MyArxiv
Computation and Language 49
♻ ☆ Safe and Responsible Large Language Model : Can We Balance Bias Reduction and Language Understanding in Large Language Models?
Large Language Models (LLMs) have significantly advanced various NLP tasks. However, these models often risk generating unsafe text that perpetuates biases. Current approaches to produce unbiased outputs from LLMs can reduce biases but at the expense of knowledge retention. In this research, we address the question of whether producing safe (unbiased) outputs through LLMs can retain knowledge and language understanding. In response, we developed the Safety and Responsible Large Language Model (\textbf{SR}$_{\text{LLM}}$), an LLM that has been instruction fine-tuned on top of already safe LLMs (e.g., Llama2 or related) to diminish biases in generated text. To achieve our goals, we compiled a specialized dataset designed to train our model in identifying and correcting biased text. We conduct experiments, both on this custom data and out-of-distribution test sets, to show the bias reduction and knowledge retention. The results confirm that \textbf{SR}$_{\text{LLM}}$ outperforms traditional fine-tuning and prompting methods in both reducing biases and preserving the integrity of language knowledge. The significance of our findings lies in demonstrating that instruction fine-tuning can provide a more robust solution for bias reduction in LLMs. We have made our code and data available at \href{https://github.com/shainarazavi/Safe-Responsible-LLM}{Safe-LLM}.
♻ ☆ Large Language Models Assume People are More Rational than We Really are
In order for AI systems to communicate effectively with people, they must understand how we make decisions. However, people's decisions are not always rational, so the implicit internal models of human decision-making in Large Language Models (LLMs) must account for this. Previous empirical evidence seems to suggest that these implicit models are accurate -- LLMs offer believable proxies of human behavior, acting how we expect humans would in everyday interactions. However, by comparing LLM behavior and predictions to a large dataset of human decisions, we find that this is actually not the case: when both simulating and predicting people's choices, a suite of cutting-edge LLMs (GPT-4o & 4-Turbo, Llama-3-8B & 70B, Claude 3 Opus) assume that people are more rational than we really are. Specifically, these models deviate from human behavior and align more closely with a classic model of rational choice -- expected value theory. Interestingly, people also tend to assume that other people are rational when interpreting their behavior. As a consequence, when we compare the inferences that LLMs and people draw from the decisions of others using another psychological dataset, we find that these inferences are highly correlated. Thus, the implicit decision-making models of LLMs appear to be aligned with the human expectation that other people will act rationally, rather than with how people actually act.
♻ ☆ Predicting Text Preference Via Structured Comparative Reasoning
Comparative reasoning plays a crucial role in text preference prediction; however, large language models (LLMs) often demonstrate inconsistencies in their reasoning. While approaches like Chain-of-Thought improve accuracy in many other settings, they struggle to consistently distinguish the similarities and differences of complex texts. We introduce SC, a prompting approach that predicts text preferences by generating structured intermediate comparisons. SC begins by proposing aspects of comparison, followed by generating textual comparisons under each aspect. We select consistent comparisons with a pairwise consistency comparator that ensures each aspect's comparisons clearly distinguish differences between texts, significantly reducing hallucination and improving consistency. Our comprehensive evaluations across various NLP tasks, including summarization, retrieval, and automatic rating, demonstrate that SC equips LLMs to achieve state-of-the-art performance in text preference prediction.
♻ ☆ Does Writing with Language Models Reduce Content Diversity? ICLR 2024
Large language models (LLMs) have led to a surge in collaborative writing with model assistance. As different users incorporate suggestions from the same model, there is a risk of decreased diversity in the produced content, potentially limiting diverse perspectives in public discourse. In this work, we measure the impact of co-writing on diversity via a controlled experiment, where users write argumentative essays in three setups -- using a base LLM (GPT3), a feedback-tuned LLM (InstructGPT), and writing without model help. We develop a set of diversity metrics and find that writing with InstructGPT (but not the GPT3) results in a statistically significant reduction in diversity. Specifically, it increases the similarity between the writings of different authors and reduces the overall lexical and content diversity. We additionally find that this effect is mainly attributable to InstructGPT contributing less diverse text to co-written essays. In contrast, the user-contributed text remains unaffected by model collaboration. This suggests that the recent improvement in generation quality from adapting models to human feedback might come at the cost of more homogeneous and less diverse content.
comment: ICLR 2024
♻ ☆ Video-Language Understanding: A Survey from Model Architecture, Model Training, and Data Perspectives ACL 2024
Humans use multiple senses to comprehend the environment. Vision and language are two of the most vital senses since they allow us to easily communicate our thoughts and perceive the world around us. There has been a lot of interest in creating video-language understanding systems with human-like senses since a video-language pair can mimic both our linguistic medium and visual environment with temporal dynamics. In this survey, we review the key tasks of these systems and highlight the associated challenges. Based on the challenges, we summarize their methods from model architecture, model training, and data perspectives. We also conduct performance comparison among the methods, and discuss promising directions for future research.
comment: Accepted at ACL 2024 (Findings)
♻ ☆ Explainability of machine learning approaches in forensic linguistics: a case study in geolinguistic authorship profiling
Forensic authorship profiling uses linguistic markers to infer characteristics about an author of a text. This task is paralleled in dialect classification, where a prediction is made about the linguistic variety of a text based on the text itself. While there have been significant advances in recent years in variety classification, forensic linguistics rarely relies on these approaches due to their lack of transparency, among other reasons. In this paper we therefore explore the explainability of machine learning approaches considering the forensic context. We focus on variety classification as a means of geolinguistic profiling of unknown texts based on social media data from the German-speaking area. For this, we identify the lexical items that are the most impactful for the variety classification. We find that the extracted lexical features are indeed representative of their respective varieties and note that the trained models also rely on place names for classifications.
♻ ☆ Are LLMs Rational Investors? A Study on Detecting and Reducing the Financial Bias in LLMs
Large Language Models (LLMs) are increasingly adopted in financial analysis for interpreting complex market data and trends. However, their use is challenged by intrinsic biases (e.g., risk-preference bias) and a superficial understanding of market intricacies, necessitating a thorough assessment of their financial insight. To address these issues, we introduce Financial Bias Indicators (FBI), a framework with components like Bias Unveiler, Bias Detective, Bias Tracker, and Bias Antidote to identify, detect, analyze, and eliminate irrational biases in LLMs. By combining behavioral finance principles with bias examination, we evaluate 23 leading LLMs and propose a de-biasing method based on financial causal knowledge. Results show varying degrees of financial irrationality among models, influenced by their design and training. Models trained specifically on financial datasets may exhibit more irrationality, and even larger financial language models (FinLLMs) can show more bias than smaller, general models. We utilize four prompt-based methods incorporating causal debiasing, effectively reducing financial biases in these models. This work enhances the understanding of LLMs' bias in financial applications, laying the foundation for developing more reliable and rational financial analysis tools.
♻ ☆ Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories?
Making moral judgments is an essential step toward developing ethical AI systems. Prevalent approaches are mostly implemented in a bottom-up manner, which uses a large set of annotated data to train models based on crowd-sourced opinions about morality. These approaches have been criticized for overgeneralizing the moral stances of a limited group of annotators and lacking explainability. This work proposes a flexible top-down framework to steer (Large) Language Models (LMs) to perform moral reasoning with well-established moral theories from interdisciplinary research. The theory-guided top-down framework can incorporate various moral theories. Our experiments demonstrate the effectiveness of the proposed framework on datasets derived from moral theories. Furthermore, we show the alignment between different moral theories and existing morality datasets. Our analysis exhibits the potential and flaws in existing resources (models and datasets) in developing explainable moral judgment-making systems.
♻ ☆ Patch-Prompt Aligned Bayesian Prompt Tuning for Vision-Language Models UAI 2024
For downstream applications of vision-language pre-trained models, there has been significant interest in constructing effective prompts. Existing works on prompt engineering, which either require laborious manual designs or optimize the prompt tuning as a point estimation problem, may fail to describe diverse characteristics of categories and limit their applications. We introduce a Bayesian probabilistic resolution to prompt tuning, where the label-specific stochastic prompts are generated hierarchically by first sampling a latent vector from an underlying distribution and then employing a lightweight generative model. Importantly, we semantically regularize the tuning process by minimizing the statistical distance between the visual patches and linguistic prompts, which pushes the stochastic label representations to faithfully capture diverse visual concepts, instead of overfitting the training categories. We evaluate the effectiveness of our approach on four tasks: few-shot image recognition, base-to-new generalization, dataset transfer learning, and domain shifts. Extensive results over 15 datasets show promising transferability and generalization performance of our proposed model, both quantitatively and qualitatively.
comment: Accepted by UAI 2024
♻ ☆ ViANLI: Adversarial Natural Language Inference for Vietnamese
The development of Natural Language Processing (NLI) datasets and models has been inspired by innovations in annotation design. With the rapid development of machine learning models today, the performance of existing machine learning models has quickly reached state-of-the-art results on a variety of tasks related to natural language processing, including natural language inference tasks. By using a pre-trained model during the annotation process, it is possible to challenge current NLI models by having humans produce premise-hypothesis combinations that the machine model cannot correctly predict. To remain attractive and challenging in the research of natural language inference for Vietnamese, in this paper, we introduce the adversarial NLI dataset to the NLP research community with the name ViANLI. This data set contains more than 10K premise-hypothesis pairs and is built by a continuously adjusting process to obtain the most out of the patterns generated by the annotators. ViANLI dataset has brought many difficulties to many current SOTA models when the accuracy of the most powerful model on the test set only reached 48.4%. Additionally, the experimental results show that the models trained on our dataset have significantly improved the results on other Vietnamese NLI datasets.
♻ ☆ BeHonest: Benchmarking Honesty of Large Language Models
Previous works on Large Language Models (LLMs) have mainly focused on evaluating their helpfulness or harmlessness. However, honesty, another crucial alignment criterion, has received relatively less attention. Dishonest behaviors in LLMs, such as spreading misinformation and defrauding users, eroding user trust, and causing real-world harm, present severe risks that intensify as these models approach superintelligence levels. Enhancing honesty in LLMs addresses critical deficiencies and helps uncover latent capabilities that are not readily expressed. This underscores the urgent need for reliable methods and benchmarks to effectively ensure and evaluate the honesty of LLMs. In this paper, we introduce BeHonest, a pioneering benchmark specifically designed to assess honesty in LLMs comprehensively. BeHonest evaluates three essential aspects of honesty: awareness of knowledge boundaries, avoidance of deceit, and consistency in responses. Building on this foundation, we designed 10 scenarios to evaluate and analyze 9 popular LLMs on the market, including both closed-source and open-source models from different model families with varied model sizes. Our findings indicate that there is still significant room for improvement in the honesty of LLMs. We also encourage the AI community to prioritize honesty alignment in LLMs. Our benchmark and code can be found at: \url{https://github.com/GAIR-NLP/BeHonest}.
♻ ☆ Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text
Detecting text generated by modern large language models is thought to be hard, as both LLMs and humans can exhibit a wide range of complex behaviors. However, we find that a score based on contrasting two closely related language models is highly accurate at separating human-generated and machine-generated text. Based on this mechanism, we propose a novel LLM detector that only requires simple calculations using a pair of pre-trained LLMs. The method, called Binoculars, achieves state-of-the-art accuracy without any training data. It is capable of spotting machine text from a range of modern LLMs without any model-specific modifications. We comprehensively evaluate Binoculars on a number of text sources and in varied situations. Over a wide range of document types, Binoculars detects over 90% of generated samples from ChatGPT (and other LLMs) at a false positive rate of 0.01%, despite not being trained on any ChatGPT data.
comment: 20 pages, code available at https://github.com/ahans30/Binoculars
♻ ☆ $R^3$-NL2GQL: A Model Coordination and Knowledge Graph Alignment Approach for NL2GQL
While current tasks of converting natural language to SQL (NL2SQL) using Foundation Models have shown impressive achievements, adapting these approaches for converting natural language to Graph Query Language (NL2GQL) encounters hurdles due to the distinct nature of GQL compared to SQL, alongside the diverse forms of GQL. Moving away from traditional rule-based and slot-filling methodologies, we introduce a novel approach, $R^3$-NL2GQL, integrating both small and large Foundation Models for ranking, rewriting, and refining tasks. This method leverages the interpretative strengths of smaller models for initial ranking and rewriting stages, while capitalizing on the superior generalization and query generation prowess of larger models for the final transformation of natural language queries into GQL formats. Addressing the scarcity of datasets in this emerging field, we have developed a bilingual dataset, sourced from graph database manuals and selected open-source Knowledge Graphs (KGs). Our evaluation of this methodology on this dataset demonstrates its promising efficacy and robustness.
♻ ☆ SCAR: Efficient Instruction-Tuning for Large Language Models via Style Consistency-Aware Response Ranking
Recent studies have shown that maintaining a consistent response style by human experts and enhancing data quality in training sets can significantly improve the performance of fine-tuned Large Language Models (LLMs) while reducing the number of training examples needed. However, the precise definition of style and the relationship between style, data quality, and LLM performance remains unclear. This research decomposes response style into presentation and composition styles and finds that, among training data of similar quality, those with higher style consistency lead to better LLM performance. Inspired by this, we introduce Style Consistency-Aware Response Ranking (SCAR), which automatically prioritizes instruction-response pairs in the training set based on their response stylistic consistency. By selecting the most style-consistent examples, ranging from the top 25% to 0.7% of the full dataset, the fine-tuned LLMs can match or even surpass the performance of models trained on the entire dataset in coding and open-ended question-answering benchmarks. Code and data are available at https://github.com/zhuang-li/SCAR .
comment: 21 pages
♻ ☆ Rethinking LLM Memorization through the Lens of Adversarial Compression
Large language models (LLMs) trained on web-scale datasets raise substantial concerns regarding permissible data usage. One major question is whether these models "memorize" all their training data or they integrate many data sources in some way more akin to how a human would learn and synthesize information. The answer hinges, to a large degree, on how we define memorization. In this work, we propose the Adversarial Compression Ratio (ACR) as a metric for assessing memorization in LLMs. A given string from the training data is considered memorized if it can be elicited by a prompt (much) shorter than the string itself -- in other words, if these strings can be "compressed" with the model by computing adversarial prompts of fewer tokens. The ACR overcomes the limitations of existing notions of memorization by (i) offering an adversarial view of measuring memorization, especially for monitoring unlearning and compliance; and (ii) allowing for the flexibility to measure memorization for arbitrary strings at a reasonably low compute. Our definition serves as a practical tool for determining when model owners may be violating terms around data usage, providing a potential legal tool and a critical lens through which to address such scenarios.
comment: https://locuslab.github.io/acr-memorization
♻ ☆ $Classi|Q\rangle$ Towards a Translation Framework To Bridge The Classical-Quantum Programming Gap
Quantum computing, albeit readily available as hardware or emulated on the cloud, is still far from being available in general regarding complex programming paradigms and learning curves. This vision paper introduces $Classi|Q\rangle$, a translation framework idea to bridge Classical and Quantum Computing by translating high-level programming languages, e.g., Python or C++, into a low-level language, e.g., Quantum Assembly. Our idea paper serves as a blueprint for ongoing efforts in quantum software engineering, offering a roadmap for further $Classi|Q\rangle$ development to meet the diverse needs of researchers and practitioners. $Classi|Q\rangle$ is designed to empower researchers and practitioners with no prior quantum experience to harness the potential of hybrid quantum computation. We also discuss future enhancements to $Classi|Q\rangle$, including support for additional quantum languages, improved optimization strategies, and integration with emerging quantum computing platforms.
♻ ☆ Efficient Prompt Tuning by Multi-Space Projection and Prompt Fusion
Prompt tuning is a promising method to fine-tune a pre-trained language model without retraining its large-scale parameters. Instead, it attaches a soft prompt to the input text, whereby downstream tasks can be well adapted by merely learning the embeddings of prompt tokens. Nevertheless, existing methods still suffer from two challenges: (i) they are hard to balance accuracy and efficiency. A longer (shorter) soft prompt generally leads to a better(worse) accuracy but at the cost of more (less) training time. (ii)The performance may not be consistent when adapting to different downstream tasks. We attribute it to the same embedding space but responsible for different requirements of downstream tasks. To address these issues, we propose an Efficient Prompt Tuning method (EPT) by multi-space projection and prompt fusion. Specifically, it decomposes a given soft prompt into a shorter prompt and two low-rank matrices, significantly reducing the training time. Accuracy is also enhanced by leveraging low-rank matrices and the short prompt as additional knowledge sources to enrich the semantics of the original short prompt. In addition, we project the soft prompt into multiple subspaces to improve the performance consistency, and then adaptively learn the combination weights of different spaces through a gating network. Experiments on 13 natural language processing downstream tasks show that our method significantly and consistently outperforms 11 comparison methods with the relative percentage of improvements up to 12.9%, and training time decreased by 14%.
♻ ☆ Assessing Logical Reasoning Capabilities of Encoder-Only Transformer Models
Logical reasoning is central to complex human activities, such as thinking, debating, and planning; it is also a central component of many AI systems as well. In this paper, we investigate the extent to which encoder-only transformer language models (LMs) can reason according to logical rules. We ask whether those LMs can deduce theorems in propositional calculus and first-order logic; if their relative success in these problems reflects general logical capabilities; and which layers contribute the most to the task. First, we show for several encoder-only LMs that they can be trained, to a reasonable degree, to determine logical validity on various datasets. Next, by cross-probing fine-tuned models on these datasets, we show that LMs have difficulty in transferring their putative logical reasoning ability, which suggests that they may have learned dataset-specific features, instead of a general capability. Finally, we conduct a layerwise probing experiment, which shows that the hypothesis classification task is mostly solved through higher layers.
♻ ☆ On the Hardness of Faithful Chain-of-Thought Reasoning in Large Language Models
As Large Language Models (LLMs) are increasingly being employed in real-world applications in critical domains such as healthcare, it is important to ensure that the Chain-of-Thought (CoT) reasoning generated by these models faithfully captures their underlying behavior. While LLMs are known to generate CoT reasoning that is appealing to humans, prior studies have shown that these explanations do not accurately reflect the actual behavior of the underlying LLMs. In this work, we explore the promise of three broad approaches commonly employed to steer the behavior of LLMs to enhance the faithfulness of the CoT reasoning generated by LLMs: in-context learning, fine-tuning, and activation editing. Specifically, we introduce novel strategies for in-context learning, fine-tuning, and activation editing aimed at improving the faithfulness of the CoT reasoning. We then carry out extensive empirical analyses with multiple benchmark datasets to explore the promise of these strategies. Our analyses indicate that these strategies offer limited success in improving the faithfulness of the CoT reasoning, with only slight performance enhancements in controlled scenarios. Activation editing demonstrated minimal success, while fine-tuning and in-context learning achieved marginal improvements that failed to generalize across diverse reasoning and truthful question-answering benchmarks. In summary, our work underscores the inherent difficulty in eliciting faithful CoT reasoning from LLMs, suggesting that the current array of approaches may not be sufficient to address this complex challenge.
♻ ☆ First-Step Advantage: Importance of Starting Right in Multi-Step Math Reasoning
Language models can solve complex reasoning tasks better by learning to generate rationales for their predictions. Often these models know how to solve a task but their auto-regressive decoding nature leads to incorrect results if they start incorrectly. We observe that smaller models in particular when corrected, can solve a task that they would have otherwise struggled with. We demonstrate this phenomenon by using a larger model to guide smaller models, which leads to significantly improved performance (up to +24 points on the GSM8K dataset by 7B models). To assist smaller models in initiating the starting step, we propose QuestCoT, where a smaller model first asks itself how to start, before proceeding with a chain of reasoning. On various multistep mathematical reasoning datasets over multiple smaller models, we show that getting the right start can lead to significant performance gains across all models (gains of up to +6 points on GSM8K, +9 on SVAMP, +5 on ASDiv, and +7 on MultiArith).
♻ ☆ Model Generation with LLMs: From Requirements to UML Sequence Diagrams
Complementing natural language (NL) requirements with graphical models can improve stakeholders' communication and provide directions for system design. However, creating models from requirements involves manual effort. The advent of generative large language models (LLMs), ChatGPT being a notable example, offers promising avenues for automated assistance in model generation. This paper investigates the capability of ChatGPT to generate a specific type of model, i.e., UML sequence diagrams, from NL requirements. We conduct a qualitative study in which we examine the sequence diagrams generated by ChatGPT for 28 requirements documents of various types and from different domains. Observations from the analysis of the generated diagrams have systematically been captured through evaluation logs, and categorized through thematic analysis. Our results indicate that, although the models generally conform to the standard and exhibit a reasonable level of understandability, their completeness and correctness with respect to the specified requirements often present challenges. This issue is particularly pronounced in the presence of requirements smells, such as ambiguity and inconsistency. The insights derived from this study can influence the practical utilization of LLMs in the RE process, and open the door to novel RE-specific prompting strategies targeting effective model generation.
