024
☆ Swin2-MoSE: A New Single Image Super-Resolution Model for Remote Sensing
Due to the limitations of current optical and sensor technologies and the high cost of updating them, the spectral and spatial resolution of satellites may not always meet desired requirements. For these reasons, Remote-Sensing Single-Image Super-Resolution (RS-SISR) techniques have gained significant interest. In this paper, we propose Swin2-MoSE model, an enhanced version of Swin2SR. Our model introduces MoE-SM, an enhanced Mixture-of-Experts (MoE) to replace the Feed-Forward inside all Transformer block. MoE-SM is designed with Smart-Merger, and new layer for merging the output of individual experts, and with a new way to split the work between experts, defining a new per-example strategy instead of the commonly used per-token one. Furthermore, we analyze how positional encodings interact with each other, demonstrating that per-channel bias and per-head bias can positively cooperate. Finally, we propose to use a combination of Normalized-Cross-Correlation (NCC) and Structural Similarity Index Measure (SSIM) losses, to avoid typical MSE loss limitations. Experimental results demonstrate that Swin2-MoSE outperforms SOTA by up to 0.377 ~ 0.958 dB (PSNR) on task of 2x, 3x and 4x resolution-upscaling (Sen2Venus and OLI2MSI datasets). We show the efficacy of Swin2-MoSE, applying it to a semantic segmentation task (SeasoNet dataset). Code and pretrained are available on https://github.com/IMPLabUniPr/swin2-mose/tree/official_code
☆ TheaterGen: Character Management with LLM for Consistent Multi-turn Image Generation
Recent advances in diffusion models can generate high-quality and stunning images from text. However, multi-turn image generation, which is of high demand in real-world scenarios, still faces challenges in maintaining semantic consistency between images and texts, as well as contextual consistency of the same subject across multiple interactive turns. To address this issue, we introduce TheaterGen, a training-free framework that integrates large language models (LLMs) and text-to-image (T2I) models to provide the capability of multi-turn image generation. Within this framework, LLMs, acting as a "Screenwriter", engage in multi-turn interaction, generating and managing a standardized prompt book that encompasses prompts and layout designs for each character in the target image. Based on these, Theatergen generate a list of character images and extract guidance information, akin to the "Rehearsal". Subsequently, through incorporating the prompt book and guidance information into the reverse denoising process of T2I diffusion models, Theatergen generate the final image, as conducting the "Final Performance". With the effective management of prompt books and character images, TheaterGen significantly improves semantic and contextual consistency in synthesized images. Furthermore, we introduce a dedicated benchmark, CMIGBench (Consistent Multi-turn Image Generation Benchmark) with 8000 multi-turn instructions. Different from previous multi-turn benchmarks, CMIGBench does not define characters in advance. Both the tasks of story generation and multi-turn editing are included on CMIGBench for comprehensive evaluation. Extensive experimental results show that TheaterGen outperforms state-of-the-art methods significantly. It raises the performance bar of the cutting-edge Mini DALLE 3 model by 21% in average character-character similarity and 19% in average text-image similarity.
☆ RSCaMa: Remote Sensing Image Change Captioning with State Space Model
Remote Sensing Image Change Captioning (RSICC) aims to identify surface changes in multi-temporal remote sensing images and describe them in natural language. Current methods typically rely on an encoder-decoder architecture and focus on designing a sophisticated neck to process bi-temporal features extracted by the backbone. Recently, State Space Models (SSMs), especially Mamba, have demonstrated outstanding performance in many fields, owing to their efficient feature-selective modelling capability. However, their potential in the RSICC task remains unexplored. In this paper, we introduce Mamba into RSICC and propose a novel approach called RSCaMa (Remote Sensing Change Captioning Mamba). Specifically, we utilize Siamese backbones to extract bi-temporal features, which are then processed through multiple CaMa layers consisting of Spatial Difference-guided SSM (SD-SSM) and Temporal Traveling SSM (TT-SSM). SD-SSM uses differential features to enhance change perception, while TT-SSM promotes bitemporal interactions in a token-wise cross-scanning manner. Experimental results validate the effectiveness of CaMa layers and demonstrate the superior performance of RSCaMa, as well as the potential of Mamba in the RSICC task. Additionally, we systematically compare the effects of three language decoders, including Mamba, GPT-style decoder with causal attention mechanism, and Transformer decoder with cross-attention mechanism. This provides valuable insights for future RSICC research. The code will be available at https://github.com/Chen-Yang-Liu/RSCaMa
☆ IPixMatch: Boost Semi-supervised Semantic Segmentation with Inter-Pixel Relation
The scarcity of labeled data in real-world scenarios is a critical bottleneck of deep learning's effectiveness. Semi-supervised semantic segmentation has been a typical solution to achieve a desirable tradeoff between annotation cost and segmentation performance. However, previous approaches, whether based on consistency regularization or self-training, tend to neglect the contextual knowledge embedded within inter-pixel relations. This negligence leads to suboptimal performance and limited generalization. In this paper, we propose a novel approach IPixMatch designed to mine the neglected but valuable Inter-Pixel information for semi-supervised learning. Specifically, IPixMatch is constructed as an extension of the standard teacher-student network, incorporating additional loss terms to capture inter-pixel relations. It shines in low-data regimes by efficiently leveraging the limited labeled data and extracting maximum utility from the available unlabeled data. Furthermore, IPixMatch can be integrated seamlessly into most teacher-student frameworks without the need of model modification or adding additional components. Our straightforward IPixMatch method demonstrates consistent performance improvements across various benchmark datasets under different partitioning protocols.
comment: 7 pages, 2 figures
☆ Hide and Seek: How Does Watermarking Impact Face Recognition?
The recent progress in generative models has revolutionized the synthesis of highly realistic images, including face images. This technological development has undoubtedly helped face recognition, such as training data augmentation for higher recognition accuracy and data privacy. However, it has also introduced novel challenges concerning the responsible use and proper attribution of computer generated images. We investigate the impact of digital watermarking, a technique for embedding ownership signatures into images, on the effectiveness of face recognition models. We propose a comprehensive pipeline that integrates face image generation, watermarking, and face recognition to systematically examine this question. The proposed watermarking scheme, based on an encoder-decoder architecture, successfully embeds and recovers signatures from both real and synthetic face images while preserving their visual fidelity. Through extensive experiments, we unveil that while watermarking enables robust image attribution, it results in a slight decline in face recognition accuracy, particularly evident for face images with challenging poses and expressions. Additionally, we find that directly training face recognition models on watermarked images offers only a limited alleviation of this performance decline. Our findings underscore the intricate trade off between watermarking and face recognition accuracy. This work represents a pivotal step towards the responsible utilization of generative models in face recognition and serves to initiate discussions regarding the broader implications of watermarking in biometrics.
☆ A Multilevel Strategy to Improve People Tracking in a Real-World Scenario
The Pal\'acio do Planalto, office of the President of Brazil, was invaded by protesters on January 8, 2023. Surveillance videos taken from inside the building were subsequently released by the Brazilian Supreme Court for public scrutiny. We used segments of such footage to create the UFPR-Planalto801 dataset for people tracking and re-identification in a real-world scenario. This dataset consists of more than 500,000 images. This paper presents a tracking approach targeting this dataset. The method proposed in this paper relies on the use of known state-of-the-art trackers combined in a multilevel hierarchy to correct the ID association over the trajectories. We evaluated our method using IDF1, MOTA, MOTP and HOTA metrics. The results show improvements for every tracker used in the experiments, with IDF1 score increasing by a margin up to 9.5%.
comment: Accepted for presentation at the International Conference on Computer Vision Theory and Applications (VISAPP) 2024
☆ OpenStreetView-5M: The Many Roads to Global Visual Geolocation CVPR 2024
Determining the location of an image anywhere on Earth is a complex visual task, which makes it particularly relevant for evaluating computer vision algorithms. Yet, the absence of standard, large-scale, open-access datasets with reliably localizable images has limited its potential. To address this issue, we introduce OpenStreetView-5M, a large-scale, open-access dataset comprising over 5.1 million geo-referenced street view images, covering 225 countries and territories. In contrast to existing benchmarks, we enforce a strict train/test separation, allowing us to evaluate the relevance of learned geographical features beyond mere memorization. To demonstrate the utility of our dataset, we conduct an extensive benchmark of various state-of-the-art image encoders, spatial representations, and training strategies. All associated codes and models can be found at https://github.com/gastruc/osv5m.
comment: CVPR 2024
☆ A Survey on Vision Mamba: Models, Applications and Challenges
Mamba, a recent selective structured state space model, performs excellently on long sequence modeling tasks. Mamba mitigates the modeling constraints of convolutional neural networks and offers advanced modeling capabilities similar to those of Transformers, through global receptive fields and dynamic weighting. Crucially, it achieves this without incurring the quadratic computational complexity typically associated with Transformers. Due to its advantages over the former two mainstream foundation models, Mamba exhibits great potential to be a visual foundation model. Researchers are actively applying Mamba to various computer vision tasks, leading to numerous emerging works. To help keep pace with the rapid advancements in computer vision, this paper aims to provide a comprehensive review of visual Mamba approaches. This paper begins by delineating the formulation of the original Mamba model. Subsequently, our review of visual Mamba delves into several representative backbone networks to elucidate the core insights of the visual Mamba. We then categorize related works using different modalities, including image, video, point cloud, multi-modal, and others. Specifically, for image applications, we further organize them into distinct tasks to facilitate a more structured discussion. Finally, we discuss the challenges and future research directions for visual Mamba, providing insights for future research in this quickly evolving area. A comprehensive list of visual Mamba models reviewed in this work is available at https://github.com/Ruixxxx/Awesome-Vision-Mamba-Models.
☆ MiPa: Mixed Patch Infrared-Visible Modality Agnostic Object Detection
In this paper, we present a different way to use two modalities, in which either one modality or the other is seen by a single model. This can be useful when adapting an unimodal model to leverage more information while respecting a limited computational budget. This would mean having a single model that is able to deal with any modalities. To describe this, we coined the term anymodal learning. An example of this, is a use case where, surveillance in a room when the lights are off would be much more valuable using an infrared modality while a visible one would provide more discriminative information when lights are on. This work investigates how to efficiently leverage visible and infrared/thermal modalities for transformer-based object detection backbone to create an anymodal architecture. Our work does not create any inference overhead during the testing while exploring an effective way to exploit the two modalities during the training. To accomplish such a task, we introduce the novel anymodal training technique: Mixed Patches (MiPa), in conjunction with a patch-wise domain agnostic module, which is responsible of learning the best way to find a common representation of both modalities. This approach proves to be able to balance modalities by reaching competitive results on individual modality benchmarks with the alternative of using an unimodal architecture on three different visible-infrared object detection datasets. Finally, our proposed method, when used as a regularization for the strongest modality, can beat the performance of multimodal fusion methods while only requiring a single modality during inference. Notably, MiPa became the state-of-the-art on the LLVIP visible/infrared benchmark. Code: https://github.com/heitorrapela/MiPa
☆ VISION: Toward a Standardized Process for Radiology Image Management at the National Level
The compilation and analysis of radiological images poses numerous challenges for researchers. The sheer volume of data as well as the computational needs of algorithms capable of operating on images are extensive. Additionally, the assembly of these images alone is difficult, as these exams may differ widely in terms of clinical context, structured annotation available for model training, modality, and patient identifiers. In this paper, we describe our experiences and challenges in establishing a trusted collection of radiology images linked to the United States Department of Veterans Affairs (VA) electronic health record database. We also discuss implications in making this repository research-ready for medical investigators. Key insights include uncovering the specific procedures required for transferring images from a clinical to a research-ready environment, as well as roadblocks and bottlenecks in this process that may hinder future efforts at automation.
☆ ConPro: Learning Severity Representation for Medical Images using Contrastive Learning and Preference Optimization
Understanding the severity of conditions shown in images in medical diagnosis is crucial, serving as a key guide for clinical assessment, treatment, as well as evaluating longitudinal progression. This paper proposes Con- PrO: a novel representation learning method for severity assessment in medical images using Contrastive learningintegrated Preference Optimization. Different from conventional contrastive learning methods that maximize the distance between classes, ConPrO injects into the latent vector the distance preference knowledge between various severity classes and the normal class. We systematically examine the key components of our framework to illuminate how contrastive prediction tasks acquire valuable representations. We show that our representation learning framework offers valuable severity ordering in the feature space while outperforming previous state-of-the-art methods on classification tasks. We achieve a 6% and 20% relative improvement compared to a supervised and a self-supervised baseline, respectively. In addition, we derived discussions on severity indicators and related applications of preference comparison in the medical domain.
comment: 8 pages
☆ Harmonic Machine Learning Models are Robust
We introduce Harmonic Robustness, a powerful and intuitive method to test the robustness of any machine-learning model either during training or in black-box real-time inference monitoring without ground-truth labels. It is based on functional deviation from the harmonic mean value property, indicating instability and lack of explainability. We show implementation examples in low-dimensional trees and feedforward NNs, where the method reliably identifies overfitting, as well as in more complex high-dimensional models such as ResNet-50 and Vision Transformer where it efficiently measures adversarial vulnerability across image classes.
comment: 18 pages, 13 figures
☆ Towards Extreme Image Compression with Latent Feature Guidance and Diffusion Prior
Compressing images at extremely low bitrates (below 0.1 bits per pixel (bpp)) is a significant challenge due to substantial information loss. Existing extreme image compression methods generally suffer from heavy compression artifacts or low-fidelity reconstructions. To address this problem, we propose a novel extreme image compression framework that combines compressive VAEs and pre-trained text-to-image diffusion models in an end-to-end manner. Specifically, we introduce a latent feature-guided compression module based on compressive VAEs. This module compresses images and initially decodes the compressed information into content variables. To enhance the alignment between content variables and the diffusion space, we introduce external guidance to modulate intermediate feature maps. Subsequently, we develop a conditional diffusion decoding module that leverages pre-trained diffusion models to further decode these content variables. To preserve the generative capability of pre-trained diffusion models, we keep their parameters fixed and use a control module to inject content information. We also design a space alignment loss to provide sufficient constraints for the latent feature-guided compression module. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in terms of both visual performance and image fidelity at extremely low bitrates.
comment: Submitted to IEEE TCSVT
☆ A Partial Replication of MaskFormer in TensorFlow on TPUs for the TensorFlow Model Garden
This paper undertakes the task of replicating the MaskFormer model a universal image segmentation model originally developed using the PyTorch framework, within the TensorFlow ecosystem, specifically optimized for execution on Tensor Processing Units (TPUs). Our implementation exploits the modular constructs available within the TensorFlow Model Garden (TFMG), encompassing elements such as the data loader, training orchestrator, and various architectural components, tailored and adapted to meet the specifications of the MaskFormer model. We address key challenges encountered during the replication, non-convergence issues, slow training, adaptation of loss functions, and the integration of TPU-specific functionalities. We verify our reproduced implementation and present qualitative results on the COCO dataset. Although our implementation meets some of the objectives for end-to-end reproducibility, we encountered challenges in replicating the PyTorch version of MaskFormer in TensorFlow. This replication process is not straightforward and requires substantial engineering efforts. Specifically, it necessitates the customization of various components within the TFMG, alongside thorough verification and hyper-parameter tuning. The replication is available at: https://github.com/PurdueDualityLab/tf-maskformer/tree/main/official/projects/maskformer
☆ Saliency Suppressed, Semantics Surfaced: Visual Transformations in Neural Networks and the Brain
Deep learning algorithms lack human-interpretable accounts of how they transform raw visual input into a robust semantic understanding, which impedes comparisons between different architectures, training objectives, and the human brain. In this work, we take inspiration from neuroscience and employ representational approaches to shed light on how neural networks encode information at low (visual saliency) and high (semantic similarity) levels of abstraction. Moreover, we introduce a custom image dataset where we systematically manipulate salient and semantic information. We find that ResNets are more sensitive to saliency information than ViTs, when trained with object classification objectives. We uncover that networks suppress saliency in early layers, a process enhanced by natural language supervision (CLIP) in ResNets. CLIP also enhances semantic encoding in both architectures. Finally, we show that semantic encoding is a key factor in aligning AI with human visual perception, while saliency suppression is a non-brain-like strategy.
☆ From Density to Geometry: YOLOv8 Instance Segmentation for Reverse Engineering of Optimized Structures
This paper introduces YOLOv8-TO, a novel approach for reverse engineering of topology-optimized structures into interpretable geometric parameters using the YOLOv8 instance segmentation model. Density-based topology optimization methods require post-processing to convert the optimal density distribution into a parametric representation for design exploration and integration with CAD tools. Traditional methods such as skeletonization struggle with complex geometries and require manual intervention. YOLOv8-TO addresses these challenges by training a custom YOLOv8 model to automatically detect and reconstruct structural components from binary density distributions. The model is trained on a diverse dataset of both optimized and random structures generated using the Moving Morphable Components method. A custom reconstruction loss function based on the dice coefficient of the predicted geometry is used to train the new regression head of the model via self-supervised learning. The method is evaluated on test sets generated from different topology optimization methods, including out-of-distribution samples, and compared against a skeletonization approach. Results show that YOLOv8-TO significantly outperforms skeletonization in reconstructing visually and structurally similar designs. The method showcases an average improvement of 13.84% in the Dice coefficient, with peak enhancements reaching 20.78%. The method demonstrates good generalization to complex geometries and fast inference times, making it suitable for integration into design workflows using regular workstations. Limitations include the sensitivity to non-max suppression thresholds. YOLOv8-TO represents a significant advancement in topology optimization post-processing, enabling efficient and accurate reverse engineering of optimized structures for design exploration and manufacturing.
☆ Flow AM: Generating Point Cloud Global Explanations by Latent Alignment
Although point cloud models have gained significant improvements in prediction accuracy over recent years, their trustworthiness is still not sufficiently investigated. In terms of global explainability, Activation Maximization (AM) techniques in the image domain are not directly transplantable due to the special structure of the point cloud models. Existing studies exploit generative models to yield global explanations that can be perceived by humans. However, the opacity of the generative models themselves and the introduction of additional priors call into question the plausibility and fidelity of the explanations. In this work, we demonstrate that when the classifier predicts different types of instances, the intermediate layer activations are differently activated, known as activation flows. Based on this property, we propose an activation flow-based AM method that generates global explanations that can be perceived without incorporating any generative model. Furthermore, we reveal that AM based on generative models fails the sanity checks and thus lack of fidelity. Extensive experiments show that our approach dramatically enhances the perceptibility of explanations compared to other AM methods that are not based on generative models. Our code is available at: https://github.com/Explain3D/FlowAM
☆ Transitive Vision-Language Prompt Learning for Domain Generalization
The vision-language pre-training has enabled deep models to make a huge step forward in generalizing across unseen domains. The recent learning method based on the vision-language pre-training model is a great tool for domain generalization and can solve this problem to a large extent. However, there are still some issues that an advancement still suffers from trading-off between domain invariance and class separability, which are crucial in current DG problems. However, there are still some issues that an advancement still suffers from trading-off between domain invariance and class separability, which are crucial in current DG problems. In this paper, we introduce a novel prompt learning strategy that leverages deep vision prompts to address domain invariance while utilizing language prompts to ensure class separability, coupled with adaptive weighting mechanisms to balance domain invariance and class separability. Extensive experiments demonstrate that deep vision prompts effectively extract domain-invariant features, significantly improving the generalization ability of deep models and achieving state-of-the-art performance on three datasets.
Survey on Datasets for Perception in Unstructured Outdoor Environments ICRA
Perception is an essential component of pipelines in field robotics. In this survey, we quantitatively compare publicly available datasets available in unstructured outdoor environments. We focus on datasets for common perception tasks in field robotics. Our survey categorizes and compares available research datasets. This survey also reports on relevant dataset characteristics to help practitioners determine which dataset fits best for their own application. We believe more consideration should be taken in choosing compatible annotation policies across the datasets in unstructured outdoor environments.
comment: Accepted to the IEEE ICRA Workshop on Field Robotics 2024
☆ Evaluating the Effectiveness of Video Anomaly Detection in the Wild: Online Learning and Inference for Real-world Deployment
Video Anomaly Detection (VAD) identifies unusual activities in video streams, a key technology with broad applications ranging from surveillance to healthcare. Tackling VAD in real-life settings poses significant challenges due to the dynamic nature of human actions, environmental variations, and domain shifts. Many research initiatives neglect these complexities, often concentrating on traditional testing methods that fail to account for performance on unseen datasets, creating a gap between theoretical models and their real-world utility. Online learning is a potential strategy to mitigate this issue by allowing models to adapt to new information continuously. This paper assesses how well current VAD algorithms can adjust to real-life conditions through an online learning framework, particularly those based on pose analysis, for their efficiency and privacy advantages. Our proposed framework enables continuous model updates with streaming data from novel environments, thus mirroring actual world challenges and evaluating the models' ability to adapt in real-time while maintaining accuracy. We investigate three state-of-the-art models in this setting, focusing on their adaptability across different domains. Our findings indicate that, even under the most challenging conditions, our online learning approach allows a model to preserve 89.39% of its original effectiveness compared to its offline-trained counterpart in a specific target domain.
☆ Enhancing Interactive Image Retrieval With Query Rewriting Using Large Language Models and Vision Language Models
Image search stands as a pivotal task in multimedia and computer vision, finding applications across diverse domains, ranging from internet search to medical diagnostics. Conventional image search systems operate by accepting textual or visual queries, retrieving the top-relevant candidate results from the database. However, prevalent methods often rely on single-turn procedures, introducing potential inaccuracies and limited recall. These methods also face the challenges, such as vocabulary mismatch and the semantic gap, constraining their overall effectiveness. To address these issues, we propose an interactive image retrieval system capable of refining queries based on user relevance feedback in a multi-turn setting. This system incorporates a vision language model (VLM) based image captioner to enhance the quality of text-based queries, resulting in more informative queries with each iteration. Moreover, we introduce a large language model (LLM) based denoiser to refine text-based query expansions, mitigating inaccuracies in image descriptions generated by captioning models. To evaluate our system, we curate a new dataset by adapting the MSR-VTT video retrieval dataset to the image retrieval task, offering multiple relevant ground truth images for each query. Through comprehensive experiments, we validate the effectiveness of our proposed system against baseline methods, achieving state-of-the-art performance with a notable 10\% improvement in terms of recall. Our contributions encompass the development of an innovative interactive image retrieval system, the integration of an LLM-based denoiser, the curation of a meticulously designed evaluation dataset, and thorough experimental validation.
☆ Real Time Multi Organ Classification on Computed Tomography Images
Organ segmentation is a fundamental task in medical imaging, and it is useful for many clinical automation pipelines. Typically, the process involves segmenting the entire volume, which can be unnecessary when the points of interest are limited. In those cases, a classifier could be used instead of segmentation. However, there is an inherent trade-off between the context size and the speed of classifiers. To address this issue, we propose a new method that employs a data selection strategy with sparse sampling across a wide field of view without image resampling. This sparse sampling strategy makes it possible to classify voxels into multiple organs in real time without using accelerators. Although our method is an independent classifier, it can generate full segmentation by querying grid locations at any resolution. We have compared our method with existing segmentation techniques, demonstrating its potential for superior runtime in practical applications in medical imaging.
☆ Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source Library
PyLaia is one of the most popular open-source software for Automatic Text Recognition (ATR), delivering strong performance in terms of speed and accuracy. In this paper, we outline our recent contributions to the PyLaia library, focusing on the incorporation of reliable confidence scores and the integration of statistical language modeling during decoding. Our implementation provides an easy way to combine PyLaia with n-grams language models at different levels. One of the highlights of this work is that language models are completely auto-tuned: they can be built and used easily without any expert knowledge, and without requiring any additional data. To demonstrate the significance of our contribution, we evaluate PyLaia's performance on twelve datasets, both with and without language modelling. The results show that decoding with small language models improves the Word Error Rate by 13% and the Character Error Rate by 12% in average. Additionally, we conduct an analysis of confidence scores and highlight the importance of calibration techniques. Our implementation is publicly available in the official PyLaia repository at https://gitlab.teklia.com/atr/pylaia, and twelve open-source models are released on Hugging Face.
☆ The Socface Project: Large-Scale Collection, Processing, and Analysis of a Century of French Censuses
This paper presents a complete processing workflow for extracting information from French census lists from 1836 to 1936. These lists contain information about individuals living in France and their households. We aim at extracting all the information contained in these tables using automatic handwritten table recognition. At the end of the Socface project, in which our work is taking place, the extracted information will be redistributed to the departmental archives, and the nominative lists will be freely available to the public, allowing anyone to browse hundreds of millions of records. The extracted data will be used by demographers to analyze social change over time, significantly improving our understanding of French economic and social structures. For this project, we developed a complete processing workflow: large-scale data collection from French departmental archives, collaborative annotation of documents, training of handwritten table text and structure recognition models, and mass processing of millions of images. We present the tools we have developed to easily collect and process millions of pages. We also show that it is possible to process such a wide variety of tables with a single table recognition model that uses the image of the entire page to recognize information about individuals, categorize them and automatically group them into households. The entire process has been successfully used to process the documents of a departmental archive, representing more than 450,000 images.
☆ Convergence Properties of Score-Based Models using Graduated Optimisation for Linear Inverse Problems
The incorporation of generative models as regularisers within variational formulations for inverse problems has proven effective across numerous image reconstruction tasks. However, the resulting optimisation problem is often non-convex and challenging to solve. In this work, we show that score-based generative models (SGMs) can be used in a graduated optimisation framework to solve inverse problems. We show that the resulting graduated non-convexity flow converge to stationary points of the original problem and provide a numerical convergence analysis of a 2D toy example. We further provide experiments on computed tomography image reconstruction, where we show that this framework is able to recover high-quality images, independent of the initial value. The experiments highlight the potential of using SGMs in graduated optimisation frameworks.
comment: 8 pages
☆ Dual-Modal Prompting for Sketch-Based Image Retrieval
Sketch-based image retrieval (SBIR) associates hand-drawn sketches with their corresponding realistic images. In this study, we aim to tackle two major challenges of this task simultaneously: i) zero-shot, dealing with unseen categories, and ii) fine-grained, referring to intra-category instance-level retrieval. Our key innovation lies in the realization that solely addressing this cross-category and fine-grained recognition task from the generalization perspective may be inadequate since the knowledge accumulated from limited seen categories might not be fully valuable or transferable to unseen target categories. Inspired by this, in this work, we propose a dual-modal prompting CLIP (DP-CLIP) network, in which an adaptive prompting strategy is designed. Specifically, to facilitate the adaptation of our DP-CLIP toward unpredictable target categories, we employ a set of images within the target category and the textual category label to respectively construct a set of category-adaptive prompt tokens and channel scales. By integrating the generated guidance, DP-CLIP could gain valuable category-centric insights, efficiently adapting to novel categories and capturing unique discriminative clues for effective retrieval within each target category. With these designs, our DP-CLIP outperforms the state-of-the-art fine-grained zero-shot SBIR method by 7.3% in Acc.@1 on the Sketchy dataset. Meanwhile, in the other two category-level zero-shot SBIR benchmarks, our method also achieves promising performance.
☆ Bootstrap 3D Reconstructed Scenes from 3D Gaussian Splatting
Recent developments in neural rendering techniques have greatly enhanced the rendering of photo-realistic 3D scenes across both academic and commercial fields. The latest method, known as 3D Gaussian Splatting (3D-GS), has set new benchmarks for rendering quality and speed. Nevertheless, the limitations of 3D-GS become pronounced in synthesizing new viewpoints, especially for views that greatly deviate from those seen during training. Additionally, issues such as dilation and aliasing arise when zooming in or out. These challenges can all be traced back to a single underlying issue: insufficient sampling. In our paper, we present a bootstrapping method that significantly addresses this problem. This approach employs a diffusion model to enhance the rendering of novel views using trained 3D-GS, thereby streamlining the training process. Our results indicate that bootstrapping effectively reduces artifacts, as well as clear enhancements on the evaluation metrics. Furthermore, we show that our method is versatile and can be easily integrated, allowing various 3D reconstruction projects to benefit from our approach.
☆ Leveraging PointNet and PointNet++ for Lyft Point Cloud Classification Challenge
This study investigates the application of PointNet and PointNet++ in the classification of LiDAR-generated point cloud data, a critical component for achieving fully autonomous vehicles. Utilizing a modified dataset from the Lyft 3D Object Detection Challenge, we examine the models' capabilities to handle dynamic and complex environments essential for autonomous navigation. Our analysis shows that PointNet and PointNet++ achieved accuracy rates of 79.53% and 84.24%, respectively. These results underscore the models' robustness in interpreting intricate environmental data, which is pivotal for the safety and efficiency of autonomous vehicles. Moreover, the enhanced detection accuracy, particularly in distinguishing pedestrians from other objects, highlights the potential of these models to contribute substantially to the advancement of autonomous vehicle technology.
☆ Reading Order Independent Metrics for Information Extraction in Handwritten Documents
Information Extraction processes in handwritten documents tend to rely on obtaining an automatic transcription and performing Named Entity Recognition (NER) over such transcription. For this reason, in publicly available datasets, the performance of the systems is usually evaluated with metrics particular to each dataset. Moreover, most of the metrics employed are sensitive to reading order errors. Therefore, they do not reflect the expected final application of the system and introduce biases in more complex documents. In this paper, we propose and publicly release a set of reading order independent metrics tailored to Information Extraction evaluation in handwritten documents. In our experimentation, we perform an in-depth analysis of the behavior of the metrics to recommend what we consider to be the minimal set of metrics to evaluate a task correctly.
☆ Terrain characterisation for online adaptability of automated sonar processing: Lessons learnt from operationally applying ATR to sidescan sonar in MCM applications
The performance of Automated Recognition (ATR) algorithms on side-scan sonar imagery has shown to degrade rapidly when deployed on non benign environments. Complex seafloors and acoustic artefacts constitute distractors in the form of strong textural patterns, creating false detections or preventing detections of true objects. This paper presents two online seafloor characterisation techniques to improve explainability during Autonomous Underwater Vehicles (AUVs) missions. Importantly and as opposed to previous work in the domain, these techniques are not based on a model and require limited input from human operators, making it suitable for real-time onboard processing. Both techniques rely on an unsupervised machine learning approach to extract terrain features which relate to the human understanding of terrain complexity. The first technnique provides a quantitative, application-driven terrain characterisation metric based on the performance of an ATR algorithm. The second method provides a way to incorporate subject matter expertise and enables contextualisation and explainability in support for scenario-dependent subjective terrain characterisation. The terrain complexity matches the expectation of seasoned users making this tool desirable and trustworthy in comparison to traditional unsupervised approaches. We finally detail an application of these techniques to repair a Mine Countermeasures (MCM) mission carried with SeeByte autonomy framework Neptune.
comment: Presented at UACE (Underwater Acoustics Conference & Exhibition) 2023, Kalamata, Greece
☆ Towards Quantitative Evaluation of Explainable AI Methods for Deepfake Detection ICMR'24
In this paper we propose a new framework for evaluating the performance of explanation methods on the decisions of a deepfake detector. This framework assesses the ability of an explanation method to spot the regions of a fake image with the biggest influence on the decision of the deepfake detector, by examining the extent to which these regions can be modified through a set of adversarial attacks, in order to flip the detector's prediction or reduce its initial prediction; we anticipate a larger drop in deepfake detection accuracy and prediction, for methods that spot these regions more accurately. Based on this framework, we conduct a comparative study using a state-of-the-art model for deepfake detection that has been trained on the FaceForensics++ dataset, and five explanation methods from the literature. The findings of our quantitative and qualitative evaluations document the advanced performance of the LIME explanation method against the other compared ones, and indicate this method as the most appropriate for explaining the decisions of the utilized deepfake detector.
comment: Accepted for publication, 3rd ACM Int. Workshop on Multimedia AI against Disinformation (MAD'24) at ACM ICMR'24, June 10, 2024, Phuket, Thailand. This is the "accepted version"
☆ Uncertainty-boosted Robust Video Activity Anticipation
Video activity anticipation aims to predict what will happen in the future, embracing a broad application prospect ranging from robot vision and autonomous driving. Despite the recent progress, the data uncertainty issue, reflected as the content evolution process and dynamic correlation in event labels, has been somehow ignored. This reduces the model generalization ability and deep understanding on video content, leading to serious error accumulation and degraded performance. In this paper, we address the uncertainty learning problem and propose an uncertainty-boosted robust video activity anticipation framework, which generates uncertainty values to indicate the credibility of the anticipation results. The uncertainty value is used to derive a temperature parameter in the softmax function to modulate the predicted target activity distribution. To guarantee the distribution adjustment, we construct a reasonable target activity label representation by incorporating the activity evolution from the temporal class correlation and the semantic relationship. Moreover, we quantify the uncertainty into relative values by comparing the uncertainty among sample pairs and their temporal-lengths. This relative strategy provides a more accessible way in uncertainty modeling than quantifying the absolute uncertainty values on the whole dataset. Experiments on multiple backbones and benchmarks show our framework achieves promising performance and better robustness/interpretability. Source codes are available at https://github.com/qzhb/UbRV2A.
comment: Accepted by T-PAMI
☆ 4D-DRESS: A 4D Dataset of Real-world Human Clothing with Semantic Annotations CVPR 2024
The studies of human clothing for digital avatars have predominantly relied on synthetic datasets. While easy to collect, synthetic data often fall short in realism and fail to capture authentic clothing dynamics. Addressing this gap, we introduce 4D-DRESS, the first real-world 4D dataset advancing human clothing research with its high-quality 4D textured scans and garment meshes. 4D-DRESS captures 64 outfits in 520 human motion sequences, amounting to 78k textured scans. Creating a real-world clothing dataset is challenging, particularly in annotating and segmenting the extensive and complex 4D human scans. To address this, we develop a semi-automatic 4D human parsing pipeline. We efficiently combine a human-in-the-loop process with automation to accurately label 4D scans in diverse garments and body movements. Leveraging precise annotations and high-quality garment meshes, we establish several benchmarks for clothing simulation and reconstruction. 4D-DRESS offers realistic and challenging data that complements synthetic sources, paving the way for advancements in research of lifelike human clothing. Website: https://ait.ethz.ch/4d-dress.
comment: CVPR 2024 paper, 21 figures, 9 tables
☆ Self-Avatar Animation in Virtual Reality: Impact of Motion Signals Artifacts on the Full-Body Pose Reconstruction
Virtual Reality (VR) applications have revolutionized user experiences by immersing individuals in interactive 3D environments. These environments find applications in numerous fields, including healthcare, education, or architecture. A significant aspect of VR is the inclusion of self-avatars, representing users within the virtual world, which enhances interaction and embodiment. However, generating lifelike full-body self-avatar animations remains challenging, particularly in consumer-grade VR systems, where lower-body tracking is often absent. One method to tackle this problem is by providing an external source of motion information that includes lower body information such as full Cartesian positions estimated from RGB(D) cameras. Nevertheless, the limitations of these systems are multiples: the desynchronization between the two motion sources and occlusions are examples of significant issues that hinder the implementations of such systems. In this paper, we aim to measure the impact on the reconstruction of the articulated self-avatar's full-body pose of (1) the latency between the VR motion features and estimated positions, (2) the data acquisition rate, (3) occlusions, and (4) the inaccuracy of the position estimation algorithm. In addition, we analyze the motion reconstruction errors using ground truth and 3D Cartesian coordinates estimated from \textit{YOLOv8} pose estimation. These analyzes show that the studied methods are significantly sensitive to any degradation tested, especially regarding the velocity reconstruction error.
comment: 8 pages, 5 figures and 1 table
☆ Do Vision & Language Decoders use Images and Text equally? How Self-consistent are their Explanations?
Vision and language models (VLMs) are currently the most generally performant architectures on multimodal tasks. Next to their predictions, they can also produce explanations, either in post-hoc or CoT settings. However, it is not clear how much they use the vision and text modalities when generating predictions or explanations. In this work, we investigate if VLMs rely on modalities differently when generating explanations as opposed to when they provide answers. We also evaluate the self-consistency of VLM decoders in both post-hoc and CoT explanation settings, by extending existing tests and measures to VLM decoders. We find that VLMs are less self-consistent than LLMs. The text contributions in VL decoders are much larger than the image contributions across all measured tasks. And the contributions of the image are significantly larger for explanation generations than for answer generation. This difference is even larger in CoT compared to the post-hoc explanation setting. We also provide an up-to-date benchmarking of state-of-the-art VL decoders on the VALSE benchmark, which to date focused only on VL encoders. We find that VL decoders are still struggling with most phenomena tested by VALSE.
comment: 27 pages, from which 12 pages contain the text of the main paper. 8 figures, 11 tables
☆ FlexiFilm: Long Video Generation with Flexible Conditions
Generating long and consistent videos has emerged as a significant yet challenging problem. While most existing diffusion-based video generation models, derived from image generation models, demonstrate promising performance in generating short videos, their simple conditioning mechanism and sampling strategy-originally designed for image generation-cause severe performance degradation when adapted to long video generation. This results in prominent temporal inconsistency and overexposure. Thus, in this work, we introduce FlexiFilm, a new diffusion model tailored for long video generation. Our framework incorporates a temporal conditioner to establish a more consistent relationship between generation and multi-modal conditions, and a resampling strategy to tackle overexposure. Empirical results demonstrate FlexiFilm generates long and consistent videos, each over 30 seconds in length, outperforming competitors in qualitative and quantitative analyses. Project page: https://y-ichen.github.io/FlexiFilm-Page/
comment: 9 pages, 9 figures
☆ CoSense3D: an Agent-based Efficient Learning Framework for Collective Perception
Collective Perception has attracted significant attention in recent years due to its advantage for mitigating occlusion and expanding the field-of-view, thereby enhancing reliability, efficiency, and, most crucially, decision-making safety. However, developing collective perception models is highly resource demanding due to extensive requirements of processing input data for many agents, usually dozens of images and point clouds for a single frame. This not only slows down the model development process for collective perception but also impedes the utilization of larger models. In this paper, we propose an agent-based training framework that handles the deep learning modules and agent data separately to have a cleaner data flow structure. This framework not only provides an API for flexibly prototyping the data processing pipeline and defining the gradient calculation for each agent, but also provides the user interface for interactive training, testing and data visualization. Training experiment results of four collective object detection models on the prominent collective perception benchmark OPV2V show that the agent-based training can significantly reduce the GPU memory consumption and training time while retaining inference performance. The framework and model implementations are available at \url{https://github.com/YuanYunshuang/CoSense3D}
☆ CSTalk: Correlation Supervised Speech-driven 3D Emotional Facial Animation Generation
Speech-driven 3D facial animation technology has been developed for years, but its practical application still lacks expectations. The main challenges lie in data limitations, lip alignment, and the naturalness of facial expressions. Although lip alignment has seen many related studies, existing methods struggle to synthesize natural and realistic expressions, resulting in a mechanical and stiff appearance of facial animations. Even with some research extracting emotional features from speech, the randomness of facial movements limits the effective expression of emotions. To address this issue, this paper proposes a method called CSTalk (Correlation Supervised) that models the correlations among different regions of facial movements and supervises the training of the generative model to generate realistic expressions that conform to human facial motion patterns. To generate more intricate animations, we employ a rich set of control parameters based on the metahuman character model and capture a dataset for five different emotions. We train a generative network using an autoencoder structure and input an emotion embedding vector to achieve the generation of user-control expressions. Experimental results demonstrate that our method outperforms existing state-of-the-art methods.
Self-supervised learning for classifying paranasal anomalies in the maxillary sinus
Purpose: Paranasal anomalies, frequently identified in routine radiological screenings, exhibit diverse morphological characteristics. Due to the diversity of anomalies, supervised learning methods require large labelled dataset exhibiting diverse anomaly morphology. Self-supervised learning (SSL) can be used to learn representations from unlabelled data. However, there are no SSL methods designed for the downstream task of classifying paranasal anomalies in the maxillary sinus (MS). Methods: Our approach uses a 3D Convolutional Autoencoder (CAE) trained in an unsupervised anomaly detection (UAD) framework. Initially, we train the 3D CAE to reduce reconstruction errors when reconstructing normal maxillary sinus (MS) image. Then, this CAE is applied to an unlabelled dataset to generate coarse anomaly locations by creating residual MS images. Following this, a 3D Convolutional Neural Network (CNN) reconstructs these residual images, which forms our SSL task. Lastly, we fine-tune the encoder part of the 3D CNN on a labelled dataset of normal and anomalous MS images. Results: The proposed SSL technique exhibits superior performance compared to existing generic self-supervised methods, especially in scenarios with limited annotated data. When trained on just 10% of the annotated dataset, our method achieves an Area Under the Precision-Recall Curve (AUPRC) of 0.79 for the downstream classification task. This performance surpasses other methods, with BYOL attaining an AUPRC of 0.75, SimSiam at 0.74, SimCLR at 0.73 and Masked Autoencoding using SparK at 0.75. Conclusion: A self-supervised learning approach that inherently focuses on localizing paranasal anomalies proves to be advantageous, particularly when the subsequent task involves differentiating normal from anomalous maxillary sinuses. Access our code at https://github.com/mtec-tuhh/self-supervised-paranasal-anomaly
☆ Anywhere: A Multi-Agent Framework for Reliable and Diverse Foreground-Conditioned Image Inpainting
Recent advancements in image inpainting, particularly through diffusion modeling, have yielded promising outcomes. However, when tested in scenarios involving the completion of images based on the foreground objects, current methods that aim to inpaint an image in an end-to-end manner encounter challenges such as "over-imagination", inconsistency between foreground and background, and limited diversity. In response, we introduce Anywhere, a pioneering multi-agent framework designed to address these issues. Anywhere utilizes a sophisticated pipeline framework comprising various agents such as Visual Language Model (VLM), Large Language Model (LLM), and image generation models. This framework consists of three principal components: the prompt generation module, the image generation module, and the outcome analyzer. The prompt generation module conducts a semantic analysis of the input foreground image, leveraging VLM to predict relevant language descriptions and LLM to recommend optimal language prompts. In the image generation module, we employ a text-guided canny-to-image generation model to create a template image based on the edge map of the foreground image and language prompts, and an image refiner to produce the outcome by blending the input foreground and the template image. The outcome analyzer employs VLM to evaluate image content rationality, aesthetic score, and foreground-background relevance, triggering prompt and image regeneration as needed. Extensive experiments demonstrate that our Anywhere framework excels in foreground-conditioned image inpainting, mitigating "over-imagination", resolving foreground-background discrepancies, and enhancing diversity. It successfully elevates foreground-conditioned image inpainting to produce more reliable and diverse results.
comment: 16 pages, 9 figures, project page: https://anywheremultiagent.github.io
☆ Context Matters: Leveraging Spatiotemporal Metadata for Semi-Supervised Learning on Remote Sensing Images
Remote sensing projects typically generate large amounts of imagery that can be used to train powerful deep neural networks. However, the amount of labeled images is often small, as remote sensing applications generally require expert labelers. Thus, semi-supervised learning (SSL), i.e., learning with a small pool of labeled and a larger pool of unlabeled data, is particularly useful in this domain. Current SSL approaches generate pseudo-labels from model predictions for unlabeled samples. As the quality of these pseudo-labels is crucial for performance, utilizing additional information to improve pseudo-label quality yields a promising direction. For remote sensing images, geolocation and recording time are generally available and provide a valuable source of information as semantic concepts, such as land cover, are highly dependent on spatiotemporal context, e.g., due to seasonal effects and vegetation zones. In this paper, we propose to exploit spatiotemporal metainformation in SSL to improve the quality of pseudo-labels and, therefore, the final model performance. We show that directly adding the available metadata to the input of the predictor at test time degenerates the prediction quality for metadata outside the spatiotemporal distribution of the training set. Thus, we propose a teacher-student SSL framework where only the teacher network uses metainformation to improve the quality of pseudo-labels on the training set. Correspondingly, our student network benefits from the improved pseudo-labels but does not receive metadata as input, making it invariant to spatiotemporal shifts at test time. Furthermore, we propose methods for encoding and injecting spatiotemporal information into the model and introduce a novel distillation mechanism to enhance the knowledge transfer between teacher and student. Our framework dubbed Spatiotemporal SSL can be easily combined with several stat...
☆ SIDBench: A Python Framework for Reliably Assessing Synthetic Image Detection Methods
The generative AI technology offers an increasing variety of tools for generating entirely synthetic images that are increasingly indistinguishable from real ones. Unlike methods that alter portions of an image, the creation of completely synthetic images presents a unique challenge and several Synthetic Image Detection (SID) methods have recently appeared to tackle it. Yet, there is often a large gap between experimental results on benchmark datasets and the performance of methods in the wild. To better address the evaluation needs of SID and help close this gap, this paper introduces a benchmarking framework that integrates several state-of-the-art SID models. Our selection of integrated models was based on the utilization of varied input features, and different network architectures, aiming to encompass a broad spectrum of techniques. The framework leverages recent datasets with a diverse set of generative models, high level of photo-realism and resolution, reflecting the rapid improvements in image synthesis technology. Additionally, the framework enables the study of how image transformations, common in assets shared online, such as JPEG compression, affect detection performance. SIDBench is available on https://github.com/mever-team/sidbench and is designed in a modular manner to enable easy inclusion of new datasets and SID models.
☆ Enhancing Boundary Segmentation for Topological Accuracy with Skeleton-based Methods
Topological consistency plays a crucial role in the task of boundary segmentation for reticular images, such as cell membrane segmentation in neuron electron microscopic images, grain boundary segmentation in material microscopic images and road segmentation in aerial images. In these fields, topological changes in segmentation results have a serious impact on the downstream tasks, which can even exceed the misalignment of the boundary itself. To enhance the topology accuracy in segmentation results, we propose the Skea-Topo Aware loss, which is a novel loss function that takes into account the shape of each object and topological significance of the pixels. It consists of two components. First, the skeleton-aware weighted loss improves the segmentation accuracy by better modeling the object geometry with skeletons. Second, a boundary rectified term effectively identifies and emphasizes topological critical pixels in the prediction errors using both foreground and background skeletons in the ground truth and predictions. Experiments prove that our method improves topological consistency by up to 7 points in VI compared to 13 state-of-art methods, based on objective and subjective assessments across three different boundary segmentation datasets. The code is available at https://github.com/clovermini/Skea_topo.
☆ MileBench: Benchmarking MLLMs in Long Context
Despite the advancements and impressive performance of Multimodal Large Language Models (MLLMs) on benchmarks, their effectiveness in real-world, long-context, and multi-image tasks is unclear due to the benchmarks' limited scope. Existing benchmarks often focus on single-image and short-text samples, and when assessing multi-image tasks, they either limit the image count or focus on specific task (e.g time-series captioning), potentially obscuring the performance challenges of MLLMs. To address these limitations, we introduce MileBench, a pioneering benchmark designed to test the MultImodal Long-contExt capabilities of MLLMs. This benchmark comprises not only multimodal long contexts, but also multiple tasks requiring both comprehension and generation. We establish two distinct evaluation sets, diagnostic and realistic, to systematically assess MLLMs' long-context adaptation capacity and their ability to complete tasks in long-context scenarios. Our experimental results, obtained from testing 20 models, revealed that while the closed-source GPT-4(Vision) and Gemini 1.5 outperform others, most open-source MLLMs struggle in long-context situations. Interestingly, the performance gap tends to widen with an increase in the number of images. We strongly encourage an intensification of research efforts towards enhancing MLLMs' long-context capabilities, especially in scenarios involving multiple images.
comment: 29 pages, 13 figures, 14 tables
☆ Multisensor Data Fusion for Automatized Insect Monitoring (KInsecta)
Insect populations are declining globally, making systematic monitoring essential for conservation. Most classical methods involve death traps and counter insect conservation. This paper presents a multisensor approach that uses AI-based data fusion for insect classification. The system is designed as low-cost setup and consists of a camera module and an optical wing beat sensor as well as environmental sensors to measure temperature, irradiance or daytime as prior information. The system has been tested in the laboratory and in the field. First tests on a small very unbalanced data set with 7 species show promising results for species classification. The multisensor system will support biodiversity and agriculture studies.
☆ Clicks2Line: Using Lines for Interactive Image Segmentation
For click-based interactive segmentation methods, reducing the number of clicks required to obtain a desired segmentation result is essential. Although recent click-based methods yield decent segmentation results, we observe that substantial amount of clicks are required to segment elongated regions. To reduce the amount of user-effort required, we propose using lines instead of clicks for such cases. In this paper, an interactive segmentation algorithm which adaptively adopts either clicks or lines as input is proposed. Experimental results demonstrate that using lines can generate better segmentation results than clicks for several cases.
☆ Chameleon: A Data-Efficient Generalist for Dense Visual Prediction in the Wild
Large language models have evolved data-efficient generalists, benefiting from the universal language interface and large-scale pre-training. However, constructing a data-efficient generalist for dense visual prediction presents a distinct challenge due to the variation in label structures across different tasks. Consequently, generalization to unseen dense prediction tasks in the low-data regime is not straightforward and has received less attention from previous vision generalists. In this study, we explore a universal model that can flexibly adapt to unseen dense label structures with a few examples, enabling it to serve as a data-efficient vision generalist in diverse real-world scenarios. To this end, we base our method on a powerful meta-learning framework and explore several axes to improve its performance and versatility for real-world problems, such as flexible adaptation mechanisms and scalability. We evaluate our model across a spectrum of unseen real-world scenarios where low-shot learning is desirable, including video, 3D, medical, biological, and user-interactive tasks. Equipped with a generic architecture and an effective adaptation mechanism, our model flexibly adapts to all of these tasks with at most 50 labeled images, showcasing a significant advancement over existing data-efficient generalist approaches. Codes are available at https://github.com/GitGyun/chameleon.
☆ Autonomous Quality and Hallucination Assessment for Virtual Tissue Staining and Digital Pathology
Histopathological staining of human tissue is essential in the diagnosis of various diseases. The recent advances in virtual tissue staining technologies using AI alleviate some of the costly and tedious steps involved in the traditional histochemical staining process, permitting multiplexed rapid staining of label-free tissue without using staining reagents, while also preserving tissue. However, potential hallucinations and artifacts in these virtually stained tissue images pose concerns, especially for the clinical utility of these approaches. Quality assessment of histology images is generally performed by human experts, which can be subjective and depends on the training level of the expert. Here, we present an autonomous quality and hallucination assessment method (termed AQuA), mainly designed for virtual tissue staining, while also being applicable to histochemical staining. AQuA achieves 99.8% accuracy when detecting acceptable and unacceptable virtually stained tissue images without access to ground truth, also presenting an agreement of 98.5% with the manual assessments made by board-certified pathologists. Besides, AQuA achieves super-human performance in identifying realistic-looking, virtually stained hallucinatory images that would normally mislead human diagnosticians by deceiving them into diagnosing patients that never existed. We further demonstrate the wide adaptability of AQuA across various virtually and histochemically stained tissue images and showcase its strong external generalization to detect unseen hallucination patterns of virtual staining network models as well as artifacts observed in the traditional histochemical staining workflow. This framework creates new opportunities to enhance the reliability of virtual staining and will provide quality assurance for various image generation and transformation tasks in digital pathology and computational imaging.
comment: 37 Pages, 7 Figures
☆ 3D Gaussian Splatting with Deferred Reflection
The advent of neural and Gaussian-based radiance field methods have achieved great success in the field of novel view synthesis. However, specular reflection remains non-trivial, as the high frequency radiance field is notoriously difficult to fit stably and accurately. We present a deferred shading method to effectively render specular reflection with Gaussian splatting. The key challenge comes from the environment map reflection model, which requires accurate surface normal while simultaneously bottlenecks normal estimation with discontinuous gradients. We leverage the per-pixel reflection gradients generated by deferred shading to bridge the optimization process of neighboring Gaussians, allowing nearly correct normal estimations to gradually propagate and eventually spread over all reflective objects. Our method significantly outperforms state-of-the-art techniques and concurrent work in synthesizing high-quality specular reflection effects, demonstrating a consistent improvement of peak signal-to-noise ratio (PSNR) for both synthetic and real-world scenes, while running at a frame rate almost identical to vanilla Gaussian splatting.
☆ MFP: Making Full Use of Probability Maps for Interactive Image Segmentation CVPR 2024
In recent interactive segmentation algorithms, previous probability maps are used as network input to help predictions in the current segmentation round. However, despite the utilization of previous masks, useful information contained in the probability maps is not well propagated to the current predictions. In this paper, to overcome this limitation, we propose a novel and effective algorithm for click-based interactive image segmentation, called MFP, which attempts to make full use of probability maps. We first modulate previous probability maps to enhance their representations of user-specified objects. Then, we feed the modulated probability maps as additional input to the segmentation network. We implement the proposed MFP algorithm based on the ResNet-34, HRNet-18, and ViT-B backbones and assess the performance extensively on various datasets. It is demonstrated that MFP meaningfully outperforms the existing algorithms using identical backbones. The source codes are available at \href{https://github.com/cwlee00/MFP}{https://github.com/cwlee00/MFP}.
comment: Accepted to CVPR 2024
☆ $ν$-DBA: Neural Implicit Dense Bundle Adjustment Enables Image-Only Driving Scene Reconstruction
The joint optimization of the sensor trajectory and 3D map is a crucial characteristic of bundle adjustment (BA), essential for autonomous driving. This paper presents $\nu$-DBA, a novel framework implementing geometric dense bundle adjustment (DBA) using 3D neural implicit surfaces for map parametrization, which optimizes both the map surface and trajectory poses using geometric error guided by dense optical flow prediction. Additionally, we fine-tune the optical flow model with per-scene self-supervision to further improve the quality of the dense mapping. Our experimental results on multiple driving scene datasets demonstrate that our method achieves superior trajectory optimization and dense reconstruction accuracy. We also investigate the influences of photometric error and different neural geometric priors on the performance of surface reconstruction and novel view synthesis. Our method stands as a significant step towards leveraging neural implicit representations in dense bundle adjustment for more accurate trajectories and detailed environmental mapping.
☆ ShadowMaskFormer: Mask Augmented Patch Embeddings for Shadow Removal
Transformer recently emerged as the de facto model for computer vision tasks and has also been successfully applied to shadow removal. However, these existing methods heavily rely on intricate modifications to the attention mechanisms within the transformer blocks while using a generic patch embedding. As a result, it often leads to complex architectural designs requiring additional computation resources. In this work, we aim to explore the efficacy of incorporating shadow information within the early processing stage. Accordingly, we propose a transformer-based framework with a novel patch embedding that is tailored for shadow removal, dubbed ShadowMaskFormer. Specifically, we present a simple and effective mask-augmented patch embedding to integrate shadow information and promote the model's emphasis on acquiring knowledge for shadow regions. Extensive experiments conducted on the ISTD, ISTD+, and SRD benchmark datasets demonstrate the efficacy of our method against state-of-the-art approaches while using fewer model parameters.
☆ Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images
Presently, the task of few-shot object detection (FSOD) in remote sensing images (RSIs) has become a focal point of attention. Numerous few-shot detectors, particularly those based on two-stage detectors, face challenges when dealing with the multiscale complexities inherent in RSIs. Moreover, these detectors present impractical characteristics in real-world applications, mainly due to their unwieldy model parameters when handling large amount of data. In contrast, we recognize the advantages of one-stage detectors, including high detection speed and a global receptive field. Consequently, we choose the YOLOv7 one-stage detector as a baseline and subject it to a novel meta-learning training framework. This transformation allows the detector to adeptly address FSOD tasks while capitalizing on its inherent advantage of lightweight. Additionally, we thoroughly investigate the samples generated by the meta-learning strategy and introduce a novel meta-sampling approach to retain samples produced by our designed meta-detection head. Coupled with our devised meta-cross loss, we deliberately utilize ``negative samples" that are often overlooked to extract valuable knowledge from them. This approach serves to enhance detection accuracy and efficiently refine the overall meta-learning strategy. To validate the effectiveness of our proposed detector, we conducted performance comparisons with current state-of-the-art detectors using the DIOR and NWPU VHR-10.v2 datasets, yielding satisfactory results.
☆ Unsupervised Dynamics Prediction with Object-Centric Kinematics
Human perception involves discerning complex multi-object scenes into time-static object appearance (\ie, size, shape, color) and time-varying object motion (\ie, location, velocity, acceleration). This innate ability to unconsciously understand the environment is the motivation behind the success of dynamics modeling. Object-centric representations have emerged as a promising tool for dynamics prediction, yet they primarily focus on the objects' appearance, often overlooking other crucial attributes. In this paper, we propose Object-Centric Kinematics (OCK), a framework for dynamics prediction leveraging object-centric representations. Our model utilizes a novel component named object kinematics, which comprises low-level structured states of objects' position, velocity, and acceleration. The object kinematics are obtained via either implicit or explicit approaches, enabling comprehensive spatiotemporal object reasoning, and integrated through various transformer mechanisms, facilitating effective object-centric dynamics modeling. Our model demonstrates superior performance when handling objects and backgrounds in complex scenes characterized by a wide range of object attributes and dynamic movements. Moreover, our model demonstrates generalization capabilities across diverse synthetic environments, highlighting its potential for broad applicability in vision-related tasks.
comment: 15 pages, 6 figures, 4 tables
☆ Research on Intelligent Aided Diagnosis System of Medical Image Based on Computer Deep Learning
This paper combines Struts and Hibernate two architectures together, using DAO (Data Access Object) to store and access data. Then a set of dual-mode humidity medical image library suitable for deep network is established, and a dual-mode medical image assisted diagnosis method based on the image is proposed. Through the test of various feature extraction methods, the optimal operating characteristic under curve product (AUROC) is 0.9985, the recall rate is 0.9814, and the accuracy is 0.9833. This method can be applied to clinical diagnosis, and it is a practical method. Any outpatient doctor can register quickly through the system, or log in to the platform to upload the image to obtain more accurate images. Through the system, each outpatient physician can quickly register or log in to the platform for image uploading, thus obtaining more accurate images. The segmentation of images can guide doctors in clinical departments. Then the image is analyzed to determine the location and nature of the tumor, so as to make targeted treatment.
☆ Capabilities of Gemini Models in Medicine
Excellence in a wide variety of medical applications poses considerable challenges for AI, requiring advanced reasoning, access to up-to-date medical knowledge and understanding of complex multimodal data. Gemini models, with strong general capabilities in multimodal and long-context reasoning, offer exciting possibilities in medicine. Building on these core strengths of Gemini, we introduce Med-Gemini, a family of highly capable multimodal models that are specialized in medicine with the ability to seamlessly use web search, and that can be efficiently tailored to novel modalities using custom encoders. We evaluate Med-Gemini on 14 medical benchmarks, establishing new state-of-the-art (SoTA) performance on 10 of them, and surpass the GPT-4 model family on every benchmark where a direct comparison is viable, often by a wide margin. On the popular MedQA (USMLE) benchmark, our best-performing Med-Gemini model achieves SoTA performance of 91.1% accuracy, using a novel uncertainty-guided search strategy. On 7 multimodal benchmarks including NEJM Image Challenges and MMMU (health & medicine), Med-Gemini improves over GPT-4V by an average relative margin of 44.5%. We demonstrate the effectiveness of Med-Gemini's long-context capabilities through SoTA performance on a needle-in-a-haystack retrieval task from long de-identified health records and medical video question answering, surpassing prior bespoke methods using only in-context learning. Finally, Med-Gemini's performance suggests real-world utility by surpassing human experts on tasks such as medical text summarization, alongside demonstrations of promising potential for multimodal medical dialogue, medical research and education. Taken together, our results offer compelling evidence for Med-Gemini's potential, although further rigorous evaluation will be crucial before real-world deployment in this safety-critical domain.
☆ 3AM: An Ambiguity-Aware Multi-Modal Machine Translation Dataset
Multimodal machine translation (MMT) is a challenging task that seeks to improve translation quality by incorporating visual information. However, recent studies have indicated that the visual information provided by existing MMT datasets is insufficient, causing models to disregard it and overestimate their capabilities. This issue presents a significant obstacle to the development of MMT research. This paper presents a novel solution to this issue by introducing 3AM, an ambiguity-aware MMT dataset comprising 26,000 parallel sentence pairs in English and Chinese, each with corresponding images. Our dataset is specifically designed to include more ambiguity and a greater variety of both captions and images than other MMT datasets. We utilize a word sense disambiguation model to select ambiguous data from vision-and-language datasets, resulting in a more challenging dataset. We further benchmark several state-of-the-art MMT models on our proposed dataset. Experimental results show that MMT models trained on our dataset exhibit a greater ability to exploit visual information than those trained on other MMT datasets. Our work provides a valuable resource for researchers in the field of multimodal learning and encourages further exploration in this area. The data, code and scripts are freely available at https://github.com/MaxyLee/3AM.
☆ Multi-modal Perception Dataset of In-water Objects for Autonomous Surface Vehicles ICRA
This paper introduces the first publicly accessible multi-modal perception dataset for autonomous maritime navigation, focusing on in-water obstacles within the aquatic environment to enhance situational awareness for Autonomous Surface Vehicles (ASVs). This dataset, consisting of diverse objects encountered under varying environmental conditions, aims to bridge the research gap in marine robotics by providing a multi-modal, annotated, and ego-centric perception dataset, for object detection and classification. We also show the applicability of the proposed dataset's framework using deep learning-based open-source perception algorithms that have shown success. We expect that our dataset will contribute to development of the marine autonomy pipeline and marine (field) robotics. Please note this is a work-in-progress paper about our on-going research that we plan to release in full via future publication.
comment: Accepted to the IEEE ICRA Workshop on Field Robotics 2024
☆ PKU-AIGIQA-4K: A Perceptual Quality Assessment Database for Both Text-to-Image and Image-to-Image AI-Generated Images
In recent years, image generation technology has rapidly advanced, resulting in the creation of a vast array of AI-generated images (AIGIs). However, the quality of these AIGIs is highly inconsistent, with low-quality AIGIs severely impairing the visual experience of users. Due to the widespread application of AIGIs, the AI-generated image quality assessment (AIGIQA), aimed at evaluating the quality of AIGIs from the perspective of human perception, has garnered increasing interest among scholars. Nonetheless, current research has not yet fully explored this field. We have observed that existing databases are limited to images generated from single scenario settings. Databases such as AGIQA-1K, AGIQA-3K, and AIGCIQA2023, for example, only include images generated by text-to-image generative models. This oversight highlights a critical gap in the current research landscape, underscoring the need for dedicated databases catering to image-to-image scenarios, as well as more comprehensive databases that encompass a broader range of AI-generated image scenarios. Addressing these issues, we have established a large scale perceptual quality assessment database for both text-to-image and image-to-image AIGIs, named PKU-AIGIQA-4K. We then conduct a well-organized subjective experiment to collect quality labels for AIGIs and perform a comprehensive analysis of the PKU-AIGIQA-4K database. Regarding the use of image prompts during the training process, we propose three image quality assessment (IQA) methods based on pre-trained models that include a no-reference method NR-AIGCIQA, a full-reference method FR-AIGCIQA, and a partial-reference method PR-AIGCIQA. Finally, leveraging the PKU-AIGIQA-4K database, we conduct extensive benchmark experiments and compare the performance of the proposed methods and the current IQA methods.
comment: 12 pages. arXiv admin note: substantial text overlap with arXiv:2311.15556
☆ Spectral-Spatial Mamba for Hyperspectral Image Classification
Recently, deep learning models have achieved excellent performance in hyperspectral image (HSI) classification. Among the many deep models, Transformer has gradually attracted interest for its excellence in modeling the long-range dependencies of spatial-spectral features in HSI. However, Transformer has the problem of quadratic computational complexity due to the self-attention mechanism, which is heavier than other models and thus has limited adoption in HSI processing. Fortunately, the recently emerging state space model-based Mamba shows great computational efficiency while achieving the modeling power of Transformers. Therefore, in this paper, we make a preliminary attempt to apply the Mamba to HSI classification, leading to the proposed spectral-spatial Mamba (SS-Mamba). Specifically, the proposed SS-Mamba mainly consists of spectral-spatial token generation module and several stacked spectral-spatial Mamba blocks. Firstly, the token generation module converts any given HSI cube to spatial and spectral tokens as sequences. And then these tokens are sent to stacked spectral-spatial mamba blocks (SS-MB). Each SS-MB block consists of two basic mamba blocks and a spectral-spatial feature enhancement module. The spatial and spectral tokens are processed separately by the two basic mamba blocks, respectively. Besides, the feature enhancement module modulates spatial and spectral tokens using HSI sample's center region information. In this way, the spectral and spatial tokens cooperate with each other and achieve information fusion within each block. The experimental results conducted on widely used HSI datasets reveal that the proposed model achieves competitive results compared with the state-of-the-art methods. The Mamba-based method opens a new window for HSI classification.
comment: 12 pages
☆ Semantic Line Combination Detector
A novel algorithm, called semantic line combination detector (SLCD), to find an optimal combination of semantic lines is proposed in this paper. It processes all lines in each line combination at once to assess the overall harmony of the lines. First, we generate various line combinations from reliable lines. Second, we estimate the score of each line combination and determine the best one. Experimental results demonstrate that the proposed SLCD outperforms existing semantic line detectors on various datasets. Moreover, it is shown that SLCD can be applied effectively to three vision tasks of vanishing point detection, symmetry axis detection, and composition-based image retrieval. Our codes are available at https://github.com/Jinwon-Ko/SLCD.
☆ ViOCRVQA: Novel Benchmark Dataset and Vision Reader for Visual Question Answering by Understanding Vietnamese Text in Images
Optical Character Recognition - Visual Question Answering (OCR-VQA) is the task of answering text information contained in images that have just been significantly developed in the English language in recent years. However, there are limited studies of this task in low-resource languages such as Vietnamese. To this end, we introduce a novel dataset, ViOCRVQA (Vietnamese Optical Character Recognition - Visual Question Answering dataset), consisting of 28,000+ images and 120,000+ question-answer pairs. In this dataset, all the images contain text and questions about the information relevant to the text in the images. We deploy ideas from state-of-the-art methods proposed for English to conduct experiments on our dataset, revealing the challenges and difficulties inherent in a Vietnamese dataset. Furthermore, we introduce a novel approach, called VisionReader, which achieved 0.4116 in EM and 0.6990 in the F1-score on the test set. Through the results, we found that the OCR system plays a very important role in VQA models on the ViOCRVQA dataset. In addition, the objects in the image also play a role in improving model performance. We open access to our dataset at link (https://github.com/qhnhynmm/ViOCRVQA.git) for further research in OCR-VQA task in Vietnamese.