♻ ☆ Recovering the Pre-Fine-Tuning Weights of Generative Models ICML 2024
The dominant paradigm in generative modeling consists of two steps: i) pre-training on a large-scale but unsafe dataset, ii) aligning the pre-trained model with human values via fine-tuning. This practice is considered safe, as no current method can recover the unsafe, pre-fine-tuning model weights. In this paper, we demonstrate that this assumption is often false. Concretely, we present Spectral DeTuning, a method that can recover the weights of the pre-fine-tuning model using a few low-rank (LoRA) fine-tuned models. In contrast to previous attacks that attempt to recover pre-fine-tuning capabilities, our method aims to recover the exact pre-fine-tuning weights. Our approach exploits this new vulnerability against large-scale models such as a personalized Stable Diffusion and an aligned Mistral.
comment: ICML 2024. Project page: https://vision.huji.ac.il/spectral_detuning/
♻ ☆ Model Internals-based Answer Attribution for Trustworthy Retrieval-Augmented Generation
Ensuring the verifiability of model answers is a fundamental challenge for retrieval-augmented generation (RAG) in the question answering (QA) domain. Recently, self-citation prompting was proposed to make large language models (LLMs) generate citations to supporting documents along with their answers. However, self-citing LLMs often struggle to match the required format, refer to non-existent sources, and fail to faithfully reflect LLMs' context usage throughout the generation. In this work, we present MIRAGE --Model Internals-based RAG Explanations -- a plug-and-play approach using model internals for faithful answer attribution in RAG applications. MIRAGE detects context-sensitive answer tokens and pairs them with retrieved documents contributing to their prediction via saliency methods. We evaluate our proposed approach on a multilingual extractive QA dataset, finding high agreement with human answer attribution. On open-ended QA, MIRAGE achieves citation quality and efficiency comparable to self-citation while also allowing for a finer-grained control of attribution parameters. Our qualitative evaluation highlights the faithfulness of MIRAGE's attributions and underscores the promising application of model internals for RAG answer attribution.
comment: Under review. Code and data released at https://github.com/Betswish/MIRAGE
♻ ☆ Paraphrase Types for Generation and Detection EMNLP 2023
Current approaches in paraphrase generation and detection heavily rely on a single general similarity score, ignoring the intricate linguistic properties of language. This paper introduces two new tasks to address this shortcoming by considering paraphrase types - specific linguistic perturbations at particular text positions. We name these tasks Paraphrase Type Generation and Paraphrase Type Detection. Our results suggest that while current techniques perform well in a binary classification scenario, i.e., paraphrased or not, the inclusion of fine-grained paraphrase types poses a significant challenge. While most approaches are good at generating and detecting general semantic similar content, they fail to understand the intrinsic linguistic variables they manipulate. Models trained in generating and identifying paraphrase types also show improvements in tasks without them. In addition, scaling these models further improves their ability to understand paraphrase types. We believe paraphrase types can unlock a new paradigm for developing paraphrase models and solving tasks in the future.
comment: Published at EMNLP 2023
♻ ☆ We are Who We Cite: Bridges of Influence Between Natural Language Processing and Other Academic Fields EMNLP 2023
Natural Language Processing (NLP) is poised to substantially influence the world. However, significant progress comes hand-in-hand with substantial risks. Addressing them requires broad engagement with various fields of study. Yet, little empirical work examines the state of such engagement (past or current). In this paper, we quantify the degree of influence between 23 fields of study and NLP (on each other). We analyzed ~77k NLP papers, ~3.1m citations from NLP papers to other papers, and ~1.8m citations from other papers to NLP papers. We show that, unlike most fields, the cross-field engagement of NLP, measured by our proposed Citation Field Diversity Index (CFDI), has declined from 0.58 in 1980 to 0.31 in 2022 (an all-time low). In addition, we find that NLP has grown more insular -- citing increasingly more NLP papers and having fewer papers that act as bridges between fields. NLP citations are dominated by computer science; Less than 8% of NLP citations are to linguistics, and less than 3% are to math and psychology. These findings underscore NLP's urgent need to reflect on its engagement with various fields.
comment: Published at EMNLP 2023
♻ ☆ The Elephant in the Room: Analyzing the Presence of Big Tech in Natural Language Processing Research ACL 2023
Recent advances in deep learning methods for natural language processing (NLP) have created new business opportunities and made NLP research critical for industry development. As one of the big players in the field of NLP, together with governments and universities, it is important to track the influence of industry on research. In this study, we seek to quantify and characterize industry presence in the NLP community over time. Using a corpus with comprehensive metadata of 78,187 NLP publications and 701 resumes of NLP publication authors, we explore the industry presence in the field since the early 90s. We find that industry presence among NLP authors has been steady before a steep increase over the past five years (180% growth from 2017 to 2022). A few companies account for most of the publications and provide funding to academic researchers through grants and internships. Our study shows that the presence and impact of the industry on natural language processing research are significant and fast-growing. This work calls for increased transparency of industry influence in the field.
comment: Published at ACL 2023
♻ ☆ Performance of large language models in numerical vs. semantic medical knowledge: Benchmarking on evidence-based Q&As
Clinical problem-solving requires processing of semantic medical knowledge such as illness scripts and numerical medical knowledge of diagnostic tests for evidence-based decision-making. As large language models (LLMs) show promising results in many aspects of language-based clinical practice, their ability to generate non-language evidence-based answers to clinical questions is inherently limited by tokenization. Therefore, we evaluated LLMs' performance on two question types: numeric (correlating findings) and semantic (differentiating entities) while examining differences within and between LLMs in medical aspects and comparing their performance to humans. To generate straightforward multi-choice questions and answers (QAs) based on evidence-based medicine (EBM), we used a comprehensive medical knowledge graph (encompassed data from more than 50,00 peer-reviewed articles) and created the "EBMQA". EBMQA contains 105,000 QAs labeled with medical and non-medical topics and classified into numerical or semantic questions. We benchmarked this dataset using more than 24,500 QAs on two state-of-the-art LLMs: Chat-GPT4 and Claude3-Opus. We evaluated the LLMs accuracy on semantic and numerical question types and according to sub-labeled topics. For validation, six medical experts were tested on 100 numerical EBMQA questions. We found that both LLMs excelled more in semantic than numerical QAs, with Claude3 surpassing GPT4 in numerical QAs. However, both LLMs showed inter and intra gaps in different medical aspects and remained inferior to humans. Thus, their medical advice should be addressed carefully.
♻ ☆ ProTrix: Building Models for Planning and Reasoning over Tables with Sentence Context
Tables play a crucial role in conveying information in various domains. We propose a Plan-then-Reason framework to answer different types of user queries over tables with sentence context. The framework first plans the reasoning paths over the context, then assigns each step to program-based or textual reasoning to reach the final answer. This framework enhances the table reasoning abilities for both in-context learning and fine-tuning methods. GPT-3.5-Turbo following Plan-then-Reason framework surpasses other prompting baselines without self-consistency while using less API calls and in-context demonstrations. We also construct an instruction tuning set TrixInstruct to evaluate the effectiveness of fine-tuning with this framework. We present ProTrix model family by finetuning models on TrixInstruct. Our experiments show that ProTrix family generalizes to diverse unseen tabular tasks with only 6k training instances. We further demonstrate that ProTrix can generate accurate and faithful explanations to answer complex free-form questions. Our work underscores the importance of the planning and reasoning abilities towards a model over tabular tasks with generalizability and interpretability. We open-source our dataset and models at https://github.com/WilliamZR/ProTrix.
♻ ☆ Climate Change from Large Language Models
Climate change poses grave challenges, demanding widespread understanding and low-carbon lifestyle awareness. Large language models (LLMs) offer a powerful tool to address this crisis, yet comprehensive evaluations of their climate-crisis knowledge are lacking. This paper proposes an automated evaluation framework to assess climate-crisis knowledge within LLMs. We adopt a hybrid approach for data acquisition, combining data synthesis and manual collection, to compile a diverse set of questions encompassing various aspects of climate change. Utilizing prompt engineering based on the compiled questions, we evaluate the model's knowledge by analyzing its generated answers. Furthermore, we introduce a comprehensive set of metrics to assess climate-crisis knowledge, encompassing indicators from 10 distinct perspectives. These metrics provide a multifaceted evaluation, enabling a nuanced understanding of the LLMs' climate crisis comprehension. The experimental results demonstrate the efficacy of our proposed method. In our evaluation utilizing diverse high-performing LLMs, we discovered that while LLMs possess considerable climate-related knowledge, there are shortcomings in terms of timeliness, indicating a need for continuous updating and refinement of their climate-related content.
♻ ☆ Improving Retrieval Augmented Open-Domain Question-Answering with Vectorized Contexts ACL2023
In the era of large language models, applying techniques such as Retrieval Augmented Generation can better address Open-Domain Question-Answering problems. Due to constraints including model sizes and computing resources, the length of context is often limited, and it becomes challenging to empower the model to cover overlong contexts while answering questions from open domains. This paper proposes a general and convenient method to covering longer contexts in Open-Domain Question-Answering tasks. It leverages a small encoder language model that effectively encodes contexts, and the encoding applies cross-attention with origin inputs. With our method, the origin language models can cover several times longer contexts while keeping the computing requirements close to the baseline. Our experiments demonstrate that after fine-tuning, there is improved performance across two held-in datasets, four held-out datasets, and also in two In Context Learning settings.
comment: ACL2023 Findings
♻ ☆ Mimicking User Data: On Mitigating Fine-Tuning Risks in Closed Large Language Models
Fine-tuning large language models on small, high-quality datasets can enhance their performance on specific downstream tasks. Recent research shows that fine-tuning on benign, instruction-following data can inadvertently undo the safety alignment process and increase a model's propensity to comply with harmful queries. Although critical, understanding and mitigating safety risks in well-defined tasks remains distinct from the instruction-following context due to structural differences in the data. Our work addresses the gap in our understanding of these risks across diverse types of data in closed models - where providers control how user data is utilized in the fine-tuning process. We demonstrate how malicious actors can subtly manipulate the structure of almost any task-specific dataset to foster significantly more dangerous model behaviors, while maintaining an appearance of innocuity and reasonable downstream task performance. To address this issue, we propose a novel mitigation strategy that mixes in safety data which mimics the task format and prompting style of the user data, showing this is more effective than existing baselines at re-establishing safety alignment while maintaining similar task performance.
♻ ☆ The Potential and Challenges of Evaluating Attitudes, Opinions, and Values in Large Language Models
Recent advances in Large Language Models (LLMs) have sparked wide interest in validating and comprehending the human-like cognitive-behavioral traits LLMs may have. These cognitive-behavioral traits include typically Attitudes, Opinions, Values (AOV). However, measuring AOV embedded within LLMs remains opaque, and different evaluation methods may yield different results. This has led to a lack of clarity on how different studies are related to each other and how they can be interpreted. This paper aims to bridge this gap by providing an overview of recent works on the evaluation of AOV in LLMs. Moreover, we survey related approaches in different stages of the evaluation pipeline in these works. By doing so, we address the potential and challenges with respect to understanding the model, human-AI alignment, and downstream application in social sciences. Finally, we provide practical insights into evaluation methods, model enhancement, and interdisciplinary collaboration, thereby contributing to the evolving landscape of evaluating AOV in LLMs.
♻ ☆ CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay ICML'24
Large language models are increasingly solving tasks that are commonly believed to require human-level reasoning ability. However, these models still perform very poorly on benchmarks of general intelligence such as the Abstraction and Reasoning Corpus (ARC). In this paper, we approach ARC as a programming-by-examples problem, and introduce a novel and scalable method for language model self-improvement called Code Iteration (CodeIt). Our method iterates between 1) program sampling and hindsight relabeling, and 2) learning from prioritized experience replay. By relabeling the goal of an episode (i.e., the target program output given input) to the realized output produced by the sampled program, our method effectively deals with the extreme sparsity of rewards in program synthesis. Applying CodeIt to the ARC dataset, we demonstrate that prioritized hindsight replay, along with pre-training and data-augmentation, leads to successful inter-task generalization. CodeIt is the first neuro-symbolic approach that scales to the full ARC evaluation dataset. Our method solves 15% of ARC evaluation tasks, achieving state-of-the-art performance and outperforming existing neural and symbolic baselines. Our code is available at https://github.com/Qualcomm-AI-research/codeit .
comment: ICML'24 camera-ready version
♻ ☆ CoCoST: Automatic Complex Code Generation with Online Searching and Correctness Testing
Large Language Models have revolutionized code generation ability by converting natural language descriptions into executable code. However, generating complex code within real-world scenarios remains challenging due to intricate structures, subtle bugs, understanding of advanced data types, and lack of supplementary contents. To address these challenges, we introduce the CoCoST framework, which enhances complex code generation by online searching for more information with planned queries and correctness testing for code refinement. Moreover, CoCoST serializes the complex inputs and outputs to improve comprehension and generates test cases to ensure the adaptability for real-world applications. CoCoST is validated through rigorous experiments on the DS-1000 and ClassEval datasets. Experimental results show that CoCoST substantially improves the quality of complex code generation, highlighting its potential to enhance the practicality of LLMs in generating complex code.
♻ ☆ Exploring the Potential of Large Language Models in Computational Argumentation ACL 2024
Computational argumentation has become an essential tool in various domains, including law, public policy, and artificial intelligence. It is an emerging research field in natural language processing that attracts increasing attention. Research on computational argumentation mainly involves two types of tasks: argument mining and argument generation. As large language models (LLMs) have demonstrated impressive capabilities in understanding context and generating natural language, it is worthwhile to evaluate the performance of LLMs on diverse computational argumentation tasks. This work aims to embark on an assessment of LLMs, such as ChatGPT, Flan models, and LLaMA2 models, in both zero-shot and few-shot settings. We organize existing tasks into six main categories and standardize the format of fourteen openly available datasets. In addition, we present a new benchmark dataset on counter speech generation that aims to holistically evaluate the end-to-end performance of LLMs on argument mining and argument generation. Extensive experiments show that LLMs exhibit commendable performance across most of the datasets, demonstrating their capabilities in the field of argumentation. Our analysis offers valuable suggestions for evaluating computational argumentation and its integration with LLMs in future research endeavors.
comment: Accepted at ACL 2024 Main
♻ ☆ Compress to Impress: Unleashing the Potential of Compressive Memory in Real-World Long-Term Conversations
Existing retrieval-based methods have made significant strides in maintaining long-term conversations. However, these approaches face challenges in memory database management and accurate memory retrieval, hindering their efficacy in dynamic, real-world interactions. This study introduces a novel framework, COmpressive Memory-Enhanced Dialogue sYstems (COMEDY), which eschews traditional retrieval modules and memory databases. Instead, COMEDY adopts a "One-for-All" approach, utilizing a single language model to manage memory generation, compression, and response generation. Central to this framework is the concept of compressive memory, which intergrates session-specific summaries, user-bot dynamics, and past events into a concise memory format. To support COMEDY, we curated a large-scale Chinese instruction-tuning dataset, Dolphin, derived from real user-chatbot interactions. Comparative evaluations demonstrate COMEDY's superiority over traditional retrieval-based methods in producing more nuanced and human-like conversational experiences. Our codes are available at https://github.com/nuochenpku/COMEDY.
comment: 17pages, 5 figures
♻ ☆ Textual Similarity as a Key Metric in Machine Translation Quality Estimation
Machine Translation (MT) Quality Estimation (QE) assesses translation reliability without reference texts. This study introduces "textual similarity" as a new metric for QE, using sentence transformers and cosine similarity to measure semantic closeness. Analyzing data from the MLQE-PE dataset, we found that textual similarity exhibits stronger correlations with human scores than traditional metrics (hter, model evaluation, sentence probability etc.). Employing GAMMs as a statistical tool, we demonstrated that textual similarity consistently outperforms other metrics across multiple language pairs in predicting human scores. We also found that "hter" actually failed to predict human scores in QE. Our findings highlight the effectiveness of textual similarity as a robust QE metric, recommending its integration with other metrics into QE frameworks and MT system training for improved accuracy and usability.
♻ ☆ Revealing User Familiarity Bias in Task-Oriented Dialogue via Interactive Evaluation ACL 2024
Most task-oriented dialogue (TOD) benchmarks assume users that know exactly how to use the system by constraining the user behaviors within the system's capabilities via strict user goals, namely "user familiarity" bias. This data bias deepens when it combines with data-driven TOD systems, as it is impossible to fathom the effect of it with existing static evaluations. Hence, we conduct an interactive user study to unveil how vulnerable TOD systems are against realistic scenarios. In particular, we compare users with 1) detailed goal instructions that conform to the system boundaries (closed-goal) and 2) vague goal instructions that are often unsupported but realistic (open-goal). Our study reveals that conversations in open-goal settings lead to catastrophic failures of the system, in which 92% of the dialogues had significant issues. Moreover, we conduct a thorough analysis to identify distinctive features between the two settings through error annotation. From this, we discover a novel "pretending" behavior, in which the system pretends to handle the user requests even though they are beyond the system's capabilities. We discuss its characteristics and toxicity while showing recent large language models can also suffer from this behavior.
comment: NLP4ConvAI Workshop at ACL 2024
♻ ☆ GraphWiz: An Instruction-Following Language Model for Graph Problems
Large language models (LLMs) have achieved impressive success across several fields, but their proficiency in understanding and resolving complex graph problems is less explored. To bridge this gap, we introduce GraphInstruct, a novel and comprehensive instruction-tuning dataset designed to equip language models with the ability to tackle a broad spectrum of graph problems using explicit reasoning paths. Utilizing GraphInstruct, we build GraphWiz, an open-source language model capable of resolving various graph problem types while generating clear reasoning processes. To enhance the model's capability and reliability, we incorporate the Direct Preference Optimization (DPO) framework into the graph problem-solving context. The enhanced model, GraphWiz-DPO, achieves an average accuracy of 65% across nine tasks with different complexity levels, surpassing GPT-4 which has an average accuracy of 43.8%. Moreover, our research delves into the delicate balance between training data volume and model performance, highlighting the potential for overfitting with increased data. We also explore the transferability of the model's reasoning ability across different graph tasks, indicating the model's adaptability and practical application potential. Our investigation offers a new blueprint and valuable insights for developing LLMs specialized in graph reasoning and problem-solving.
comment: 27pages, 15 tables
♻ ☆ How Reliable Are Automatic Evaluation Methods for Instruction-Tuned LLMs?
Work on instruction-tuned Large Language Models (LLMs) has used automatic methods based on text overlap and LLM judgments as cost-effective alternatives to human evaluation. In this paper, we perform a meta-evaluation of such methods and assess their reliability across a broad range of tasks. We observe that while automatic evaluation methods can approximate human ratings under specific conditions, their validity is highly context-dependent. Specifically, the simple ROUGE-L metric correlates well with human ratings for short-answer English tasks but is unreliable in free-form generation tasks and cross-lingual transfer. The effectiveness of the more advanced method of using GPT-4 as a judge diminishes significantly if reference answers are not included in the prompt, which is the scenario where this method has the potential to provide the most value compared to other metrics. Our findings enhance the understanding of how automatic methods should be applied and interpreted when developing and evaluating instruction-tuned LLMs.
♻ ☆ Is one brick enough to break the wall of spoken dialogue state tracking?
In Task-Oriented Dialogue (TOD) systems, correctly updating the system's understanding of the user's requests (\textit{a.k.a} dialogue state tracking) is key to a smooth interaction. Traditionally, TOD systems perform this update in three steps: transcription of the user's utterance, semantic extraction of the key concepts, and contextualization with the previously identified concepts. Such cascade approaches suffer from cascading errors and separate optimization. End-to-End approaches have been proven helpful up to the turn-level semantic extraction step. This paper goes one step further and provides (1) a novel approach for completely neural spoken DST, (2) an in depth comparison with a state of the art cascade approach and (3) avenues towards better context propagation. Our study highlights that jointly-optimized approaches are also competitive for contextually dependent tasks, such as Dialogue State Tracking (DST), especially in audio native settings. Context propagation in DST systems could benefit from training procedures accounting for the previous' context inherent uncertainty.
♻ ☆ Evaluating Copyright Takedown Methods for Language Models
Language models (LMs) derive their capabilities from extensive training on diverse data, including potentially copyrighted material. These models can memorize and generate content similar to their training data, posing potential concerns. Therefore, model creators are motivated to develop mitigation methods that prevent generating protected content. We term this procedure as copyright takedowns for LMs, noting the conceptual similarity to (but legal distinction from) the DMCA takedown This paper introduces the first evaluation of the feasibility and side effects of copyright takedowns for LMs. We propose CoTaEval, an evaluation framework to assess the effectiveness of copyright takedown methods, the impact on the model's ability to retain uncopyrightable factual knowledge from the training data whose recitation is embargoed, and how well the model maintains its general utility and efficiency. We examine several strategies, including adding system prompts, decoding-time filtering interventions, and unlearning approaches. Our findings indicate that no tested method excels across all metrics, showing significant room for research in this unique problem setting and indicating potential unresolved challenges for live policy proposals.
comment: 31 pages, 9 figures, 14 tables
♻ ☆ Assessing the Brittleness of Safety Alignment via Pruning and Low-Rank Modifications
Large language models (LLMs) show inherent brittleness in their safety mechanisms, as evidenced by their susceptibility to jailbreaking and even non-malicious fine-tuning. This study explores this brittleness of safety alignment by leveraging pruning and low-rank modifications. We develop methods to identify critical regions that are vital for safety guardrails, and that are disentangled from utility-relevant regions at both the neuron and rank levels. Surprisingly, the isolated regions we find are sparse, comprising about $3\%$ at the parameter level and $2.5\%$ at the rank level. Removing these regions compromises safety without significantly impacting utility, corroborating the inherent brittleness of the model's safety mechanisms. Moreover, we show that LLMs remain vulnerable to low-cost fine-tuning attacks even when modifications to the safety-critical regions are restricted. These findings underscore the urgent need for more robust safety strategies in LLMs.
comment: 22 pages, 9 figures. Project page is available at https://boyiwei.com/alignment-attribution/
♻ ☆ Benchmarking Mental State Representations in Language Models ICML 2024
While numerous works have assessed the generative performance of language models (LMs) on tasks requiring Theory of Mind reasoning, research into the models' internal representation of mental states remains limited. Recent work has used probing to demonstrate that LMs can represent beliefs of themselves and others. However, these claims are accompanied by limited evaluation, making it difficult to assess how mental state representations are affected by model design and training choices. We report an extensive benchmark with various LM types with different model sizes, fine-tuning approaches, and prompt designs to study the robustness of mental state representations and memorisation issues within the probes. Our results show that the quality of models' internal representations of the beliefs of others increases with model size and, more crucially, with fine-tuning. We are the first to study how prompt variations impact probing performance on theory of mind tasks. We demonstrate that models' representations are sensitive to prompt variations, even when such variations should be beneficial. Finally, we complement previous activation editing experiments on Theory of Mind tasks and show that it is possible to improve models' reasoning performance by steering their activations without the need to train any probe.
comment: ICML 2024 Workshop on Mechanistic Interpretability
♻ ☆ SeaLLMs -- Large Language Models for Southeast Asia ACL 2024
Despite the remarkable achievements of large language models (LLMs) in various tasks, there remains a linguistic bias that favors high-resource languages, such as English, often at the expense of low-resource and regional languages. To address this imbalance, we introduce SeaLLMs, an innovative series of language models that specifically focuses on Southeast Asian (SEA) languages. SeaLLMs are built upon the Llama-2 model and further advanced through continued pre-training with an extended vocabulary, specialized instruction and alignment tuning to better capture the intricacies of regional languages. This allows them to respect and reflect local cultural norms, customs, stylistic preferences, and legal considerations. Our comprehensive evaluation demonstrates that SeaLLM-13b models exhibit superior performance across a wide spectrum of linguistic tasks and assistant-style instruction-following capabilities relative to comparable open-source models. Moreover, they outperform ChatGPT-3.5 in non-Latin languages, such as Thai, Khmer, Lao, and Burmese, by large margins while remaining lightweight and cost-effective to operate.
comment: Technical report, ACL 2024 DEMO TRACK
♻ ☆ RouteLLM: Learning to Route LLMs with Preference Data
Large language models (LLMs) exhibit impressive capabilities across a wide range of tasks, yet the choice of which model to use often involves a trade-off between performance and cost. More powerful models, though effective, come with higher expenses, while less capable models are more cost-effective. To address this dilemma, we propose several efficient router models that dynamically select between a stronger and a weaker LLM during inference, aiming to optimize the balance between cost and response quality. We develop a training framework for these routers leveraging human preference data and data augmentation techniques to enhance performance. Our evaluation on widely-recognized benchmarks shows that our approach significantly reduces costs-by over 2 times in certain cases-without compromising the quality of responses. Interestingly, our router models also demonstrate significant transfer learning capabilities, maintaining their performance even when the strong and weak models are changed at test time. This highlights the potential of these routers to provide a cost-effective yet high-performance solution for deploying LLMs.
♻ ☆ KoLA: Carefully Benchmarking World Knowledge of Large Language Models ICLR 2024
The unprecedented performance of large language models (LLMs) necessitates improvements in evaluations. Rather than merely exploring the breadth of LLM abilities, we believe meticulous and thoughtful designs are essential to thorough, unbiased, and applicable evaluations. Given the importance of world knowledge to LLMs, we construct a Knowledge-oriented LLM Assessment benchmark (KoLA), in which we carefully design three crucial factors: (1) For \textbf{ability modeling}, we mimic human cognition to form a four-level taxonomy of knowledge-related abilities, covering $19$ tasks. (2) For \textbf{data}, to ensure fair comparisons, we use both Wikipedia, a corpus prevalently pre-trained by LLMs, along with continuously collected emerging corpora, aiming to evaluate the capacity to handle unseen data and evolving knowledge. (3) For \textbf{evaluation criteria}, we adopt a contrastive system, including overall standard scores for better numerical comparability across tasks and models and a unique self-contrast metric for automatically evaluating knowledge-creating ability. We evaluate $28$ open-source and commercial LLMs and obtain some intriguing findings. The KoLA dataset and open-participation leaderboard are publicly released at https://kola.xlore.cn and will be continuously updated to provide references for developing LLMs and knowledge-related systems.
comment: Accepted by ICLR 2024
♻ ☆ WaterBench: Towards Holistic Evaluation of Watermarks for Large Language Models ACL 2024
To mitigate the potential misuse of large language models (LLMs), recent research has developed watermarking algorithms, which restrict the generation process to leave an invisible trace for watermark detection. Due to the two-stage nature of the task, most studies evaluate the generation and detection separately, thereby presenting a challenge in unbiased, thorough, and applicable evaluations. In this paper, we introduce WaterBench, the first comprehensive benchmark for LLM watermarks, in which we design three crucial factors: (1) For benchmarking procedure, to ensure an apples-to-apples comparison, we first adjust each watermarking method's hyper-parameter to reach the same watermarking strength, then jointly evaluate their generation and detection performance. (2) For task selection, we diversify the input and output length to form a five-category taxonomy, covering $9$ tasks. (3) For evaluation metric, we adopt the GPT4-Judge for automatically evaluating the decline of instruction-following abilities after watermarking. We evaluate $4$ open-source watermarks on $2$ LLMs under $2$ watermarking strengths and observe the common struggles for current methods on maintaining the generation quality. The code and data are available at https://github.com/THU-KEG/WaterBench.
comment: 26pages, 7 figures, accepted by ACL 2024
♻ ☆ Don't Hallucinate, Abstain: Identifying LLM Knowledge Gaps via Multi-LLM Collaboration ACL 2024
Despite efforts to expand the knowledge of large language models (LLMs), knowledge gaps -- missing or outdated information in LLMs -- might always persist given the evolving nature of knowledge. In this work, we study approaches to identify LLM knowledge gaps and abstain from answering questions when knowledge gaps are present. We first adapt existing approaches to model calibration or adaptation through fine-tuning/prompting and analyze their ability to abstain from generating low-confidence outputs. Motivated by their failures in self-reflection and over-reliance on held-out sets, we propose two novel approaches that are based on model collaboration, i.e., LLMs probing other LLMs for knowledge gaps, either cooperatively or competitively. Extensive experiments with three LLMs on four QA tasks featuring diverse knowledge domains demonstrate that both cooperative and competitive approaches to unveiling LLM knowledge gaps achieve up to 19.3% improvements on abstain accuracy against the strongest baseline. Further analysis reveals that our proposed mechanisms could help identify failure cases in retrieval augmentation and pinpoint knowledge gaps in multi-hop reasoning.
comment: ACL 2024
Computer Vision and Pattern Recognition 52
♻ ☆ Framing image registration as a landmark detection problem for label-noise-aware task representation (HitR)
Accurate image registration is pivotal in biomedical image analysis, where selecting suitable registration algorithms demands careful consideration. While numerous algorithms are available, the evaluation metrics to assess their performance have remained relatively static. This study addresses this challenge by introducing a novel evaluation metric termed Landmark Hit Rate (HitR), which focuses on the clinical relevance of image registration accuracy. Unlike traditional metrics such as Target Registration Error, which emphasize subresolution differences, HitR considers whether registration algorithms successfully position landmarks within defined confidence zones. This paradigm shift acknowledges the inherent annotation noise in medical images, allowing for more meaningful assessments. To equip HitR with label-noise-awareness, we propose defining these confidence zones based on an Inter-rater Variance analysis. Consequently, hit rate curves are computed for varying landmark zone sizes, enabling performance measurement for a task-specific level of accuracy. Our approach offers a more realistic and meaningful assessment of image registration algorithms, reflecting their suitability for clinical and biomedical applications.
♻ ☆ Distilling Knowledge from Text-to-Image Generative Models Improves Visio-Linguistic Reasoning in CLIP
Image-text contrastive models like CLIP have wide applications in zero-shot classification, image-text retrieval, and transfer learning. However, they often struggle on compositional visio-linguistic tasks (e.g., attribute-binding or object-relationships) where their performance is no better than random chance. To address this, we introduce SDS-CLIP, a lightweight and sample-efficient distillation method to enhance CLIP's compositional visio-linguistic reasoning. Our approach fine-tunes CLIP using a distillation objective borrowed from large text-to-image generative models like Stable-Diffusion, which are known for their strong visio-linguistic reasoning abilities. On the challenging Winoground benchmark, SDS-CLIP improves the visio-linguistic performance of various CLIP models by up to 7%, while on the ARO dataset, it boosts performance by up to 3%. This work underscores the potential of well-designed distillation objectives from generative models to enhance contrastive image-text models with improved visio-linguistic reasoning capabilities.
comment: Short paper
♻ ☆ Fine-tuning can cripple your foundation model; preserving features may be the solution
Pre-trained foundation models, due to their enormous capacity and exposure to vast amounts of data during pre-training, are known to have learned plenty of real-world concepts. An important step in making these pre-trained models effective on downstream tasks is to fine-tune them on related datasets. While various fine-tuning methods have been devised and have been shown to be highly effective, we observe that a fine-tuned model's ability to recognize concepts on tasks $\textit{different}$ from the downstream one is reduced significantly compared to its pre-trained counterpart. This is an undesirable effect of fine-tuning as a substantial amount of resources was used to learn these pre-trained concepts in the first place. We call this phenomenon ''concept forgetting'' and via experiments show that most end-to-end fine-tuning approaches suffer heavily from this side effect. To this end, we propose a simple fix to this problem by designing a new fine-tuning method called $\textit{LDIFS}$ (short for $\ell_2$ distance in feature space) that, while learning new concepts related to the downstream task, allows a model to preserve its pre-trained knowledge as well. Through extensive experiments on 10 fine-tuning tasks we show that $\textit{LDIFS}$ significantly reduces concept forgetting. Additionally, we show that LDIFS is highly effective in performing continual fine-tuning on a sequence of tasks as well, in comparison with both fine-tuning as well as continual learning baselines.
comment: Published in TMLR: https://openreview.net/forum?id=kfhoeZCeW7
♻ ☆ Towards objective and systematic evaluation of bias in artificial intelligence for medical imaging
Artificial intelligence (AI) models trained using medical images for clinical tasks often exhibit bias in the form of disparities in performance between subgroups. Since not all sources of biases in real-world medical imaging data are easily identifiable, it is challenging to comprehensively assess how those biases are encoded in models, and how capable bias mitigation methods are at ameliorating performance disparities. In this article, we introduce a novel analysis framework for systematically and objectively investigating the impact of biases in medical images on AI models. We developed and tested this framework for conducting controlled in silico trials to assess bias in medical imaging AI using a tool for generating synthetic magnetic resonance images with known disease effects and sources of bias. The feasibility is showcased by using three counterfactual bias scenarios to measure the impact of simulated bias effects on a convolutional neural network (CNN) classifier and the efficacy of three bias mitigation strategies. The analysis revealed that the simulated biases resulted in expected subgroup performance disparities when the CNN was trained on the synthetic datasets. Moreover, reweighing was identified as the most successful bias mitigation strategy for this setup, and we demonstrated how explainable AI methods can aid in investigating the manifestation of bias in the model using this framework. Developing fair AI models is a considerable challenge given that many and often unknown sources of biases can be present in medical imaging datasets. In this work, we present a novel methodology to objectively study the impact of biases and mitigation strategies on deep learning pipelines, which can support the development of clinical AI that is robust and responsible.
comment: Published in the Journal of the American Medical Informatics Association
♻ ☆ Evaluation of Deep Learning Semantic Segmentation for Land Cover Mapping on Multispectral, Hyperspectral and High Spatial Aerial Imagery
In the rise of climate change, land cover mapping has become such an urgent need in environmental monitoring. The accuracy of land cover classification has gotten increasingly based on the improvement of remote sensing data. Land cover classification using satellite imageries has been explored and become more prevalent in recent years, but the methodologies remain some drawbacks of subjective and time-consuming. Some deep learning techniques have been utilized to overcome these limitations. However, most studies implemented just one image type to evaluate algorithms for land cover mapping. Therefore, our study conducted deep learning semantic segmentation in multispectral, hyperspectral, and high spatial aerial image datasets for landcover mapping. This research implemented a semantic segmentation method such as Unet, Linknet, FPN, and PSPnet for categorizing vegetation, water, and others (i.e., soil and impervious surface). The LinkNet model obtained high accuracy in IoU (Intersection Over Union) at 0.92 in all datasets, which is comparable with other mentioned techniques. In evaluation with different image types, the multispectral images showed higher performance with the IoU, and F1-score are 0.993 and 0.997, respectively. Our outcome highlighted the efficiency and broad applicability of LinkNet and multispectral image on land cover classification. This research contributes to establishing an approach on landcover segmentation via open source for long-term future application.
comment: conference, This preprint is based on the following published conference article: Panuntun, I. A., Chen, Y.-N., Jamaluddin, I., & Tran, T. L. C., 2023. Evaluation of Deep Learning Semantic Segmentation for Land Cover Mapping on Multispectral, Hyperspectral and High Spatial Aerial Imagery. 44th Asian Conference on Remote Sensing, ACRS 2023. Code 198676
♻ ☆ Bytes Are All You Need: Transformers Operating Directly On File Bytes
Modern deep learning approaches usually utilize modality-specific processing. For example, the most common deep learning approach to image classification involves decoding image file bytes into an RGB tensor which is passed into a neural network. Instead, we investigate modality-independent representation learning by performing classification directly on file bytes, without the need for decoding files at inference time. This enables models to operate on various modalities without any hand-designed, modality-specific processing. Our model, ByteFormer, improves ImageNet Top-1 classification accuracy by $5\%$ (from $72.2\%$ to $77.33\%$) relative to DeIT models of similar size. Compared to Perceiver IO, our model requires absolutely no modality-specific processing at inference time, and uses an order of magnitude fewer parameters at equivalent accuracy on ImageNet. We demonstrate that the same ByteFormer architecture can perform audio classification without modifications or modality-specific preprocessing. We achieve $95.42\%$ classification accuracy on the Speech Commands V2 dataset (comparable to the state-of-the-art accuracy of $98.7\%$). Additionally, we demonstrate that ByteFormer can operate jointly on images and audio, handling joint classification without explicit knowledge of the input modality. We release our code at https://github.com/apple/corenet/tree/main/projects/byteformer.
♻ ☆ A Geometric Algorithm for Tubular Shape Reconstruction from Skeletal Representation
We introduce a novel approach for the reconstruction of tubular shapes from skeletal representations. Our method processes all skeletal points as a whole, eliminating the need for splitting input structure into multiple segments. We represent the tubular shape as a truncated signed distance function (TSDF) in a voxel hashing manner, in which the signed distance between a voxel center and the object is computed through a simple geometric algorithm. Our method does not involve any surface sampling scheme or solving large matrix equations, and therefore is a faster and more elegant solution for tubular shape reconstruction compared to other approaches. Experiments demonstrate the efficiency and effectiveness of the proposed method. Code is avaliable at https://github.com/wlsdzyzl/Dragon.
comment: 9 pages (without reference), 6 figures
♻ ☆ Patch-Prompt Aligned Bayesian Prompt Tuning for Vision-Language Models UAI 2024
For downstream applications of vision-language pre-trained models, there has been significant interest in constructing effective prompts. Existing works on prompt engineering, which either require laborious manual designs or optimize the prompt tuning as a point estimation problem, may fail to describe diverse characteristics of categories and limit their applications. We introduce a Bayesian probabilistic resolution to prompt tuning, where the label-specific stochastic prompts are generated hierarchically by first sampling a latent vector from an underlying distribution and then employing a lightweight generative model. Importantly, we semantically regularize the tuning process by minimizing the statistical distance between the visual patches and linguistic prompts, which pushes the stochastic label representations to faithfully capture diverse visual concepts, instead of overfitting the training categories. We evaluate the effectiveness of our approach on four tasks: few-shot image recognition, base-to-new generalization, dataset transfer learning, and domain shifts. Extensive results over 15 datasets show promising transferability and generalization performance of our proposed model, both quantitatively and qualitatively.
comment: Accepted by UAI 2024
♻ ☆ Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts
Recent successes suggest that parameter-efficient fine-tuning of foundation models as the state-of-the-art method for transfer learning in vision, replacing the rich literature of alternatives such as meta-learning. In trying to harness the best of both worlds, meta-tuning introduces a subsequent optimization stage of foundation models but has so far only shown limited success and crucially tends to underperform on out-of-distribution (OOD) tasks. In this paper, we introduce Sparse MetA-Tuning (SMAT), a method inspired by sparse mixture-of-experts approaches and trained to isolate subsets of pre-trained parameters automatically for meta-tuning on each task. SMAT successfully overcomes OOD sensitivity and delivers on the promise of enhancing the transfer abilities of vision foundation models beyond parameter-efficient fine-tuning. We establish new state-of-the-art results on a challenging combination of Meta-Dataset augmented with additional OOD tasks in both zero-shot and gradient-based adaptation settings. In addition, we provide a thorough analysis of the superiority of learned over hand-designed sparsity patterns for sparse expert methods and the pivotal importance of the sparsity level in balancing between in-distribution and out-of-distribution generalization. Our code is publicly available.
comment: The Forty-first International Conference on Machine Learning, 2024
♻ ☆ An Efficient Instance Segmentation Framework Based on Oriented Bounding Boxes
Instance segmentation for completely occluded objects and dense objects in robot vision measurement are two challenging tasks. To uniformly deal with them, this paper proposes a unified coarse-to-fine instance segmentation framework, CFNet, which uses box prompt-based segmentation foundation models (BSMs), e.g., Segment Anything Model. Specifically, CFNet first detects oriented bounding boxes (OBBs) to distinguish instances and provide coarse localization information. Then, it predicts OBB prompt-related masks for fine segmentation. CFNet performs instance segmentation with OBBs that only contain partial object boundaries on occluders to predict occluded object instances, which overcomes the difficulty of existing amodal instance segmentation methods in directly predicting occluded objects. In addition, since OBBs only serve as prompts, CFNet alleviates the over-dependence on bounding box detection performance of current instance segmentation methods using OBBs for dense objects. Moreover, to enable BSMs to handle OBB prompts, we propose a novel OBB prompt encoder. To make CFNet more lightweight, we perform knowledge distillation on it and introduce a Gaussian label smoothing method for teacher model outputs. Experiments demonstrate that CFNet outperforms current instance segmentation methods on both industrial and public datasets. The code is available at https://github.com/zhen6618/OBBInstanceSegmentation.
♻ ☆ DreamPBR: Text-driven Generation of High-resolution SVBRDF with Multi-modal Guidance
Prior material creation methods had limitations in producing diverse results mainly because reconstruction-based methods relied on real-world measurements and generation-based methods were trained on relatively small material datasets. To address these challenges, we propose DreamPBR, a novel diffusion-based generative framework designed to create spatially-varying appearance properties guided by text and multi-modal controls, providing high controllability and diversity in material generation. Key to achieving diverse and high-quality PBR material generation lies in integrating the capabilities of recent large-scale vision-language models trained on billions of text-image pairs, along with material priors derived from hundreds of PBR material samples. We utilize a novel material Latent Diffusion Model (LDM) to establish the mapping between albedo maps and the corresponding latent space. The latent representation is then decoded into full SVBRDF parameter maps using a rendering-aware PBR decoder. Our method supports tileable generation through convolution with circular padding. Furthermore, we introduce a multi-modal guidance module, which includes pixel-aligned guidance, style image guidance, and 3D shape guidance, to enhance the control capabilities of the material LDM. We demonstrate the effectiveness of DreamPBR in material creation, showcasing its versatility and user-friendliness on a wide range of controllable generation and editing applications.
comment: 16 pages, 17 figures
♻ ☆ Jailbreak Vision Language Models via Bi-Modal Adversarial Prompt
In the realm of large vision language models (LVLMs), jailbreak attacks serve as a red-teaming approach to bypass guardrails and uncover safety implications. Existing jailbreaks predominantly focus on the visual modality, perturbing solely visual inputs in the prompt for attacks. However, they fall short when confronted with aligned models that fuse visual and textual features simultaneously for generation. To address this limitation, this paper introduces the Bi-Modal Adversarial Prompt Attack (BAP), which executes jailbreaks by optimizing textual and visual prompts cohesively. Initially, we adversarially embed universally harmful perturbations in an image, guided by a few-shot query-agnostic corpus (e.g., affirmative prefixes and negative inhibitions). This process ensures that image prompt LVLMs to respond positively to any harmful queries. Subsequently, leveraging the adversarial image, we optimize textual prompts with specific harmful intent. In particular, we utilize a large language model to analyze jailbreak failures and employ chain-of-thought reasoning to refine textual prompts through a feedback-iteration manner. To validate the efficacy of our approach, we conducted extensive evaluations on various datasets and LVLMs, demonstrating that our method significantly outperforms other methods by large margins (+29.03% in attack success rate on average). Additionally, we showcase the potential of our attacks on black-box commercial LVLMs, such as Gemini and ChatGLM.
♻ ☆ Topo4D: Topology-Preserving Gaussian Splatting for High-Fidelity 4D Head Capture
4D head capture aims to generate dynamic topological meshes and corresponding texture maps from videos, which is widely utilized in movies and games for its ability to simulate facial muscle movements and recover dynamic textures in pore-squeezing. The industry often adopts the method involving multi-view stereo and non-rigid alignment. However, this approach is prone to errors and heavily reliant on time-consuming manual processing by artists. To simplify this process, we propose Topo4D, a novel framework for automatic geometry and texture generation, which optimizes densely aligned 4D heads and 8K texture maps directly from calibrated multi-view time-series images. Specifically, we first represent the time-series faces as a set of dynamic 3D Gaussians with fixed topology in which the Gaussian centers are bound to the mesh vertices. Afterward, we perform alternative geometry and texture optimization frame-by-frame for high-quality geometry and texture learning while maintaining temporal topology stability. Finally, we can extract dynamic facial meshes in regular wiring arrangement and high-fidelity textures with pore-level details from the learned Gaussians. Extensive experiments show that our method achieves superior results than the current SOTA face reconstruction methods both in the quality of meshes and textures. Project page: https://xuanchenli.github.io/Topo4D/.
♻ ☆ Instruction-Guided Scene Text Recognition
Multi-modal models show appealing performance in visual recognition tasks recently, as free-form text-guided training evokes the ability to understand fine-grained visual content. However, current models are either inefficient or cannot be trivially upgraded to scene text recognition (STR) due to the composition difference between natural and text images. We propose a novel instruction-guided scene text recognition (IGTR) paradigm that formulates STR as an instruction learning problem and understands text images by predicting character attributes, e.g., character frequency, position, etc. IGTR first devises $\left \langle condition,question,answer\right \rangle$ instruction triplets, providing rich and diverse descriptions of character attributes. To effectively learn these attributes through question-answering, IGTR develops lightweight instruction encoder, cross-modal feature fusion module and multi-task answer head, which guides nuanced text image understanding. Furthermore, IGTR realizes different recognition pipelines simply by using different instructions, enabling a character-understanding-based text reasoning paradigm that considerably differs from current methods. Experiments on English and Chinese benchmarks show that IGTR outperforms existing models by significant margins, while maintaining a small model size and efficient inference speed. Moreover, by adjusting the sampling of instructions, IGTR offers an elegant way to tackle the recognition of both rarely appearing and morphologically similar characters, which were previous challenges. Code at \href{https://github.com/Topdu/OpenOCR}{this http URL}.