☆ Reconstructing Satellites in 3D from Amateur Telescope Images
This paper proposes a framework for the 3D reconstruction of satellites in low-Earth orbit, utilizing videos captured by small amateur telescopes. The video data obtained from these telescopes differ significantly from data for standard 3D reconstruction tasks, characterized by intense motion blur, atmospheric turbulence, pervasive background light pollution, extended focal length and constrained observational perspectives. To address these challenges, our approach begins with a comprehensive pre-processing workflow that encompasses deep learning-based image restoration, feature point extraction and camera pose initialization. We proceed with the application of an improved 3D Gaussian splatting algorithm for reconstructing the 3D model. Our technique supports simultaneous 3D Gaussian training and pose estimation, enabling the robust generation of intricate 3D point clouds from sparse, noisy data. The procedure is further bolstered by a post-editing phase designed to eliminate noise points inconsistent with our prior knowledge of a satellite's geometric constraints. We validate our approach using both synthetic datasets and actual observations of China's Space Station, showcasing its significant advantages over existing methods in reconstructing 3D space objects from ground-based observations.
☆ Object Registration in Neural Fields ICRA 2024
Neural fields provide a continuous scene representation of 3D geometry and appearance in a way which has great promise for robotics applications. One functionality that unlocks unique use-cases for neural fields in robotics is object 6-DoF registration. In this paper, we provide an expanded analysis of the recent Reg-NF neural field registration method and its use-cases within a robotics context. We showcase the scenario of determining the 6-DoF pose of known objects within a scene using scene and object neural field models. We show how this may be used to better represent objects within imperfectly modelled scenes and generate new scenes by substituting object neural field models into the scene.
comment: Accepted to ICRA 2024 RoboNeRF workshop. 5 pages, 10 figures. arXiv admin note: substantial text overlap with arXiv:2402.09722
☆ Post-hoc and manifold explanations analysis of facial expression data based on deep learning
The complex information processing system of humans generates a lot of objective and subjective evaluations, making the exploration of human cognitive products of great cutting-edge theoretical value. In recent years, deep learning technologies, which are inspired by biological brain mechanisms, have made significant strides in the application of psychological or cognitive scientific research, particularly in the memorization and recognition of facial data. This paper investigates through experimental research how neural networks process and store facial expression data and associate these data with a range of psychological attributes produced by humans. Researchers utilized deep learning model VGG16, demonstrating that neural networks can learn and reproduce key features of facial data, thereby storing image memories. Moreover, the experimental results reveal the potential of deep learning models in understanding human emotions and cognitive processes and establish a manifold visualization interpretation of cognitive products or psychological attributes from a non-Euclidean space perspective, offering new insights into enhancing the explainability of AI. This study not only advances the application of AI technology in the field of psychology but also provides a new psychological theoretical understanding the information processing of the AI. The code is available in here: https://github.com/NKUShaw/Psychoinformatics.
comment: 19PAGES
☆ G-Refine: A General Quality Refiner for Text-to-Image Generation
With the evolution of Text-to-Image (T2I) models, the quality defects of AI-Generated Images (AIGIs) pose a significant barrier to their widespread adoption. In terms of both perception and alignment, existing models cannot always guarantee high-quality results. To mitigate this limitation, we introduce G-Refine, a general image quality refiner designed to enhance low-quality images without compromising the integrity of high-quality ones. The model is composed of three interconnected modules: a perception quality indicator, an alignment quality indicator, and a general quality enhancement module. Based on the mechanisms of the Human Visual System (HVS) and syntax trees, the first two indicators can respectively identify the perception and alignment deficiencies, and the last module can apply targeted quality enhancement accordingly. Extensive experimentation reveals that when compared to alternative optimization methods, AIGIs after G-Refine outperform in 10+ quality metrics across 4 databases. This improvement significantly contributes to the practical application of contemporary T2I models, paving the way for their broader adoption. The code will be released on https://github.com/Q-Future/Q-Refine.
☆ SAGS: Structure-Aware 3D Gaussian Splatting
Following the advent of NeRFs, 3D Gaussian Splatting (3D-GS) has paved the way to real-time neural rendering overcoming the computational burden of volumetric methods. Following the pioneering work of 3D-GS, several methods have attempted to achieve compressible and high-fidelity performance alternatives. However, by employing a geometry-agnostic optimization scheme, these methods neglect the inherent 3D structure of the scene, thereby restricting the expressivity and the quality of the representation, resulting in various floating points and artifacts. In this work, we propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene, which reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets. SAGS is founded on a local-global graph representation that facilitates the learning of complex scenes and enforces meaningful point displacements that preserve the scene's geometry. Additionally, we introduce a lightweight version of SAGS, using a simple yet effective mid-point interpolation scheme, which showcases a compact representation of the scene with up to 24$\times$ size reduction without the reliance on any compression strategies. Extensive experiments across multiple benchmark datasets demonstrate the superiority of SAGS compared to state-of-the-art 3D-GS methods under both rendering quality and model size. Besides, we demonstrate that our structure-aware method can effectively mitigate floating artifacts and irregular distortions of previous methods while obtaining precise depth maps. Project page https://eververas.github.io/SAGS/.
comment: 15 pages, 8 figures, 3 tables
☆ Enhancing Brazilian Sign Language Recognition through Skeleton Image Representation
Effective communication is paramount for the inclusion of deaf individuals in society. However, persistent communication barriers due to limited Sign Language (SL) knowledge hinder their full participation. In this context, Sign Language Recognition (SLR) systems have been developed to improve communication between signing and non-signing individuals. In particular, there is the problem of recognizing isolated signs (Isolated Sign Language Recognition, ISLR) of great relevance in the development of vision-based SL search engines, learning tools, and translation systems. This work proposes an ISLR approach where body, hands, and facial landmarks are extracted throughout time and encoded as 2-D images. These images are processed by a convolutional neural network, which maps the visual-temporal information into a sign label. Experimental results demonstrate that our method surpassed the state-of-the-art in terms of performance metrics on two widely recognized datasets in Brazilian Sign Language (LIBRAS), the primary focus of this study. In addition to being more accurate, our method is more time-efficient and easier to train due to its reliance on a simpler network architecture and solely RGB data as input.
comment: 12 pages
☆ Evaluating Deep Clustering Algorithms on Non-Categorical 3D CAD Models
We introduce the first work on benchmarking and evaluating deep clustering algorithms on large-scale non-categorical 3D CAD models. We first propose a workflow to allow expert mechanical engineers to efficiently annotate 252,648 carefully sampled pairwise CAD model similarities, from a subset of the ABC dataset with 22,968 shapes. Using seven baseline deep clustering methods, we then investigate the fundamental challenges of evaluating clustering methods for non-categorical data. Based on these challenges, we propose a novel and viable ensemble-based clustering comparison approach. This work is the first to directly target the underexplored area of deep clustering algorithms for 3D shapes, and we believe it will be an important building block to analyze and utilize the massive 3D shape collections that are starting to appear in deep geometric computing.
☆ Integrating Present and Past in Unsupervised Continual Learning
We formulate a unifying framework for unsupervised continual learning (UCL), which disentangles learning objectives that are specific to the present and the past data, encompassing stability, plasticity, and cross-task consolidation. The framework reveals that many existing UCL approaches overlook cross-task consolidation and try to balance plasticity and stability in a shared embedding space. This results in worse performance due to a lack of within-task data diversity and reduced effectiveness in learning the current task. Our method, Osiris, which explicitly optimizes all three objectives on separate embedding spaces, achieves state-of-the-art performance on all benchmarks, including two novel benchmarks proposed in this paper featuring semantically structured task sequences. Compared to standard benchmarks, these two structured benchmarks more closely resemble visual signals received by humans and animals when navigating real-world environments. Finally, we show some preliminary evidence that continual models can benefit from such realistic learning scenarios.
comment: CoLLAs 2024
☆ Q-GroundCAM: Quantifying Grounding in Vision Language Models via GradCAM CVPR 2024
Vision and Language Models (VLMs) continue to demonstrate remarkable zero-shot (ZS) performance across various tasks. However, many probing studies have revealed that even the best-performing VLMs struggle to capture aspects of compositional scene understanding, lacking the ability to properly ground and localize linguistic phrases in images. Recent VLM advancements include scaling up both model and dataset sizes, additional training objectives and levels of supervision, and variations in the model architectures. To characterize the grounding ability of VLMs, such as phrase grounding, referring expressions comprehension, and relationship understanding, Pointing Game has been used as an evaluation metric for datasets with bounding box annotations. In this paper, we introduce a novel suite of quantitative metrics that utilize GradCAM activations to rigorously evaluate the grounding capabilities of pre-trained VLMs like CLIP, BLIP, and ALBEF. These metrics offer an explainable and quantifiable approach for a more detailed comparison of the zero-shot capabilities of VLMs and enable measuring models' grounding uncertainty. This characterization reveals interesting tradeoffs between the size of the model, the dataset size, and their performance.
comment: Accepted to CVPR 2024, Second Workshop on Foundation Models (WFM)
☆ Compositional Factorization of Visual Scenes with Convolutional Sparse Coding and Resonator Networks
We propose a system for visual scene analysis and recognition based on encoding the sparse, latent feature-representation of an image into a high-dimensional vector that is subsequently factorized to parse scene content. The sparse feature representation is learned from image statistics via convolutional sparse coding, while scene parsing is performed by a resonator network. The integration of sparse coding with the resonator network increases the capacity of distributed representations and reduces collisions in the combinatorial search space during factorization. We find that for this problem the resonator network is capable of fast and accurate vector factorization, and we develop a confidence-based metric that assists in tracking the convergence of the resonator network.
comment: 9 pages, 5 figures
☆ Source-Free Domain Adaptation of Weakly-Supervised Object Localization Models for Histology CVPR
Given the emergence of deep learning, digital pathology has gained popularity for cancer diagnosis based on histology images. Deep weakly supervised object localization (WSOL) models can be trained to classify histology images according to cancer grade and identify regions of interest (ROIs) for interpretation, using inexpensive global image-class annotations. A WSOL model initially trained on some labeled source image data can be adapted using unlabeled target data in cases of significant domain shifts caused by variations in staining, scanners, and cancer type. In this paper, we focus on source-free (unsupervised) domain adaptation (SFDA), a challenging problem where a pre-trained source model is adapted to a new target domain without using any source domain data for privacy and efficiency reasons. SFDA of WSOL models raises several challenges in histology, most notably because they are not intended to adapt for both classification and localization tasks. In this paper, 4 state-of-the-art SFDA methods, each one representative of a main SFDA family, are compared for WSOL in terms of classification and localization accuracy. They are the SFDA-Distribution Estimation, Source HypOthesis Transfer, Cross-Domain Contrastive Learning, and Adaptively Domain Statistics Alignment. Experimental results on the challenging Glas (smaller, breast cancer) and Camelyon16 (larger, colon cancer) histology datasets indicate that these SFDA methods typically perform poorly for localization after adaptation when optimized for classification.
comment: 16 pages, 21 figures, 5 tables, CVPRw 2024
☆ EMOPortraits: Emotion-enhanced Multimodal One-shot Head Avatars
Head avatars animated by visual signals have gained popularity, particularly in cross-driving synthesis where the driver differs from the animated character, a challenging but highly practical approach. The recently presented MegaPortraits model has demonstrated state-of-the-art results in this domain. We conduct a deep examination and evaluation of this model, with a particular focus on its latent space for facial expression descriptors, and uncover several limitations with its ability to express intense face motions. To address these limitations, we propose substantial changes in both training pipeline and model architecture, to introduce our EMOPortraits model, where we: Enhance the model's capability to faithfully support intense, asymmetric face expressions, setting a new state-of-the-art result in the emotion transfer task, surpassing previous methods in both metrics and quality. Incorporate speech-driven mode to our model, achieving top-tier performance in audio-driven facial animation, making it possible to drive source identity through diverse modalities, including visual signal, audio, or a blend of both. We propose a novel multi-view video dataset featuring a wide range of intense and asymmetric facial expressions, filling the gap with absence of such data in existing datasets.
☆ Real-Time Convolutional Neural Network-Based Star Detection and Centroiding Method for CubeSat Star Tracker
Star trackers are one of the most accurate celestial sensors used for absolute attitude determination. The devices detect stars in captured images and accurately compute their projected centroids on an imaging focal plane with subpixel precision. Traditional algorithms for star detection and centroiding often rely on threshold adjustments for star pixel detection and pixel brightness weighting for centroid computation. However, challenges like high sensor noise and stray light can compromise algorithm performance. This article introduces a Convolutional Neural Network (CNN)-based approach for star detection and centroiding, tailored to address the issues posed by noisy star tracker images in the presence of stray light and other artifacts. Trained using simulated star images overlayed with real sensor noise and stray light, the CNN produces both a binary segmentation map distinguishing star pixels from the background and a distance map indicating each pixel's proximity to the nearest star centroid. Leveraging this distance information alongside pixel coordinates transforms centroid calculations into a set of trilateration problems solvable via the least squares method. Our method employs efficient UNet variants for the underlying CNN architectures, and the variants' performances are evaluated. Comprehensive testing has been undertaken with synthetic image evaluations, hardware-in-the-loop assessments, and night sky tests. The tests consistently demonstrated that our method outperforms several existing algorithms in centroiding accuracy and exhibits superior resilience to high sensor noise and stray light interference. An additional benefit of our algorithms is that they can be executed in real-time on low-power edge AI processors.
☆ Longitudinal Mammogram Risk Prediction MICCAI 2024
Breast cancer is one of the leading causes of mortality among women worldwide. Early detection and risk assessment play a crucial role in improving survival rates. Therefore, annual or biennial mammograms are often recommended for screening in high-risk groups. Mammograms are typically interpreted by expert radiologists based on the Breast Imaging Reporting and Data System (BI-RADS), which provides a uniform way to describe findings and categorizes them to indicate the level of concern for breast cancer. Recently, machine learning (ML) and computational approaches have been developed to automate and improve the interpretation of mammograms. However, both BI-RADS and the ML-based methods focus on the analysis of data from the present and sometimes the most recent prior visit. While it is clear that temporal changes in image features of the longitudinal scans should carry value for quantifying breast cancer risk, no prior work has conducted a systematic study of this. In this paper, we extend a state-of-the-art ML model to ingest an arbitrary number of longitudinal mammograms and predict future breast cancer risk. On a large-scale dataset, we demonstrate that our model, LoMaR, achieves state-of-the-art performance when presented with only the present mammogram. Furthermore, we use LoMaR to characterize the predictive value of prior visits. Our results show that longer histories (e.g., up to four prior annual mammograms) can significantly boost the accuracy of predicting future breast cancer risk, particularly beyond the short-term. Our code and model weights are available at https://github.com/batuhankmkaraman/LoMaR.
comment: Submitted to MICCAI 2024
☆ Distributed Stochastic Optimization of a Neural Representation Network for Time-Space Tomography Reconstruction
4D time-space reconstruction of dynamic events or deforming objects using X-ray computed tomography (CT) is an extremely ill-posed inverse problem. Existing approaches assume that the object remains static for the duration of several tens or hundreds of X-ray projection measurement images (reconstruction of consecutive limited-angle CT scans). However, this is an unrealistic assumption for many in-situ experiments that causes spurious artifacts and inaccurate morphological reconstructions of the object. To solve this problem, we propose to perform a 4D time-space reconstruction using a distributed implicit neural representation (DINR) network that is trained using a novel distributed stochastic training algorithm. Our DINR network learns to reconstruct the object at its output by iterative optimization of its network parameters such that the measured projection images best match the output of the CT forward measurement model. We use a continuous time and space forward measurement model that is a function of the DINR outputs at a sparsely sampled set of continuous valued object coordinates. Unlike existing state-of-the-art neural representation architectures that forward and back propagate through dense voxel grids that sample the object's entire time-space coordinates, we only propagate through the DINR at a small subset of object coordinates in each iteration resulting in an order-of-magnitude reduction in memory and compute for training. DINR leverages distributed computation across several compute nodes and GPUs to produce high-fidelity 4D time-space reconstructions even for extremely large CT data sizes. We use both simulated parallel-beam and experimental cone-beam X-ray CT datasets to demonstrate the superior performance of our approach.
comment: submitted to Nature Machine Intelligence
☆ Revolutionizing Traffic Sign Recognition: Unveiling the Potential of Vision Transformers
This research introduces an innovative method for Traffic Sign Recognition (TSR) by leveraging deep learning techniques, with a particular emphasis on Vision Transformers. TSR holds a vital role in advancing driver assistance systems and autonomous vehicles. Traditional TSR approaches, reliant on manual feature extraction, have proven to be labor-intensive and costly. Moreover, methods based on shape and color have inherent limitations, including susceptibility to various factors and changes in lighting conditions. This study explores three variants of Vision Transformers (PVT, TNT, LNL) and six convolutional neural networks (AlexNet, ResNet, VGG16, MobileNet, EfficientNet, GoogleNet) as baseline models. To address the shortcomings of traditional methods, a novel pyramid EATFormer backbone is proposed, amalgamating Evolutionary Algorithms (EAs) with the Transformer architecture. The introduced EA-based Transformer block captures multi-scale, interactive, and individual information through its components: Feed-Forward Network, Global and Local Interaction, and Multi-Scale Region Aggregation modules. Furthermore, a Modulated Deformable MSA module is introduced to dynamically model irregular locations. Experimental evaluations on the GTSRB and BelgiumTS datasets demonstrate the efficacy of the proposed approach in enhancing both prediction speed and accuracy. This study concludes that Vision Transformers hold significant promise in traffic sign classification and contributes a fresh algorithmic framework for TSR. These findings set the stage for the development of precise and dependable TSR algorithms, benefiting driver assistance systems and autonomous vehicles.
☆ HELPER-X: A Unified Instructable Embodied Agent to Tackle Four Interactive Vision-Language Domains with Memory-Augmented Language Models
Recent research on instructable agents has used memory-augmented Large Language Models (LLMs) as task planners, a technique that retrieves language-program examples relevant to the input instruction and uses them as in-context examples in the LLM prompt to improve the performance of the LLM in inferring the correct action and task plans. In this technical report, we extend the capabilities of HELPER, by expanding its memory with a wider array of examples and prompts, and by integrating additional APIs for asking questions. This simple expansion of HELPER into a shared memory enables the agent to work across the domains of executing plans from dialogue, natural language instruction following, active question asking, and commonsense room reorganization. We evaluate the agent on four diverse interactive visual-language embodied agent benchmarks: ALFRED, TEACh, DialFRED, and the Tidy Task. HELPER-X achieves few-shot, state-of-the-art performance across these benchmarks using a single agent, without requiring in-domain training, and remains competitive with agents that have undergone in-domain training.
comment: Videos and code https://helper-agent-llm.github.io/
♻ ☆ Ego-Exo4D: Understanding Skilled Human Activity from First- and Third-Person Perspectives
We present Ego-Exo4D, a diverse, large-scale multimodal multiview video dataset and benchmark challenge. Ego-Exo4D centers around simultaneously-captured egocentric and exocentric video of skilled human activities (e.g., sports, music, dance, bike repair). 740 participants from 13 cities worldwide performed these activities in 123 different natural scene contexts, yielding long-form captures from 1 to 42 minutes each and 1,286 hours of video combined. The multimodal nature of the dataset is unprecedented: the video is accompanied by multichannel audio, eye gaze, 3D point clouds, camera poses, IMU, and multiple paired language descriptions -- including a novel "expert commentary" done by coaches and teachers and tailored to the skilled-activity domain. To push the frontier of first-person video understanding of skilled human activity, we also present a suite of benchmark tasks and their annotations, including fine-grained activity understanding, proficiency estimation, cross-view translation, and 3D hand/body pose. All resources are open sourced to fuel new research in the community. Project page: http://ego-exo4d-data.org/
comment: updated baseline results and dataset statistics to match the released v2 data; added table to appendix comparing stats of Ego-Exo4D alongside other datasets
♻ ☆ Make-it-Real: Unleashing Large Multimodal Model's Ability for Painting 3D Objects with Realistic Materials
Physically realistic materials are pivotal in augmenting the realism of 3D assets across various applications and lighting conditions. However, existing 3D assets and generative models often lack authentic material properties. Manual assignment of materials using graphic software is a tedious and time-consuming task. In this paper, we exploit advancements in Multimodal Large Language Models (MLLMs), particularly GPT-4V, to present a novel approach, Make-it-Real: 1) We demonstrate that GPT-4V can effectively recognize and describe materials, allowing the construction of a detailed material library. 2) Utilizing a combination of visual cues and hierarchical text prompts, GPT-4V precisely identifies and aligns materials with the corresponding components of 3D objects. 3) The correctly matched materials are then meticulously applied as reference for the new SVBRDF material generation according to the original diffuse map, significantly enhancing their visual authenticity. Make-it-Real offers a streamlined integration into the 3D content creation workflow, showcasing its utility as an essential tool for developers of 3D assets.
comment: Project Page: https://sunzey.github.io/Make-it-Real/
♻ ☆ Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical Segmentation of the Circle of Willis for CTA and MRA MICCAI
The Circle of Willis (CoW) is an important network of arteries connecting major circulations of the brain. Its vascular architecture is believed to affect the risk, severity, and clinical outcome of serious neuro-vascular diseases. However, characterizing the highly variable CoW anatomy is still a manual and time-consuming expert task. The CoW is usually imaged by two angiographic imaging modalities, magnetic resonance angiography (MRA) and computed tomography angiography (CTA), but there exist limited public datasets with annotations on CoW anatomy, especially for CTA. Therefore we organized the TopCoW Challenge in 2023 with the release of an annotated CoW dataset. The TopCoW dataset was the first public dataset with voxel-level annotations for thirteen possible CoW vessel components, enabled by virtual-reality (VR) technology. It was also the first large dataset with paired MRA and CTA from the same patients. TopCoW challenge formalized the CoW characterization problem as a multiclass anatomical segmentation task with an emphasis on topological metrics. We invited submissions worldwide for the CoW segmentation task, which attracted over 140 registered participants from four continents. The top performing teams managed to segment many CoW components to Dice scores around 90%, but with lower scores for communicating arteries and rare variants. There were also topological mistakes for predictions with high Dice scores. Additional topological analysis revealed further areas for improvement in detecting certain CoW components and matching CoW variant topology accurately. TopCoW represented a first attempt at benchmarking the CoW anatomical segmentation task for MRA and CTA, both morphologically and topologically.
comment: 24 pages, 11 figures, 9 tables. Summary Paper for the MICCAI TopCoW 2023 Challenge
♻ ☆ Amodal Ground Truth and Completion in the Wild CVPR 2024
This paper studies amodal image segmentation: predicting entire object segmentation masks including both visible and invisible (occluded) parts. In previous work, the amodal segmentation ground truth on real images is usually predicted by manual annotaton and thus is subjective. In contrast, we use 3D data to establish an automatic pipeline to determine authentic ground truth amodal masks for partially occluded objects in real images. This pipeline is used to construct an amodal completion evaluation benchmark, MP3D-Amodal, consisting of a variety of object categories and labels. To better handle the amodal completion task in the wild, we explore two architecture variants: a two-stage model that first infers the occluder, followed by amodal mask completion; and a one-stage model that exploits the representation power of Stable Diffusion for amodal segmentation across many categories. Without bells and whistles, our method achieves a new state-of-the-art performance on Amodal segmentation datasets that cover a large variety of objects, including COCOA and our new MP3D-Amodal dataset. The dataset, model, and code are available at https://www.robots.ox.ac.uk/~vgg/research/amodal/.
comment: CVPR 2024
♻ ☆ Adaptive Input-image Normalization for Solving the Mode Collapse Problem in GAN-based X-ray Images
Biomedical image datasets can be imbalanced due to the rarity of targeted diseases. Generative Adversarial Networks play a key role in addressing this imbalance by enabling the generation of synthetic images to augment datasets. It is important to generate synthetic images that incorporate a diverse range of features to accurately represent the distribution of features present in the training imagery. Furthermore, the absence of diverse features in synthetic images can degrade the performance of machine learning classifiers. The mode collapse problem impacts Generative Adversarial Networks' capacity to generate diversified images. Mode collapse comes in two varieties: intra-class and inter-class. In this paper, both varieties of the mode collapse problem are investigated, and their subsequent impact on the diversity of synthetic X-ray images is evaluated. This work contributes an empirical demonstration of the benefits of integrating the adaptive input-image normalization with the Deep Convolutional GAN and Auxiliary Classifier GAN to alleviate the mode collapse problems. Synthetically generated images are utilized for data augmentation and training a Vision Transformer model. The classification performance of the model is evaluated using accuracy, recall, and precision scores. Results demonstrate that the DCGAN and the ACGAN with adaptive input-image normalization outperform the DCGAN and ACGAN with un-normalized X-ray images as evidenced by the superior diversity scores and classification scores.
comment: Submitted to the Elsevier Journal
♻ ☆ SCT: A Simple Baseline for Parameter-Efficient Fine-Tuning via Salient Channels
Pre-trained vision transformers have strong representation benefits to various downstream tasks. Recently, many parameter-efficient fine-tuning (PEFT) methods have been proposed, and their experiments demonstrate that tuning only 1\% extra parameters could surpass full fine-tuning in low-data resource scenarios. However, these methods overlook the task-specific information when fine-tuning diverse downstream tasks. In this paper, we propose a simple yet effective method called "Salient Channel Tuning" (SCT) to leverage the task-specific information by forwarding the model with the task images to select partial channels in a feature map that enables us to tune only 1/8 channels leading to significantly lower parameter costs. Experiments on 19 visual transfer learning downstream tasks demonstrate that our SCT outperforms full fine-tuning on 18 out of 19 tasks by adding only 0.11M parameters of the ViT-B, which is 780$\times$ fewer than its full fine-tuning counterpart. Furthermore, experiments on domain generalization and few-shot classification further demonstrate the effectiveness and generic of our approach. The code is available at https://github.com/showlab/SCT.
comment: This work has been accepted by IJCV
♻ ☆ Gradient-based Local Next-best-view Planning for Improved Perception of Targeted Plant Nodes ICRA 2024
Robots are increasingly used in tomato greenhouses to automate labour-intensive tasks such as selective harvesting and de-leafing. To perform these tasks, robots must be able to accurately and efficiently perceive the plant nodes that need to be cut, despite the high levels of occlusion from other plant parts. We formulate this problem as a local next-best-view (NBV) planning task where the robot has to plan an efficient set of camera viewpoints to overcome occlusion and improve the quality of perception. Our formulation focuses on quickly improving the perception accuracy of a single target node to maximise its chances of being cut. Previous methods of NBV planning mostly focused on global view planning and used random sampling of candidate viewpoints for exploration, which could suffer from high computational costs, ineffective view selection due to poor candidates, or non-smooth trajectories due to inefficient sampling. We propose a gradient-based NBV planner using differential ray sampling, which directly estimates the local gradient direction for viewpoint planning to overcome occlusion and improve perception. Through simulation experiments, we showed that our planner can handle occlusions and improve the 3D reconstruction and position estimation of nodes equally well as a sampling-based NBV planner, while taking ten times less computation and generating 28% more efficient trajectories.
comment: This work has been accepted for the 2024 International Conference on Robotics and Automation (ICRA 2024)
♻ ☆ MMBench: Is Your Multi-modal Model an All-around Player?
Large vision-language models have recently achieved remarkable progress, exhibiting great perception and reasoning abilities concerning visual information. However, how to effectively evaluate these large vision-language models remains a major obstacle, hindering future model development. Traditional benchmarks like VQAv2 or COCO Caption provide quantitative performance measurements but suffer from a lack of fine-grained ability assessment and non-robust evaluation metrics. Recent subjective benchmarks, such as OwlEval, offer comprehensive evaluations of a model's abilities by incorporating human labor, but they are not scalable and display significant bias. In response to these challenges, we propose MMBench, a novel multi-modality benchmark. MMBench methodically develops a comprehensive evaluation pipeline, primarily comprised of two elements. The first element is a meticulously curated dataset that surpasses existing similar benchmarks in terms of the number and variety of evaluation questions and abilities. The second element introduces a novel CircularEval strategy and incorporates the use of ChatGPT. This implementation is designed to convert free-form predictions into pre-defined choices, thereby facilitating a more robust evaluation of the model's predictions. MMBench is a systematically-designed objective benchmark for robustly evaluating the various abilities of vision-language models. We hope MMBench will assist the research community in better evaluating their models and encourage future advancements in this domain. Project page: https://opencompass.org.cn/mmbench.
♻ ☆ The Brain Tumor Segmentation in Pediatrics (BraTS-PEDs) Challenge: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)
Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs challenge, focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors.
comment: arXiv admin note: substantial text overlap with arXiv:2305.17033
♻ ☆ Understanding the (Extra-)Ordinary: Validating Deep Model Decisions with Prototypical Concept-based Explanations
Ensuring both transparency and safety is critical when deploying Deep Neural Networks (DNNs) in high-risk applications, such as medicine. The field of explainable AI (XAI) has proposed various methods to comprehend the decision-making processes of opaque DNNs. However, only few XAI methods are suitable of ensuring safety in practice as they heavily rely on repeated labor-intensive and possibly biased human assessment. In this work, we present a novel post-hoc concept-based XAI framework that conveys besides instance-wise (local) also class-wise (global) decision-making strategies via prototypes. What sets our approach apart is the combination of local and global strategies, enabling a clearer understanding of the (dis-)similarities in model decisions compared to the expected (prototypical) concept use, ultimately reducing the dependence on human long-term assessment. Quantifying the deviation from prototypical behavior not only allows to associate predictions with specific model sub-strategies but also to detect outlier behavior. As such, our approach constitutes an intuitive and explainable tool for model validation. We demonstrate the effectiveness of our approach in identifying out-of-distribution samples, spurious model behavior and data quality issues across three datasets (ImageNet, CUB-200, and CIFAR-10) utilizing VGG, ResNet, and EfficientNet architectures. Code is available on https://github.com/maxdreyer/pcx.
comment: 39 pages (8 pages manuscript, 3 pages references, 28 pages appendix)
♻ ☆ PLLaVA : Parameter-free LLaVA Extension from Images to Videos for Video Dense Captioning
Vision-language pre-training has significantly elevated performance across a wide range of image-language applications. Yet, the pre-training process for video-related tasks demands exceptionally large computational and data resources, which hinders the progress of video-language models. This paper investigates a straight-forward, highly efficient, and resource-light approach to adapting an existing image-language pre-trained model for dense video understanding. Our preliminary experiments reveal that directly fine-tuning pre-trained image-language models with multiple frames as inputs on video datasets leads to performance saturation or even a drop. Our further investigation reveals that it is largely attributed to the bias of learned high-norm visual features. Motivated by this finding, we propose a simple but effective pooling strategy to smooth the feature distribution along the temporal dimension and thus reduce the dominant impacts from the extreme features. The new model is termed Pooling LLaVA, or PLLaVA in short. PLLaVA achieves new state-of-the-art performance on modern benchmark datasets for both video question-answer and captioning tasks. Notably, on the recent popular VideoChatGPT benchmark, PLLaVA achieves a score of 3.48 out of 5 on average of five evaluated dimensions, exceeding the previous SOTA results from GPT4V (IG-VLM) by 9%. On the latest multi-choice benchmark MVBench, PLLaVA achieves 58.1% accuracy on average across 20 sub-tasks, 14.5% higher than GPT4V (IG-VLM). Code is available at https://pllava.github.io/
♻ ☆ Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks
It is highly desired but challenging to acquire high-quality photos with clear content in low-light environments. Although multi-image processing methods (using burst, dual-exposure, or multi-exposure images) have made significant progress in addressing this issue, they typically focus on specific restoration or enhancement problems, being insufficient in exploiting multi-image. Motivated by that multi-exposure images are complementary in denoising, deblurring, high dynamic range imaging, and super-resolution, we propose to utilize exposure bracketing photography to unify restoration and enhancement tasks in this work. Due to the difficulty in collecting real-world pairs, we suggest a solution that first pre-trains the model with synthetic paired data and then adapts it to real-world unlabeled images. In particular, a temporally modulated recurrent network (TMRNet) and self-supervised adaptation method are proposed. Moreover, we construct a data simulation pipeline to synthesize pairs and collect real-world images from 200 nighttime scenarios. Experiments on both datasets show that our method performs favorably against the state-of-the-art multi-image processing ones. The dataset, code, and pre-trained models are available at https://github.com/cszhilu1998/BracketIRE.
comment: 29 pages
♻ ☆ Annotating Ambiguous Images: General Annotation Strategy for High-Quality Data with Real-World Biomedical Validation ICLR 2024
In the field of image classification, existing methods often struggle with biased or ambiguous data, a prevalent issue in real-world scenarios. Current strategies, including semi-supervised learning and class blending, offer partial solutions but lack a definitive resolution. Addressing this gap, our paper introduces a novel strategy for generating high-quality labels in challenging datasets. Central to our approach is a clearly designed flowchart, based on a broad literature review, which enables the creation of reliable labels. We validate our methodology through a rigorous real-world test case in the biomedical field, specifically in deducing height reduction from vertebral imaging. Our empirical study, leveraging over 250,000 annotations, demonstrates the effectiveness of our strategies decisions compared to their alternatives.
comment: Accepted at ICLR 2024, DMLR Workshop
♻ ☆ Raising the Bar of AI-generated Image Detection with CLIP
The aim of this work is to explore the potential of pre-trained vision-language models (VLMs) for universal detection of AI-generated images. We develop a lightweight detection strategy based on CLIP features and study its performance in a wide variety of challenging scenarios. We find that, contrary to previous beliefs, it is neither necessary nor convenient to use a large domain-specific dataset for training. On the contrary, by using only a handful of example images from a single generative model, a CLIP-based detector exhibits surprising generalization ability and high robustness across different architectures, including recent commercial tools such as Dalle-3, Midjourney v5, and Firefly. We match the state-of-the-art (SoTA) on in-distribution data and significantly improve upon it in terms of generalization to out-of-distribution data (+6% AUC) and robustness to impaired/laundered data (+13%). Our project is available at https://grip-unina.github.io/ClipBased-SyntheticImageDetection/
♻ ☆ Dual Expert Distillation Network for Generalized Zero-Shot Learning IJCAI 2024
Zero-shot learning has consistently yielded remarkable progress via modeling nuanced one-to-one visual-attribute correlation. Existing studies resort to refining a uniform mapping function to align and correlate the sample regions and subattributes, ignoring two crucial issues: 1) the inherent asymmetry of attributes; and 2) the unutilized channel information. This paper addresses these issues by introducing a simple yet effective approach, dubbed Dual Expert Distillation Network (DEDN), where two experts are dedicated to coarse- and fine-grained visual-attribute modeling, respectively. Concretely, one coarse expert, namely cExp, has a complete perceptual scope to coordinate visual-attribute similarity metrics across dimensions, and moreover, another fine expert, namely fExp, consists of multiple specialized subnetworks, each corresponds to an exclusive set of attributes. Two experts cooperatively distill from each other to reach a mutual agreement during training. Meanwhile, we further equip DEDN with a newly designed backbone network, i.e., Dual Attention Network (DAN), which incorporates both region and channel attention information to fully exploit and leverage visual semantic knowledge. Experiments on various benchmark datasets indicate a new state-of-the-art.
comment: 9 pages, 4 figures; Accepted to IJCAI 2024
♻ ☆ Illicit object detection in X-ray images using Vision Transformers
Illicit object detection is a critical task performed at various high-security locations, including airports, train stations, subways, and ports. The continuous and tedious work of examining thousands of X-ray images per hour can be mentally taxing. Thus, Deep Neural Networks (DNNs) can be used to automate the X-ray image analysis process, improve efficiency and alleviate the security officers' inspection burden. The neural architectures typically utilized in relevant literature are Convolutional Neural Networks (CNNs), with Vision Transformers (ViTs) rarely employed. In order to address this gap, this paper conducts a comprehensive evaluation of relevant ViT architectures on illicit item detection in X-ray images. This study utilizes both Transformer and hybrid backbones, such as SWIN and NextViT, and detectors, such as DINO and RT-DETR. The results demonstrate the remarkable accuracy of the DINO Transformer detector in the low-data regime, the impressive real-time performance of YOLOv8, and the effectiveness of the hybrid NextViT backbone.
♻ ☆ Radarize: Enhancing Radar SLAM with Generalizable Doppler-Based Odometry
Millimeter-wave (mmWave) radar is increasingly being considered as an alternative to optical sensors for robotic primitives like simultaneous localization and mapping (SLAM). While mmWave radar overcomes some limitations of optical sensors, such as occlusions, poor lighting conditions, and privacy concerns, it also faces unique challenges, such as missed obstacles due to specular reflections or fake objects due to multipath. To address these challenges, we propose Radarize, a self-contained SLAM pipeline that uses only a commodity single-chip mmWave radar. Our radar-native approach uses techniques such as Doppler shift-based odometry and multipath artifact suppression to improve performance. We evaluate our method on a large dataset of 146 trajectories spanning 4 buildings and mounted on 3 different platforms, totaling approximately 4.7 Km of travel distance. Our results show that our method outperforms state-of-the-art radar and radar-inertial approaches by approximately 5x in terms of odometry and 8x in terms of end-to-end SLAM, as measured by absolute trajectory error (ATE), without the need for additional sensors such as IMUs or wheel encoders.
♻ ☆ The Solution for the CVPR2024 NICE Image Captioning Challenge
This report introduces a solution to the Topic 1 Zero-shot Image Captioning of 2024 NICE : New frontiers for zero-shot Image Captioning Evaluation. In contrast to NICE 2023 datasets, this challenge involves new annotations by humans with significant differences in caption style and content. Therefore, we enhance image captions effectively through retrieval augmentation and caption grading methods. At the data level, we utilize high-quality captions generated by image caption models as training data to address the gap in text styles. At the model level, we employ OFA (a large-scale visual-language pre-training model based on handcrafted templates) to perform the image captioning task. Subsequently, we propose caption-level strategy for the high-quality caption data generated by the image caption models and integrate them with retrieval augmentation strategy into the template to compel the model to generate higher quality, more matching, and semantically enriched captions based on the retrieval augmentation prompts. Our approach achieves a CIDEr score of 234.11.
♻ ☆ Modeling Multimodal Social Interactions: New Challenges and Baselines with Densely Aligned Representations CVPR 2024
Understanding social interactions involving both verbal and non-verbal cues is essential for effectively interpreting social situations. However, most prior works on multimodal social cues focus predominantly on single-person behaviors or rely on holistic visual representations that are not aligned to utterances in multi-party environments. Consequently, they are limited in modeling the intricate dynamics of multi-party interactions. In this paper, we introduce three new challenging tasks to model the fine-grained dynamics between multiple people: speaking target identification, pronoun coreference resolution, and mentioned player prediction. We contribute extensive data annotations to curate these new challenges in social deduction game settings. Furthermore, we propose a novel multimodal baseline that leverages densely aligned language-visual representations by synchronizing visual features with their corresponding utterances. This facilitates concurrently capturing verbal and non-verbal cues pertinent to social reasoning. Experiments demonstrate the effectiveness of the proposed approach with densely aligned multimodal representations in modeling fine-grained social interactions. Project website: https://sangmin-git.github.io/projects/MMSI.
comment: CVPR 2024 Oral
♻ ☆ MuseumMaker: Continual Style Customization without Catastrophic Forgetting
Pre-trained large text-to-image (T2I) models with an appropriate text prompt has attracted growing interests in customized images generation field. However, catastrophic forgetting issue make it hard to continually synthesize new user-provided styles while retaining the satisfying results amongst learned styles. In this paper, we propose MuseumMaker, a method that enables the synthesis of images by following a set of customized styles in a never-end manner, and gradually accumulate these creative artistic works as a Museum. When facing with a new customization style, we develop a style distillation loss module to extract and learn the styles of the training data for new image generation. It can minimize the learning biases caused by content of new training images, and address the catastrophic overfitting issue induced by few-shot images. To deal with catastrophic forgetting amongst past learned styles, we devise a dual regularization for shared-LoRA module to optimize the direction of model update, which could regularize the diffusion model from both weight and feature aspects, respectively. Meanwhile, to further preserve historical knowledge from past styles and address the limited representability of LoRA, we consider a task-wise token learning module where a unique token embedding is learned to denote a new style. As any new user-provided style come, our MuseumMaker can capture the nuances of the new styles while maintaining the details of learned styles. Experimental results on diverse style datasets validate the effectiveness of our proposed MuseumMaker method, showcasing its robustness and versatility across various scenarios.
♻ ☆ Towards Highly Realistic Artistic Style Transfer via Stable Diffusion with Step-aware and Layer-aware Prompt IJCAI2024
Artistic style transfer aims to transfer the learned artistic style onto an arbitrary content image, generating artistic stylized images. Existing generative adversarial network-based methods fail to generate highly realistic stylized images and always introduce obvious artifacts and disharmonious patterns. Recently, large-scale pre-trained diffusion models opened up a new way for generating highly realistic artistic stylized images. However, diffusion model-based methods generally fail to preserve the content structure of input content images well, introducing some undesired content structure and style patterns. To address the above problems, we propose a novel pre-trained diffusion-based artistic style transfer method, called LSAST, which can generate highly realistic artistic stylized images while preserving the content structure of input content images well, without bringing obvious artifacts and disharmonious style patterns. Specifically, we introduce a Step-aware and Layer-aware Prompt Space, a set of learnable prompts, which can learn the style information from the collection of artworks and dynamically adjusts the input images' content structure and style pattern. To train our prompt space, we propose a novel inversion method, called Step-ware and Layer-aware Prompt Inversion, which allows the prompt space to learn the style information of the artworks collection. In addition, we inject a pre-trained conditional branch of ControlNet into our LSAST, which further improved our framework's ability to maintain content structure. Extensive experiments demonstrate that our proposed method can generate more highly realistic artistic stylized images than the state-of-the-art artistic style transfer methods.
comment: Accepted by IJCAI2024
♻ ☆ A Multi-Modal Foundation Model to Assist People with Blindness and Low Vision in Environmental Interaction
People with blindness and low vision (pBLV) encounter substantial challenges when it comes to comprehensive scene recognition and precise object identification in unfamiliar environments. Additionally, due to the vision loss, pBLV have difficulty in accessing and identifying potential tripping hazards on their own. In this paper, we present a pioneering approach that leverages a large vision-language model to enhance visual perception for pBLV, offering detailed and comprehensive descriptions of the surrounding environments and providing warnings about the potential risks. Our method begins by leveraging a large image tagging model (i.e., Recognize Anything (RAM)) to identify all common objects present in the captured images. The recognition results and user query are then integrated into a prompt, tailored specifically for pBLV using prompt engineering. By combining the prompt and input image, a large vision-language model (i.e., InstructBLIP) generates detailed and comprehensive descriptions of the environment and identifies potential risks in the environment by analyzing the environmental objects and scenes, relevant to the prompt. We evaluate our approach through experiments conducted on both indoor and outdoor datasets. Our results demonstrate that our method is able to recognize objects accurately and provide insightful descriptions and analysis of the environment for pBLV.
♻ ☆ Bengali Document Layout Analysis -- A YOLOV8 Based Ensembling Approach
This paper focuses on enhancing Bengali Document Layout Analysis (DLA) using the YOLOv8 model and innovative post-processing techniques. We tackle challenges unique to the complex Bengali script by employing data augmentation for model robustness. After meticulous validation set evaluation, we fine-tune our approach on the complete dataset, leading to a two-stage prediction strategy for accurate element segmentation. Our ensemble model, combined with post-processing, outperforms individual base architectures, addressing issues identified in the BaDLAD dataset. By leveraging this approach, we aim to advance Bengali document analysis, contributing to improved OCR and document comprehension and BaDLAD serves as a foundational resource for this endeavor, aiding future research in the field. Furthermore, our experiments provided key insights to incorporate new strategies into the established solution.
comment: Need to review and rework this
♻ ☆ Mitigating the Curse of Dimensionality for Certified Robustness via Dual Randomized Smoothing ICLR 2024
Randomized Smoothing (RS) has been proven a promising method for endowing an arbitrary image classifier with certified robustness. However, the substantial uncertainty inherent in the high-dimensional isotropic Gaussian noise imposes the curse of dimensionality on RS. Specifically, the upper bound of ${\ell_2}$ certified robustness radius provided by RS exhibits a diminishing trend with the expansion of the input dimension $d$, proportionally decreasing at a rate of $1/\sqrt{d}$. This paper explores the feasibility of providing ${\ell_2}$ certified robustness for high-dimensional input through the utilization of dual smoothing in the lower-dimensional space. The proposed Dual Randomized Smoothing (DRS) down-samples the input image into two sub-images and smooths the two sub-images in lower dimensions. Theoretically, we prove that DRS guarantees a tight ${\ell_2}$ certified robustness radius for the original input and reveal that DRS attains a superior upper bound on the ${\ell_2}$ robustness radius, which decreases proportionally at a rate of $(1/\sqrt m + 1/\sqrt n )$ with $m+n=d$. Extensive experiments demonstrate the generalizability and effectiveness of DRS, which exhibits a notable capability to integrate with established methodologies, yielding substantial improvements in both accuracy and ${\ell_2}$ certified robustness baselines of RS on the CIFAR-10 and ImageNet datasets. Code is available at https://github.com/xiasong0501/DRS.
comment: Accepted by ICLR 2024
♻ ☆ Real-time 3D semantic occupancy prediction for autonomous vehicles using memory-efficient sparse convolution
In autonomous vehicles, understanding the surrounding 3D environment of the ego vehicle in real-time is essential. A compact way to represent scenes while encoding geometric distances and semantic object information is via 3D semantic occupancy maps. State of the art 3D mapping methods leverage transformers with cross-attention mechanisms to elevate 2D vision-centric camera features into the 3D domain. However, these methods encounter significant challenges in real-time applications due to their high computational demands during inference. This limitation is particularly problematic in autonomous vehicles, where GPU resources must be shared with other tasks such as localization and planning. In this paper, we introduce an approach that extracts features from front-view 2D camera images and LiDAR scans, then employs a sparse convolution network (Minkowski Engine), for 3D semantic occupancy prediction. Given that outdoor scenes in autonomous driving scenarios are inherently sparse, the utilization of sparse convolution is particularly apt. By jointly solving the problems of 3D scene completion of sparse scenes and 3D semantic segmentation, we provide a more efficient learning framework suitable for real-time applications in autonomous vehicles. We also demonstrate competitive accuracy on the nuScenes dataset.
comment: 8 pages, 7 figures
♻ ☆ 3Doodle: Compact Abstraction of Objects with 3D Strokes SIGGRAPH 2024
While free-hand sketching has long served as an efficient representation to convey characteristics of an object, they are often subjective, deviating significantly from realistic representations. Moreover, sketches are not consistent for arbitrary viewpoints, making it hard to catch 3D shapes. We propose 3Dooole, generating descriptive and view-consistent sketch images given multi-view images of the target object. Our method is based on the idea that a set of 3D strokes can efficiently represent 3D structural information and render view-consistent 2D sketches. We express 2D sketches as a union of view-independent and view-dependent components. 3D cubic B ezier curves indicate view-independent 3D feature lines, while contours of superquadrics express a smooth outline of the volume of varying viewpoints. Our pipeline directly optimizes the parameters of 3D stroke primitives to minimize perceptual losses in a fully differentiable manner. The resulting sparse set of 3D strokes can be rendered as abstract sketches containing essential 3D characteristic shapes of various objects. We demonstrate that 3Doodle can faithfully express concepts of the original images compared with recent sketch generation approaches.
comment: SIGGRAPH 2024 (Transactions on Graphics)
♻ ☆ Sheet Music Transformer: End-To-End Optical Music Recognition Beyond Monophonic Transcription
State-of-the-art end-to-end Optical Music Recognition (OMR) has, to date, primarily been carried out using monophonic transcription techniques to handle complex score layouts, such as polyphony, often by resorting to simplifications or specific adaptations. Despite their efficacy, these approaches imply challenges related to scalability and limitations. This paper presents the Sheet Music Transformer, the first end-to-end OMR model designed to transcribe complex musical scores without relying solely on monophonic strategies. Our model employs a Transformer-based image-to-sequence framework that predicts score transcriptions in a standard digital music encoding format from input images. Our model has been tested on two polyphonic music datasets and has proven capable of handling these intricate music structures effectively. The experimental outcomes not only indicate the competence of the model, but also show that it is better than the state-of-the-art methods, thus contributing to advancements in end-to-end OMR transcription.
comment: Submitted to the International Conference on Document Analysis and Recognition 2024
♻ ☆ ViLA: Efficient Video-Language Alignment for Video Question Answering
In this work, we propose an efficient Video-Language Alignment (ViLA) network. Our ViLA model addresses both efficient frame sampling and effective cross-modal alignment in a unified way. In our ViLA network, we design a new learnable text-guided Frame-Prompter together with a new cross-modal distillation (QFormer-Distiller) module. Pre-trained large image-language models have shown promising results on problems such as visual question answering (VQA). However, how to efficiently and effectively sample video frames when adapting pre-trained large image-language model to video-language alignment is still the major challenge. Compared with prior work, our ViLA model demonstrates the capability of selecting key frames with critical contents, thus improving the video-language alignment accuracy while reducing the inference latency +3.3% on NExT-QA Temporal with 3.0X speed up). Overall, our ViLA network outperforms the state-of-the-art methods on the video question-answering benchmarks: +4.6% on STAR Interaction, +2.2% on STAR average with 3.0X speed up, ours 2-frames out-perform SeViLA 4-frames on the VLEP dataset with 4.2X speed-up.
♻ ☆ Self2Seg: Single-Image Self-Supervised Joint Segmentation and Denoising
We develop Self2Seg, a self-supervised method for the joint segmentation and denoising of a single image. To this end, we combine the advantages of variational segmentation with self-supervised deep learning. One major benefit of our method lies in the fact, that in contrast to data-driven methods, where huge amounts of labeled samples are necessary, Self2Seg segments an image into meaningful regions without any training database. Moreover, we demonstrate that self-supervised denoising itself is significantly improved through the region-specific learning of Self2Seg. Therefore, we introduce a novel self-supervised energy functional in which denoising and segmentation are coupled in a way that both tasks benefit from each other. We propose a unified optimisation strategy and numerically show that for noisy microscopy images our proposed joint approach outperforms its sequential counterpart as well as alternative methods focused purely on denoising or segmentation.
♻ ☆ HiDiffusion: Unlocking Higher-Resolution Creativity and Efficiency in Pretrained Diffusion Models
Diffusion models have become a mainstream approach for high-resolution image synthesis. However, directly generating higher-resolution images from pretrained diffusion models will encounter unreasonable object duplication and exponentially increase the generation time. In this paper, we discover that object duplication arises from feature duplication in the deep blocks of the U-Net. Concurrently, We pinpoint the extended generation times to self-attention redundancy in U-Net's top blocks. To address these issues, we propose a tuning-free higher-resolution framework named HiDiffusion. Specifically, HiDiffusion contains Resolution-Aware U-Net (RAU-Net) that dynamically adjusts the feature map size to resolve object duplication and engages Modified Shifted Window Multi-head Self-Attention (MSW-MSA) that utilizes optimized window attention to reduce computations. we can integrate HiDiffusion into various pretrained diffusion models to scale image generation resolutions even to 4096x4096 at 1.5-6x the inference speed of previous methods. Extensive experiments demonstrate that our approach can address object duplication and heavy computation issues, achieving state-of-the-art performance on higher-resolution image synthesis tasks.
♻ ☆ TRG-Net: An Interpretable and Controllable Rain Generator
Exploring and modeling rain generation mechanism is critical for augmenting paired data to ease training of rainy image processing models. Against this task, this study proposes a novel deep learning based rain generator, which fully takes the physical generation mechanism underlying rains into consideration and well encodes the learning of the fundamental rain factors (i.e., shape, orientation, length, width and sparsity) explicitly into the deep network. Its significance lies in that the generator not only elaborately design essential elements of the rain to simulate expected rains, like conventional artificial strategies, but also finely adapt to complicated and diverse practical rainy images, like deep learning methods. By rationally adopting filter parameterization technique, we first time achieve a deep network that is finely controllable with respect to rain factors and able to learn the distribution of these factors purely from data. Our unpaired generation experiments demonstrate that the rain generated by the proposed rain generator is not only of higher quality, but also more effective for deraining and downstream tasks compared to current state-of-the-art rain generation methods. Besides, the paired data augmentation experiments, including both in-distribution and out-of-distribution (OOD), further validate the diversity of samples generated by our model for in-distribution deraining and OOD generalization tasks.
♻ ☆ PriSampler: Mitigating Property Inference of Diffusion Models
Diffusion models have been remarkably successful in data synthesis. However, when these models are applied to sensitive datasets, such as banking and human face data, they might bring up severe privacy concerns. This work systematically presents the first privacy study about property inference attacks against diffusion models, where adversaries aim to extract sensitive global properties of its training set from a diffusion model. Specifically, we focus on the most practical attack scenario: adversaries are restricted to accessing only synthetic data. Under this realistic scenario, we conduct a comprehensive evaluation of property inference attacks on various diffusion models trained on diverse data types, including tabular and image datasets. A broad range of evaluations reveals that diffusion models and their samplers are universally vulnerable to property inference attacks. In response, we propose a new model-agnostic plug-in method PriSampler to mitigate the risks of the property inference of diffusion models. PriSampler can be directly applied to well-trained diffusion models and support both stochastic and deterministic sampling. Extensive experiments illustrate the effectiveness of our defense, and it can lead adversaries to infer the proportion of properties as close as predefined values that model owners wish. Notably, PriSampler also shows its significantly superior performance to diffusion models trained with differential privacy on both model utility and defense performance. This work will elevate the awareness of preventing property inference attacks and encourage privacy-preserving synthetic data release.
♻ ☆ Neural-Symbolic Recursive Machine for Systematic Generalization ICLR 2024
Current learning models often struggle with human-like systematic generalization, particularly in learning compositional rules from limited data and extrapolating them to novel combinations. We introduce the Neural-Symbolic Recursive Machine (NSR), whose core is a Grounded Symbol System (GSS), allowing for the emergence of combinatorial syntax and semantics directly from training data. The NSR employs a modular design that integrates neural perception, syntactic parsing, and semantic reasoning. These components are synergistically trained through a novel deduction-abduction algorithm. Our findings demonstrate that NSR's design, imbued with the inductive biases of equivariance and compositionality, grants it the expressiveness to adeptly handle diverse sequence-to-sequence tasks and achieve unparalleled systematic generalization. We evaluate NSR's efficacy across four challenging benchmarks designed to probe systematic generalization capabilities: SCAN for semantic parsing, PCFG for string manipulation, HINT for arithmetic reasoning, and a compositional machine translation task. The results affirm NSR's superiority over contemporary neural and hybrid models in terms of generalization and transferability.
comment: ICLR 2024. Project website: https://liqing-ustc.github.io/NSR/
♻ ☆ JeFaPaTo -- A joint toolbox for blinking analysis and facial features extraction
Analyzing facial features and expressions is a complex task in computer vision. The human face is intricate, with significant shape, texture, and appearance variations. In medical contexts, facial structures and movements that differ from the norm are particularly important to study and require precise analysis to understand the underlying conditions. Given that solely the facial muscles, innervated by the facial nerve, are responsible for facial expressions, facial palsy can lead to severe impairments in facial movements. One affected area of interest is the subtle movements involved in blinking. It is an intricate spontaneous process that is not yet fully understood and needs high-resolution, time-specific analysis for detailed understanding. However, a significant challenge is that many computer vision techniques demand programming skills for automated extraction and analysis, making them less accessible to medical professionals who may not have these skills. The Jena Facial Palsy Toolbox (JeFaPaTo) has been developed to bridge this gap. It utilizes cutting-edge computer vision algorithms and offers a user-friendly interface for those without programming expertise. This toolbox makes advanced facial analysis more accessible to medical experts, simplifying integration into their workflow.
comment: A Preprint - Submitted to the Journal of Open Source Software; 7 pages, 3 figures, 3 tables
♻ ☆ Diagonal Hierarchical Consistency Learning for Semi-supervised Medical Image Segmentation
Medical image segmentation, which is essential for many clinical applications, has achieved almost human-level performance via data-driven deep learning technologies. Nevertheless, its performance is predicated upon the costly process of manually annotating a vast amount of medical images. To this end, we propose a novel framework for robust semi-supervised medical image segmentation using diagonal hierarchical consistency learning (DiHC-Net). First, it is composed of multiple sub-models with identical multi-scale architecture but with distinct sub-layers, such as up-sampling and normalisation layers. Second, with mutual consistency, a novel consistency regularisation is enforced between one model's intermediate and final prediction and soft pseudo labels from other models in a diagonal hierarchical fashion. A series of experiments verifies the efficacy of our simple framework, outperforming all previous approaches on public benchmark dataset covering organ and tumour.
comment: Accepted to IEEE EMBC 2024 (46th Annual International Conference of the IEEE Engineering in Medicine & Biology Society)
♻ ☆ InverseMatrixVT3D: An Efficient Projection Matrix-Based Approach for 3D Occupancy Prediction
This paper introduces InverseMatrixVT3D, an efficient method for transforming multi-view image features into 3D feature volumes for 3D semantic occupancy prediction. Existing methods for constructing 3D volumes often rely on depth estimation, device-specific operators, or transformer queries, which hinders the widespread adoption of 3D occupancy models. In contrast, our approach leverages two projection matrices to store the static mapping relationships and matrix multiplications to efficiently generate global Bird's Eye View (BEV) features and local 3D feature volumes. Specifically, we achieve this by performing matrix multiplications between multi-view image feature maps and two sparse projection matrices. We introduce a sparse matrix handling technique for the projection matrices to optimize GPU memory usage. Moreover, a global-local attention fusion module is proposed to integrate the global BEV features with the local 3D feature volumes to obtain the final 3D volume. We also employ a multi-scale supervision mechanism to enhance performance further. Extensive experiments performed on the nuScenes and SemanticKITTI datasets reveal that our approach not only stands out for its simplicity and effectiveness but also achieves the top performance in detecting vulnerable road users (VRU), crucial for autonomous driving and road safety. The code has been made available at: https://github.com/DanielMing123/InverseMatrixVT3D
♻ ☆ SDFD: Building a Versatile Synthetic Face Image Dataset with Diverse Attributes
AI systems rely on extensive training on large datasets to address various tasks. However, image-based systems, particularly those used for demographic attribute prediction, face significant challenges. Many current face image datasets primarily focus on demographic factors such as age, gender, and skin tone, overlooking other crucial facial attributes like hairstyle and accessories. This narrow focus limits the diversity of the data and consequently the robustness of AI systems trained on them. This work aims to address this limitation by proposing a methodology for generating synthetic face image datasets that capture a broader spectrum of facial diversity. Specifically, our approach integrates a systematic prompt formulation strategy, encompassing not only demographics and biometrics but also non-permanent traits like make-up, hairstyle, and accessories. These prompts guide a state-of-the-art text-to-image model in generating a comprehensive dataset of high-quality realistic images and can be used as an evaluation set in face analysis systems. Compared to existing datasets, our proposed dataset proves equally or more challenging in image classification tasks while being much smaller in size.
♻ ☆ Generalizable Metric Network for Cross-domain Person Re-identification
Person Re-identification (Re-ID) is a crucial technique for public security and has made significant progress in supervised settings. However, the cross-domain (i.e., domain generalization) scene presents a challenge in Re-ID tasks due to unseen test domains and domain-shift between the training and test sets. To tackle this challenge, most existing methods aim to learn domain-invariant or robust features for all domains. In this paper, we observe that the data-distribution gap between the training and test sets is smaller in the sample-pair space than in the sample-instance space. Based on this observation, we propose a Generalizable Metric Network (GMN) to further explore sample similarity in the sample-pair space. Specifically, we add a Metric Network (M-Net) after the main network and train it on positive and negative sample-pair features, which is then employed during the test stage. Additionally, we introduce the Dropout-based Perturbation (DP) module to enhance the generalization capability of the metric network by enriching the sample-pair diversity. Moreover, we develop a Pair-Identity Center (PIC) loss to enhance the model's discrimination by ensuring that sample-pair features with the same pair-identity are consistent. We validate the effectiveness of our proposed method through a lot of experiments on multiple benchmark datasets and confirm the value of each module in our GMN.
comment: Accepted by IEEE TCSVT
♻ ☆ MultiMatch: Multi-task Learning for Semi-supervised Domain Generalization
Domain generalization (DG) aims at learning a model on source domains to well generalize on the unseen target domain. Although it has achieved great success, most of existing methods require the label information for all training samples in source domains, which is time-consuming and expensive in the real-world application. In this paper, we resort to solving the semi-supervised domain generalization (SSDG) task, where there are a few label information in each source domain. To address the task, we first analyze the theory of the multi-domain learning, which highlights that 1) mitigating the impact of domain gap and 2) exploiting all samples to train the model can effectively reduce the generalization error in each source domain so as to improve the quality of pseudo-labels. According to the analysis, we propose MultiMatch, i.e., extending FixMatch to the multi-task learning framework, producing the high-quality pseudo-label for SSDG. To be specific, we consider each training domain as a single task (i.e., local task) and combine all training domains together (i.e., global task) to train an extra task for the unseen test domain. In the multi-task framework, we utilize the independent BN and classifier for each task, which can effectively alleviate the interference from different domains during pseudo-labeling. Also, most of parameters in the framework are shared, which can be trained by all training samples sufficiently. Moreover, to further boost the pseudo-label accuracy and the model's generalization, we fuse the predictions from the global task and local task during training and testing, respectively. A series of experiments validate the effectiveness of the proposed method, and it outperforms the existing semi-supervised methods and the SSDG method on several benchmark DG datasets.
comment: Accepted by ACM TOMM
♻ ☆ MV-VTON: Multi-View Virtual Try-On with Diffusion Models
The goal of image-based virtual try-on is to generate an image of the target person naturally wearing the given clothing. However, most existing methods solely focus on the frontal try-on using the frontal clothing. When the views of the clothing and person are significantly inconsistent, particularly when the person's view is non-frontal, the results are unsatisfactory. To address this challenge, we introduce Multi-View Virtual Try-ON (MV-VTON), which aims to reconstruct the dressing results of a person from multiple views using the given clothes. On the one hand, given that single-view clothes provide insufficient information for MV-VTON, we instead employ two images, i.e., the frontal and back views of the clothing, to encompass the complete view as much as possible. On the other hand, the diffusion models that have demonstrated superior abilities are adopted to perform our MV-VTON. In particular, we propose a view-adaptive selection method where hard-selection and soft-selection are applied to the global and local clothing feature extraction, respectively. This ensures that the clothing features are roughly fit to the person's view. Subsequently, we suggest a joint attention block to align and fuse clothing features with person features. Additionally, we collect a MV-VTON dataset, i.e., Multi-View Garment (MVG), in which each person has multiple photos with diverse views and poses. Experiments show that the proposed method not only achieves state-of-the-art results on MV-VTON task using our MVG dataset, but also has superiority on frontal-view virtual try-on task using VITON-HD and DressCode datasets. Codes and datasets will be publicly released at https://github.com/hywang2002/MV-VTON .
comment: 15 pages
♻ ☆ WiTUnet: A U-Shaped Architecture Integrating CNN and Transformer for Improved Feature Alignment and Local Information Fusion
Low-dose computed tomography (LDCT) has become the technology of choice for diagnostic medical imaging, given its lower radiation dose compared to standard CT, despite increasing image noise and potentially affecting diagnostic accuracy. To address this, advanced deep learning-based LDCT denoising algorithms have been developed, primarily using Convolutional Neural Networks (CNNs) or Transformer Networks with the Unet architecture. This architecture enhances image detail by integrating feature maps from the encoder and decoder via skip connections. However, current methods often overlook enhancements to the Unet architecture itself, focusing instead on optimizing encoder and decoder structures. This approach can be problematic due to the significant differences in feature map characteristics between the encoder and decoder, where simple fusion strategies may not effectively reconstruct images.In this paper, we introduce WiTUnet, a novel LDCT image denoising method that utilizes nested, dense skip pathways instead of traditional skip connections to improve feature integration. WiTUnet also incorporates a windowed Transformer structure to process images in smaller, non-overlapping segments, reducing computational load. Additionally, the integration of a Local Image Perception Enhancement (LiPe) module in both the encoder and decoder replaces the standard multi-layer perceptron (MLP) in Transformers, enhancing local feature capture and representation. Through extensive experimental comparisons, WiTUnet has demonstrated superior performance over existing methods in key metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), and Root Mean Square Error (RMSE), significantly improving noise removal and image quality.
♻ ☆ Instant3D: Instant Text-to-3D Generation
Text-to-3D generation has attracted much attention from the computer vision community. Existing methods mainly optimize a neural field from scratch for each text prompt, relying on heavy and repetitive training cost which impedes their practical deployment. In this paper, we propose a novel framework for fast text-to-3D generation, dubbed Instant3D. Once trained, Instant3D is able to create a 3D object for an unseen text prompt in less than one second with a single run of a feedforward network. We achieve this remarkable speed by devising a new network that directly constructs a 3D triplane from a text prompt. The core innovation of our Instant3D lies in our exploration of strategies to effectively inject text conditions into the network. In particular, we propose to combine three key mechanisms: cross-attention, style injection, and token-to-plane transformation, which collectively ensure precise alignment of the output with the input text. Furthermore, we propose a simple yet effective activation function, the scaled-sigmoid, to replace the original sigmoid function, which speeds up the training convergence by more than ten times. Finally, to address the Janus (multi-head) problem in 3D generation, we propose an adaptive Perp-Neg algorithm that can dynamically adjust its concept negation scales according to the severity of the Janus problem during training, effectively reducing the multi-head effect. Extensive experiments on a wide variety of benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods both qualitatively and quantitatively, while achieving significantly better efficiency. The code, data, and models are available at https://github.com/ming1993li/Instant3DCodes.
comment: Project page: https://ming1993li.github.io/Instant3DProj
♻ ☆ CT-GLIP: 3D Grounded Language-Image Pretraining with CT Scans and Radiology Reports for Full-Body Scenarios
Medical Vision-Language Pretraining (Med-VLP) establishes a connection between visual content from medical images and the relevant textual descriptions. Existing Med-VLP methods primarily focus on 2D images depicting a single body part, notably chest X-rays. In this paper, we extend the scope of Med-VLP to encompass 3D images, specifically targeting full-body scenarios, by using a multimodal dataset of CT images and reports. Compared with the 2D counterpart, 3D VLP is required to effectively capture essential semantics from significantly sparser representation in 3D imaging. In this paper, we introduce CT-GLIP (Grounded Language-Image Pretraining with CT scans), a novel method that constructs organ-level image-text pairs to enhance multimodal contrastive learning, aligning grounded visual features with precise diagnostic text. Additionally, we developed an abnormality dictionary to augment contrastive learning with diverse contrastive pairs. Our method, trained on a multimodal CT dataset comprising 44,011 organ-level vision-text pairs from 17,702 patients across 104 organs, demonstrates it can identify organs and abnormalities in a zero-shot manner using natural languages. The performance of CT-GLIP is validated on a separate test set of 1,130 patients, focusing on the 16 most frequent abnormalities across 7 organs. The experimental results show our model's superior performance over the standard CLIP framework across zero-shot and fine-tuning scenarios, using both CNN and ViT architectures.
comment: 12 pages, 5 figures, 3 tables
♻ ☆ LIPT: Latency-aware Image Processing Transformer
Transformer is leading a trend in the field of image processing. Despite the great success that existing lightweight image processing transformers have achieved, they are tailored to FLOPs or parameters reduction, rather than practical inference acceleration. In this paper, we present a latency-aware image processing transformer, termed LIPT. We devise the low-latency proportion LIPT block that substitutes memory-intensive operators with the combination of self-attention and convolutions to achieve practical speedup. Specifically, we propose a novel non-volatile sparse masking self-attention (NVSM-SA) that utilizes a pre-computing sparse mask to capture contextual information from a larger window with no extra computation overload. Besides, a high-frequency reparameterization module (HRM) is proposed to make LIPT block reparameterization friendly, which improves the model's detail reconstruction capability. Extensive experiments on multiple image processing tasks (e.g., image super-resolution (SR), JPEG artifact reduction, and image denoising) demonstrate the superiority of LIPT on both latency and PSNR. LIPT achieves real-time GPU inference with state-of-the-art performance on multiple image SR benchmarks.