♻ ☆ Local-Aware Global Attention Network for Person Re-Identification Based on Body and Hand Images
Learning representative, robust and discriminative information from images is essential for effective person re-identification (Re-Id). In this paper, we propose a compound approach for end-to-end discriminative deep feature learning for person Re-Id based on both body and hand images. We carefully design the Local-Aware Global Attention Network (LAGA-Net), a multi-branch deep network architecture consisting of one branch for spatial attention, one branch for channel attention, one branch for global feature representations and another branch for local feature representations. The attention branches focus on the relevant features of the image while suppressing the irrelevant backgrounds. In order to overcome the weakness of the attention mechanisms, equivariant to pixel shuffling, we integrate relative positional encodings into the spatial attention module to capture the spatial positions of pixels. The global branch intends to preserve the global context or structural information. For the the local branch, which intends to capture the fine-grained information, we perform uniform partitioning to generate stripes on the conv-layer horizontally. We retrieve the parts by conducting a soft partition without explicitly partitioning the images or requiring external cues such as pose estimation. A set of ablation study shows that each component contributes to the increased performance of the LAGA-Net. Extensive evaluations on four popular body-based person Re-Id benchmarks and two publicly available hand datasets demonstrate that our proposed method consistently outperforms existing state-of-the-art methods.
comment: arXiv admin note: substantial text overlap with arXiv:2108.02234
♻ ☆ CILF-CIAE: CLIP-driven Image-Language Fusion for Correcting Inverse Age Estimation
The age estimation task aims to predict the age of an individual by analyzing facial features in an image. The development of age estimation can improve the efficiency and accuracy of various applications (e.g., age verification and secure access control, etc.). In recent years, contrastive language-image pre-training (CLIP) has been widely used in various multimodal tasks and has made some progress in the field of age estimation. However, existing CLIP-based age estimation methods require high memory usage (quadratic complexity) when globally modeling images, and lack an error feedback mechanism to prompt the model about the quality of age prediction results. To tackle the above issues, we propose a novel CLIP-driven Image-Language Fusion for Correcting Inverse Age Estimation (CILF-CIAE). Specifically, we first introduce the CLIP model to extract image features and text semantic information respectively, and map them into a highly semantically aligned high-dimensional feature space. Next, we designed a new Transformer architecture (i.e., FourierFormer) to achieve channel evolution and spatial interaction of images, and to fuse image and text semantic information. Compared with the quadratic complexity of the attention mechanism, the proposed Fourierformer is of linear log complexity. To further narrow the semantic gap between image and text features, we utilize an efficient contrastive multimodal learning module that supervises the multimodal fusion process of FourierFormer through contrastive loss for image-text matching, thereby improving the interaction effect between different modalities. Finally, we introduce reversible age estimation, which uses end-to-end error feedback to reduce the error rate of age predictions. Through extensive experiments on multiple data sets, CILF-CIAE has achieved better age prediction results.
comment: 14 pages, 14 figures, 3 tables
♻ ☆ WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising MICCAI2024
In clinical examinations and diagnoses, low-dose computed tomography (LDCT) is crucial for minimizing health risks compared with normal-dose computed tomography (NDCT). However, reducing the radiation dose compromises the signal-to-noise ratio, leading to degraded quality of CT images. To address this, we analyze LDCT denoising task based on experimental results from the frequency perspective, and then introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data. The proposed WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM). First, WIA is introduced to align NDCT with LDCT by mainly adding noise to the high-frequency components, which is the main difference between LDCT and NDCT. Second, to better capture high-frequency components and detailed information, Frequency-Aware Multi-scale Loss (FAM) is proposed by effectively utilizing multi-scale feature space. Extensive experiments on two public LDCT denoising datasets demonstrate that our WIA-LD2ND, only uses NDCT, outperforms existing several state-of-the-art weakly-supervised and self-supervised methods. Source code is available at https://github.com/zhaohaoyu376/WI-LD2ND.
comment: MICCAI2024
♻ ☆ MoreStyle: Relax Low-frequency Constraint of Fourier-based Image Reconstruction in Generalizable Medical Image Segmentation MICCAI2024
The task of single-source domain generalization (SDG) in medical image segmentation is crucial due to frequent domain shifts in clinical image datasets. To address the challenge of poor generalization across different domains, we introduce a Plug-and-Play module for data augmentation called MoreStyle. MoreStyle diversifies image styles by relaxing low-frequency constraints in Fourier space, guiding the image reconstruction network. With the help of adversarial learning, MoreStyle further expands the style range and pinpoints the most intricate style combinations within latent features. To handle significant style variations, we introduce an uncertainty-weighted loss. This loss emphasizes hard-to-classify pixels resulting only from style shifts while mitigating true hard-to-classify pixels in both MoreStyle-generated and original images. Extensive experiments on two widely used benchmarks demonstrate that the proposed MoreStyle effectively helps to achieve good domain generalization ability, and has the potential to further boost the performance of some state-of-the-art SDG methods. Source code is available at https://github.com/zhaohaoyu376/morestyle.
comment: MICCAI2024
♻ ☆ Recovering the Pre-Fine-Tuning Weights of Generative Models ICML 2024
The dominant paradigm in generative modeling consists of two steps: i) pre-training on a large-scale but unsafe dataset, ii) aligning the pre-trained model with human values via fine-tuning. This practice is considered safe, as no current method can recover the unsafe, pre-fine-tuning model weights. In this paper, we demonstrate that this assumption is often false. Concretely, we present Spectral DeTuning, a method that can recover the weights of the pre-fine-tuning model using a few low-rank (LoRA) fine-tuned models. In contrast to previous attacks that attempt to recover pre-fine-tuning capabilities, our method aims to recover the exact pre-fine-tuning weights. Our approach exploits this new vulnerability against large-scale models such as a personalized Stable Diffusion and an aligned Mistral.
comment: ICML 2024. Project page: https://vision.huji.ac.il/spectral_detuning/
♻ ☆ Training-Free Deepfake Voice Recognition by Leveraging Large-Scale Pre-Trained Models
Generalization is a main issue for current audio deepfake detectors, which struggle to provide reliable results on out-of-distribution data. Given the speed at which more and more accurate synthesis methods are developed, it is very important to design techniques that work well also on data they were not trained for. In this paper we study the potential of large-scale pre-trained models for audio deepfake detection, with special focus on generalization ability. To this end, the detection problem is reformulated in a speaker verification framework and fake audios are exposed by the mismatch between the voice sample under test and the voice of the claimed identity. With this paradigm, no fake speech sample is necessary in training, cutting off any link with the generation method at the root, and ensuring full generalization ability. Features are extracted by general-purpose large pre-trained models, with no need for training or fine-tuning on specific fake detection or speaker verification datasets. At detection time only a limited set of voice fragments of the identity under test is required. Experiments on several datasets widespread in the community show that detectors based on pre-trained models achieve excellent performance and show strong generalization ability, rivaling supervised methods on in-distribution data and largely overcoming them on out-of-distribution data.
♻ ☆ Adaptively Bypassing Vision Transformer Blocks for Efficient Visual Tracking
Empowered by transformer-based models, visual tracking has advanced significantly. However, the slow speed of current trackers limits their applicability on devices with constrained computational resources. To address this challenge, we introduce ABTrack, an adaptive computation framework that adaptively bypassing transformer blocks for efficient visual tracking. The rationale behind ABTrack is rooted in the observation that semantic features or relations do not uniformly impact the tracking task across all abstraction levels. Instead, this impact varies based on the characteristics of the target and the scene it occupies. Consequently, disregarding insignificant semantic features or relations at certain abstraction levels may not significantly affect the tracking accuracy. We propose a Bypass Decision Module (BDM) to determine if a transformer block should be bypassed, which adaptively simplifies the architecture of ViTs and thus speeds up the inference process. To counteract the time cost incurred by the BDMs and further enhance the efficiency of ViTs, we introduce a novel ViT pruning method to reduce the dimension of the latent representation of tokens in each transformer block. Extensive experiments on multiple tracking benchmarks validate the effectiveness and generality of the proposed method and show that it achieves state-of-the-art performance. Code is released at: https://github.com/xyyang317/ABTrack.
♻ ☆ AdaCL:Adaptive Continual Learning
Class-Incremental Learning aims to update a deep classifier to learn new categories while maintaining or improving its accuracy on previously observed classes. Common methods to prevent forgetting previously learned classes include regularizing the neural network updates and storing exemplars in memory, which come with hyperparameters such as the learning rate, regularization strength, or the number of exemplars. However, these hyperparameters are usually only tuned at the start and then kept fixed throughout the learning sessions, ignoring the fact that newly encountered tasks may have varying levels of novelty or difficulty. This study investigates the necessity of hyperparameter `adaptivity' in Class-Incremental Learning: the ability to dynamically adjust hyperparameters such as the learning rate, regularization strength, and memory size according to the properties of the new task at hand. We propose AdaCL, a Bayesian Optimization-based approach to automatically and efficiently determine the optimal values for those parameters with each learning task. We show that adapting hyperpararmeters on each new task leads to improvement in accuracy, forgetting and memory. Code is available at https://github.com/ElifCerenGokYildirim/AdaCL.
comment: Published in 1st ContinualAI Unconference
♻ ☆ Woven Fabric Capture with a Reflection-Transmission Photo Pair SIGGRAPH 2024
Digitizing woven fabrics would be valuable for many applications, from digital humans to interior design. Previous work introduces a lightweight woven fabric acquisition approach by capturing a single reflection image and estimating the fabric parameters with a differentiable geometric and shading model. The renderings of the estimated fabric parameters can closely match the photo; however, the captured reflection image is insufficient to fully characterize the fabric sample reflectance. For instance, fabrics with different thicknesses might have similar reflection images but lead to significantly different transmission. We propose to recover the woven fabric parameters from two captured images: reflection and transmission. At the core of our method is a differentiable bidirectional scattering distribution function (BSDF) model, handling reflection and transmission, including single and multiple scattering. We propose a two-layer model, where the single scattering uses an SGGX phase function as in previous work, and multiple scattering uses a new azimuthally-invariant microflake definition, which we term ASGGX. This new fabric BSDF model closely matches real woven fabrics in both reflection and transmission. We use a simple setup for capturing reflection and transmission photos with a cell phone camera and two point lights, and estimate the fabric parameters via a lightweight network, together with a differentiable optimization. We also model the out-of-focus effects explicitly with a simple solution to match the thin-lens camera better. As a result, the renderings of the estimated parameters can agree with the input images on both reflection and transmission for the first time. The code for this paper is at https://github.com/lxtyin/FabricBTDF-Recovery.
comment: 10 pages, 16 figures (in the main paper). Accepted by SIGGRAPH 2024 conference
♻ ☆ Towards Robust Physical-world Backdoor Attacks on Lane Detection
Deep learning-based lane detection (LD) plays a critical role in autonomous driving systems, such as adaptive cruise control. However, it is vulnerable to backdoor attacks. Existing backdoor attack methods on LD exhibit limited effectiveness in dynamic real-world scenarios, primarily because they fail to consider dynamic scene factors, including changes in driving perspectives (e.g., viewpoint transformations) and environmental conditions (e.g., weather or lighting changes). To tackle this issue, this paper introduces BadLANE, a dynamic scene adaptation backdoor attack for LD designed to withstand changes in real-world dynamic scene factors. To address the challenges posed by changing driving perspectives, we propose an amorphous trigger pattern composed of shapeless pixels. This trigger design allows the backdoor to be activated by various forms or shapes of mud spots or pollution on the road or lens, enabling adaptation to changes in vehicle observation viewpoints during driving. To mitigate the effects of environmental changes, we design a meta-learning framework to train meta-generators tailored to different environmental conditions. These generators produce meta-triggers that incorporate diverse environmental information, such as weather or lighting conditions, as the initialization of the trigger patterns for backdoor implantation, thus enabling adaptation to dynamic environments. Extensive experiments on various commonly used LD models in both digital and physical domains validate the effectiveness of our attacks, outperforming other baselines significantly (+25.15% on average in Attack Success Rate). Our codes will be available upon paper publication.
♻ ☆ Training-Free Acceleration of ViTs with Delayed Spatial Merging ICML 2024
Token merging has emerged as a new paradigm that can accelerate the inference of Vision Transformers (ViTs) without any retraining or fine-tuning. To push the frontier of training-free acceleration in ViTs, we improve token merging by adding the perspectives of 1) activation outliers and 2) hierarchical representations. Through a careful analysis of the attention behavior in ViTs, we characterize a delayed onset of the convergent attention phenomenon, which makes token merging undesirable in the bottom blocks of ViTs. Moreover, we augment token merging with a hierarchical processing scheme to capture multi-scale redundancy between visual tokens. Combining these two insights, we build a unified inference framework called DSM: Delayed Spatial Merging. We extensively evaluate DSM on various ViT model scales (Tiny to Huge) and tasks (ImageNet-1k and transfer learning), achieving up to 1.8$\times$ FLOP reduction and 1.6$\times$ throughput speedup at a negligible loss while being two orders of magnitude faster than existing methods.
comment: ICML 2024 ES-FoMo Workshop
♻ ☆ Multimodal Learning With Intraoperative CBCT & Variably Aligned Preoperative CT Data To Improve Segmentation MICCAI
Cone-beam computed tomography (CBCT) is an important tool facilitating computer aided interventions, despite often suffering from artifacts that pose challenges for accurate interpretation. While the degraded image quality can affect downstream segmentation, the availability of high quality, preoperative scans represents potential for improvements. Here we consider a setting where preoperative CT and intraoperative CBCT scans are available, however, the alignment (registration) between the scans is imperfect. We propose a multimodal learning method that fuses roughly aligned CBCT and CT scans and investigate the effect of CBCT quality and misalignment on the final segmentation performance. For that purpose, we make use of a synthetically generated data set containing real CT and synthetic CBCT volumes. As an application scenario, we focus on liver and liver tumor segmentation. We show that the fusion of preoperative CT and simulated, intraoperative CBCT mostly improves segmentation performance (compared to using intraoperative CBCT only) and that even clearly misaligned preoperative data has the potential to improve segmentation performance.
comment: Submitted to SASHIMI2024 (MICCAI workshop)
♻ ☆ Fuzzy Attention-based Border Rendering Network for Lung Organ Segmentation MICCAI 2024
Automatic lung organ segmentation on CT images is crucial for lung disease diagnosis. However, the unlimited voxel values and class imbalance of lung organs can lead to false-negative/positive and leakage issues in advanced methods. Additionally, some slender lung organs are easily lost during the recycled down/up-sample procedure, e.g., bronchioles & arterioles, causing severe discontinuity issue. Inspired by these, this paper introduces an effective lung organ segmentation method called Fuzzy Attention-based Border Rendering (FABR) network. Since fuzzy logic can handle the uncertainty in feature extraction, hence the fusion of deep networks and fuzzy sets should be a viable solution for better performance. Meanwhile, unlike prior top-tier methods that operate on all regular dense points, our FABR depicts lung organ regions as cube-trees, focusing only on recycle-sampled border vulnerable points, rendering the severely discontinuous, false-negative/positive organ regions with a novel Global-Local Cube-tree Fusion (GLCF) module. All experimental results, on four challenging datasets of airway & artery, demonstrate that our method can achieve the favorable performance significantly.
comment: MICCAI 2024
♻ ☆ Exploring the Potential of Multi-Modal AI for Driving Hazard Prediction
This paper addresses the problem of predicting hazards that drivers may encounter while driving a car. We formulate it as a task of anticipating impending accidents using a single input image captured by car dashcams. Unlike existing approaches to driving hazard prediction that rely on computational simulations or anomaly detection from videos, this study focuses on high-level inference from static images. The problem needs predicting and reasoning about future events based on uncertain observations, which falls under visual abductive reasoning. To enable research in this understudied area, a new dataset named the DHPR (Driving Hazard Prediction and Reasoning) dataset is created. The dataset consists of 15K dashcam images of street scenes, and each image is associated with a tuple containing car speed, a hypothesized hazard description, and visual entities present in the scene. These are annotated by human annotators, who identify risky scenes and provide descriptions of potential accidents that could occur a few seconds later. We present several baseline methods and evaluate their performance on our dataset, identifying remaining issues and discussing future directions. This study contributes to the field by introducing a novel problem formulation and dataset, enabling researchers to explore the potential of multi-modal AI for driving hazard prediction.
comment: Main Paper: 11 pages, Supplementary Materials: 25 pages
♻ ☆ PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM
Layout generation is the keystone in achieving automated graphic design, requiring arranging the position and size of various multi-modal design elements in a visually pleasing and constraint-following manner. Previous approaches are either inefficient for large-scale applications or lack flexibility for varying design requirements. Our research introduces a unified framework for automated graphic layout generation, leveraging the multi-modal large language model (MLLM) to accommodate diverse design tasks. In contrast, our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts under specific visual and textual constraints, including user-defined natural language specifications. We conducted extensive experiments and achieved state-of-the-art (SOTA) performance on public multi-modal layout generation benchmarks, demonstrating the effectiveness of our method. Moreover, recognizing existing datasets' limitations in capturing the complexity of real-world graphic designs, we propose two new datasets for much more challenging tasks (user-constrained generation and complicated poster), further validating our model's utility in real-life settings. Marking by its superior accessibility and adaptability, this approach further automates large-scale graphic design tasks. The code and datasets will be publicly available on https://github.com/posterllava/PosterLLaVA.
comment: 10 pages; typos corrected, appendix added
♻ ☆ DynamicGlue: Epipolar and Time-Informed Data Association in Dynamic Environments using Graph Neural Networks
The assumption of a static environment is common in many geometric computer vision tasks like SLAM but limits their applicability in highly dynamic scenes. Since these tasks rely on identifying point correspondences between input images within the static part of the environment, we propose a graph neural network-based sparse feature matching network designed to perform robust matching under challenging conditions while excluding keypoints on moving objects. We employ a similar scheme of attentional aggregation over graph edges to enhance keypoint representations as state-of-the-art feature-matching networks but augment the graph with epipolar and temporal information and vastly reduce the number of graph edges. Furthermore, we introduce a self-supervised training scheme to extract pseudo labels for image pairs in dynamic environments from exclusively unprocessed visual-inertial data. A series of experiments show the superior performance of our network as it excludes keypoints on moving objects compared to state-of-the-art feature matching networks while still achieving similar results regarding conventional matching metrics. When integrated into a SLAM system, our network significantly improves performance, especially in highly dynamic scenes.
♻ ☆ E-ANT: A Large-Scale Dataset for Efficient Automatic GUI NavigaTion
Online GUI navigation on mobile devices has driven a lot of attention recent years since it contributes to many real-world applications. With the rapid development of large language models (LLM), multimodal large language models (MLLM) have tremendous potential on this task. However, existing MLLMs need high quality data to improve its abilities of making the correct navigation decisions according to the human user inputs. In this paper, we developed a novel and highly valuable dataset, named \textbf{E-ANT}, as the first Chinese GUI navigation dataset that contains real human behaviour and high quality screenshots with annotations, containing nearly 40,000 real human traces over 5000+ different tinyAPPs. Furthermore, we evaluate various powerful MLLMs on E-ANT and show their experiments results with sufficient ablations. We believe that our proposed dataset will be beneficial for both the evaluation and development of GUI navigation and LLM/MLLM decision-making capabilities.
comment: 9 pages, 5 figures, Under review
♻ ☆ VIPriors 4: Visual Inductive Priors for Data-Efficient Deep Learning Challenges
The fourth edition of the "VIPriors: Visual Inductive Priors for Data-Efficient Deep Learning" workshop features two data-impaired challenges. These challenges address the problem of training deep learning models for computer vision tasks with limited data. Participants are limited to training models from scratch using a low number of training samples and are not allowed to use any form of transfer learning. We aim to stimulate the development of novel approaches that incorporate inductive biases to improve the data efficiency of deep learning models. Significant advancements are made compared to the provided baselines, where winning solutions surpass the baselines by a considerable margin in both tasks. As in previous editions, these achievements are primarily attributed to heavy use of data augmentation policies and large model ensembles, though novel prior-based methods seem to contribute more to successful solutions compared to last year. This report highlights the key aspects of the challenges and their outcomes.
♻ ☆ Training morphological neural networks with gradient descent: some theoretical insights
Morphological neural networks, or layers, can be a powerful tool to boost the progress in mathematical morphology, either on theoretical aspects such as the representation of complete lattice operators, or in the development of image processing pipelines. However, these architectures turn out to be difficult to train when they count more than a few morphological layers, at least within popular machine learning frameworks which use gradient descent based optimization algorithms. In this paper we investigate the potential and limitations of differentiation based approaches and back-propagation applied to morphological networks, in light of the non-smooth optimization concept of Bouligand derivative. We provide insights and first theoretical guidelines, in particular regarding initialization and learning rates.
♻ ☆ YOLOv10 to Its Genesis: A Decadal and Comprehensive Review of The You Only Look Once Series
This review systematically examines the progression of the You Only Look Once (YOLO) object detection algorithms from YOLOv1 to the recently unveiled YOLOv10. Employing a reverse chronological analysis, this study examines the advancements introduced by YOLO algorithms, beginning with YOLOv10 and progressing through YOLOv9, YOLOv8, and subsequent versions to explore each version's contributions to enhancing speed, accuracy, and computational efficiency in real-time object detection. The study highlights the transformative impact of YOLO across five critical application areas: automotive safety, healthcare, industrial manufacturing, surveillance, and agriculture. By detailing the incremental technological advancements in subsequent YOLO versions, this review chronicles the evolution of YOLO, and discusses the challenges and limitations in each earlier versions. The evolution signifies a path towards integrating YOLO with multimodal, context-aware, and General Artificial Intelligence (AGI) systems for the next YOLO decade, promising significant implications for future developments in AI-driven applications.
comment: 11 Figures, 7 Tables
♻ ☆ A Simple Framework for Open-Vocabulary Zero-Shot Segmentation
Zero-shot classification capabilities naturally arise in models trained within a vision-language contrastive framework. Despite their classification prowess, these models struggle in dense tasks like zero-shot open-vocabulary segmentation. This deficiency is often attributed to the absence of localization cues in captions and the intertwined nature of the learning process, which encompasses both image representation learning and cross-modality alignment. To tackle these issues, we propose SimZSS, a Simple framework for open-vocabulary Zero-Shot Segmentation. The method is founded on two key principles: i) leveraging frozen vision-only models that exhibit spatial awareness while exclusively aligning the text encoder and ii) exploiting the discrete nature of text and linguistic knowledge to pinpoint local concepts within captions. By capitalizing on the quality of the visual representations, our method requires only image-caption pairs datasets and adapts to both small curated and large-scale noisy datasets. When trained on COCO Captions across 8 GPUs, SimZSS achieves state-of-the-art results on 7 out of 8 benchmark datasets in less than 15 minutes.
♻ ☆ VTG-LLM: Integrating Timestamp Knowledge into Video LLMs for Enhanced Video Temporal Grounding
Video Temporal Grounding (VTG) focuses on accurately identifying event timestamps within a particular video based on a linguistic query, playing a vital role in downstream tasks such as video browsing and editing. While Video Large Language Models (video LLMs) have made significant progress in understanding video content, they often face challenges in accurately pinpointing timestamps within videos, which limits their performance on VTG tasks. Therefore, to improve video LLMs' ability to effectively locate timestamps, we argue that two critical aspects need to be enhanced. First, it is essential to have high-quality instructional tuning datasets that encompass mainstream VTG tasks. Second, directly incorporating timestamp knowledge into video LLMs is crucial, as it enables models to efficiently comprehend timestamp information. To address these needs, we first introduce VTG-IT-120K, a high-quality and comprehensive instruction tuning dataset that covers VTG tasks such as moment retrieval, dense video captioning, video summarization, and video highlight detection. Furthermore, we propose a specially designed video LLM model for VTG tasks, VTG-LLM, which (1) effectively integrates timestamp knowledge into visual tokens; (2) incorporates absolute-time tokens that specifically handle timestamp knowledge, thereby avoiding concept shifts; and (3) introduces a lightweight, high-performance slot-based token compression method to facilitate the sampling of more video frames. Comprehensive experiments showcase the superior performance of VTG-LLM in comparison to other video LLM methods across various VTG tasks. Our code and datasets are available at \url{https://github.com/gyxxyg/VTG-LLM}.