♻ ☆ Conditional Distribution Modelling for Few-Shot Image Synthesis with Diffusion Models
Few-shot image synthesis entails generating diverse and realistic images of novel categories using only a few example images. While multiple recent efforts in this direction have achieved impressive results, the existing approaches are dependent only upon the few novel samples available at test time in order to generate new images, which restricts the diversity of the generated images. To overcome this limitation, we propose Conditional Distribution Modelling (CDM) -- a framework which effectively utilizes Diffusion models for few-shot image generation. By modelling the distribution of the latent space used to condition a Diffusion process, CDM leverages the learnt statistics of the training data to get a better approximation of the unseen class distribution, thereby removing the bias arising due to limited number of few shot samples. Simultaneously, we devise a novel inversion based optimization strategy that further improves the approximated unseen class distribution, and ensures the fidelity of the generated samples to the unseen class. The experimental results on four benchmark datasets demonstrate the effectiveness of our proposed CDM for few-shot generation.
♻ ☆ VolumeDiffusion: Flexible Text-to-3D Generation with Efficient Volumetric Encoder
This paper introduces a pioneering 3D volumetric encoder designed for text-to-3D generation. To scale up the training data for the diffusion model, a lightweight network is developed to efficiently acquire feature volumes from multi-view images. The 3D volumes are then trained on a diffusion model for text-to-3D generation using a 3D U-Net. This research further addresses the challenges of inaccurate object captions and high-dimensional feature volumes. The proposed model, trained on the public Objaverse dataset, demonstrates promising outcomes in producing diverse and recognizable samples from text prompts. Notably, it empowers finer control over object part characteristics through textual cues, fostering model creativity by seamlessly combining multiple concepts within a single object. This research significantly contributes to the progress of 3D generation by introducing an efficient, flexible, and scalable representation methodology. Code is available at https://github.com/checkcrab/VolumeDiffusion.
♻ ☆ Two in One Go: Single-stage Emotion Recognition with Decoupled Subject-context Transformer
Emotion recognition aims to discern the emotional state of subjects within an image, relying on subject-centric and contextual visual cues. Current approaches typically follow a two-stage pipeline: first localize subjects by off-the-shelf detectors, then perform emotion classification through the late fusion of subject and context features. However, the complicated paradigm suffers from disjoint training stages and limited interaction between fine-grained subject-context elements. To address the challenge, we present a single-stage emotion recognition approach, employing a Decoupled Subject-Context Transformer (DSCT), for simultaneous subject localization and emotion classification. Rather than compartmentalizing training stages, we jointly leverage box and emotion signals as supervision to enrich subject-centric feature learning. Furthermore, we introduce DSCT to facilitate interactions between fine-grained subject-context cues in a decouple-then-fuse manner. The decoupled query token--subject queries and context queries--gradually intertwine across layers within DSCT, during which spatial and semantic relations are exploited and aggregated. We evaluate our single-stage framework on two widely used context-aware emotion recognition datasets, CAER-S and EMOTIC. Our approach surpasses two-stage alternatives with fewer parameter numbers, achieving a 3.39% accuracy improvement and a 6.46% average precision gain on CAER-S and EMOTIC datasets, respectively.
♻ ☆ A Multi-objective Optimization Benchmark Test Suite for Real-time Semantic Segmentation GECCO 2024
As one of the emerging challenges in Automated Machine Learning, the Hardware-aware Neural Architecture Search (HW-NAS) tasks can be treated as black-box multi-objective optimization problems (MOPs). An important application of HW-NAS is real-time semantic segmentation, which plays a pivotal role in autonomous driving scenarios. The HW-NAS for real-time semantic segmentation inherently needs to balance multiple optimization objectives, including model accuracy, inference speed, and hardware-specific considerations. Despite its importance, benchmarks have yet to be developed to frame such a challenging task as multi-objective optimization. To bridge the gap, we introduce a tailored streamline to transform the task of HW-NAS for real-time semantic segmentation into standard MOPs. Building upon the streamline, we present a benchmark test suite, CitySeg/MOP, comprising fifteen MOPs derived from the Cityscapes dataset. The CitySeg/MOP test suite is integrated into the EvoXBench platform to provide seamless interfaces with various programming languages (e.g., Python and MATLAB) for instant fitness evaluations. We comprehensively assessed the CitySeg/MOP test suite on various multi-objective evolutionary algorithms, showcasing its versatility and practicality. Source codes are available at https://github.com/EMI-Group/evoxbench.
comment: GECCO 2024
♻ ☆ Distilling Privileged Multimodal Information for Expression Recognition using Optimal Transport
Deep learning models for multimodal expression recognition have reached remarkable performance in controlled laboratory environments because of their ability to learn complementary and redundant semantic information. However, these models struggle in the wild, mainly because of the unavailability and quality of modalities used for training. In practice, only a subset of the training-time modalities may be available at test time. Learning with privileged information enables models to exploit data from additional modalities that are only available during training. State-of-the-art knowledge distillation (KD) methods have been proposed to distill information from multiple teacher models (each trained on a modality) to a common student model. These privileged KD methods typically utilize point-to-point matching, yet have no explicit mechanism to capture the structural information in the teacher representation space formed by introducing the privileged modality. Experiments were performed on two challenging problems - pain estimation on the Biovid dataset (ordinal classification) and arousal-valance prediction on the Affwild2 dataset (regression). Results show that our proposed method can outperform state-of-the-art privileged KD methods on these problems. The diversity among modalities and fusion architectures indicates that PKDOT is modality- and model-agnostic.
♻ ☆ Using Skew to Assess the Quality of GAN-generated Image Features
The rapid advancement of Generative Adversarial Networks (GANs) necessitates the need to robustly evaluate these models. Among the established evaluation criteria, the Fr\'{e}chetInception Distance (FID) has been widely adopted due to its conceptual simplicity, fast computation time, and strong correlation with human perception. However, FID has inherent limitations, mainly stemming from its assumption that feature embeddings follow a Gaussian distribution, and therefore can be defined by their first two moments. As this does not hold in practice, in this paper we explore the importance of third-moments in image feature data and use this information to define a new measure, which we call the Skew Inception Distance (SID). We prove that SID is a pseudometric on probability distributions, show how it extends FID, and present a practical method for its computation. Our numerical experiments support that SID either tracks with FID or, in some cases, aligns more closely with human perception when evaluating image features of ImageNet data. Our work also shows that principal component analysis can be used to speed up the computation time of both FID and SID. Although we focus on using SID on image features for GAN evaluation, SID is applicable much more generally, including for the evaluation of other generative models.
♻ ☆ UncertaintyTrack: Exploiting Detection and Localization Uncertainty in Multi-Object Tracking ICRA 2024
Multi-object tracking (MOT) methods have seen a significant boost in performance recently, due to strong interest from the research community and steadily improving object detection methods. The majority of tracking methods follow the tracking-by-detection (TBD) paradigm, blindly trust the incoming detections with no sense of their associated localization uncertainty. This lack of uncertainty awareness poses a problem in safety-critical tasks such as autonomous driving where passengers could be put at risk due to erroneous detections that have propagated to downstream tasks, including MOT. While there are existing works in probabilistic object detection that predict the localization uncertainty around the boxes, no work in 2D MOT for autonomous driving has studied whether these estimates are meaningful enough to be leveraged effectively in object tracking. We introduce UncertaintyTrack, a collection of extensions that can be applied to multiple TBD trackers to account for localization uncertainty estimates from probabilistic object detectors. Experiments on the Berkeley Deep Drive MOT dataset show that the combination of our method and informative uncertainty estimates reduces the number of ID switches by around 19\% and improves mMOTA by 2-3%. The source code is available at https://github.com/TRAILab/UncertaintyTrack
comment: Accepted to ICRA 2024
♻ ☆ How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites
In this report, we introduce InternVL 1.5, an open-source multimodal large language model (MLLM) to bridge the capability gap between open-source and proprietary commercial models in multimodal understanding. We introduce three simple improvements: (1) Strong Vision Encoder: we explored a continuous learning strategy for the large-scale vision foundation model -- InternViT-6B, boosting its visual understanding capabilities, and making it can be transferred and reused in different LLMs. (2) Dynamic High-Resolution: we divide images into tiles ranging from 1 to 40 of 448$\times$448 pixels according to the aspect ratio and resolution of the input images, which supports up to 4K resolution input. (3) High-Quality Bilingual Dataset: we carefully collected a high-quality bilingual dataset that covers common scenes, document images, and annotated them with English and Chinese question-answer pairs, significantly enhancing performance in OCR- and Chinese-related tasks. We evaluate InternVL 1.5 through a series of benchmarks and comparative studies. Compared to both open-source and proprietary models, InternVL 1.5 shows competitive performance, achieving state-of-the-art results in 8 of 18 benchmarks. Code has been released at https://github.com/OpenGVLab/InternVL.
comment: Technical report
Information Retrieval 20
☆ Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations
Learned sparse representations form an attractive class of contextual embeddings for text retrieval. That is so because they are effective models of relevance and are interpretable by design. Despite their apparent compatibility with inverted indexes, however, retrieval over sparse embeddings remains challenging. That is due to the distributional differences between learned embeddings and term frequency-based lexical models of relevance such as BM25. Recognizing this challenge, a great deal of research has gone into, among other things, designing retrieval algorithms tailored to the properties of learned sparse representations, including approximate retrieval systems. In fact, this task featured prominently in the latest BigANN Challenge at NeurIPS 2023, where approximate algorithms were evaluated on a large benchmark dataset by throughput and recall. In this work, we propose a novel organization of the inverted index that enables fast yet effective approximate retrieval over learned sparse embeddings. Our approach organizes inverted lists into geometrically-cohesive blocks, each equipped with a summary vector. During query processing, we quickly determine if a block must be evaluated using the summaries. As we show experimentally, single-threaded query processing using our method, Seismic, reaches sub-millisecond per-query latency on various sparse embeddings of the MS MARCO dataset while maintaining high recall. Our results indicate that Seismic is one to two orders of magnitude faster than state-of-the-art inverted index-based solutions and further outperforms the winning (graph-based) submissions to the BigANN Challenge by a significant margin.
☆ Efficiency-Effectiveness Tradeoff of Probabilistic Structured Queries for Cross-Language Information Retrieval
Probabilistic Structured Queries (PSQ) is a cross-language information retrieval (CLIR) method that uses translation probabilities statistically derived from aligned corpora. PSQ is a strong baseline for efficient CLIR using sparse indexing. It is, therefore, useful as the first stage in a cascaded neural CLIR system whose second stage is more effective but too inefficient to be used on its own to search a large text collection. In this reproducibility study, we revisit PSQ by introducing an efficient Python implementation. Unconstrained use of all translation probabilities that can be estimated from aligned parallel text would in the limit assign a weight to every vocabulary term, precluding use of an inverted index to serve queries efficiently. Thus, PSQ's effectiveness and efficiency both depend on how translation probabilities are pruned. This paper presents experiments over a range of modern CLIR test collections to demonstrate that achieving Pareto optimal PSQ effectiveness-efficiency tradeoffs benefits from multi-criteria pruning, which has not been fully explored in prior work. Our Python PSQ implementation is available on GitHub(https://github.com/hltcoe/PSQ) and unpruned translation tables are available on Huggingface Models(https://huggingface.co/hltcoe/psq_translation_tables).
comment: 11 pages, 5 figures
☆ Going Beyond Popularity and Positivity Bias: Correcting for Multifactorial Bias in Recommender Systems SIGIR 2024
Two typical forms of bias in user interaction data with recommender systems (RSs) are popularity bias and positivity bias, which manifest themselves as the over-representation of interactions with popular items or items that users prefer, respectively. Debiasing methods aim to mitigate the effect of selection bias on the evaluation and optimization of RSs. However, existing debiasing methods only consider single-factor forms of bias, e.g., only the item (popularity) or only the rating value (positivity). This is in stark contrast with the real world where user selections are generally affected by multiple factors at once. In this work, we consider multifactorial selection bias in RSs. Our focus is on selection bias affected by both item and rating value factors, which is a generalization and combination of popularity and positivity bias. While the concept of multifactorial bias is intuitive, it brings a severe practical challenge as it requires substantially more data for accurate bias estimation. As a solution, we propose smoothing and alternating gradient descent techniques to reduce variance and improve the robustness of its optimization. Our experimental results reveal that, with our proposed techniques, multifactorial bias corrections are more effective and robust than single-factor counterparts on real-world and synthetic datasets.
comment: SIGIR 2024
☆ ir_explain: a Python Library of Explainable IR Methods
While recent advancements in Neural Ranking Models have resulted in significant improvements over traditional statistical retrieval models, it is generally acknowledged that the use of large neural architectures and the application of complex language models in Information Retrieval (IR) have reduced the transparency of retrieval methods. Consequently, Explainability and Interpretability have emerged as important research topics in IR. Several axiomatic and post-hoc explanation methods, as well as approaches that attempt to be interpretable-by-design, have been proposed. This article presents \irexplain, an open-source Python library that implements a variety of well-known techniques for Explainable IR (ExIR) within a common, extensible framework. \irexplain supports the three standard categories of post-hoc explanations, namely pointwise, pairwise, and listwise explanations. The library is designed to make it easy to reproduce state-of-the-art ExIR baselines on standard test collections, as well as to explore new approaches to explaining IR models and methods. To facilitate adoption, \irexplain is well-integrated with widely-used toolkits such as Pyserini and \irdatasets.
☆ OAEI Machine Learning Dataset for Online Model Generation ESWC 2024
Ontology and knowledge graph matching systems are evaluated annually by the Ontology Alignment Evaluation Initiative (OAEI). More and more systems use machine learning-based approaches, including large language models. The training and validation datasets are usually determined by the system developer and often a subset of the reference alignments are used. This sampling is against the OAEI rules and makes a fair comparison impossible. Furthermore, those models are trained offline (a trained and optimized model is packaged into the matcher) and therefore the systems are specifically trained for those tasks. In this paper, we introduce a dataset that contains training, validation, and test sets for most of the OAEI tracks. Thus, online model learning (the systems must adapt to the given input alignment without human intervention) is made possible to enable a fair comparison for ML-based systems. We showcase the usefulness of the dataset by fine-tuning the confidence thresholds of popular systems.
comment: accepted as ESWC 2024 Poster
☆ M3oE: Multi-Domain Multi-Task Mixture-of Experts Recommendation Framework
Multi-domain recommendation and multi-task recommendation have demonstrated their effectiveness in leveraging common information from different domains and objectives for comprehensive user modeling. Nonetheless, the practical recommendation usually faces multiple domains and tasks simultaneously, which cannot be well-addressed by current methods. To this end, we introduce M3oE, an adaptive multi-domain multi-task mixture-of-experts recommendation framework. M3oE integrates multi-domain information, maps knowledge across domains and tasks, and optimizes multiple objectives. We leverage three mixture-of-experts modules to learn common, domain-aspect, and task-aspect user preferences respectively to address the complex dependencies among multiple domains and tasks in a disentangled manner. Additionally, we design a two-level fusion mechanism for precise control over feature extraction and fusion across diverse domains and tasks. The framework's adaptability is further enhanced by applying AutoML technique, which allows dynamic structure optimization. To the best of the authors' knowledge, our M3oE is the first effort to solve multi-domain multi-task recommendation self-adaptively. Extensive experiments on two benchmark datasets against diverse baselines demonstrate M3oE's superior performance. The implementation code is available to ensure reproducibility.
☆ BMRetriever: Tuning Large Language Models as Better Biomedical Text Retrievers
Developing effective biomedical retrieval models is important for excelling at knowledge-intensive biomedical tasks but still challenging due to the deficiency of sufficient publicly annotated biomedical data and computational resources. We present BMRetriever, a series of dense retrievers for enhancing biomedical retrieval via unsupervised pre-training on large biomedical corpora, followed by instruction fine-tuning on a combination of labeled datasets and synthetic pairs. Experiments on 5 biomedical tasks across 11 datasets verify BMRetriever's efficacy on various biomedical applications. BMRetriever also exhibits strong parameter efficiency, with the 410M variant outperforming baselines up to 11.7 times larger, and the 2B variant matching the performance of models with over 5B parameters. The training data and model checkpoints are released at \url{https://huggingface.co/BMRetriever} to ensure transparency, reproducibility, and application to new domains.
comment: Work in progress. The model and data will be uploaded to \url{https://github.com/ritaranx/BMRetriever}
PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval
The current use of large language models (LLMs) for zero-shot document ranking follows one of two ways: 1) prompt-based re-ranking methods, which require no further training but are feasible for only re-ranking a handful of candidate documents due to the associated computational costs; and 2) unsupervised contrastive trained dense retrieval methods, which can retrieve relevant documents from the entire corpus but require a large amount of paired text data for contrastive training. In this paper, we propose PromptReps, which combines the advantages of both categories: no need for training and the ability to retrieve from the whole corpus. Our method only requires prompts to guide an LLM to generate query and document representations for effective document retrieval. Specifically, we prompt the LLMs to represent a given text using a single word, and then use the last token's hidden states and the corresponding logits associated to the prediction of the next token to construct a hybrid document retrieval system. The retrieval system harnesses both dense text embedding and sparse bag-of-words representations given by the LLM. Our experimental evaluation on the BEIR zero-shot document retrieval datasets illustrates that this simple prompt-based LLM retrieval method can achieve a similar or higher retrieval effectiveness than state-of-the-art LLM embedding methods that are trained with large amounts of unsupervised data, especially when using a larger LLM.
☆ Automated Construction of Theme-specific Knowledge Graphs
Despite widespread applications of knowledge graphs (KGs) in various tasks such as question answering and intelligent conversational systems, existing KGs face two major challenges: information granularity and deficiency in timeliness. These hinder considerably the retrieval and analysis of in-context, fine-grained, and up-to-date knowledge from KGs, particularly in highly specialized themes (e.g., specialized scientific research) and rapidly evolving contexts (e.g., breaking news or disaster tracking). To tackle such challenges, we propose a theme-specific knowledge graph (i.e., ThemeKG), a KG constructed from a theme-specific corpus, and design an unsupervised framework for ThemeKG construction (named TKGCon). The framework takes raw theme-specific corpus and generates a high-quality KG that includes salient entities and relations under the theme. Specifically, we start with an entity ontology of the theme from Wikipedia, based on which we then generate candidate relations by Large Language Models (LLMs) to construct a relation ontology. To parse the documents from the theme corpus, we first map the extracted entity pairs to the ontology and retrieve the candidate relations. Finally, we incorporate the context and ontology to consolidate the relations for entity pairs. We observe that directly prompting GPT-4 for theme-specific KG leads to inaccurate entities (such as "two main types" as one entity in the query result) and unclear (such as "is", "has") or wrong relations (such as "have due to", "to start"). In contrast, by constructing the theme-specific KG step by step, our model outperforms GPT-4 and could consistently identify accurate entities and relations. Experimental results also show that our framework excels in evaluations compared with various KG construction baselines.
☆ SpherE: Expressive and Interpretable Knowledge Graph Embedding for Set Retrieval SIGIR 2024
Knowledge graphs (KGs), which store an extensive number of relational facts (head, relation, tail), serve various applications. While many downstream tasks highly rely on the expressive modeling and predictive embedding of KGs, most of the current KG representation learning methods, where each entity is embedded as a vector in the Euclidean space and each relation is embedded as a transformation, follow an entity ranking protocol. On one hand, such an embedding design cannot capture many-to-many relations. On the other hand, in many retrieval cases, the users wish to get an exact set of answers without any ranking, especially when the results are expected to be precise, e.g., which genes cause an illness. Such scenarios are commonly referred to as "set retrieval". This work presents a pioneering study on the KG set retrieval problem. We show that the set retrieval highly depends on expressive modeling of many-to-many relations, and propose a new KG embedding model SpherE to address this problem. SpherE is based on rotational embedding methods, but each entity is embedded as a sphere instead of a vector. While inheriting the high interpretability of rotational-based models, our SpherE can more expressively model one-to-many, many-to-one, and many-to-many relations. Through extensive experiments, we show that our SpherE can well address the set retrieval problem while still having a good predictive ability to infer missing facts. The code is available at https://github.com/Violet24K/SpherE.
comment: Accepted by SIGIR 2024, Camera Ready Version
☆ Catalyzing Social Interactions in Mixed Reality using ML Recommendation Systems
We create an innovative mixed reality-first social recommendation model, utilizing features uniquely collected through mixed reality (MR) systems to promote social interaction, such as gaze recognition, proximity, noise level, congestion level, and conversational intensity. We further extend these models to include right-time features to deliver timely notifications. We measure performance metrics across various models by creating a new intersection of user features, MR features, and right-time features. We create four model types trained on different combinations of the feature classes, where we compare the baseline model trained on the class of user features against the models trained on MR features, right-time features, and a combination of all of the feature classes. Due to limitations in data collection and cost, we observe performance degradation in the right-time, mixed reality, and combination models. Despite these challenges, we introduce optimizations to improve accuracy across all models by over 14 percentage points, where the best performing model achieved 24% greater accuracy.
☆ Large Language Models as Conversational Movie Recommenders: A User Study
This paper explores the effectiveness of using large language models (LLMs) for personalized movie recommendations from users' perspectives in an online field experiment. Our study involves a combination of between-subject prompt and historic consumption assessments, along with within-subject recommendation scenario evaluations. By examining conversation and survey response data from 160 active users, we find that LLMs offer strong recommendation explainability but lack overall personalization, diversity, and user trust. Our results also indicate that different personalized prompting techniques do not significantly affect user-perceived recommendation quality, but the number of movies a user has watched plays a more significant role. Furthermore, LLMs show a greater ability to recommend lesser-known or niche movies. Through qualitative analysis, we identify key conversational patterns linked to positive and negative user interaction experiences and conclude that providing personal context and examples is crucial for obtaining high-quality recommendations from LLMs.
☆ Exploring Weighted Property Approaches for RDF Graph Similarity Measure
Measuring similarity between RDF graphs is essential for various applications, including knowledge discovery, semantic web analysis, and recommender systems. However, traditional similarity measures often treat all properties equally, potentially overlooking the varying importance of different properties in different contexts. Consequently, exploring weighted property approaches for RDF graph similarity measure presents an intriguing avenue for investigation. Therefore, in this paper, we propose a weighted property approach for RDF graph similarity measure to address this limitation. Our approach incorporates the relative importance of properties into the similarity calculation, enabling a more nuanced and context-aware measures of similarity. We evaluate our approach through a comprehensive experimental study on an RDF graph dataset in the vehicle domain. Our results demonstrate that the proposed approach achieves promising accuracy and effectively reflects the perceived similarity between RDF graphs.
☆ Information literacy development and assessment at school level: a systematic review of the literature
Information literacy (IL) involves a group of competences and fundamental skills in the 21st century. Today, society operates around information, which is challenging considering the vast amount of content available online. People must be capable of searching, critically assessing, making sense of, and communicating information. This set of competences must be properly developed since childhood, especially if considering early age access to online resources. To better understand the evolution and current status of IL development and assessment at school (K-12) level, we conducted a systematic literature review based on the guidelines established by the PRISMA statement. Our review led us to an initial set of 1,234 articles, from which 53 passed the inclusion criteria. These articles were used to address six research questions focused on IL definitions, skills, standards, and assessment tools. Our review shows IL evolution over the years and how it has been formalisedthrough definitions and standards. These findings reveal key gaps that must be addressed in order to advance the field further. Keywords: Elementary education, Information literacy, Secondary education, 21st Century abilities.
☆ Credible, Unreliable or Leaked?: Evidence Verification for Enhanced Automated Fact-checking
Automated fact-checking (AFC) is garnering increasing attention by researchers aiming to help fact-checkers combat the increasing spread of misinformation online. While many existing AFC methods incorporate external information from the Web to help examine the veracity of claims, they often overlook the importance of verifying the source and quality of collected "evidence". One overlooked challenge involves the reliance on "leaked evidence", information gathered directly from fact-checking websites and used to train AFC systems, resulting in an unrealistic setting for early misinformation detection. Similarly, the inclusion of information from unreliable sources can undermine the effectiveness of AFC systems. To address these challenges, we present a comprehensive approach to evidence verification and filtering. We create the "CREDible, Unreliable or LEaked" (CREDULE) dataset, which consists of 91,632 articles classified as Credible, Unreliable and Fact checked (Leaked). Additionally, we introduce the EVidence VERification Network (EVVER-Net), trained on CREDULE to detect leaked and unreliable evidence in both short and long texts. EVVER-Net can be used to filter evidence collected from the Web, thus enhancing the robustness of end-to-end AFC systems. We experiment with various language models and show that EVVER-Net can demonstrate impressive performance of up to 91.5% and 94.4% accuracy, while leveraging domain credibility scores along with short or long texts, respectively. Finally, we assess the evidence provided by widely-used fact-checking datasets including LIAR-PLUS, MOCHEG, FACTIFY, NewsCLIPpings+ and VERITE, some of which exhibit concerning rates of leaked and unreliable evidence.
♻ ☆ Recommender Systems in the Era of Large Language Models (LLMs)
With the prosperity of e-commerce and web applications, Recommender Systems (RecSys) have become an important component of our daily life, providing personalized suggestions that cater to user preferences. While Deep Neural Networks (DNNs) have made significant advancements in enhancing recommender systems by modeling user-item interactions and incorporating textual side information, DNN-based methods still face limitations, such as difficulties in understanding users' interests and capturing textual side information, inabilities in generalizing to various recommendation scenarios and reasoning on their predictions, etc. Meanwhile, the emergence of Large Language Models (LLMs), such as ChatGPT and GPT4, has revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI), due to their remarkable abilities in fundamental responsibilities of language understanding and generation, as well as impressive generalization and reasoning capabilities. As a result, recent studies have attempted to harness the power of LLMs to enhance recommender systems. Given the rapid evolution of this research direction in recommender systems, there is a pressing need for a systematic overview that summarizes existing LLM-empowered recommender systems, to provide researchers in relevant fields with an in-depth understanding. Therefore, in this paper, we conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting. More specifically, we first introduce representative methods to harness the power of LLMs (as a feature encoder) for learning representations of users and items. Then, we review recent techniques of LLMs for enhancing recommender systems from three paradigms, namely pre-training, fine-tuning, and prompting. Finally, we comprehensively discuss future directions in this emerging field.
comment: Accepted by IEEE TKDE
♻ ☆ Formalizing Multimedia Recommendation through Multimodal Deep Learning
Recommender systems (RSs) offer personalized navigation experiences on online platforms, but recommendation remains a challenging task, particularly in specific scenarios and domains. Multimodality can help tap into richer information sources and construct more refined user/item profiles for recommendations. However, existing literature lacks a shared and universal schema for modeling and solving the recommendation problem through the lens of multimodality. This work aims to formalize a general multimodal schema for multimedia recommendation. It provides a comprehensive literature review of multimodal approaches for multimedia recommendation from the last eight years, outlines the theoretical foundations of a multimodal pipeline, and demonstrates its rationale by applying it to selected state-of-the-art approaches. The work also conducts a benchmarking analysis of recent algorithms for multimedia recommendation within Elliot, a rigorous framework for evaluating recommender systems. The main aim is to provide guidelines for designing and implementing the next generation of multimodal approaches in multimedia recommendation.
comment: Accepted in the Special Issue on Knowledge Transferring for Recommender Systems (KT4Rec) in ACM Transactions on Recommender Systems
♻ ☆ Prompt-based Multi-interest Learning Method for Sequential Recommendation
Multi-interest learning method for sequential recommendation aims to predict the next item according to user multi-faceted interests given the user historical interactions. Existing methods mainly consist of a multi-interest extractor that embeds the multiple user interests based on the user interactions, and a multi-interest aggregator that aggregates the learned multi-interest embeddings to derive the final user embedding, used for predicting the user rating to an item. Despite their effectiveness, existing methods have two key limitations: 1) they directly feed the user interactions into the multi-interest extractor and aggregator, while ignoring their different learning objectives, and 2) they merely consider the centrality of the user interactions to embed multiple interests of the user, while overlooking their dispersion. To tackle these limitations, we propose a prompt-based multi-interest learning method (PoMRec), where specific prompts are inserted into user interactions, making them adaptive to the extractor and aggregator. Moreover, we utilize both the mean and variance embeddings of user interactions to embed the user multiple interests for the comprehensively user interest learning. We conduct extensive experiments on three public datasets, and the results verify that our proposed PoMRec outperforms the state-of-the-art multi-interest learning methods.
♻ ☆ The Impact of Group Membership Bias on the Quality and Fairness of Exposure in Ranking
When learning to rank from user interactions, search and recommender systems must address biases in user behavior to provide a high-quality ranking. One type of bias that has recently been studied in the ranking literature is when sensitive attributes, such as gender, have an impact on a user's judgment about an item's utility. For example, in a search for an expertise area, some users may be biased towards clicking on male candidates over female candidates. We call this type of bias group membership bias. Increasingly, we seek rankings that are fair to individuals and sensitive groups. Merit-based fairness measures rely on the estimated utility of the items. With group membership bias, the utility of the sensitive groups is under-estimated, hence, without correcting for this bias, a supposedly fair ranking is not truly fair. In this paper, first, we analyze the impact of group membership bias on ranking quality as well as merit-based fairness metrics and show that group membership bias can hurt both ranking and fairness. Then, we provide a correction method for group bias that is based on the assumption that the utility score of items in different groups comes from the same distribution. This assumption has two potential issues of sparsity and equality-instead-of-equity; we use an amortized approach to address these. We show that our correction method can consistently compensate for the negative impact of group membership bias on ranking quality and fairness metrics.
♻ ☆ Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs SIGIR 2024
In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback. In a conversational setting such signals are usually unavailable due to the nature of the interactions, and, instead, the evaluation often relies on crowdsourced evaluation labels. The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied. We focus on how the evaluation of task-oriented dialogue systems (TDSs), is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated. We explore and compare two methodologies for assessing TDSs: one includes the user's follow-up utterance and one without. We use both crowdworkers and large language models (LLMs) as annotators to assess system responses across four aspects: relevance, usefulness, interestingness, and explanation quality. Our findings indicate that there is a distinct difference in ratings assigned by both annotator groups in the two setups, indicating user feedback does influence system evaluation. Workers are more susceptible to user feedback on usefulness and interestingness compared to LLMs on interestingness and relevance. User feedback leads to a more personalized assessment of usefulness by workers, aligning closely with the user's explicit feedback. Additionally, in cases of ambiguous or complex user requests, user feedback improves agreement among crowdworkers. These findings emphasize the significance of user feedback in refining system evaluations and suggest the potential for automated feedback integration in future research. We publicly release the annotated data to foster research in this area.
comment: Accepted at SIGIR 2024 long paper track
Machine Learning 153
☆ Stylus: Automatic Adapter Selection for Diffusion Models
Beyond scaling base models with more data or parameters, fine-tuned adapters provide an alternative way to generate high fidelity, custom images at reduced costs. As such, adapters have been widely adopted by open-source communities, accumulating a database of over 100K adapters-most of which are highly customized with insufficient descriptions. This paper explores the problem of matching the prompt to a set of relevant adapters, built on recent work that highlight the performance gains of composing adapters. We introduce Stylus, which efficiently selects and automatically composes task-specific adapters based on a prompt's keywords. Stylus outlines a three-stage approach that first summarizes adapters with improved descriptions and embeddings, retrieves relevant adapters, and then further assembles adapters based on prompts' keywords by checking how well they fit the prompt. To evaluate Stylus, we developed StylusDocs, a curated dataset featuring 75K adapters with pre-computed adapter embeddings. In our evaluation on popular Stable Diffusion checkpoints, Stylus achieves greater CLIP-FID Pareto efficiency and is twice as preferred, with humans and multimodal models as evaluators, over the base model. See stylus-diffusion.github.io for more.
comment: Project Website: https://stylus-diffusion.github.io
☆ Point Cloud Models Improve Visual Robustness in Robotic Learners
Visual control policies can encounter significant performance degradation when visual conditions like lighting or camera position differ from those seen during training -- often exhibiting sharp declines in capability even for minor differences. In this work, we examine robustness to a suite of these types of visual changes for RGB-D and point cloud based visual control policies. To perform these experiments on both model-free and model-based reinforcement learners, we introduce a novel Point Cloud World Model (PCWM) and point cloud based control policies. Our experiments show that policies that explicitly encode point clouds are significantly more robust than their RGB-D counterparts. Further, we find our proposed PCWM significantly outperforms prior works in terms of sample efficiency during training. Taken together, these results suggest reasoning about the 3D scene through point clouds can improve performance, reduce learning time, and increase robustness for robotic learners. Project Webpage: https://pvskand.github.io/projects/PCWM
comment: Accepted at International Conference on Robotics and Automation, 2024
☆ DPO Meets PPO: Reinforced Token Optimization for RLHF
In the classical Reinforcement Learning from Human Feedback (RLHF) framework, Proximal Policy Optimization (PPO) is employed to learn from sparse, sentence-level rewards -- a challenging scenario in traditional deep reinforcement learning. Despite the great successes of PPO in the alignment of state-of-the-art closed-source large language models (LLMs), its open-source implementation is still largely sub-optimal, as widely reported by numerous research studies. To address these issues, we introduce a framework that models RLHF problems as a Markov decision process (MDP), enabling the capture of fine-grained token-wise information. Furthermore, we provide theoretical insights that demonstrate the superiority of our MDP framework over the previous sentence-level bandit formulation. Under this framework, we introduce an algorithm, dubbed as Reinforced Token Optimization (\texttt{RTO}), which learns the token-wise reward function from preference data and performs policy optimization based on this learned token-wise reward signal. Theoretically, \texttt{RTO} is proven to have the capability of finding the near-optimal policy sample-efficiently. For its practical implementation, \texttt{RTO} innovatively integrates Direct Preference Optimization (DPO) and PPO. DPO, originally derived from sparse sentence rewards, surprisingly provides us with a token-wise characterization of response quality, which is seamlessly incorporated into our subsequent PPO training stage. Extensive real-world alignment experiments verify the effectiveness of the proposed approach.
☆ Kangaroo: Lossless Self-Speculative Decoding via Double Early Exiting
Speculative decoding has demonstrated its effectiveness in accelerating the inference of large language models while maintaining a consistent sampling distribution. However, the conventional approach of training a separate draft model to achieve a satisfactory token acceptance rate can be costly. Drawing inspiration from early exiting, we propose a novel self-speculative decoding framework \emph{Kangaroo}, which uses a fixed shallow sub-network as a self-draft model, with the remaining layers serving as the larger target model. We train a lightweight and efficient adapter module on top of the sub-network to bridge the gap between the sub-network and the full model's representation ability. It is noteworthy that the inference latency of the self-draft model may no longer be negligible compared to the large model, necessitating strategies to increase the token acceptance rate while minimizing the drafting steps of the small model. To address this challenge, we introduce an additional early exiting mechanism for generating draft tokens. Specifically, we halt the small model's subsequent prediction during the drafting phase once the confidence level for the current token falls below a certain threshold. Extensive experiments on the Spec-Bench demonstrate the effectiveness of Kangaroo. Under single-sequence verification, Kangaroo achieves speedups up to $1.68\times$ on Spec-Bench, outperforming Medusa-1 with 88.7\% fewer additional parameters (67M compared to 591M). The code for Kangaroo is available at https://github.com/Equationliu/Kangaroo.
☆ Sample-Efficient Robust Multi-Agent Reinforcement Learning in the Face of Environmental Uncertainty
To overcome the sim-to-real gap in reinforcement learning (RL), learned policies must maintain robustness against environmental uncertainties. While robust RL has been widely studied in single-agent regimes, in multi-agent environments, the problem remains understudied -- despite the fact that the problems posed by environmental uncertainties are often exacerbated by strategic interactions. This work focuses on learning in distributionally robust Markov games (RMGs), a robust variant of standard Markov games, wherein each agent aims to learn a policy that maximizes its own worst-case performance when the deployed environment deviates within its own prescribed uncertainty set. This results in a set of robust equilibrium strategies for all agents that align with classic notions of game-theoretic equilibria. Assuming a non-adaptive sampling mechanism from a generative model, we propose a sample-efficient model-based algorithm (DRNVI) with finite-sample complexity guarantees for learning robust variants of various notions of game-theoretic equilibria. We also establish an information-theoretic lower bound for solving RMGs, which confirms the near-optimal sample complexity of DRNVI with respect to problem-dependent factors such as the size of the state space, the target accuracy, and the horizon length.
☆ Detecting critical treatment effect bias in small subgroups UAI
Randomized trials are considered the gold standard for making informed decisions in medicine, yet they often lack generalizability to the patient populations in clinical practice. Observational studies, on the other hand, cover a broader patient population but are prone to various biases. Thus, before using an observational study for decision-making, it is crucial to benchmark its treatment effect estimates against those derived from a randomized trial. We propose a novel strategy to benchmark observational studies beyond the average treatment effect. First, we design a statistical test for the null hypothesis that the treatment effects estimated from the two studies, conditioned on a set of relevant features, differ up to some tolerance. We then estimate an asymptotically valid lower bound on the maximum bias strength for any subgroup in the observational study. Finally, we validate our benchmarking strategy in a real-world setting and show that it leads to conclusions that align with established medical knowledge.
comment: Accepted for presentation at the Conference on Uncertainty in Artificial Intelligence (UAI) 2024
☆ Overcoming Knowledge Barriers: Online Imitation Learning from Observation with Pretrained World Models
Incorporating the successful paradigm of pretraining and finetuning from Computer Vision and Natural Language Processing into decision-making has become increasingly popular in recent years. In this paper, we study Imitation Learning from Observation with pretrained models and find existing approaches such as BCO and AIME face knowledge barriers, specifically the Embodiment Knowledge Barrier (EKB) and the Demonstration Knowledge Barrier (DKB), greatly limiting their performance. The EKB arises when pretrained models lack knowledge about unseen observations, leading to errors in action inference. The DKB results from policies trained on limited demonstrations, hindering adaptability to diverse scenarios. We thoroughly analyse the underlying mechanism of these barriers and propose AIME-v2 upon AIME as a solution. AIME-v2 uses online interactions with data-driven regulariser to alleviate the EKB and mitigates the DKB by introducing a surrogate reward function to enhance policy training. Experimental results on tasks from the DeepMind Control Suite and Meta-World benchmarks demonstrate the effectiveness of these modifications in improving both sample-efficiency and converged performance. The study contributes valuable insights into resolving knowledge barriers for enhanced decision-making in pretraining-based approaches. Code will be available at https://github.com/argmax-ai/aime-v2.
comment: 19 pages, 7 figures
☆ Learning general Gaussian mixtures with efficient score matching
We study the problem of learning mixtures of $k$ Gaussians in $d$ dimensions. We make no separation assumptions on the underlying mixture components: we only require that the covariance matrices have bounded condition number and that the means and covariances lie in a ball of bounded radius. We give an algorithm that draws $d^{\mathrm{poly}(k/\varepsilon)}$ samples from the target mixture, runs in sample-polynomial time, and constructs a sampler whose output distribution is $\varepsilon$-far from the unknown mixture in total variation. Prior works for this problem either (i) required exponential runtime in the dimension $d$, (ii) placed strong assumptions on the instance (e.g., spherical covariances or clusterability), or (iii) had doubly exponential dependence on the number of components $k$. Our approach departs from commonly used techniques for this problem like the method of moments. Instead, we leverage a recently developed reduction, based on diffusion models, from distribution learning to a supervised learning task called score matching. We give an algorithm for the latter by proving a structural result showing that the score function of a Gaussian mixture can be approximated by a piecewise-polynomial function, and there is an efficient algorithm for finding it. To our knowledge, this is the first example of diffusion models achieving a state-of-the-art theoretical guarantee for an unsupervised learning task.
comment: 57 pages
☆ IPixMatch: Boost Semi-supervised Semantic Segmentation with Inter-Pixel Relation
The scarcity of labeled data in real-world scenarios is a critical bottleneck of deep learning's effectiveness. Semi-supervised semantic segmentation has been a typical solution to achieve a desirable tradeoff between annotation cost and segmentation performance. However, previous approaches, whether based on consistency regularization or self-training, tend to neglect the contextual knowledge embedded within inter-pixel relations. This negligence leads to suboptimal performance and limited generalization. In this paper, we propose a novel approach IPixMatch designed to mine the neglected but valuable Inter-Pixel information for semi-supervised learning. Specifically, IPixMatch is constructed as an extension of the standard teacher-student network, incorporating additional loss terms to capture inter-pixel relations. It shines in low-data regimes by efficiently leveraging the limited labeled data and extracting maximum utility from the available unlabeled data. Furthermore, IPixMatch can be integrated seamlessly into most teacher-student frameworks without the need of model modification or adding additional components. Our straightforward IPixMatch method demonstrates consistent performance improvements across various benchmark datasets under different partitioning protocols.
comment: 7 pages, 2 figures
☆ A Survey on Diffusion Models for Time Series and Spatio-Temporal Data
The study of time series data is crucial for understanding trends and anomalies over time, enabling predictive insights across various sectors. Spatio-temporal data, on the other hand, is vital for analyzing phenomena in both space and time, providing a dynamic perspective on complex system interactions. Recently, diffusion models have seen widespread application in time series and spatio-temporal data mining. Not only do they enhance the generative and inferential capabilities for sequential and temporal data, but they also extend to other downstream tasks. In this survey, we comprehensively and thoroughly review the use of diffusion models in time series and spatio-temporal data, categorizing them by model category, task type, data modality, and practical application domain. In detail, we categorize diffusion models into unconditioned and conditioned types and discuss time series data and spatio-temporal data separately. Unconditioned models, which operate unsupervised, are subdivided into probability-based and score-based models, serving predictive and generative tasks such as forecasting, anomaly detection, classification, and imputation. Conditioned models, on the other hand, utilize extra information to enhance performance and are similarly divided for both predictive and generative tasks. Our survey extensively covers their application in various fields, including healthcare, recommendation, climate, energy, audio, and transportation, providing a foundational understanding of how these models analyze and generate data. Through this structured overview, we aim to provide researchers and practitioners with a comprehensive understanding of diffusion models for time series and spatio-temporal data analysis, aiming to direct future innovations and applications by addressing traditional challenges and exploring innovative solutions within the diffusion model framework.
comment: Ongoing work; 27 pages, 8 figures, 2 tables; Github Repo: https://github.com/yyysjz1997/Awesome-TimeSeries-SpatioTemporal-Diffusion-Model
☆ Human-in-the-Loop Synthetic Text Data Inspection with Provenance Tracking NAACL 2024
Data augmentation techniques apply transformations to existing texts to generate additional data. The transformations may produce low-quality texts, where the meaning of the text is changed and the text may even be mangled beyond human comprehension. Analyzing the synthetically generated texts and their corresponding labels is slow and demanding. To winnow out texts with incorrect labels, we develop INSPECTOR, a human-in-the-loop data inspection technique. INSPECTOR combines the strengths of provenance tracking techniques with assistive labeling. INSPECTOR allows users to group related texts by their transformation provenance, i.e., the transformations applied to the original text, or feature provenance, the linguistic features of the original text. For assistive labeling, INSPECTOR computes metrics that approximate data quality, and allows users to compare the corresponding label of each text against the predictions of a large language model. In a user study, INSPECTOR increases the number of texts with correct labels identified by 3X on a sentiment analysis task and by 4X on a hate speech detection task. The participants found grouping the synthetically generated texts by their common transformation to be the most useful technique. Surprisingly, grouping texts by common linguistic features was perceived to be unhelpful. Contrary to prior work, our study finds that no single technique obviates the need for human inspection effort. This validates the design of INSPECTOR which combines both analysis of data provenance and assistive labeling to reduce human inspection effort.
comment: NAACL 2024 Findings
☆ Learning Mixtures of Gaussians Using Diffusion Models
We give a new algorithm for learning mixtures of $k$ Gaussians (with identity covariance in $\mathbb{R}^n$) to TV error $\varepsilon$, with quasi-polynomial ($O(n^{\text{poly log}\left(\frac{n+k}{\varepsilon}\right)})$) time and sample complexity, under a minimum weight assumption. Unlike previous approaches, most of which are algebraic in nature, our approach is analytic and relies on the framework of diffusion models. Diffusion models are a modern paradigm for generative modeling, which typically rely on learning the score function (gradient log-pdf) along a process transforming a pure noise distribution, in our case a Gaussian, to the data distribution. Despite their dazzling performance in tasks such as image generation, there are few end-to-end theoretical guarantees that they can efficiently learn nontrivial families of distributions; we give some of the first such guarantees. We proceed by deriving higher-order Gaussian noise sensitivity bounds for the score functions for a Gaussian mixture to show that that they can be inductively learned using piecewise polynomial regression (up to poly-logarithmic degree), and combine this with known convergence results for diffusion models. Our results extend to continuous mixtures of Gaussians where the mixing distribution is supported on a union of $k$ balls of constant radius. In particular, this applies to the case of Gaussian convolutions of distributions on low-dimensional manifolds, or more generally sets with small covering number.
☆ FeDeRA:Efficient Fine-tuning of Language Models in Federated Learning Leveraging Weight Decomposition
Pre-trained Language Models (PLMs) have shown excellent performance on various downstream tasks after fine-tuning. Nevertheless, the escalating concerns surrounding user privacy have posed significant challenges to centralized training reliant on extensive data collection. Federated learning(FL), which only requires training on the clients and aggregates weights on the server without sharing data, has emerged as a solution. However, the substantial parameter size of PLMs places a significant burden on the computational resources of client devices, while also leading to costly communication expenses. Introducing Parameter-Efficient Fine-Tuning(PEFT) into FL can effectively address this problem. However, we observe that the non-IID data in federated learning leads to a gap in performance between the PEFT method and full parameter fine-tuning(FT). To overcome this, we propose FeDeRA, an improvement over the LoRA method in FL. FeDeRA uses the same adapter module as LoRA. However, the difference lies in FeDeRA's initialization of the adapter module by performing Singular Value Decomposition (SVD) on the pre-trained matrix and selecting its principal components. We conducted extensive experiments, using RoBERTa and DeBERTaV3, on three tasks and six datasets, comparing the methods including FT and the other three different PEFT methods. FeDeRA outperforms all other PEFT methods and is comparable to or even surpasses the performance of FT methods. We also deployed federated learning on Jetson AGX Orin and compared the time required by different methods to achieve the target accuracy on specific tasks. Compared to FT, FeDeRA reduces the training time by 95.9%, 97.9%, 96.9%, and 97.3%, 96.5%, and 96.5% respectively on three tasks using RoBERTa and DeBERTaV3. The overall experiments indicate that FeDeRA achieves good performance while also maintaining efficiency.
☆ Fast Quantum Process Tomography via Riemannian Gradient Descent
Constrained optimization plays a crucial role in the fields of quantum physics and quantum information science and becomes especially challenging for high-dimensional complex structure problems. One specific issue is that of quantum process tomography, in which the goal is to retrieve the underlying quantum process based on a given set of measurement data. In this paper, we introduce a modified version of stochastic gradient descent on a Riemannian manifold that integrates recent advancements in numerical methods for Riemannian optimization. This approach inherently supports the physically driven constraints of a quantum process, takes advantage of state-of-the-art large-scale stochastic objective optimization, and has superior performance to traditional approaches such as maximum likelihood estimation and projected least squares. The data-driven approach enables accurate, order-of-magnitude faster results, and works with incomplete data. We demonstrate our approach on simulations of quantum processes and in hardware by characterizing an engineered process on quantum computers.
☆ Harmonic Machine Learning Models are Robust
We introduce Harmonic Robustness, a powerful and intuitive method to test the robustness of any machine-learning model either during training or in black-box real-time inference monitoring without ground-truth labels. It is based on functional deviation from the harmonic mean value property, indicating instability and lack of explainability. We show implementation examples in low-dimensional trees and feedforward NNs, where the method reliably identifies overfitting, as well as in more complex high-dimensional models such as ResNet-50 and Vision Transformer where it efficiently measures adversarial vulnerability across image classes.
comment: 18 pages, 13 figures
☆ Benchmarking Benchmark Leakage in Large Language Models
Amid the expanding use of pre-training data, the phenomenon of benchmark dataset leakage has become increasingly prominent, exacerbated by opaque training processes and the often undisclosed inclusion of supervised data in contemporary Large Language Models (LLMs). This issue skews benchmark effectiveness and fosters potentially unfair comparisons, impeding the field's healthy development. To address this, we introduce a detection pipeline utilizing Perplexity and N-gram accuracy, two simple and scalable metrics that gauge a model's prediction precision on benchmark, to identify potential data leakages. By analyzing 31 LLMs under the context of mathematical reasoning, we reveal substantial instances of training even test set misuse, resulting in potentially unfair comparisons. These findings prompt us to offer several recommendations regarding model documentation, benchmark setup, and future evaluations. Notably, we propose the "Benchmark Transparency Card" to encourage clear documentation of benchmark utilization, promoting transparency and healthy developments of LLMs. we have made our leaderboard, pipeline implementation, and model predictions publicly available, fostering future research.
comment: 30 pages; Homepage: https://gair-nlp.github.io/benbench
☆ Control Policy Correction Framework for Reinforcement Learning-based Energy Arbitrage Strategies
A continuous rise in the penetration of renewable energy sources, along with the use of the single imbalance pricing, provides a new opportunity for balance responsible parties to reduce their cost through energy arbitrage in the imbalance settlement mechanism. Model-free reinforcement learning (RL) methods are an appropriate choice for solving the energy arbitrage problem due to their outstanding performance in solving complex stochastic sequential problems. However, RL is rarely deployed in real-world applications since its learned policy does not necessarily guarantee safety during the execution phase. In this paper, we propose a new RL-based control framework for batteries to obtain a safe energy arbitrage strategy in the imbalance settlement mechanism. In our proposed control framework, the agent initially aims to optimize the arbitrage revenue. Subsequently, in the post-processing step, we correct (constrain) the learned policy following a knowledge distillation process based on properties that follow human intuition. Our post-processing step is a generic method and is not restricted to the energy arbitrage domain. We use the Belgian imbalance price of 2023 to evaluate the performance of our proposed framework. Furthermore, we deploy our proposed control framework on a real battery to show its capability in the real world.
comment: ACM e-Energy 2024
☆ Safe Reach Set Computation via Neural Barrier Certificates
We present a novel technique for online safety verification of autonomous systems, which performs reachability analysis efficiently for both bounded and unbounded horizons by employing neural barrier certificates. Our approach uses barrier certificates given by parameterized neural networks that depend on a given initial set, unsafe sets, and time horizon. Such networks are trained efficiently offline using system simulations sampled from regions of the state space. We then employ a meta-neural network to generalize the barrier certificates to state space regions that are outside the training set. These certificates are generated and validated online as sound over-approximations of the reachable states, thus either ensuring system safety or activating appropriate alternative actions in unsafe scenarios. We demonstrate our technique on case studies from linear models to nonlinear control-dependent models for online autonomous driving scenarios.
comment: IFAC Conference on Analysis and Design of Hybrid Systems
☆ The Landscape of Unfolding with Machine Learning
Recent innovations from machine learning allow for data unfolding, without binning and including correlations across many dimensions. We describe a set of known, upgraded, and new methods for ML-based unfolding. The performance of these approaches are evaluated on the same two datasets. We find that all techniques are capable of accurately reproducing the particle-level spectra across complex observables. Given that these approaches are conceptually diverse, they offer an exciting toolkit for a new class of measurements that can probe the Standard Model with an unprecedented level of detail and may enable sensitivity to new phenomena.
☆ A Partial Replication of MaskFormer in TensorFlow on TPUs for the TensorFlow Model Garden
This paper undertakes the task of replicating the MaskFormer model a universal image segmentation model originally developed using the PyTorch framework, within the TensorFlow ecosystem, specifically optimized for execution on Tensor Processing Units (TPUs). Our implementation exploits the modular constructs available within the TensorFlow Model Garden (TFMG), encompassing elements such as the data loader, training orchestrator, and various architectural components, tailored and adapted to meet the specifications of the MaskFormer model. We address key challenges encountered during the replication, non-convergence issues, slow training, adaptation of loss functions, and the integration of TPU-specific functionalities. We verify our reproduced implementation and present qualitative results on the COCO dataset. Although our implementation meets some of the objectives for end-to-end reproducibility, we encountered challenges in replicating the PyTorch version of MaskFormer in TensorFlow. This replication process is not straightforward and requires substantial engineering efforts. Specifically, it necessitates the customization of various components within the TFMG, alongside thorough verification and hyper-parameter tuning. The replication is available at: https://github.com/PurdueDualityLab/tf-maskformer/tree/main/official/projects/maskformer
☆ Optimal time sampling in physics-informed neural networks
Physics-informed neural networks (PINN) is a extremely powerful paradigm used to solve equations encountered in scientific computing applications. An important part of the procedure is the minimization of the equation residual which includes, when the equation is time-dependent, a time sampling. It was argued in the literature that the sampling need not be uniform but should overweight initial time instants, but no rigorous explanation was provided for these choice. In this paper we take some prototypical examples and, under standard hypothesis concerning the neural network convergence, we show that the optimal time sampling follows a truncated exponential distribution. In particular we explain when the time sampling is best to be uniform and when it should not be. The findings are illustrated with numerical examples on linear equation, Burgers' equation and the Lorenz system.
☆ A Universal Metric of Dataset Similarity for Cross-silo Federated Learning
Federated Learning is increasingly used in domains such as healthcare to facilitate collaborative model training without data-sharing. However, datasets located in different sites are often non-identically distributed, leading to degradation of model performance in FL. Most existing methods for assessing these distribution shifts are limited by being dataset or task-specific. Moreover, these metrics can only be calculated by exchanging data, a practice restricted in many FL scenarios. To address these challenges, we propose a novel metric for assessing dataset similarity. Our metric exhibits several desirable properties for FL: it is dataset-agnostic, is calculated in a privacy-preserving manner, and is computationally efficient, requiring no model training. In this paper, we first establish a theoretical connection between our metric and training dynamics in FL. Next, we extensively evaluate our metric on a range of datasets including synthetic, benchmark, and medical imaging datasets. We demonstrate that our metric shows a robust and interpretable relationship with model performance and can be calculated in privacy-preserving manner. As the first federated dataset similarity metric, we believe this metric can better facilitate successful collaborations between sites.
☆ Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks as the curse of dimensionality (CoD) cannot be evaded when trying to approximate even a single ReLU neuron (Bach, 2017). In this paper, we study a suitable function space for over-parameterized two-layer neural networks with bounded norms (e.g., the path norm, the Barron norm) in the perspective of sample complexity and generalization properties. First, we show that the path norm (as well as the Barron norm) is able to obtain width-independence sample complexity bounds, which allows for uniform convergence guarantees. Based on this result, we derive the improved result of metric entropy for $\epsilon$-covering up to $\mathcal{O}(\epsilon^{-\frac{2d}{d+2}})$ ($d$ is the input dimension and the depending constant is at most polynomial order of $d$) via the convex hull technique, which demonstrates the separation with kernel methods with $\Omega(\epsilon^{-d})$ to learn the target function in a Barron space. Second, this metric entropy result allows for building a sharper generalization bound under a general moment hypothesis setting, achieving the rate at $\mathcal{O}(n^{-\frac{d+2}{2d+2}})$. Our analysis is novel in that it offers a sharper and refined estimation for metric entropy (with a clear dependence relationship on the dimension $d$) and unbounded sampling in the estimation of the sample error and the output error.
comment: Accepted by JMLR
☆ Transitive Vision-Language Prompt Learning for Domain Generalization
The vision-language pre-training has enabled deep models to make a huge step forward in generalizing across unseen domains. The recent learning method based on the vision-language pre-training model is a great tool for domain generalization and can solve this problem to a large extent. However, there are still some issues that an advancement still suffers from trading-off between domain invariance and class separability, which are crucial in current DG problems. However, there are still some issues that an advancement still suffers from trading-off between domain invariance and class separability, which are crucial in current DG problems. In this paper, we introduce a novel prompt learning strategy that leverages deep vision prompts to address domain invariance while utilizing language prompts to ensure class separability, coupled with adaptive weighting mechanisms to balance domain invariance and class separability. Extensive experiments demonstrate that deep vision prompts effectively extract domain-invariant features, significantly improving the generalization ability of deep models and achieving state-of-the-art performance on three datasets.
☆ Mapping the Potential of Explainable Artificial Intelligence (XAI) for Fairness Along the AI Lifecycle
The widespread use of artificial intelligence (AI) systems across various domains is increasingly highlighting issues related to algorithmic fairness, especially in high-stakes scenarios. Thus, critical considerations of how fairness in AI systems might be improved, and what measures are available to aid this process, are overdue. Many researchers and policymakers see explainable AI (XAI) as a promising way to increase fairness in AI systems. However, there is a wide variety of XAI methods and fairness conceptions expressing different desiderata, and the precise connections between XAI and fairness remain largely nebulous. Besides, different measures to increase algorithmic fairness might be applicable at different points throughout an AI system's lifecycle. Yet, there currently is no coherent mapping of fairness desiderata along the AI lifecycle. In this paper, we set out to bridge both these gaps: We distill eight fairness desiderata, map them along the AI lifecycle, and discuss how XAI could help address each of them. We hope to provide orientation for practical applications and to inspire XAI research specifically focused on these fairness desiderata.
☆ Real Time Multi Organ Classification on Computed Tomography Images
Organ segmentation is a fundamental task in medical imaging, and it is useful for many clinical automation pipelines. Typically, the process involves segmenting the entire volume, which can be unnecessary when the points of interest are limited. In those cases, a classifier could be used instead of segmentation. However, there is an inherent trade-off between the context size and the speed of classifiers. To address this issue, we propose a new method that employs a data selection strategy with sparse sampling across a wide field of view without image resampling. This sparse sampling strategy makes it possible to classify voxels into multiple organs in real time without using accelerators. Although our method is an independent classifier, it can generate full segmentation by querying grid locations at any resolution. We have compared our method with existing segmentation techniques, demonstrating its potential for superior runtime in practical applications in medical imaging.
☆ CVTN: Cross Variable and Temporal Integration for Time Series Forecasting
In multivariate time series forecasting, the Transformer architecture encounters two significant challenges: effectively mining features from historical sequences and avoiding overfitting during the learning of temporal dependencies. To tackle these challenges, this paper deconstructs time series forecasting into the learning of historical sequences and prediction sequences, introducing the Cross-Variable and Time Network (CVTN). This unique method divides multivariate time series forecasting into two phases: cross-variable learning for effectively mining fea tures from historical sequences, and cross-time learning to capture the temporal dependencies of prediction sequences. Separating these two phases helps avoid the impact of overfitting in cross-time learning on cross-variable learning. Exten sive experiments on various real-world datasets have confirmed its state-of-the-art (SOTA) performance. CVTN emphasizes three key dimensions in time series fore casting: the short-term and long-term nature of time series (locality and longevity), feature mining from both historical and prediction sequences, and the integration of cross-variable and cross-time learning. This approach not only advances the current state of time series forecasting but also provides a more comprehensive framework for future research in this field.
☆ Why You Should Not Trust Interpretations in Machine Learning: Adversarial Attacks on Partial Dependence Plots
The adoption of artificial intelligence (AI) across industries has led to the widespread use of complex black-box models and interpretation tools for decision making. This paper proposes an adversarial framework to uncover the vulnerability of permutation-based interpretation methods for machine learning tasks, with a particular focus on partial dependence (PD) plots. This adversarial framework modifies the original black box model to manipulate its predictions for instances in the extrapolation domain. As a result, it produces deceptive PD plots that can conceal discriminatory behaviors while preserving most of the original model's predictions. This framework can produce multiple fooled PD plots via a single model. By using real-world datasets including an auto insurance claims dataset and COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) dataset, our results show that it is possible to intentionally hide the discriminatory behavior of a predictor and make the black-box model appear neutral through interpretation tools like PD plots while retaining almost all the predictions of the original black-box model. Managerial insights for regulators and practitioners are provided based on the findings.
☆ Convergence Properties of Score-Based Models using Graduated Optimisation for Linear Inverse Problems
The incorporation of generative models as regularisers within variational formulations for inverse problems has proven effective across numerous image reconstruction tasks. However, the resulting optimisation problem is often non-convex and challenging to solve. In this work, we show that score-based generative models (SGMs) can be used in a graduated optimisation framework to solve inverse problems. We show that the resulting graduated non-convexity flow converge to stationary points of the original problem and provide a numerical convergence analysis of a 2D toy example. We further provide experiments on computed tomography image reconstruction, where we show that this framework is able to recover high-quality images, independent of the initial value. The experiments highlight the potential of using SGMs in graduated optimisation frameworks.
comment: 8 pages
☆ FALE: Fairness-Aware ALE Plots for Auditing Bias in Subgroups ECML
Fairness is steadily becoming a crucial requirement of Machine Learning (ML) systems. A particularly important notion is subgroup fairness, i.e., fairness in subgroups of individuals that are defined by more than one attributes. Identifying bias in subgroups can become both computationally challenging, as well as problematic with respect to comprehensibility and intuitiveness of the finding to end users. In this work we focus on the latter aspects; we propose an explainability method tailored to identifying potential bias in subgroups and visualizing the findings in a user friendly manner to end users. In particular, we extend the ALE plots explainability method, proposing FALE (Fairness aware Accumulated Local Effects) plots, a method for measuring the change in fairness for an affected population corresponding to different values of a feature (attribute). We envision FALE to function as an efficient, user friendly, comprehensible and reliable first-stage tool for identifying subgroups with potential bias issues.
comment: Presented in Uncertainty meets Explainability Workshop @ ECML/PKDD 2023
☆ Open-Source Drift Detection Tools in Action: Insights from Two Use Cases
Data drifts pose a critical challenge in the lifecycle of machine learning (ML) models, affecting their performance and reliability. In response to this challenge, we present a microbenchmark study, called D3Bench, which evaluates the efficacy of open-source drift detection tools. D3Bench examines the capabilities of Evidently AI, NannyML, and Alibi-Detect, leveraging real-world data from two smart building use cases.We prioritize assessing the functional suitability of these tools to identify and analyze data drifts. Furthermore, we consider a comprehensive set of non-functional criteria, such as the integrability with ML pipelines, the adaptability to diverse data types, user-friendliness, computational efficiency, and resource demands. Our findings reveal that Evidently AI stands out for its general data drift detection, whereas NannyML excels at pinpointing the precise timing of shifts and evaluating their consequent effects on predictive accuracy.
☆ Enhancing Uncertain Demand Prediction in Hospitals Using Simple and Advanced Machine Learning
Early and timely prediction of patient care demand not only affects effective resource allocation but also influences clinical decision-making as well as patient experience. Accurately predicting patient care demand, however, is a ubiquitous challenge for hospitals across the world due, in part, to the demand's time-varying temporal variability, and, in part, to the difficulty in modelling trends in advance. To address this issue, here, we develop two methods, a relatively simple time-vary linear model, and a more advanced neural network model. The former forecasts patient arrivals hourly over a week based on factors such as day of the week and previous 7-day arrival patterns. The latter leverages a long short-term memory (LSTM) model, capturing non-linear relationships between past data and a three-day forecasting window. We evaluate the predictive capabilities of the two proposed approaches compared to two na\"ive approaches - a reduced-rank vector autoregressive (VAR) model and the TBATS model. Using patient care demand data from Rambam Medical Center in Israel, our results show that both proposed models effectively capture hourly variations of patient demand. Additionally, the linear model is more explainable thanks to its simple architecture, whereas, by accurately modelling weekly seasonal trends, the LSTM model delivers lower prediction errors. Taken together, our explorations suggest the utility of machine learning in predicting time-varying patient care demand; additionally, it is possible to predict patient care demand with good accuracy (around 4 patients) three days or a week in advance using machine learning.
☆ Terrain characterisation for online adaptability of automated sonar processing: Lessons learnt from operationally applying ATR to sidescan sonar in MCM applications
The performance of Automated Recognition (ATR) algorithms on side-scan sonar imagery has shown to degrade rapidly when deployed on non benign environments. Complex seafloors and acoustic artefacts constitute distractors in the form of strong textural patterns, creating false detections or preventing detections of true objects. This paper presents two online seafloor characterisation techniques to improve explainability during Autonomous Underwater Vehicles (AUVs) missions. Importantly and as opposed to previous work in the domain, these techniques are not based on a model and require limited input from human operators, making it suitable for real-time onboard processing. Both techniques rely on an unsupervised machine learning approach to extract terrain features which relate to the human understanding of terrain complexity. The first technnique provides a quantitative, application-driven terrain characterisation metric based on the performance of an ATR algorithm. The second method provides a way to incorporate subject matter expertise and enables contextualisation and explainability in support for scenario-dependent subjective terrain characterisation. The terrain complexity matches the expectation of seasoned users making this tool desirable and trustworthy in comparison to traditional unsupervised approaches. We finally detail an application of these techniques to repair a Mine Countermeasures (MCM) mission carried with SeeByte autonomy framework Neptune.
comment: Presented at UACE (Underwater Acoustics Conference & Exhibition) 2023, Kalamata, Greece
☆ Feature importance to explain multimodal prediction models. A clinical use case
Surgery to treat elderly hip fracture patients may cause complications that can lead to early mortality. An early warning system for complications could provoke clinicians to monitor high-risk patients more carefully and address potential complications early, or inform the patient. In this work, we develop a multimodal deep-learning model for post-operative mortality prediction using pre-operative and per-operative data from elderly hip fracture patients. Specifically, we include static patient data, hip and chest images before surgery in pre-operative data, vital signals, and medications administered during surgery in per-operative data. We extract features from image modalities using ResNet and from vital signals using LSTM. Explainable model outcomes are essential for clinical applicability, therefore we compute Shapley values to explain the predictions of our multimodal black box model. We find that i) Shapley values can be used to estimate the relative contribution of each modality both locally and globally, and ii) a modified version of the chain rule can be used to propagate Shapley values through a sequence of models supporting interpretable local explanations. Our findings imply that a multimodal combination of black box models can be explained by propagating Shapley values through the model sequence.
comment: Accepted at World Conference on Explainable Artificial Intelligence; 19 pages, 2 figures, 7 tables
☆ Do Vision & Language Decoders use Images and Text equally? How Self-consistent are their Explanations?
Vision and language models (VLMs) are currently the most generally performant architectures on multimodal tasks. Next to their predictions, they can also produce explanations, either in post-hoc or CoT settings. However, it is not clear how much they use the vision and text modalities when generating predictions or explanations. In this work, we investigate if VLMs rely on modalities differently when generating explanations as opposed to when they provide answers. We also evaluate the self-consistency of VLM decoders in both post-hoc and CoT explanation settings, by extending existing tests and measures to VLM decoders. We find that VLMs are less self-consistent than LLMs. The text contributions in VL decoders are much larger than the image contributions across all measured tasks. And the contributions of the image are significantly larger for explanation generations than for answer generation. This difference is even larger in CoT compared to the post-hoc explanation setting. We also provide an up-to-date benchmarking of state-of-the-art VL decoders on the VALSE benchmark, which to date focused only on VL encoders. We find that VL decoders are still struggling with most phenomena tested by VALSE.
comment: 27 pages, from which 12 pages contain the text of the main paper. 8 figures, 11 tables
☆ Predicting Safety Misbehaviours in Autonomous Driving Systems using Uncertainty Quantification
The automated real-time recognition of unexpected situations plays a crucial role in the safety of autonomous vehicles, especially in unsupported and unpredictable scenarios. This paper evaluates different Bayesian uncertainty quantification methods from the deep learning domain for the anticipatory testing of safety-critical misbehaviours during system-level simulation-based testing. Specifically, we compute uncertainty scores as the vehicle executes, following the intuition that high uncertainty scores are indicative of unsupported runtime conditions that can be used to distinguish safe from failure-inducing driving behaviors. In our study, we conducted an evaluation of the effectiveness and computational overhead associated with two Bayesian uncertainty quantification methods, namely MC- Dropout and Deep Ensembles, for misbehaviour avoidance. Overall, for three benchmarks from the Udacity simulator comprising both out-of-distribution and unsafe conditions introduced via mutation testing, both methods successfully detected a high number of out-of-bounds episodes providing early warnings several seconds in advance, outperforming two state-of-the-art misbehaviour prediction methods based on autoencoders and attention maps in terms of effectiveness and efficiency. Notably, Deep Ensembles detected most misbehaviours without any false alarms and did so even when employing a relatively small number of models, making them computationally feasible for real-time detection. Our findings suggest that incorporating uncertainty quantification methods is a viable approach for building fail-safe mechanisms in deep neural network-based autonomous vehicles.
comment: In Proceedings of 17th IEEE International Conference on Software Testing, Verification and Validation 2024 (ICST '24)
☆ Learning Governing Equations of Unobserved States in Dynamical Systems
Data driven modelling and scientific machine learning have been responsible for significant advances in determining suitable models to describe data. Within dynamical systems, neural ordinary differential equations (ODEs), where the system equations are set to be governed by a neural network, have become a popular tool for this challenge in recent years. However, less emphasis has been placed on systems that are only partially-observed. In this work, we employ a hybrid neural ODE structure, where the system equations are governed by a combination of a neural network and domain-specific knowledge, together with symbolic regression (SR), to learn governing equations of partially-observed dynamical systems. We test this approach on two case studies: A 3-dimensional model of the Lotka-Volterra system and a 5-dimensional model of the Lorenz system. We demonstrate that the method is capable of successfully learning the true underlying governing equations of unobserved states within these systems, with robustness to measurement noise.
☆ Evaluating the effectiveness of predicting covariates in LSTM Networks for Time Series Forecasting
Autoregressive Recurrent Neural Networks are widely employed in time-series forecasting tasks, demonstrating effectiveness in univariate and certain multivariate scenarios. However, their inherent structure does not readily accommodate the integration of future, time-dependent covariates. A proposed solution, outlined by Salinas et al 2019, suggests forecasting both covariates and the target variable in a multivariate framework. In this study, we conducted comprehensive tests on publicly available time-series datasets, artificially introducing highly correlated covariates to future time-step values. Our evaluation aimed to assess the performance of an LSTM network when considering these covariates and compare it against a univariate baseline. As part of this study we introduce a novel approach using seasonal time segments in combination with an RNN architecture, which is both simple and extremely effective over long forecast horizons with comparable performance to many state of the art architectures. Our findings from the results of more than 120 models reveal that under certain conditions jointly training covariates with target variables can improve overall performance of the model, but often there exists a significant performance disparity between multivariate and univariate predictions. Surprisingly, even when provided with covariates informing the network about future target values, multivariate predictions exhibited inferior performance. In essence, compelling the network to predict multiple values can prove detrimental to model performance, even in the presence of informative covariates. These results suggest that LSTM architectures may not be suitable for forecasting tasks where predicting covariates would typically be expected to enhance model accuracy.
comment: 9 content pages (22 total pages), 11 figures
☆ IncidentResponseGPT: Generating Traffic Incident Response Plans with Generative Artificial Intelligence
Traffic congestion due to road incidents poses a significant challenge in urban environments, leading to increased pollution, economic losses, and traffic congestion. Efficiently managing these incidents is imperative for mitigating their adverse effects; however, the complexity of urban traffic systems and the variety of potential incidents represent a considerable obstacle. This paper introduces IncidentResponseGPT, an innovative solution designed to assist traffic management authorities by providing rapid, informed, and adaptable traffic incident response plans. By integrating a Generative AI platform with real-time traffic incident reports and operational guidelines, our system aims to streamline the decision-making process in responding to traffic incidents. The research addresses the critical challenges involved in deploying AI in traffic management, including overcoming the complexity of urban traffic networks, ensuring real-time decision-making capabilities, aligning with local laws and regulations, and securing public acceptance for AI-driven systems. Through a combination of text analysis of accident reports, validation of AI recommendations through traffic simulation, and implementation of transparent and validated AI systems, IncidentResponseGPT offers a promising approach to optimizing traffic flow and reducing congestion in the face of traffic incidents. The relevance of this work extends to traffic management authorities, emergency response teams, and municipal bodies, all integral stakeholders in urban traffic control and incident management. By proposing a novel solution to the identified challenges, this research aims to develop a framework that not only facilitates faster resolution of traffic incidents but also minimizes their overall impact on urban traffic systems.
☆ Time Machine GPT NAACL
Large language models (LLMs) are often trained on extensive, temporally indiscriminate text corpora, reflecting the lack of datasets with temporal metadata. This approach is not aligned with the evolving nature of language. Conventional methods for creating temporally adapted language models often depend on further pre-training static models on time-specific data. This paper presents a new approach: a series of point-in-time LLMs called Time Machine GPT (TiMaGPT), specifically designed to be nonprognosticative. This ensures they remain uninformed about future factual information and linguistic changes. This strategy is beneficial for understanding language evolution and is of critical importance when applying models in dynamic contexts, such as time-series forecasting, where foresight of future information can prove problematic. We provide access to both the models and training datasets.
comment: NAACL Findings 2024
☆ Symmetry group based domain decomposition to enhance physics-informed neural networks for solving partial differential equations
Domain decomposition provides an effective way to tackle the dilemma of physics-informed neural networks (PINN) which struggle to accurately and efficiently solve partial differential equations (PDEs) in the whole domain, but the lack of efficient tools for dealing with the interfaces between two adjacent sub-domains heavily hinders the training effects, even leads to the discontinuity of the learned solutions. In this paper, we propose a symmetry group based domain decomposition strategy to enhance the PINN for solving the forward and inverse problems of the PDEs possessing a Lie symmetry group. Specifically, for the forward problem, we first deploy the symmetry group to generate the dividing-lines having known solution information which can be adjusted flexibly and are used to divide the whole training domain into a finite number of non-overlapping sub-domains, then utilize the PINN and the symmetry-enhanced PINN methods to learn the solutions in each sub-domain and finally stitch them to the overall solution of PDEs. For the inverse problem, we first utilize the symmetry group acting on the data of the initial and boundary conditions to generate labeled data in the interior domain of PDEs and then find the undetermined parameters as well as the solution by only training the neural networks in a sub-domain. Consequently, the proposed method can predict high-accuracy solutions of PDEs which are failed by the vanilla PINN in the whole domain and the extended physics-informed neural network in the same sub-domains. Numerical results of the Korteweg-de Vries equation with a translation symmetry and the nonlinear viscous fluid equation with a scaling symmetry show that the accuracies of the learned solutions are improved largely.
☆ Time Series Data Augmentation as an Imbalanced Learning Problem
Recent state-of-the-art forecasting methods are trained on collections of time series. These methods, often referred to as global models, can capture common patterns in different time series to improve their generalization performance. However, they require large amounts of data that might not be readily available. Besides this, global models sometimes fail to capture relevant patterns unique to a particular time series. In these cases, data augmentation can be useful to increase the sample size of time series datasets. The main contribution of this work is a novel method for generating univariate time series synthetic samples. Our approach stems from the insight that the observations concerning a particular time series of interest represent only a small fraction of all observations. In this context, we frame the problem of training a forecasting model as an imbalanced learning task. Oversampling strategies are popular approaches used to deal with the imbalance problem in machine learning. We use these techniques to create synthetic time series observations and improve the accuracy of forecasting models. We carried out experiments using 7 different databases that contain a total of 5502 univariate time series. We found that the proposed solution outperforms both a global and a local model, thus providing a better trade-off between these two approaches.
☆ MileBench: Benchmarking MLLMs in Long Context
Despite the advancements and impressive performance of Multimodal Large Language Models (MLLMs) on benchmarks, their effectiveness in real-world, long-context, and multi-image tasks is unclear due to the benchmarks' limited scope. Existing benchmarks often focus on single-image and short-text samples, and when assessing multi-image tasks, they either limit the image count or focus on specific task (e.g time-series captioning), potentially obscuring the performance challenges of MLLMs. To address these limitations, we introduce MileBench, a pioneering benchmark designed to test the MultImodal Long-contExt capabilities of MLLMs. This benchmark comprises not only multimodal long contexts, but also multiple tasks requiring both comprehension and generation. We establish two distinct evaluation sets, diagnostic and realistic, to systematically assess MLLMs' long-context adaptation capacity and their ability to complete tasks in long-context scenarios. Our experimental results, obtained from testing 20 models, revealed that while the closed-source GPT-4(Vision) and Gemini 1.5 outperform others, most open-source MLLMs struggle in long-context situations. Interestingly, the performance gap tends to widen with an increase in the number of images. We strongly encourage an intensification of research efforts towards enhancing MLLMs' long-context capabilities, especially in scenarios involving multiple images.
comment: 29 pages, 13 figures, 14 tables
☆ A Framework to Model ML Engineering Processes
The development of Machine Learning (ML) based systems is complex and requires multidisciplinary teams with diverse skill sets. This may lead to communication issues or misapplication of best practices. Process models can alleviate these challenges by standardizing task orchestration, providing a common language to facilitate communication, and nurturing a collaborative environment. Unfortunately, current process modeling languages are not suitable for describing the development of such systems. In this paper, we introduce a framework for modeling ML-based software development processes, built around a domain-specific language and derived from an analysis of scientific and gray literature. A supporting toolkit is also available.
☆ Predicting PDEs Fast and Efficiently with Equivariant Extreme Learning Machines
We utilize extreme learning machines for the prediction of partial differential equations (PDEs). Our method splits the state space into multiple windows that are predicted individually using a single model. Despite requiring only few data points (in some cases, our method can learn from a single full-state snapshot), it still achieves high accuracy and can predict the flow of PDEs over long time horizons. Moreover, we show how additional symmetries can be exploited to increase sample efficiency and to enforce equivariance.
☆ Generation of Uncorrelated Residual Variables for Chemical Process Fault Diagnosis via Transfer Learning-based Input-Output Decoupled Network
Structural decoupling has played an essential role in model-based fault isolation and estimation in past decades, which facilitates accurate fault localization and reconstruction thanks to the diagonal transfer matrix design. However, traditional methods exhibit limited effectiveness in modeling high-dimensional nonlinearity and big data, and the decoupling idea has not been well-valued in data-driven frameworks. Known for big data and complex feature extraction capabilities, deep learning has recently been used to develop residual generation models. Nevertheless, it lacks decoupling-related diagnostic designs. To this end, this paper proposes a transfer learning-based input-output decoupled network (TDN) for diagnostic purposes, which consists of an input-output decoupled network (IDN) and a pre-trained variational autocoder (VAE). In IDN, uncorrelated residual variables are generated by diagonalization and parallel computing operations. During the transfer learning phase, knowledge of normal status is provided according to VAE's loss and maximum mean discrepancy loss to guide the training of IDN. After training, IDN learns the mapping from faulty to normal, thereby serving as the fault detection index and the estimated fault signal simultaneously. At last, the effectiveness of the developed TDN is verified by a numerical example and a chemical simulation.
☆ Bridging Data Barriers among Participants: Assessing the Potential of Geoenergy through Federated Learning
Machine learning algorithms emerge as a promising approach in energy fields, but its practical is hindered by data barriers, stemming from high collection costs and privacy concerns. This study introduces a novel federated learning (FL) framework based on XGBoost models, enabling safe collaborative modeling with accessible yet concealed data from multiple parties. Hyperparameter tuning of the models is achieved through Bayesian Optimization. To ascertain the merits of the proposed FL-XGBoost method, a comparative analysis is conducted between separate and centralized models to address a classical binary classification problem in geoenergy sector. The results reveal that the proposed FL framework strikes an optimal balance between privacy and accuracy. FL models demonstrate superior accuracy and generalization capabilities compared to separate models, particularly for participants with limited data or low correlation features and offers significant privacy benefits compared to centralized model. The aggregated optimization approach within the FL agreement proves effective in tuning hyperparameters. This study opens new avenues for assessing unconventional reservoirs through collaborative and privacy-preserving FL techniques.
☆ Enabling Efficient and Flexible Interpretability of Data-driven Anomaly Detection in Industrial Processes with AcME-AD
While Machine Learning has become crucial for Industry 4.0, its opaque nature hinders trust and impedes the transformation of valuable insights into actionable decision, a challenge exacerbated in the evolving Industry 5.0 with its human-centric focus. This paper addresses this need by testing the applicability of AcME-AD in industrial settings. This recently developed framework facilitates fast and user-friendly explanations for anomaly detection. AcME-AD is model-agnostic, offering flexibility, and prioritizes real-time efficiency. Thus, it seems suitable for seamless integration with industrial Decision Support Systems. We present the first industrial application of AcME-AD, showcasing its effectiveness through experiments. These tests demonstrate AcME-AD's potential as a valuable tool for explainable AD and feature-based root cause analysis within industrial environments, paving the way for trustworthy and actionable insights in the age of Industry 5.0.
☆ On the Impact of Data Heterogeneity in Federated Learning Environments with Application to Healthcare Networks
Federated Learning (FL) allows multiple privacy-sensitive applications to leverage their dataset for a global model construction without any disclosure of the information. One of those domains is healthcare, where groups of silos collaborate in order to generate a global predictor with improved accuracy and generalization. However, the inherent challenge lies in the high heterogeneity of medical data, necessitating sophisticated techniques for assessment and compensation. This paper presents a comprehensive exploration of the mathematical formalization and taxonomy of heterogeneity within FL environments, focusing on the intricacies of medical data. In particular, we address the evaluation and comparison of the most popular FL algorithms with respect to their ability to cope with quantity-based, feature and label distribution-based heterogeneity. The goal is to provide a quantitative evaluation of the impact of data heterogeneity in FL systems for healthcare networks as well as a guideline on FL algorithm selection. Our research extends beyond existing studies by benchmarking seven of the most common FL algorithms against the unique challenges posed by medical data use cases. The paper targets the prediction of the risk of stroke recurrence through a set of tabular clinical reports collected by different federated hospital silos: data heterogeneity frequently encountered in this scenario and its impact on FL performance are discussed.
☆ A Systematic Evaluation of Adversarial Attacks against Speech Emotion Recognition Models
Speech emotion recognition (SER) is constantly gaining attention in recent years due to its potential applications in diverse fields and thanks to the possibility offered by deep learning technologies. However, recent studies have shown that deep learning models can be vulnerable to adversarial attacks. In this paper, we systematically assess this problem by examining the impact of various adversarial white-box and black-box attacks on different languages and genders within the context of SER. We first propose a suitable methodology for audio data processing, feature extraction, and CNN-LSTM architecture. The observed outcomes highlighted the significant vulnerability of CNN-LSTM models to adversarial examples (AEs). In fact, all the considered adversarial attacks are able to significantly reduce the performance of the constructed models. Furthermore, when assessing the efficacy of the attacks, minor differences were noted between the languages analyzed as well as between male and female speech. In summary, this work contributes to the understanding of the robustness of CNN-LSTM models, particularly in SER scenarios, and the impact of AEs. Interestingly, our findings serve as a baseline for a) developing more robust algorithms for SER, b) designing more effective attacks, c) investigating possible defenses, d) improved understanding of the vocal differences between different languages and genders, and e) overall, enhancing our comprehension of the SER task.
☆ Scalable Event-by-event Processing of Neuromorphic Sensory Signals With Deep State-Space Models
Event-based sensors are well suited for real-time processing due to their fast response times and encoding of the sensory data as successive temporal differences. These and other valuable properties, such as a high dynamic range, are suppressed when the data is converted to a frame-based format. However, most current methods either collapse events into frames or cannot scale up when processing the event data directly event-by-event. In this work, we address the key challenges of scaling up event-by-event modeling of the long event streams emitted by such sensors, which is a particularly relevant problem for neuromorphic computing. While prior methods can process up to a few thousand time steps, our model, based on modern recurrent deep state-space models, scales to event streams of millions of events for both training and inference.We leverage their stable parameterization for learning long-range dependencies, parallelizability along the sequence dimension, and their ability to integrate asynchronous events effectively to scale them up to long event streams.We further augment these with novel event-centric techniques enabling our model to match or beat the state-of-the-art performance on several event stream benchmarks. In the Spiking Speech Commands task, we improve state-of-the-art by a large margin of 6.6% to 87.1%. On the DVS128-Gestures dataset, we achieve competitive results without using frames or convolutional neural networks. Our work demonstrates, for the first time, that it is possible to use fully event-based processing with purely recurrent networks to achieve state-of-the-art task performance in several event-based benchmarks.
☆ Multisensor Data Fusion for Automatized Insect Monitoring (KInsecta)
Insect populations are declining globally, making systematic monitoring essential for conservation. Most classical methods involve death traps and counter insect conservation. This paper presents a multisensor approach that uses AI-based data fusion for insect classification. The system is designed as low-cost setup and consists of a camera module and an optical wing beat sensor as well as environmental sensors to measure temperature, irradiance or daytime as prior information. The system has been tested in the laboratory and in the field. First tests on a small very unbalanced data set with 7 species show promising results for species classification. The multisensor system will support biodiversity and agriculture studies.
☆ Reduced-Rank Multi-objective Policy Learning and Optimization
Evaluating the causal impacts of possible interventions is crucial for informing decision-making, especially towards improving access to opportunity. However, if causal effects are heterogeneous and predictable from covariates, personalized treatment decisions can improve individual outcomes and contribute to both efficiency and equity. In practice, however, causal researchers do not have a single outcome in mind a priori and often collect multiple outcomes of interest that are noisy estimates of the true target of interest. For example, in government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty. The ultimate goal is to learn an optimal treatment policy that in some sense maximizes multiple outcomes simultaneously. To address such issues, we present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning with multiple objectives. We learn a low-dimensional representation of the true outcome from the observed outcomes using reduced rank regression. We develop a suite of estimates that use the model to denoise observed outcomes, including commonly-used index weightings. These methods improve estimation error in policy evaluation and optimization, including on a case study of real-world cash transfer and social intervention data. Reducing the variance of noisy social outcomes can improve the performance of algorithmic allocations.
☆ Autonomous Quality and Hallucination Assessment for Virtual Tissue Staining and Digital Pathology
Histopathological staining of human tissue is essential in the diagnosis of various diseases. The recent advances in virtual tissue staining technologies using AI alleviate some of the costly and tedious steps involved in the traditional histochemical staining process, permitting multiplexed rapid staining of label-free tissue without using staining reagents, while also preserving tissue. However, potential hallucinations and artifacts in these virtually stained tissue images pose concerns, especially for the clinical utility of these approaches. Quality assessment of histology images is generally performed by human experts, which can be subjective and depends on the training level of the expert. Here, we present an autonomous quality and hallucination assessment method (termed AQuA), mainly designed for virtual tissue staining, while also being applicable to histochemical staining. AQuA achieves 99.8% accuracy when detecting acceptable and unacceptable virtually stained tissue images without access to ground truth, also presenting an agreement of 98.5% with the manual assessments made by board-certified pathologists. Besides, AQuA achieves super-human performance in identifying realistic-looking, virtually stained hallucinatory images that would normally mislead human diagnosticians by deceiving them into diagnosing patients that never existed. We further demonstrate the wide adaptability of AQuA across various virtually and histochemically stained tissue images and showcase its strong external generalization to detect unseen hallucination patterns of virtual staining network models as well as artifacts observed in the traditional histochemical staining workflow. This framework creates new opportunities to enhance the reliability of virtual staining and will provide quality assurance for various image generation and transformation tasks in digital pathology and computational imaging.
comment: 37 Pages, 7 Figures
☆ Strategic Behavior and AI Training Data
Human-created works represent critical data inputs to artificial intelligence (AI). Strategic behavior can play a major role for AI training datasets, be it in limiting access to existing works or in deciding which types of new works to create or whether to create new works at all. We examine creators' behavioral change when their works become training data for AI. Specifically, we focus on contributors on Unsplash, a popular stock image platform with about 6 million high-quality photos and illustrations. In the summer of 2020, Unsplash launched an AI research program by releasing a dataset of 25,000 images for commercial use. We study contributors' reactions, comparing contributors whose works were included in this dataset to contributors whose works were not included. Our results suggest that treated contributors left the platform at a higher-than-usual rate and substantially slowed down the rate of new uploads. Professional and more successful photographers react stronger than amateurs and less successful photographers. We also show that affected users changed the variety and novelty of contributions to the platform, with long-run implications for the stock of works potentially available for AI training. Taken together, our findings highlight the trade-off between interests of rightsholders and promoting innovation at the technological frontier. We discuss implications for copyright and AI policy.
☆ U-Nets as Belief Propagation: Efficient Classification, Denoising, and Diffusion in Generative Hierarchical Models
U-Nets are among the most widely used architectures in computer vision, renowned for their exceptional performance in applications such as image segmentation, denoising, and diffusion modeling. However, a theoretical explanation of the U-Net architecture design has not yet been fully established. This paper introduces a novel interpretation of the U-Net architecture by studying certain generative hierarchical models, which are tree-structured graphical models extensively utilized in both language and image domains. With their encoder-decoder structure, long skip connections, and pooling and up-sampling layers, we demonstrate how U-Nets can naturally implement the belief propagation denoising algorithm in such generative hierarchical models, thereby efficiently approximating the denoising functions. This leads to an efficient sample complexity bound for learning the denoising function using U-Nets within these models. Additionally, we discuss the broader implications of these findings for diffusion models in generative hierarchical models. We also demonstrate that the conventional architecture of convolutional neural networks (ConvNets) is ideally suited for classification tasks within these models. This offers a unified view of the roles of ConvNets and U-Nets, highlighting the versatility of generative hierarchical models in modeling complex data distributions across language and image domains.
comment: 35 pages, 2 figures
☆ Potential Paradigm Shift in Hazard Risk Management: AI-Based Weather Forecast for Tropical Cyclone Hazards
The advents of Artificial Intelligence (AI)-driven models marks a paradigm shift in risk management strategies for meteorological hazards. This study specifically employs tropical cyclones (TCs) as a focal example. We engineer a perturbation-based method to produce ensemble forecasts using the advanced Pangu AI weather model. Unlike traditional approaches that often generate fewer than 20 scenarios from Weather Research and Forecasting (WRF) simulations for one event, our method facilitates the rapid nature of AI-driven model to create thousands of scenarios. We offer open-source access to our model and evaluate its effectiveness through retrospective case studies of significant TC events: Hurricane Irma (2017), Typhoon Mangkhut (2018), and TC Debbie (2017), affecting regions across North America, East Asia, and Australia. Our findings indicate that the AI-generated ensemble forecasts align closely with the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble predictions up to seven days prior to landfall. This approach could substantially enhance the effectiveness of weather forecast-driven risk analysis and management, providing unprecedented operational speed, user-friendliness, and global applicability.
☆ Capabilities of Gemini Models in Medicine
Excellence in a wide variety of medical applications poses considerable challenges for AI, requiring advanced reasoning, access to up-to-date medical knowledge and understanding of complex multimodal data. Gemini models, with strong general capabilities in multimodal and long-context reasoning, offer exciting possibilities in medicine. Building on these core strengths of Gemini, we introduce Med-Gemini, a family of highly capable multimodal models that are specialized in medicine with the ability to seamlessly use web search, and that can be efficiently tailored to novel modalities using custom encoders. We evaluate Med-Gemini on 14 medical benchmarks, establishing new state-of-the-art (SoTA) performance on 10 of them, and surpass the GPT-4 model family on every benchmark where a direct comparison is viable, often by a wide margin. On the popular MedQA (USMLE) benchmark, our best-performing Med-Gemini model achieves SoTA performance of 91.1% accuracy, using a novel uncertainty-guided search strategy. On 7 multimodal benchmarks including NEJM Image Challenges and MMMU (health & medicine), Med-Gemini improves over GPT-4V by an average relative margin of 44.5%. We demonstrate the effectiveness of Med-Gemini's long-context capabilities through SoTA performance on a needle-in-a-haystack retrieval task from long de-identified health records and medical video question answering, surpassing prior bespoke methods using only in-context learning. Finally, Med-Gemini's performance suggests real-world utility by surpassing human experts on tasks such as medical text summarization, alongside demonstrations of promising potential for multimodal medical dialogue, medical research and education. Taken together, our results offer compelling evidence for Med-Gemini's potential, although further rigorous evaluation will be crucial before real-world deployment in this safety-critical domain.
☆ Learning a Sparse Neural Network using IHT
The core of a good model is in its ability to focus only on important information that reflects the basic patterns and consistencies, thus pulling out a clear, noise-free signal from the dataset. This necessitates using a simplified model defined by fewer parameters. The importance of theoretical foundations becomes clear in this context, as this paper relies on established results from the domain of advanced sparse optimization, particularly those addressing nonlinear differentiable functions. The need for such theoretical foundations is further highlighted by the trend that as computational power for training NNs increases, so does the complexity of the models in terms of a higher number of parameters. In practical scenarios, these large models are often simplified to more manageable versions with fewer parameters. Understanding why these simplified models with less number of parameters remain effective raises a crucial question. Understanding why these simplified models with fewer parameters remain effective raises an important question. This leads to the broader question of whether there is a theoretical framework that can clearly explain these empirical observations. Recent developments, such as establishing necessary conditions for the convergence of iterative hard thresholding (IHT) to a sparse local minimum (a sparse method analogous to gradient descent) are promising. The remarkable capacity of the IHT algorithm to accurately identify and learn the locations of nonzero parameters underscores its practical effectiveness and utility. This paper aims to investigate whether the theoretical prerequisites for such convergence are applicable in the realm of neural network (NN) training by providing justification for all the necessary conditions for convergence. Then, these conditions are validated by experiments on a single-layer NN, using the IRIS dataset as a testbed.
☆ Deep generative modelling of canonical ensemble with differentiable thermal properties
We propose a variational modelling method with differentiable temperature for canonical ensembles. Using a deep generative model, the free energy is estimated and minimized simultaneously in a continuous temperature range. At optimal, this generative model is a Boltzmann distribution with temperature dependence. The training process requires no dataset, and works with arbitrary explicit density generative models. We applied our method to study the phase transitions (PT) in the Ising and XY models, and showed that the direct-sampling simulation of our model is as accurate as the Markov Chain Monte Carlo (MCMC) simulation, but more efficient. Moreover, our method can give thermodynamic quantities as differentiable functions of temperature akin to an analytical solution. The free energy aligns closely with the exact one to the second-order derivative, so this inclusion of temperature dependence enables the otherwise biased variational model to capture the subtle thermal effects at the PTs. These findings shed light on the direct simulation of physical systems using deep generative models
comment: Main text: 4.5 pages, 2 figures. Supplement: 9 pages
☆ LLM-SR: Scientific Equation Discovery via Programming with Large Language Models
Mathematical equations have been unreasonably effective in describing complex natural phenomena across various scientific disciplines. However, discovering such insightful equations from data presents significant challenges due to the necessity of navigating extremely high-dimensional combinatorial and nonlinear hypothesis spaces. Traditional methods of equation discovery largely focus on extracting equations from data alone, often neglecting the rich domain-specific prior knowledge that scientists typically depend on. To bridge this gap, we introduce LLM-SR, a novel approach that leverages the extensive scientific knowledge and robust code generation capabilities of Large Language Models (LLMs) to discover scientific equations from data in an efficient manner. Specifically, LLM-SR treats equations as programs with mathematical operators and combines LLMs' scientific priors with evolutionary search over equation programs. The LLM iteratively proposes new equation skeletons, drawing from its physical understanding, which are then optimized against data to estimate skeleton parameters. We demonstrate LLM-SR's effectiveness across three diverse scientific domains, where it discovers physically accurate equations that provide significantly better fits to in-domain and out-of-domain data compared to the well-established equation discovery baselines
☆ Physics-informed Convolutional Neural Network for Microgrid Economic Dispatch
The variability of renewable energy generation and the unpredictability of electricity demand create a need for real-time economic dispatch (ED) of assets in microgrids. However, solving numerical optimization problems in real-time can be incredibly challenging. This study proposes using a convolutional neural network (CNN) based on deep learning to address these challenges. Compared to traditional methods, CNN is more efficient, delivers more dependable results, and has a shorter response time when dealing with uncertainties. While CNN has shown promising results, it does not extract explainable knowledge from the data. To address this limitation, a physics-inspired CNN model is developed by incorporating constraints of the ED problem into the CNN training to ensure that the model follows physical laws while fitting the data. The proposed method can significantly accelerate real-time economic dispatch of microgrids without compromising the accuracy of numerical optimization techniques. The effectiveness of the proposed data-driven approach for optimal allocation of microgrid resources in real-time is verified through a comprehensive comparison with conventional numerical optimization approaches.
☆ Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks
Large neural networks trained on large datasets have become the dominant paradigm in machine learning. These systems rely on maximum likelihood point estimates of their parameters, precluding them from expressing model uncertainty. This may result in overconfident predictions and it prevents the use of deep learning models for sequential decision making. This thesis develops scalable methods to equip neural networks with model uncertainty. In particular, we leverage the linearised Laplace approximation to equip pre-trained neural networks with the uncertainty estimates provided by their tangent linear models. This turns the problem of Bayesian inference in neural networks into one of Bayesian inference in conjugate Gaussian-linear models. Alas, the cost of this remains cubic in either the number of network parameters or in the number of observations times output dimensions. By assumption, neither are tractable. We address this intractability by using stochastic gradient descent (SGD) -- the workhorse algorithm of deep learning -- to perform posterior sampling in linear models and their convex duals: Gaussian processes. With this, we turn back to linearised neural networks, finding the linearised Laplace approximation to present a number of incompatibilities with modern deep learning practices -- namely, stochastic optimisation, early stopping and normalisation layers -- when used for hyperparameter learning. We resolve these and construct a sample-based EM algorithm for scalable hyperparameter learning with linearised neural networks. We apply the above methods to perform linearised neural network inference with ResNet-50 (25M parameters) trained on Imagenet (1.2M observations and 1000 output dimensions). Additionally, we apply our methods to estimate uncertainty for 3d tomographic reconstructions obtained with the deep image prior network.
comment: PhD Thesis, University of Cambridge
☆ Orthogonal Bootstrap: Efficient Simulation of Input Uncertainty
Bootstrap is a popular methodology for simulating input uncertainty. However, it can be computationally expensive when the number of samples is large. We propose a new approach called \textbf{Orthogonal Bootstrap} that reduces the number of required Monte Carlo replications. We decomposes the target being simulated into two parts: the \textit{non-orthogonal part} which has a closed-form result known as Infinitesimal Jackknife and the \textit{orthogonal part} which is easier to be simulated. We theoretically and numerically show that Orthogonal Bootstrap significantly reduces the computational cost of Bootstrap while improving empirical accuracy and maintaining the same width of the constructed interval.
☆ Micro-Macro Spatial-Temporal Graph-based Encoder-Decoder for Map-Constrained Trajectory Recovery
Recovering intermediate missing GPS points in a sparse trajectory, while adhering to the constraints of the road network, could offer deep insights into users' moving behaviors in intelligent transportation systems. Although recent studies have demonstrated the advantages of achieving map-constrained trajectory recovery via an end-to-end manner, they still face two significant challenges. Firstly, existing methods are mostly sequence-based models. It is extremely hard for them to comprehensively capture the micro-semantics of individual trajectory, including the information of each GPS point and the movement between two GPS points. Secondly, existing approaches ignore the impact of the macro-semantics, i.e., the road conditions and the people's shared travel preferences reflected by a group of trajectories. To address the above challenges, we propose a Micro-Macro Spatial-Temporal Graph-based Encoder-Decoder (MM-STGED). Specifically, we model each trajectory as a graph to efficiently describe the micro-semantics of trajectory and design a novel message-passing mechanism to learn trajectory representations. Additionally, we extract the macro-semantics of trajectories and further incorporate them into a well-designed graph-based decoder to guide trajectory recovery. Extensive experiments conducted on sparse trajectories with three different sampling intervals that are respectively constructed from two real-world trajectory datasets demonstrate the superiority of our proposed model.
comment: This paper has been accepted as a regular paper at IEEE TKDE
☆ Integrating Present and Past in Unsupervised Continual Learning
We formulate a unifying framework for unsupervised continual learning (UCL), which disentangles learning objectives that are specific to the present and the past data, encompassing stability, plasticity, and cross-task consolidation. The framework reveals that many existing UCL approaches overlook cross-task consolidation and try to balance plasticity and stability in a shared embedding space. This results in worse performance due to a lack of within-task data diversity and reduced effectiveness in learning the current task. Our method, Osiris, which explicitly optimizes all three objectives on separate embedding spaces, achieves state-of-the-art performance on all benchmarks, including two novel benchmarks proposed in this paper featuring semantically structured task sequences. Compared to standard benchmarks, these two structured benchmarks more closely resemble visual signals received by humans and animals when navigating real-world environments. Finally, we show some preliminary evidence that continual models can benefit from such realistic learning scenarios.
comment: CoLLAs 2024
☆ SpherE: Expressive and Interpretable Knowledge Graph Embedding for Set Retrieval SIGIR 2024
Knowledge graphs (KGs), which store an extensive number of relational facts (head, relation, tail), serve various applications. While many downstream tasks highly rely on the expressive modeling and predictive embedding of KGs, most of the current KG representation learning methods, where each entity is embedded as a vector in the Euclidean space and each relation is embedded as a transformation, follow an entity ranking protocol. On one hand, such an embedding design cannot capture many-to-many relations. On the other hand, in many retrieval cases, the users wish to get an exact set of answers without any ranking, especially when the results are expected to be precise, e.g., which genes cause an illness. Such scenarios are commonly referred to as "set retrieval". This work presents a pioneering study on the KG set retrieval problem. We show that the set retrieval highly depends on expressive modeling of many-to-many relations, and propose a new KG embedding model SpherE to address this problem. SpherE is based on rotational embedding methods, but each entity is embedded as a sphere instead of a vector. While inheriting the high interpretability of rotational-based models, our SpherE can more expressively model one-to-many, many-to-one, and many-to-many relations. Through extensive experiments, we show that our SpherE can well address the set retrieval problem while still having a good predictive ability to infer missing facts. The code is available at https://github.com/Violet24K/SpherE.
comment: Accepted by SIGIR 2024, Camera Ready Version
☆ Q-GroundCAM: Quantifying Grounding in Vision Language Models via GradCAM CVPR 2024
Vision and Language Models (VLMs) continue to demonstrate remarkable zero-shot (ZS) performance across various tasks. However, many probing studies have revealed that even the best-performing VLMs struggle to capture aspects of compositional scene understanding, lacking the ability to properly ground and localize linguistic phrases in images. Recent VLM advancements include scaling up both model and dataset sizes, additional training objectives and levels of supervision, and variations in the model architectures. To characterize the grounding ability of VLMs, such as phrase grounding, referring expressions comprehension, and relationship understanding, Pointing Game has been used as an evaluation metric for datasets with bounding box annotations. In this paper, we introduce a novel suite of quantitative metrics that utilize GradCAM activations to rigorously evaluate the grounding capabilities of pre-trained VLMs like CLIP, BLIP, and ALBEF. These metrics offer an explainable and quantifiable approach for a more detailed comparison of the zero-shot capabilities of VLMs and enable measuring models' grounding uncertainty. This characterization reveals interesting tradeoffs between the size of the model, the dataset size, and their performance.
comment: Accepted to CVPR 2024, Second Workshop on Foundation Models (WFM)
☆ Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems
The integration of Internet of Things (IoT) applications in our daily lives has led to a surge in data traffic, posing significant security challenges. IoT applications using cloud and edge computing are at higher risk of cyberattacks because of the expanded attack surface from distributed edge and cloud services, the vulnerability of IoT devices, and challenges in managing security across interconnected systems leading to oversights. This led to the rise of ML-based solutions for intrusion detection systems (IDSs), which have proven effective in enhancing network security and defending against diverse threats. However, ML-based IDS in IoT systems encounters challenges, particularly from noisy, redundant, and irrelevant features in varied IoT datasets, potentially impacting its performance. Therefore, reducing such features becomes crucial to enhance system performance and minimize computational costs. This paper focuses on improving the effectiveness of ML-based IDS at the edge level by introducing a novel method to find a balanced trade-off between cost and accuracy through the creation of informative features in a two-tier edge-user IoT environment. A hybrid Binary Quantum-inspired Artificial Bee Colony and Genetic Programming algorithm is utilized for this purpose. Three IoT intrusion detection datasets, namely NSL-KDD, UNSW-NB15, and BoT-IoT, are used for the evaluation of the proposed approach.
comment: This paper has been accepted by DCOSS-IoT 2024
☆ Source-Free Domain Adaptation of Weakly-Supervised Object Localization Models for Histology CVPR
Given the emergence of deep learning, digital pathology has gained popularity for cancer diagnosis based on histology images. Deep weakly supervised object localization (WSOL) models can be trained to classify histology images according to cancer grade and identify regions of interest (ROIs) for interpretation, using inexpensive global image-class annotations. A WSOL model initially trained on some labeled source image data can be adapted using unlabeled target data in cases of significant domain shifts caused by variations in staining, scanners, and cancer type. In this paper, we focus on source-free (unsupervised) domain adaptation (SFDA), a challenging problem where a pre-trained source model is adapted to a new target domain without using any source domain data for privacy and efficiency reasons. SFDA of WSOL models raises several challenges in histology, most notably because they are not intended to adapt for both classification and localization tasks. In this paper, 4 state-of-the-art SFDA methods, each one representative of a main SFDA family, are compared for WSOL in terms of classification and localization accuracy. They are the SFDA-Distribution Estimation, Source HypOthesis Transfer, Cross-Domain Contrastive Learning, and Adaptively Domain Statistics Alignment. Experimental results on the challenging Glas (smaller, breast cancer) and Camelyon16 (larger, colon cancer) histology datasets indicate that these SFDA methods typically perform poorly for localization after adaptation when optimized for classification.
comment: 16 pages, 21 figures, 5 tables, CVPRw 2024
☆ Hidden Synergy: $L_1$ Weight Normalization and 1-Path-Norm Regularization
We present PSiLON Net, an MLP architecture that uses $L_1$ weight normalization for each weight vector and shares the length parameter across the layer. The 1-path-norm provides a bound for the Lipschitz constant of a neural network and reflects on its generalizability, and we show how PSiLON Net's design drastically simplifies the 1-path-norm, while providing an inductive bias towards efficient learning and near-sparse parameters. We propose a pruning method to achieve exact sparsity in the final stages of training, if desired. To exploit the inductive bias of residual networks, we present a simplified residual block, leveraging concatenated ReLU activations. For networks constructed with such blocks, we prove that considering only a subset of possible paths in the 1-path-norm is sufficient to bound the Lipschitz constant. Using the 1-path-norm and this improved bound as regularizers, we conduct experiments in the small data regime using overparameterized PSiLON Nets and PSiLON ResNets, demonstrating reliable optimization and strong performance.
comment: 8 pages body, 2 tables, 1 figure, 3 appendices
☆ The Shape of Money Laundering: Subgraph Representation Learning on the Blockchain with the Elliptic2 Dataset
Subgraph representation learning is a technique for analyzing local structures (or shapes) within complex networks. Enabled by recent developments in scalable Graph Neural Networks (GNNs), this approach encodes relational information at a subgroup level (multiple connected nodes) rather than at a node level of abstraction. We posit that certain domain applications, such as anti-money laundering (AML), are inherently subgraph problems and mainstream graph techniques have been operating at a suboptimal level of abstraction. This is due in part to the scarcity of annotated datasets of real-world size and complexity, as well as the lack of software tools for managing subgraph GNN workflows at scale. To enable work in fundamental algorithms as well as domain applications in AML and beyond, we introduce Elliptic2, a large graph dataset containing 122K labeled subgraphs of Bitcoin clusters within a background graph consisting of 49M node clusters and 196M edge transactions. The dataset provides subgraphs known to be linked to illicit activity for learning the set of "shapes" that money laundering exhibits in cryptocurrency and accurately classifying new criminal activity. Along with the dataset we share our graph techniques, software tooling, promising early experimental results, and new domain insights already gleaned from this approach. Taken together, we find immediate practical value in this approach and the potential for a new standard in anti-money laundering and forensic analytics in cryptocurrencies and other financial networks.
☆ Predicting Fairness of ML Software Configuration
This paper investigates the relationships between hyperparameters of machine learning and fairness. Data-driven solutions are increasingly used in critical socio-technical applications where ensuring fairness is important. Rather than explicitly encoding decision logic via control and data structures, the ML developers provide input data, perform some pre-processing, choose ML algorithms, and tune hyperparameters (HPs) to infer a program that encodes the decision logic. Prior works report that the selection of HPs can significantly influence fairness. However, tuning HPs to find an ideal trade-off between accuracy, precision, and fairness has remained an expensive and tedious task. Can we predict fairness of HP configuration for a given dataset? Are the predictions robust to distribution shifts? We focus on group fairness notions and investigate the HP space of 5 training algorithms. We first find that tree regressors and XGBoots significantly outperformed deep neural networks and support vector machines in accurately predicting the fairness of HPs. When predicting the fairness of ML hyperparameters under temporal distribution shift, the tree regressors outperforms the other algorithms with reasonable accuracy. However, the precision depends on the ML training algorithm, dataset, and protected attributes. For example, the tree regressor model was robust for training data shift from 2014 to 2018 on logistic regression and discriminant analysis HPs with sex as the protected attribute; but not for race and other training algorithms. Our method provides a sound framework to efficiently perform fine-tuning of ML training algorithms and understand the relationships between HPs and fairness.
comment: To Appear in the 20th International Conference on Predictive Models and Data Analytics in Software Engineering (PROMISE'24)
☆ Catalyzing Social Interactions in Mixed Reality using ML Recommendation Systems
We create an innovative mixed reality-first social recommendation model, utilizing features uniquely collected through mixed reality (MR) systems to promote social interaction, such as gaze recognition, proximity, noise level, congestion level, and conversational intensity. We further extend these models to include right-time features to deliver timely notifications. We measure performance metrics across various models by creating a new intersection of user features, MR features, and right-time features. We create four model types trained on different combinations of the feature classes, where we compare the baseline model trained on the class of user features against the models trained on MR features, right-time features, and a combination of all of the feature classes. Due to limitations in data collection and cost, we observe performance degradation in the right-time, mixed reality, and combination models. Despite these challenges, we introduce optimizations to improve accuracy across all models by over 14 percentage points, where the best performing model achieved 24% greater accuracy.
☆ In-Context Symbolic Regression: Leveraging Language Models for Function Discovery
Symbolic Regression (SR) is a task which aims to extract the mathematical expression underlying a set of empirical observations. Transformer-based methods trained on SR datasets detain the current state-of-the-art in this task, while the application of Large Language Models (LLMs) to SR remains unexplored. This work investigates the integration of pre-trained LLMs into the SR pipeline, utilizing an approach that iteratively refines a functional form based on the prediction error it achieves on the observation set, until it reaches convergence. Our method leverages LLMs to propose an initial set of possible functions based on the observations, exploiting their strong pre-training prior. These functions are then iteratively refined by the model itself and by an external optimizer for their coefficients. The process is repeated until the results are satisfactory. We then analyze Vision-Language Models in this context, exploring the inclusion of plots as visual inputs to aid the optimization process. Our findings reveal that LLMs are able to successfully recover good symbolic equations that fit the given data, outperforming SR baselines based on Genetic Programming, with the addition of images in the input showing promising results for the most complex benchmarks.
☆ Deep Reinforcement Learning for Advanced Longitudinal Control and Collision Avoidance in High-Risk Driving Scenarios
Existing Advanced Driver Assistance Systems primarily focus on the vehicle directly ahead, often overlooking potential risks from following vehicles. This oversight can lead to ineffective handling of high risk situations, such as high speed, closely spaced, multi vehicle scenarios where emergency braking by one vehicle might trigger a pile up collision. To overcome these limitations, this study introduces a novel deep reinforcement learning based algorithm for longitudinal control and collision avoidance. This proposed algorithm effectively considers the behavior of both leading and following vehicles. Its implementation in simulated high risk scenarios, which involve emergency braking in dense traffic where traditional systems typically fail, has demonstrated the algorithm ability to prevent potential pile up collisions, including those involving heavy duty vehicles.
☆ Distributed Stochastic Optimization of a Neural Representation Network for Time-Space Tomography Reconstruction
4D time-space reconstruction of dynamic events or deforming objects using X-ray computed tomography (CT) is an extremely ill-posed inverse problem. Existing approaches assume that the object remains static for the duration of several tens or hundreds of X-ray projection measurement images (reconstruction of consecutive limited-angle CT scans). However, this is an unrealistic assumption for many in-situ experiments that causes spurious artifacts and inaccurate morphological reconstructions of the object. To solve this problem, we propose to perform a 4D time-space reconstruction using a distributed implicit neural representation (DINR) network that is trained using a novel distributed stochastic training algorithm. Our DINR network learns to reconstruct the object at its output by iterative optimization of its network parameters such that the measured projection images best match the output of the CT forward measurement model. We use a continuous time and space forward measurement model that is a function of the DINR outputs at a sparsely sampled set of continuous valued object coordinates. Unlike existing state-of-the-art neural representation architectures that forward and back propagate through dense voxel grids that sample the object's entire time-space coordinates, we only propagate through the DINR at a small subset of object coordinates in each iteration resulting in an order-of-magnitude reduction in memory and compute for training. DINR leverages distributed computation across several compute nodes and GPUs to produce high-fidelity 4D time-space reconstructions even for extremely large CT data sizes. We use both simulated parallel-beam and experimental cone-beam X-ray CT datasets to demonstrate the superior performance of our approach.
comment: submitted to Nature Machine Intelligence
☆ Learning Sparse High-Dimensional Matrix-Valued Graphical Models From Dependent Data
We consider the problem of inferring the conditional independence graph (CIG) of a sparse, high-dimensional, stationary matrix-variate Gaussian time series. All past work on high-dimensional matrix graphical models assumes that independent and identically distributed (i.i.d.) observations of the matrix-variate are available. Here we allow dependent observations. We consider a sparse-group lasso-based frequency-domain formulation of the problem with a Kronecker-decomposable power spectral density (PSD), and solve it via an alternating direction method of multipliers (ADMM) approach. The problem is bi-convex which is solved via flip-flop optimization. We provide sufficient conditions for local convergence in the Frobenius norm of the inverse PSD estimators to the true value. This result also yields a rate of convergence. We illustrate our approach using numerical examples utilizing both synthetic and real data.
comment: 16 pages, 2 figures, 1 table
☆ HELPER-X: A Unified Instructable Embodied Agent to Tackle Four Interactive Vision-Language Domains with Memory-Augmented Language Models
Recent research on instructable agents has used memory-augmented Large Language Models (LLMs) as task planners, a technique that retrieves language-program examples relevant to the input instruction and uses them as in-context examples in the LLM prompt to improve the performance of the LLM in inferring the correct action and task plans. In this technical report, we extend the capabilities of HELPER, by expanding its memory with a wider array of examples and prompts, and by integrating additional APIs for asking questions. This simple expansion of HELPER into a shared memory enables the agent to work across the domains of executing plans from dialogue, natural language instruction following, active question asking, and commonsense room reorganization. We evaluate the agent on four diverse interactive visual-language embodied agent benchmarks: ALFRED, TEACh, DialFRED, and the Tidy Task. HELPER-X achieves few-shot, state-of-the-art performance across these benchmarks using a single agent, without requiring in-domain training, and remains competitive with agents that have undergone in-domain training.
comment: Videos and code https://helper-agent-llm.github.io/
♻ ☆ Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical Segmentation of the Circle of Willis for CTA and MRA MICCAI
The Circle of Willis (CoW) is an important network of arteries connecting major circulations of the brain. Its vascular architecture is believed to affect the risk, severity, and clinical outcome of serious neuro-vascular diseases. However, characterizing the highly variable CoW anatomy is still a manual and time-consuming expert task. The CoW is usually imaged by two angiographic imaging modalities, magnetic resonance angiography (MRA) and computed tomography angiography (CTA), but there exist limited public datasets with annotations on CoW anatomy, especially for CTA. Therefore we organized the TopCoW Challenge in 2023 with the release of an annotated CoW dataset. The TopCoW dataset was the first public dataset with voxel-level annotations for thirteen possible CoW vessel components, enabled by virtual-reality (VR) technology. It was also the first large dataset with paired MRA and CTA from the same patients. TopCoW challenge formalized the CoW characterization problem as a multiclass anatomical segmentation task with an emphasis on topological metrics. We invited submissions worldwide for the CoW segmentation task, which attracted over 140 registered participants from four continents. The top performing teams managed to segment many CoW components to Dice scores around 90%, but with lower scores for communicating arteries and rare variants. There were also topological mistakes for predictions with high Dice scores. Additional topological analysis revealed further areas for improvement in detecting certain CoW components and matching CoW variant topology accurately. TopCoW represented a first attempt at benchmarking the CoW anatomical segmentation task for MRA and CTA, both morphologically and topologically.
comment: 24 pages, 11 figures, 9 tables. Summary Paper for the MICCAI TopCoW 2023 Challenge
♻ ☆ Talking Nonsense: Probing Large Language Models' Understanding of Adversarial Gibberish Inputs
Large language models (LLMs) exhibit excellent ability to understand human languages, but do they also understand their own language that appears gibberish to us? In this work we delve into this question, aiming to uncover the mechanisms underlying such behavior in LLMs. We employ the Greedy Coordinate Gradient optimizer to craft prompts that compel LLMs to generate coherent responses from seemingly nonsensical inputs. We call these inputs LM Babel and this work systematically studies the behavior of LLMs manipulated by these prompts. We find that the manipulation efficiency depends on the target text's length and perplexity, with the Babel prompts often located in lower loss minima compared to natural prompts. We further examine the structure of the Babel prompts and evaluate their robustness. Notably, we find that guiding the model to generate harmful texts is not more difficult than into generating benign texts, suggesting lack of alignment for out-of-distribution prompts.
♻ ☆ Stick to your Role! Context-dependence and Stability of Personal Values Expression in Large Language Models
The standard way to study Large Language Models (LLMs) with benchmarks or psychology questionnaires is to provide many different queries from similar minimal contexts (e.g. multiple choice questions). However, due to LLMs' highly context-dependent nature, conclusions from such minimal-context evaluations may be little informative about the model's behavior in deployment (where it will be exposed to many new contexts). We argue that context-dependence (specifically, value stability) should be studied a specific property of LLMs and used as another dimension of LLM comparison (alongside others such as cognitive abilities, knowledge, or model size). We present a case-study on the stability of value expression over different contexts (simulated conversations on different topics) as measured using a standard psychology questionnaire (PVQ) and on behavioral downstream tasks. Reusing methods from psychology, we study Rank-order stability on the population (interpersonal) level, and Ipsative stability on the individual (intrapersonal) level. We consider two settings (with and without instructing LLMs to simulate particular personas), two simulated populations, and three downstream tasks. We observe consistent trends in the stability of models and model families - Mixtral, Mistral, GPT-3.5 and Qwen families are more stable than LLaMa-2 and Phi. The consistency of these trends implies that some models exhibit higher value-stability than others, and that value stability can be estimated with the set of introduced methodological tools. When instructed to simulate particular personas, LLMs exhibit low Rank-Order stability, which further diminishes with conversation length. This highlights the need for future research on LLMs that coherently simulate different personas. This paper provides a foundational step in that direction, and, to our knowledge, it is the first study of value stability in LLMs.
comment: The project website and code are available at https://sites.google.com/view/llmvaluestability
♻ ☆ Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials
Machine learning interatomic potentials (MLIPs) have become a workhorse of modern atomistic simulations, and recently published universal MLIPs, pre-trained on large datasets, have demonstrated remarkable accuracy and generalizability. However, the computational cost of MLIPs limits their applicability to chemically disordered systems requiring large simulation cells or to sample-intensive statistical methods. Here, we report the use of continuous and differentiable alchemical degrees of freedom in atomistic materials simulations, exploiting the fact that graph neural network MLIPs represent discrete elements as real-valued tensors. The proposed method introduces alchemical atoms with corresponding weights into the input graph, alongside modifications to the message-passing and readout mechanisms of MLIPs, and allows smooth interpolation between the compositional states of materials. The end-to-end differentiability of MLIPs enables efficient calculation of the gradient of energy with respect to the compositional weights. Leveraging these gradients, we propose methodologies for optimizing the composition of solid solutions towards target macroscopic properties and conducting alchemical free energy simulations to quantify the free energy of vacancy formation and composition changes. The approach offers an avenue for extending the capabilities of universal MLIPs in the modeling of compositional disorder and characterizing the phase stabilities of complex materials systems.
♻ ☆ Adaptive Input-image Normalization for Solving the Mode Collapse Problem in GAN-based X-ray Images
Biomedical image datasets can be imbalanced due to the rarity of targeted diseases. Generative Adversarial Networks play a key role in addressing this imbalance by enabling the generation of synthetic images to augment datasets. It is important to generate synthetic images that incorporate a diverse range of features to accurately represent the distribution of features present in the training imagery. Furthermore, the absence of diverse features in synthetic images can degrade the performance of machine learning classifiers. The mode collapse problem impacts Generative Adversarial Networks' capacity to generate diversified images. Mode collapse comes in two varieties: intra-class and inter-class. In this paper, both varieties of the mode collapse problem are investigated, and their subsequent impact on the diversity of synthetic X-ray images is evaluated. This work contributes an empirical demonstration of the benefits of integrating the adaptive input-image normalization with the Deep Convolutional GAN and Auxiliary Classifier GAN to alleviate the mode collapse problems. Synthetically generated images are utilized for data augmentation and training a Vision Transformer model. The classification performance of the model is evaluated using accuracy, recall, and precision scores. Results demonstrate that the DCGAN and the ACGAN with adaptive input-image normalization outperform the DCGAN and ACGAN with un-normalized X-ray images as evidenced by the superior diversity scores and classification scores.
comment: Submitted to the Elsevier Journal
♻ ☆ Emergent specialization from participation dynamics and multi-learner retraining AISTATS 2024
Numerous online services are data-driven: the behavior of users affects the system's parameters, and the system's parameters affect the users' experience of the service, which in turn affects the way users may interact with the system. For example, people may choose to use a service only for tasks that already works well, or they may choose to switch to a different service. These adaptations influence the ability of a system to learn about a population of users and tasks in order to improve its performance broadly. In this work, we analyze a class of such dynamics -- where users allocate their participation amongst services to reduce the individual risk they experience, and services update their model parameters to reduce the service's risk on their current user population. We refer to these dynamics as \emph{risk-reducing}, which cover a broad class of common model updates including gradient descent and multiplicative weights. For this general class of dynamics, we show that asymptotically stable equilibria are always segmented, with sub-populations allocated to a single learner. Under mild assumptions, the utilitarian social optimum is a stable equilibrium. In contrast to previous work, which shows that repeated risk minimization can result in (Hashimoto et al., 2018; Miller et al., 2021), we find that repeated myopic updates with multiple learners lead to better outcomes. We illustrate the phenomena via a simulated example initialized from real data.
comment: AISTATS 2024
♻ ☆ Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey
Large models represent a groundbreaking advancement in multiple application fields, enabling remarkable achievements across various tasks. However, their unprecedented scale comes with significant computational costs. These models, often consisting of billions of parameters, require vast amounts of computational resources for execution. Especially, the expansive scale and computational demands pose considerable challenges when customizing them for particular downstream tasks, particularly over the hardware platforms constrained by computational capabilities. Parameter Efficient Fine-Tuning (PEFT) provides a practical solution by efficiently adapt the large models over the various downstream tasks. In particular, PEFT refers to the process of adjusting the parameters of a pre-trained large models to adapt it to a specific task while minimizing the number of additional parameters introduced or computational resources required. This approach is particularly important when dealing with large language models with high parameter counts, as fine-tuning these models from scratch can be computationally expensive and resource-intensive, posing considerable challenges in the supporting system platform design. In this survey, we present comprehensive studies of various PEFT algorithms, examining their performance and computational overhead. Moreover, we provide an overview of applications developed using different PEFT algorithms and discuss common techniques employed to mitigate computation costs for PEFT. In addition to the algorithmic perspective, we overview various real-world system designs to investigate the implementation costs associated with different PEFT algorithms. This survey serves as an indispensable resource for researchers aiming to understand both the PEFT algorithm and its system implementation, offering detailed insights into recent advancements and practical applications.
comment: 24 pages, 12 figures
♻ ☆ SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks. GNNs effectively implement node representation learning through neighborhood aggregation and achieve impressive results in many graph-related tasks. However, most neighborhood aggregation approaches are summation-based, which can be problematic as they may not be sufficiently expressive to encode informative graph structures. Furthermore, though the graph pooling module is also of vital importance for graph learning, especially for the task of graph classification, research on graph down-sampling mechanisms is rather limited. To address the above challenges, we propose a concatenation-based graph convolution mechanism that injectively updates node representations to maximize the discriminative power in distinguishing non-isomorphic subgraphs. In addition, we design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner. WL-SortPool layer-wise sorts node representations (i.e. continuous WL colors) to separately learn the relative importance of subtrees with different depths for the purpose of classification, thus better characterizing the complex graph topology and rich information encoded in the graph. We propose a novel Subgraph Pattern GNN (SPGNN) architecture that incorporates these enhancements. We test the proposed SPGNN architecture on many graph classification benchmarks. Experimental results show that our method can achieve highly competitive results with state-of-the-art graph kernels and other GNN approaches.
♻ ☆ Explaining Text Classifiers with Counterfactual Representations
One well motivated explanation method for classifiers leverages counterfactuals which are hypothetical events identical to real observations in all aspects except for one categorical feature. Constructing such counterfactual poses specific challenges for texts, however, as some attribute values may not necessarily align with plausible real-world events. In this paper we propose a simple method for generating counterfactuals by intervening in the space of text representations which bypasses this limitation. We argue that our interventions are minimally disruptive and that they are theoretically sound as they align with counterfactuals as defined in Pearl's causal inference framework. To validate our method, we conducted experiments first on a synthetic dataset and then on a realistic dataset of counterfactuals. This allows for a direct comparison between classifier predictions based on ground truth counterfactuals - obtained through explicit text interventions - and our counterfactuals, derived through interventions in the representation space. Eventually, we study a real world scenario where our counterfactuals can be leveraged both for explaining a classifier and for bias mitigation.
comment: 24 pages, 4 figures
♻ ☆ A supplemental investigation of non-linearity in quantum generative models with respect to simulatability and optimization
Recent work has demonstrated the utility of introducing non-linearity through repeat-until-success (RUS) sub-routines into quantum circuits for generative modeling. As a follow-up to this work, we investigate two questions of relevance to the quantum algorithms and machine learning communities: Does introducing this form of non-linearity make the learning model classically simulatable due to the deferred measurement principle? And does introducing this form of non-linearity make the overall model's training more unstable? With respect to the first question, we demonstrate that the RUS sub-routines do not allow us to trivially map this quantum model to a classical one, whereas a model without RUS sub-circuits containing mid-circuit measurements could be mapped to a classical Bayesian network due to the deferred measurement principle of quantum mechanics. This strongly suggests that the proposed form of non-linearity makes the model classically in-efficient to simulate. In the pursuit of the second question, we train larger models than previously shown on three different probability distributions, one continuous and two discrete, and compare the training performance across multiple random trials. We see that while the model is able to perform exceptionally well in some trials, the variance across trials with certain datasets quantifies its relatively poor training stability.
♻ ☆ Learning Quantum Processes with Quantum Statistical Queries
Learning complex quantum processes is a central challenge in many areas of quantum computing and quantum machine learning, with applications in quantum benchmarking, cryptanalysis, and variational quantum algorithms. This paper introduces the first learning framework for studying quantum process learning within the Quantum Statistical Query (QSQ) model, providing the first formal definition of statistical queries to quantum processes (QPSQs). The framework allows us to propose an efficient QPSQ learner for arbitrary quantum processes accompanied by a provable performance guarantee. We also provide numerical simulations to demonstrate the efficacy of this algorithm. In our new framework, we prove exponential query complexity lower bounds for learning unitary 2-designs, and a doubly exponential lower bound for learning haar-random unitaries. The practical relevance of this framework is exemplified through application in cryptography, highlighting vulnerabilities of a large class of Classical-Readout Quantum Physical Unclonable Functions (CR-QPUFs), addressing an important open question in the field of quantum hardware security. This work marks a significant step towards understanding the learnability of quantum processes and shedding light on their security implications.
comment: 46 pages, 3 figures. v2: Added lower bounds (Section 6)
♻ ☆ Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation ICLR
We study the problem of model selection in causal inference, specifically for conditional average treatment effect (CATE) estimation. Unlike machine learning, there is no perfect analogue of cross-validation for model selection as we do not observe the counterfactual potential outcomes. Towards this, a variety of surrogate metrics have been proposed for CATE model selection that use only observed data. However, we do not have a good understanding regarding their effectiveness due to limited comparisons in prior studies. We conduct an extensive empirical analysis to benchmark the surrogate model selection metrics introduced in the literature, as well as the novel ones introduced in this work. We ensure a fair comparison by tuning the hyperparameters associated with these metrics via AutoML, and provide more detailed trends by incorporating realistic datasets via generative modeling. Our analysis suggests novel model selection strategies based on careful hyperparameter selection of CATE estimators and causal ensembling.
comment: Proceedings of the 12th International Conference on Learning Representations (ICLR), 2024. (Spotlight)
♻ ☆ Size and depth of monotone neural networks: interpolation and approximation
We study monotone neural networks with threshold gates where all the weights (other than the biases) are non-negative. We focus on the expressive power and efficiency of representation of such networks. Our first result establishes that every monotone function over $[0,1]^d$ can be approximated within arbitrarily small additive error by a depth-4 monotone network. When $d > 3$, we improve upon the previous best-known construction which has depth $d+1$. Our proof goes by solving the monotone interpolation problem for monotone datasets using a depth-4 monotone threshold network. In our second main result we compare size bounds between monotone and arbitrary neural networks with threshold gates. We find that there are monotone real functions that can be computed efficiently by networks with no restriction on the gates whereas monotone networks approximating these functions need exponential size in the dimension.
comment: 25 pages, 1 Figure; improved inapproximability results and added general reduction results
♻ ☆ Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences
Retraining machine learning models (ML) when new batches of data become available is an important task in real-world pipelines. Existing methods focus largely on greedy approaches to find the best-performing model for each batch, without considering the stability of the model's structure across retraining iterations. In this study, we propose a methodology for finding sequences of ML models that are stable across retraining iterations. We develop a mixed-integer optimization algorithm that is guaranteed to recover Pareto optimal models (in terms of the predictive power-stability trade-off) and an efficient polynomial-time algorithm that performs well in practice. Our method focuses on retaining consistent analytical insights -- which is important to model interpretability, ease of implementation, and fostering trust with users -- by using custom-defined distance metrics that can be directly incorporated into the optimization problem. Importantly, our method shows stronger stability than greedily trained models with a small, controllable sacrifice in model performance in a real-world case study. Using SHAP feature importance, we show that analytical insights are consistent across retraining iterations.