♻ ☆ RoadFormer: Duplex Transformer for RGB-Normal Semantic Road Scene Parsing
The recent advancements in deep convolutional neural networks have shown significant promise in the domain of road scene parsing. Nevertheless, the existing works focus primarily on freespace detection, with little attention given to hazardous road defects that could compromise both driving safety and comfort. In this paper, we introduce RoadFormer, a novel Transformer-based data-fusion network developed for road scene parsing. RoadFormer utilizes a duplex encoder architecture to extract heterogeneous features from both RGB images and surface normal information. The encoded features are subsequently fed into a novel heterogeneous feature synergy block for effective feature fusion and recalibration. The pixel decoder then learns multi-scale long-range dependencies from the fused and recalibrated heterogeneous features, which are subsequently processed by a Transformer decoder to produce the final semantic prediction. Additionally, we release SYN-UDTIRI, the first large-scale road scene parsing dataset that contains over 10,407 RGB images, dense depth images, and the corresponding pixel-level annotations for both freespace and road defects of different shapes and sizes. Extensive experimental evaluations conducted on our SYN-UDTIRI dataset, as well as on three public datasets, including KITTI road, CityScapes, and ORFD, demonstrate that RoadFormer outperforms all other state-of-the-art networks for road scene parsing. Specifically, RoadFormer ranks first on the KITTI road benchmark. Our source code, created dataset, and demo video are publicly available at mias.group/RoadFormer.
comment: 10 pages 7 figures. Accepted by Transactions on Intelligent Vehicles
♻ ☆ 3D Human Mesh Estimation from Virtual Markers CVPR 2023
Inspired by the success of volumetric 3D pose estimation, some recent human mesh estimators propose to estimate 3D skeletons as intermediate representations, from which, the dense 3D meshes are regressed by exploiting the mesh topology. However, body shape information is lost in extracting skeletons, leading to mediocre performance. The advanced motion capture systems solve the problem by placing dense physical markers on the body surface, which allows to extract realistic meshes from their non-rigid motions. However, they cannot be applied to wild images without markers. In this work, we present an intermediate representation, named virtual markers, which learns 64 landmark keypoints on the body surface based on the large-scale mocap data in a generative style, mimicking the effects of physical markers. The virtual markers can be accurately detected from wild images and can reconstruct the intact meshes with realistic shapes by simple interpolation. Our approach outperforms the state-of-the-art methods on three datasets. In particular, it surpasses the existing methods by a notable margin on the SURREAL dataset, which has diverse body shapes. Code is available at https://github.com/ShirleyMaxx/VirtualMarker
comment: CVPR 2023
♻ ☆ SemanticFormer: Holistic and Semantic Traffic Scene Representation for Trajectory Prediction using Knowledge Graphs
Trajectory prediction in autonomous driving relies on accurate representation of all relevant contexts of the driving scene, including traffic participants, road topology, traffic signs, as well as their semantic relations to each other. Despite increased attention to this issue, most approaches in trajectory prediction do not consider all of these factors sufficiently. We present SemanticFormer, an approach for predicting multimodal trajectories by reasoning over a semantic traffic scene graph using a hybrid approach. It utilizes high-level information in the form of meta-paths, i.e. trajectories on which an agent is allowed to drive from a knowledge graph which is then processed by a novel pipeline based on multiple attention mechanisms to predict accurate trajectories. SemanticFormer comprises a hierarchical heterogeneous graph encoder to capture spatio-temporal and relational information across agents as well as between agents and road elements. Further, it includes a predictor to fuse different encodings and decode trajectories with probabilities. Finally, a refinement module assesses permitted meta-paths of trajectories and speed profiles to obtain final predicted trajectories. Evaluation of the nuScenes benchmark demonstrates improved performance compared to several SOTA methods. In addition, we demonstrate that our knowledge graph can be easily added to two graph-based existing SOTA methods, namely VectorNet and Laformer, replacing their original homogeneous graphs. The evaluation results suggest that by adding our knowledge graph the performance of the original methods is enhanced by 5% and 4%, respectively.
comment: 8 pages, 7 figures, has been accepted for publication in the IEEE Robotics and Automation Letters (RA-L)
♻ ☆ DifAttack++: Query-Efficient Black-Box Adversarial Attack via Hierarchical Disentangled Feature Space in Cross-Domain AAAI24
This work investigates efficient score-based black-box adversarial attacks with a high Attack Success Rate (\textbf{ASR}) and good generalizability. We design a novel attack method based on a hierarchical DIsentangled Feature space, called \textbf{DifAttack++}, which differs significantly from the existing ones operating over the entire feature space. Specifically, DifAttack++ firstly disentangles an image's latent feature into an Adversarial Feature (\textbf{AF}) and a Visual Feature (\textbf{VF}) via an autoencoder equipped with our specially designed Hierarchical Decouple-Fusion (\textbf{HDF}) module, where the AF dominates the adversarial capability of an image, while the VF largely determines its visual appearance. We train such two autoencoders for the clean and adversarial image domains (i.e., cross-domain) respectively to achieve image reconstructions and feature disentanglement, by using pairs of clean images and their Adversarial Examples (\textbf{AE}s) generated from available surrogate models via white-box attack methods. Eventually, in the black-box attack stage, DifAttack++ iteratively optimizes the AF according to the query feedback from the victim model until a successful AE is generated, while keeping the VF unaltered. Extensive experimental results demonstrate that our DifAttack++ leads to superior ASR and query efficiency than state-of-the-art methods, meanwhile exhibiting much better visual quality of AEs. The code is available at https://github.com/csjunjun/DifAttack.git.
comment: arXiv admin note: substantial text overlap with arXiv:2309.14585 An extension of the AAAI24 paper "DifAttack: Query-Efficient Black-Box Attack via Disentangled Feature Space."
♻ ☆ ConsistI2V: Enhancing Visual Consistency for Image-to-Video Generation
Image-to-video (I2V) generation aims to use the initial frame (alongside a text prompt) to create a video sequence. A grand challenge in I2V generation is to maintain visual consistency throughout the video: existing methods often struggle to preserve the integrity of the subject, background, and style from the first frame, as well as ensure a fluid and logical progression within the video narrative. To mitigate these issues, we propose ConsistI2V, a diffusion-based method to enhance visual consistency for I2V generation. Specifically, we introduce (1) spatiotemporal attention over the first frame to maintain spatial and motion consistency, (2) noise initialization from the low-frequency band of the first frame to enhance layout consistency. These two approaches enable ConsistI2V to generate highly consistent videos. We also extend the proposed approaches to show their potential to improve consistency in auto-regressive long video generation and camera motion control. To verify the effectiveness of our method, we propose I2V-Bench, a comprehensive evaluation benchmark for I2V generation. Our automatic and human evaluation results demonstrate the superiority of ConsistI2V over existing methods.
comment: Project Page: https://tiger-ai-lab.github.io/ConsistI2V/
♻ ☆ Deep Active Audio Feature Learning in Resource-Constrained Environments
The scarcity of labelled data makes training Deep Neural Network (DNN) models in bioacoustic applications challenging. In typical bioacoustics applications, manually labelling the required amount of data can be prohibitively expensive. To effectively identify both new and current classes, DNN models must continue to learn new features from a modest amount of fresh data. Active Learning (AL) is an approach that can help with this learning while requiring little labelling effort. Nevertheless, the use of fixed feature extraction approaches limits feature quality, resulting in underutilization of the benefits of AL. We describe an AL framework that addresses this issue by incorporating feature extraction into the AL loop and refining the feature extractor after each round of manual annotation. In addition, we use raw audio processing rather than spectrograms, which is a novel approach. Experiments reveal that the proposed AL framework requires 14.3%, 66.7%, and 47.4% less labelling effort on benchmark audio datasets ESC-50, UrbanSound8k, and InsectWingBeat, respectively, for a large DNN model and similar savings on a microcontroller-based counterpart. Furthermore, we showcase the practical relevance of our study by incorporating data from conservation biology projects. All codes are publicly available on GitHub.
♻ ☆ Scene Graph Generation in Large-Size VHR Satellite Imagery: A Large-Scale Dataset and A Context-Aware Approach
Scene graph generation (SGG) in satellite imagery (SAI) benefits promoting intelligent understanding of geospatial scenarios from perception to cognition. In SAI, objects exhibit great variations in scales and aspect ratios, and there exist rich relationships between objects (even between spatially disjoint objects), which makes it necessary to holistically conduct SGG in large-size very-high-resolution (VHR) SAI. However, the lack of SGG datasets with large-size VHR SAI has constrained the advancement of SGG in SAI. Due to the complexity of large-size VHR SAI, mining triplets in large-size VHR SAI heavily relies on long-range contextual reasoning. Consequently, SGG models designed for small-size natural imagery are not directly applicable to large-size VHR SAI. To address the scarcity of datasets, this paper constructs a large-scale dataset for SGG in large-size VHR SAI with image sizes ranging from 512 x 768 to 27,860 x 31,096 pixels, named RSG, encompassing over 210,000 objects and more than 400,000 triplets. To realize SGG in large-size VHR SAI, we propose a context-aware cascade cognition (CAC) framework to understand SAI at three levels: object detection (OBD), pair pruning and relationship prediction. As a fundamental prerequisite for SGG in large-size SAI, a holistic multi-class object detection network (HOD-Net) that can flexibly integrate multi-scale contexts is proposed. With the consideration that there exist a huge amount of object pairs in large-size SAI but only a minority of object pairs contain meaningful relationships, we design a pair proposal generation (PPG) network via adversarial reconstruction to select high-value pairs. Furthermore, a relationship prediction network with context-aware messaging (RPCM) is proposed to predict the relationship types of these pairs.
comment: This paper releases a SAI-oriented SGG toolkit with about 30 OBD methods and 10 SGG methods, and develops a benchmark based on RSG where our HOD-Net and RPCM significantly outperform the state-of-the-art methods in both OBD and SGG tasks. The RSG dataset and SAI-oriented toolkit will be made publicly available at https://linlin-dev.github.io/project/RSG
♻ ☆ Long Context Transfer from Language to Vision
Video sequences offer valuable temporal information, but existing large multimodal models (LMMs) fall short in understanding extremely long videos. Many works address this by reducing the number of visual tokens using visual resamplers. Alternatively, in this paper, we approach this problem from the perspective of the language model. By simply extrapolating the context length of the language backbone, we enable LMMs to comprehend orders of magnitude more visual tokens without any video training. We call this phenomenon long context transfer and carefully ablate its properties. To effectively measure LMMs' ability to generalize to long contexts in the vision modality, we develop V-NIAH (Visual Needle-In-A-Haystack), a purely synthetic long vision benchmark inspired by the language model's NIAH test. Our proposed Long Video Assistant (LongVA) can process 2000 frames or over 200K visual tokens without additional complexities. With its extended context length, LongVA achieves state-of-the-art performance on Video-MME among 7B-scale models by densely sampling more input frames. Our work is open-sourced at https://github.com/EvolvingLMMs-Lab/LongVA.
comment: Code, demo, and models are available at https://github.com/EvolvingLMMs-Lab/LongVA
♻ ☆ EgoVideo: Exploring Egocentric Foundation Model and Downstream Adaptation CVPR 2024
In this report, we present our solutions to the EgoVis Challenges in CVPR 2024, including five tracks in the Ego4D challenge and three tracks in the EPIC-Kitchens challenge. Building upon the video-language two-tower model and leveraging our meticulously organized egocentric video data, we introduce a novel foundation model called EgoVideo. This model is specifically designed to cater to the unique characteristics of egocentric videos and provides strong support for our competition submissions. In the Ego4D challenges, we tackle various tasks including Natural Language Queries, Step Grounding, Moment Queries, Short-term Object Interaction Anticipation, and Long-term Action Anticipation. In addition, we also participate in the EPIC-Kitchens challenge, where we engage in the Action Recognition, Multiple Instance Retrieval, and Domain Adaptation for Action Recognition tracks. By adapting EgoVideo to these diverse tasks, we showcase its versatility and effectiveness in different egocentric video analysis scenarios, demonstrating the powerful representation ability of EgoVideo as an egocentric foundation model. Our codebase and pretrained models are publicly available at https://github.com/OpenGVLab/EgoVideo.
comment: Champion solutions in the EgoVis CVPR 2024 workshop
♻ ☆ Video Anomaly Detection in 10 Years: A Survey and Outlook
Video anomaly detection (VAD) holds immense importance across diverse domains such as surveillance, healthcare, and environmental monitoring. While numerous surveys focus on conventional VAD methods, they often lack depth in exploring specific approaches and emerging trends. This survey explores deep learning-based VAD, expanding beyond traditional supervised training paradigms to encompass emerging weakly supervised, self-supervised, and unsupervised approaches. A prominent feature of this review is the investigation of core challenges within the VAD paradigms including large-scale datasets, features extraction, learning methods, loss functions, regularization, and anomaly score prediction. Moreover, this review also investigates the vision language models (VLMs) as potent feature extractors for VAD. VLMs integrate visual data with textual descriptions or spoken language from videos, enabling a nuanced understanding of scenes crucial for anomaly detection. By addressing these challenges and proposing future research directions, this review aims to foster the development of robust and efficient VAD systems leveraging the capabilities of VLMs for enhanced anomaly detection in complex real-world scenarios. This comprehensive analysis seeks to bridge existing knowledge gaps, provide researchers with valuable insights, and contribute to shaping the future of VAD research.
♻ ☆ Is Synthetic Data all We Need? Benchmarking the Robustness of Models Trained with Synthetic Images CVPR 2024
A long-standing challenge in developing machine learning approaches has been the lack of high-quality labeled data. Recently, models trained with purely synthetic data, here termed synthetic clones, generated using large-scale pre-trained diffusion models have shown promising results in overcoming this annotation bottleneck. As these synthetic clone models progress, they are likely to be deployed in challenging real-world settings, yet their suitability remains understudied. Our work addresses this gap by providing the first benchmark for three classes of synthetic clone models, namely supervised, self-supervised, and multi-modal ones, across a range of robustness measures. We show that existing synthetic self-supervised and multi-modal clones are comparable to or outperform state-of-the-art real-image baselines for a range of robustness metrics - shape bias, background bias, calibration, etc. However, we also find that synthetic clones are much more susceptible to adversarial and real-world noise than models trained with real data. To address this, we find that combining both real and synthetic data further increases the robustness, and that the choice of prompt used for generating synthetic images plays an important part in the robustness of synthetic clones.
comment: Accepted at CVPR 2024 Workshop: SyntaGen-Harnessing Generative Models for Synthetic Visual Datasets. Project page at https://synbenchmark.github.io/SynCloneBenchmark Comments: Fix typo in Fig. 1
♻ ☆ SketchQL Demonstration: Zero-shot Video Moment Querying with Sketches
In this paper, we will present SketchQL, a video database management system (VDBMS) for retrieving video moments with a sketch-based query interface. This novel interface allows users to specify object trajectory events with simple mouse drag-and-drop operations. Users can use trajectories of single objects as building blocks to compose complex events. Using a pre-trained model that encodes trajectory similarity, SketchQL achieves zero-shot video moments retrieval by performing similarity searches over the video to identify clips that are the most similar to the visual query. In this demonstration, we introduce the graphic user interface of SketchQL and detail its functionalities and interaction mechanisms. We also demonstrate the end-to-end usage of SketchQL from query composition to video moments retrieval using real-world scenarios.
♻ ☆ A Survey on Deep Clustering: From the Prior Perspective
Facilitated by the powerful feature extraction ability of neural networks, deep clustering has achieved great success in analyzing high-dimensional and complex real-world data. The performance of deep clustering methods is affected by various factors such as network structures and learning objectives. However, as pointed out in this survey, the essence of deep clustering lies in the incorporation and utilization of prior knowledge, which is largely ignored by existing works. From pioneering deep clustering methods based on data structure assumptions to recent contrastive clustering methods based on data augmentation invariances, the development of deep clustering intrinsically corresponds to the evolution of prior knowledge. In this survey, we provide a comprehensive review of deep clustering methods by categorizing them into six types of prior knowledge. We find that in general the prior innovation follows two trends, namely, i) from mining to constructing, and ii) from internal to external. Besides, we provide a benchmark on five widely-used datasets and analyze the performance of methods with diverse priors. By providing a novel prior knowledge perspective, we hope this survey could provide some novel insights and inspire future research in the deep clustering community.
♻ ☆ Harnessing the Power of MLLMs for Transferable Text-to-Image Person ReID CVPR 2024
Text-to-image person re-identification (ReID) retrieves pedestrian images according to textual descriptions. Manually annotating textual descriptions is time-consuming, restricting the scale of existing datasets and therefore the generalization ability of ReID models. As a result, we study the transferable text-to-image ReID problem, where we train a model on our proposed large-scale database and directly deploy it to various datasets for evaluation. We obtain substantial training data via Multi-modal Large Language Models (MLLMs). Moreover, we identify and address two key challenges in utilizing the obtained textual descriptions. First, an MLLM tends to generate descriptions with similar structures, causing the model to overfit specific sentence patterns. Thus, we propose a novel method that uses MLLMs to caption images according to various templates. These templates are obtained using a multi-turn dialogue with a Large Language Model (LLM). Therefore, we can build a large-scale dataset with diverse textual descriptions. Second, an MLLM may produce incorrect descriptions. Hence, we introduce a novel method that automatically identifies words in a description that do not correspond with the image. This method is based on the similarity between one text and all patch token embeddings in the image. Then, we mask these words with a larger probability in the subsequent training epoch, alleviating the impact of noisy textual descriptions. The experimental results demonstrate that our methods significantly boost the direct transfer text-to-image ReID performance. Benefiting from the pre-trained model weights, we also achieve state-of-the-art performance in the traditional evaluation settings.
comment: CVPR 2024
♻ ☆ Geometry-Aware Score Distillation via 3D Consistent Noising and Gradient Consistency Modeling
Score distillation sampling (SDS), the methodology in which the score from pretrained 2D diffusion models is distilled into 3D representation, has recently brought significant advancements in text-to-3D generation task. However, this approach is still confronted with critical geometric inconsistency problems such as the Janus problem. Starting from a hypothesis that such inconsistency problems may be induced by multiview inconsistencies between 2D scores predicted from various viewpoints, we introduce GSD, a simple and general plug-and-play framework for incorporating 3D consistency and therefore geometry awareness into the SDS process. Our methodology is composed of three components: 3D consistent noising, designed to produce 3D consistent noise maps that perfectly follow the standard Gaussian distribution, geometry-based gradient warping for identifying correspondences between predicted gradients of different viewpoints, and novel gradient consistency loss to optimize the scene geometry toward producing more consistent gradients. We demonstrate that our method significantly improves performance, successfully addressing the geometric inconsistency problems in text-to-3D generation task with minimal computation cost and being compatible with existing score distillation-based models. Our project page is available at https://ku-cvlab.github.io/GSD/.
♻ ☆ GRACE: Graph-Regularized Attentive Convolutional Entanglement with Laplacian Smoothing for Robust DeepFake Video Detection
As DeepFake video manipulation techniques escalate, posing profound threats, the urgent need to develop efficient detection strategies is underscored. However, one particular issue lies with facial images being mis-detected, often originating from degraded videos or adversarial attacks, leading to unexpected temporal artifacts that can undermine the efficacy of DeepFake video detection techniques. This paper introduces a novel method for robust DeepFake video detection, harnessing the power of the proposed Graph-Regularized Attentive Convolutional Entanglement (GRACE) based on the graph convolutional network with graph Laplacian to address the aforementioned challenges. First, conventional Convolution Neural Networks are deployed to perform spatiotemporal features for the entire video. Then, the spatial and temporal features are mutually entangled by constructing a graph with sparse constraint, enforcing essential features of valid face images in the noisy face sequences remaining, thus augmenting stability and performance for DeepFake video detection. Furthermore, the Graph Laplacian prior is proposed in the graph convolutional network to remove the noise pattern in the feature space to further improve the performance. Comprehensive experiments are conducted to illustrate that our proposed method delivers state-of-the-art performance in DeepFake video detection under noisy face sequences. The source code is available at https://github.com/ming053l/GRACE.
comment: Submitted to TPAMI 2024
Information Retrieval 3
♻ ☆ Amplify Graph Learning for Recommendation via Sparsity Completion
Graph learning models have been widely deployed in collaborative filtering (CF) based recommendation systems. Due to the issue of data sparsity, the graph structure of the original input lacks potential positive preference edges, which significantly reduces the performance of recommendations. In this paper, we study how to enhance the graph structure for CF more effectively, thereby optimizing the representation of graph nodes. Previous works introduced matrix completion techniques into CF, proposing the use of either stochastic completion methods or superficial structure completion to address this issue. However, most of these approaches employ random numerical filling that lack control over noise perturbations and limit the in-depth exploration of higher-order interaction features of nodes, resulting in biased graph representations. In this paper, we propose an Amplify Graph Learning framework based on Sparsity Completion (called AGL-SC). First, we utilize graph neural network to mine direct interaction features between user and item nodes, which are used as the inputs of the encoder. Second, we design a factorization-based method to mine higher-order interaction features. These features serve as perturbation factors in the latent space of the hidden layer to facilitate generative enhancement. Finally, by employing the variational inference, the above multi-order features are integrated to implement the completion and enhancement of missing graph structures. We conducted benchmark and strategy experiments on four real-world datasets related to recommendation tasks. The experimental results demonstrate that AGL-SC significantly outperforms the state-of-the-art methods.
♻ ☆ Autumn: A Scalable Read Optimized LSM-tree based Key-Value Stores with Fast Point and Range Read Speed
The Log Structured Merge Trees (LSM-tree) based key-value stores are widely used in many storage systems to support a variety of operations such as updates, point reads, and range reads. Traditionally, LSM-tree's merge policy organizes data into multiple levels of exponentially increasing capacity to support high-speed writes. However, we contend that the traditional merge policies are not optimized for reads. In this work, we present Autumn, a scalable and read optimized LSM-tree based key-value stores with minimal point and range read cost. The key idea in improving the read performance is to dynamically adjust the capacity ratio between two adjacent levels as more data are stored. As a result, smaller levels gradually increase their capacities and merge more often. In particular, the point and range read cost improves from the previous best known $O(logN)$ complexity to $O(\sqrt{logN})$ in Autumn by applying the novel Garnering merge policy. While Garnering merge policy optimizes for both point reads and range reads, it maintains high performance for updates. Moreover, to further improve the update costs, Autumn uses a small amount of bounded space of DRAM to pin/keep the first level of LSM-tree. We implemented Autumn on top of LevelDB and experimentally showcases the gain in performance for real world workloads.
♻ ☆ Bioptic -- A Target-Agnostic Potency-Based Small Molecules Search Engine
Recent successes in virtual screening have been made possible by large models and extensive chemical libraries. However, combining these elements is challenging: the larger the model, the more expensive it is to run, making ultra-large libraries unfeasible. To address this, we developed a target-agnostic, efficacy-based molecule search model, which allows us to find structurally dissimilar molecules with similar biological activities. We used the best practices to design fast retrieval system, based on processor-optimized SIMD instructions, enabling us to screen the ultra-large 40B Enamine REAL library with 100\% recall rate. We extensively benchmarked our model and several state-of-the-art models for both speed performance and retrieval quality of novel molecules.