♻ ☆ ZeroSwap: Data-driven Optimal Market Making in DeFi
Automated Market Makers (AMMs) are major centers of matching liquidity supply and demand in Decentralized Finance. Their functioning relies primarily on the presence of liquidity providers (LPs) incentivized to invest their assets into a liquidity pool. However, the prices at which a pooled asset is traded is often more stale than the prices on centralized and more liquid exchanges. This leads to the LPs suffering losses to arbitrage. This problem is addressed by adapting market prices to trader behavior, captured via the classical market microstructure model of Glosten and Milgrom. In this paper, we propose the first optimal Bayesian and the first model-free data-driven algorithm to optimally track the external price of the asset. The notion of optimality that we use enforces a zero-profit condition on the prices of the market maker, hence the name ZeroSwap. This ensures that the market maker balances losses to informed traders with profits from noise traders. The key property of our approach is the ability to estimate the external market price without the need for price oracles or loss oracles. Our theoretical guarantees on the performance of both these algorithms, ensuring the stability and convergence of their price recommendations, are of independent interest in the theory of reinforcement learning. We empirically demonstrate the robustness of our algorithms to changing market conditions.
♻ ☆ LayerSkip: Enabling Early Exit Inference and Self-Speculative Decoding
We present LayerSkip, an end-to-end solution to speed-up inference of large language models (LLMs). First, during training we apply layer dropout, with low dropout rates for earlier layers and higher dropout rates for later layers, and an early exit loss where all transformer layers share the same exit. Second, during inference, we show that this training recipe increases the accuracy of early exit at earlier layers, without adding any auxiliary layers or modules to the model. Third, we present a novel self-speculative decoding solution where we exit at early layers and verify and correct with remaining layers of the model. Our proposed self-speculative decoding approach has less memory footprint than other speculative decoding approaches and benefits from shared compute and activations of the draft and verification stages. We run experiments on different Llama model sizes on different types of training: pretraining from scratch, continual pretraining, finetuning on specific data domain, and finetuning on specific task. We implement our inference solution and show speedups of up to 2.16x on summarization for CNN/DM documents, 1.82x on coding, and 2.0x on TOPv2 semantic parsing task.
comment: Code open sourcing is in progress
♻ ☆ Warmth and competence in human-agent cooperation
Interaction and cooperation with humans are overarching aspirations of artificial intelligence (AI) research. Recent studies demonstrate that AI agents trained with deep reinforcement learning are capable of collaborating with humans. These studies primarily evaluate human compatibility through "objective" metrics such as task performance, obscuring potential variation in the levels of trust and subjective preference that different agents garner. To better understand the factors shaping subjective preferences in human-agent cooperation, we train deep reinforcement learning agents in Coins, a two-player social dilemma. We recruit $N = 501$ participants for a human-agent cooperation study and measure their impressions of the agents they encounter. Participants' perceptions of warmth and competence predict their stated preferences for different agents, above and beyond objective performance metrics. Drawing inspiration from social science and biology research, we subsequently implement a new ``partner choice'' framework to elicit revealed preferences: after playing an episode with an agent, participants are asked whether they would like to play the next episode with the same agent or to play alone. As with stated preferences, social perception better predicts participants' revealed preferences than does objective performance. Given these results, we recommend human-agent interaction researchers routinely incorporate the measurement of social perception and subjective preferences into their studies.
comment: Accepted at Autonomous Agents and Multi-Agent Systems
♻ ☆ Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures
There is growing interest in using machine learning (ML) methods for structural metamodeling due to the substantial computational cost of traditional simulations. Purely data-driven strategies often face limitations in model robustness, interpretability, and dependency on extensive data. To address these challenges, this paper introduces a novel physics-informed machine learning (PiML) method that integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures. The approach constrains the ML model's solution space within known physical bounds through three main features: dimensionality reduction via combined model order reduction and wavelet analysis, long short-term memory (LSTM) networks, and Newton's second law. Dimensionality reduction addresses structural systems' redundancy and boosts efficiency while extracting essential features through wavelet analysis. LSTM networks capture temporal dependencies for accurate time-series predictions. Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results. These attributes allow for model training with sparse data, enhancing accuracy, interpretability, and robustness. Furthermore, a dataset of archetype steel moment resistant frames under seismic loading, available in the DesignSafe-CI Database [1], is considered for evaluation. The resulting metamodel handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
comment: 34 pages, 12 figures
♻ ☆ An FPGA-Based Accelerator for Graph Embedding using Sequential Training Algorithm
A graph embedding is an emerging approach that can represent a graph structure with a fixed-length low-dimensional vector. node2vec is a well-known algorithm to obtain such a graph embedding by sampling neighboring nodes on a given graph with a random walk technique. However, the original node2vec algorithm typically relies on a batch training of graph structures; thus, it is not suited for applications in which the graph structure changes after the deployment. In this paper, we focus on node2vec applications for IoT (Internet of Things) environments. To handle the changes of graph structures after the IoT devices have been deployed in edge environments, in this paper we propose to combine an online sequential training algorithm with node2vec. The proposed sequentially-trainable model is implemented on an FPGA (Field-Programmable Gate Array) device to demonstrate the benefits of our approach. The proposed FPGA implementation achieves up to 205.25 times speedup compared to the original model on ARM Cortex-A53 CPU. Evaluation results using dynamic graphs show that although the accuracy is decreased in the original model, the proposed sequential model can obtain better graph embedding that achieves a higher accuracy even when the graph structure is changed.
comment: RAW'24
♻ ☆ PRISM: Leveraging Prototype Patient Representations with Feature-Missing-Aware Calibration for EHR Data Sparsity Mitigation
Electronic Health Record (EHR) data, while rich in information, often suffers from sparsity, posing significant challenges in predictive modeling. Traditional imputation methods inadequately distinguish between real and imputed data, leading to potential inaccuracies in models. Addressing this, we introduce PRISM, a framework that indirectly imputes data through prototype representations of similar patients, thus ensuring denser and more accurate embeddings. PRISM also includes a feature confidence learner module, which evaluates the reliability of each feature in light of missing data. Additionally, it incorporates a new patient similarity metric that accounts for feature confidence, avoiding overreliance on imprecise imputed values. Our extensive experiments on the MIMIC-III, MIMIC-IV, PhysioNet Challenge 2012, eICU datasets demonstrate PRISM 's superior performance in predicting in-hospital mortality and 30-day readmission tasks, showcasing its effectiveness in handling EHR data sparsity. For the sake of reproducibility and further research, we have made the code publicly available at https://github.com/yhzhu99/PRISM.
♻ ☆ Advances and Open Challenges in Federated Learning with Foundation Models
The integration of Foundation Models (FMs) with Federated Learning (FL) presents a transformative paradigm in Artificial Intelligence (AI), offering enhanced capabilities while addressing concerns of privacy, data decentralization, and computational efficiency. This paper provides a comprehensive survey of the emerging field of Federated Foundation Models (FedFM), elucidating their synergistic relationship and exploring novel methodologies, challenges, and future directions that the FL research field needs to focus on in order to thrive in the age of foundation models. A systematic multi-tiered taxonomy is proposed, categorizing existing FedFM approaches for model training, aggregation, trustworthiness, and incentivization. Key challenges, including how to enable FL to deal with high complexity of computational demands, privacy considerations, contribution evaluation, and communication efficiency, are thoroughly discussed. Moreover, the paper explores the intricate challenges of communication, scalability and security inherent in training/fine-tuning FMs via FL, highlighting the potential of quantum computing to revolutionize the training, inference, optimization and data encryption processes. This survey underscores the importance of further research to propel innovation in FedFM, emphasizing the need for developing trustworthy solutions. It serves as a foundational guide for researchers and practitioners interested in contributing to this interdisciplinary and rapidly advancing field.
comment: Survey of Federated Foundation Models (FedFM)
♻ ☆ Unraveling the Single Tangent Space Fallacy: An Analysis and Clarification for Applying Riemannian Geometry in Robot Learning ICRA'24
In the realm of robotics, numerous downstream robotics tasks leverage machine learning methods for processing, modeling, or synthesizing data. Often, this data comprises variables that inherently carry geometric constraints, such as the unit-norm condition of quaternions representing rigid-body orientations or the positive definiteness of stiffness and manipulability ellipsoids. Handling such geometric constraints effectively requires the incorporation of tools from differential geometry into the formulation of machine learning methods. In this context, Riemannian manifolds emerge as a powerful mathematical framework to handle such geometric constraints. Nevertheless, their recent adoption in robot learning has been largely characterized by a mathematically-flawed simplification, hereinafter referred to as the "single tangent space fallacy". This approach involves merely projecting the data of interest onto a single tangent (Euclidean) space, over which an off-the-shelf learning algorithm is applied. This paper provides a theoretical elucidation of various misconceptions surrounding this approach and offers experimental evidence of its shortcomings. Finally, it presents valuable insights to promote best practices when employing Riemannian geometry within robot learning applications.
comment: Accepted for publication in ICRA'24. 8 pages, 5 figures, 3 tables
♻ ☆ Optimal Parallelization Strategies for Active Flow Control in Deep Reinforcement Learning-Based Computational Fluid Dynamics
Deep Reinforcement Learning (DRL) has emerged as a promising approach for handling highly dynamic and nonlinear Active Flow Control (AFC) problems. However, the computational cost associated with training DRL models presents a significant performance bottleneck. To address this challenge and enable efficient scaling on high-performance computing architectures, this study focuses on optimizing DRL-based algorithms in parallel settings. We validate an existing state-of-the-art DRL framework used for AFC problems and discuss its efficiency bottlenecks. Subsequently, by deconstructing the overall framework and conducting extensive scalability benchmarks for individual components, we investigate various hybrid parallelization configurations and propose efficient parallelization strategies. Moreover, we refine input/output (I/O) operations in multi-environment DRL training to tackle critical overhead associated with data movement. Finally, we demonstrate the optimized framework for a typical AFC problem where near-linear scaling can be obtained for the overall framework. We achieve a significant boost in parallel efficiency from around 49% to approximately 78%, and the training process is accelerated by approximately 47 times using 60 CPU cores. These findings are expected to provide valuable insights for further advancements in DRL-based AFC studies.
♻ ☆ An Incremental MaxSAT-based Model to Learn Interpretable and Balanced Classification Rules
The increasing advancements in the field of machine learning have led to the development of numerous applications that effectively address a wide range of problems with accurate predictions. However, in certain cases, accuracy alone may not be sufficient. Many real-world problems also demand explanations and interpretability behind the predictions. One of the most popular interpretable models that are classification rules. This work aims to propose an incremental model for learning interpretable and balanced rules based on MaxSAT, called IMLIB. This new model was based on two other approaches, one based on SAT and the other on MaxSAT. The one based on SAT limits the size of each generated rule, making it possible to balance them. We suggest that such a set of rules seem more natural to be understood compared to a mixture of large and small rules. The approach based on MaxSAT, called IMLI, presents a technique to increase performance that involves learning a set of rules by incrementally applying the model in a dataset. Finally, IMLIB and IMLI are compared using diverse databases. IMLIB obtained results comparable to IMLI in terms of accuracy, generating more balanced rules with smaller sizes.
comment: 16 pages, 5 tables, submitted to BRACIS 2023 (Brazilian Conference on Intelligent Systems), accepted version published in Intelligent Systems, LNCS, vol 14195
♻ ☆ Universal Jailbreak Backdoors from Poisoned Human Feedback ICLR 2024
Reinforcement Learning from Human Feedback (RLHF) is used to align large language models to produce helpful and harmless responses. Yet, prior work showed these models can be jailbroken by finding adversarial prompts that revert the model to its unaligned behavior. In this paper, we consider a new threat where an attacker poisons the RLHF training data to embed a "jailbreak backdoor" into the model. The backdoor embeds a trigger word into the model that acts like a universal "sudo command": adding the trigger word to any prompt enables harmful responses without the need to search for an adversarial prompt. Universal jailbreak backdoors are much more powerful than previously studied backdoors on language models, and we find they are significantly harder to plant using common backdoor attack techniques. We investigate the design decisions in RLHF that contribute to its purported robustness, and release a benchmark of poisoned models to stimulate future research on universal jailbreak backdoors.
comment: Accepted as conference paper in ICLR 2024
♻ ☆ Modeling Multimodal Social Interactions: New Challenges and Baselines with Densely Aligned Representations CVPR 2024
Understanding social interactions involving both verbal and non-verbal cues is essential for effectively interpreting social situations. However, most prior works on multimodal social cues focus predominantly on single-person behaviors or rely on holistic visual representations that are not aligned to utterances in multi-party environments. Consequently, they are limited in modeling the intricate dynamics of multi-party interactions. In this paper, we introduce three new challenging tasks to model the fine-grained dynamics between multiple people: speaking target identification, pronoun coreference resolution, and mentioned player prediction. We contribute extensive data annotations to curate these new challenges in social deduction game settings. Furthermore, we propose a novel multimodal baseline that leverages densely aligned language-visual representations by synchronizing visual features with their corresponding utterances. This facilitates concurrently capturing verbal and non-verbal cues pertinent to social reasoning. Experiments demonstrate the effectiveness of the proposed approach with densely aligned multimodal representations in modeling fine-grained social interactions. Project website: https://sangmin-git.github.io/projects/MMSI.
comment: CVPR 2024 Oral
♻ ☆ Bayesian Reasoning for Physics Informed Neural Networks
We present the application of the physics-informed neural network (PINN) approach in Bayesian formulation. We have adopted the Bayesian neural network framework to obtain posterior densities from Laplace approximation. For each model or fit, the evidence is computed, which is a measure that classifies the hypothesis. The optimal solution is the one with the highest value of evidence. We have proposed a modification of the Bayesian algorithm to obtain hyperparameters of the model. We have shown that within the Bayesian framework, one can obtain the relative weights between the boundary and equation contributions to the total loss. Presented method leads to predictions comparable to those obtained by sampling from the posterior distribution within the Hybrid Monte Carlo algorithm (HMC). We have solved heat, wave, and Burger's equations, and the results obtained are in agreement with the exact solutions, demonstrating the effectiveness of our approach. In Burger's equation problem, we have demonstrated that the framework can combine information from differential equations and potential measurements. All solutions are provided with uncertainties (induced by the model's parameter dependence) computed within the Bayesian framework.
comment: 22 pages, 12 figures, the description of the method extended, one more example added, improved the numerical analysis
♻ ☆ Latent Space Representations of Neural Algorithmic Reasoners
Neural Algorithmic Reasoning (NAR) is a research area focused on designing neural architectures that can reliably capture classical computation, usually by learning to execute algorithms. A typical approach is to rely on Graph Neural Network (GNN) architectures, which encode inputs in high-dimensional latent spaces that are repeatedly transformed during the execution of the algorithm. In this work we perform a detailed analysis of the structure of the latent space induced by the GNN when executing algorithms. We identify two possible failure modes: (i) loss of resolution, making it hard to distinguish similar values; (ii) inability to deal with values outside the range observed during training. We propose to solve the first issue by relying on a softmax aggregator, and propose to decay the latent space in order to deal with out-of-range values. We show that these changes lead to improvements on the majority of algorithms in the standard CLRS-30 benchmark when using the state-of-the-art Triplet-GMPNN processor. Our code is available at https://github.com/mirjanic/nar-latent-spaces
comment: 24 pages, 19 figures; Accepted at the Second Learning on Graphs Conference (LoG 2023); updated layout, reorganized content, added journal reference
♻ ☆ Bengali Document Layout Analysis -- A YOLOV8 Based Ensembling Approach
This paper focuses on enhancing Bengali Document Layout Analysis (DLA) using the YOLOv8 model and innovative post-processing techniques. We tackle challenges unique to the complex Bengali script by employing data augmentation for model robustness. After meticulous validation set evaluation, we fine-tune our approach on the complete dataset, leading to a two-stage prediction strategy for accurate element segmentation. Our ensemble model, combined with post-processing, outperforms individual base architectures, addressing issues identified in the BaDLAD dataset. By leveraging this approach, we aim to advance Bengali document analysis, contributing to improved OCR and document comprehension and BaDLAD serves as a foundational resource for this endeavor, aiding future research in the field. Furthermore, our experiments provided key insights to incorporate new strategies into the established solution.
comment: Need to review and rework this
♻ ☆ Mitigating the Curse of Dimensionality for Certified Robustness via Dual Randomized Smoothing ICLR 2024
Randomized Smoothing (RS) has been proven a promising method for endowing an arbitrary image classifier with certified robustness. However, the substantial uncertainty inherent in the high-dimensional isotropic Gaussian noise imposes the curse of dimensionality on RS. Specifically, the upper bound of ${\ell_2}$ certified robustness radius provided by RS exhibits a diminishing trend with the expansion of the input dimension $d$, proportionally decreasing at a rate of $1/\sqrt{d}$. This paper explores the feasibility of providing ${\ell_2}$ certified robustness for high-dimensional input through the utilization of dual smoothing in the lower-dimensional space. The proposed Dual Randomized Smoothing (DRS) down-samples the input image into two sub-images and smooths the two sub-images in lower dimensions. Theoretically, we prove that DRS guarantees a tight ${\ell_2}$ certified robustness radius for the original input and reveal that DRS attains a superior upper bound on the ${\ell_2}$ robustness radius, which decreases proportionally at a rate of $(1/\sqrt m + 1/\sqrt n )$ with $m+n=d$. Extensive experiments demonstrate the generalizability and effectiveness of DRS, which exhibits a notable capability to integrate with established methodologies, yielding substantial improvements in both accuracy and ${\ell_2}$ certified robustness baselines of RS on the CIFAR-10 and ImageNet datasets. Code is available at https://github.com/xiasong0501/DRS.
comment: Accepted by ICLR 2024
♻ ☆ RBF-PINN: Non-Fourier Positional Embedding in Physics-Informed Neural Networks
While many recent Physics-Informed Neural Networks (PINNs) variants have had considerable success in solving Partial Differential Equations, the empirical benefits of feature mapping drawn from the broader Neural Representations research have been largely overlooked. We highlight the limitations of widely used Fourier-based feature mapping in certain situations and suggest the use of the conditionally positive definite Radial Basis Function. The empirical findings demonstrate the effectiveness of our approach across a variety of forward and inverse problem cases. Our method can be seamlessly integrated into coordinate-based input neural networks and contribute to the wider field of PINNs research.
comment: arXiv admin note: substantial text overlap with arXiv:2402.06955
♻ ☆ Proof-of-Learning with Incentive Security
Most concurrent blockchain systems rely heavily on the Proof-of-Work (PoW) or Proof-of-Stake (PoS) mechanisms for decentralized consensus and security assurance. However, the substantial energy expenditure stemming from computationally intensive yet meaningless tasks has raised considerable concerns surrounding traditional PoW approaches, The PoS mechanism, while free of energy consumption, is subject to security and economic issues. Addressing these issues, the paradigm of Proof-of-Useful-Work (PoUW) seeks to employ challenges of practical significance as PoW, thereby imbuing energy consumption with tangible value. While previous efforts in Proof of Learning (PoL) explored the utilization of deep learning model training SGD tasks as PoUW challenges, recent research has revealed its vulnerabilities to adversarial attacks and the theoretical hardness in crafting a byzantine-secure PoL mechanism. In this paper, we introduce the concept of incentive-security that incentivizes rational provers to behave honestly for their best interest, bypassing the existing hardness to design a PoL mechanism with computational efficiency, a provable incentive-security guarantee and controllable difficulty. Particularly, our work is secure against two attacks to the recent work of Jia et al. [2021], and also improves the computational overhead from $\Theta(1)$ to $O(\frac{\log E}{E})$. Furthermore, while most recent research assumes trusted problem providers and verifiers, our design also guarantees frontend incentive-security even when problem providers are untrusted, and verifier incentive-security that bypasses the Verifier's Dilemma. By incorporating ML training into blockchain consensus mechanisms with provable guarantees, our research not only proposes an eco-friendly solution to blockchain systems, but also provides a proposal for a completely decentralized computing power market in the new AI age.
comment: 17 pages, 5 figures
♻ ☆ Self2Seg: Single-Image Self-Supervised Joint Segmentation and Denoising
We develop Self2Seg, a self-supervised method for the joint segmentation and denoising of a single image. To this end, we combine the advantages of variational segmentation with self-supervised deep learning. One major benefit of our method lies in the fact, that in contrast to data-driven methods, where huge amounts of labeled samples are necessary, Self2Seg segments an image into meaningful regions without any training database. Moreover, we demonstrate that self-supervised denoising itself is significantly improved through the region-specific learning of Self2Seg. Therefore, we introduce a novel self-supervised energy functional in which denoising and segmentation are coupled in a way that both tasks benefit from each other. We propose a unified optimisation strategy and numerically show that for noisy microscopy images our proposed joint approach outperforms its sequential counterpart as well as alternative methods focused purely on denoising or segmentation.
♻ ☆ Physics-constrained robust learning of open-form partial differential equations from limited and noisy data
Unveiling the underlying governing equations of nonlinear dynamic systems remains a significant challenge. Insufficient prior knowledge hinders the determination of an accurate candidate library, while noisy observations lead to imprecise evaluations, which in turn result in redundant function terms or erroneous equations. This study proposes a framework to robustly uncover open-form partial differential equations (PDEs) from limited and noisy data. The framework operates through two alternating update processes: discovering and embedding. The discovering phase employs symbolic representation and a novel reinforcement learning (RL)-guided hybrid PDE generator to efficiently produce diverse open-form PDEs with tree structures. A neural network-based predictive model fits the system response and serves as the reward evaluator for the generated PDEs. PDEs with higher rewards are utilized to iteratively optimize the generator via the RL strategy and the best-performing PDE is selected by a parameter-free stability metric. The embedding phase integrates the initially identified PDE from the discovering process as a physical constraint into the predictive model for robust training. The traversal of PDE trees automates the construction of the computational graph and the embedding process without human intervention. Numerical experiments demonstrate our framework's capability to uncover governing equations from nonlinear dynamic systems with limited and highly noisy data and outperform other physics-informed neural network-based discovery methods. This work opens new potential for exploring real-world systems with limited understanding.
♻ ☆ PAC-Chernoff Bounds: Understanding Generalization in the Interpolation Regime
This paper introduces a distribution-dependent PAC-Chernoff bound that exhibits perfect tightness for interpolators, even within over-parameterized model classes. This bound, which relies on basic principles of Large Deviation Theory, defines a natural measure of the smoothness of a model, characterized by simple real-valued functions. Building upon this bound and the new concept of smoothness, we present an unified theoretical framework revealing why certain interpolators show an exceptional generalization, while others falter. We theoretically show how a wide spectrum of modern learning methodologies, encompassing techniques such as $\ell_2$-norm, distance-from-initialization and input-gradient regularization, in combination with data augmentation, invariant architectures, and over-parameterization, collectively guide the optimizer toward smoother interpolators, which, according to our theoretical framework, are the ones exhibiting superior generalization performance. This study shows that distribution-dependent bounds serve as a powerful tool to understand the complex dynamics behind the generalization capabilities of over-parameterized interpolators.
comment: 56 pages, 11 figures, Pre-print
♻ ☆ PriSampler: Mitigating Property Inference of Diffusion Models
Diffusion models have been remarkably successful in data synthesis. However, when these models are applied to sensitive datasets, such as banking and human face data, they might bring up severe privacy concerns. This work systematically presents the first privacy study about property inference attacks against diffusion models, where adversaries aim to extract sensitive global properties of its training set from a diffusion model. Specifically, we focus on the most practical attack scenario: adversaries are restricted to accessing only synthetic data. Under this realistic scenario, we conduct a comprehensive evaluation of property inference attacks on various diffusion models trained on diverse data types, including tabular and image datasets. A broad range of evaluations reveals that diffusion models and their samplers are universally vulnerable to property inference attacks. In response, we propose a new model-agnostic plug-in method PriSampler to mitigate the risks of the property inference of diffusion models. PriSampler can be directly applied to well-trained diffusion models and support both stochastic and deterministic sampling. Extensive experiments illustrate the effectiveness of our defense, and it can lead adversaries to infer the proportion of properties as close as predefined values that model owners wish. Notably, PriSampler also shows its significantly superior performance to diffusion models trained with differential privacy on both model utility and defense performance. This work will elevate the awareness of preventing property inference attacks and encourage privacy-preserving synthetic data release.
♻ ☆ Neural-Symbolic Recursive Machine for Systematic Generalization ICLR 2024
Current learning models often struggle with human-like systematic generalization, particularly in learning compositional rules from limited data and extrapolating them to novel combinations. We introduce the Neural-Symbolic Recursive Machine (NSR), whose core is a Grounded Symbol System (GSS), allowing for the emergence of combinatorial syntax and semantics directly from training data. The NSR employs a modular design that integrates neural perception, syntactic parsing, and semantic reasoning. These components are synergistically trained through a novel deduction-abduction algorithm. Our findings demonstrate that NSR's design, imbued with the inductive biases of equivariance and compositionality, grants it the expressiveness to adeptly handle diverse sequence-to-sequence tasks and achieve unparalleled systematic generalization. We evaluate NSR's efficacy across four challenging benchmarks designed to probe systematic generalization capabilities: SCAN for semantic parsing, PCFG for string manipulation, HINT for arithmetic reasoning, and a compositional machine translation task. The results affirm NSR's superiority over contemporary neural and hybrid models in terms of generalization and transferability.
comment: ICLR 2024. Project website: https://liqing-ustc.github.io/NSR/
♻ ☆ Eigenpruning NAACL 2024
We introduce eigenpruning, a method that removes singular values from weight matrices in an LLM to improve its performance in a particular task. This method is inspired by interpretability methods designed to automatically find subnetworks of a model which solve a specific task. In our tests, the pruned model outperforms the original model by a large margin, while only requiring minimal computation to prune the weight matrices. In the case of a small synthetic task in integer multiplication, the Phi-2 model can improve its accuracy in the test set from 13.75% to 97.50%. Interestingly, these results seem to indicate the existence of a computation path that can solve the task very effectively, but it was not being used by the original model. Finally, we publicly release our implementation.
comment: Extended abstract accepted to LatinX at NAACL 2024
♻ ☆ On the Convergence of the ELBO to Entropy Sums
The variational lower bound (a.k.a. ELBO or free energy) is the central objective for many established as well as many novel algorithms for unsupervised learning. During learning such algorithms change model parameters to increase the variational lower bound. Learning usually proceeds until parameters have converged to values close to a stationary point of the learning dynamics. In this purely theoretical contribution, we show that (for a very large class of generative models) the variational lower bound is at all stationary points of learning equal to a sum of entropies. For standard machine learning models with one set of latents and one set of observed variables, the sum consists of three entropies: (A) the (average) entropy of the variational distributions, (B) the negative entropy of the model's prior distribution, and (C) the (expected) negative entropy of the observable distribution. The obtained result applies under realistic conditions including: finite numbers of data points, at any stationary point (including saddle points) and for any family of (well behaved) variational distributions. The class of generative models for which we show the equality to entropy sums contains many well-known generative models. As concrete examples we discuss Sigmoid Belief Networks, probabilistic PCA and (Gaussian and non-Gaussian) mixture models. The result also applies for standard (Gaussian) variational autoencoders, a special case that has been shown previously (Damm et al., 2023). The prerequisites we use to show equality to entropy sums are relatively mild. Concretely, the distributions of a given generative model have to be of the exponential family, and the model has to satisfy a parameterization criterion (which is usually fulfilled). Proving the equality of the ELBO to entropy sums at stationary points (under the stated conditions) is the main contribution of this work.
comment: 50 pages
♻ ☆ COCOLA: Coherence-Oriented Contrastive Learning of Musical Audio Representations
We present COCOLA (Coherence-Oriented Contrastive Learning for Audio), a contrastive learning method for musical audio representations that captures the harmonic and rhythmic coherence between samples. Our method operates at the level of stems (or their combinations) composing music tracks and allows the objective evaluation of compositional models for music in the task of accompaniment generation. We also introduce a new baseline for compositional music generation called CompoNet, based on ControlNet, generalizing the tasks of MSDM, and quantify it against the latter using COCOLA. We release all models trained on public datasets containing separate stems (MUSDB18-HQ, MoisesDB, Slakh2100, and CocoChorales).
comment: Demo page: https://github.com/gladia-research-group/cocola
♻ ☆ Learning epidemic trajectories through Kernel Operator Learning: from modelling to optimal control
Since infectious pathogens start spreading into a susceptible population, mathematical models can provide policy makers with reliable forecasts and scenario analyses, which can be concretely implemented or solely consulted. In these complex epidemiological scenarios, machine learning architectures can play an important role, since they directly reconstruct data-driven models circumventing the specific modelling choices and the parameter calibration, typical of classical compartmental models. In this work, we discuss the efficacy of Kernel Operator Learning (KOL) to reconstruct population dynamics during epidemic outbreaks, where the transmission rate is ruled by an input strategy. In particular, we introduce two surrogate models, named KOL-m and KOL-$\partial$, which reconstruct in two different ways the evolution of the epidemics. Moreover, we evaluate the generalization performances of the two approaches with different kernels, including the Neural Tangent Kernels, and compare them with a classical neural network model learning method. Employing synthetic but semi-realistic data, we show how the two introduced approaches are suitable for realizing fast and robust forecasts and scenario analyses, and how these approaches are competitive for determining optimal intervention strategies with respect to specific performance measures.
comment: 38 pages, 13 figures
♻ ☆ Multi-Agent Bandit Learning through Heterogeneous Action Erasure Channels
Multi-Armed Bandit (MAB) systems are witnessing an upswing in applications within multi-agent distributed environments, leading to the advancement of collaborative MAB algorithms. In such settings, communication between agents executing actions and the primary learner making decisions can hinder the learning process. A prevalent challenge in distributed learning is action erasure, often induced by communication delays and/or channel noise. This results in agents possibly not receiving the intended action from the learner, subsequently leading to misguided feedback. In this paper, we introduce novel algorithms that enable learners to interact concurrently with distributed agents across heterogeneous action erasure channels with different action erasure probabilities. We illustrate that, in contrast to existing bandit algorithms, which experience linear regret, our algorithms assure sub-linear regret guarantees. Our proposed solutions are founded on a meticulously crafted repetition protocol and scheduling of learning across heterogeneous channels. To our knowledge, these are the first algorithms capable of effectively learning through heterogeneous action erasure channels. We substantiate the superior performance of our algorithm through numerical experiments, emphasizing their practical significance in addressing issues related to communication constraints and delays in multi-agent environments.
♻ ☆ DTAAD: Dual Tcn-Attention Networks for Anomaly Detection in Multivariate Time Series Data
Anomaly detection techniques enable effective anomaly detection and diagnosis in multi-variate time series data, which are of major significance for today's industrial applications. However, establishing an anomaly detection system that can be rapidly and accurately located is a challenging problem due to the lack of anomaly labels, the high dimensional complexity of the data, memory bottlenecks in actual hardware, and the need for fast reasoning. In this paper, we propose an anomaly detection and diagnosis model, DTAAD, based on Transformer and Dual Temporal Convolutional Network (TCN). Our overall model is an integrated design in which an autoregressive model (AR) combines with an autoencoder (AE) structure. Scaling methods and feedback mechanisms are introduced to improve prediction accuracy and expand correlation differences. Constructed by us, the Dual TCN-Attention Network (DTA) uses only a single layer of Transformer encoder in our baseline experiment, belonging to an ultra-lightweight model. Our extensive experiments on seven public datasets validate that DTAAD exceeds the majority of currently advanced baseline methods in both detection and diagnostic performance. Specifically, DTAAD improved F1 scores by $8.38\%$ and reduced training time by $99\%$ compared to the baseline. The code and training scripts are publicly available on GitHub at https://github.com/Yu-Lingrui/DTAAD.
♻ ☆ Restructuring Graph for Higher Homophily via Adaptive Spectral Clustering AAAI 2023
While a growing body of literature has been studying new Graph Neural Networks (GNNs) that work on both homophilic and heterophilic graphs, little has been done on adapting classical GNNs to less-homophilic graphs. Although the ability to handle less-homophilic graphs is restricted, classical GNNs still stand out in several nice properties such as efficiency, simplicity, and explainability. In this work, we propose a novel graph restructuring method that can be integrated into any type of GNNs, including classical GNNs, to leverage the benefits of existing GNNs while alleviating their limitations. Our contribution is threefold: a) learning the weight of pseudo-eigenvectors for an adaptive spectral clustering that aligns well with known node labels, b) proposing a new density-aware homophilic metric that is robust to label imbalance, and c) reconstructing the adjacency matrix based on the result of adaptive spectral clustering to maximize the homophilic scores. The experimental results show that our graph restructuring method can significantly boost the performance of six classical GNNs by an average of 25% on less-homophilic graphs. The boosted performance is comparable to state-of-the-art methods.
comment: 13 pages, 9 figures, AAAI 2023
♻ ☆ Robust Neural Pruning with Gradient Sampling Optimization for Residual Neural Networks
This research embarks on pioneering the integration of gradient sampling optimization techniques, particularly StochGradAdam, into the pruning process of neural networks. Our main objective is to address the significant challenge of maintaining accuracy in pruned neural models, critical in resource-constrained scenarios. Through extensive experimentation, we demonstrate that gradient sampling significantly preserves accuracy during and after the pruning process compared to traditional optimization methods. Our study highlights the pivotal role of gradient sampling in robust learning and maintaining crucial information post substantial model simplification. The results across CIFAR-10 datasets and residual neural architectures validate the versatility and effectiveness of our approach. This work presents a promising direction for developing efficient neural networks without compromising performance, even in environments with limited computational resources.
♻ ☆ Agglomerative Federated Learning: Empowering Larger Model Training via End-Edge-Cloud Collaboration
Federated Learning (FL) enables training Artificial Intelligence (AI) models over end devices without compromising their privacy. As computing tasks are increasingly performed by a combination of cloud, edge, and end devices, FL can benefit from this End-Edge-Cloud Collaboration (EECC) paradigm to achieve collaborative device-scale expansion with real-time access. Although Hierarchical Federated Learning (HFL) supports multi-tier model aggregation suitable for EECC, prior works assume the same model structure on all computing nodes, constraining the model scale by the weakest end devices. To address this issue, we propose Agglomerative Federated Learning (FedAgg), which is a novel EECC-empowered FL framework that allows the trained models from end, edge, to cloud to grow larger in size and stronger in generalization ability. FedAgg recursively organizes computing nodes among all tiers based on Bridge Sample Based Online Distillation Protocol (BSBODP), which enables every pair of parent-child computing nodes to mutually transfer and distill knowledge extracted from generated bridge samples. This design enhances the performance by exploiting the potential of larger models, with privacy constraints of FL and flexibility requirements of EECC both satisfied. Experiments under various settings demonstrate that FedAgg outperforms state-of-the-art methods by an average of 4.53\% accuracy gains and remarkable improvements in convergence rate.
comment: Accepted by IEEE International Conference on Computer Communications (INFOCOM), 2024
♻ ☆ Neyman-Pearson Multi-class Classification via Cost-sensitive Learning
Most existing classification methods aim to minimize the overall misclassification error rate. However, in applications such as loan default prediction, different types of errors can have varying consequences. To address this asymmetry issue, two popular paradigms have been developed: the Neyman-Pearson (NP) paradigm and the cost-sensitive (CS) paradigm. Previous studies on the NP paradigm have primarily focused on the binary case, while the multi-class NP problem poses a greater challenge due to its unknown feasibility. In this work, we tackle the multi-class NP problem by establishing a connection with the CS problem via strong duality and propose two algorithms. We extend the concept of NP oracle inequalities, crucial in binary classifications, to NP oracle properties in the multi-class context. Our algorithms satisfy these NP oracle properties under certain conditions. Furthermore, we develop practical algorithms to assess the feasibility and strong duality in multi-class NP problems, which can offer practitioners the landscape of a multi-class NP problem with various target error levels. Simulations and real data studies validate the effectiveness of our algorithms. To our knowledge, this is the first study to address the multi-class NP problem with theoretical guarantees. The proposed algorithms have been implemented in the R package \texttt{npcs}, which is available on CRAN.
comment: 117 pages, 18 figures
♻ ☆ WiTUnet: A U-Shaped Architecture Integrating CNN and Transformer for Improved Feature Alignment and Local Information Fusion
Low-dose computed tomography (LDCT) has become the technology of choice for diagnostic medical imaging, given its lower radiation dose compared to standard CT, despite increasing image noise and potentially affecting diagnostic accuracy. To address this, advanced deep learning-based LDCT denoising algorithms have been developed, primarily using Convolutional Neural Networks (CNNs) or Transformer Networks with the Unet architecture. This architecture enhances image detail by integrating feature maps from the encoder and decoder via skip connections. However, current methods often overlook enhancements to the Unet architecture itself, focusing instead on optimizing encoder and decoder structures. This approach can be problematic due to the significant differences in feature map characteristics between the encoder and decoder, where simple fusion strategies may not effectively reconstruct images.In this paper, we introduce WiTUnet, a novel LDCT image denoising method that utilizes nested, dense skip pathways instead of traditional skip connections to improve feature integration. WiTUnet also incorporates a windowed Transformer structure to process images in smaller, non-overlapping segments, reducing computational load. Additionally, the integration of a Local Image Perception Enhancement (LiPe) module in both the encoder and decoder replaces the standard multi-layer perceptron (MLP) in Transformers, enhancing local feature capture and representation. Through extensive experimental comparisons, WiTUnet has demonstrated superior performance over existing methods in key metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), and Root Mean Square Error (RMSE), significantly improving noise removal and image quality.
♻ ☆ Instant3D: Instant Text-to-3D Generation
Text-to-3D generation has attracted much attention from the computer vision community. Existing methods mainly optimize a neural field from scratch for each text prompt, relying on heavy and repetitive training cost which impedes their practical deployment. In this paper, we propose a novel framework for fast text-to-3D generation, dubbed Instant3D. Once trained, Instant3D is able to create a 3D object for an unseen text prompt in less than one second with a single run of a feedforward network. We achieve this remarkable speed by devising a new network that directly constructs a 3D triplane from a text prompt. The core innovation of our Instant3D lies in our exploration of strategies to effectively inject text conditions into the network. In particular, we propose to combine three key mechanisms: cross-attention, style injection, and token-to-plane transformation, which collectively ensure precise alignment of the output with the input text. Furthermore, we propose a simple yet effective activation function, the scaled-sigmoid, to replace the original sigmoid function, which speeds up the training convergence by more than ten times. Finally, to address the Janus (multi-head) problem in 3D generation, we propose an adaptive Perp-Neg algorithm that can dynamically adjust its concept negation scales according to the severity of the Janus problem during training, effectively reducing the multi-head effect. Extensive experiments on a wide variety of benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods both qualitatively and quantitatively, while achieving significantly better efficiency. The code, data, and models are available at https://github.com/ming1993li/Instant3DCodes.
comment: Project page: https://ming1993li.github.io/Instant3DProj
♻ ☆ Grounding Language Plans in Demonstrations Through Counterfactual Perturbations ICLR 2024
Grounding the common-sense reasoning of Large Language Models (LLMs) in physical domains remains a pivotal yet unsolved problem for embodied AI. Whereas prior works have focused on leveraging LLMs directly for planning in symbolic spaces, this work uses LLMs to guide the search of task structures and constraints implicit in multi-step demonstrations. Specifically, we borrow from manipulation planning literature the concept of mode families, which group robot configurations by specific motion constraints, to serve as an abstraction layer between the high-level language representations of an LLM and the low-level physical trajectories of a robot. By replaying a few human demonstrations with synthetic perturbations, we generate coverage over the demonstrations' state space with additional successful executions as well as counterfactuals that fail the task. Our explanation-based learning framework trains an end-to-end differentiable neural network to predict successful trajectories from failures and as a by-product learns classifiers that ground low-level states and images in mode families without dense labeling. The learned grounding classifiers can further be used to translate language plans into reactive policies in the physical domain in an interpretable manner. We show our approach improves the interpretability and reactivity of imitation learning through 2D navigation and simulated and real robot manipulation tasks. Website: https://yanweiw.github.io/glide
comment: ICLR 2024 Spotlight
♻ ☆ SynCode: LLM Generation with Grammar Augmentation
LLMs are widely used in complex AI applications. These applications underscore the need for LLM outputs to adhere to a specific format, for their integration with other components in the systems. Typically the format rules e.g., for data serialization formats such as JSON, YAML, or Code in Programming Language are expressed as context-free grammar (CFG). Due to the hallucinations and unreliability of LLMs, instructing LLMs to adhere to specified syntax becomes an increasingly important challenge. We present SynCode, a novel framework for efficient and general syntactical decoding with LLMs, to address this challenge. SynCode leverages the CFG of a formal language, utilizing an offline-constructed efficient lookup table called DFA mask store based on the discrete finite automaton (DFA) of the language grammar terminals. We demonstrate SynCode's soundness and completeness given the CFG of the formal language, presenting its ability to retain syntactically valid tokens while rejecting invalid ones. SynCode seamlessly integrates with any language defined by CFG, as evidenced by experiments focusing on generating JSON, Python, and Go outputs. Our experiments evaluating the effectiveness of SynCode for JSON generation demonstrate that SynCode eliminates all syntax errors and significantly outperforms state-of-the-art baselines. Furthermore, our results underscore how SynCode significantly reduces 96.07% of syntax errors in generated Python and Go code, showcasing its substantial impact on enhancing syntactical precision in LLM generation. Our code is available at https://github.com/uiuc-focal-lab/syncode
♻ ☆ Pruning for Protection: Increasing Jailbreak Resistance in Aligned LLMs Without Fine-Tuning
Large Language Models (LLMs) are susceptible to `jailbreaking' prompts, which can induce the generation of harmful content. This paper demonstrates that moderate WANDA pruning (Sun et al., 2023) can increase their resistance to such attacks without the need for fine-tuning, while maintaining performance on standard benchmarks. Our findings suggest that the benefits of pruning correlate with the initial safety levels of the model, indicating a regularizing effect of WANDA pruning. We introduce a dataset of 225 harmful tasks across five categories to systematically evaluate this safety enhancement. We argue that safety improvements can be understood through a regularization perspective. First, we show that pruning helps LLMs focus more effectively on task-relevant tokens within jailbreaking prompts. Then, we analyze the effects of pruning on the perplexity of malicious prompts before and after their integration into jailbreak templates. Finally, we demonstrate statistically significant performance improvements under domain shifts when applying WANDA to linear models.
♻ ☆ Unified Algorithms for RL with Decision-Estimation Coefficients: PAC, Reward-Free, Preference-Based Learning, and Beyond
Modern Reinforcement Learning (RL) is more than just learning the optimal policy; Alternative learning goals such as exploring the environment, estimating the underlying model, and learning from preference feedback are all of practical importance. While provably sample-efficient algorithms for each specific goal have been proposed, these algorithms often depend strongly on the particular learning goal and thus admit different structures correspondingly. It is an urging open question whether these learning goals can rather be tackled by a single unified algorithm. We make progress on this question by developing a unified algorithm framework for a large class of learning goals, building on the Decision-Estimation Coefficient (DEC) framework. Our framework handles many learning goals such as no-regret RL, PAC RL, reward-free learning, model estimation, and preference-based learning, all by simply instantiating the same generic complexity measure called "Generalized DEC", and a corresponding generic algorithm. The generalized DEC also yields a sample complexity lower bound for each specific learning goal. As applications, we propose "decouplable representation" as a natural sufficient condition for bounding generalized DECs, and use it to obtain many new sample-efficient results (and recover existing results) for a wide range of learning goals and problem classes as direct corollaries. Finally, as a connection, we re-analyze two existing optimistic model-based algorithms based on Posterior Sampling and Maximum Likelihood Estimation, showing that they enjoy sample complexity bounds under similar structural conditions as the DEC.
♻ ☆ The ODE Method for Stochastic Approximation and Reinforcement Learning with Markovian Noise
Stochastic approximation is a class of algorithms that update a vector iteratively, incrementally, and stochastically, including, e.g., stochastic gradient descent and temporal difference learning. One fundamental challenge in analyzing a stochastic approximation algorithm is to establish its stability, i.e., to show that the stochastic vector iterates are bounded almost surely. In this paper, we extend the celebrated Borkar-Meyn theorem for stability from the Martingale difference noise setting to the Markovian noise setting, which greatly improves its applicability in reinforcement learning, especially in those off-policy reinforcement learning algorithms with linear function approximation and eligibility traces. Central to our analysis is the diminishing asymptotic rate of change of a few functions, which is implied by both a form of strong law of large numbers and a commonly used V4 Lyapunov drift condition and trivially holds if the Markov chain is finite and irreducible.
♻ ☆ Improved generalization with deep neural operators for engineering systems: Path towards digital twin
Neural Operator Networks (ONets) represent a novel advancement in machine learning algorithms, offering a robust and generalizable alternative for approximating partial differential equations (PDEs) solutions. Unlike traditional Neural Networks (NN), which directly approximate functions, ONets specialize in approximating mathematical operators, enhancing their efficacy in addressing complex PDEs. In this work, we evaluate the capabilities of Deep Operator Networks (DeepONets), an ONets implementation using a branch/trunk architecture. Three test cases are studied: a system of ODEs, a general diffusion system, and the convection/diffusion Burgers equation. It is demonstrated that DeepONets can accurately learn the solution operators, achieving prediction accuracy scores above 0.96 for the ODE and diffusion problems over the observed domain while achieving zero shot (without retraining) capability. More importantly, when evaluated on unseen scenarios (zero shot feature), the trained models exhibit excellent generalization ability. This underscores ONets vital niche for surrogate modeling and digital twin development across physical systems. While convection-diffusion poses a greater challenge, the results confirm the promise of ONets and motivate further enhancements to the DeepONet algorithm. This work represents an important step towards unlocking the potential of digital twins through robust and generalizable surrogates.
♻ ☆ MER 2024: Semi-Supervised Learning, Noise Robustness, and Open-Vocabulary Multimodal Emotion Recognition
Multimodal emotion recognition is an important research topic in artificial intelligence. Over the past few decades, researchers have made remarkable progress by increasing dataset size and building more effective architectures. However, due to various reasons (such as complex environments and inaccurate labels), current systems still cannot meet the demands of practical applications. Therefore, we plan to organize a series of challenges around emotion recognition to further promote the development of this field. Last year, we launched MER2023, focusing on three topics: multi-label learning, noise robustness, and semi-supervised learning. This year, we continue to organize MER2024. In addition to expanding the dataset size, we introduce a new track around open-vocabulary emotion recognition. The main consideration for this track is that existing datasets often fix the label space and use majority voting to enhance annotator consistency, but this process may limit the model's ability to describe subtle emotions. In this track, we encourage participants to generate any number of labels in any category, aiming to describe the emotional state as accurately as possible. Our baseline is based on MERTools and the code is available at: https://github.com/zeroQiaoba/MERTools/tree/master/MER2024.
♻ ☆ TransformerFAM: Feedback attention is working memory
While Transformers have revolutionized deep learning, their quadratic attention complexity hinders their ability to process infinitely long inputs. We propose Feedback Attention Memory (FAM), a novel Transformer architecture that leverages a feedback loop to enable the network to attend to its own latent representations. This design fosters the emergence of working memory within the Transformer, allowing it to process indefinitely long sequences. TransformerFAM requires no additional weights, enabling seamless integration with pre-trained models. Our experiments show that TransformerFAM significantly improves Transformer performance on long-context tasks across various model sizes (1B, 8B, and 24B). These results showcase the potential to empower Large Language Models (LLMs) to process sequences of unlimited length.
comment: 24 pages, 12 figures, 14 tables
♻ ☆ On Achieving Optimal Adversarial Test Error ICLR 2023
We first elucidate various fundamental properties of optimal adversarial predictors: the structure of optimal adversarial convex predictors in terms of optimal adversarial zero-one predictors, bounds relating the adversarial convex loss to the adversarial zero-one loss, and the fact that continuous predictors can get arbitrarily close to the optimal adversarial error for both convex and zero-one losses. Applying these results along with new Rademacher complexity bounds for adversarial training near initialization, we prove that for general data distributions and perturbation sets, adversarial training on shallow networks with early stopping and an idealized optimal adversary is able to achieve optimal adversarial test error. By contrast, prior theoretical work either considered specialized data distributions or only provided training error guarantees.
comment: ICLR 2023; bugs fixed
♻ ☆ Rethinking the Role of Proxy Rewards in Language Model Alignment
Learning from human feedback via proxy reward modeling has been studied to align Large Language Models (LLMs) with human values. However, achieving reliable training through that proxy reward model (RM) is not a trivial problem, and its behavior remained as a black-box. In this paper, we study the role of proxy rewards in the LLM alignment via `reverse reward engineering' by composing interpretable features as a white-box reward function. We aim to replicate the ground truth (gold) reward signal by achieving a monotonic relationship between the proxy and gold reward signals after training the model using the proxy reward in reinforcement learning (RL). Our findings indicate that successfully emulating the gold reward requires generating responses that are relevant with enough length to open-ended questions, while also ensuring response consistency in closed-ended questions. Furthermore, resulting models optimizing our devised white-box reward show competitive performances with strong open-source RMs in alignment benchmarks. We highlight its potential usage as a simple but strong reward baseline for the LLM alignment, not requiring explicit human feedback dataset and RM training. Our code is available at https://github.com/naver-ai/rethinking-proxy-reward.
comment: Under review; Preprint
♻ ☆ Causal Feature Engineering of Price Directions of Cryptocurrencies using Dynamic Bayesian Networks
Cryptocurrencies have gained popularity across various sectors, especially in finance and investment. The popularity is partly due to their unique specifications originating from blockchain-related characteristics such as privacy, decentralisation, and untraceability. Despite their growing popularity, cryptocurrencies remain a high-risk investment due to their price volatility and uncertainty. The inherent volatility in cryptocurrency prices, coupled with internal cryptocurrency-related factors and external influential global economic factors makes predicting their prices and price movement directions challenging. Nevertheless, the knowledge obtained from predicting the direction of cryptocurrency prices can provide valuable guidance for investors in making informed investment decisions. To address this issue, this paper proposes a dynamic Bayesian network (DBN) approach, which can model complex systems in multivariate settings, to predict the price movement direction of five popular altcoins (cryptocurrencies other than Bitcoin) in the next trading day. The efficacy of the proposed model in predicting cryptocurrency price directions is evaluated from two perspectives. Firstly, our proposed approach is compared to two baseline models, namely an auto-regressive integrated moving average and support vector regression. Secondly, from a feature engineering point of view, the impact of twenty-three different features, grouped into four categories, on the DBN's prediction performance is investigated. The experimental results demonstrate that the DBN significantly outperforms the baseline models. In addition, among the groups of features, technical indicators are found to be the most effective predictors of cryptocurrency price directions.
comment: 32 pages, 8 figures, 6 tables
♻ ☆ Explaining Neural Scaling Laws
The population loss of trained deep neural networks often follows precise power-law scaling relations with either the size of the training dataset or the number of parameters in the network. We propose a theory that explains the origins of and connects these scaling laws. We identify variance-limited and resolution-limited scaling behavior for both dataset and model size, for a total of four scaling regimes. The variance-limited scaling follows simply from the existence of a well-behaved infinite data or infinite width limit, while the resolution-limited regime can be explained by positing that models are effectively resolving a smooth data manifold. In the large width limit, this can be equivalently obtained from the spectrum of certain kernels, and we present evidence that large width and large dataset resolution-limited scaling exponents are related by a duality. We exhibit all four scaling regimes in the controlled setting of large random feature and pretrained models and test the predictions empirically on a range of standard architectures and datasets. We also observe several empirical relationships between datasets and scaling exponents under modifications of task and architecture aspect ratio. Our work provides a taxonomy for classifying different scaling regimes, underscores that there can be different mechanisms driving improvements in loss, and lends insight into the microscopic origins of and relationships between scaling exponents.
comment: 11 pages, 3 figures + Supplement (expanded). This version to appear in PNAS
♻ ☆ Differential Private Federated Transfer Learning for Mental Health Monitoring in Everyday Settings: A Case Study on Stress Detection
Mental health conditions, prevalent across various demographics, necessitate efficient monitoring to mitigate their adverse impacts on life quality. The surge in data-driven methodologies for mental health monitoring has underscored the importance of privacy-preserving techniques in handling sensitive health data. Despite strides in federated learning for mental health monitoring, existing approaches struggle with vulnerabilities to certain cyber-attacks and data insufficiency in real-world applications. In this paper, we introduce a differential private federated transfer learning framework for mental health monitoring to enhance data privacy and enrich data sufficiency. To accomplish this, we integrate federated learning with two pivotal elements: (1) differential privacy, achieved by introducing noise into the updates, and (2) transfer learning, employing a pre-trained universal model to adeptly address issues of data imbalance and insufficiency. We evaluate the framework by a case study on stress detection, employing a dataset of physiological and contextual data from a longitudinal study. Our finding show that the proposed approach can attain a 10% boost in accuracy and a 21% enhancement in recall, while ensuring privacy protection.
comment: 5 pages, 2 figures
♻ ☆ The Essential Role of Causality in Foundation World Models for Embodied AI
Recent advances in foundation models, especially in large multi-modal models and conversational agents, have ignited interest in the potential of generally capable embodied agents. Such agents will require the ability to perform new tasks in many different real-world environments. However, current foundation models fail to accurately model physical interactions and are therefore insufficient for Embodied AI. The study of causality lends itself to the construction of veridical world models, which are crucial for accurately predicting the outcomes of possible interactions. This paper focuses on the prospects of building foundation world models for the upcoming generation of embodied agents and presents a novel viewpoint on the significance of causality within these. We posit that integrating causal considerations is vital to facilitating meaningful physical interactions with the world. Finally, we demystify misconceptions about causality in this context and present our outlook for future research.
♻ ☆ Is Model Collapse Inevitable? Breaking the Curse of Recursion by Accumulating Real and Synthetic Data
The proliferation of generative models, combined with pretraining on web-scale data, raises a timely question: what happens when these models are trained on their own generated outputs? Recent investigations into model-data feedback loops proposed that such loops would lead to a phenomenon termed model collapse, under which performance progressively degrades with each model-data feedback iteration until fitted models become useless. However, those studies largely assumed that new data replace old data over time, where an arguably more realistic assumption is that data accumulate over time. In this paper, we ask: what effect does accumulating data have on model collapse? We empirically study this question by pretraining sequences of language models on text corpora. We confirm that replacing the original real data by each generation's synthetic data does indeed tend towards model collapse, then demonstrate that accumulating the successive generations of synthetic data alongside the original real data avoids model collapse; these results hold across a range of model sizes, architectures, and hyperparameters. We obtain similar results for deep generative models on other types of real data: diffusion models for molecule conformation generation and variational autoencoders for image generation. To understand why accumulating data can avoid model collapse, we use an analytically tractable framework introduced by prior work in which a sequence of linear models are fit to the previous models' outputs. Previous work used this framework to show that if data are replaced, the test error increases with the number of model-fitting iterations; we extend this argument to prove that if data instead accumulate, the test error has a finite upper bound independent of the number of iterations, meaning model collapse no longer occurs.
♻ ☆ Using Skew to Assess the Quality of GAN-generated Image Features
The rapid advancement of Generative Adversarial Networks (GANs) necessitates the need to robustly evaluate these models. Among the established evaluation criteria, the Fr\'{e}chetInception Distance (FID) has been widely adopted due to its conceptual simplicity, fast computation time, and strong correlation with human perception. However, FID has inherent limitations, mainly stemming from its assumption that feature embeddings follow a Gaussian distribution, and therefore can be defined by their first two moments. As this does not hold in practice, in this paper we explore the importance of third-moments in image feature data and use this information to define a new measure, which we call the Skew Inception Distance (SID). We prove that SID is a pseudometric on probability distributions, show how it extends FID, and present a practical method for its computation. Our numerical experiments support that SID either tracks with FID or, in some cases, aligns more closely with human perception when evaluating image features of ImageNet data. Our work also shows that principal component analysis can be used to speed up the computation time of both FID and SID. Although we focus on using SID on image features for GAN evaluation, SID is applicable much more generally, including for the evaluation of other generative models.
♻ ☆ History repeats Itself: A Baseline for Temporal Knowledge Graph Forecasting IJCAI 2024
Temporal Knowledge Graph (TKG) Forecasting aims at predicting links in Knowledge Graphs for future timesteps based on a history of Knowledge Graphs. To this day, standardized evaluation protocols and rigorous comparison across TKG models are available, but the importance of simple baselines is often neglected in the evaluation, which prevents researchers from discerning actual and fictitious progress. We propose to close this gap by designing an intuitive baseline for TKG Forecasting based on predicting recurring facts. Compared to most TKG models, it requires little hyperparameter tuning and no iterative training. Further, it can help to identify failure modes in existing approaches. The empirical findings are quite unexpected: compared to 11 methods on five datasets, our baseline ranks first or third in three of them, painting a radically different picture of the predictive quality of the state of the art.
comment: Accepted at IJCAI 2024
♻ ☆ Tao: Re-Thinking DL-based Microarchitecture Simulation
Microarchitecture simulators are indispensable tools for microarchitecture designers to validate, estimate, and optimize new hardware that meets specific design requirements. While the quest for a fast, accurate and detailed microarchitecture simulation has been ongoing for decades, existing simulators excel and fall short at different aspects: (i) Although execution-driven simulation is accurate and detailed, it is extremely slow and requires expert-level experience to design. (ii) Trace-driven simulation reuses the execution traces in pursuit of fast simulation but faces accuracy concerns and fails to achieve significant speedup. (iii) Emerging deep learning (DL)-based simulations are remarkably fast and have acceptable accuracy but fail to provide adequate low-level microarchitectural performance metrics crucial for microarchitectural bottleneck analysis. Additionally, they introduce substantial overheads from trace regeneration and model re-training when simulating a new microarchitecture. Re-thinking the advantages and limitations of the aforementioned simulation paradigms, this paper introduces TAO that redesigns the DL-based simulation with three primary contributions: First, we propose a new training dataset design such that the subsequent simulation only needs functional trace as inputs, which can be rapidly generated and reused across microarchitectures. Second, we redesign the input features and the DL model using self-attention to support predicting various performance metrics. Third, we propose techniques to train a microarchitecture agnostic embedding layer that enables fast transfer learning between different microarchitectural configurations and reduces the re-training overhead of conventional DL-based simulators. Our extensive evaluation shows TAO can reduce the overall training and simulation time by 18.06x over the state-of-the-art DL-based endeavors.
comment: Published in POMACS and SIGMETRICS'24
♻ ☆ Effective and Efficient Federated Tree Learning on Hybrid Data
Federated learning has emerged as a promising distributed learning paradigm that facilitates collaborative learning among multiple parties without transferring raw data. However, most existing federated learning studies focus on either horizontal or vertical data settings, where the data of different parties are assumed to be from the same feature or sample space. In practice, a common scenario is the hybrid data setting, where data from different parties may differ both in the features and samples. To address this, we propose HybridTree, a novel federated learning approach that enables federated tree learning on hybrid data. We observe the existence of consistent split rules in trees. With the help of these split rules, we theoretically show that the knowledge of parties can be incorporated into the lower layers of a tree. Based on our theoretical analysis, we propose a layer-level solution that does not need frequent communication traffic to train a tree. Our experiments demonstrate that HybridTree can achieve comparable accuracy to the centralized setting with low computational and communication overhead. HybridTree can achieve up to 8 times speedup compared with the other baselines.
♻ ☆ Any-dimensional equivariant neural networks
Traditional supervised learning aims to learn an unknown mapping by fitting a function to a set of input-output pairs with a fixed dimension. The fitted function is then defined on inputs of the same dimension. However, in many settings, the unknown mapping takes inputs in any dimension; examples include graph parameters defined on graphs of any size and physics quantities defined on an arbitrary number of particles. We leverage a newly-discovered phenomenon in algebraic topology, called representation stability, to define equivariant neural networks that can be trained with data in a fixed dimension and then extended to accept inputs in any dimension. Our approach is user-friendly, requiring only the network architecture and the groups for equivariance, and can be combined with any training procedure. We provide a simple open-source implementation of our methods and offer preliminary numerical experiments.
comment: 21 pages, 2 figures
♻ ☆ Synthetic Data Generation and Joint Learning for Robust Code-Mixed Translation LREC
The widespread online communication in a modern multilingual world has provided opportunities to blend more than one language (aka code-mixed language) in a single utterance. This has resulted a formidable challenge for the computational models due to the scarcity of annotated data and presence of noise. A potential solution to mitigate the data scarcity problem in low-resource setup is to leverage existing data in resource-rich language through translation. In this paper, we tackle the problem of code-mixed (Hinglish and Bengalish) to English machine translation. First, we synthetically develop HINMIX, a parallel corpus of Hinglish to English, with ~4.2M sentence pairs. Subsequently, we propose RCMT, a robust perturbation based joint-training model that learns to handle noise in the real-world code-mixed text by parameter sharing across clean and noisy words. Further, we show the adaptability of RCMT in a zero-shot setup for Bengalish to English translation. Our evaluation and comprehensive analyses qualitatively and quantitatively demonstrate the superiority of RCMT over state-of-the-art code-mixed and robust translation methods.
comment: 9 pages, 2 figures, to be published in LREC-COLING 2024
♻ ☆ Scalable Multi-modal Model Predictive Control via Duality-based Interaction Predictions
We propose a hierarchical architecture designed for scalable real-time Model Predictive Control (MPC) in complex, multi-modal traffic scenarios. This architecture comprises two key components: 1) RAID-Net, a novel attention-based Recurrent Neural Network that predicts relevant interactions along the MPC prediction horizon between the autonomous vehicle and the surrounding vehicles using Lagrangian duality, and 2) a reduced Stochastic MPC problem that eliminates irrelevant collision avoidance constraints, enhancing computational efficiency. Our approach is demonstrated in a simulated traffic intersection with interactive surrounding vehicles, showcasing a 12x speed-up in solving the motion planning problem. A video demonstrating the proposed architecture in multiple complex traffic scenarios can be found here: https://youtu.be/-pRiOnPb9_c. GitHub: https://github.com/MPC-Berkeley/hmpc_raidnet
comment: Accepted at IEEE Intelligent Vehicles Symposium 2024
♻ ☆ On TinyML and Cybersecurity: Electric Vehicle Charging Infrastructure Use Case
As technology advances, the use of Machine Learning (ML) in cybersecurity is becoming increasingly crucial to tackle the growing complexity of cyber threats. While traditional ML models can enhance cybersecurity, their high energy and resource demands limit their applications, leading to the emergence of Tiny Machine Learning (TinyML) as a more suitable solution for resource-constrained environments. TinyML is widely applied in areas such as smart homes, healthcare, and industrial automation. TinyML focuses on optimizing ML algorithms for small, low-power devices, enabling intelligent data processing directly on edge devices. This paper provides a comprehensive review of common challenges of TinyML techniques, such as power consumption, limited memory, and computational constraints; it also explores potential solutions to these challenges, such as energy harvesting, computational optimization techniques, and transfer learning for privacy preservation. On the other hand, this paper discusses TinyML's applications in advancing cybersecurity for Electric Vehicle Charging Infrastructures (EVCIs) as a representative use case. It presents an experimental case study that enhances cybersecurity in EVCI using TinyML, evaluated against traditional ML in terms of reduced delay and memory usage, with a slight trade-off in accuracy. Additionally, the study includes a practical setup using the ESP32 microcontroller in the PlatformIO environment, which provides a hands-on assessment of TinyML's application in cybersecurity for EVCI.
comment: Submitted to IEEE Access; Code is available at GitHub link: https://github.com/Western-OC2-Lab/TinyML_EVCI
♻ ☆ Constraint-Conditioned Policy Optimization for Versatile Safe Reinforcement Learning
Safe reinforcement learning (RL) focuses on training reward-maximizing agents subject to pre-defined safety constraints. Yet, learning versatile safe policies that can adapt to varying safety constraint requirements during deployment without retraining remains a largely unexplored and challenging area. In this work, we formulate the versatile safe RL problem and consider two primary requirements: training efficiency and zero-shot adaptation capability. To address them, we introduce the Conditioned Constrained Policy Optimization (CCPO) framework, consisting of two key modules: (1) Versatile Value Estimation (VVE) for approximating value functions under unseen threshold conditions, and (2) Conditioned Variational Inference (CVI) for encoding arbitrary constraint thresholds during policy optimization. Our extensive experiments demonstrate that CCPO outperforms the baselines in terms of safety and task performance while preserving zero-shot adaptation capabilities to different constraint thresholds data-efficiently. This makes our approach suitable for real-world dynamic applications.
♻ ☆ QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations
Deep Neural Networks (DNNs) stand out as one of the most prominent approaches within the Machine Learning (ML) domain. The efficacy of DNNs has surged alongside recent increases in computational capacity, allowing these approaches to scale to significant complexities for addressing predictive challenges in big data. However, as the complexity of DNN models rises, interpretability diminishes. In response to this challenge, explainable models such as Adversarial Gradient Integration (AGI) leverage path-based gradients provided by DNNs to elucidate their decisions. Yet the performance of path-based explainers can be compromised when gradients exhibit irregularities during out-of-distribution path traversal. In this context, we introduce Quantified Uncertainty Counterfactual Explanations (QUCE), a method designed to mitigate out-of-distribution traversal by minimizing path uncertainty. QUCE not only quantifies uncertainty when presenting explanations but also generates more certain counterfactual examples. We showcase the performance of the QUCE method by comparing it with competing methods for both path-based explanations and generative counterfactual examples.
Multimedia 6
☆ Enhancing Interactive Image Retrieval With Query Rewriting Using Large Language Models and Vision Language Models
Image search stands as a pivotal task in multimedia and computer vision, finding applications across diverse domains, ranging from internet search to medical diagnostics. Conventional image search systems operate by accepting textual or visual queries, retrieving the top-relevant candidate results from the database. However, prevalent methods often rely on single-turn procedures, introducing potential inaccuracies and limited recall. These methods also face the challenges, such as vocabulary mismatch and the semantic gap, constraining their overall effectiveness. To address these issues, we propose an interactive image retrieval system capable of refining queries based on user relevance feedback in a multi-turn setting. This system incorporates a vision language model (VLM) based image captioner to enhance the quality of text-based queries, resulting in more informative queries with each iteration. Moreover, we introduce a large language model (LLM) based denoiser to refine text-based query expansions, mitigating inaccuracies in image descriptions generated by captioning models. To evaluate our system, we curate a new dataset by adapting the MSR-VTT video retrieval dataset to the image retrieval task, offering multiple relevant ground truth images for each query. Through comprehensive experiments, we validate the effectiveness of our proposed system against baseline methods, achieving state-of-the-art performance with a notable 10\% improvement in terms of recall. Our contributions encompass the development of an innovative interactive image retrieval system, the integration of an LLM-based denoiser, the curation of a meticulously designed evaluation dataset, and thorough experimental validation.
☆ MM-TTS: A Unified Framework for Multimodal, Prompt-Induced Emotional Text-to-Speech Synthesis
Emotional Text-to-Speech (E-TTS) synthesis has gained significant attention in recent years due to its potential to enhance human-computer interaction. However, current E-TTS approaches often struggle to capture the complexity of human emotions, primarily relying on oversimplified emotional labels or single-modality inputs. To address these limitations, we propose the Multimodal Emotional Text-to-Speech System (MM-TTS), a unified framework that leverages emotional cues from multiple modalities to generate highly expressive and emotionally resonant speech. MM-TTS consists of two key components: (1) the Emotion Prompt Alignment Module (EP-Align), which employs contrastive learning to align emotional features across text, audio, and visual modalities, ensuring a coherent fusion of multimodal information; and (2) the Emotion Embedding-Induced TTS (EMI-TTS), which integrates the aligned emotional embeddings with state-of-the-art TTS models to synthesize speech that accurately reflects the intended emotions. Extensive evaluations across diverse datasets demonstrate the superior performance of MM-TTS compared to traditional E-TTS models. Objective metrics, including Word Error Rate (WER) and Character Error Rate (CER), show significant improvements on ESD dataset, with MM-TTS achieving scores of 7.35% and 3.07%, respectively. Subjective assessments further validate that MM-TTS generates speech with emotional fidelity and naturalness comparable to human speech. Our code and pre-trained models are publicly available at https://anonymous.4open.science/r/MMTTS-D214
☆ G-Refine: A General Quality Refiner for Text-to-Image Generation
With the evolution of Text-to-Image (T2I) models, the quality defects of AI-Generated Images (AIGIs) pose a significant barrier to their widespread adoption. In terms of both perception and alignment, existing models cannot always guarantee high-quality results. To mitigate this limitation, we introduce G-Refine, a general image quality refiner designed to enhance low-quality images without compromising the integrity of high-quality ones. The model is composed of three interconnected modules: a perception quality indicator, an alignment quality indicator, and a general quality enhancement module. Based on the mechanisms of the Human Visual System (HVS) and syntax trees, the first two indicators can respectively identify the perception and alignment deficiencies, and the last module can apply targeted quality enhancement accordingly. Extensive experimentation reveals that when compared to alternative optimization methods, AIGIs after G-Refine outperform in 10+ quality metrics across 4 databases. This improvement significantly contributes to the practical application of contemporary T2I models, paving the way for their broader adoption. The code will be released on https://github.com/Q-Future/Q-Refine.
Foundations of Multisensory Artificial Intelligence
Building multisensory AI systems that learn from multiple sensory inputs such as text, speech, video, real-world sensors, wearable devices, and medical data holds great promise for impact in many scientific areas with practical benefits, such as in supporting human health and well-being, enabling multimedia content processing, and enhancing real-world autonomous agents. By synthesizing a range of theoretical frameworks and application domains, this thesis aims to advance the machine learning foundations of multisensory AI. In the first part, we present a theoretical framework formalizing how modalities interact with each other to give rise to new information for a task. These interactions are the basic building blocks in all multimodal problems, and their quantification enables users to understand their multimodal datasets, design principled approaches to learn these interactions, and analyze whether their model has succeeded in learning. In the second part, we study the design of practical multimodal foundation models that generalize over many modalities and tasks, which presents a step toward grounding large language models to real-world sensory modalities. We introduce MultiBench, a unified large-scale benchmark across a wide range of modalities, tasks, and research areas, followed by the cross-modal attention and multimodal transformer architectures that now underpin many of today's multimodal foundation models. Scaling these architectures on MultiBench enables the creation of general-purpose multisensory AI systems, and we discuss our collaborative efforts in applying these models for real-world impact in affective computing, mental health, cancer prognosis, and robotics. Finally, we conclude this thesis by discussing how future work can leverage these ideas toward more general, interactive, and safe multisensory AI.
comment: CMU Machine Learning Department PhD Thesis
♻ ☆ Instant3D: Instant Text-to-3D Generation
Text-to-3D generation has attracted much attention from the computer vision community. Existing methods mainly optimize a neural field from scratch for each text prompt, relying on heavy and repetitive training cost which impedes their practical deployment. In this paper, we propose a novel framework for fast text-to-3D generation, dubbed Instant3D. Once trained, Instant3D is able to create a 3D object for an unseen text prompt in less than one second with a single run of a feedforward network. We achieve this remarkable speed by devising a new network that directly constructs a 3D triplane from a text prompt. The core innovation of our Instant3D lies in our exploration of strategies to effectively inject text conditions into the network. In particular, we propose to combine three key mechanisms: cross-attention, style injection, and token-to-plane transformation, which collectively ensure precise alignment of the output with the input text. Furthermore, we propose a simple yet effective activation function, the scaled-sigmoid, to replace the original sigmoid function, which speeds up the training convergence by more than ten times. Finally, to address the Janus (multi-head) problem in 3D generation, we propose an adaptive Perp-Neg algorithm that can dynamically adjust its concept negation scales according to the severity of the Janus problem during training, effectively reducing the multi-head effect. Extensive experiments on a wide variety of benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods both qualitatively and quantitatively, while achieving significantly better efficiency. The code, data, and models are available at https://github.com/ming1993li/Instant3DCodes.
comment: Project page: https://ming1993li.github.io/Instant3DProj
♻ ☆ Retrieval Augmented Verification: Unveiling Disinformation with Structured Representations for Zero-Shot Real-Time Evidence-guided Fact-Checking of Multi-modal Social media posts
Social Media posts, where real images are unscrupulously reused along with provocative text to promote a particular idea, have been one of the major sources of disinformation. By design, these claims are without editorial oversight and accessible to a vast population who otherwise may not have access to multiple information sources. This implies the need to fact-check these posts and clearly explain which parts of the posts are fake. In the supervised learning setup, this is often reduced to a binary classification problem, neglecting all intermediate stages. Further, these claims often involve recent events on which systems trained on historical data are prone to fail. In this work, we propose a zero-shot approach by retrieving real-time web-scraped evidence from multiple news websites and matching them with the claim text and image using pretrained language vision systems. We propose a graph structured representation, which a) allows us to gather evidence automatically and b) helps generate interpretable results by explicitly pointing out which parts of the claim can not be verified. Our zero-shot method, with improved interpretability, generates competitive results against the state-of-the-art methods
Performance 1
♻ ☆ Towards self-optimization of publish/subscribe IoT systems using continuous performance monitoring
Today, more and more embedded devices are being connected through a network, generally Internet, offering users different services. This concept refers to Internet of Things (IoT), bringing information and control capabilities in many fields like medicine, smart homes, home security, etc. Main drawbacks of IoT environment are its dependency on Internet connectivity and need continuous devices power. These dependencies may affect system performances, namely request processing response times. In this context, we propose in this paper a continuous performance monitoring methodology, applied on IoT systems based on Publish/subscribe communication model. Our approach assesses performances using Stochastic Petri net modeling, and self-optimizes whenever poor performances are detected. Our approach relies on a Stochastic Petri nets modelling and analysis to assess performances. We target improving performances, in particular response times, by online modification of influencing factors.
comment: 13 pages, 7 figures. Conference: 5th International Conference on Networks, Blockchain and Internet of Things (NBIoT 2024). Published by Computer Science Conference Proceedings in Computer Science & Information Technology (CS & IT)
Database 7
☆ LLMClean: Context-Aware Tabular Data Cleaning via LLM-Generated OFDs
Machine learning's influence is expanding rapidly, now integral to decision-making processes from corporate strategy to the advancements in Industry 4.0. The efficacy of Artificial Intelligence broadly hinges on the caliber of data used during its training phase; optimal performance is tied to exceptional data quality. Data cleaning tools, particularly those that exploit functional dependencies within ontological frameworks or context models, are instrumental in augmenting data quality. Nevertheless, crafting these context models is a demanding task, both in terms of resources and expertise, often necessitating specialized knowledge from domain experts. In light of these challenges, this paper introduces an innovative approach, called LLMClean, for the automated generation of context models, utilizing Large Language Models to analyze and understand various datasets. LLMClean encompasses a sequence of actions, starting with categorizing the dataset, extracting or mapping relevant models, and ultimately synthesizing the context model. To demonstrate its potential, we have developed and tested a prototype that applies our approach to three distinct datasets from the Internet of Things, healthcare, and Industry 4.0 sectors. The results of our evaluation indicate that our automated approach can achieve data cleaning efficacy comparable with that of context models crafted by human experts.
☆ Open-Source Drift Detection Tools in Action: Insights from Two Use Cases
Data drifts pose a critical challenge in the lifecycle of machine learning (ML) models, affecting their performance and reliability. In response to this challenge, we present a microbenchmark study, called D3Bench, which evaluates the efficacy of open-source drift detection tools. D3Bench examines the capabilities of Evidently AI, NannyML, and Alibi-Detect, leveraging real-world data from two smart building use cases.We prioritize assessing the functional suitability of these tools to identify and analyze data drifts. Furthermore, we consider a comprehensive set of non-functional criteria, such as the integrability with ML pipelines, the adaptability to diverse data types, user-friendliness, computational efficiency, and resource demands. Our findings reveal that Evidently AI stands out for its general data drift detection, whereas NannyML excels at pinpointing the precise timing of shifts and evaluating their consequent effects on predictive accuracy.
☆ Geospatial Big Data: Survey and Challenges
In recent years, geospatial big data (GBD) has obtained attention across various disciplines, categorized into big earth observation data and big human behavior data. Identifying geospatial patterns from GBD has been a vital research focus in the fields of urban management and environmental sustainability. This paper reviews the evolution of GBD mining and its integration with advanced artificial intelligence (AI) techniques. GBD consists of data generated by satellites, sensors, mobile devices, and geographical information systems, and we categorize geospatial data based on different perspectives. We outline the process of GBD mining and demonstrate how it can be incorporated into a unified framework. Additionally, we explore new technologies like large language models (LLM), the Metaverse, and knowledge graphs, and how they could make GBD even more useful. We also share examples of GBD helping with city management and protecting the environment. Finally, we discuss the real challenges that come up when working with GBD, such as issues with data retrieval and security. Our goal is to give readers a clear view of where GBD mining stands today and where it might go next.
comment: IEEE JSTARS. 14 pages, 5 figures
☆ SPECIAL: Synopsis Assisted Secure Collaborative Analytics
Secure collaborative analytics (SCA) enable the processing of analytical SQL queries across multiple owners' data, even when direct data sharing is not feasible. Although essential for strong privacy, the large overhead from data-oblivious primitives in traditional SCA has hindered its practical adoption. Recent SCA variants that permit controlled leakages under differential privacy (DP) show a better balance between privacy and efficiency. However, they still face significant challenges, such as potentially unbounded privacy loss, suboptimal query planning, and lossy processing. To address these challenges, we introduce SPECIAL, the first SCA system that simultaneously ensures bounded privacy loss, advanced query planning, and lossless processing. SPECIAL employs a novel synopsis-assisted secure processing model, where a one-time privacy cost is spent to acquire private synopses (table statistics) from owner data. These synopses then allow SPECIAL to estimate (compaction) sizes for secure operations (e.g., filter, join) and index encrypted data without extra privacy loss. Crucially, these estimates and indexes can be prepared before runtime, thereby facilitating efficient query planning and accurate cost estimations. Moreover, by using one-sided noise mechanisms and private upper bound techniques, SPECIAL ensures strict lossless processing for complex queries (e.g., multi-join). Through a comprehensive benchmark, we show that SPECIAL significantly outperforms cutting-edge SCAs, with up to 80X faster query times and over 900X smaller memory for complex queries. Moreover, it also achieves up to an 89X reduction in privacy loss under continual processing.
☆ Exploring Weighted Property Approaches for RDF Graph Similarity Measure
Measuring similarity between RDF graphs is essential for various applications, including knowledge discovery, semantic web analysis, and recommender systems. However, traditional similarity measures often treat all properties equally, potentially overlooking the varying importance of different properties in different contexts. Consequently, exploring weighted property approaches for RDF graph similarity measure presents an intriguing avenue for investigation. Therefore, in this paper, we propose a weighted property approach for RDF graph similarity measure to address this limitation. Our approach incorporates the relative importance of properties into the similarity calculation, enabling a more nuanced and context-aware measures of similarity. We evaluate our approach through a comprehensive experimental study on an RDF graph dataset in the vehicle domain. Our results demonstrate that the proposed approach achieves promising accuracy and effectively reflects the perceived similarity between RDF graphs.
♻ ☆ ProMoAI: Process Modeling with Generative AI
ProMoAI is a novel tool that leverages Large Language Models (LLMs) to automatically generate process models from textual descriptions, incorporating advanced prompt engineering, error handling, and code generation techniques. Beyond automating the generation of complex process models, ProMoAI also supports process model optimization. Users can interact with the tool by providing feedback on the generated model, which is then used for refining the process model. ProMoAI utilizes the capabilities LLMs to offer a novel, AI-driven approach to process modeling, significantly reducing the barrier to entry for users without deep technical knowledge in process modeling.
♻ ☆ Guidelines for the Creation of Analysis Ready Data
Globally, there is an increased need for guidelines to produce high-quality data outputs for analysis. No framework currently exists that provides guidelines for a comprehensive approach to producing analysis ready data (ARD). Through critically reviewing and summarising current literature, this paper proposes such guidelines for the creation of ARD. The guidelines proposed in this paper inform ten steps in the generation of ARD: ethics, project documentation, data governance, data management, data storage, data discovery and collection, data cleaning, quality assurance, metadata, and data dictionary. These steps are illustrated through a substantive case study that aimed to create ARD for a digital spatial platform: the Australian Child and Youth Wellbeing Atlas (ACYWA).
comment: 49 pages, 3 figures, 3 tables, and 5 appendices
Computation and Language 43
☆ Comparing LLM prompting with Cross-lingual transfer performance on Indigenous and Low-resource Brazilian Languages NAACL 2024
Large Language Models are transforming NLP for a variety of tasks. However, how LLMs perform NLP tasks for low-resource languages (LRLs) is less explored. In line with the goals of the AmeicasNLP workshop, we focus on 12 LRLs from Brazil, 2 LRLs from Africa and 2 high-resource languages (HRLs) (e.g., English and Brazilian Portuguese). Our results indicate that the LLMs perform worse for the part of speech (POS) labeling of LRLs in comparison to HRLs. We explain the reasons behind this failure and provide an error analyses through examples observed in our data set.
comment: Accepted to the Americas NLP Workshop at NAACL 2024 (https://turing.iimas.unam.mx/americasnlp/2024_workshop.html)
☆ Bias Neutralization Framework: Measuring Fairness in Large Language Models with Bias Intelligence Quotient (BiQ)
The burgeoning influence of Large Language Models (LLMs) in shaping public discourse and decision-making underscores the imperative to address inherent biases within these AI systems. In the wake of AI's expansive integration across sectors, addressing racial bias in LLMs has never been more critical. This paper introduces a novel framework called Comprehensive Bias Neutralization Framework (CBNF) which embodies an innovative approach to quantifying and mitigating biases within LLMs. Our framework combines the Large Language Model Bias Index (LLMBI) [Oketunji, A., Anas, M., Saina, D., (2023)] and Bias removaL with No Demographics (BLIND) [Orgad, H., Belinkov, Y. (2023)] methodologies to create a new metric called Bias Intelligence Quotient (BiQ)which detects, measures, and mitigates racial bias in LLMs without reliance on demographic annotations. By introducing a new metric called BiQ that enhances LLMBI with additional fairness metrics, CBNF offers a multi-dimensional metric for bias assessment, underscoring the necessity of a nuanced approach to fairness in AI [Mehrabi et al., 2021]. This paper presents a detailed analysis of Latimer AI (a language model incrementally trained on black history and culture) in comparison to ChatGPT 3.5, illustrating Latimer AI's efficacy in detecting racial, cultural, and gender biases through targeted training and refined bias mitigation strategies [Latimer & Bender, 2023].
comment: 41 pages
☆ Parameter-Efficient Tuning Large Language Models for Graph Representation Learning
Text-rich graphs, which exhibit rich textual information on nodes and edges, are prevalent across a wide range of real-world business applications. Large Language Models (LLMs) have demonstrated remarkable abilities in understanding text, which also introduced the potential for more expressive modeling in text-rich graphs. Despite these capabilities, efficiently applying LLMs to representation learning on graphs presents significant challenges. Recently, parameter-efficient fine-tuning methods for LLMs have enabled efficient new task generalization with minimal time and memory consumption. Inspired by this, we introduce Graph-aware Parameter-Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning with LLMs on text-rich graphs. Specifically, we utilize a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt. This prompt is then inserted at the beginning of the text sequence. To improve the quality of graph prompts, we pre-trained the GNN to assist the frozen LLM in predicting the next token in the node text. Compared with existing joint GNN and LMs, our method directly generate the node embeddings from large language models with an affordable fine-tuning cost. We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations. Our results demonstrate the efficacy and efficiency of our model, showing that it can be smoothly integrated with various large language models, including OPT, LLaMA and Falcon.
☆ Modeling Orthographic Variation Improves NLP Performance for Nigerian Pidgin LREC
Nigerian Pidgin is an English-derived contact language and is traditionally an oral language, spoken by approximately 100 million people. No orthographic standard has yet been adopted, and thus the few available Pidgin datasets that exist are characterised by noise in the form of orthographic variations. This contributes to under-performance of models in critical NLP tasks. The current work is the first to describe various types of orthographic variations commonly found in Nigerian Pidgin texts, and model this orthographic variation. The variations identified in the dataset form the basis of a phonetic-theoretic framework for word editing, which is used to generate orthographic variations to augment training data. We test the effect of this data augmentation on two critical NLP tasks: machine translation and sentiment analysis. The proposed variation generation framework augments the training data with new orthographic variants which are relevant for the test set but did not occur in the training set originally. Our results demonstrate the positive effect of augmenting the training data with a combination of real texts from other corpora as well as synthesized orthographic variation, resulting in performance improvements of 2.1 points in sentiment analysis and 1.4 BLEU points in translation to English.
comment: Accepted to LREC-COLING 2024 Main Conference
☆ Mapping 'when'-clauses in Latin American and Caribbean languages: an experiment in subtoken-based typology
Languages can encode temporal subordination lexically, via subordinating conjunctions, and morphologically, by marking the relation on the predicate. Systematic cross-linguistic variation among the former can be studied using well-established token-based typological approaches to token-aligned parallel corpora. Variation among different morphological means is instead much harder to tackle and therefore more poorly understood, despite being predominant in several language groups. This paper explores variation in the expression of generic temporal subordination ('when'-clauses) among the languages of Latin America and the Caribbean, where morphological marking is particularly common. It presents probabilistic semantic maps computed on the basis of the languages of the region, thus avoiding bias towards the many world's languages that exclusively use lexified connectors, incorporating associations between character $n$-grams and English $when$. The approach allows capturing morphological clause-linkage devices in addition to lexified connectors, paving the way for larger-scale, strategy-agnostic analyses of typological variation in temporal subordination.
comment: 10 pages, 6 figures. To be published in the 2024 Proceedings of the Workshop on Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP)
☆ PatentGPT: A Large Language Model for Intellectual Property
In recent years, large language models have attracted significant attention due to their exceptional performance across a multitude of natural language process tasks, and have been widely applied in various fields. However, the application of large language models in the Intellectual Property (IP) space is challenging due to the strong need for specialized knowledge, privacy protection, processing of extremely long text in this field. In this technical report, we present for the first time a low-cost, standardized procedure for training IP-oriented LLMs, meeting the unique requirements of the IP domain. Using this standard process, we have trained the PatentGPT series models based on open-source pretrained models. By evaluating them on the open-source IP-oriented benchmark MOZIP, our domain-specific LLMs outperforms GPT-4, indicating the effectiveness of the proposed training procedure and the expertise of the PatentGPT models in the IP demain. What is impressive is that our model significantly outperformed GPT-4 on the 2019 China Patent Agent Qualification Examination by achieving a score of 65, reaching the level of human experts. Additionally, the PatentGPT model, which utilizes the SMoE architecture, achieves performance comparable to that of GPT-4 in the IP domain and demonstrates a better cost-performance ratio on long-text tasks, potentially serving as an alternative to GPT-4 within the IP domain.
comment: 19 pages, 9 figures
☆ LEGENT: Open Platform for Embodied Agents
Despite advancements in Large Language Models (LLMs) and Large Multimodal Models (LMMs), their integration into language-grounded, human-like embodied agents remains incomplete, hindering complex real-life task performance in physical environments. Existing integrations often feature limited open sourcing, challenging collective progress in this field. We introduce LEGENT, an open, scalable platform for developing embodied agents using LLMs and LMMs. LEGENT offers a dual approach: a rich, interactive 3D environment with communicable and actionable agents, paired with a user-friendly interface, and a sophisticated data generation pipeline utilizing advanced algorithms to exploit supervision from simulated worlds at scale. In our experiments, an embryonic vision-language-action model trained on LEGENT-generated data surpasses GPT-4V in embodied tasks, showcasing promising generalization capabilities.
comment: Demo Paper
☆ SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning
Large Language Models (LLMs) have highlighted the necessity of effective unlearning mechanisms to comply with data regulations and ethical AI practices. LLM unlearning aims at removing undesired data influences and associated model capabilities without compromising utility out of the scope of unlearning. While interest in studying LLM unlearning is growing,the impact of the optimizer choice for LLM unlearning remains under-explored. In this work, we shed light on the significance of optimizer selection in LLM unlearning for the first time, establishing a clear connection between {second-order optimization} and influence unlearning (a classical approach using influence functions to update the model for data influence removal). This insight propels us to develop a second-order unlearning framework, termed SOUL, built upon the second-order clipped stochastic optimization (Sophia)-based LLM training method. SOUL extends the static, one-shot model update using influence unlearning to a dynamic, iterative unlearning process. Our extensive experiments show that SOUL consistently outperforms conventional first-order methods across various unlearning tasks, models, and metrics, suggesting the promise of second-order optimization in providing a scalable and easily implementable solution for LLM unlearning.
☆ From Persona to Personalization: A Survey on Role-Playing Language Agents
Recent advancements in large language models (LLMs) have significantly boosted the rise of Role-Playing Language Agents (RPLAs), i.e., specialized AI systems designed to simulate assigned personas. By harnessing multiple advanced abilities of LLMs, including in-context learning, instruction following, and social intelligence, RPLAs achieve a remarkable sense of human likeness and vivid role-playing performance. RPLAs can mimic a wide range of personas, ranging from historical figures and fictional characters to real-life individuals. Consequently, they have catalyzed numerous AI applications, such as emotional companions, interactive video games, personalized assistants and copilots, and digital clones. In this paper, we conduct a comprehensive survey of this field, illustrating the evolution and recent progress in RPLAs integrating with cutting-edge LLM technologies. We categorize personas into three types: 1) Demographic Persona, which leverages statistical stereotypes; 2) Character Persona, focused on well-established figures; and 3) Individualized Persona, customized through ongoing user interactions for personalized services. We begin by presenting a comprehensive overview of current methodologies for RPLAs, followed by the details for each persona type, covering corresponding data sourcing, agent construction, and evaluation. Afterward, we discuss the fundamental risks, existing limitations, and future prospects of RPLAs. Additionally, we provide a brief review of RPLAs in AI applications, which reflects practical user demands that shape and drive RPLA research. Through this work, we aim to establish a clear taxonomy of RPLA research and applications, and facilitate future research in this critical and ever-evolving field, and pave the way for a future where humans and RPLAs coexist in harmony.
comment: Preprint
☆ TextGram: Towards a better domain-adaptive pretraining SP
For green AI, it is crucial to measure and reduce the carbon footprint emitted during the training of large language models. In NLP, performing pre-training on Transformer models requires significant computational resources. This pre-training involves using a large amount of text data to gain prior knowledge for performing downstream tasks. Thus, it is important that we select the correct data in the form of domain-specific data from this vast corpus to achieve optimum results aligned with our domain-specific tasks. While training on large unsupervised data is expensive, it can be optimized by performing a data selection step before pretraining. Selecting important data reduces the space overhead and the substantial amount of time required to pre-train the model while maintaining constant accuracy. We investigate the existing selection strategies and propose our own domain-adaptive data selection method - TextGram - that effectively selects essential data from large corpora. We compare and evaluate the results of finetuned models for text classification task with and without data selection. We show that the proposed strategy works better compared to other selection methods.
comment: Accepted at SPELLL 2023
☆ L3Cube-MahaNews: News-based Short Text and Long Document Classification Datasets in Marathi SP
The availability of text or topic classification datasets in the low-resource Marathi language is limited, typically consisting of fewer than 4 target labels, with some achieving nearly perfect accuracy. In this work, we introduce L3Cube-MahaNews, a Marathi text classification corpus that focuses on News headlines and articles. This corpus stands out as the largest supervised Marathi Corpus, containing over 1.05L records classified into a diverse range of 12 categories. To accommodate different document lengths, MahaNews comprises three supervised datasets specifically designed for short text, long documents, and medium paragraphs. The consistent labeling across these datasets facilitates document length-based analysis. We provide detailed data statistics and baseline results on these datasets using state-of-the-art pre-trained BERT models. We conduct a comparative analysis between monolingual and multilingual BERT models, including MahaBERT, IndicBERT, and MuRIL. The monolingual MahaBERT model outperforms all others on every dataset. These resources also serve as Marathi topic classification datasets or models and are publicly available at https://github.com/l3cube-pune/MarathiNLP .
comment: Accepted at SPELLL 2023
☆ Exploring the Robustness of In-Context Learning with Noisy Labels ICLR 2024
Recently, the mysterious In-Context Learning (ICL) ability exhibited by Transformer architectures, especially in large language models (LLMs), has sparked significant research interest. However, the resilience of Transformers' in-context learning capabilities in the presence of noisy samples, prevalent in both training corpora and prompt demonstrations, remains underexplored. In this paper, inspired by prior research that studies ICL ability using simple function classes, we take a closer look at this problem by investigating the robustness of Transformers against noisy labels. Specifically, we first conduct a thorough evaluation and analysis of the robustness of Transformers against noisy labels during in-context learning and show that they exhibit notable resilience against diverse types of noise in demonstration labels. Furthermore, we delve deeper into this problem by exploring whether introducing noise into the training set, akin to a form of data augmentation, enhances such robustness during inference, and find that such noise can indeed improve the robustness of ICL. Overall, our fruitful analysis and findings provide a comprehensive understanding of the resilience of Transformer models against label noises during ICL and provide valuable insights into the research on Transformers in natural language processing. Our code is available at https://github.com/InezYu0928/in-context-learning.
comment: ICLR 2024 Workshop on Reliable and Responsible Foundation Models
☆ Ranked List Truncation for Large Language Model-based Re-Ranking SIGIR 2024
We study ranked list truncation (RLT) from a novel "retrieve-then-re-rank" perspective, where we optimize re-ranking by truncating the retrieved list (i.e., trim re-ranking candidates). RLT is crucial for re-ranking as it can improve re-ranking efficiency by sending variable-length candidate lists to a re-ranker on a per-query basis. It also has the potential to improve re-ranking effectiveness. Despite its importance, there is limited research into applying RLT methods to this new perspective. To address this research gap, we reproduce existing RLT methods in the context of re-ranking, especially newly emerged large language model (LLM)-based re-ranking. In particular, we examine to what extent established findings on RLT for retrieval are generalizable to the "retrieve-then-re-rank" setup from three perspectives: (i) assessing RLT methods in the context of LLM-based re-ranking with lexical first-stage retrieval, (ii) investigating the impact of different types of first-stage retrievers on RLT methods, and (iii) investigating the impact of different types of re-rankers on RLT methods. We perform experiments on the TREC 2019 and 2020 deep learning tracks, investigating 8 RLT methods for pipelines involving 3 retrievers and 2 re-rankers. We reach new insights into RLT methods in the context of re-ranking.
comment: Accepted for publication as a long paper at SIGIR 2024
☆ EkoHate: Abusive Language and Hate Speech Detection for Code-switched Political Discussions on Nigerian Twitter ICLR2024
Nigerians have a notable online presence and actively discuss political and topical matters. This was particularly evident throughout the 2023 general election, where Twitter was used for campaigning, fact-checking and verification, and even positive and negative discourse. However, little or none has been done in the detection of abusive language and hate speech in Nigeria. In this paper, we curated code-switched Twitter data directed at three musketeers of the governorship election on the most populous and economically vibrant state in Nigeria; Lagos state, with the view to detect offensive speech in political discussions. We developed EkoHate -- an abusive language and hate speech dataset for political discussions between the three candidates and their followers using a binary (normal vs offensive) and fine-grained four-label annotation scheme. We analysed our dataset and provided an empirical evaluation of state-of-the-art methods across both supervised and cross-lingual transfer learning settings. In the supervised setting, our evaluation results in both binary and four-label annotation schemes show that we can achieve 95.1 and 70.3 F1 points respectively. Furthermore, we show that our dataset adequately transfers very well to three publicly available offensive datasets (OLID, HateUS2020, and FountaHate), generalizing to political discussions in other regions like the US.
comment: AfricaNLP workshop @ ICLR2024 and WOAH @ NAACL2024
☆ Explaining vague language
Why is language vague? Vagueness may be explained and rationalized if it can be shown that vague language is more useful to speaker and hearer than precise language. In a well-known paper, Lipman proposes a game-theoretic account of vagueness in terms of mixed strategy that leads to a puzzle: vagueness cannot be strictly better than precision at equilibrium. More recently, \'Egr\'e, Spector, Mortier and Verheyen have put forward a Bayesian account of vagueness establishing that using vague words can be strictly more informative than using precise words. This paper proposes to compare both results and to explain why they are not in contradiction. Lipman's definition of vagueness relies exclusively on a property of signaling strategies, without making any assumptions about the lexicon, whereas \'Egr\'e et al.'s involves a layer of semantic content. We argue that the semantic account of vagueness is needed, and more adequate and explanatory of vagueness.
☆ Logic Agent: Enhancing Validity with Logic Rule Invocation
Chain-of-Thought (CoT) prompting has emerged as a pivotal technique for augmenting the inferential capabilities of language models during reasoning tasks. Despite its advancements, CoT often grapples with challenges in validating reasoning validity and ensuring informativeness. Addressing these limitations, this paper introduces the Logic Agent (LA), an agent-based framework aimed at enhancing the validity of reasoning processes in Large Language Models (LLMs) through strategic logic rule invocation. Unlike conventional approaches, LA transforms LLMs into logic agents that dynamically apply propositional logic rules, initiating the reasoning process by converting natural language inputs into structured logic forms. The logic agent leverages a comprehensive set of predefined functions to systematically navigate the reasoning process. This methodology not only promotes the structured and coherent generation of reasoning constructs but also significantly improves their interpretability and logical coherence. Through extensive experimentation, we demonstrate LA's capacity to scale effectively across various model sizes, markedly improving the precision of complex reasoning across diverse tasks.
☆ USAT: A Universal Speaker-Adaptive Text-to-Speech Approach
Conventional text-to-speech (TTS) research has predominantly focused on enhancing the quality of synthesized speech for speakers in the training dataset. The challenge of synthesizing lifelike speech for unseen, out-of-dataset speakers, especially those with limited reference data, remains a significant and unresolved problem. While zero-shot or few-shot speaker-adaptive TTS approaches have been explored, they have many limitations. Zero-shot approaches tend to suffer from insufficient generalization performance to reproduce the voice of speakers with heavy accents. While few-shot methods can reproduce highly varying accents, they bring a significant storage burden and the risk of overfitting and catastrophic forgetting. In addition, prior approaches only provide either zero-shot or few-shot adaptation, constraining their utility across varied real-world scenarios with different demands. Besides, most current evaluations of speaker-adaptive TTS are conducted only on datasets of native speakers, inadvertently neglecting a vast portion of non-native speakers with diverse accents. Our proposed framework unifies both zero-shot and few-shot speaker adaptation strategies, which we term as "instant" and "fine-grained" adaptations based on their merits. To alleviate the insufficient generalization performance observed in zero-shot speaker adaptation, we designed two innovative discriminators and introduced a memory mechanism for the speech decoder. To prevent catastrophic forgetting and reduce storage implications for few-shot speaker adaptation, we designed two adapters and a unique adaptation procedure.
comment: 15 pages, 13 figures. Copyright has been transferred to IEEE
☆ CRE-LLM: A Domain-Specific Chinese Relation Extraction Framework with Fine-tuned Large Language Model
Domain-Specific Chinese Relation Extraction (DSCRE) aims to extract relations between entities from domain-specific Chinese text. Despite the rapid development of PLMs in recent years, especially LLMs, DSCRE still faces three core challenges: complex network structure design, poor awareness, and high consumption of fine-tuning. Given the impressive performance of large language models (LLMs) in natural language processing, we propose a new framework called CRE-LLM. This framework is based on fine-tuning open-source LLMs, such as Llama-2, ChatGLM2, and Baichuan2. CRE-LLM enhances the logic-awareness and generative capabilities of the model by constructing an appropriate prompt and utilizing open-source LLMs for instruction-supervised fine-tuning. And then it directly extracts the relations of the given entities in the input textual data, which improving the CRE approach. To demonstrate the effectiveness of the proposed framework, we conducted extensive experiments on two domain-specific CRE datasets, FinRE and SanWen. The experimental results show that CRE-LLM is significantly superior and robust, achieving state-of-the-art (SOTA) performance on the FinRE dataset. This paper introduces a novel approach to domain-specific relation extraction (DSCRE) tasks that are semantically more complex by combining LLMs with triples. Our code is publicly available.
comment: preprint
☆ ComposerX: Multi-Agent Symbolic Music Composition with LLMs
Music composition represents the creative side of humanity, and itself is a complex task that requires abilities to understand and generate information with long dependency and harmony constraints. While demonstrating impressive capabilities in STEM subjects, current LLMs easily fail in this task, generating ill-written music even when equipped with modern techniques like In-Context-Learning and Chain-of-Thoughts. To further explore and enhance LLMs' potential in music composition by leveraging their reasoning ability and the large knowledge base in music history and theory, we propose ComposerX, an agent-based symbolic music generation framework. We find that applying a multi-agent approach significantly improves the music composition quality of GPT-4. The results demonstrate that ComposerX is capable of producing coherent polyphonic music compositions with captivating melodies, while adhering to user instructions.
☆ Contextual Spelling Correction with Language Model for Low-resource Setting
The task of Spell Correction(SC) in low-resource languages presents a significant challenge due to the availability of only a limited corpus of data and no annotated spelling correction datasets. To tackle these challenges a small-scale word-based transformer LM is trained to provide the SC model with contextual understanding. Further, the probabilistic error rules are extracted from the corpus in an unsupervised way to model the tendency of error happening(error model). Then the combination of LM and error model is used to develop the SC model through the well-known noisy channel framework. The effectiveness of this approach is demonstrated through experiments on the Nepali language where there is access to just an unprocessed corpus of textual data.
comment: 8 pages
☆ Can Perplexity Predict Fine-Tuning Performance? An Investigation of Tokenization Effects on Sequential Language Models for Nepali
Recent language models use subwording mechanisms to handle Out-of-Vocabulary(OOV) words seen during test time and, their generation capacity is generally measured using perplexity, an intrinsic metric. It is known that increasing the subword granularity results in a decrease of perplexity value. However, the study of how subwording affects the understanding capacity of language models has been very few and only limited to a handful of languages. To reduce this gap we used 6 different tokenization schemes to pretrain relatively small language models in Nepali and used the representations learned to finetune on several downstream tasks. Although byte-level BPE algorithm has been used in recent models like GPT, RoBERTa we show that on average they are sub-optimal in comparison to algorithms such as SentencePiece in finetuning performances for Nepali. Additionally, similar recent studies have focused on the Bert-based language model. We, however, pretrain and finetune sequential transformer-based language models.
comment: 11 pages
☆ Efficient LLM Inference with Kcache
Large Language Models(LLMs) have had a profound impact on AI applications, particularly in the domains of long-text comprehension and generation. KV Cache technology is one of the most widely used techniques in the industry. It ensures efficient sequence generation by caching previously computed KV states. However, it also introduces significant memory overhead. We discovered that KV Cache is not necessary and proposed a novel KCache technique to alleviate the memory bottleneck issue during the LLMs inference process. KCache can be used directly for inference without any training process, Our evaluations show that KCache improves the throughput of popular LLMs by 40% with the baseline, while keeping accuracy.
comment: Technical Report, 8 pages
☆ Utilizing Large Language Models for Information Extraction from Real Estate Transactions
Real estate sales contracts contain crucial information for property transactions, but manual extraction of data can be time-consuming and error-prone. This paper explores the application of large language models, specifically transformer-based architectures, for automated information extraction from real estate contracts. We discuss challenges, techniques, and future directions in leveraging these models to improve efficiency and accuracy in real estate contract analysis.
☆ Fashion Recommendation: Outfit Compatibility using GNN
Numerous industries have benefited from the use of machine learning and fashion in industry is no exception. By gaining a better understanding of what makes a good outfit, companies can provide useful product recommendations to their users. In this project, we follow two existing approaches that employ graphs to represent outfits and use modified versions of the Graph neural network (GNN) frameworks. Both Node-wise Graph Neural Network (NGNN) and Hypergraph Neural Network aim to score a set of items according to the outfit compatibility of items. The data used is the Polyvore Dataset which consists of curated outfits with product images and text descriptions for each product in an outfit. We recreate the analysis on a subset of this data and compare the two existing models on their performance on two tasks Fill in the blank (FITB): finding an item that completes an outfit, and Compatibility prediction: estimating compatibility of different items grouped as an outfit. We can replicate the results directionally and find that HGNN does have a slightly better performance on both tasks. On top of replicating the results of the two papers we also tried to use embeddings generated from a vision transformer and witness enhanced prediction accuracy across the board
♻ ☆ The Ups and Downs of Large Language Model Inference with Vocabulary Trimming by Language Heuristics
Deploying large language models (LLMs) encounters challenges due to intensive computational and memory requirements. Our research examines vocabulary trimming (VT) inspired by restricting embedding entries to the language of interest to bolster time and memory efficiency. While such modifications have been proven effective in tasks like machine translation, tailoring them to LLMs demands specific modifications given the diverse nature of LLM applications. We apply two language heuristics to trim the full vocabulary - Unicode-based script filtering and corpus-based selection - to different LLM families and sizes. The methods are straightforward, interpretable, and easy to implement. It is found that VT reduces the memory usage of small models by nearly 50% and has an upper bound of 25% improvement in generation speed. Yet, we reveal the limitations of these methods in that they do not perform consistently well for each language with diminishing returns in larger models.
comment: Versions 2, accepted at Insights from negative results 2024
♻ ☆ Topics, Authors, and Institutions in Large Language Model Research: Trends from 17K arXiv Papers NAACL 2024
Large language models (LLMs) are dramatically influencing AI research, spurring discussions on what has changed so far and how to shape the field's future. To clarify such questions, we analyze a new dataset of 16,979 LLM-related arXiv papers, focusing on recent trends in 2023 vs. 2018-2022. First, we study disciplinary shifts: LLM research increasingly considers societal impacts, evidenced by 20x growth in LLM submissions to the Computers and Society sub-arXiv. An influx of new authors -- half of all first authors in 2023 -- are entering from non-NLP fields of CS, driving disciplinary expansion. Second, we study industry and academic publishing trends. Surprisingly, industry accounts for a smaller publication share in 2023, largely due to reduced output from Google and other Big Tech companies; universities in Asia are publishing more. Third, we study institutional collaboration: while industry-academic collaborations are common, they tend to focus on the same topics that industry focuses on rather than bridging differences. The most prolific institutions are all US- or China-based, but there is very little cross-country collaboration. We discuss implications around (1) how to support the influx of new authors, (2) how industry trends may affect academics, and (3) possible effects of (the lack of) collaboration.
comment: NAACL 2024. Data & code available at https://github.com/rmovva/LLM-publication-patterns-public
♻ ☆ Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization ICLR 2024
Large foundation models are becoming ubiquitous, but training them from scratch is prohibitively expensive. Thus, efficiently adapting these powerful models to downstream tasks is increasingly important. In this paper, we study a principled finetuning paradigm -- Orthogonal Finetuning (OFT) -- for downstream task adaptation. Despite demonstrating good generalizability, OFT still uses a fairly large number of trainable parameters due to the high dimensionality of orthogonal matrices. To address this, we start by examining OFT from an information transmission perspective, and then identify a few key desiderata that enable better parameter-efficiency. Inspired by how the Cooley-Tukey fast Fourier transform algorithm enables efficient information transmission, we propose an efficient orthogonal parameterization using butterfly structures. We apply this parameterization to OFT, creating a novel parameter-efficient finetuning method, called Orthogonal Butterfly (BOFT). By subsuming OFT as a special case, BOFT introduces a generalized orthogonal finetuning framework. Finally, we conduct an extensive empirical study of adapting large vision transformers, large language models, and text-to-image diffusion models to various downstream tasks in vision and language.
comment: ICLR 2024 (v2: 34 pages, 19 figures)
♻ ☆ The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning
The White House Executive Order on Artificial Intelligence highlights the risks of large language models (LLMs) empowering malicious actors in developing biological, cyber, and chemical weapons. To measure these risks of malicious use, government institutions and major AI labs are developing evaluations for hazardous capabilities in LLMs. However, current evaluations are private, preventing further research into mitigating risk. Furthermore, they focus on only a few, highly specific pathways for malicious use. To fill these gaps, we publicly release the Weapons of Mass Destruction Proxy (WMDP) benchmark, a dataset of 3,668 multiple-choice questions that serve as a proxy measurement of hazardous knowledge in biosecurity, cybersecurity, and chemical security. WMDP was developed by a consortium of academics and technical consultants, and was stringently filtered to eliminate sensitive information prior to public release. WMDP serves two roles: first, as an evaluation for hazardous knowledge in LLMs, and second, as a benchmark for unlearning methods to remove such hazardous knowledge. To guide progress on unlearning, we develop RMU, a state-of-the-art unlearning method based on controlling model representations. RMU reduces model performance on WMDP while maintaining general capabilities in areas such as biology and computer science, suggesting that unlearning may be a concrete path towards reducing malicious use from LLMs. We release our benchmark and code publicly at https://wmdp.ai
comment: See the project page at https://wmdp.ai
♻ ☆ Swap distance minimization beyond entropy minimization in word order variation
Here we consider the problem of all the possible orders of a linguistic structure formed by $n$ elements, for instance, subject, direct object and verb ($n=3$) or subject, direct object, indirect object and verb ($n=4$). We investigate if the frequency of the $n!$ possible orders is constrained by two principles. First, entropy minimization, a principle that has been suggested to shape natural communication systems at distinct levels of organization. Second, swap distance minimization, namely a preference for word orders that require fewer swaps of adjacent elements to be produced from a source order. Here we present average swap distance, a novel score for research on swap distance minimization, and investigate the theoretical distribution of that score for any $n$: its minimum and maximum values and its expected value in die rolling experiments or when the word order frequencies are shuffled. We investigate whether entropy and average swap distance are significantly small in distinct linguistic structures with $n=3$ or $n=4$ in agreement with the corresponding minimization principles. We find strong evidence of entropy minimization and swap distance minimization with respect to a die rolling experiment. The evidence of these two forces with respect to a Polya urn process is strong for $n=4$ but weaker for $n=3$. We still find evidence of swap distance minimization when word order frequencies are shuffled, indicating that swap distance minimization effects are beyond pressure to minimize word order entropy.
comment: Discussion expanded; many typos corrected
♻ ☆ A Zero-shot and Few-shot Study of Instruction-Finetuned Large Language Models Applied to Clinical and Biomedical Tasks
We evaluate four state-of-the-art instruction-tuned large language models (LLMs) -- ChatGPT, Flan-T5 UL2, Tk-Instruct, and Alpaca -- on a set of 13 real-world clinical and biomedical natural language processing (NLP) tasks in English, such as named-entity recognition (NER), question-answering (QA), relation extraction (RE), etc. Our overall results demonstrate that the evaluated LLMs begin to approach performance of state-of-the-art models in zero- and few-shot scenarios for most tasks, and particularly well for the QA task, even though they have never seen examples from these tasks before. However, we observed that the classification and RE tasks perform below what can be achieved with a specifically trained model for the medical field, such as PubMedBERT. Finally, we noted that no LLM outperforms all the others on all the studied tasks, with some models being better suited for certain tasks than others.
comment: Under review process
♻ ☆ Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Reasoners
Chain of Thought prompting strategy has enhanced the performance of Large Language Models (LLMs) across various NLP tasks. However, it still has shortcomings when dealing with complex reasoning tasks, including understanding errors, calculation errors and process errors (e.g., missing-step and hallucinations). Subsequently, our in-depth analyses among various error types show that deeply understanding the whole problem is critical in addressing complicated reasoning tasks. Motivated by this, we propose a simple-yet-effective method, namely Deeply Understanding the Problems (DUP), to enhance the LLMs' reasoning abilities. The core of our method is to encourage the LLMs to deeply understand the problems and leverage the key problem-solving information for better reasoning. Extensive experiments on 10 diverse reasoning benchmarks show that our DUP method consistently outperforms the other counterparts by a large margin. More encouragingly, DUP achieves a new SOTA result on the GSM8K benchmark, with an accuracy of 97.1% in a zero-shot setting.
comment: Work in progress
♻ ☆ Never Train from Scratch: Fair Comparison of Long-Sequence Models Requires Data-Driven Priors
Modeling long-range dependencies across sequences is a longstanding goal in machine learning and has led to architectures, such as state space models, that dramatically outperform Transformers on long sequences. However, these impressive empirical gains have been by and large demonstrated on benchmarks (e.g. Long Range Arena), where models are randomly initialized and trained to predict a target label from an input sequence. In this work, we show that random initialization leads to gross overestimation of the differences between architectures and that pretraining with standard denoising objectives, using $\textit{only the downstream task data}$, leads to dramatic gains across multiple architectures and to very small gaps between Transformers and state space models (SSMs). In stark contrast to prior works, we find vanilla Transformers to match the performance of S4 on Long Range Arena when properly pretrained, and we improve the best reported results of SSMs on the PathX-256 task by 20 absolute points. Subsequently, we analyze the utility of previously-proposed structured parameterizations for SSMs and show they become mostly redundant in the presence of data-driven initialization obtained through pretraining. Our work shows that, when evaluating different architectures on supervised tasks, incorporation of data-driven priors via pretraining is essential for reliable performance estimation, and can be done efficiently.
♻ ☆ Balancing Speciality and Versatility: a Coarse to Fine Framework for Supervised Fine-tuning Large Language Model
Aligned Large Language Models (LLMs) showcase remarkable versatility, capable of handling diverse real-world tasks. Meanwhile, aligned LLMs are also expected to exhibit speciality, excelling in specific applications. However, fine-tuning with extra data, a common practice to gain speciality, often leads to catastrophic forgetting (CF) of previously acquired versatility, hindering the model's performance across diverse tasks. In response to this challenge, we propose CoFiTune, a coarse to fine framework in an attempt to strike the balance between speciality and versatility. At the coarse-grained level, an empirical tree-search algorithm is utilized to pinpoint and update specific modules that are crucial for speciality, while keeping other parameters frozen; at the fine-grained level, a soft-masking mechanism regulates the update to the LLMs, mitigating the CF issue without harming speciality. In an overall evaluation of both speciality and versatility, CoFiTune consistently outperforms baseline methods across diverse tasks and model scales. Compared to the full-parameter SFT, CoFiTune leads to about 14% versatility improvement and marginal speciality loss on a 13B model. Lastly, based on further analysis, we provide a speculative insight into the information forwarding process in LLMs, which helps explain the effectiveness of the proposed method. The code is available at https://github.com/rattlesnakey/CoFiTune.
comment: 43 pages, 10 figures
♻ ☆ InstructEdit: Instruction-based Knowledge Editing for Large Language Models IJCAI 2024
Knowledge editing for large language models can offer an efficient solution to alter a model's behavior without negatively impacting the overall performance. However, the current approaches encounter issues with limited generalizability across tasks, necessitating one distinct editor for each task, significantly hindering the broader applications. To address this, we take the first step to analyze the multi-task generalization issue in knowledge editing. Specifically, we develop an instruction-based editing technique, termed InstructEdit, which facilitates the editor's adaptation to various task performances simultaneously using simple instructions. With only one unified editor for each LLM, we empirically demonstrate that InstructEdit can improve the editor's control, leading to an average 14.86% increase in Reliability in multi-task editing setting. Furthermore, experiments involving holdout unseen task illustrate that InstructEdit consistently surpass previous strong baselines. To further investigate the underlying mechanisms of instruction-based knowledge editing, we analyze the principal components of the editing gradient directions, which unveils that instructions can help control optimization direction with stronger OOD generalization. Code and datasets are available in https://github.com/zjunlp/EasyEdit.
comment: IJCAI 2024; the project website is at https://www.zjukg.org/project/InstructEdit/
♻ ☆ Conversational Disease Diagnosis via External Planner-Controlled Large Language Models
The development of large language models (LLM) have brought unprecedented possibilities for artificial intelligence (AI) based medical diagnosis. However, the application perspective of LLMs in real diagnosis scenarios is still unclear because they are not adept at collecting patient data proactively. This study presents a novel approach that implemented AI systems to emulate the two-phase process used by physicians during medical consultations. Our methodology involves two specialized planners: the first employs a data-driven, reinforcement learning approach to formulate disease screening questions; the second uses LLMs to parse medical guidelines and conducts differential diagnosis. By utilizing real patient electronic medical records (EMR) data, we constructed simulated dialogues between virtual patients and doctors and evaluate the diagnostic abilities of our system. We demonstrate that our system surpasses existing models, including GPT-4 Turbo, in both disease screening and differential diagnosis. This research represents a step towards integrating AI more seamlessly into clinical settings, potentially improving the accuracy and accessibility of medical diagnostics.
comment: Work in Progress
♻ ☆ Prompting ChatGPT for Translation: A Comparative Analysis of Translation Brief and Persona Prompts
Prompt engineering has shown potential for improving translation quality in LLMs. However, the possibility of using translation concepts in prompt design remains largely underexplored. Against this backdrop, the current paper discusses the effectiveness of incorporating the conceptual tool of translation brief and the personas of translator and author into prompt design for translation tasks in ChatGPT. Findings suggest that, although certain elements are constructive in facilitating human-to-human communication for translation tasks, their effectiveness is limited for improving translation quality in ChatGPT. This accentuates the need for explorative research on how translation theorists and practitioners can develop the current set of conceptual tools rooted in the human-to-human communication paradigm for translation purposes in this emerging workflow involving human-machine interaction, and how translation concepts developed in translation studies can inform the training of GPT models for translation tasks.
♻ ☆ DoRA: Weight-Decomposed Low-Rank Adaptation
Among the widely used parameter-efficient finetuning (PEFT) methods, LoRA and its variants have gained considerable popularity because of avoiding additional inference costs. However, there still often exists an accuracy gap between these methods and full fine-tuning (FT). In this work, we first introduce a novel weight decomposition analysis to investigate the inherent differences between FT and LoRA. Aiming to resemble the learning capacity of FT from the findings, we propose Weight-Decomposed LowRank Adaptation (DoRA). DoRA decomposes the pre-trained weight into two components, magnitude and direction, for fine-tuning, specifically employing LoRA for directional updates to efficiently minimize the number of trainable parameters. By employing DoRA, we enhance both the learning capacity and training stability of LoRA while avoiding any additional inference overhead. DoRA consistently outperforms LoRA on fine-tuning LLaMA, LLaVA, and VL-BART on various downstream tasks, such as commonsense reasoning, visual instruction tuning, and image/video-text understanding. Code available at https://github.com/NVlabs/DoRA.
comment: Code available at https://github.com/NVlabs/DoRA
♻ ☆ Investigating Multi-Pivot Ensembling with Massively Multilingual Machine Translation Models NAACL 2024
Massively multilingual machine translation models allow for the translation of a large number of languages with a single model, but have limited performance on low- and very-low-resource translation directions. Pivoting via high-resource languages remains a strong strategy for low-resource directions, and in this paper we revisit ways of pivoting through multiple languages. Previous work has used a simple averaging of probability distributions from multiple paths, but we find that this performs worse than using a single pivot, and exacerbates the hallucination problem because the same hallucinations can be probable across different paths. We also propose MaxEns, a novel combination strategy that makes the output biased towards the most confident predictions, hypothesising that confident predictions are less prone to be hallucinations. We evaluate different strategies on the FLORES benchmark for 20 low-resource language directions, demonstrating that MaxEns improves translation quality for low-resource languages while reducing hallucination in translations, compared to both direct translation and an averaging approach. On average, multi-pivot strategies still lag behind using English as a single pivot language, raising the question of how to identify the best pivoting strategy for a given translation direction.
comment: Accepted to Insights at NAACL 2024
♻ ☆ When Large Language Models contradict humans? Large Language Models' Sycophantic Behaviour
Large Language Models have been demonstrating the ability to solve complex tasks by delivering answers that are positively evaluated by humans due in part to the intensive use of human feedback that refines responses. However, the suggestibility transmitted through human feedback increases the inclination to produce responses that correspond to the users' beliefs or misleading prompts as opposed to true facts, a behaviour known as sycophancy. This phenomenon decreases the bias, robustness, and, consequently, their reliability. In this paper, we shed light on the suggestibility of Large Language Models (LLMs) to sycophantic behaviour, demonstrating these tendencies via human-influenced prompts over different tasks. Our investigation reveals that LLMs show sycophantic tendencies when responding to queries involving subjective opinions and statements that should elicit a contrary response based on facts. In contrast, when confronted with mathematical tasks or queries that have an objective answer, these models at various scales seem not to follow the users' hints by demonstrating confidence in delivering the correct answers.
♻ ☆ FineFake: A Knowledge-Enriched Dataset for Fine-Grained Multi-Domain Fake News Detection
Existing benchmarks for fake news detection have significantly contributed to the advancement of models in assessing the authenticity of news content. However, these benchmarks typically focus solely on news pertaining to a single semantic topic or originating from a single platform, thereby failing to capture the diversity of multi-domain news in real scenarios. In order to understand fake news across various domains, the external knowledge and fine-grained annotations are indispensable to provide precise evidence and uncover the diverse underlying strategies for fabrication, which are also ignored by existing benchmarks. To address this gap, we introduce a novel multi-domain knowledge-enhanced benchmark with fine-grained annotations, named \textbf{FineFake}. FineFake encompasses 16,909 data samples spanning six semantic topics and eight platforms. Each news item is enriched with multi-modal content, potential social context, semi-manually verified common knowledge, and fine-grained annotations that surpass conventional binary labels. Furthermore, we formulate three challenging tasks based on FineFake and propose a knowledge-enhanced domain adaptation network. Extensive experiments are conducted on FineFake under various scenarios, providing accurate and reliable benchmarks for future endeavors. The entire FineFake project is publicly accessible as an open-source repository at \url{https://github.com/Accuser907/FineFake}.
♻ ☆ Conversational Speech Recognition by Learning Audio-textual Cross-modal Contextual Representation
Automatic Speech Recognition (ASR) in conversational settings presents unique challenges, including extracting relevant contextual information from previous conversational turns. Due to irrelevant content, error propagation, and redundancy, existing methods struggle to extract longer and more effective contexts. To address this issue, we introduce a novel conversational ASR system, extending the Conformer encoder-decoder model with cross-modal conversational representation. Our approach leverages a cross-modal extractor that combines pre-trained speech and text models through a specialized encoder and a modal-level mask input. This enables the extraction of richer historical speech context without explicit error propagation. We also incorporate conditional latent variational modules to learn conversational level attributes such as role preference and topic coherence. By introducing both cross-modal and conversational representations into the decoder, our model retains context over longer sentences without information loss, achieving relative accuracy improvements of 8.8% and 23% on Mandarin conversation datasets HKUST and MagicData-RAMC, respectively, compared to the standard Conformer model.
comment: TASLP
♻ ☆ DMoERM: Recipes of Mixture-of-Experts for Effective Reward Modeling
The performance of the reward model (RM) is a critical factor in improving the effectiveness of the large language model (LLM) during alignment fine-tuning. There remain two challenges in RM training: 1) training the same RM using various categories of data may cause its generalization performance to suffer from multi-task disturbance, and 2) the human annotation consistency rate is generally only $60\%$ to $75\%$, causing training data to contain a lot of noise. To tackle these two challenges, we introduced the idea of Mixture-of-Experts (MoE) into the field of RM for the first time. We propose the Double-Layer MoE RM (DMoERM). The outer layer MoE is a sparse model. After classifying an input into task categories, we route it to the corresponding inner layer task-specific model. The inner layer MoE is a dense model. We decompose the specific task into multiple capability dimensions and individually fine-tune a LoRA expert on each one. Their outputs are then synthesized by an MLP to compute the final rewards. To minimize costs, we call a public LLM API to obtain the capability preference labels. The validation on manually labeled datasets confirms that our model attains superior consistency with human preference and outstrips advanced generative approaches. Meanwhile, through BoN sampling and RL experiments, we demonstrate that our model outperforms state-of-the-art ensemble methods of RM and mitigates the overoptimization problem. Our code and dataset are available at: https://github.com/quanshr/DMoERM-v1.
comment: 23 pages, 8 figures
♻ ☆ Few-shot Name Entity Recognition on StackOverflow
StackOverflow, with its vast question repository and limited labeled examples, raise an annotation challenge for us. We address this gap by proposing RoBERTa+MAML, a few-shot named entity recognition (NER) method leveraging meta-learning. Our approach, evaluated on the StackOverflow NER corpus (27 entity types), achieves a 5% F1 score improvement over the baseline. We improved the results further domain-specific phrase processing enhance results.
comment: 5 pages
Computer Vision and Pattern Recognition 31
☆ MultiMAE-DER: Multimodal Masked Autoencoder for Dynamic Emotion Recognition ICPR
This paper presents a novel approach to processing multimodal data for dynamic emotion recognition, named as the Multimodal Masked Autoencoder for Dynamic Emotion Recognition (MultiMAE-DER). The MultiMAE-DER leverages the closely correlated representation information within spatiotemporal sequences across visual and audio modalities. By utilizing a pre-trained masked autoencoder model, the MultiMAEDER is accomplished through simple, straightforward finetuning. The performance of the MultiMAE-DER is enhanced by optimizing six fusion strategies for multimodal input sequences. These strategies address dynamic feature correlations within cross-domain data across spatial, temporal, and spatiotemporal sequences. In comparison to state-of-the-art multimodal supervised learning models for dynamic emotion recognition, MultiMAE-DER enhances the weighted average recall (WAR) by 4.41% on the RAVDESS dataset and by 2.06% on the CREMAD. Furthermore, when compared with the state-of-the-art model of multimodal self-supervised learning, MultiMAE-DER achieves a 1.86% higher WAR on the IEMOCAP dataset.
comment: Accepted by ICPRS 2024
☆ Position paper: Do not explain (vision models) without context
Does the stethoscope in the picture make the adjacent person a doctor or a patient? This, of course, depends on the contextual relationship of the two objects. If it is obvious, why don not explanation methods for vision models use contextual information? In this paper, we (1) review the most popular methods of explaining computer vision models by pointing out that they do not take into account context information, (2) provide examples of real-world use cases where spatial context plays a significant role, (3) propose new research directions that may lead to better use of context information in explaining computer vision models, (4) argue that a change in approach to explanations is needed from 'where' to 'how'.
☆ Panoptic Segmentation and Labelling of Lumbar Spine Vertebrae using Modified Attention Unet
Segmentation and labeling of vertebrae in MRI images of the spine are critical for the diagnosis of illnesses and abnormalities. These steps are indispensable as MRI technology provides detailed information about the tissue structure of the spine. Both supervised and unsupervised segmentation methods exist, yet acquiring sufficient data remains challenging for achieving high accuracy. In this study, we propose an enhancing approach based on modified attention U-Net architecture for panoptic segmentation of 3D sliced MRI data of the lumbar spine. Our method achieves an impressive accuracy of 99.5\% by incorporating novel masking logic, thus significantly advancing the state-of-the-art in vertebral segmentation and labeling. This contributes to more precise and reliable diagnosis and treatment planning.
comment: 9 pages, 10 figures
☆ S3-SLAM: Sparse Tri-plane Encoding for Neural Implicit SLAM
With the emergence of Neural Radiance Fields (NeRF), neural implicit representations have gained widespread applications across various domains, including simultaneous localization and mapping. However, current neural implicit SLAM faces a challenging trade-off problem between performance and the number of parameters. To address this problem, we propose sparse tri-plane encoding, which efficiently achieves scene reconstruction at resolutions up to 512 using only 2~4% of the commonly used tri-plane parameters (reduced from 100MB to 2~4MB). On this basis, we design S3-SLAM to achieve rapid and high-quality tracking and mapping through sparsifying plane parameters and integrating orthogonal features of tri-plane. Furthermore, we develop hierarchical bundle adjustment to achieve globally consistent geometric structures and reconstruct high-resolution appearance. Experimental results demonstrate that our approach achieves competitive tracking and scene reconstruction with minimal parameters on three datasets. Source code will soon be available.
☆ Out-of-distribution Detection in Medical Image Analysis: A survey
Computer-aided diagnostics has benefited from the development of deep learning-based computer vision techniques in these years. Traditional supervised deep learning methods assume that the test sample is drawn from the identical distribution as the training data. However, it is possible to encounter out-of-distribution samples in real-world clinical scenarios, which may cause silent failure in deep learning-based medical image analysis tasks. Recently, research has explored various out-of-distribution (OOD) detection situations and techniques to enable a trustworthy medical AI system. In this survey, we systematically review the recent advances in OOD detection in medical image analysis. We first explore several factors that may cause a distributional shift when using a deep-learning-based model in clinic scenarios, with three different types of distributional shift well defined on top of these factors. Then a framework is suggested to categorize and feature existing solutions, while the previous studies are reviewed based on the methodology taxonomy. Our discussion also includes evaluation protocols and metrics, as well as the challenge and a research direction lack of exploration.
comment: 23 pages, 3 figures
☆ Align, Minimize and Diversify: A Source-Free Unsupervised Domain Adaptation Method for Handwritten Text Recognition ECCV 2024
This paper serves to introduce the Align, Minimize and Diversify (AMD) method, a Source-Free Unsupervised Domain Adaptation approach for Handwritten Text Recognition (HTR). This framework decouples the adaptation process from the source data, thus not only sidestepping the resource-intensive retraining process but also making it possible to leverage the wealth of pre-trained knowledge encoded in modern Deep Learning architectures. Our method explicitly eliminates the need to revisit the source data during adaptation by incorporating three distinct regularization terms: the Align term, which reduces the feature distribution discrepancy between source and target data, ensuring the transferability of the pre-trained representation; the Minimize term, which encourages the model to make assertive predictions, pushing the outputs towards one-hot-like distributions in order to minimize prediction uncertainty, and finally, the Diversify term, which safeguards against the degeneracy in predictions by promoting varied and distinctive sequences throughout the target data, preventing informational collapse. Experimental results from several benchmarks demonstrated the effectiveness and robustness of AMD, showing it to be competitive and often outperforming DA methods in HTR.
comment: Submitted to ECCV 2024
☆ Efficient Remote Sensing with Harmonized Transfer Learning and Modality Alignment ICLR
With the rise of Visual and Language Pretraining (VLP), an increasing number of downstream tasks are adopting the paradigm of pretraining followed by fine-tuning. Although this paradigm has demonstrated potential in various multimodal downstream tasks, its implementation in the remote sensing domain encounters some obstacles. Specifically, the tendency for same-modality embeddings to cluster together impedes efficient transfer learning. To tackle this issue, we review the aim of multimodal transfer learning for downstream tasks from a unified perspective, and rethink the optimization process based on three distinct objectives. We propose "Harmonized Transfer Learning and Modality Alignment (HarMA)", a method that simultaneously satisfies task constraints, modality alignment, and single-modality uniform alignment, while minimizing training overhead through parameter-efficient fine-tuning. Remarkably, without the need for external data for training, HarMA achieves state-of-the-art performance in two popular multimodal retrieval tasks in the field of remote sensing. Our experiments reveal that HarMA achieves competitive and even superior performance to fully fine-tuned models with only minimal adjustable parameters. Due to its simplicity, HarMA can be integrated into almost all existing multimodal pretraining models. We hope this method can facilitate the efficient application of large models to a wide range of downstream tasks while significantly reducing the resource consumption. Code is available at https://github.com/seekerhuang/HarMA.
comment: Accepted by the Twelfth International Conference on Learning Representations (ICLR) Workshop
☆ Fisher Information Improved Training-Free Conditional Diffusion Model
Recently, the diffusion model with the training-free methods has succeeded in conditional image generation tasks. However, there is an efficiency problem because it requires calculating the gradient with high computational cost, and previous methods make strong assumptions to solve it, sacrificing generalization. In this work, we propose the Fisher information guided diffusion model (FIGD). Concretely, we introduce the Fisher information to estimate the gradient without making any additional assumptions to reduce computation cost. Meanwhile, we demonstrate that the Fisher information ensures the generalization of FIGD and provides new insights for training-free methods based on the information theory. The experimental results demonstrate that FIGD could achieve different conditional generations more quickly while maintaining high quality.
☆ AdaFSNet: Time Series Classification Based on Convolutional Network with a Adaptive and Effective Kernel Size Configuration IJCNN 2024
Time series classification is one of the most critical and challenging problems in data mining, existing widely in various fields and holding significant research importance. Despite extensive research and notable achievements with successful real-world applications, addressing the challenge of capturing the appropriate receptive field (RF) size from one-dimensional or multi-dimensional time series of varying lengths remains a persistent issue, which greatly impacts performance and varies considerably across different datasets. In this paper, we propose an Adaptive and Effective Full-Scope Convolutional Neural Network (AdaFSNet) to enhance the accuracy of time series classification. This network includes two Dense Blocks. Particularly, it can dynamically choose a range of kernel sizes that effectively encompass the optimal RF size for various datasets by incorporating multiple prime numbers corresponding to the time series length. We also design a TargetDrop block, which can reduce redundancy while extracting a more effective RF. To assess the effectiveness of the AdaFSNet network, comprehensive experiments were conducted using the UCR and UEA datasets, which include one-dimensional and multi-dimensional time series data, respectively. Our model surpassed baseline models in terms of classification accuracy, underscoring the AdaFSNet network's efficiency and effectiveness in handling time series classification tasks.
comment: Accepted by IJCNN 2024
☆ FAD-SAR: A Novel Fishing Activity Detection System via Synthetic Aperture Radar Images Based on Deep Learning Method
Illegal, unreported, and unregulated (IUU) fishing seriously affects various aspects of human life. However, current methods for detecting and monitoring IUU activities at sea have limitations. While Synthetic Aperture Radar (SAR) can complement existing vessel detection systems, extracting useful information from SAR images using traditional methods, especially for IUU fishing identification, poses challenges. This paper proposes a deep learning-based system for detecting fishing activities. We implemented this system on the xView3 dataset using six classical object detection models: Faster R-CNN, Cascade R-CNN, SSD, RetinaNet, FSAF, and FCOS. We applied improvement methods to enhance the performance of the Faster R-CNN model. Specifically, training the Faster R-CNN model using Online Hard Example Mining (OHEM) strategy improved the Avg-F1 value from 0.212 to 0.216, representing a 1.96% improvement.