Machine Learning 82
♻ ☆ Adam-mini: Use Fewer Learning Rates To Gain More
We propose Adam-mini, an optimizer that achieves on-par or better performance than AdamW with 45% to 50% less memory footprint. Adam-mini reduces memory by cutting down the learning rate resources in Adam (i.e., $1/\sqrt{v}$). We find that $\geq$ 90% of these learning rates in $v$ could be harmlessly removed if we (1) carefully partition the parameters into blocks following our proposed principle on Hessian structure; (2) assign a single but good learning rate to each parameter block. We further find that, for each of these parameter blocks, there exists a single high-quality learning rate that can outperform Adam, provided that sufficient resources are available to search it out. We then provide one cost-effective way to find good learning rates and propose Adam-mini. Empirically, we verify that Adam-mini performs on par or better than AdamW on various language models sized from 125M to 7B for pre-training, supervised fine-tuning, and RLHF. The reduced memory footprint of Adam-mini also alleviates communication overheads among GPUs and CPUs, thereby increasing throughput. For instance, Adam-mini achieves 49.6% higher throughput than AdamW when pre-training Llama2-7B on $2\times$ A800-80GB GPUs, which saves 33% wall-clock time for pre-training.
♻ ☆ Large Language Models Assume People are More Rational than We Really are
In order for AI systems to communicate effectively with people, they must understand how we make decisions. However, people's decisions are not always rational, so the implicit internal models of human decision-making in Large Language Models (LLMs) must account for this. Previous empirical evidence seems to suggest that these implicit models are accurate -- LLMs offer believable proxies of human behavior, acting how we expect humans would in everyday interactions. However, by comparing LLM behavior and predictions to a large dataset of human decisions, we find that this is actually not the case: when both simulating and predicting people's choices, a suite of cutting-edge LLMs (GPT-4o & 4-Turbo, Llama-3-8B & 70B, Claude 3 Opus) assume that people are more rational than we really are. Specifically, these models deviate from human behavior and align more closely with a classic model of rational choice -- expected value theory. Interestingly, people also tend to assume that other people are rational when interpreting their behavior. As a consequence, when we compare the inferences that LLMs and people draw from the decisions of others using another psychological dataset, we find that these inferences are highly correlated. Thus, the implicit decision-making models of LLMs appear to be aligned with the human expectation that other people will act rationally, rather than with how people actually act.
♻ ☆ Unmasking Bias in AI: A Systematic Review of Bias Detection and Mitigation Strategies in Electronic Health Record-based Models
Objectives: Leveraging artificial intelligence (AI) in conjunction with electronic health records (EHRs) holds transformative potential to improve healthcare. Yet, addressing bias in AI, which risks worsening healthcare disparities, cannot be overlooked. This study reviews methods to detect and mitigate diverse forms of bias in AI models developed using EHR data. Methods: We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, analyzing articles from PubMed, Web of Science, and IEEE published between January 1, 2010, and Dec 17, 2023. The review identified key biases, outlined strategies for detecting and mitigating bias throughout the AI model development process, and analyzed metrics for bias assessment. Results: Of the 450 articles retrieved, 20 met our criteria, revealing six major bias types: algorithmic, confounding, implicit, measurement, selection, and temporal. The AI models were primarily developed for predictive tasks in healthcare settings. Four studies concentrated on the detection of implicit and algorithmic biases employing fairness metrics like statistical parity, equal opportunity, and predictive equity. Sixty proposed various strategies for mitigating biases, especially targeting implicit and selection biases. These strategies, evaluated through both performance (e.g., accuracy, AUROC) and fairness metrics, predominantly involved data collection and preprocessing techniques like resampling, reweighting, and transformation. Discussion: This review highlights the varied and evolving nature of strategies to address bias in EHR-based AI models, emphasizing the urgent needs for the establishment of standardized, generalizable, and interpretable methodologies to foster the creation of ethical AI systems that promote fairness and equity in healthcare.
comment: Published in JAMIA Volume 31, Issue 5, May 2024
♻ ☆ Fine-tuning can cripple your foundation model; preserving features may be the solution
Pre-trained foundation models, due to their enormous capacity and exposure to vast amounts of data during pre-training, are known to have learned plenty of real-world concepts. An important step in making these pre-trained models effective on downstream tasks is to fine-tune them on related datasets. While various fine-tuning methods have been devised and have been shown to be highly effective, we observe that a fine-tuned model's ability to recognize concepts on tasks $\textit{different}$ from the downstream one is reduced significantly compared to its pre-trained counterpart. This is an undesirable effect of fine-tuning as a substantial amount of resources was used to learn these pre-trained concepts in the first place. We call this phenomenon ''concept forgetting'' and via experiments show that most end-to-end fine-tuning approaches suffer heavily from this side effect. To this end, we propose a simple fix to this problem by designing a new fine-tuning method called $\textit{LDIFS}$ (short for $\ell_2$ distance in feature space) that, while learning new concepts related to the downstream task, allows a model to preserve its pre-trained knowledge as well. Through extensive experiments on 10 fine-tuning tasks we show that $\textit{LDIFS}$ significantly reduces concept forgetting. Additionally, we show that LDIFS is highly effective in performing continual fine-tuning on a sequence of tasks as well, in comparison with both fine-tuning as well as continual learning baselines.
comment: Published in TMLR: https://openreview.net/forum?id=kfhoeZCeW7
♻ ☆ Does Writing with Language Models Reduce Content Diversity? ICLR 2024
Large language models (LLMs) have led to a surge in collaborative writing with model assistance. As different users incorporate suggestions from the same model, there is a risk of decreased diversity in the produced content, potentially limiting diverse perspectives in public discourse. In this work, we measure the impact of co-writing on diversity via a controlled experiment, where users write argumentative essays in three setups -- using a base LLM (GPT3), a feedback-tuned LLM (InstructGPT), and writing without model help. We develop a set of diversity metrics and find that writing with InstructGPT (but not the GPT3) results in a statistically significant reduction in diversity. Specifically, it increases the similarity between the writings of different authors and reduces the overall lexical and content diversity. We additionally find that this effect is mainly attributable to InstructGPT contributing less diverse text to co-written essays. In contrast, the user-contributed text remains unaffected by model collaboration. This suggests that the recent improvement in generation quality from adapting models to human feedback might come at the cost of more homogeneous and less diverse content.
comment: ICLR 2024
♻ ☆ Towards objective and systematic evaluation of bias in artificial intelligence for medical imaging
Artificial intelligence (AI) models trained using medical images for clinical tasks often exhibit bias in the form of disparities in performance between subgroups. Since not all sources of biases in real-world medical imaging data are easily identifiable, it is challenging to comprehensively assess how those biases are encoded in models, and how capable bias mitigation methods are at ameliorating performance disparities. In this article, we introduce a novel analysis framework for systematically and objectively investigating the impact of biases in medical images on AI models. We developed and tested this framework for conducting controlled in silico trials to assess bias in medical imaging AI using a tool for generating synthetic magnetic resonance images with known disease effects and sources of bias. The feasibility is showcased by using three counterfactual bias scenarios to measure the impact of simulated bias effects on a convolutional neural network (CNN) classifier and the efficacy of three bias mitigation strategies. The analysis revealed that the simulated biases resulted in expected subgroup performance disparities when the CNN was trained on the synthetic datasets. Moreover, reweighing was identified as the most successful bias mitigation strategy for this setup, and we demonstrated how explainable AI methods can aid in investigating the manifestation of bias in the model using this framework. Developing fair AI models is a considerable challenge given that many and often unknown sources of biases can be present in medical imaging datasets. In this work, we present a novel methodology to objectively study the impact of biases and mitigation strategies on deep learning pipelines, which can support the development of clinical AI that is robust and responsible.
comment: Published in the Journal of the American Medical Informatics Association
♻ ☆ Evaluation of Deep Learning Semantic Segmentation for Land Cover Mapping on Multispectral, Hyperspectral and High Spatial Aerial Imagery
In the rise of climate change, land cover mapping has become such an urgent need in environmental monitoring. The accuracy of land cover classification has gotten increasingly based on the improvement of remote sensing data. Land cover classification using satellite imageries has been explored and become more prevalent in recent years, but the methodologies remain some drawbacks of subjective and time-consuming. Some deep learning techniques have been utilized to overcome these limitations. However, most studies implemented just one image type to evaluate algorithms for land cover mapping. Therefore, our study conducted deep learning semantic segmentation in multispectral, hyperspectral, and high spatial aerial image datasets for landcover mapping. This research implemented a semantic segmentation method such as Unet, Linknet, FPN, and PSPnet for categorizing vegetation, water, and others (i.e., soil and impervious surface). The LinkNet model obtained high accuracy in IoU (Intersection Over Union) at 0.92 in all datasets, which is comparable with other mentioned techniques. In evaluation with different image types, the multispectral images showed higher performance with the IoU, and F1-score are 0.993 and 0.997, respectively. Our outcome highlighted the efficiency and broad applicability of LinkNet and multispectral image on land cover classification. This research contributes to establishing an approach on landcover segmentation via open source for long-term future application.
comment: conference, This preprint is based on the following published conference article: Panuntun, I. A., Chen, Y.-N., Jamaluddin, I., & Tran, T. L. C., 2023. Evaluation of Deep Learning Semantic Segmentation for Land Cover Mapping on Multispectral, Hyperspectral and High Spatial Aerial Imagery. 44th Asian Conference on Remote Sensing, ACRS 2023. Code 198676
♻ ☆ Predicting Fairness of ML Software Configurations
This paper investigates the relationships between hyperparameters of machine learning and fairness. Data-driven solutions are increasingly used in critical socio-technical applications where ensuring fairness is important. Rather than explicitly encoding decision logic via control and data structures, the ML developers provide input data, perform some pre-processing, choose ML algorithms, and tune hyperparameters (HPs) to infer a program that encodes the decision logic. Prior works report that the selection of HPs can significantly influence fairness. However, tuning HPs to find an ideal trade-off between accuracy, precision, and fairness has remained an expensive and tedious task. Can we predict fairness of HP configuration for a given dataset? Are the predictions robust to distribution shifts? We focus on group fairness notions and investigate the HP space of 5 training algorithms. We first find that tree regressors and XGBoots significantly outperformed deep neural networks and support vector machines in accurately predicting the fairness of HPs. When predicting the fairness of ML hyperparameters under temporal distribution shift, the tree regressors outperforms the other algorithms with reasonable accuracy. However, the precision depends on the ML training algorithm, dataset, and protected attributes. For example, the tree regressor model was robust for training data shift from 2014 to 2018 on logistic regression and discriminant analysis HPs with sex as the protected attribute; but not for race and other training algorithms. Our method provides a sound framework to efficiently perform fine-tuning of ML training algorithms and understand the relationships between HPs and fairness.
comment: To Appear in the 20th International Conference on Predictive Models and Data Analytics in Software Engineering (PROMISE'24)
♻ ☆ Embedded FPGA Developments in 130nm and 28nm CMOS for Machine Learning in Particle Detector Readout
Embedded field programmable gate array (eFPGA) technology allows the implementation of reconfigurable logic within the design of an application-specific integrated circuit (ASIC). This approach offers the low power and efficiency of an ASIC along with the ease of FPGA configuration, particularly beneficial for the use case of machine learning in the data pipeline of next-generation collider experiments. An open-source framework called "FABulous" was used to design eFPGAs using 130 nm and 28 nm CMOS technology nodes, which were subsequently fabricated and verified through testing. The capability of an eFPGA to act as a front-end readout chip was assessed using simulation of high energy particles passing through a silicon pixel sensor. A machine learning-based classifier, designed for reduction of sensor data at the source, was synthesized and configured onto the eFPGA. A successful proof-of-concept was demonstrated through reproduction of the expected algorithm result on the eFPGA with perfect accuracy. Further development of the eFPGA technology and its application to collider detector readout is discussed.
comment: 16 pages, 12 figures
♻ ☆ Cutting through buggy adversarial example defenses: fixing 1 line of code breaks Sabre
Sabre is a defense to adversarial examples that was accepted at IEEE S&P 2024. We first reveal significant flaws in the evaluation that point to clear signs of gradient masking. We then show the cause of this gradient masking: a bug in the original evaluation code. By fixing a single line of code in the original repository, we reduce Sabre's robust accuracy to 0%. In response to this, the authors modify the defense and introduce a new defense component not described in the original paper. But this fix contains a second bug; modifying one more line of code reduces robust accuracy to below baseline levels. After we released the first version of our paper online, the authors introduced another change to the defense; by commenting out one line of code during attack we reduce the robust accuracy to 0% again.
♻ ☆ Affine Invariant Ensemble Transform Methods to Improve Predictive Uncertainty in Neural Networks
We consider the problem of performing Bayesian inference for logistic regression using appropriate extensions of the ensemble Kalman filter. Two interacting particle systems are proposed that sample from an approximate posterior and prove quantitative convergence rates of these interacting particle systems to their mean-field limit as the number of particles tends to infinity. Furthermore, we apply these techniques and examine their effectiveness as methods of Bayesian approximation for quantifying predictive uncertainty in neural networks.
♻ ☆ Patch-Prompt Aligned Bayesian Prompt Tuning for Vision-Language Models UAI 2024
For downstream applications of vision-language pre-trained models, there has been significant interest in constructing effective prompts. Existing works on prompt engineering, which either require laborious manual designs or optimize the prompt tuning as a point estimation problem, may fail to describe diverse characteristics of categories and limit their applications. We introduce a Bayesian probabilistic resolution to prompt tuning, where the label-specific stochastic prompts are generated hierarchically by first sampling a latent vector from an underlying distribution and then employing a lightweight generative model. Importantly, we semantically regularize the tuning process by minimizing the statistical distance between the visual patches and linguistic prompts, which pushes the stochastic label representations to faithfully capture diverse visual concepts, instead of overfitting the training categories. We evaluate the effectiveness of our approach on four tasks: few-shot image recognition, base-to-new generalization, dataset transfer learning, and domain shifts. Extensive results over 15 datasets show promising transferability and generalization performance of our proposed model, both quantitatively and qualitatively.
comment: Accepted by UAI 2024
♻ ☆ Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts
Recent successes suggest that parameter-efficient fine-tuning of foundation models as the state-of-the-art method for transfer learning in vision, replacing the rich literature of alternatives such as meta-learning. In trying to harness the best of both worlds, meta-tuning introduces a subsequent optimization stage of foundation models but has so far only shown limited success and crucially tends to underperform on out-of-distribution (OOD) tasks. In this paper, we introduce Sparse MetA-Tuning (SMAT), a method inspired by sparse mixture-of-experts approaches and trained to isolate subsets of pre-trained parameters automatically for meta-tuning on each task. SMAT successfully overcomes OOD sensitivity and delivers on the promise of enhancing the transfer abilities of vision foundation models beyond parameter-efficient fine-tuning. We establish new state-of-the-art results on a challenging combination of Meta-Dataset augmented with additional OOD tasks in both zero-shot and gradient-based adaptation settings. In addition, we provide a thorough analysis of the superiority of learned over hand-designed sparsity patterns for sparse expert methods and the pivotal importance of the sparsity level in balancing between in-distribution and out-of-distribution generalization. Our code is publicly available.
comment: The Forty-first International Conference on Machine Learning, 2024
♻ ☆ Learning the boundary-to-domain mapping using Lifting Product Fourier Neural Operators for partial differential equations ICML 2024
Neural operators such as the Fourier Neural Operator (FNO) have been shown to provide resolution-independent deep learning models that can learn mappings between function spaces. For example, an initial condition can be mapped to the solution of a partial differential equation (PDE) at a future time-step using a neural operator. Despite the popularity of neural operators, their use to predict solution functions over a domain given only data over the boundary (such as a spatially varying Dirichlet boundary condition) remains unexplored. In this paper, we refer to such problems as boundary-to-domain problems; they have a wide range of applications in areas such as fluid mechanics, solid mechanics, heat transfer etc. We present a novel FNO-based architecture, named Lifting Product FNO (or LP-FNO) which can map arbitrary boundary functions defined on the lower-dimensional boundary to a solution in the entire domain. Specifically, two FNOs defined on the lower-dimensional boundary are lifted into the higher dimensional domain using our proposed lifting product layer. We demonstrate the efficacy and resolution independence of the proposed LP-FNO for the 2D Poisson equation.
comment: Accepted by ICML 2024 AI for Science Workshop
♻ ☆ Safe Linear Bandits over Unknown Polytopes COLT 2024
The safe linear bandit problem (SLB) is an online approach to linear programming with unknown objective and unknown roundwise constraints, under stochastic bandit feedback of rewards and safety risks of actions. We study the tradeoffs between efficacy and smooth safety costs of SLBs over polytopes, and the role of aggressive doubly-optimistic play in avoiding the strong assumptions made by extant pessimistic-optimistic approaches. We first elucidate an inherent hardness in SLBs due the lack of knowledge of constraints: there exist `easy' instances, for which suboptimal extreme points have large `gaps', but on which SLB methods must still incur $\Omega(\sqrt{T})$ regret or safety violations, due to an inability to resolve unknown optima to arbitrary precision. We then analyse a natural doubly-optimistic strategy for the safe linear bandit problem, DOSS, which uses optimistic estimates of both reward and safety risks to select actions, and show that despite the lack of knowledge of constraints or feasible points, DOSS simultaneously obtains tight instance-dependent $O(\log^2 T)$ bounds on efficacy regret, and $\tilde O(\sqrt{T})$ bounds on safety violations. Further, when safety is demanded to a finite precision, violations improve to $O(\log^2 T).$ These results rely on a novel dual analysis of linear bandits: we argue that \algoname proceeds by activating noisy versions of at least $d$ constraints in each round, which allows us to separately analyse rounds where a `poor' set of constraints is activated, and rounds where `good' sets of constraints are activated. The costs in the former are controlled to $O(\log^2 T)$ by developing new dual notions of gaps, based on global sensitivity analyses of linear programs, that quantify the suboptimality of each such set of constraints. The latter costs are controlled to $O(1)$ by explicitly analysing the solutions of optimistic play.
comment: v3: Presented at COLT 2024
♻ ☆ Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text
Detecting text generated by modern large language models is thought to be hard, as both LLMs and humans can exhibit a wide range of complex behaviors. However, we find that a score based on contrasting two closely related language models is highly accurate at separating human-generated and machine-generated text. Based on this mechanism, we propose a novel LLM detector that only requires simple calculations using a pair of pre-trained LLMs. The method, called Binoculars, achieves state-of-the-art accuracy without any training data. It is capable of spotting machine text from a range of modern LLMs without any model-specific modifications. We comprehensively evaluate Binoculars on a number of text sources and in varied situations. Over a wide range of document types, Binoculars detects over 90% of generated samples from ChatGPT (and other LLMs) at a false positive rate of 0.01%, despite not being trained on any ChatGPT data.
comment: 20 pages, code available at https://github.com/ahans30/Binoculars
♻ ☆ Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces II: non-compact symmetric spaces
Gaussian processes are arguably the most important class of spatiotemporal models within machine learning. They encode prior information about the modeled function and can be used for exact or approximate Bayesian learning. In many applications, particularly in physical sciences and engineering, but also in areas such as geostatistics and neuroscience, invariance to symmetries is one of the most fundamental forms of prior information one can consider. The invariance of a Gaussian process' covariance to such symmetries gives rise to the most natural generalization of the concept of stationarity to such spaces. In this work, we develop constructive and practical techniques for building stationary Gaussian processes on a very large class of non-Euclidean spaces arising in the context of symmetries. Our techniques make it possible to (i) calculate covariance kernels and (ii) sample from prior and posterior Gaussian processes defined on such spaces, both in a practical manner. This work is split into two parts, each involving different technical considerations: part I studies compact spaces, while part II studies non-compact spaces possessing certain structure. Our contributions make the non-Euclidean Gaussian process models we study compatible with well-understood computational techniques available in standard Gaussian process software packages, thereby making them accessible to practitioners.
♻ ☆ Inverse Evolution Layers: Physics-informed Regularizers for Deep Neural Networks
Traditional image processing methods employing partial differential equations (PDEs) offer a multitude of meaningful regularizers, along with valuable theoretical foundations for a wide range of image-related tasks. This makes their integration into neural networks a promising avenue. In this paper, we introduce a novel regularization approach inspired by the reverse process of PDE-based evolution models. Specifically, we propose inverse evolution layers (IELs), which serve as bad property amplifiers to penalize neural networks of which outputs have undesired characteristics. Using IELs, one can achieve specific regularization objectives and endow neural networks' outputs with corresponding properties of the PDE models. Our experiments, focusing on semantic segmentation tasks using heat-diffusion IELs, demonstrate their effectiveness in mitigating noisy label effects. Additionally, we develop curve-motion IELs to enforce convex shape regularization in neural network-based segmentation models for preventing the generation of concave outputs. Theoretical analysis confirms the efficacy of IELs as an effective regularization mechanism, particularly in handling training with label issues.
♻ ☆ On the Convergence of Multi-objective Optimization under Generalized Smoothness
Multi-objective optimization (MOO) is receiving more attention in various fields such as multi-task learning. Recent works provide some effective algorithms with theoretical analysis but they are limited by the standard $L$-smooth or bounded-gradient assumptions, which are typically unsatisfactory for neural networks, such as recurrent neural networks (RNNs) and transformers. In this paper, we study a more general and realistic class of $\ell$-smooth loss functions, where $\ell$ is a general non-decreasing function of gradient norm. We develop two novel single-loop algorithms for $\ell$-smooth MOO problems, Generalized Smooth Multi-objective Gradient descent (GSMGrad) and its stochastic variant, Stochastic Generalized Smooth Multi-objective Gradient descent (SGSMGrad), which approximate the conflict-avoidant (CA) direction that maximizes the minimum improvement among objectives. We provide a comprehensive convergence analysis of both algorithms and show that they converge to an $\epsilon$-accurate Pareto stationary point with a guaranteed $\epsilon$-level average CA distance (i.e., the gap between the updating direction and the CA direction) over all iterations, where totally $\mathcal{O}(\epsilon^{-2})$ and $\mathcal{O}(\epsilon^{-4})$ samples are needed for deterministic and stochastic settings, respectively. Our algorithms can also guarantee a tighter $\epsilon$-level CA distance in each iteration using more samples. Moreover, we propose a practical variant of GSMGrad named GSMGrad-FA using only constant-level time and space, while achieving the same performance guarantee as GSMGrad. Our experiments validate our theory and demonstrate the effectiveness of the proposed methods.