☆ Flood Data Analysis on SpaceNet 8 Using Apache Sedona
With the escalating frequency of floods posing persistent threats to human life and property, satellite remote sensing has emerged as an indispensable tool for monitoring flood hazards. SpaceNet8 offers a unique opportunity to leverage cutting-edge artificial intelligence technologies to assess these hazards. A significant contribution of this research is its application of Apache Sedona, an advanced platform specifically designed for the efficient and distributed processing of large-scale geospatial data. This platform aims to enhance the efficiency of error analysis, a critical aspect of improving flood damage detection accuracy. Based on Apache Sedona, we introduce a novel approach that addresses the challenges associated with inaccuracies in flood damage detection. This approach involves the retrieval of cases from historical flood events, the adaptation of these cases to current scenarios, and the revision of the model based on clustering algorithms to refine its performance. Through the replication of both the SpaceNet8 baseline and its top-performing models, we embark on a comprehensive error analysis. This analysis reveals several main sources of inaccuracies. To address these issues, we employ data visual interpretation and histogram equalization techniques, resulting in significant improvements in model metrics. After these enhancements, our indicators show a notable improvement, with precision up by 5%, F1 score by 2.6%, and IoU by 4.5%. This work highlights the importance of advanced geospatial data processing tools, such as Apache Sedona. By improving the accuracy and efficiency of flood detection, this research contributes to safeguarding public safety and strengthening infrastructure resilience in flood-prone areas, making it a valuable addition to the field of remote sensing and disaster management.
☆ S$^2$Mamba: A Spatial-spectral State Space Model for Hyperspectral Image Classification
Land cover analysis using hyperspectral images (HSI) remains an open problem due to their low spatial resolution and complex spectral information. Recent studies are primarily dedicated to designing Transformer-based architectures for spatial-spectral long-range dependencies modeling, which is computationally expensive with quadratic complexity. Selective structured state space model (Mamba), which is efficient for modeling long-range dependencies with linear complexity, has recently shown promising progress. However, its potential in hyperspectral image processing that requires handling numerous spectral bands has not yet been explored. In this paper, we innovatively propose S$^2$Mamba, a spatial-spectral state space model for hyperspectral image classification, to excavate spatial-spectral contextual features, resulting in more efficient and accurate land cover analysis. In S$^2$Mamba, two selective structured state space models through different dimensions are designed for feature extraction, one for spatial, and the other for spectral, along with a spatial-spectral mixture gate for optimal fusion. More specifically, S$^2$Mamba first captures spatial contextual relations by interacting each pixel with its adjacent through a Patch Cross Scanning module and then explores semantic information from continuous spectral bands through a Bi-directional Spectral Scanning module. Considering the distinct expertise of the two attributes in homogenous and complicated texture scenes, we realize the Spatial-spectral Mixture Gate by a group of learnable matrices, allowing for the adaptive incorporation of representations learned across different dimensions. Extensive experiments conducted on HSI classification benchmarks demonstrate the superiority and prospect of S$^2$Mamba. The code will be available at: https://github.com/PURE-melo/S2Mamba.
comment: 13 pages, 9 figures
☆ Paint by Inpaint: Learning to Add Image Objects by Removing Them First
Image editing has advanced significantly with the introduction of text-conditioned diffusion models. Despite this progress, seamlessly adding objects to images based on textual instructions without requiring user-provided input masks remains a challenge. We address this by leveraging the insight that removing objects (Inpaint) is significantly simpler than its inverse process of adding them (Paint), attributed to the utilization of segmentation mask datasets alongside inpainting models that inpaint within these masks. Capitalizing on this realization, by implementing an automated and extensive pipeline, we curate a filtered large-scale image dataset containing pairs of images and their corresponding object-removed versions. Using these pairs, we train a diffusion model to inverse the inpainting process, effectively adding objects into images. Unlike other editing datasets, ours features natural target images instead of synthetic ones; moreover, it maintains consistency between source and target by construction. Additionally, we utilize a large Vision-Language Model to provide detailed descriptions of the removed objects and a Large Language Model to convert these descriptions into diverse, natural-language instructions. We show that the trained model surpasses existing ones both qualitatively and quantitatively, and release the large-scale dataset alongside the trained models for the community.
☆ Enhancing Action Recognition from Low-Quality Skeleton Data via Part-Level Knowledge Distillation
Skeleton-based action recognition is vital for comprehending human-centric videos and has applications in diverse domains. One of the challenges of skeleton-based action recognition is dealing with low-quality data, such as skeletons that have missing or inaccurate joints. This paper addresses the issue of enhancing action recognition using low-quality skeletons through a general knowledge distillation framework. The proposed framework employs a teacher-student model setup, where a teacher model trained on high-quality skeletons guides the learning of a student model that handles low-quality skeletons. To bridge the gap between heterogeneous high-quality and lowquality skeletons, we present a novel part-based skeleton matching strategy, which exploits shared body parts to facilitate local action pattern learning. An action-specific part matrix is developed to emphasize critical parts for different actions, enabling the student model to distill discriminative part-level knowledge. A novel part-level multi-sample contrastive loss achieves knowledge transfer from multiple high-quality skeletons to low-quality ones, which enables the proposed knowledge distillation framework to include training low-quality skeletons that lack corresponding high-quality matches. Comprehensive experiments conducted on the NTU-RGB+D, Penn Action, and SYSU 3D HOI datasets demonstrate the effectiveness of the proposed knowledge distillation framework.
☆ LMM-PCQA: Assisting Point Cloud Quality Assessment with LMM
Although large multi-modality models (LMMs) have seen extensive exploration and application in various quality assessment studies, their integration into Point Cloud Quality Assessment (PCQA) remains unexplored. Given LMMs' exceptional performance and robustness in low-level vision and quality assessment tasks, this study aims to investigate the feasibility of imparting PCQA knowledge to LMMs through text supervision. To achieve this, we transform quality labels into textual descriptions during the fine-tuning phase, enabling LMMs to derive quality rating logits from 2D projections of point clouds. To compensate for the loss of perception in the 3D domain, structural features are extracted as well. These quality logits and structural features are then combined and regressed into quality scores. Our experimental results affirm the effectiveness of our approach, showcasing a novel integration of LMMs into PCQA that enhances model understanding and assessment accuracy. We hope our contributions can inspire subsequent investigations into the fusion of LMMs with PCQA, fostering advancements in 3D visual quality analysis and beyond.
☆ Rethinking Attention Gated with Hybrid Dual Pyramid Transformer-CNN for Generalized Segmentation in Medical Imaging
Inspired by the success of Transformers in Computer vision, Transformers have been widely investigated for medical imaging segmentation. However, most of Transformer architecture are using the recent transformer architectures as encoder or as parallel encoder with the CNN encoder. In this paper, we introduce a novel hybrid CNN-Transformer segmentation architecture (PAG-TransYnet) designed for efficiently building a strong CNN-Transformer encoder. Our approach exploits attention gates within a Dual Pyramid hybrid encoder. The contributions of this methodology can be summarized into three key aspects: (i) the utilization of Pyramid input for highlighting the prominent features at different scales, (ii) the incorporation of a PVT transformer to capture long-range dependencies across various resolutions, and (iii) the implementation of a Dual-Attention Gate mechanism for effectively fusing prominent features from both CNN and Transformer branches. Through comprehensive evaluation across different segmentation tasks including: abdominal multi-organs segmentation, infection segmentation (Covid-19 and Bone Metastasis), microscopic tissues segmentation (Gland and Nucleus). The proposed approach demonstrates state-of-the-art performance and exhibits remarkable generalization capabilities. This research represents a significant advancement towards addressing the pressing need for efficient and adaptable segmentation solutions in medical imaging applications.
☆ Permutation-equivariant quantum convolutional neural networks
The Symmetric group $S_{n}$ manifests itself in large classes of quantum systems as the invariance of certain characteristics of a quantum state with respect to permuting the qubits. The subgroups of $S_{n}$ arise, among many other contexts, to describe label symmetry of classical images with respect to spatial transformations, e.g. reflection or rotation. Equipped with the formalism of geometric quantum machine learning, in this work we propose the architectures of equivariant quantum convolutional neural networks (EQCNNs) adherent to $S_{n}$ and its subgroups. We demonstrate that a careful choice of pixel-to-qubit embedding order can facilitate easy construction of EQCNNs for small subgroups of $S_{n}$. Our novel EQCNN architecture corresponding to the full permutation group $S_{n}$ is built by applying all possible QCNNs with equal probability, which can also be conceptualized as a dropout strategy in quantum neural networks. For subgroups of $S_{n}$, our numerical results using MNIST datasets show better classification accuracy than non-equivariant QCNNs. The $S_{n}$-equivariant QCNN architecture shows significantly improved training and test performance than non-equivariant QCNN for classification of connected and non-connected graphs. When trained with sufficiently large number of data, the $S_{n}$-equivariant QCNN shows better average performance compared to $S_{n}$-equivariant QNN . These results contribute towards building powerful quantum machine learning architectures in permutation-symmetric systems.
comment: 13 pages, 10 figures
☆ Assessing Image Quality Using a Simple Generative Representation
Perceptual image quality assessment (IQA) is the task of predicting the visual quality of an image as perceived by a human observer. Current state-of-the-art techniques are based on deep representations trained in discriminative manner. Such representations may ignore visually important features, if they are not predictive of class labels. Recent generative models successfully learn low-dimensional representations using auto-encoding and have been argued to preserve better visual features. Here we leverage existing auto-encoders and propose VAE-QA, a simple and efficient method for predicting image quality in the presence of a full-reference. We evaluate our approach on four standard benchmarks and find that it significantly improves generalization across datasets, has fewer trainable parameters, a smaller memory footprint and faster run time.
♻ ☆ RTA-Former: Reverse Transformer Attention for Polyp Segmentation
Polyp segmentation is a key aspect of colorectal cancer prevention, enabling early detection and guiding subsequent treatments. Intelligent diagnostic tools, including deep learning solutions, are widely explored to streamline and potentially automate this process. However, even with many powerful network architectures, there still comes the problem of producing accurate edge segmentation. In this paper, we introduce a novel network, namely RTA-Former, that employs a transformer model as the encoder backbone and innovatively adapts Reverse Attention (RA) with a transformer stage in the decoder for enhanced edge segmentation. The results of the experiments illustrate that RTA-Former achieves state-of-the-art (SOTA) performance in five polyp segmentation datasets. The strong capability of RTA-Former holds promise in improving the accuracy of Transformer-based polyp segmentation, potentially leading to better clinical decisions and patient outcomes. Our code is publicly available on GitHub.
comment: The paper has been accepted by EMBC 2024
♻ ☆ KS-APR: Keyframe Selection for Robust Absolute Pose Regression
Markerless Mobile Augmented Reality (AR) aims to anchor digital content in the physical world without using specific 2D or 3D objects. Absolute Pose Regressors (APR) are end-to-end machine learning solutions that infer the device's pose from a single monocular image. Thanks to their low computation cost, they can be directly executed on the constrained hardware of mobile AR devices. However, APR methods tend to yield significant inaccuracies for input images that are too distant from the training set. This paper introduces KS-APR, a pipeline that assesses the reliability of an estimated pose with minimal overhead by combining the inference results of the APR and the prior images in the training set. Mobile AR systems tend to rely upon visual-inertial odometry to track the relative pose of the device during the experience. As such, KS-APR favours reliability over frequency, discarding unreliable poses. This pipeline can integrate most existing APR methods to improve accuracy by filtering unreliable images with their pose estimates. We implement the pipeline on three types of APR models on indoor and outdoor datasets. The median error on position and orientation is reduced for all models, and the proportion of large errors is minimized across datasets. Our method enables state-of-the-art APRs such as DFNetdm to outperform single-image and sequential APR methods. These results demonstrate the scalability and effectiveness of KS-APR for visual localization tasks that do not require one-shot decisions.
♻ ☆ Forensic Iris Image-Based Post-Mortem Interval Estimation
Post-mortem iris recognition is an emerging application of iris-based human identification in a forensic setup. One factor that may be useful in conditioning iris recognition methods is the tissue decomposition level, which is correlated with the post-mortem interval (PMI), i.g., the number of hours that have elapsed since death. PMI, however, is not always available, and its precise estimation remains one of the core challenges in forensic examination. This paper presents the first known to us method of PMI estimation directly from forensic iris images. To assess the feasibility of the iris-based PMI estimation, convolutional neural networks-based models (VGG19, DenseNet121, ResNet152, and Inception_v3) were trained to predict the PMI from (a) near-infrared (NIR), (b) visible (RGB), and (c) multispectral forensic iris images. Models were evaluated following a 10-fold cross-validation in (S1) sample-disjoint, (S2) subject-disjoint, and (S3) cross-dataset scenarios. We found that using the multispectral data offers a spectacularly low mean absolute error (MAE) of approximately 3.5 hours in scenario (S1), a bit worse MAE of approximately 17.5 hours in scenario (S2), and an MAE of approximately 69.0 hours of in the scenario (S3). This suggests that if the environmental conditions are favorable (e.g., bodies are kept in low temperatures), forensic iris images provide features that are indicative of the PMI and can be automatically estimated. The source codes and model weights are made available with the paper.
♻ ☆ Deciphering Heartbeat Signatures: A Vision Transformer Approach to Explainable Atrial Fibrillation Detection from ECG Signals
Remote patient monitoring based on wearable single-lead electrocardiogram (ECG) devices has significant potential for enabling the early detection of heart disease, especially in combination with artificial intelligence (AI) approaches for automated heart disease detection. There have been prior studies applying AI approaches based on deep learning for heart disease detection. However, these models are yet to be widely accepted as a reliable aid for clinical diagnostics, in part due to the current black-box perception surrounding many AI algorithms. In particular, there is a need to identify the key features of the ECG signal that contribute toward making an accurate diagnosis, thereby enhancing the interpretability of the model. In the present study, we develop a vision transformer approach to identify atrial fibrillation based on single-lead ECG data. A residual network (ResNet) approach is also developed for comparison with the vision transformer approach. These models are applied to the Chapman-Shaoxing dataset to classify atrial fibrillation, as well as another common arrhythmia, sinus bradycardia, and normal sinus rhythm heartbeats. The models enable the identification of the key regions of the heartbeat that determine the resulting classification, and highlight the importance of P-waves and T-waves, as well as heartbeat duration and signal amplitude, in distinguishing normal sinus rhythm from atrial fibrillation and sinus bradycardia.
comment: Accepted for publication at the 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE EMBC 2024
♻ ☆ Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization ICLR 2024
Large foundation models are becoming ubiquitous, but training them from scratch is prohibitively expensive. Thus, efficiently adapting these powerful models to downstream tasks is increasingly important. In this paper, we study a principled finetuning paradigm -- Orthogonal Finetuning (OFT) -- for downstream task adaptation. Despite demonstrating good generalizability, OFT still uses a fairly large number of trainable parameters due to the high dimensionality of orthogonal matrices. To address this, we start by examining OFT from an information transmission perspective, and then identify a few key desiderata that enable better parameter-efficiency. Inspired by how the Cooley-Tukey fast Fourier transform algorithm enables efficient information transmission, we propose an efficient orthogonal parameterization using butterfly structures. We apply this parameterization to OFT, creating a novel parameter-efficient finetuning method, called Orthogonal Butterfly (BOFT). By subsuming OFT as a special case, BOFT introduces a generalized orthogonal finetuning framework. Finally, we conduct an extensive empirical study of adapting large vision transformers, large language models, and text-to-image diffusion models to various downstream tasks in vision and language.
comment: ICLR 2024 (v2: 34 pages, 19 figures)
♻ ☆ HyperSDFusion: Bridging Hierarchical Structures in Language and Geometry for Enhanced 3D Text2Shape Generation
3D shape generation from text is a fundamental task in 3D representation learning. The text-shape pairs exhibit a hierarchical structure, where a general text like ``chair" covers all 3D shapes of the chair, while more detailed prompts refer to more specific shapes. Furthermore, both text and 3D shapes are inherently hierarchical structures. However, existing Text2Shape methods, such as SDFusion, do not exploit that. In this work, we propose HyperSDFusion, a dual-branch diffusion model that generates 3D shapes from a given text. Since hyperbolic space is suitable for handling hierarchical data, we propose to learn the hierarchical representations of text and 3D shapes in hyperbolic space. First, we introduce a hyperbolic text-image encoder to learn the sequential and multi-modal hierarchical features of text in hyperbolic space. In addition, we design a hyperbolic text-graph convolution module to learn the hierarchical features of text in hyperbolic space. In order to fully utilize these text features, we introduce a dual-branch structure to embed text features in 3D feature space. At last, to endow the generated 3D shapes with a hierarchical structure, we devise a hyperbolic hierarchical loss. Our method is the first to explore the hyperbolic hierarchical representation for text-to-shape generation. Experimental results on the existing text-to-shape paired dataset, Text2Shape, achieved state-of-the-art results. We release our implementation under HyperSDFusion.github.io.
♻ ☆ Multi-View Representation is What You Need for Point-Cloud Pre-Training ICLR 2024
A promising direction for pre-training 3D point clouds is to leverage the massive amount of data in 2D, whereas the domain gap between 2D and 3D creates a fundamental challenge. This paper proposes a novel approach to point-cloud pre-training that learns 3D representations by leveraging pre-trained 2D networks. Different from the popular practice of predicting 2D features first and then obtaining 3D features through dimensionality lifting, our approach directly uses a 3D network for feature extraction. We train the 3D feature extraction network with the help of the novel 2D knowledge transfer loss, which enforces the 2D projections of the 3D feature to be consistent with the output of pre-trained 2D networks. To prevent the feature from discarding 3D signals, we introduce the multi-view consistency loss that additionally encourages the projected 2D feature representations to capture pixel-wise correspondences across different views. Such correspondences induce 3D geometry and effectively retain 3D features in the projected 2D features. Experimental results demonstrate that our pre-trained model can be successfully transferred to various downstream tasks, including 3D shape classification, part segmentation, 3D object detection, and semantic segmentation, achieving state-of-the-art performance.
comment: Published in ICLR 2024
♻ ☆ 3D Feature Prediction for Masked-AutoEncoder-Based Point Cloud Pretraining ICLR 2024
Masked autoencoders (MAE) have recently been introduced to 3D self-supervised pretraining for point clouds due to their great success in NLP and computer vision. Unlike MAEs used in the image domain, where the pretext task is to restore features at the masked pixels, such as colors, the existing 3D MAE works reconstruct the missing geometry only, i.e, the location of the masked points. In contrast to previous studies, we advocate that point location recovery is inessential and restoring intrinsic point features is much superior. To this end, we propose to ignore point position reconstruction and recover high-order features at masked points including surface normals and surface variations, through a novel attention-based decoder which is independent of the encoder design. We validate the effectiveness of our pretext task and decoder design using different encoder structures for 3D training and demonstrate the advantages of our pretrained networks on various point cloud analysis tasks.
comment: Published in ICLR 2024
♻ ☆ Artificial Intelligence in Assessing Cardiovascular Diseases and Risk Factors via Retinal Fundus Images: A Review of the Last Decade
Background: Cardiovascular diseases (CVDs) are the leading cause of death globally. The use of artificial intelligence (AI) methods - in particular, deep learning (DL) - has been on the rise lately for the analysis of different CVD-related topics. The use of fundus images and optical coherence tomography angiography (OCTA) in the diagnosis of retinal diseases has also been extensively studied. To better understand heart function and anticipate changes based on microvascular characteristics and function, researchers are currently exploring the integration of AI with non-invasive retinal scanning. There is great potential to reduce the number of cardiovascular events and the financial strain on healthcare systems by utilizing AI-assisted early detection and prediction of cardiovascular diseases on a large scale. Method: A comprehensive search was conducted across various databases, including PubMed, Medline, Google Scholar, Scopus, Web of Sciences, IEEE Xplore, and ACM Digital Library, using specific keywords related to cardiovascular diseases and artificial intelligence. Results: The study included 87 English-language publications selected for relevance, and additional references were considered. This paper provides an overview of the recent developments and difficulties in using artificial intelligence and retinal imaging to diagnose cardiovascular diseases. It provides insights for further exploration in this field. Conclusion: Researchers are trying to develop precise disease prognosis patterns in response to the aging population and the growing global burden of CVD. AI and deep learning are revolutionizing healthcare by potentially diagnosing multiple CVDs from a single retinal image. However, swifter adoption of these technologies in healthcare systems is required.
comment: 41 pages, 5 figures, 3 tables, 114 references
♻ ☆ Data Upcycling Knowledge Distillation for Image Super-Resolution
Knowledge distillation (KD) compresses deep neural networks by transferring task-related knowledge from cumbersome pre-trained teacher models to compact student models. However, current KD methods for super-resolution (SR) networks overlook the nature of SR task that the outputs of the teacher model are noisy approximations to the ground-truth distribution of high-quality images (GT), which shades the teacher model's knowledge to result in limited KD effects. To utilize the teacher model beyond the GT upper-bound, we present the Data Upcycling Knowledge Distillation (DUKD), to transfer the teacher model's knowledge to the student model through the upcycled in-domain data derived from training data. Besides, we impose label consistency regularization to KD for SR by the paired invertible augmentations to improve the student model's performance and robustness. Comprehensive experiments demonstrate that the DUKD method significantly outperforms previous arts on several SR tasks.
♻ ☆ A Survey on Intermediate Fusion Methods for Collaborative Perception Categorized by Real World Challenges
This survey analyzes intermediate fusion methods in collaborative perception for autonomous driving, categorized by real-world challenges. We examine various methods, detailing their features and the evaluation metrics they employ. The focus is on addressing challenges like transmission efficiency, localization errors, communication disruptions, and heterogeneity. Moreover, we explore strategies to counter adversarial attacks and defenses, as well as approaches to adapt to domain shifts. The objective is to present an overview of how intermediate fusion methods effectively meet these diverse challenges, highlighting their role in advancing the field of collaborative perception in autonomous driving.
comment: 8 pages, 6 tables
♻ ☆ SyncTalk: The Devil is in the Synchronization for Talking Head Synthesis CVPR 2024
Achieving high synchronization in the synthesis of realistic, speech-driven talking head videos presents a significant challenge. Traditional Generative Adversarial Networks (GAN) struggle to maintain consistent facial identity, while Neural Radiance Fields (NeRF) methods, although they can address this issue, often produce mismatched lip movements, inadequate facial expressions, and unstable head poses. A lifelike talking head requires synchronized coordination of subject identity, lip movements, facial expressions, and head poses. The absence of these synchronizations is a fundamental flaw, leading to unrealistic and artificial outcomes. To address the critical issue of synchronization, identified as the "devil" in creating realistic talking heads, we introduce SyncTalk. This NeRF-based method effectively maintains subject identity, enhancing synchronization and realism in talking head synthesis. SyncTalk employs a Face-Sync Controller to align lip movements with speech and innovatively uses a 3D facial blendshape model to capture accurate facial expressions. Our Head-Sync Stabilizer optimizes head poses, achieving more natural head movements. The Portrait-Sync Generator restores hair details and blends the generated head with the torso for a seamless visual experience. Extensive experiments and user studies demonstrate that SyncTalk outperforms state-of-the-art methods in synchronization and realism. We recommend watching the supplementary video: https://ziqiaopeng.github.io/synctalk
comment: Accepted by CVPR 2024
♻ ☆ Beyond Known Clusters: Probe New Prototypes for Efficient Generalized Class Discovery
Generalized Class Discovery (GCD) aims to dynamically assign labels to unlabelled data partially based on knowledge learned from labelled data, where the unlabelled data may come from known or novel classes. The prevailing approach generally involves clustering across all data and learning conceptions by prototypical contrastive learning. However, existing methods largely hinge on the performance of clustering algorithms and are thus subject to their inherent limitations. Firstly, the estimated cluster number is often smaller than the ground truth, making the existing methods suffer from the lack of prototypes for comprehensive conception learning. To address this issue, we propose an adaptive probing mechanism that introduces learnable potential prototypes to expand cluster prototypes (centers). As there is no ground truth for the potential prototype, we develop a self-supervised prototype learning framework to optimize the potential prototype in an end-to-end fashion. Secondly, clustering is computationally intensive, and the conventional strategy of clustering both labelled and unlabelled instances exacerbates this issue. To counteract this inefficiency, we opt to cluster only the unlabelled instances and subsequently expand the cluster prototypes with our introduced potential prototypes to fast explore novel classes. Despite the simplicity of our proposed method, extensive empirical analysis on a wide range of datasets confirms that our method consistently delivers state-of-the-art results. Specifically, our method surpasses the nearest competitor by a significant margin of \textbf{9.7}$\%$ within the Stanford Cars dataset and \textbf{12$\times$} clustering efficiency within the Herbarium 19 dataset. We will make the code and checkpoints publicly available at \url{https://github.com/xjtuYW/PNP.git}.
comment: 9 pages, 7 figures
Information Retrieval 11
☆ User Welfare Optimization in Recommender Systems with Competing Content Creators
Driven by the new economic opportunities created by the creator economy, an increasing number of content creators rely on and compete for revenue generated from online content recommendation platforms. This burgeoning competition reshapes the dynamics of content distribution and profoundly impacts long-term user welfare on the platform. However, the absence of a comprehensive picture of global user preference distribution often traps the competition, especially the creators, in states that yield sub-optimal user welfare. To encourage creators to best serve a broad user population with relevant content, it becomes the platform's responsibility to leverage its information advantage regarding user preference distribution to accurately signal creators. In this study, we perform system-side user welfare optimization under a competitive game setting among content creators. We propose an algorithmic solution for the platform, which dynamically computes a sequence of weights for each user based on their satisfaction of the recommended content. These weights are then utilized to design mechanisms that adjust the recommendation policy or the post-recommendation rewards, thereby influencing creators' content production strategies. To validate the effectiveness of our proposed method, we report our findings from a series of experiments, including: 1. a proof-of-concept negative example illustrating how creators' strategies converge towards sub-optimal states without platform intervention; 2. offline experiments employing our proposed intervention mechanisms on diverse datasets; and 3. results from a three-week online experiment conducted on a leading short-video recommendation platform.
☆ Retrieval-Oriented Knowledge for Click-Through Rate Prediction
Click-through rate (CTR) prediction plays an important role in personalized recommendations. Recently, sample-level retrieval-based models (e.g., RIM) have achieved remarkable performance by retrieving and aggregating relevant samples. However, their inefficiency at the inference stage makes them impractical for industrial applications. To overcome this issue, this paper proposes a universal plug-and-play Retrieval-Oriented Knowledge (ROK) framework. Specifically, a knowledge base, consisting of a retrieval-oriented embedding layer and a knowledge encoder, is designed to preserve and imitate the retrieved & aggregated representations in a decomposition-reconstruction paradigm. Knowledge distillation and contrastive learning methods are utilized to optimize the knowledge base, and the learned retrieval-enhanced representations can be integrated with arbitrary CTR models in both instance-wise and feature-wise manners. Extensive experiments on three large-scale datasets show that ROK achieves competitive performance with the retrieval-based CTR models while reserving superior inference efficiency and model compatibility.
☆ Mapping 'when'-clauses in Latin American and Caribbean languages: an experiment in subtoken-based typology
Languages can encode temporal subordination lexically, via subordinating conjunctions, and morphologically, by marking the relation on the predicate. Systematic cross-linguistic variation among the former can be studied using well-established token-based typological approaches to token-aligned parallel corpora. Variation among different morphological means is instead much harder to tackle and therefore more poorly understood, despite being predominant in several language groups. This paper explores variation in the expression of generic temporal subordination ('when'-clauses) among the languages of Latin America and the Caribbean, where morphological marking is particularly common. It presents probabilistic semantic maps computed on the basis of the languages of the region, thus avoiding bias towards the many world's languages that exclusively use lexified connectors, incorporating associations between character $n$-grams and English $when$. The approach allows capturing morphological clause-linkage devices in addition to lexified connectors, paving the way for larger-scale, strategy-agnostic analyses of typological variation in temporal subordination.
comment: 10 pages, 6 figures. To be published in the 2024 Proceedings of the Workshop on Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP)
☆ Contrastive Learning Method for Sequential Recommendation based on Multi-Intention Disentanglement
Sequential recommendation is one of the important branches of recommender system, aiming to achieve personalized recommended items for the future through the analysis and prediction of users' ordered historical interactive behaviors. However, along with the growth of the user volume and the increasingly rich behavioral information, how to understand and disentangle the user's interactive multi-intention effectively also poses challenges to behavior prediction and sequential recommendation. In light of these challenges, we propose a Contrastive Learning sequential recommendation method based on Multi-Intention Disentanglement (MIDCL). In our work, intentions are recognized as dynamic and diverse, and user behaviors are often driven by current multi-intentions, which means that the model needs to not only mine the most relevant implicit intention for each user, but also impair the influence from irrelevant intentions. Therefore, we choose Variational Auto-Encoder (VAE) to realize the disentanglement of users' multi-intentions, and propose two types of contrastive learning paradigms for finding the most relevant user's interactive intention, and maximizing the mutual information of positive sample pairs, respectively. Experimental results show that MIDCL not only has significant superiority over most existing baseline methods, but also brings a more interpretable case to the research about intention-based prediction and recommendation.
☆ Ranked List Truncation for Large Language Model-based Re-Ranking SIGIR 2024
We study ranked list truncation (RLT) from a novel "retrieve-then-re-rank" perspective, where we optimize re-ranking by truncating the retrieved list (i.e., trim re-ranking candidates). RLT is crucial for re-ranking as it can improve re-ranking efficiency by sending variable-length candidate lists to a re-ranker on a per-query basis. It also has the potential to improve re-ranking effectiveness. Despite its importance, there is limited research into applying RLT methods to this new perspective. To address this research gap, we reproduce existing RLT methods in the context of re-ranking, especially newly emerged large language model (LLM)-based re-ranking. In particular, we examine to what extent established findings on RLT for retrieval are generalizable to the "retrieve-then-re-rank" setup from three perspectives: (i) assessing RLT methods in the context of LLM-based re-ranking with lexical first-stage retrieval, (ii) investigating the impact of different types of first-stage retrievers on RLT methods, and (iii) investigating the impact of different types of re-rankers on RLT methods. We perform experiments on the TREC 2019 and 2020 deep learning tracks, investigating 8 RLT methods for pipelines involving 3 retrievers and 2 re-rankers. We reach new insights into RLT methods in the context of re-ranking.
comment: Accepted for publication as a long paper at SIGIR 2024
☆ Behavior-Contextualized Item Preference Modeling for Multi-Behavior Recommendation SIGIR 2024
In recommender systems, multi-behavior methods have demonstrated their effectiveness in mitigating issues like data sparsity, a common challenge in traditional single-behavior recommendation approaches. These methods typically infer user preferences from various auxiliary behaviors and apply them to the target behavior for recommendations. However, this direct transfer can introduce noise to the target behavior in recommendation, due to variations in user attention across different behaviors. To address this issue, this paper introduces a novel approach, Behavior-Contextualized Item Preference Modeling (BCIPM), for multi-behavior recommendation. Our proposed Behavior-Contextualized Item Preference Network discerns and learns users' specific item preferences within each behavior. It then considers only those preferences relevant to the target behavior for final recommendations, significantly reducing noise from auxiliary behaviors. These auxiliary behaviors are utilized solely for training the network parameters, thereby refining the learning process without compromising the accuracy of the target behavior recommendations. To further enhance the effectiveness of BCIPM, we adopt a strategy of pre-training the initial embeddings. This step is crucial for enriching the item-aware preferences, particularly in scenarios where data related to the target behavior is sparse. Comprehensive experiments conducted on four real-world datasets demonstrate BCIPM's superior performance compared to several leading state-of-the-art models, validating the robustness and efficiency of our proposed approach.
comment: This paper has been accepted by SIGIR 2024
☆ Utilizing Large Language Models for Information Extraction from Real Estate Transactions
Real estate sales contracts contain crucial information for property transactions, but manual extraction of data can be time-consuming and error-prone. This paper explores the application of large language models, specifically transformer-based architectures, for automated information extraction from real estate contracts. We discuss challenges, techniques, and future directions in leveraging these models to improve efficiency and accuracy in real estate contract analysis.
♻ ☆ CaDRec: Contextualized and Debiased Recommender Model SIGIR 2024
Recommender models aimed at mining users' behavioral patterns have raised great attention as one of the essential applications in daily life. Recent work on graph neural networks (GNNs) or debiasing methods has attained remarkable gains. However, they still suffer from (1) over-smoothing node embeddings caused by recursive convolutions with GNNs, and (2) the skewed distribution of interactions due to popularity and user-individual biases. This paper proposes a contextualized and debiased recommender model (CaDRec). To overcome the over-smoothing issue, we explore a novel hypergraph convolution operator that can select effective neighbors during convolution by introducing both structural context and sequential context. To tackle the skewed distribution, we propose two strategies for disentangling interactions: (1) modeling individual biases to learn unbiased item embeddings, and (2) incorporating item popularity with positional encoding. Moreover, we mathematically show that the imbalance of the gradients to update item embeddings exacerbates the popularity bias, thus adopting regularization and weighting schemes as solutions. Extensive experiments on four datasets demonstrate the superiority of the CaDRec against state-of-the-art (SOTA) methods. Our source code and data are released at https://github.com/WangXFng/CaDRec.
comment: Accepted to SIGIR 2024
♻ ☆ NFARec: A Negative Feedback-Aware Recommender Model SIGIR 2024
Graph neural network (GNN)-based models have been extensively studied for recommendations, as they can extract high-order collaborative signals accurately which is required for high-quality recommender systems. However, they neglect the valuable information gained through negative feedback in two aspects: (1) different users might hold opposite feedback on the same item, which hampers optimal information propagation in GNNs, and (2) even when an item vastly deviates from users' preferences, they might still choose it and provide a negative rating. In this paper, we propose a negative feedback-aware recommender model (NFARec) that maximizes the leverage of negative feedback. To transfer information to multi-hop neighbors along an optimal path effectively, NFARec adopts a feedback-aware correlation that guides hypergraph convolutions (HGCs) to learn users' structural representations. Moreover, NFARec incorporates an auxiliary task - predicting the feedback sentiment polarity (i.e., positive or negative) of the next interaction - based on the Transformer Hawkes Process. The task is beneficial for understanding users by learning the sentiment expressed in their previous sequential feedback patterns and predicting future interactions. Extensive experiments demonstrate that NFARec outperforms competitive baselines. Our source code and data are released at https://github.com/WangXFng/NFARec.
comment: Accepted to SIGIR 2024
♻ ☆ Scenario-Adaptive Fine-Grained Personalization Network: Tailoring User Behavior Representation to the Scenario Context SIGIR 2024
Existing methods often adjust representations adaptively only after aggregating user behavior sequences. This coarse-grained approach to re-weighting the entire user sequence hampers the model's ability to accurately model the user interest migration across different scenarios. To enhance the model's capacity to capture user interests from historical behavior sequences in each scenario, we develop a ranking framework named the Scenario-Adaptive Fine-Grained Personalization Network (SFPNet), which designs a kind of fine-grained method for multi-scenario personalized recommendations. Specifically, SFPNet comprises a series of blocks named as Scenario-Tailoring Block, stacked sequentially. Each block initially deploys a parameter personalization unit to integrate scenario information at a coarse-grained level by redefining fundamental features. Subsequently, we consolidate scenario-adaptively adjusted feature representations to serve as context information. By employing residual connection, we incorporate this context into the representation of each historical behavior, allowing for context-aware fine-grained customization of the behavior representations at the scenario-level, which in turn supports scenario-aware user interest modeling.
comment: Accepted by SIGIR 2024, 10 pages, 5 figures, 5 tables
♻ ☆ MealRec$^+$: A Meal Recommendation Dataset with Meal-Course Affiliation for Personalization and Healthiness SIGIR 2024
Meal recommendation, as a typical health-related recommendation task, contains complex relationships between users, courses, and meals. Among them, meal-course affiliation associates user-meal and user-course interactions. However, an extensive literature review demonstrates that there is a lack of publicly available meal recommendation datasets including meal-course affiliation. Meal recommendation research has been constrained in exploring the impact of cooperation between two levels of interaction on personalization and healthiness. To pave the way for meal recommendation research, we introduce a new benchmark dataset called MealRec$^+$. Due to constraints related to user health privacy and meal scenario characteristics, the collection of data that includes both meal-course affiliation and two levels of interactions is impeded. Therefore, a simulation method is adopted to derive meal-course affiliation and user-meal interaction from the user's dining sessions simulated based on user-course interaction data. Then, two well-known nutritional standards are used to calculate the healthiness scores of meals. Moreover, we experiment with several baseline models, including separate and cooperative interaction learning methods. Our experiment demonstrates that cooperating the two levels of interaction in appropriate ways is beneficial for meal recommendations. Furthermore, in response to the less healthy recommendation phenomenon found in the experiment, we explore methods to enhance the healthiness of meal recommendations. The dataset is available on GitHub (https://github.com/WUT-IDEA/MealRecPlus).
comment: Accepted by SIGIR 2024
Machine Learning 26
☆ SAFE-RL: Saliency-Aware Counterfactual Explainer for Deep Reinforcement Learning Policies
While Deep Reinforcement Learning (DRL) has emerged as a promising solution for intricate control tasks, the lack of explainability of the learned policies impedes its uptake in safety-critical applications, such as automated driving systems (ADS). Counterfactual (CF) explanations have recently gained prominence for their ability to interpret black-box Deep Learning (DL) models. CF examples are associated with minimal changes in the input, resulting in a complementary output by the DL model. Finding such alternations, particularly for high-dimensional visual inputs, poses significant challenges. Besides, the temporal dependency introduced by the reliance of the DRL agent action on a history of past state observations further complicates the generation of CF examples. To address these challenges, we propose using a saliency map to identify the most influential input pixels across the sequence of past observed states by the agent. Then, we feed this map to a deep generative model, enabling the generation of plausible CFs with constrained modifications centred on the salient regions. We evaluate the effectiveness of our framework in diverse domains, including ADS, Atari Pong, Pacman and space-invaders games, using traditional performance metrics such as validity, proximity and sparsity. Experimental results demonstrate that this framework generates more informative and plausible CFs than the state-of-the-art for a wide range of environments and DRL agents. In order to foster research in this area, we have made our datasets and codes publicly available at https://github.com/Amir-Samadi/SAFE-RL.
☆ Position paper: Do not explain (vision models) without context
Does the stethoscope in the picture make the adjacent person a doctor or a patient? This, of course, depends on the contextual relationship of the two objects. If it is obvious, why don not explanation methods for vision models use contextual information? In this paper, we (1) review the most popular methods of explaining computer vision models by pointing out that they do not take into account context information, (2) provide examples of real-world use cases where spatial context plays a significant role, (3) propose new research directions that may lead to better use of context information in explaining computer vision models, (4) argue that a change in approach to explanations is needed from 'where' to 'how'.
☆ DIRESA, a distance-preserving nonlinear dimension reduction technique based on regularized autoencoders
In meteorology, finding similar weather patterns or analogs in historical datasets can be useful for data assimilation, forecasting, and postprocessing. In climate science, analogs in historical and climate projection data are used for attribution and impact studies. However, most of the time, those large weather and climate datasets are nearline. They must be downloaded, which takes a lot of bandwidth and disk space, before the computationally expensive search can be executed. We propose a dimension reduction technique based on autoencoder (AE) neural networks to compress those datasets and perform the search in an interpretable, compressed latent space. A distance-regularized Siamese twin autoencoder (DIRESA) architecture is designed to preserve distance in latent space while capturing the nonlinearities in the datasets. Using conceptual climate models of different complexities, we show that the latent components thus obtained provide physical insight into the dominant modes of variability in the system. Compressing datasets with DIRESA reduces the online storage and keeps the latent components uncorrelated, while the distance (ordering) preservation and reconstruction fidelity robustly outperform Principal Component Analysis (PCA) and other dimension reduction techniques such as UMAP or variational autoencoders.
comment: 16 pages, 10 figures, 4 tables; 7 pages of Supporting Information
☆ Trends and Challenges of Real-time Learning in Large Language Models: A Critical Review
Real-time learning concerns the ability of learning systems to acquire knowledge over time, enabling their adaptation and generalization to novel tasks. It is a critical ability for intelligent, real-world systems, especially when data may be insufficient or difficult to obtain. This review provides a comprehensive analysis of real-time learning in Large Language Models. It synthesizes the state-of-the-art real-time learning paradigms, including continual learning, meta-learning, parameter-efficient learning, and mixture-of-experts learning. We demonstrate their utility for real-time learning by describing specific achievements from these related topics and their critical factors. Finally, the paper highlights current problems and challenges for future research in the field. By consolidating the latest relevant research developments, this review offers a comprehensive understanding of real-time learning and its implications for designing and developing LLM-based learning systems addressing real-world problems.
☆ Using Deep Q-Learning to Dynamically Toggle between Push/Pull Actions in Computational Trust Mechanisms
Recent work on decentralized computational trust models for open Multi Agent Systems has resulted in the development of CA, a biologically inspired model which focuses on the trustee's perspective. This new model addresses a serious unresolved problem in existing trust and reputation models, namely the inability to handle constantly changing behaviors and agents' continuous entry and exit from the system. In previous work, we compared CA to FIRE, a well-known trust and reputation model, and found that CA is superior when the trustor population changes, whereas FIRE is more resilient to the trustee population changes. Thus, in this paper, we investigate how the trustors can detect the presence of several dynamic factors in their environment and then decide which trust model to employ in order to maximize utility. We frame this problem as a machine learning problem in a partially observable environment, where the presence of several dynamic factors is not known to the trustor and we describe how an adaptable trustor can rely on a few measurable features so as to assess the current state of the environment and then use Deep Q Learning (DQN), in a single-agent Reinforcement Learning setting, to learn how to adapt to a changing environment. We ran a series of simulation experiments to compare the performance of the adaptable trustor with the performance of trustors using only one model (FIRE or CA) and we show that an adaptable agent is indeed capable of learning when to use each model and, thus, perform consistently in dynamic environments.
☆ Joint Energy and Latency Optimization in Federated Learning over Cell-Free Massive MIMO Networks
Federated learning (FL) is a distributed learning paradigm wherein users exchange FL models with a server instead of raw datasets, thereby preserving data privacy and reducing communication overhead. However, the increased number of FL users may hinder completing large-scale FL over wireless networks due to high imposed latency. Cell-free massive multiple-input multiple-output~(CFmMIMO) is a promising architecture for implementing FL because it serves many users on the same time/frequency resources. While CFmMIMO enhances energy efficiency through spatial multiplexing and collaborative beamforming, it remains crucial to meticulously allocate uplink transmission powers to the FL users. In this paper, we propose an uplink power allocation scheme in FL over CFmMIMO by considering the effect of each user's power on the energy and latency of other users to jointly minimize the users' uplink energy and the latency of FL training. The proposed solution algorithm is based on the coordinate gradient descent method. Numerical results show that our proposed method outperforms the well-known max-sum rate by increasing up to~$27$\% and max-min energy efficiency of the Dinkelbach method by increasing up to~$21$\% in terms of test accuracy while having limited uplink energy and latency budget for FL over CFmMIMO.
☆ Kernel Corrector LSTM
Forecasting methods are affected by data quality issues in two ways: 1. they are hard to predict, and 2. they may affect the model negatively when it is updated with new data. The latter issue is usually addressed by pre-processing the data to remove those issues. An alternative approach has recently been proposed, Corrector LSTM (cLSTM), which is a Read \& Write Machine Learning (RW-ML) algorithm that changes the data while learning to improve its predictions. Despite promising results being reported, cLSTM is computationally expensive, as it uses a meta-learner to monitor the hidden states of the LSTM. We propose a new RW-ML algorithm, Kernel Corrector LSTM (KcLSTM), that replaces the meta-learner of cLSTM with a simpler method: Kernel Smoothing. We empirically evaluate the forecasting accuracy and the training time of the new algorithm and compare it with cLSTM and LSTM. Results indicate that it is able to decrease the training time while maintaining a competitive forecasting accuracy.
comment: 12 pages, 4 figures, IDA 2024
☆ Parameter-Efficient Tuning Large Language Models for Graph Representation Learning
Text-rich graphs, which exhibit rich textual information on nodes and edges, are prevalent across a wide range of real-world business applications. Large Language Models (LLMs) have demonstrated remarkable abilities in understanding text, which also introduced the potential for more expressive modeling in text-rich graphs. Despite these capabilities, efficiently applying LLMs to representation learning on graphs presents significant challenges. Recently, parameter-efficient fine-tuning methods for LLMs have enabled efficient new task generalization with minimal time and memory consumption. Inspired by this, we introduce Graph-aware Parameter-Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning with LLMs on text-rich graphs. Specifically, we utilize a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt. This prompt is then inserted at the beginning of the text sequence. To improve the quality of graph prompts, we pre-trained the GNN to assist the frozen LLM in predicting the next token in the node text. Compared with existing joint GNN and LMs, our method directly generate the node embeddings from large language models with an affordable fine-tuning cost. We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations. Our results demonstrate the efficacy and efficiency of our model, showing that it can be smoothly integrated with various large language models, including OPT, LLaMA and Falcon.
☆ LINOCS: Lookahead Inference of Networked Operators for Continuous Stability
Identifying latent interactions within complex systems is key to unlocking deeper insights into their operational dynamics, including how their elements affect each other and contribute to the overall system behavior. For instance, in neuroscience, discovering neuron-to-neuron interactions is essential for understanding brain function; in ecology, recognizing the interactions among populations is key for understanding complex ecosystems. Such systems, often modeled as dynamical systems, typically exhibit noisy high-dimensional and non-stationary temporal behavior that renders their identification challenging. Existing dynamical system identification methods often yield operators that accurately capture short-term behavior but fail to predict long-term trends, suggesting an incomplete capture of the underlying process. Methods that consider extended forecasts (e.g., recurrent neural networks) lack explicit representations of element-wise interactions and require substantial training data, thereby failing to capture interpretable network operators. Here we introduce Lookahead-driven Inference of Networked Operators for Continuous Stability (LINOCS), a robust learning procedure for identifying hidden dynamical interactions in noisy time-series data. LINOCS integrates several multi-step predictions with adaptive weights during training to recover dynamical operators that can yield accurate long-term predictions. We demonstrate LINOCS' ability to recover the ground truth dynamical operators underlying synthetic time-series data for multiple dynamical systems models (including linear, piece-wise linear, time-changing linear systems' decomposition, and regularized linear time-varying systems) as well as its capability to produce meaningful operators with robust reconstructions through various real-world examples.
comment: under review
☆ Efficient Remote Sensing with Harmonized Transfer Learning and Modality Alignment ICLR
With the rise of Visual and Language Pretraining (VLP), an increasing number of downstream tasks are adopting the paradigm of pretraining followed by fine-tuning. Although this paradigm has demonstrated potential in various multimodal downstream tasks, its implementation in the remote sensing domain encounters some obstacles. Specifically, the tendency for same-modality embeddings to cluster together impedes efficient transfer learning. To tackle this issue, we review the aim of multimodal transfer learning for downstream tasks from a unified perspective, and rethink the optimization process based on three distinct objectives. We propose "Harmonized Transfer Learning and Modality Alignment (HarMA)", a method that simultaneously satisfies task constraints, modality alignment, and single-modality uniform alignment, while minimizing training overhead through parameter-efficient fine-tuning. Remarkably, without the need for external data for training, HarMA achieves state-of-the-art performance in two popular multimodal retrieval tasks in the field of remote sensing. Our experiments reveal that HarMA achieves competitive and even superior performance to fully fine-tuned models with only minimal adjustable parameters. Due to its simplicity, HarMA can be integrated into almost all existing multimodal pretraining models. We hope this method can facilitate the efficient application of large models to a wide range of downstream tasks while significantly reducing the resource consumption. Code is available at https://github.com/seekerhuang/HarMA.
comment: Accepted by the Twelfth International Conference on Learning Representations (ICLR) Workshop
☆ Machine Learning for Blockchain Data Analysis: Progress and Opportunities
Blockchain technology has rapidly emerged to mainstream attention, while its publicly accessible, heterogeneous, massive-volume, and temporal data are reminiscent of the complex dynamics encountered during the last decade of big data. Unlike any prior data source, blockchain datasets encompass multiple layers of interactions across real-world entities, e.g., human users, autonomous programs, and smart contracts. Furthermore, blockchain's integration with cryptocurrencies has introduced financial aspects of unprecedented scale and complexity such as decentralized finance, stablecoins, non-fungible tokens, and central bank digital currencies. These unique characteristics present both opportunities and challenges for machine learning on blockchain data. On one hand, we examine the state-of-the-art solutions, applications, and future directions associated with leveraging machine learning for blockchain data analysis critical for the improvement of blockchain technology such as e-crime detection and trends prediction. On the other hand, we shed light on the pivotal role of blockchain by providing vast datasets and tools that can catalyze the growth of the evolving machine learning ecosystem. This paper serves as a comprehensive resource for researchers, practitioners, and policymakers, offering a roadmap for navigating this dynamic and transformative field.
☆ AdaFSNet: Time Series Classification Based on Convolutional Network with a Adaptive and Effective Kernel Size Configuration IJCNN 2024
Time series classification is one of the most critical and challenging problems in data mining, existing widely in various fields and holding significant research importance. Despite extensive research and notable achievements with successful real-world applications, addressing the challenge of capturing the appropriate receptive field (RF) size from one-dimensional or multi-dimensional time series of varying lengths remains a persistent issue, which greatly impacts performance and varies considerably across different datasets. In this paper, we propose an Adaptive and Effective Full-Scope Convolutional Neural Network (AdaFSNet) to enhance the accuracy of time series classification. This network includes two Dense Blocks. Particularly, it can dynamically choose a range of kernel sizes that effectively encompass the optimal RF size for various datasets by incorporating multiple prime numbers corresponding to the time series length. We also design a TargetDrop block, which can reduce redundancy while extracting a more effective RF. To assess the effectiveness of the AdaFSNet network, comprehensive experiments were conducted using the UCR and UEA datasets, which include one-dimensional and multi-dimensional time series data, respectively. Our model surpassed baseline models in terms of classification accuracy, underscoring the AdaFSNet network's efficiency and effectiveness in handling time series classification tasks.
comment: Accepted by IJCNN 2024
♻ ☆ Public-private funding models in open source software development: A case study on scikit-learn
Governments are increasingly funding open source software (OSS) development to support software security, digital sovereignty, and national competitiveness in science and innovation, amongst others. However, little is known about how OSS developers evaluate the relative benefits and drawbacks of emergent governmental funding for OSS. This paper explores this question through a case study on scikit-learn, a popular Python library for machine learning, which has been funded by public research grants, commercial sponsorship, micro-donations, and a 32 million euro grant announced in France's artificial intelligence strategy. Through 25 interviews with scikit-learn's maintainers and funders, this study makes two key contributions to research and practice. First, it contributes novel empirical findings on the effective design and implementation of a public-private funding model in an OSS project, as well as how the maintainers of scikit-learn have designed and employed governance protocols to balance the diverse interests of their funders and to safeguard their community ethos. Second, it offers practical lessons on funding in community-led OSS projects and makes recommendations to practitioners. The paper concludes with a discussion of the key recommendations.
comment: 16 pages
♻ ☆ RTA-Former: Reverse Transformer Attention for Polyp Segmentation
Polyp segmentation is a key aspect of colorectal cancer prevention, enabling early detection and guiding subsequent treatments. Intelligent diagnostic tools, including deep learning solutions, are widely explored to streamline and potentially automate this process. However, even with many powerful network architectures, there still comes the problem of producing accurate edge segmentation. In this paper, we introduce a novel network, namely RTA-Former, that employs a transformer model as the encoder backbone and innovatively adapts Reverse Attention (RA) with a transformer stage in the decoder for enhanced edge segmentation. The results of the experiments illustrate that RTA-Former achieves state-of-the-art (SOTA) performance in five polyp segmentation datasets. The strong capability of RTA-Former holds promise in improving the accuracy of Transformer-based polyp segmentation, potentially leading to better clinical decisions and patient outcomes. Our code is publicly available on GitHub.
comment: The paper has been accepted by EMBC 2024
♻ ☆ Aligned Diffusion Schrödinger Bridges
Diffusion Schr\"odinger bridges (DSB) have recently emerged as a powerful framework for recovering stochastic dynamics via their marginal observations at different time points. Despite numerous successful applications, existing algorithms for solving DSBs have so far failed to utilize the structure of aligned data, which naturally arises in many biological phenomena. In this paper, we propose a novel algorithmic framework that, for the first time, solves DSBs while respecting the data alignment. Our approach hinges on a combination of two decades-old ideas: The classical Schr\"odinger bridge theory and Doob's $h$-transform. Compared to prior methods, our approach leads to a simpler training procedure with lower variance, which we further augment with principled regularization schemes. This ultimately leads to sizeable improvements across experiments on synthetic and real data, including the tasks of predicting conformational changes in proteins and temporal evolution of cellular differentiation processes.
♻ ☆ Federated Multilinear Principal Component Analysis with Applications in Prognostics
Multilinear Principal Component Analysis (MPCA) is a widely utilized method for the dimension reduction of tensor data. However, the integration of MPCA into federated learning remains unexplored in existing research. To tackle this gap, this article proposes a Federated Multilinear Principal Component Analysis (FMPCA) method, which enables multiple users to collaboratively reduce the dimension of their tensor data while keeping each user's data local and confidential. The proposed FMPCA method is guaranteed to have the same performance as traditional MPCA. An application of the proposed FMPCA in industrial prognostics is also demonstrated. Simulated data and a real-world data set are used to validate the performance of the proposed method.
♻ ☆ Deciphering Heartbeat Signatures: A Vision Transformer Approach to Explainable Atrial Fibrillation Detection from ECG Signals
Remote patient monitoring based on wearable single-lead electrocardiogram (ECG) devices has significant potential for enabling the early detection of heart disease, especially in combination with artificial intelligence (AI) approaches for automated heart disease detection. There have been prior studies applying AI approaches based on deep learning for heart disease detection. However, these models are yet to be widely accepted as a reliable aid for clinical diagnostics, in part due to the current black-box perception surrounding many AI algorithms. In particular, there is a need to identify the key features of the ECG signal that contribute toward making an accurate diagnosis, thereby enhancing the interpretability of the model. In the present study, we develop a vision transformer approach to identify atrial fibrillation based on single-lead ECG data. A residual network (ResNet) approach is also developed for comparison with the vision transformer approach. These models are applied to the Chapman-Shaoxing dataset to classify atrial fibrillation, as well as another common arrhythmia, sinus bradycardia, and normal sinus rhythm heartbeats. The models enable the identification of the key regions of the heartbeat that determine the resulting classification, and highlight the importance of P-waves and T-waves, as well as heartbeat duration and signal amplitude, in distinguishing normal sinus rhythm from atrial fibrillation and sinus bradycardia.
comment: Accepted for publication at the 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE EMBC 2024
♻ ☆ Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization ICLR 2024
Large foundation models are becoming ubiquitous, but training them from scratch is prohibitively expensive. Thus, efficiently adapting these powerful models to downstream tasks is increasingly important. In this paper, we study a principled finetuning paradigm -- Orthogonal Finetuning (OFT) -- for downstream task adaptation. Despite demonstrating good generalizability, OFT still uses a fairly large number of trainable parameters due to the high dimensionality of orthogonal matrices. To address this, we start by examining OFT from an information transmission perspective, and then identify a few key desiderata that enable better parameter-efficiency. Inspired by how the Cooley-Tukey fast Fourier transform algorithm enables efficient information transmission, we propose an efficient orthogonal parameterization using butterfly structures. We apply this parameterization to OFT, creating a novel parameter-efficient finetuning method, called Orthogonal Butterfly (BOFT). By subsuming OFT as a special case, BOFT introduces a generalized orthogonal finetuning framework. Finally, we conduct an extensive empirical study of adapting large vision transformers, large language models, and text-to-image diffusion models to various downstream tasks in vision and language.
comment: ICLR 2024 (v2: 34 pages, 19 figures)
♻ ☆ Quantum Speedups in Regret Analysis of Infinite Horizon Average-Reward Markov Decision Processes
This paper investigates the potential of quantum acceleration in addressing infinite horizon Markov Decision Processes (MDPs) to enhance average reward outcomes. We introduce an innovative quantum framework for the agent's engagement with an unknown MDP, extending the conventional interaction paradigm. Our approach involves the design of an optimism-driven tabular Reinforcement Learning algorithm that harnesses quantum signals acquired by the agent through efficient quantum mean estimation techniques. Through thorough theoretical analysis, we demonstrate that the quantum advantage in mean estimation leads to exponential advancements in regret guarantees for infinite horizon Reinforcement Learning. Specifically, the proposed Quantum algorithm achieves a regret bound of $\tilde{\mathcal{O}}(1)$, a significant improvement over the $\tilde{\mathcal{O}}(\sqrt{T})$ bound exhibited by classical counterparts.
♻ ☆ Graph Anomaly Detection in Time Series: A Survey
With the recent advances in technology, a wide range of systems continue to collect a large amount of data over time and thus generate time series. Time-Series Anomaly Detection (TSAD) is an important task in various time-series applications such as e-commerce, cybersecurity, vehicle maintenance, and healthcare monitoring. However, this task is very challenging as it requires considering both the intra-variable dependency and the inter-variable dependency, where a variable can be defined as an observation in time-series data. Recent graph-based approaches have made impressive progress in tackling the challenges of this field. In this survey, we conduct a comprehensive and up-to-date review of TSAD using graphs, referred to as G-TSAD. First, we explore the significant potential of graph representation learning for time-series data. Then, we review state-of-the-art graph anomaly detection techniques in the context of time series and discuss their strengths and drawbacks. Finally, we discuss the technical challenges and potential future directions for possible improvements in this research field.
comment: 20 pages, 4 figures, 2 tables
♻ ☆ Differentially-Private Hierarchical Federated Learning
While federated learning (FL) eliminates the transmission of raw data over a network, it is still vulnerable to privacy breaches from the communicated model parameters. In this work, we propose \underline{H}ierarchical \underline{F}ederated Learning with \underline{H}ierarchical \underline{D}ifferential \underline{P}rivacy ({\tt H$^2$FDP}), a DP-enhanced FL methodology for jointly optimizing privacy and performance in hierarchical networks. Building upon recent proposals for Hierarchical Differential Privacy (HDP), one of the key concepts of {\tt H$^2$FDP} is adapting DP noise injection at different layers of an established FL hierarchy -- edge devices, edge servers, and cloud servers -- according to the trust models within particular subnetworks. We conduct a comprehensive analysis of the convergence behavior of {\tt H$^2$FDP}, revealing conditions on parameter tuning under which the training process converges sublinearly to a finite stationarity gap that depends on the network hierarchy, trust model, and target privacy level. Leveraging these relationships, we develop an adaptive control algorithm for {\tt H$^2$FDP} that tunes properties of local model training to minimize communication energy, latency, and the stationarity gap while striving to maintain a sub-linear convergence rate and meet desired privacy criteria. Subsequent numerical evaluations demonstrate that {\tt H$^2$FDP} obtains substantial improvements in these metrics over baselines for different privacy budgets, and validate the impact of different system configurations.
♻ ☆ Safe Deep Policy Adaptation ICRA 2024
A critical goal of autonomy and artificial intelligence is enabling autonomous robots to rapidly adapt in dynamic and uncertain environments. Classic adaptive control and safe control provide stability and safety guarantees but are limited to specific system classes. In contrast, policy adaptation based on reinforcement learning (RL) offers versatility and generalizability but presents safety and robustness challenges. We propose SafeDPA, a novel RL and control framework that simultaneously tackles the problems of policy adaptation and safe reinforcement learning. SafeDPA jointly learns adaptive policy and dynamics models in simulation, predicts environment configurations, and fine-tunes dynamics models with few-shot real-world data. A safety filter based on the Control Barrier Function (CBF) on top of the RL policy is introduced to ensure safety during real-world deployment. We provide theoretical safety guarantees of SafeDPA and show the robustness of SafeDPA against learning errors and extra perturbations. Comprehensive experiments on (1) classic control problems (Inverted Pendulum), (2) simulation benchmarks (Safety Gym), and (3) a real-world agile robotics platform (RC Car) demonstrate great superiority of SafeDPA in both safety and task performance, over state-of-the-art baselines. Particularly, SafeDPA demonstrates notable generalizability, achieving a 300% increase in safety rate compared to the baselines, under unseen disturbances in real-world experiments.
comment: ICRA 2024
♻ ☆ Riemannian Laplace Approximation with the Fisher Metric AISTATS 2024
Laplace's method approximates a target density with a Gaussian distribution at its mode. It is computationally efficient and asymptotically exact for Bayesian inference due to the Bernstein-von Mises theorem, but for complex targets and finite-data posteriors it is often too crude an approximation. A recent generalization of the Laplace Approximation transforms the Gaussian approximation according to a chosen Riemannian geometry providing a richer approximation family, while still retaining computational efficiency. However, as shown here, its properties depend heavily on the chosen metric, indeed the metric adopted in previous work results in approximations that are overly narrow as well as being biased even at the limit of infinite data. We correct this shortcoming by developing the approximation family further, deriving two alternative variants that are exact at the limit of infinite data, extending the theoretical analysis of the method, and demonstrating practical improvements in a range of experiments.
comment: AISTATS 2024, with additional fixes and improvements
♻ ☆ Coeditor: Leveraging Contextual Changes for Multi-round Code Auto-editing
Developers often dedicate significant time to maintaining and refactoring existing code. However, most prior work on generative models for code focuses solely on creating new code, overlooking the distinctive needs of editing existing code. In this work, we explore a multi-round code auto-editing setting, aiming to predict edits to a code region based on recent changes within the same codebase. Our model, Coeditor, is a fine-tuned language model specifically designed for code editing tasks. We represent code changes using a line diff format and employ static analysis to form large customized model contexts, ensuring the availability of appropriate information for prediction. We collect a code editing dataset from the commit histories of 1650 open-source Python projects for training and evaluation. In a simplified single-round, single-edit task, Coeditor significantly outperforms GPT-3.5 and SOTA open-source code completion models (bringing exact-match accuracy from 34.7 up to 60.4), demonstrating the benefits of incorporating editing history for code completion. In a multi-round, multi-edit setting, we observe substantial gains by iteratively conditioning on additional user edits. We have open-sourced our code, data, and model weights to encourage future research and have released a VSCode extension powered by our model for interactive IDE usage.
comment: The Twelfth International Conference on Learning Representations (2024)
♻ ☆ The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning
The White House Executive Order on Artificial Intelligence highlights the risks of large language models (LLMs) empowering malicious actors in developing biological, cyber, and chemical weapons. To measure these risks of malicious use, government institutions and major AI labs are developing evaluations for hazardous capabilities in LLMs. However, current evaluations are private, preventing further research into mitigating risk. Furthermore, they focus on only a few, highly specific pathways for malicious use. To fill these gaps, we publicly release the Weapons of Mass Destruction Proxy (WMDP) benchmark, a dataset of 3,668 multiple-choice questions that serve as a proxy measurement of hazardous knowledge in biosecurity, cybersecurity, and chemical security. WMDP was developed by a consortium of academics and technical consultants, and was stringently filtered to eliminate sensitive information prior to public release. WMDP serves two roles: first, as an evaluation for hazardous knowledge in LLMs, and second, as a benchmark for unlearning methods to remove such hazardous knowledge. To guide progress on unlearning, we develop RMU, a state-of-the-art unlearning method based on controlling model representations. RMU reduces model performance on WMDP while maintaining general capabilities in areas such as biology and computer science, suggesting that unlearning may be a concrete path towards reducing malicious use from LLMs. We release our benchmark and code publicly at https://wmdp.ai
comment: See the project page at https://wmdp.ai
♻ ☆ Learning to Detect Slip through Tactile Estimation of the Contact Force Field and its Entropy
Detection of slip during object grasping and manipulation plays a vital role in object handling. Existing solutions primarily rely on visual information to devise a strategy for grasping. However, for robotic systems to attain a level of proficiency comparable to humans, especially in consistently handling and manipulating unfamiliar objects, integrating artificial tactile sensing is increasingly essential. We introduce a novel physics-informed, data-driven approach to detect slip continuously in real time. We employ the GelSight Mini, an optical tactile sensor, attached to custom-designed grippers to gather tactile data. Our work leverages the inhomogeneity of tactile sensor readings during slip events to develop distinctive features and formulates slip detection as a classification problem. To evaluate our approach, we test multiple data-driven models on 10 common objects under different loading conditions, textures, and materials. Our results show that the best classification algorithm achieves a high average accuracy of 95.61%. We further illustrate the practical application of our research in dynamic robotic manipulation tasks, where our real-time slip detection and prevention algorithm is implemented.
comment: 8 pages, 7 figures, submitted
Multimedia 9
☆ WorldGPT: Empowering LLM as Multimodal World Model
World models are progressively being employed across diverse fields, extending from basic environment simulation to complex scenario construction. However, existing models are mainly trained on domain-specific states and actions, and confined to single-modality state representations. In this paper, We introduce WorldGPT, a generalist world model built upon Multimodal Large Language Model (MLLM). WorldGPT acquires an understanding of world dynamics through analyzing millions of videos across various domains. To further enhance WorldGPT's capability in specialized scenarios and long-term tasks, we have integrated it with a novel cognitive architecture that combines memory offloading, knowledge retrieval, and context reflection. As for evaluation, we build WorldNet, a multimodal state transition prediction benchmark encompassing varied real-life scenarios. Conducting evaluations on WorldNet directly demonstrates WorldGPT's capability to accurately model state transition patterns, affirming its effectiveness in understanding and predicting the dynamics of complex scenarios. We further explore WorldGPT's emerging potential in serving as a world simulator, helping multimodal agents generalize to unfamiliar domains through efficiently synthesising multimodal instruction instances which are proved to be as reliable as authentic data for fine-tuning purposes. The project is available on \url{https://github.com/DCDmllm/WorldGPT}.