♻ ☆ Rethinking LLM Memorization through the Lens of Adversarial Compression
Large language models (LLMs) trained on web-scale datasets raise substantial concerns regarding permissible data usage. One major question is whether these models "memorize" all their training data or they integrate many data sources in some way more akin to how a human would learn and synthesize information. The answer hinges, to a large degree, on how we define memorization. In this work, we propose the Adversarial Compression Ratio (ACR) as a metric for assessing memorization in LLMs. A given string from the training data is considered memorized if it can be elicited by a prompt (much) shorter than the string itself -- in other words, if these strings can be "compressed" with the model by computing adversarial prompts of fewer tokens. The ACR overcomes the limitations of existing notions of memorization by (i) offering an adversarial view of measuring memorization, especially for monitoring unlearning and compliance; and (ii) allowing for the flexibility to measure memorization for arbitrary strings at a reasonably low compute. Our definition serves as a practical tool for determining when model owners may be violating terms around data usage, providing a potential legal tool and a critical lens through which to address such scenarios.
comment: https://locuslab.github.io/acr-memorization
♻ ☆ From Alexnet to Transformers: Measuring the Non-linearity of Deep Neural Networks with Affine Optimal Transport
In the last decade, we have witnessed the introduction of several novel deep neural network (DNN) architectures exhibiting ever-increasing performance across diverse tasks. Explaining the upward trend of their performance, however, remains difficult as different DNN architectures of comparable depth and width -- common factors associated with their expressive power -- may exhibit a drastically different performance even when trained on the same dataset. In this paper, we introduce the concept of the non-linearity signature of DNN, the first theoretically sound solution for approximately measuring the non-linearity of deep neural networks. Built upon a score derived from closed-form optimal transport mappings, this signature provides a better understanding of the inner workings of a wide range of DNN architectures and learning paradigms, with a particular emphasis on the computer vision task. We provide extensive experimental results that highlight the practical usefulness of the proposed non-linearity signature and its potential for long-reaching implications. The code for our work is available at https://github.com/qbouniot/AffScoreDeep
comment: Code available at https://github.com/qbouniot/AffScoreDeep
♻ ☆ Efficient Prompt Tuning by Multi-Space Projection and Prompt Fusion
Prompt tuning is a promising method to fine-tune a pre-trained language model without retraining its large-scale parameters. Instead, it attaches a soft prompt to the input text, whereby downstream tasks can be well adapted by merely learning the embeddings of prompt tokens. Nevertheless, existing methods still suffer from two challenges: (i) they are hard to balance accuracy and efficiency. A longer (shorter) soft prompt generally leads to a better(worse) accuracy but at the cost of more (less) training time. (ii)The performance may not be consistent when adapting to different downstream tasks. We attribute it to the same embedding space but responsible for different requirements of downstream tasks. To address these issues, we propose an Efficient Prompt Tuning method (EPT) by multi-space projection and prompt fusion. Specifically, it decomposes a given soft prompt into a shorter prompt and two low-rank matrices, significantly reducing the training time. Accuracy is also enhanced by leveraging low-rank matrices and the short prompt as additional knowledge sources to enrich the semantics of the original short prompt. In addition, we project the soft prompt into multiple subspaces to improve the performance consistency, and then adaptively learn the combination weights of different spaces through a gating network. Experiments on 13 natural language processing downstream tasks show that our method significantly and consistently outperforms 11 comparison methods with the relative percentage of improvements up to 12.9%, and training time decreased by 14%.
♻ ☆ Decomposing Global Feature Effects Based on Feature Interactions
Global feature effect methods, such as partial dependence plots, provide an intelligible visualization of the expected marginal feature effect. However, such global feature effect methods can be misleading, as they do not represent local feature effects of single observations well when feature interactions are present. We formally introduce generalized additive decomposition of global effects (GADGET), which is a new framework based on recursive partitioning to find interpretable regions in the feature space such that the interaction-related heterogeneity of local feature effects is minimized. We provide a mathematical foundation of the framework and show that it is applicable to the most popular methods to visualize marginal feature effects, namely partial dependence, accumulated local effects, and Shapley additive explanations (SHAP) dependence. Furthermore, we introduce and validate a new permutation-based interaction test to detect significant feature interactions that is applicable to any feature effect method that fits into our proposed framework. We empirically evaluate the theoretical characteristics of the proposed methods based on various feature effect methods in different experimental settings. Moreover, we apply our introduced methodology to three real-world examples to showcase their usefulness.
♻ ☆ Federated Temporal Difference Learning with Linear Function Approximation under Environmental Heterogeneity
We initiate the study of federated reinforcement learning under environmental heterogeneity by considering a policy evaluation problem. Our setup involves $N$ agents interacting with environments that share the same state and action space but differ in their reward functions and state transition kernels. Assuming agents can communicate via a central server, we ask: Does exchanging information expedite the process of evaluating a common policy? To answer this question, we provide the first comprehensive finite-time analysis of a federated temporal difference (TD) learning algorithm with linear function approximation, while accounting for Markovian sampling, heterogeneity in the agents' environments, and multiple local updates to save communication. Our analysis crucially relies on several novel ingredients: (i) deriving perturbation bounds on TD fixed points as a function of the heterogeneity in the agents' underlying Markov decision processes (MDPs); (ii) introducing a virtual MDP to closely approximate the dynamics of the federated TD algorithm; and (iii) using the virtual MDP to make explicit connections to federated optimization. Putting these pieces together, we rigorously prove that in a low-heterogeneity regime, exchanging model estimates leads to linear convergence speedups in the number of agents.
♻ ☆ Text2Robot: Evolutionary Robot Design from Text Descriptions
Robot design has traditionally been costly and labor-intensive. Despite advancements in automated processes, it remains challenging to navigate a vast design space while producing physically manufacturable robots. We introduce Text2Robot, a framework that converts user text specifications and performance preferences into physical quadrupedal robots. Within minutes, Text2Robot can use text-to-3D models to provide strong initializations of diverse morphologies. Within a day, our geometric processing algorithms and body-control co-optimization produce a walking robot by explicitly considering real-world electronics and manufacturability. Text2Robot enables rapid prototyping and opens new opportunities for robot design with generative models.
comment: Our project website is at: http://generalroboticslab.com/Text2Robot
♻ ☆ DCSI -- An improved measure of cluster separability based on separation and connectedness
Whether class labels in a given data set correspond to meaningful clusters is crucial for the evaluation of clustering algorithms using real-world data sets. This property can be quantified by separability measures. The central aspects of separability for density-based clustering are between-class separation and within-class connectedness, and neither classification-based complexity measures nor cluster validity indices (CVIs) adequately incorporate them. A newly developed measure (density cluster separability index, DCSI) aims to quantify these two characteristics and can also be used as a CVI. Extensive experiments on synthetic data indicate that DCSI correlates strongly with the performance of DBSCAN measured via the adjusted Rand index (ARI) but lacks robustness when it comes to multi-class data sets with overlapping classes that are ill-suited for density-based hard clustering. Detailed evaluation on frequently used real-world data sets shows that DCSI can correctly identify touching or overlapping classes that do not correspond to meaningful density-based clusters.
♻ ☆ Biology-inspired joint distribution neurons based on Hierarchical Correlation Reconstruction allowing for multidirectional neural networks
Biological neural networks seem qualitatively superior (e.g. in learning, flexibility, robustness) from current artificial like Multi-Layer Perceptron (MLP) or Kolmogorov-Arnold Network (KAN). Simultaneously, in contrast to them: have fundamentally multidirectional signal propagation~\cite{axon}, also of probability distributions e.g. for uncertainty estimation, and are believed not being able to use standard backpropagation training~\cite{backprop}. There are proposed novel artificial neurons based on HCR (Hierarchical Correlation Reconstruction) removing the above low level differences: with neurons containing local joint distribution model (of its connections), representing joint density on normalized variables as just linear combination among $(f_\mathbf{j})$ orthonormal polynomials: $\rho(\mathbf{x})=\sum_{\mathbf{j}\in B} a_\mathbf{j} f_\mathbf{j}(\mathbf{x})$ for $\mathbf{x} \in [0,1]^d$ and $B$ some chosen basis, with basis growth approaching complete description of joint distribution. By various index summations of such $(a_\mathbf{j})$ tensor as neuron parameters, we get simple formulas for e.g. conditional expected values for propagation in any direction, like $E[x|y,z]$, $E[y|x]$, which degenerate to KAN-like parametrization if restricting to pairwise dependencies. Such HCR network can also propagate probability distributions (also joint) like $\rho(y,z|x)$. It also allows for additional training approaches, like direct $(a_\mathbf{j})$ estimation, through tensor decomposition, or more biologically plausible information bottleneck training: layers directly influencing only neighbors, optimizing content to maximize information about the next layer, and minimizing about the previous to minimize the noise.
comment: 7 pages, 6 figures
♻ ☆ Robust Model-Based Reinforcement Learning with an Adversarial Auxiliary Model
Reinforcement learning has demonstrated impressive performance in various challenging problems such as robotics, board games, and classical arcade games. However, its real-world applications can be hindered by the absence of robustness and safety in the learned policies. More specifically, an RL agent that trains in a certain Markov decision process (MDP) often struggles to perform well in nearly identical MDPs. To address this issue, we employ the framework of Robust MDPs (RMDPs) in a model-based setting and introduce a novel learned transition model. Our method specifically incorporates an auxiliary pessimistic model, updated adversarially, to estimate the worst-case MDP within a Kullback-Leibler uncertainty set. In comparison to several existing works, our work does not impose any additional conditions on the training environment, such as the need for a parametric simulator. To test the effectiveness of the proposed pessimistic model in enhancing policy robustness, we integrate it into a practical RL algorithm, called Robust Model-Based Policy Optimization (RMBPO). Our experimental results indicate a notable improvement in policy robustness on high-dimensional MuJoCo control tasks, with the auxiliary model enhancing the performance of the learned policy in distorted MDPs. We further explore the learned deviation between the proposed auxiliary world model and the nominal model, to examine how pessimism is achieved. By learning a pessimistic world model and demonstrating its role in improving policy robustness, our research contributes towards making (model-based) RL more robust.
comment: Will be presented at the RL Safety Workshop at RLC 2024
♻ ☆ Connectivity Oracles for Predictable Vertex Failures
The problem of designing connectivity oracles supporting vertex failures is one of the basic data structures problems for undirected graphs. It is already well understood: previous works [Duan--Pettie STOC'10; Long--Saranurak FOCS'22] achieve query time linear in the number of failed vertices, and it is conditionally optimal as long as we require preprocessing time polynomial in the size of the graph and update time polynomial in the number of failed vertices. We revisit this problem in the paradigm of algorithms with predictions: we ask if the query time can be improved if the set of failed vertices can be predicted beforehand up to a small number of errors. More specifically, we design a data structure that, given a graph $G=(V,E)$ and a set of vertices predicted to fail $\widehat{D} \subseteq V$ of size $d=|\widehat{D}|$, preprocesses it in time $\tilde{O}(d|E|)$ and then can receive an update given as the symmetric difference between the predicted and the actual set of failed vertices $\widehat{D} \triangle D = (\widehat{D} \setminus D) \cup (D \setminus \widehat{D})$ of size $\eta = |\widehat{D} \triangle D|$, process it in time $\tilde{O}(\eta^4)$, and after that answer connectivity queries in $G \setminus D$ in time $O(\eta)$. Viewed from another perspective, our data structure provides an improvement over the state of the art for the \emph{fully dynamic subgraph connectivity problem} in the \emph{sensitivity setting} [Henzinger--Neumann ESA'16]. We argue that the preprocessing time and query time of our data structure are conditionally optimal under standard fine-grained complexity assumptions.
♻ ☆ Efficient Estimation for Longitudinal Networks via Adaptive Merging
Longitudinal network consists of a sequence of temporal edges among multiple nodes, where the temporal edges are observed in real time. It has become ubiquitous with the rise of online social platform and e-commerce, but largely under-investigated in literature. In this paper, we propose an efficient estimation framework for longitudinal network, leveraging strengths of adaptive network merging, tensor decomposition and point process. It merges neighboring sparse networks so as to enlarge the number of observed edges and reduce estimation variance, whereas the estimation bias introduced by network merging is controlled by exploiting local temporal structures for adaptive network neighborhood. A projected gradient descent algorithm is proposed to facilitate estimation, where the upper bound of the estimation error in each iteration is established. A thorough analysis is conducted to quantify the asymptotic behavior of the proposed method, which shows that it can significantly reduce the estimation error and also provides guideline for network merging under various scenarios. We further demonstrate the advantage of the proposed method through extensive numerical experiments on synthetic datasets and a militarized interstate dispute dataset.
comment: 30 pages and 4 figures; appendix including technical proof will be uploaded later
♻ ☆ Model Generation with LLMs: From Requirements to UML Sequence Diagrams
Complementing natural language (NL) requirements with graphical models can improve stakeholders' communication and provide directions for system design. However, creating models from requirements involves manual effort. The advent of generative large language models (LLMs), ChatGPT being a notable example, offers promising avenues for automated assistance in model generation. This paper investigates the capability of ChatGPT to generate a specific type of model, i.e., UML sequence diagrams, from NL requirements. We conduct a qualitative study in which we examine the sequence diagrams generated by ChatGPT for 28 requirements documents of various types and from different domains. Observations from the analysis of the generated diagrams have systematically been captured through evaluation logs, and categorized through thematic analysis. Our results indicate that, although the models generally conform to the standard and exhibit a reasonable level of understandability, their completeness and correctness with respect to the specified requirements often present challenges. This issue is particularly pronounced in the presence of requirements smells, such as ambiguity and inconsistency. The insights derived from this study can influence the practical utilization of LLMs in the RE process, and open the door to novel RE-specific prompting strategies targeting effective model generation.
♻ ☆ Recovering the Pre-Fine-Tuning Weights of Generative Models ICML 2024
The dominant paradigm in generative modeling consists of two steps: i) pre-training on a large-scale but unsafe dataset, ii) aligning the pre-trained model with human values via fine-tuning. This practice is considered safe, as no current method can recover the unsafe, pre-fine-tuning model weights. In this paper, we demonstrate that this assumption is often false. Concretely, we present Spectral DeTuning, a method that can recover the weights of the pre-fine-tuning model using a few low-rank (LoRA) fine-tuned models. In contrast to previous attacks that attempt to recover pre-fine-tuning capabilities, our method aims to recover the exact pre-fine-tuning weights. Our approach exploits this new vulnerability against large-scale models such as a personalized Stable Diffusion and an aligned Mistral.
comment: ICML 2024. Project page: https://vision.huji.ac.il/spectral_detuning/
♻ ☆ Probabilistic Test-Time Generalization by Variational Neighbor-Labeling
This paper strives for domain generalization, where models are trained exclusively on source domains before being deployed on unseen target domains. We follow the strict separation of source training and target testing, but exploit the value of the unlabeled target data itself during inference. We make three contributions. First, we propose probabilistic pseudo-labeling of target samples to generalize the source-trained model to the target domain at test time. We formulate the generalization at test time as a variational inference problem, by modeling pseudo labels as distributions, to consider the uncertainty during generalization and alleviate the misleading signal of inaccurate pseudo labels. Second, we learn variational neighbor labels that incorporate the information of neighboring target samples to generate more robust pseudo labels. Third, to learn the ability to incorporate more representative target information and generate more precise and robust variational neighbor labels, we introduce a meta-generalization stage during training to simulate the generalization procedure. Experiments on seven widely-used datasets demonstrate the benefits, abilities, and effectiveness of our proposal.
comment: Accepted by CoLLAs 2024
♻ ☆ Model Internals-based Answer Attribution for Trustworthy Retrieval-Augmented Generation
Ensuring the verifiability of model answers is a fundamental challenge for retrieval-augmented generation (RAG) in the question answering (QA) domain. Recently, self-citation prompting was proposed to make large language models (LLMs) generate citations to supporting documents along with their answers. However, self-citing LLMs often struggle to match the required format, refer to non-existent sources, and fail to faithfully reflect LLMs' context usage throughout the generation. In this work, we present MIRAGE --Model Internals-based RAG Explanations -- a plug-and-play approach using model internals for faithful answer attribution in RAG applications. MIRAGE detects context-sensitive answer tokens and pairs them with retrieved documents contributing to their prediction via saliency methods. We evaluate our proposed approach on a multilingual extractive QA dataset, finding high agreement with human answer attribution. On open-ended QA, MIRAGE achieves citation quality and efficiency comparable to self-citation while also allowing for a finer-grained control of attribution parameters. Our qualitative evaluation highlights the faithfulness of MIRAGE's attributions and underscores the promising application of model internals for RAG answer attribution.
comment: Under review. Code and data released at https://github.com/Betswish/MIRAGE
♻ ☆ Bayesian Regression Markets
Although machine learning tasks are highly sensitive to the quality of input data, relevant datasets can often be challenging for firms to acquire, especially when held privately by a variety of owners. For instance, if these owners are competitors in a downstream market, they may be reluctant to share information. Focusing on supervised learning for regression tasks, we develop a regression market to provide a monetary incentive for data sharing. Our mechanism adopts a Bayesian framework, allowing us to consider a more general class of regression tasks. We present a thorough exploration of the market properties, and show that similar proposals in literature expose the market agents to sizeable financial risks, which can be mitigated in our setup.
comment: 35 pages, 11 figures, 3 tables. Published in Journal of Machine Learning Research (2024)
♻ ☆ In-Context Reinforcement Learning for Variable Action Spaces ICML 2024
Recently, it has been shown that transformers pre-trained on diverse datasets with multi-episode contexts can generalize to new reinforcement learning tasks in-context. A key limitation of previously proposed models is their reliance on a predefined action space size and structure. The introduction of a new action space often requires data re-collection and model re-training, which can be costly for some applications. In our work, we show that it is possible to mitigate this issue by proposing the Headless-AD model that, despite being trained only once, is capable of generalizing to discrete action spaces of variable size, semantic content and order. By experimenting with Bernoulli and contextual bandits, as well as a gridworld environment, we show that Headless-AD exhibits significant capability to generalize to action spaces it has never encountered, even outperforming specialized models trained for a specific set of actions on several environment configurations. Implementation is available at: https://github.com/corl-team/headless-ad.
comment: ICML 2024
♻ ☆ A Policy Gradient Primal-Dual Algorithm for Constrained MDPs with Uniform PAC Guarantees
We study a primal-dual (PD) reinforcement learning (RL) algorithm for online constrained Markov decision processes (CMDPs). Despite its widespread practical use, the existing theoretical literature on PD-RL algorithms for this problem only provides sublinear regret guarantees and fails to ensure convergence to optimal policies. In this paper, we introduce a novel policy gradient PD algorithm with uniform probably approximate correctness (Uniform-PAC) guarantees, simultaneously ensuring convergence to optimal policies, sublinear regret, and polynomial sample complexity for any target accuracy. Notably, this represents the first Uniform-PAC algorithm for the online CMDP problem. In addition to the theoretical guarantees, we empirically demonstrate in a simple CMDP that our algorithm converges to optimal policies, while baseline algorithms exhibit oscillatory performance and constraint violation.
♻ ☆ Robust Low-Cost Drone Detection and Classification in Low SNR Environments
The proliferation of drones, or unmanned aerial vehicles (UAVs), has raised significant safety concerns due to their potential misuse in activities such as espionage, smuggling, and infrastructure disruption. This paper addresses the critical need for effective drone detection and classification systems that operate independently of UAV cooperation. We evaluate various convolutional neural networks (CNNs) for their ability to detect and classify drones using spectrogram data derived from consecutive Fourier transforms of signal components. The focus is on model robustness in low signal-to-noise ratio (SNR) environments, which is critical for real-world applications. A comprehensive dataset is provided to support future model development. In addition, we demonstrate a low-cost drone detection system using a standard computer, software-defined radio (SDR) and antenna, validated through real-world field testing. On our development dataset, all models consistently achieved an average balanced classification accuracy of >= 85% at SNR > -12dB. In the field test, these models achieved an average balance accuracy of > 80%, depending on transmitter distance and antenna direction. Our contributions include: a publicly available dataset for model development, a comparative analysis of CNN for drone detection under low SNR conditions, and the deployment and field evaluation of a practical, low-cost detection system.
comment: 10 pages, submitted to IEEE Journal of Radio Frequency Identification
♻ ☆ AdaCL:Adaptive Continual Learning
Class-Incremental Learning aims to update a deep classifier to learn new categories while maintaining or improving its accuracy on previously observed classes. Common methods to prevent forgetting previously learned classes include regularizing the neural network updates and storing exemplars in memory, which come with hyperparameters such as the learning rate, regularization strength, or the number of exemplars. However, these hyperparameters are usually only tuned at the start and then kept fixed throughout the learning sessions, ignoring the fact that newly encountered tasks may have varying levels of novelty or difficulty. This study investigates the necessity of hyperparameter `adaptivity' in Class-Incremental Learning: the ability to dynamically adjust hyperparameters such as the learning rate, regularization strength, and memory size according to the properties of the new task at hand. We propose AdaCL, a Bayesian Optimization-based approach to automatically and efficiently determine the optimal values for those parameters with each learning task. We show that adapting hyperpararmeters on each new task leads to improvement in accuracy, forgetting and memory. Code is available at https://github.com/ElifCerenGokYildirim/AdaCL.
comment: Published in 1st ContinualAI Unconference
♻ ☆ Energy-based Epistemic Uncertainty for Graph Neural Networks
In domains with interdependent data, such as graphs, quantifying the epistemic uncertainty of a Graph Neural Network (GNN) is challenging as uncertainty can arise at different structural scales. Existing techniques neglect this issue or only distinguish between structure-aware and structure-agnostic uncertainty without combining them into a single measure. We propose GEBM, an energy-based model (EBM) that provides high-quality uncertainty estimates by aggregating energy at different structural levels that naturally arise from graph diffusion. In contrast to logit-based EBMs, we provably induce an integrable density in the data space by regularizing the energy function. We introduce an evidential interpretation of our EBM that significantly improves the predictive robustness of the GNN. Our framework is a simple and effective post hoc method applicable to any pre-trained GNN that is sensitive to various distribution shifts. It consistently achieves the best separation of in-distribution and out-of-distribution data on 6 out of 7 anomaly types while having the best average rank over shifts on \emph{all} datasets.
♻ ☆ Minimax Excess Risk of First-Order Methods for Statistical Learning with Data-Dependent Oracles
In this paper, our aim is to analyse the generalization capabilities of first-order methods for statistical learning in multiple, different yet related, scenarios including supervised learning, transfer learning, robust learning and federated learning. To do so, we provide sharp upper and lower bounds for the minimax excess risk of strongly convex and smooth statistical learning when the gradient is accessed through partial observations given by a data-dependent oracle. This novel class of oracles can query the gradient with any given data distribution, and is thus well suited to scenarios in which the training data distribution does not match the target (or test) distribution. In particular, our upper and lower bounds are proportional to the smallest mean square error achievable by gradient estimators, thus allowing us to easily derive multiple sharp bounds in the aforementioned scenarios using the extensive literature on parameter estimation.
comment: 22 pages, 0 figures
♻ ☆ Fast and Efficient 2-bit LLM Inference on GPU: 2/4/16-bit in a Weight Matrix with Asynchronous Dequantization
Large language models (LLMs) have demonstrated impressive abilities in various domains while the inference cost is expensive. Many previous studies exploit quantization methods to reduce LLM inference cost by reducing latency and memory consumption. Applying 2-bit single-precision weight quantization brings >3% accuracy loss, so the state-of-the-art methods use mixed-precision methods for LLMs (e.g. Llama2-7b, etc.) to improve the accuracy. However, challenges still exist: (1) Uneven distribution in weight matrix. (2) Large speed degradation by adding sparse outliers. (3) Time-consuming dequantization operations on GPUs. To tackle these challenges and enable fast and efficient LLM inference on GPUs, we propose the following techniques in this paper. (1) Intra-weight mixed-precision quantization. (2) Exclusive 2-bit sparse outlier with minimum speed degradation. (3) Asynchronous dequantization. We conduct extensive experiments on different model families (e.g. Llama3, etc.) and model sizes. We achieve 2.91-bit for each weight considering all scales/zeros for different models with negligible loss. As a result, with our 2/4/16 mixed-precision quantization for each weight matrix and asynchronous dequantization during inference, our design achieves an end-to-end speedup for Llama2-7b is 1.74x over the original model, and we reduce both runtime cost and total cost by up to 2.53x and 2.29x with less GPU requirements.