☆ fMRI Exploration of Visual Quality Assessment
Despite significant strides in visual quality assessment, the neural mechanisms underlying visual quality perception remain insufficiently explored. This study employed fMRI to examine brain activity during image quality assessment and identify differences in human processing of images with varying quality. Fourteen healthy participants underwent tasks assessing both image quality and content classification while undergoing functional MRI scans. The collected behavioral data was statistically analyzed, and univariate and functional connectivity analyses were conducted on the imaging data. The findings revealed that quality assessment is a more complex task than content classification, involving enhanced activation in high-level cognitive brain regions for fine-grained visual analysis. Moreover, the research showed the brain's adaptability to different visual inputs, adopting different strategies depending on the input's quality. In response to high-quality images, the brain primarily uses specialized visual areas for precise analysis, whereas with low-quality images, it recruits additional resources including higher-order visual cortices and related cognitive and attentional networks to decode and recognize complex, ambiguous signals effectively. This study pioneers the intersection of neuroscience and image quality research, providing empirical evidence through fMRI linking image quality to neural processing. It contributes novel insights into the human visual system's response to diverse image qualities, thereby paving the way for advancements in objective image quality assessment algorithms.
☆ Compressed Deepfake Video Detection Based on 3D Spatiotemporal Trajectories
The misuse of deepfake technology by malicious actors poses a potential threat to nations, societies, and individuals. However, existing methods for detecting deepfakes primarily focus on uncompressed videos, such as noise characteristics, local textures, or frequency statistics. When applied to compressed videos, these methods experience a decrease in detection performance and are less suitable for real-world scenarios. In this paper, we propose a deepfake video detection method based on 3D spatiotemporal trajectories. Specifically, we utilize a robust 3D model to construct spatiotemporal motion features, integrating feature details from both 2D and 3D frames to mitigate the influence of large head rotation angles or insufficient lighting within frames. Furthermore, we separate facial expressions from head movements and design a sequential analysis method based on phase space motion trajectories to explore the feature differences between genuine and fake faces in deepfake videos. We conduct extensive experiments to validate the performance of our proposed method on several compressed deepfake benchmarks. The robustness of the well-designed features is verified by calculating the consistent distribution of facial landmarks before and after video compression.Our method yields satisfactory results and showcases its potential for practical applications.
☆ SafePaint: Anti-forensic Image Inpainting with Domain Adaptation
Existing image inpainting methods have achieved remarkable accomplishments in generating visually appealing results, often accompanied by a trend toward creating more intricate structural textures. However, while these models excel at creating more realistic image content, they often leave noticeable traces of tampering, posing a significant threat to security. In this work, we take the anti-forensic capabilities into consideration, firstly proposing an end-to-end training framework for anti-forensic image inpainting named SafePaint. Specifically, we innovatively formulated image inpainting as two major tasks: semantically plausible content completion and region-wise optimization. The former is similar to current inpainting methods that aim to restore the missing regions of corrupted images. The latter, through domain adaptation, endeavors to reconcile the discrepancies between the inpainted region and the unaltered area to achieve anti-forensic goals. Through comprehensive theoretical analysis, we validate the effectiveness of domain adaptation for anti-forensic performance. Furthermore, we meticulously crafted a region-wise separated attention (RWSA) module, which not only aligns with our objective of anti-forensics but also enhances the performance of the model. Extensive qualitative and quantitative evaluations show our approach achieves comparable results to existing image inpainting methods while offering anti-forensic capabilities not available in other methods.
☆ Deep Boosting Learning: A Brand-new Cooperative Approach for Image-Text Matching
Image-text matching remains a challenging task due to heterogeneous semantic diversity across modalities and insufficient distance separability within triplets. Different from previous approaches focusing on enhancing multi-modal representations or exploiting cross-modal correspondence for more accurate retrieval, in this paper we aim to leverage the knowledge transfer between peer branches in a boosting manner to seek a more powerful matching model. Specifically, we propose a brand-new Deep Boosting Learning (DBL) algorithm, where an anchor branch is first trained to provide insights into the data properties, with a target branch gaining more advanced knowledge to develop optimal features and distance metrics. Concretely, an anchor branch initially learns the absolute or relative distance between positive and negative pairs, providing a foundational understanding of the particular network and data distribution. Building upon this knowledge, a target branch is concurrently tasked with more adaptive margin constraints to further enlarge the relative distance between matched and unmatched samples. Extensive experiments validate that our DBL can achieve impressive and consistent improvements based on various recent state-of-the-art models in the image-text matching field, and outperform related popular cooperative strategies, e.g., Conventional Distillation, Mutual Learning, and Contrastive Learning. Beyond the above, we confirm that DBL can be seamlessly integrated into their training scenarios and achieve superior performance under the same computational costs, demonstrating the flexibility and broad applicability of our proposed method. Our code is publicly available at: https://github.com/Paranioar/DBL.
comment: 12 pages, 9 figures, Accepted by TIP2024
☆ ComposerX: Multi-Agent Symbolic Music Composition with LLMs
Music composition represents the creative side of humanity, and itself is a complex task that requires abilities to understand and generate information with long dependency and harmony constraints. While demonstrating impressive capabilities in STEM subjects, current LLMs easily fail in this task, generating ill-written music even when equipped with modern techniques like In-Context-Learning and Chain-of-Thoughts. To further explore and enhance LLMs' potential in music composition by leveraging their reasoning ability and the large knowledge base in music history and theory, we propose ComposerX, an agent-based symbolic music generation framework. We find that applying a multi-agent approach significantly improves the music composition quality of GPT-4. The results demonstrate that ComposerX is capable of producing coherent polyphonic music compositions with captivating melodies, while adhering to user instructions.
♻ ☆ GaussianTalker: Speaker-specific Talking Head Synthesis via 3D Gaussian Splatting
Recent works on audio-driven talking head synthesis using Neural Radiance Fields (NeRF) have achieved impressive results. However, due to inadequate pose and expression control caused by NeRF implicit representation, these methods still have some limitations, such as unsynchronized or unnatural lip movements, and visual jitter and artifacts. In this paper, we propose GaussianTalker, a novel method for audio-driven talking head synthesis based on 3D Gaussian Splatting. With the explicit representation property of 3D Gaussians, intuitive control of the facial motion is achieved by binding Gaussians to 3D facial models. GaussianTalker consists of two modules, Speaker-specific Motion Translator and Dynamic Gaussian Renderer. Speaker-specific Motion Translator achieves accurate lip movements specific to the target speaker through universalized audio feature extraction and customized lip motion generation. Dynamic Gaussian Renderer introduces Speaker-specific BlendShapes to enhance facial detail representation via a latent pose, delivering stable and realistic rendered videos. Extensive experimental results suggest that GaussianTalker outperforms existing state-of-the-art methods in talking head synthesis, delivering precise lip synchronization and exceptional visual quality. Our method achieves rendering speeds of 130 FPS on NVIDIA RTX4090 GPU, significantly exceeding the threshold for real-time rendering performance, and can potentially be deployed on other hardware platforms.
comment: https://yuhongyun777.github.io/GaussianTalker/
♻ ☆ Attack on Scene Flow using Point Clouds
Deep neural networks have made significant advancements in accurately estimating scene flow using point clouds, which is vital for many applications like video analysis, action recognition, and navigation. Robustness of these techniques, however, remains a concern, particularly in the face of adversarial attacks that have been proven to deceive state-of-the-art deep neural networks in many domains. Surprisingly, the robustness of scene flow networks against such attacks has not been thoroughly investigated. To address this problem, the proposed approach aims to bridge this gap by introducing adversarial white-box attacks specifically tailored for scene flow networks. Experimental results show that the generated adversarial examples obtain up to 33.7 relative degradation in average end-point error on the KITTI and FlyingThings3D datasets. The study also reveals the significant impact that attacks targeting point clouds in only one dimension or color channel have on average end-point error. Analyzing the success and failure of these attacks on the scene flow networks and their 2D optical flow network variants show a higher vulnerability for the optical flow networks.
♻ ☆ FineFake: A Knowledge-Enriched Dataset for Fine-Grained Multi-Domain Fake News Detection
Existing benchmarks for fake news detection have significantly contributed to the advancement of models in assessing the authenticity of news content. However, these benchmarks typically focus solely on news pertaining to a single semantic topic or originating from a single platform, thereby failing to capture the diversity of multi-domain news in real scenarios. In order to understand fake news across various domains, the external knowledge and fine-grained annotations are indispensable to provide precise evidence and uncover the diverse underlying strategies for fabrication, which are also ignored by existing benchmarks. To address this gap, we introduce a novel multi-domain knowledge-enhanced benchmark with fine-grained annotations, named \textbf{FineFake}. FineFake encompasses 16,909 data samples spanning six semantic topics and eight platforms. Each news item is enriched with multi-modal content, potential social context, semi-manually verified common knowledge, and fine-grained annotations that surpass conventional binary labels. Furthermore, we formulate three challenging tasks based on FineFake and propose a knowledge-enhanced domain adaptation network. Extensive experiments are conducted on FineFake under various scenarios, providing accurate and reliable benchmarks for future endeavors. The entire FineFake project is publicly accessible as an open-source repository at \url{https://github.com/Accuser907/FineFake}.
Database 1
☆ 4DBInfer: A 4D Benchmarking Toolbox for Graph-Centric Predictive Modeling on Relational DBs
Although RDBs store vast amounts of rich, informative data spread across interconnected tables, the progress of predictive machine learning models as applied to such tasks arguably falls well behind advances in other domains such as computer vision or natural language processing. This deficit stems, at least in part, from the lack of established/public RDB benchmarks as needed for training and evaluation purposes. As a result, related model development thus far often defaults to tabular approaches trained on ubiquitous single-table benchmarks, or on the relational side, graph-based alternatives such as GNNs applied to a completely different set of graph datasets devoid of tabular characteristics. To more precisely target RDBs lying at the nexus of these two complementary regimes, we explore a broad class of baseline models predicated on: (i) converting multi-table datasets into graphs using various strategies equipped with efficient subsampling, while preserving tabular characteristics; and (ii) trainable models with well-matched inductive biases that output predictions based on these input subgraphs. Then, to address the dearth of suitable public benchmarks and reduce siloed comparisons, we assemble a diverse collection of (i) large-scale RDB datasets and (ii) coincident predictive tasks. From a delivery standpoint, we operationalize the above four dimensions (4D) of exploration within a unified, scalable open-source toolbox called 4DBInfer. We conclude by presenting evaluations using 4DBInfer, the results of which highlight the importance of considering each such dimension in the design of RDB predictive models, as well as the limitations of more naive approaches such as simply joining adjacent tables. Our source code is released at https://github.com/awslabs/multi-table-benchmark .
comment: Under review
Computation and Language 40
☆ Quality Estimation with $k$-nearest Neighbors and Automatic Evaluation for Model-specific Quality Estimation
Providing quality scores along with Machine Translation (MT) output, so-called reference-free Quality Estimation (QE), is crucial to inform users about the reliability of the translation. We propose a model-specific, unsupervised QE approach, termed $k$NN-QE, that extracts information from the MT model's training data using $k$-nearest neighbors. Measuring the performance of model-specific QE is not straightforward, since they provide quality scores on their own MT output, thus cannot be evaluated using benchmark QE test sets containing human quality scores on premade MT output. Therefore, we propose an automatic evaluation method that uses quality scores from reference-based metrics as gold standard instead of human-generated ones. We are the first to conduct detailed analyses and conclude that this automatic method is sufficient, and the reference-based MetricX-23 is best for the task.
comment: Accepted to EAMT 2024
☆ CRISPR-GPT: An LLM Agent for Automated Design of Gene-Editing Experiments
The introduction of genome engineering technology has transformed biomedical research, making it possible to make precise changes to genetic information. However, creating an efficient gene-editing system requires a deep understanding of CRISPR technology, and the complex experimental systems under investigation. While Large Language Models (LLMs) have shown promise in various tasks, they often lack specific knowledge and struggle to accurately solve biological design problems. In this work, we introduce CRISPR-GPT, an LLM agent augmented with domain knowledge and external tools to automate and enhance the design process of CRISPR-based gene-editing experiments. CRISPR-GPT leverages the reasoning ability of LLMs to facilitate the process of selecting CRISPR systems, designing guide RNAs, recommending cellular delivery methods, drafting protocols, and designing validation experiments to confirm editing outcomes. We showcase the potential of CRISPR-GPT for assisting non-expert researchers with gene-editing experiments from scratch and validate the agent's effectiveness in a real-world use case. Furthermore, we explore the ethical and regulatory considerations associated with automated gene-editing design, highlighting the need for responsible and transparent use of these tools. Our work aims to bridge the gap between beginner biological researchers and CRISPR genome engineering techniques, and demonstrate the potential of LLM agents in facilitating complex biological discovery tasks.
☆ MediFact at MEDIQA-CORR 2024: Why AI Needs a Human Touch
Accurate representation of medical information is crucial for patient safety, yet artificial intelligence (AI) systems, such as Large Language Models (LLMs), encounter challenges in error-free clinical text interpretation. This paper presents a novel approach submitted to the MEDIQA-CORR 2024 shared task (Ben Abacha et al., 2024a), focusing on the automatic correction of single-word errors in clinical notes. Unlike LLMs that rely on extensive generic data, our method emphasizes extracting contextually relevant information from available clinical text data. Leveraging an ensemble of extractive and abstractive question-answering approaches, we construct a supervised learning framework with domain-specific feature engineering. Our methodology incorporates domain expertise to enhance error correction accuracy. By integrating domain expertise and prioritizing meaningful information extraction, our approach underscores the significance of a human-centric strategy in adapting AI for healthcare.
comment: 7 pages, 4 figures, Clinical NLP 2024 Workshop
☆ Enhancing Pre-Trained Generative Language Models with Question Attended Span Extraction on Machine Reading Comprehension
Machine Reading Comprehension (MRC) poses a significant challenge in the field of Natural Language Processing (NLP). While mainstream MRC methods predominantly leverage extractive strategies using encoder-only models such as BERT, generative approaches face the issue of out-of-control generation -- a critical problem where answers generated are often incorrect, irrelevant, or unfaithful to the source text. To address these limitations in generative models for MRC, we introduce the Question-Attended Span Extraction (QASE) module. Integrated during the fine-tuning phase of pre-trained generative language models (PLMs), QASE significantly enhances their performance, allowing them to surpass the extractive capabilities of advanced Large Language Models (LLMs) such as GPT-4. Notably, these gains in performance do not come with an increase in computational demands. The efficacy of the QASE module has been rigorously tested across various datasets, consistently achieving or even surpassing state-of-the-art (SOTA) results.
☆ Detection of Conspiracy Theories Beyond Keyword Bias in German-Language Telegram Using Large Language Models WOAH
The automated detection of conspiracy theories online typically relies on supervised learning. However, creating respective training data requires expertise, time and mental resilience, given the often harmful content. Moreover, available datasets are predominantly in English and often keyword-based, introducing a token-level bias into the models. Our work addresses the task of detecting conspiracy theories in German Telegram messages. We compare the performance of supervised fine-tuning approaches using BERT-like models with prompt-based approaches using Llama2, GPT-3.5, and GPT-4 which require little or no additional training data. We use a dataset of $\sim\!\! 4,000$ messages collected during the COVID-19 pandemic, without the use of keyword filters. Our findings demonstrate that both approaches can be leveraged effectively: For supervised fine-tuning, we report an F1 score of $\sim\!\! 0.8$ for the positive class, making our model comparable to recent models trained on keyword-focused English corpora. We demonstrate our model's adaptability to intra-domain temporal shifts, achieving F1 scores of $\sim\!\! 0.7$. Among prompting variants, the best model is GPT-4, achieving an F1 score of $\sim\!\! 0.8$ for the positive class in a zero-shot setting and equipped with a custom conspiracy theory definition.
comment: Accepted to the 8th Workshop on Online Abuse and Harms (WOAH), ACL 2024
☆ Automating Customer Needs Analysis: A Comparative Study of Large Language Models in the Travel Industry
In the rapidly evolving landscape of Natural Language Processing (NLP), Large Language Models (LLMs) have emerged as powerful tools for many tasks, such as extracting valuable insights from vast amounts of textual data. In this study, we conduct a comparative analysis of LLMs for the extraction of travel customer needs from TripAdvisor posts. Leveraging a diverse range of models, including both open-source and proprietary ones such as GPT-4 and Gemini, we aim to elucidate their strengths and weaknesses in this specialized domain. Through an evaluation process involving metrics such as BERTScore, ROUGE, and BLEU, we assess the performance of each model in accurately identifying and summarizing customer needs. Our findings highlight the efficacy of opensource LLMs, particularly Mistral 7B, in achieving comparable performance to larger closed models while offering affordability and customization benefits. Additionally, we underscore the importance of considering factors such as model size, resource requirements, and performance metrics when selecting the most suitable LLM for customer needs analysis tasks. Overall, this study contributes valuable insights for businesses seeking to leverage advanced NLP techniques to enhance customer experience and drive operational efficiency in the travel industry.
☆ Usefulness of Emotional Prosody in Neural Machine Translation SP
Neural Machine Translation (NMT) is the task of translating a text from one language to another with the use of a trained neural network. Several existing works aim at incorporating external information into NMT models to improve or control predicted translations (e.g. sentiment, politeness, gender). In this work, we propose to improve translation quality by adding another external source of information: the automatically recognized emotion in the voice. This work is motivated by the assumption that each emotion is associated with a specific lexicon that can overlap between emotions. Our proposed method follows a two-stage procedure. At first, we select a state-of-the-art Speech Emotion Recognition (SER) model to predict dimensional emotion values from all input audio in the dataset. Then, we use these predicted emotions as source tokens added at the beginning of input texts to train our NMT model. We show that integrating emotion information, especially arousal, into NMT systems leads to better translations.
comment: 5 pages, In Proceedings of the 11th International Conference on Speech Prosody (SP), Leiden, The Netherlands, 2024
☆ Transfer Learning Enhanced Single-choice Decision for Multi-choice Question Answering
Multi-choice Machine Reading Comprehension (MMRC) aims to select the correct answer from a set of options based on a given passage and question. The existing methods employ the pre-trained language model as the encoder, share and transfer knowledge through fine-tuning.These methods mainly focus on the design of exquisite mechanisms to effectively capture the relationships among the triplet of passage, question and answers. It is non-trivial but ignored to transfer knowledge from other MRC tasks such as SQuAD due to task specific of MMRC.In this paper, we reconstruct multi-choice to single-choice by training a binary classification to distinguish whether a certain answer is correct. Then select the option with the highest confidence score as the final answer. Our proposed method gets rid of the multi-choice framework and can leverage resources of other tasks. We construct our model based on the ALBERT-xxlarge model and evaluate it on the RACE and DREAM datasets. Experimental results show that our model performs better than multi-choice methods. In addition, by transferring knowledge from other kinds of MRC tasks, our model achieves state-of-the-art results in both single and ensemble settings.
comment: 10 pages, 1 figures.This article supersedes arXiv:2011.03292
☆ Spatio-Temporal Side Tuning Pre-trained Foundation Models for Video-based Pedestrian Attribute Recognition
Existing pedestrian attribute recognition (PAR) algorithms are mainly developed based on a static image, however, the performance is unreliable in challenging scenarios, such as heavy occlusion, motion blur, etc. In this work, we propose to understand human attributes using video frames that can fully use temporal information by fine-tuning a pre-trained multi-modal foundation model efficiently. Specifically, we formulate the video-based PAR as a vision-language fusion problem and adopt a pre-trained foundation model CLIP to extract the visual features. More importantly, we propose a novel spatiotemporal side-tuning strategy to achieve parameter-efficient optimization of the pre-trained vision foundation model. To better utilize the semantic information, we take the full attribute list that needs to be recognized as another input and transform the attribute words/phrases into the corresponding sentence via split, expand, and prompt operations. Then, the text encoder of CLIP is utilized for embedding processed attribute descriptions. The averaged visual tokens and text tokens are concatenated and fed into a fusion Transformer for multi-modal interactive learning. The enhanced tokens will be fed into a classification head for pedestrian attribute prediction. Extensive experiments on two large-scale video-based PAR datasets fully validated the effectiveness of our proposed framework. The source code of this paper is available at https://github.com/Event-AHU/OpenPAR.
comment: Parameter Efficient Fine-Tuning Strategy for Video-based Pedestrian Attribute Recognition
☆ I Have an Attention Bridge to Sell You: Generalization Capabilities of Modular Translation Architectures
Modularity is a paradigm of machine translation with the potential of bringing forth models that are large at training time and small during inference. Within this field of study, modular approaches, and in particular attention bridges, have been argued to improve the generalization capabilities of models by fostering language-independent representations. In the present paper, we study whether modularity affects translation quality; as well as how well modular architectures generalize across different evaluation scenarios. For a given computational budget, we find non-modular architectures to be always comparable or preferable to all modular designs we study.
☆ SERPENT-VLM : Self-Refining Radiology Report Generation Using Vision Language Models NAACL 2024
Radiology Report Generation (R2Gen) demonstrates how Multi-modal Large Language Models (MLLMs) can automate the creation of accurate and coherent radiological reports. Existing methods often hallucinate details in text-based reports that don't accurately reflect the image content. To mitigate this, we introduce a novel strategy, SERPENT-VLM (SElf Refining Radiology RePort GENeraTion using Vision Language Models), which improves the R2Gen task by integrating a self-refining mechanism into the MLLM framework. We employ a unique self-supervised loss that leverages similarity between pooled image representations and the contextual representations of the generated radiological text, alongside the standard Causal Language Modeling objective, to refine image-text representations. This allows the model to scrutinize and align the generated text through dynamic interaction between a given image and the generated text, therefore reducing hallucination and continuously enhancing nuanced report generation. SERPENT-VLM outperforms existing baselines such as LLaVA-Med, BiomedGPT, etc., achieving SoTA performance on the IU X-ray and Radiology Objects in COntext (ROCO) datasets, and also proves to be robust against noisy images. A qualitative case study emphasizes the significant advancements towards more sophisticated MLLM frameworks for R2Gen, opening paths for further research into self-supervised refinement in the medical imaging domain.
comment: 8 pages, 3 figures, 4 tables, Accepted as oral at Clinical NLP workshop at NAACL 2024
☆ Tool Calling: Enhancing Medication Consultation via Retrieval-Augmented Large Language Models
Large-scale language models (LLMs) have achieved remarkable success across various language tasks but suffer from hallucinations and temporal misalignment. To mitigate these shortcomings, Retrieval-augmented generation (RAG) has been utilized to provide external knowledge to facilitate the answer generation. However, applying such models to the medical domain faces several challenges due to the lack of domain-specific knowledge and the intricacy of real-world scenarios. In this study, we explore LLMs with RAG framework for knowledge-intensive tasks in the medical field. To evaluate the capabilities of LLMs, we introduce MedicineQA, a multi-round dialogue benchmark that simulates the real-world medication consultation scenario and requires LLMs to answer with retrieved evidence from the medicine database. MedicineQA contains 300 multi-round question-answering pairs, each embedded within a detailed dialogue history, highlighting the challenge posed by this knowledge-intensive task to current LLMs. We further propose a new \textit{Distill-Retrieve-Read} framework instead of the previous \textit{Retrieve-then-Read}. Specifically, the distillation and retrieval process utilizes a tool calling mechanism to formulate search queries that emulate the keyword-based inquiries used by search engines. With experimental results, we show that our framework brings notable performance improvements and surpasses the previous counterparts in the evidence retrieval process in terms of evidence retrieval accuracy. This advancement sheds light on applying RAG to the medical domain.
PromptCL: Improving Event Representation via Prompt Template and Contrastive Learning NLPCC 2023
The representation of events in text plays a significant role in various NLP tasks. Recent research demonstrates that contrastive learning has the ability to improve event comprehension capabilities of Pre-trained Language Models (PLMs) and enhance the performance of event representation learning. However, the efficacy of event representation learning based on contrastive learning and PLMs is limited by the short length of event texts. The length of event texts differs significantly from the text length used in the pre-training of PLMs. As a result, there is inconsistency in the distribution of text length between pre-training and event representation learning, which may undermine the learning process of event representation based on PLMs. In this study, we present PromptCL, a novel framework for event representation learning that effectively elicits the capabilities of PLMs to comprehensively capture the semantics of short event texts. PromptCL utilizes a Prompt template borrowed from prompt learning to expand the input text during Contrastive Learning. This helps in enhancing the event representation learning by providing a structured outline of the event components. Moreover, we propose Subject-Predicate-Object (SPO) word order and Event-oriented Masked Language Modeling (EventMLM) to train PLMs to understand the relationships between event components. Our experimental results demonstrate that PromptCL outperforms state-of-the-art baselines on event related tasks. Additionally, we conduct a thorough analysis and demonstrate that using a prompt results in improved generalization capabilities for event representations. Our code will be available at https://github.com/YuboFeng2023/PromptCL.
comment: NLPCC 2023 Best Student Paper
☆ From Languages to Geographies: Towards Evaluating Cultural Bias in Hate Speech Datasets WOAH
Perceptions of hate can vary greatly across cultural contexts. Hate speech (HS) datasets, however, have traditionally been developed by language. This hides potential cultural biases, as one language may be spoken in different countries home to different cultures. In this work, we evaluate cultural bias in HS datasets by leveraging two interrelated cultural proxies: language and geography. We conduct a systematic survey of HS datasets in eight languages and confirm past findings on their English-language bias, but also show that this bias has been steadily decreasing in the past few years. For three geographically-widespread languages -- English, Arabic and Spanish -- we then leverage geographical metadata from tweets to approximate geo-cultural contexts by pairing language and country information. We find that HS datasets for these languages exhibit a strong geo-cultural bias, largely overrepresenting a handful of countries (e.g., US and UK for English) relative to their prominence in both the broader social media population and the general population speaking these languages. Based on these findings, we formulate recommendations for the creation of future HS datasets.
comment: Accepted at WOAH (NAACL 2024)
☆ Revisiting Multimodal Emotion Recognition in Conversation from the Perspective of Graph Spectrum
Efficiently capturing consistent and complementary semantic features in a multimodal conversation context is crucial for Multimodal Emotion Recognition in Conversation (MERC). Existing methods mainly use graph structures to model dialogue context semantic dependencies and employ Graph Neural Networks (GNN) to capture multimodal semantic features for emotion recognition. However, these methods are limited by some inherent characteristics of GNN, such as over-smoothing and low-pass filtering, resulting in the inability to learn long-distance consistency information and complementary information efficiently. Since consistency and complementarity information correspond to low-frequency and high-frequency information, respectively, this paper revisits the problem of multimodal emotion recognition in conversation from the perspective of the graph spectrum. Specifically, we propose a Graph-Spectrum-based Multimodal Consistency and Complementary collaborative learning framework GS-MCC. First, GS-MCC uses a sliding window to construct a multimodal interaction graph to model conversational relationships and uses efficient Fourier graph operators to extract long-distance high-frequency and low-frequency information, respectively. Then, GS-MCC uses contrastive learning to construct self-supervised signals that reflect complementarity and consistent semantic collaboration with high and low-frequency signals, thereby improving the ability of high and low-frequency information to reflect real emotions. Finally, GS-MCC inputs the collaborative high and low-frequency information into the MLP network and softmax function for emotion prediction. Extensive experiments have proven the superiority of the GS-MCC architecture proposed in this paper on two benchmark data sets.
comment: 10 pages, 4 figures
☆ Revisiting Multi-modal Emotion Learning with Broad State Space Models and Probability-guidance Fusion
Multi-modal Emotion Recognition in Conversation (MERC) has received considerable attention in various fields, e.g., human-computer interaction and recommendation systems. Most existing works perform feature disentanglement and fusion to extract emotional contextual information from multi-modal features and emotion classification. After revisiting the characteristic of MERC, we argue that long-range contextual semantic information should be extracted in the feature disentanglement stage and the inter-modal semantic information consistency should be maximized in the feature fusion stage. Inspired by recent State Space Models (SSMs), Mamba can efficiently model long-distance dependencies. Therefore, in this work, we fully consider the above insights to further improve the performance of MERC. Specifically, on the one hand, in the feature disentanglement stage, we propose a Broad Mamba, which does not rely on a self-attention mechanism for sequence modeling, but uses state space models to compress emotional representation, and utilizes broad learning systems to explore the potential data distribution in broad space. Different from previous SSMs, we design a bidirectional SSM convolution to extract global context information. On the other hand, we design a multi-modal fusion strategy based on probability guidance to maximize the consistency of information between modalities. Experimental results show that the proposed method can overcome the computational and memory limitations of Transformer when modeling long-distance contexts, and has great potential to become a next-generation general architecture in MERC.
comment: 10 pages, 6 figures
☆ Toxicity Classification in Ukrainian WOAH
The task of toxicity detection is still a relevant task, especially in the context of safe and fair LMs development. Nevertheless, labeled binary toxicity classification corpora are not available for all languages, which is understandable given the resource-intensive nature of the annotation process. Ukrainian, in particular, is among the languages lacking such resources. To our knowledge, there has been no existing toxicity classification corpus in Ukrainian. In this study, we aim to fill this gap by investigating cross-lingual knowledge transfer techniques and creating labeled corpora by: (i)~translating from an English corpus, (ii)~filtering toxic samples using keywords, and (iii)~annotating with crowdsourcing. We compare LLMs prompting and other cross-lingual transfer approaches with and without fine-tuning offering insights into the most robust and efficient baselines.
comment: Accepted to WOAH, NAACL, 2024. arXiv admin note: text overlap with arXiv:2404.02043
☆ VANER: Leveraging Large Language Model for Versatile and Adaptive Biomedical Named Entity Recognition
Prevalent solution for BioNER involves using representation learning techniques coupled with sequence labeling. However, such methods are inherently task-specific, demonstrate poor generalizability, and often require dedicated model for each dataset. To leverage the versatile capabilities of recently remarkable large language models (LLMs), several endeavors have explored generative approaches to entity extraction. Yet, these approaches often fall short of the effectiveness of previouly sequence labeling approaches. In this paper, we utilize the open-sourced LLM LLaMA2 as the backbone model, and design specific instructions to distinguish between different types of entities and datasets. By combining the LLM's understanding of instructions with sequence labeling techniques, we use mix of datasets to train a model capable of extracting various types of entities. Given that the backbone LLMs lacks specialized medical knowledge, we also integrate external entity knowledge bases and employ instruction tuning to compel the model to densely recognize carefully curated entities. Our model VANER, trained with a small partition of parameters, significantly outperforms previous LLMs-based models and, for the first time, as a model based on LLM, surpasses the majority of conventional state-of-the-art BioNER systems, achieving the highest F1 scores across three datasets.
☆ Evaluation of Few-Shot Learning for Classification Tasks in the Polish Language
We introduce a few-shot benchmark consisting of 7 different classification tasks native to the Polish language. We conducted an empirical comparison with 0 and 16 shots between fine-tuning, linear probing, SetFit, and in-context learning (ICL) using various pre-trained commercial and open-source models. Our findings reveal that ICL achieves the best performance, with commercial models like GPT-3.5 and GPT-4 attaining the best performance. However, there remains a significant 14 percentage points gap between our best few-shot learning score and the performance of HerBERT-large fine-tuned on the entire training dataset. Among the techniques, SetFit emerges as the second-best approach, closely followed by linear probing. We observed the worst and most unstable performance with non-linear head fine-tuning. Results for ICL indicate that continual pre-training of models like Mistral-7b or Llama-2-13b on Polish corpora is beneficial. This is confirmed by the improved performances of Bielik-7b and Trurl-13b, respectively. To further support experiments in few-shot learning for Polish, we are releasing handcrafted templates for the ICL.
comment: 34 pages, 3 figures, 10 tables
☆ Recall, Retrieve and Reason: Towards Better In-Context Relation Extraction IJCAI 2024
Relation extraction (RE) aims to identify relations between entities mentioned in texts. Although large language models (LLMs) have demonstrated impressive in-context learning (ICL) abilities in various tasks, they still suffer from poor performances compared to most supervised fine-tuned RE methods. Utilizing ICL for RE with LLMs encounters two challenges: (1) retrieving good demonstrations from training examples, and (2) enabling LLMs exhibit strong ICL abilities in RE. On the one hand, retrieving good demonstrations is a non-trivial process in RE, which easily results in low relevance regarding entities and relations. On the other hand, ICL with an LLM achieves poor performance in RE while RE is different from language modeling in nature or the LLM is not large enough. In this work, we propose a novel recall-retrieve-reason RE framework that synergizes LLMs with retrieval corpora (training examples) to enable relevant retrieving and reliable in-context reasoning. Specifically, we distill the consistently ontological knowledge from training datasets to let LLMs generate relevant entity pairs grounded by retrieval corpora as valid queries. These entity pairs are then used to retrieve relevant training examples from the retrieval corpora as demonstrations for LLMs to conduct better ICL via instruction tuning. Extensive experiments on different LLMs and RE datasets demonstrate that our method generates relevant and valid entity pairs and boosts ICL abilities of LLMs, achieving competitive or new state-of-the-art performance on sentence-level RE compared to previous supervised fine-tuning methods and ICL-based methods.
comment: IJCAI 2024
☆ Scaffold-BPE: Enhancing Byte Pair Encoding with Simple and Effective Scaffold Token Removal
Byte Pair Encoding (BPE) serves as a foundation method for text tokenization in the Natural Language Processing (NLP) field. Despite its wide adoption, the original BPE algorithm harbors an inherent flaw: it inadvertently introduces a frequency imbalance for tokens in the text corpus. Since BPE iteratively merges the most frequent token pair in the text corpus while keeping all tokens that have been merged in the vocabulary, it unavoidably holds tokens that primarily represent subwords of complete words and appear infrequently on their own in the text corpus. We term such tokens as Scaffold Tokens. Due to their infrequent appearance in the text corpus, Scaffold Tokens pose a learning imbalance issue for language models. To address that issue, we propose Scaffold-BPE, which incorporates a dynamic scaffold token removal mechanism by parameter-free, computation-light, and easy-to-implement modifications to the original BPE. This novel approach ensures the exclusion of low-frequency Scaffold Tokens from the token representations for the given texts, thereby mitigating the issue of frequency imbalance and facilitating model training. On extensive experiments across language modeling tasks and machine translation tasks, Scaffold-BPE consistently outperforms the original BPE, well demonstrating its effectiveness and superiority.
☆ Meta In-Context Learning Makes Large Language Models Better Zero and Few-Shot Relation Extractors IJCAI 2024
Relation extraction (RE) is an important task that aims to identify the relationships between entities in texts. While large language models (LLMs) have revealed remarkable in-context learning (ICL) capability for general zero and few-shot learning, recent studies indicate that current LLMs still struggle with zero and few-shot RE. Previous studies are mainly dedicated to design prompt formats and select good examples for improving ICL-based RE. Although both factors are vital for ICL, if one can fundamentally boost the ICL capability of LLMs in RE, the zero and few-shot RE performance via ICL would be significantly improved. To this end, we introduce \textsc{Micre} (\textbf{M}eta \textbf{I}n-\textbf{C}ontext learning of LLMs for \textbf{R}elation \textbf{E}xtraction), a new meta-training framework for zero and few-shot RE where an LLM is tuned to do ICL on a diverse collection of RE datasets (i.e., learning to learn in context for RE). Through meta-training, the model becomes more effectively to learn a new RE task in context by conditioning on a few training examples with no parameter updates or task-specific templates at inference time, enabling better zero and few-shot task generalization. We experiment \textsc{Micre} on various LLMs with different model scales and 12 public RE datasets, and then evaluate it on unseen RE benchmarks under zero and few-shot settings. \textsc{Micre} delivers comparable or superior performance compared to a range of baselines including supervised fine-tuning and typical in-context learning methods. We find that the gains are particular significant for larger model scales, and using a diverse set of the meta-training RE datasets is key to improvements. Empirically, we show that \textsc{Micre} can transfer the relation semantic knowledge via relation label name during inference on target RE datasets.
comment: IJCAI 2024
☆ Empirical Analysis of Dialogue Relation Extraction with Large Language Models IJCAI 2024
Dialogue relation extraction (DRE) aims to extract relations between two arguments within a dialogue, which is more challenging than standard RE due to the higher person pronoun frequency and lower information density in dialogues. However, existing DRE methods still suffer from two serious issues: (1) hard to capture long and sparse multi-turn information, and (2) struggle to extract golden relations based on partial dialogues, which motivates us to discover more effective methods that can alleviate the above issues. We notice that the rise of large language models (LLMs) has sparked considerable interest in evaluating their performance across diverse tasks. To this end, we initially investigate the capabilities of different LLMs in DRE, considering both proprietary models and open-source models. Interestingly, we discover that LLMs significantly alleviate two issues in existing DRE methods. Generally, we have following findings: (1) scaling up model size substantially boosts the overall DRE performance and achieves exceptional results, tackling the difficulty of capturing long and sparse multi-turn information; (2) LLMs encounter with much smaller performance drop from entire dialogue setting to partial dialogue setting compared to existing methods; (3) LLMs deliver competitive or superior performances under both full-shot and few-shot settings compared to current state-of-the-art; (4) LLMs show modest performances on inverse relations but much stronger improvements on general relations, and they can handle dialogues of various lengths especially for longer sequences.
comment: IJCAI 2024
☆ Continual Pre-Training for Cross-Lingual LLM Adaptation: Enhancing Japanese Language Capabilities
Cross-lingual continual pre-training of large language models (LLMs) initially trained on English corpus allows us to leverage the vast amount of English language resources and reduce the pre-training cost. In this study, we constructed Swallow, an LLM with enhanced Japanese capability, by extending the vocabulary of Llama 2 to include Japanese characters and conducting continual pre-training on a large Japanese web corpus. Experimental results confirmed that the performance on Japanese tasks drastically improved through continual pre-training, and the performance monotonically increased with the amount of training data up to 100B tokens. Consequently, Swallow achieved superior performance compared to other LLMs that were trained from scratch in English and Japanese. An analysis of the effects of continual pre-training revealed that it was particularly effective for Japanese question answering tasks. Furthermore, to elucidate effective methodologies for cross-lingual continual pre-training from English to Japanese, we investigated the impact of vocabulary expansion and the effectiveness of incorporating parallel corpora. The results showed that the efficiency gained through vocabulary expansion had no negative impact on performance, except for the summarization task, and that the combined use of parallel corpora enhanced translation ability.
☆ Temporal Scaling Law for Large Language Models
Recently, Large Language Models (LLMs) are widely adopted in a wide range of tasks, leading to increasing attention towards the research on how scaling LLMs affects their performance. Existing works, termed as Scaling Laws, have discovered that the loss of LLMs scales as power laws with model size, computational budget, and dataset size. However, the performance of LLMs throughout the training process remains untouched. In this paper, we propose the novel concept of Temporal Scaling Law and study the loss of LLMs from the temporal dimension. We first investigate the imbalance of loss on each token positions and develop a reciprocal-law across model scales and training stages. We then derive the temporal scaling law by studying the temporal patterns of the reciprocal-law parameters. Results on both in-distribution (IID) data and out-of-distribution (OOD) data demonstrate that our temporal scaling law accurately predicts the performance of LLMs in future training stages. Moreover, the temporal scaling law reveals that LLMs learn uniformly on different token positions, despite the loss imbalance. Experiments on pre-training LLMs in various scales show that this phenomenon verifies the default training paradigm for generative language models, in which no re-weighting strategies are attached during training. Overall, the temporal scaling law provides deeper insight into LLM pre-training.
comment: Work in progress
☆ Medical Vision-Language Pre-Training for Brain Abnormalities
Vision-language models have become increasingly powerful for tasks that require an understanding of both visual and linguistic elements, bridging the gap between these modalities. In the context of multimodal clinical AI, there is a growing need for models that possess domain-specific knowledge, as existing models often lack the expertise required for medical applications. In this paper, we take brain abnormalities as an example to demonstrate how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed. In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset from case reports and published journals and subsequently constructing a high-performance vision-language model tailored to specific medical tasks. We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain. We evaluated the resulting model with quantitative and qualitative intrinsic evaluations. The resulting dataset and our code can be found here https://github.com/masoud-monajati/MedVL_pretraining_pipeline
☆ MRScore: Evaluating Radiology Report Generation with LLM-based Reward System
In recent years, automated radiology report generation has experienced significant growth. This paper introduces MRScore, an automatic evaluation metric tailored for radiology report generation by leveraging Large Language Models (LLMs). Conventional NLG (natural language generation) metrics like BLEU are inadequate for accurately assessing the generated radiology reports, as systematically demonstrated by our observations within this paper. To address this challenge, we collaborated with radiologists to develop a framework that guides LLMs for radiology report evaluation, ensuring alignment with human analysis. Our framework includes two key components: i) utilizing GPT to generate large amounts of training data, i.e., reports with different qualities, and ii) pairing GPT-generated reports as accepted and rejected samples and training LLMs to produce MRScore as the model reward. Our experiments demonstrate MRScore's higher correlation with human judgments and superior performance in model selection compared to traditional metrics. Our code and datasets will be available on GitHub.
♻ ☆ CHAI: Clustered Head Attention for Efficient LLM Inference
Large Language Models (LLMs) with hundreds of billions of parameters have transformed the field of machine learning. However, serving these models at inference time is both compute and memory intensive, where a single request can require multiple GPUs and tens of Gigabytes of memory. Multi-Head Attention is one of the key components of LLMs, which can account for over 50% of LLMs memory and compute requirement. We observe that there is a high amount of redundancy across heads on which tokens they pay attention to. Based on this insight, we propose Clustered Head Attention (CHAI). CHAI combines heads with a high amount of correlation for self-attention at runtime, thus reducing both memory and compute. In our experiments, we show that CHAI is able to reduce the memory requirements for storing K,V cache by up to 21.4% and inference time latency by up to 1.73x without any fine-tuning required. CHAI achieves this with a maximum 3.2% deviation in accuracy across 3 different models (i.e. OPT-66B, LLAMA-7B, LLAMA-33B) and 5 different evaluation datasets.
♻ ☆ Matching Patients to Clinical Trials with Large Language Models
Clinical trials are often hindered by the challenge of patient recruitment. In this work, we introduce TrialGPT, a first-of-its-kind large language model (LLM) framework to assist patient-to-trial matching. Given a patient note, TrialGPT predicts the patient's eligibility on a criterion-by-criterion basis and then consolidates these predictions to assess the patient's eligibility for the target trial. We evaluate the trial-level prediction performance of TrialGPT on three publicly available cohorts of 184 patients with over 18,000 trial annotations. We also engaged three physicians to label over 1,000 patient-criterion pairs to assess its criterion-level prediction accuracy. Experimental results show that TrialGPT achieves a criterion-level accuracy of 87.3% with faithful explanations, close to the expert performance (88.7%-90.0%). The aggregated TrialGPT scores are highly correlated with human eligibility judgments, and they outperform the best-competing models by 32.6% to 57.2% in ranking and excluding clinical trials. Furthermore, our user study reveals that TrialGPT can significantly reduce the screening time (by 42.6%) in a real-life clinical trial matching task. These results and analyses have demonstrated promising opportunities for clinical trial matching with LLMs such as TrialGPT.
comment: Under review
♻ ☆ Softmax Attention with Constant Cost per Token
We propose a simple modification to the conventional attention mechanism applied by Transformers: Instead of quantifying pairwise query-key similarity with scaled dot-products, we quantify it with the logarithms of scaled dot-products of exponentials. Our modification linearizes attention with exponential kernel feature maps, whose corresponding feature function is infinite dimensional. We show that our modification is expressible as a composition of log-sums of exponentials, with a latent space of constant size, enabling application with constant time and space complexity per token. We implement our modification, verify that it works in practice, and conclude that it is a promising alternative to conventional attention.
comment: Source code and instructions for replicating our results are online at https://github.com/glassroom/heinsen_attention
♻ ☆ DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models
Mathematical reasoning poses a significant challenge for language models due to its complex and structured nature. In this paper, we introduce DeepSeekMath 7B, which continues pre-training DeepSeek-Coder-Base-v1.5 7B with 120B math-related tokens sourced from Common Crawl, together with natural language and code data. DeepSeekMath 7B has achieved an impressive score of 51.7% on the competition-level MATH benchmark without relying on external toolkits and voting techniques, approaching the performance level of Gemini-Ultra and GPT-4. Self-consistency over 64 samples from DeepSeekMath 7B achieves 60.9% on MATH. The mathematical reasoning capability of DeepSeekMath is attributed to two key factors: First, we harness the significant potential of publicly available web data through a meticulously engineered data selection pipeline. Second, we introduce Group Relative Policy Optimization (GRPO), a variant of Proximal Policy Optimization (PPO), that enhances mathematical reasoning abilities while concurrently optimizing the memory usage of PPO.
♻ ☆ Benchingmaking Large Langage Models in Biomedical Triple Extraction
Biomedical triple extraction systems aim to automatically extract biomedical entities and relations between entities. The exploration of applying large language models (LLM) to triple extraction is still relatively unexplored. In this work, we mainly focus on sentence-level biomedical triple extraction. Furthermore, the absence of a high-quality biomedical triple extraction dataset impedes the progress in developing robust triple extraction systems. To address these challenges, initially, we compare the performance of various large language models. Additionally, we present GIT, an expert-annotated biomedical triple extraction dataset that covers a wider range of relation types.
comment: this is the onging work
♻ ☆ SSHR: Leveraging Self-supervised Hierarchical Representations for Multilingual Automatic Speech Recognition ICME 2024
Multilingual automatic speech recognition (ASR) systems have garnered attention for their potential to extend language coverage globally. While self-supervised learning (SSL) models, like MMS, have demonstrated their effectiveness in multilingual ASR, it is worth noting that various layers' representations potentially contain distinct information that has not been fully leveraged. In this study, we propose a novel method that leverages self-supervised hierarchical representations (SSHR) to fine-tune the MMS model. We first analyze the different layers of MMS and show that the middle layers capture language-related information, and the high layers encode content-related information, which gradually decreases in the final layers. Then, we extract a language-related frame from correlated middle layers and guide specific language extraction through self-attention mechanisms. Additionally, we steer the model toward acquiring more content-related information in the final layers using our proposed Cross-CTC. We evaluate SSHR on two multilingual datasets, Common Voice and ML-SUPERB, and the experimental results demonstrate that our method achieves state-of-the-art performance.
comment: 5 pages, 2 figures. Accepted by ICME 2024
♻ ☆ HeLM: Highlighted Evidence augmented Language Model for Enhanced Table-to-Text Generation
Large models have demonstrated significant progress across various domains, particularly in tasks related to text generation. In the domain of Table to Text, many Large Language Model (LLM)-based methods currently resort to modifying prompts to invoke public APIs, incurring potential costs and information leaks. With the advent of open-source large models, fine-tuning LLMs has become feasible. In this study, we conducted parameter-efficient fine-tuning on the LLaMA2 model. Distinguishing itself from previous fine-tuning-based table-to-text methods, our approach involves injecting reasoning information into the input by emphasizing table-specific row data. Our model consists of two modules: 1) a table reasoner that identifies relevant row evidence, and 2) a table summarizer that generates sentences based on the highlighted table. To facilitate this, we propose a search strategy to construct reasoning labels for training the table reasoner. On both the FetaQA and QTSumm datasets, our approach achieved state-of-the-art results. Additionally, we observed that highlighting input tables significantly enhances the model's performance and provides valuable interpretability.
♻ ☆ VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools
Building models that comprehends videos and responds specific user instructions is a practical and challenging topic, as it requires mastery of both vision understanding and knowledge reasoning. Compared to language and image modalities, training efficiency remains a serious problem as existing studies train models on massive sparse videos paired with brief descriptions. In this paper, we introduce \textbf{VidCoM}, a fast adaptive framework that leverages Large Language Models (LLMs) to reason about videos using lightweight visual tools. Specifically, we reveal that the key to responding to specific instructions is focusing on relevant video events, and utilize two visual tools, structured scene graph generation and descriptive image caption generation, to gather and represent the event information. Thus, a LLM enriched with world knowledge is adopted as the reasoning agent to achieve the responses by performing multiple reasoning steps on specific video events. To address the difficulty of LLMs identifying video events, we further propose an Instruction-oriented Video Events Recognition (InsOVER) algorithm. This algorithm locates the corresponding video events based on an efficient Hungarian matching between decompositions of linguistic instructions and video events, thereby enabling LLMs to interact effectively with extended videos. Extensive experiments on two typical video comprehension tasks show that the proposed tuning-free framework outperforms the pre-trained models including Flamingo-80B, to achieve the state-of-the-art performance. Our source code and system will be publicly available.
♻ ☆ Towards Measuring and Modeling "Culture" in LLMs: A Survey
We present a survey of 39 recent papers that aim to study cultural representation and inclusion in large language models. We observe that none of the studies define "culture," which is a complex, multifaceted concept; instead, they probe the models on some specially designed datasets which represent certain aspects of "culture." We call these aspects the proxies of cultures, and organize them across three dimensions of demographic, semantic and linguistic-cultural interaction proxies. We also categorize the probing methods employed. Our analysis indicates that only certain aspects of "culture," such as values and objectives, have been studied, leaving several other interesting and important facets, especially the multitude of semantic domains (Thompson et al., 2020) and aboutness (Hershcovich et al., 2022), unexplored. Two other crucial gaps are the lack of robustness and situatedness of the current methods. Based on these observations, we provide several recommendations for a holistic and practically useful research agenda for furthering cultural inclusion in LLMs and LLM-based applications.
♻ ☆ Health-LLM: Large Language Models for Health Prediction via Wearable Sensor Data
Large language models (LLMs) are capable of many natural language tasks, yet they are far from perfect. In health applications, grounding and interpreting domain-specific and non-linguistic data is crucial. This paper investigates the capacity of LLMs to make inferences about health based on contextual information (e.g. user demographics, health knowledge) and physiological data (e.g. resting heart rate, sleep minutes). We present a comprehensive evaluation of 12 state-of-the-art LLMs with prompting and fine-tuning techniques on four public health datasets (PMData, LifeSnaps, GLOBEM and AW_FB). Our experiments cover 10 consumer health prediction tasks in mental health, activity, metabolic, and sleep assessment. Our fine-tuned model, HealthAlpaca exhibits comparable performance to much larger models (GPT-3.5, GPT-4 and Gemini-Pro), achieving the best performance in 8 out of 10 tasks. Ablation studies highlight the effectiveness of context enhancement strategies. Notably, we observe that our context enhancement can yield up to 23.8% improvement in performance. While constructing contextually rich prompts (combining user context, health knowledge and temporal information) exhibits synergistic improvement, the inclusion of health knowledge context in prompts significantly enhances overall performance.
♻ ☆ MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria
Multimodal large language models (MLLMs) (e.g., GPT-4V, LLaVA, and Claude-3) have broadened the scope of AI applications. Yet, evaluating their performance presents a significant challenge owing to the inherently subjective nature of tasks that do not yield clear-cut solutions especially for those open-ended queries. Existing automatic evaluation methodologies are mainly limited in evaluating objective queries without considering real-world user experiences, inadequately addressing the nuances of creative and associative multimodal tasks. In our paper, we propose a new evaluation paradigm for MLLMs, which is evaluating MLLMs with \textit{per-sample criteria} using potent MLLM as the judge. To validate the feasibility and effectiveness of this paradigm, we design a benchmark, dubbed \textit{MLLM-Bench}, with the evaluation samples across six critical levels following the revised Bloom's Taxonomy with the ethical consideration. We benchmark 21 popular MLLMs in a pairwise-comparison fashion, showing diverse performance across models. Moreover, the validity of our benchmark manifests itself in reaching 88.02\% agreement with human evaluation. We contend that the proposed paradigm explores the potential of MLLMs as effective evaluation tools with the help of per-sample criteria, and that MLLM-Bench will serve as a catalyst for encouraging the development of user-centric MLLMs tailored to real-world applications. Our benchmark data, online leaderboard and submission entry are at https://mllm-bench.llmzoo.com.
comment: 23 pages
♻ ☆ PRISM: Patient Records Interpretation for Semantic Clinical Trial Matching using Large Language Models
Clinical trial matching is the task of identifying trials for which patients may be potentially eligible. Typically, this task is labor-intensive and requires detailed verification of patient electronic health records (EHRs) against the stringent inclusion and exclusion criteria of clinical trials. This process is manual, time-intensive, and challenging to scale up, resulting in many patients missing out on potential therapeutic options. Recent advancements in Large Language Models (LLMs) have made automating patient-trial matching possible, as shown in multiple concurrent research studies. However, the current approaches are confined to constrained, often synthetic datasets that do not adequately mirror the complexities encountered in real-world medical data. In this study, we present the first, end-to-end large-scale empirical evaluation of clinical trial matching using real-world EHRs. Our study showcases the capability of LLMs to accurately match patients with appropriate clinical trials. We perform experiments with proprietary LLMs, including GPT-4 and GPT-3.5, as well as our custom fine-tuned model called OncoLLM and show that OncoLLM, despite its significantly smaller size, not only outperforms GPT-3.5 but also matches the performance of qualified medical doctors. All experiments were carried out on real-world EHRs that include clinical notes and available clinical trials from a single cancer center in the United States.
comment: 30 Pages, 8 Figures, Supplementary Work Attached
♻ ☆ ViP-LLaVA: Making Large Multimodal Models Understand Arbitrary Visual Prompts CVPR2024
While existing large vision-language multimodal models focus on whole image understanding, there is a prominent gap in achieving region-specific comprehension. Current approaches that use textual coordinates or spatial encodings often fail to provide a user-friendly interface for visual prompting. To address this challenge, we introduce a novel multimodal model capable of decoding arbitrary visual prompts. This allows users to intuitively mark images and interact with the model using natural cues like a "red bounding box" or "pointed arrow". Our simple design directly overlays visual markers onto the RGB image, eliminating the need for complex region encodings, yet achieves state-of-the-art performance on region-understanding tasks like Visual7W, PointQA, and Visual Commonsense Reasoning benchmark. Furthermore, we present ViP-Bench, a comprehensive benchmark to assess the capability of models in understanding visual prompts across multiple dimensions, enabling future research in this domain. Code, data, and model are publicly available.
comment: Accepted to CVPR2024. Project page: https://vip-llava.github.io/
Information Retrieval 5
☆ Towards Robust Recommendation: A Review and an Adversarial Robustness Evaluation Library
Recently, recommender system has achieved significant success. However, due to the openness of recommender systems, they remain vulnerable to malicious attacks. Additionally, natural noise in training data and issues such as data sparsity can also degrade the performance of recommender systems. Therefore, enhancing the robustness of recommender systems has become an increasingly important research topic. In this survey, we provide a comprehensive overview of the robustness of recommender systems. Based on our investigation, we categorize the robustness of recommender systems into adversarial robustness and non-adversarial robustness. In the adversarial robustness, we introduce the fundamental principles and classical methods of recommender system adversarial attacks and defenses. In the non-adversarial robustness, we analyze non-adversarial robustness from the perspectives of data sparsity, natural noise, and data imbalance. Additionally, we summarize commonly used datasets and evaluation metrics for evaluating the robustness of recommender systems. Finally, we also discuss the current challenges in the field of recommender system robustness and potential future research directions. Additionally, to facilitate fair and efficient evaluation of attack and defense methods in adversarial robustness, we propose an adversarial robustness evaluation library--ShillingREC, and we conduct evaluations of basic attack models and recommendation models. ShillingREC project is released at https://github.com/chengleileilei/ShillingREC.
☆ A Taxation Perspective for Fair Re-ranking SIGIR 2024
Fair re-ranking aims to redistribute ranking slots among items more equitably to ensure responsibility and ethics. The exploration of redistribution problems has a long history in economics, offering valuable insights for conceptualizing fair re-ranking as a taxation process. Such a formulation provides us with a fresh perspective to re-examine fair re-ranking and inspire the development of new methods. From a taxation perspective, we theoretically demonstrate that most previous fair re-ranking methods can be reformulated as an item-level tax policy. Ideally, a good tax policy should be effective and conveniently controllable to adjust ranking resources. However, both empirical and theoretical analyses indicate that the previous item-level tax policy cannot meet two ideal controllable requirements: (1) continuity, ensuring minor changes in tax rates result in small accuracy and fairness shifts; (2) controllability over accuracy loss, ensuring precise estimation of the accuracy loss under a specific tax rate. To overcome these challenges, we introduce a new fair re-ranking method named Tax-rank, which levies taxes based on the difference in utility between two items. Then, we efficiently optimize such an objective by utilizing the Sinkhorn algorithm in optimal transport. Upon a comprehensive analysis, Our model Tax-rank offers a superior tax policy for fair re-ranking, theoretically demonstrating both continuity and controllability over accuracy loss. Experimental results show that Tax-rank outperforms all state-of-the-art baselines in terms of effectiveness and efficiency on recommendation and advertising tasks.
comment: Accepted in SIGIR 2024
☆ Conformal Ranked Retrieval
Given the wide adoption of ranked retrieval techniques in various information systems that significantly impact our daily lives, there is an increasing need to assess and address the uncertainty inherent in their predictions. This paper introduces a novel method using the conformal risk control framework to quantitatively measure and manage risks in the context of ranked retrieval problems. Our research focuses on a typical two-stage ranked retrieval problem, where the retrieval stage generates candidates for subsequent ranking. By carefully formulating the conformal risk for each stage, we have developed algorithms to effectively control these risks within their specified bounds. The efficacy of our proposed methods has been demonstrated through comprehensive experiments on three large-scale public datasets for ranked retrieval tasks, including the MSLR-WEB dataset, the Yahoo LTRC dataset and the MS MARCO dataset.
comment: 14 pages, 6 figures, 1 table; 7 supplementary pages, 12 supplementary figures, 2 supplementary tables
☆ Un análisis bibliométrico de la producción científica acerca del agrupamiento de trayectorias GPS
Clustering algorithms or methods for GPS trajectories are in constant evolution due to the interest aroused in part of the scientific community. With the development of clustering algorithms considered traditional, improvements to these algorithms and even unique methods considered as "novelty" for science have emerged. This work aims to analyze the scientific production that exists around the topic "GPS trajectory clustering" by means of bibliometrics. Therefore, a total of 559 articles from the main collection of Scopus were analyzed, previously filtering the generated sample to discard any article that does not have a direct relationship with the topic to be analyzed. This analysis establishes an ideal environment for other disciplines and researchers, since it provides a current state of the trend of the subject of study in their field of research. -- Los algoritmos o m\'etodos de agrupamiento para trayectorias GPS se encuentran en constante evoluci\'on debido al inter\'es que despierta en parte de la comunidad cient\'ifica. Con el desarrollo de los algoritmos de agrupamiento considerados tradicionales han surgido mejoras a estos algoritmos e incluso m\'etodos \'unicos considerados como "novedad" para la ciencia. Este trabajo tiene como objetivo analizar la producci\'on cient\'ifica que existe alrededor del tema "agrupamiento de trayectorias GPS" mediante la bibliometr\'ia. Por lo tanto, fueron analizados un total de 559 art\'iculos de la colecci\'on principal de Scopus, realizando previamente un filtrado de la muestra generada para descartar todo aquel art\'iculo que no tenga una relaci\'on directa con el tema a analizar. Este an\'alisis establece un ambiente ideal para otras disciplinas e investigadores, ya que entrega un estado actual de la tendencia que lleva la tem\'atica de estudio en su campo de investigaci\'on.
comment: 16 pages, in Spanish, 8 figures
♻ ☆ EasyRL4Rec: An Easy-to-use Library for Reinforcement Learning Based Recommender Systems SIGIR2024
Reinforcement Learning (RL)-Based Recommender Systems (RSs) have gained rising attention for their potential to enhance long-term user engagement. However, research in this field faces challenges, including the lack of user-friendly frameworks, inconsistent evaluation metrics, and difficulties in reproducing existing studies. To tackle these issues, we introduce EasyRL4Rec, an easy-to-use code library designed specifically for RL-based RSs. This library provides lightweight and diverse RL environments based on five public datasets and includes core modules with rich options, simplifying model development. It provides unified evaluation standards focusing on long-term outcomes and offers tailored designs for state modeling and action representation for recommendation scenarios. Furthermore, we share our findings from insightful experiments with current methods. EasyRL4Rec seeks to facilitate the model development and experimental process in the domain of RL-based RSs. The library is available for public use.
comment: Accepted by SIGIR2024
Multimedia 2
☆ An automatic mixing speech enhancement system for multi-track audio
We propose a speech enhancement system for multitrack audio. The system will minimize auditory masking while allowing one to hear multiple simultaneous speakers. The system can be used in multiple communication scenarios e.g., teleconferencing, invoice gaming, and live streaming. The ITU-R BS.1387 Perceptual Evaluation of Audio Quality (PEAQ) model is used to evaluate the amount of masking in the audio signals. Different audio effects e.g., level balance, equalization, dynamic range compression, and spatialization are applied via an iterative Harmony searching algorithm that aims to minimize the masking. In the subjective listening test, the designed system can compete with mixes by professional sound engineers and outperforms mixes by existing auto-mixing systems.
comment: 5 pages
♻ ☆ UniScene: Multi-Camera Unified Pre-training via 3D Scene Reconstruction for Autonomous Driving
Multi-camera 3D perception has emerged as a prominent research field in autonomous driving, offering a viable and cost-effective alternative to LiDAR-based solutions. The existing multi-camera algorithms primarily rely on monocular 2D pre-training. However, the monocular 2D pre-training overlooks the spatial and temporal correlations among the multi-camera system. To address this limitation, we propose the first multi-camera unified pre-training framework, called UniScene, which involves initially reconstructing the 3D scene as the foundational stage and subsequently fine-tuning the model on downstream tasks. Specifically, we employ Occupancy as the general representation for the 3D scene, enabling the model to grasp geometric priors of the surrounding world through pre-training. A significant benefit of UniScene is its capability to utilize a considerable volume of unlabeled image-LiDAR pairs for pre-training purposes. The proposed multi-camera unified pre-training framework demonstrates promising results in key tasks such as multi-camera 3D object detection and surrounding semantic scene completion. When compared to monocular pre-training methods on the nuScenes dataset, UniScene shows a significant improvement of about 2.0% in mAP and 2.0% in NDS for multi-camera 3D object detection, as well as a 3% increase in mIoU for surrounding semantic scene completion. By adopting our unified pre-training method, a 25% reduction in 3D training annotation costs can be achieved, offering significant practical value for the implementation of real-world autonomous driving. Codes are publicly available at https://github.com/chaytonmin/UniScene.
comment: Accepted by RAL2024
Performance 2
☆ Deep Learning for Low-Latency, Quantum-Ready RF Sensing
Recent work has shown the promise of applying deep learning to enhance software processing of radio frequency (RF) signals. In parallel, hardware developments with quantum RF sensors based on Rydberg atoms are breaking longstanding barriers in frequency range, resolution, and sensitivity. In this paper, we describe our implementations of quantum-ready machine learning approaches for RF signal classification. Our primary objective is latency: while deep learning offers a more powerful computational paradigm, it also traditionally incurs latency overheads that hinder wider scale deployment. Our work spans three axes. (1) A novel continuous wavelet transform (CWT) based recurrent neural network (RNN) architecture that enables flexible online classification of RF signals on-the-fly with reduced sampling time. (2) Low-latency inference techniques for both GPU and CPU that span over 100x reductions in inference time, enabling real-time operation with sub-millisecond inference. (3) Quantum-readiness validated through application of our models to physics-based simulation of Rydberg atom QRF sensors. Altogether, our work bridges towards next-generation RF sensors that use quantum technology to surpass previous physical limits, paired with latency-optimized AI/ML software that is suitable for real-time deployment.
♻ ☆ Towards Universal Performance Modeling for Machine Learning Training on Multi-GPU Platforms
Characterizing and predicting the training performance of modern machine learning (ML) workloads on compute systems with compute and communication spread between CPUs, GPUs, and network devices is not only the key to optimization and planning but also a complex goal to achieve. The primary challenges include the complexity of synchronization and load balancing between CPUs and GPUs, the variance in input data distribution, and the use of different communication devices and topologies (e.g., NVLink, PCIe, network cards) that connect multiple compute devices, coupled with the desire for flexible training configurations. Built on top of our prior work for single-GPU platforms, we address these challenges and enable multi-GPU performance modeling by incorporating (1) data-distribution-aware performance models for embedding table lookup, and (2) data movement prediction of communication collectives, into our upgraded performance modeling pipeline equipped with inter-and intra-rank synchronization for ML workloads trained on multi-GPU platforms. Beyond accurately predicting the per-iteration training time of DLRM models with random configurations with a geomean error of 5.21% on two multi-GPU platforms, our prediction pipeline generalizes well to other types of ML workloads, such as Transformer-based NLP models with a geomean error of 3.00%. Moreover, even without actually running ML workloads like DLRMs on the hardware, it is capable of generating insights such as quickly selecting the fastest embedding table sharding configuration (with a success rate of 85%).
comment: 12 pages, 11 figures, 4 tables
Database 2
☆ The Common Core Ontologies
The Common Core Ontologies (CCO) are designed as a mid-level ontology suite that extends the Basic Formal Ontology. CCO has since been increasingly adopted by a broad group of users and applications and is proposed as the first standard mid-level ontology. Despite these successes, documentation of the contents and design patterns of the CCO has been comparatively minimal. This paper is a step toward providing enhanced documentation for the mid-level ontology suite through a discussion of the contents of the eleven ontologies that collectively comprise the Common Core Ontology suite.
comment: 13 pages
☆ Middle Architecture Criteria
Mid-level ontologies are used to integrate terminologies and data across disparate domains. There are, however, no clear, defensible criteria for determining whether a given ontology should count as mid-level, because we lack a rigorous characterization of what the middle level of generality is supposed to contain. Attempts to provide such a characterization have failed, we believe, because they have focused on the goal of specifying what is characteristic of those single ontologies that have been advanced as mid-level ontologies. Unfortunately, single ontologies of this sort are generally a mixture of top- and mid-level, and sometimes even of domain-level terms. To gain clarity, we aim to specify the necessary and sufficient conditions for a collection of one or more ontologies to inhabit what we call a mid-level architecture.
comment: 14 pages