♻ ☆ Remote sensing framework for geological mapping via stacked autoencoders and clustering
Supervised machine learning methods for geological mapping via remote sensing face limitations due to the scarcity of accurately labelled training data that can be addressed by unsupervised learning, such as dimensionality reduction and clustering. Dimensionality reduction methods have the potential to play a crucial role in improving the accuracy of geological maps. Although conventional dimensionality reduction methods may struggle with nonlinear data, unsupervised deep learning models such as autoencoders can model non-linear relationships. Stacked autoencoders feature multiple interconnected layers to capture hierarchical data representations useful for remote sensing data. This study presents an unsupervised machine learning-based framework for processing remote sensing data using stacked autoencoders for dimensionality reduction and k-means clustering for mapping geological units. We use Landsat 8, ASTER, and Sentinel-2 datasets to evaluate the framework for geological mapping of the Mutawintji region in Western New South Wales, Australia. We also compare stacked autoencoders with principal component analysis and canonical autoencoders. Our results reveal that the framework produces accurate and interpretable geological maps, efficiently discriminating rock units. We find that the accuracy of stacked autoencoders ranges from 86.6 % to 90 %, depending on the remote sensing data type, which is superior to their counterparts. We also find that the generated maps align with prior geological knowledge of the study area while providing novel insights into geological structures.
♻ ☆ A General Verification Framework for Dynamical and Control Models via Certificate Synthesis
An emerging branch of control theory specialises in certificate learning, concerning the specification of a desired (possibly complex) system behaviour for an autonomous or control model, which is then analytically verified by means of a function-based proof. However, the synthesis of controllers abiding by these complex requirements is in general a non-trivial task and may elude the most expert control engineers. This results in a need for automatic techniques that are able to design controllers and to analyse a wide range of elaborate specifications. In this paper, we provide a general framework to encode system specifications and define corresponding certificates, and we present an automated approach to formally synthesise controllers and certificates. Our approach contributes to the broad field of safe learning for control, exploiting the flexibility of neural networks to provide candidate control and certificate functions, whilst using SMT-solvers to offer a formal guarantee of correctness. We test our framework by developing a prototype software tool, and assess its efficacy at verification via control and certificate synthesis over a large and varied suite of benchmarks.
♻ ☆ Contextualized Hybrid Ensemble Q-learning: Learning Fast with Control Priors
Combining Reinforcement Learning (RL) with a prior controller can yield the best out of two worlds: RL can solve complex nonlinear problems, while the control prior ensures safer exploration and speeds up training. Prior work largely blends both components with a fixed weight, neglecting that the RL agent's performance varies with the training progress and across regions in the state space. Therefore, we advocate for an adaptive strategy that dynamically adjusts the weighting based on the RL agent's current capabilities. We propose a new adaptive hybrid RL algorithm, Contextualized Hybrid Ensemble Q-learning (CHEQ). CHEQ combines three key ingredients: (i) a time-invariant formulation of the adaptive hybrid RL problem treating the adaptive weight as a context variable, (ii) a weight adaption mechanism based on the parametric uncertainty of a critic ensemble, and (iii) ensemble-based acceleration for data-efficient RL. Evaluating CHEQ on a car racing task reveals substantially stronger data efficiency, exploration safety, and transferability to unknown scenarios than state-of-the-art adaptive hybrid RL methods.
♻ ☆ Explaining the Explainers in Graph Neural Networks: a Comparative Study
Following a fast initial breakthrough in graph based learning, Graph Neural Networks (GNNs) have reached a widespread application in many science and engineering fields, prompting the need for methods to understand their decision process. GNN explainers have started to emerge in recent years, with a multitude of methods both novel or adapted from other domains. To sort out this plethora of alternative approaches, several studies have benchmarked the performance of different explainers in terms of various explainability metrics. However, these earlier works make no attempts at providing insights into why different GNN architectures are more or less explainable, or which explainer should be preferred in a given setting. In this survey, we fill these gaps by devising a systematic experimental study, which tests ten explainers on eight representative architectures trained on six carefully designed graph and node classification datasets. With our results we provide key insights on the choice and applicability of GNN explainers, we isolate key components that make them usable and successful and provide recommendations on how to avoid common interpretation pitfalls. We conclude by highlighting open questions and directions of possible future research.
♻ ☆ Mimicking User Data: On Mitigating Fine-Tuning Risks in Closed Large Language Models
Fine-tuning large language models on small, high-quality datasets can enhance their performance on specific downstream tasks. Recent research shows that fine-tuning on benign, instruction-following data can inadvertently undo the safety alignment process and increase a model's propensity to comply with harmful queries. Although critical, understanding and mitigating safety risks in well-defined tasks remains distinct from the instruction-following context due to structural differences in the data. Our work addresses the gap in our understanding of these risks across diverse types of data in closed models - where providers control how user data is utilized in the fine-tuning process. We demonstrate how malicious actors can subtly manipulate the structure of almost any task-specific dataset to foster significantly more dangerous model behaviors, while maintaining an appearance of innocuity and reasonable downstream task performance. To address this issue, we propose a novel mitigation strategy that mixes in safety data which mimics the task format and prompting style of the user data, showing this is more effective than existing baselines at re-establishing safety alignment while maintaining similar task performance.
♻ ☆ Training-Free Acceleration of ViTs with Delayed Spatial Merging ICML 2024
Token merging has emerged as a new paradigm that can accelerate the inference of Vision Transformers (ViTs) without any retraining or fine-tuning. To push the frontier of training-free acceleration in ViTs, we improve token merging by adding the perspectives of 1) activation outliers and 2) hierarchical representations. Through a careful analysis of the attention behavior in ViTs, we characterize a delayed onset of the convergent attention phenomenon, which makes token merging undesirable in the bottom blocks of ViTs. Moreover, we augment token merging with a hierarchical processing scheme to capture multi-scale redundancy between visual tokens. Combining these two insights, we build a unified inference framework called DSM: Delayed Spatial Merging. We extensively evaluate DSM on various ViT model scales (Tiny to Huge) and tasks (ImageNet-1k and transfer learning), achieving up to 1.8$\times$ FLOP reduction and 1.6$\times$ throughput speedup at a negligible loss while being two orders of magnitude faster than existing methods.
comment: ICML 2024 ES-FoMo Workshop
♻ ☆ CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay ICML'24
Large language models are increasingly solving tasks that are commonly believed to require human-level reasoning ability. However, these models still perform very poorly on benchmarks of general intelligence such as the Abstraction and Reasoning Corpus (ARC). In this paper, we approach ARC as a programming-by-examples problem, and introduce a novel and scalable method for language model self-improvement called Code Iteration (CodeIt). Our method iterates between 1) program sampling and hindsight relabeling, and 2) learning from prioritized experience replay. By relabeling the goal of an episode (i.e., the target program output given input) to the realized output produced by the sampled program, our method effectively deals with the extreme sparsity of rewards in program synthesis. Applying CodeIt to the ARC dataset, we demonstrate that prioritized hindsight replay, along with pre-training and data-augmentation, leads to successful inter-task generalization. CodeIt is the first neuro-symbolic approach that scales to the full ARC evaluation dataset. Our method solves 15% of ARC evaluation tasks, achieving state-of-the-art performance and outperforming existing neural and symbolic baselines. Our code is available at https://github.com/Qualcomm-AI-research/codeit .
comment: ICML'24 camera-ready version
♻ ☆ CoCoST: Automatic Complex Code Generation with Online Searching and Correctness Testing
Large Language Models have revolutionized code generation ability by converting natural language descriptions into executable code. However, generating complex code within real-world scenarios remains challenging due to intricate structures, subtle bugs, understanding of advanced data types, and lack of supplementary contents. To address these challenges, we introduce the CoCoST framework, which enhances complex code generation by online searching for more information with planned queries and correctness testing for code refinement. Moreover, CoCoST serializes the complex inputs and outputs to improve comprehension and generates test cases to ensure the adaptability for real-world applications. CoCoST is validated through rigorous experiments on the DS-1000 and ClassEval datasets. Experimental results show that CoCoST substantially improves the quality of complex code generation, highlighting its potential to enhance the practicality of LLMs in generating complex code.
♻ ☆ Multimodal Learning With Intraoperative CBCT & Variably Aligned Preoperative CT Data To Improve Segmentation MICCAI
Cone-beam computed tomography (CBCT) is an important tool facilitating computer aided interventions, despite often suffering from artifacts that pose challenges for accurate interpretation. While the degraded image quality can affect downstream segmentation, the availability of high quality, preoperative scans represents potential for improvements. Here we consider a setting where preoperative CT and intraoperative CBCT scans are available, however, the alignment (registration) between the scans is imperfect. We propose a multimodal learning method that fuses roughly aligned CBCT and CT scans and investigate the effect of CBCT quality and misalignment on the final segmentation performance. For that purpose, we make use of a synthetically generated data set containing real CT and synthetic CBCT volumes. As an application scenario, we focus on liver and liver tumor segmentation. We show that the fusion of preoperative CT and simulated, intraoperative CBCT mostly improves segmentation performance (compared to using intraoperative CBCT only) and that even clearly misaligned preoperative data has the potential to improve segmentation performance.
comment: Submitted to SASHIMI2024 (MICCAI workshop)
♻ ☆ $σ$-PCA: a building block for neural learning of identifiable linear transformations
Linear principal component analysis (PCA) learns (semi-)orthogonal transformations by orienting the axes to maximize variance. Consequently, it can only identify orthogonal axes whose variances are clearly distinct, but it cannot identify the subsets of axes whose variances are roughly equal. It cannot eliminate the subspace rotational indeterminacy: it fails to disentangle components with equal variances (eigenvalues), resulting, in each eigen subspace, in randomly rotated axes. In this paper, we propose $\sigma$-PCA, a method that (1) formulates a unified model for linear and nonlinear PCA, the latter being a special case of linear independent component analysis (ICA), and (2) introduces a missing piece into nonlinear PCA that allows it to eliminate, from the canonical linear PCA solution, the subspace rotational indeterminacy -- without whitening the inputs. Whitening, a preprocessing step which converts the inputs into unit-variance inputs, has generally been a prerequisite step for linear ICA methods, which meant that conventional nonlinear PCA could not necessarily preserve the orthogonality of the overall transformation, could not directly reduce dimensionality, and could not intrinsically order by variances. We offer insights on the relationship between linear PCA, nonlinear PCA, and linear ICA -- three methods with autoencoder formulations for learning special linear transformations from data, transformations that are (semi-)orthogonal for PCA, and arbitrary unit-variance for ICA. As part of our formulation, nonlinear PCA can be seen as a method that maximizes both variance and statistical independence, lying in the middle between linear PCA and linear ICA, serving as a building block for learning linear transformations that are identifiable.
comment: Update with published version
♻ ☆ Generalization Error of Graph Neural Networks in the Mean-field Regime ICML 2024
This work provides a theoretical framework for assessing the generalization error of graph neural networks in the over-parameterized regime, where the number of parameters surpasses the quantity of data points. We explore two widely utilized types of graph neural networks: graph convolutional neural networks and message passing graph neural networks. Prior to this study, existing bounds on the generalization error in the over-parametrized regime were uninformative, limiting our understanding of over-parameterized network performance. Our novel approach involves deriving upper bounds within the mean-field regime for evaluating the generalization error of these graph neural networks. We establish upper bounds with a convergence rate of $O(1/n)$, where $n$ is the number of graph samples. These upper bounds offer a theoretical assurance of the networks' performance on unseen data in the challenging over-parameterized regime and overall contribute to our understanding of their performance.
comment: Accepted in ICML 2024
♻ ☆ Uni-Mol2: Exploring Molecular Pretraining Model at Scale
In recent years, pretraining models have made significant advancements in the fields of natural language processing (NLP), computer vision (CV), and life sciences. The significant advancements in NLP and CV are predominantly driven by the expansion of model parameters and data size, a phenomenon now recognized as the scaling laws. However, research exploring scaling law in molecular pretraining models remains unexplored. In this work, we present Uni-Mol2 , an innovative molecular pretraining model that leverages a two-track transformer to effectively integrate features at the atomic level, graph level, and geometry structure level. Along with this, we systematically investigate the scaling law within molecular pretraining models, characterizing the power-law correlations between validation loss and model size, dataset size, and computational resources. Consequently, we successfully scale Uni-Mol2 to 1.1 billion parameters through pretraining on 800 million conformations, making it the largest molecular pretraining model to date. Extensive experiments show consistent improvement in the downstream tasks as the model size grows. The Uni-Mol2 with 1.1B parameters also outperforms existing methods, achieving an average 27% improvement on the QM9 and 14% on COMPAS-1D dataset.
♻ ☆ Long-term drought prediction using deep neural networks based on geospatial weather data
The problem of high-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance. Yet, it is still unsolved with reasonable accuracy due to data complexity and aridity stochasticity. We tackle drought data by introducing an end-to-end approach that adopts a spatio-temporal neural network model with accessible open monthly climate data as the input. Our systematic research employs diverse proposed models and five distinct environmental regions as a testbed to evaluate the efficacy of the Palmer Drought Severity Index (PDSI) prediction. Key aggregated findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts. At the same time, the Convolutional LSTM excels in longer-term forecasting. Both models achieved high ROC AUC scores: 0.948 for one month ahead and 0.617 for twelve months ahead forecasts, becoming closer to perfect ROC-AUC by $54\%$ and $16\%$, respectively, c.t. classic approaches.
♻ ☆ Total Variation Distance Meets Probabilistic Inference ICML
In this paper, we establish a novel connection between total variation (TV) distance estimation and probabilistic inference. In particular, we present an efficient, structure-preserving reduction from relative approximation of TV distance to probabilistic inference over directed graphical models. This reduction leads to a fully polynomial randomized approximation scheme (FPRAS) for estimating TV distances between same-structure distributions over any class of Bayes nets for which there is an efficient probabilistic inference algorithm. In particular, it leads to an FPRAS for estimating TV distances between distributions that are defined over a common Bayes net of small treewidth. Prior to this work, such approximation schemes only existed for estimating TV distances between product distributions. Our approach employs a new notion of $partial$ couplings of high-dimensional distributions, which might be of independent interest.
comment: 25 pages. This work has been accepted for presentation at the International Conference on Machine Learning (ICML) 2024
♻ ☆ A Deep Learning Approach for Overall Survival Prediction in Lung Cancer with Missing Values
In the field of lung cancer research, particularly in the analysis of overall survival (OS), artificial intelligence (AI) serves crucial roles with specific aims. Given the prevalent issue of missing data in the medical domain, our primary objective is to develop an AI model capable of dynamically handling this missing data. Additionally, we aim to leverage all accessible data, effectively analyzing both uncensored patients who have experienced the event of interest and censored patients who have not, by embedding a specialized technique within our AI model, not commonly utilized in other AI tasks. Through the realization of these objectives, our model aims to provide precise OS predictions for non-small cell lung cancer (NSCLC) patients, thus overcoming these significant challenges. We present a novel approach to survival analysis with missing values in the context of NSCLC, which exploits the strengths of the transformer architecture to account only for available features without requiring any imputation strategy. More specifically, this model tailors the transformer architecture to tabular data by adapting its feature embedding and masked self-attention to mask missing data and fully exploit the available ones. By making use of ad-hoc designed losses for OS, it is able to account for both censored and uncensored patients, as well as changes in risks over time. We compared our method with state-of-the-art models for survival analysis coupled with different imputation strategies. We evaluated the results obtained over a period of 6 years using different time granularities obtaining a Ct-index, a time-dependent variant of the C-index, of 71.97, 77.58 and 80.72 for time units of 1 month, 1 year and 2 years, respectively, outperforming all state-of-the-art methods regardless of the imputation method used.
comment: 24 pages, 4 figures
♻ ☆ Model Compression Method for S4 with Diagonal State Space Layers using Balanced Truncation
To implement deep learning models on edge devices, model compression methods have been widely recognized as useful. However, it remains unclear which model compression methods are effective for Structured State Space Sequence (S4) models incorporating Diagonal State Space (DSS) layers, tailored for processing long-sequence data. In this paper, we propose to use the balanced truncation, a prevalent model reduction technique in control theory, applied specifically to DSS layers in pre-trained S4 model as a novel model compression method. Moreover, we propose using the reduced model parameters obtained by the balanced truncation as initial parameters of S4 models with DSS layers during the main training process. Numerical experiments demonstrate that our trained models combined with the balanced truncation surpass conventionally trained models with Skew-HiPPO initialization in accuracy, even with fewer parameters. Furthermore, our observations reveal a positive correlation: higher accuracy in the original model consistently leads to increased accuracy in models trained using our model compression method, suggesting that our approach effectively leverages the strengths of the original model.
♻ ☆ Training morphological neural networks with gradient descent: some theoretical insights
Morphological neural networks, or layers, can be a powerful tool to boost the progress in mathematical morphology, either on theoretical aspects such as the representation of complete lattice operators, or in the development of image processing pipelines. However, these architectures turn out to be difficult to train when they count more than a few morphological layers, at least within popular machine learning frameworks which use gradient descent based optimization algorithms. In this paper we investigate the potential and limitations of differentiation based approaches and back-propagation applied to morphological networks, in light of the non-smooth optimization concept of Bouligand derivative. We provide insights and first theoretical guidelines, in particular regarding initialization and learning rates.
♻ ☆ Revitalizing Multivariate Time Series Forecasting: Learnable Decomposition with Inter-Series Dependencies and Intra-Series Variations Modeling
Predicting multivariate time series is crucial, demanding precise modeling of intricate patterns, including inter-series dependencies and intra-series variations. Distinctive trend characteristics in each time series pose challenges, and existing methods, relying on basic moving average kernels, may struggle with the non-linear structure and complex trends in real-world data. Given that, we introduce a learnable decomposition strategy to capture dynamic trend information more reasonably. Additionally, we propose a dual attention module tailored to capture inter-series dependencies and intra-series variations simultaneously for better time series forecasting, which is implemented by channel-wise self-attention and autoregressive self-attention. To evaluate the effectiveness of our method, we conducted experiments across eight open-source datasets and compared it with the state-of-the-art methods. Through the comparison results, our Leddam (LEarnable Decomposition and Dual Attention Module) not only demonstrates significant advancements in predictive performance, but also the proposed decomposition strategy can be plugged into other methods with a large performance-boosting, from 11.87% to 48.56% MSE error degradation.
♻ ☆ KAGNNs: Kolmogorov-Arnold Networks meet Graph Learning
In recent years, Graph Neural Networks (GNNs) have become the de facto tool for learning node and graph representations. Most GNNs typically consist of a sequence of neighborhood aggregation (a.k.a., message passing) layers. Within each of these layers, the representation of each node is updated from an aggregation and transformation of its neighbours representations at the previous layer. The upper bound for the expressive power of message passing GNNs was reached through the use of MLPs as a transformation, due to their universal approximation capabilities. However, MLPs suffer from well-known limitations, which recently motivated the introduction of Kolmogorov-Arnold Networks (KANs). KANs rely on the Kolmogorov-Arnold representation theorem, rendering them a promising alternative to MLPs. In this work, we compare the performance of KANs against that of MLPs in graph learning tasks. We perform extensive experiments on node classification, graph classification and graph regression datasets. Our preliminary results indicate that while KANs are on-par with MLPs in classification tasks, they seem to have a clear advantage in the graph regression tasks. Code is available at https: //github.com/RomanBresson/KAGNN.
♻ ☆ Evaluating Copyright Takedown Methods for Language Models
Language models (LMs) derive their capabilities from extensive training on diverse data, including potentially copyrighted material. These models can memorize and generate content similar to their training data, posing potential concerns. Therefore, model creators are motivated to develop mitigation methods that prevent generating protected content. We term this procedure as copyright takedowns for LMs, noting the conceptual similarity to (but legal distinction from) the DMCA takedown This paper introduces the first evaluation of the feasibility and side effects of copyright takedowns for LMs. We propose CoTaEval, an evaluation framework to assess the effectiveness of copyright takedown methods, the impact on the model's ability to retain uncopyrightable factual knowledge from the training data whose recitation is embargoed, and how well the model maintains its general utility and efficiency. We examine several strategies, including adding system prompts, decoding-time filtering interventions, and unlearning approaches. Our findings indicate that no tested method excels across all metrics, showing significant room for research in this unique problem setting and indicating potential unresolved challenges for live policy proposals.
comment: 31 pages, 9 figures, 14 tables
♻ ☆ Assessing the Brittleness of Safety Alignment via Pruning and Low-Rank Modifications
Large language models (LLMs) show inherent brittleness in their safety mechanisms, as evidenced by their susceptibility to jailbreaking and even non-malicious fine-tuning. This study explores this brittleness of safety alignment by leveraging pruning and low-rank modifications. We develop methods to identify critical regions that are vital for safety guardrails, and that are disentangled from utility-relevant regions at both the neuron and rank levels. Surprisingly, the isolated regions we find are sparse, comprising about $3\%$ at the parameter level and $2.5\%$ at the rank level. Removing these regions compromises safety without significantly impacting utility, corroborating the inherent brittleness of the model's safety mechanisms. Moreover, we show that LLMs remain vulnerable to low-cost fine-tuning attacks even when modifications to the safety-critical regions are restricted. These findings underscore the urgent need for more robust safety strategies in LLMs.
comment: 22 pages, 9 figures. Project page is available at https://boyiwei.com/alignment-attribution/
♻ ☆ σ-GPTs: A New Approach to Autoregressive Models ECML
Autoregressive models, such as the GPT family, use a fixed order, usually left-to-right, to generate sequences. However, this is not a necessity. In this paper, we challenge this assumption and show that by simply adding a positional encoding for the output, this order can be modulated on-the-fly per-sample which offers key advantageous properties. It allows for the sampling of and conditioning on arbitrary subsets of tokens, and it also allows sampling in one shot multiple tokens dynamically according to a rejection strategy, leading to a sub-linear number of model evaluations. We evaluate our method across various domains, including language modeling, path-solving, and aircraft vertical rate prediction, decreasing the number of steps required for generation by an order of magnitude.
comment: 23 pages, 7 figures, accepted at ECML/PKDD 2024
♻ ☆ Classification under Nuisance Parameters and Generalized Label Shift in Likelihood-Free Inference
An open scientific challenge is how to classify events with reliable measures of uncertainty, when we have a mechanistic model of the data-generating process but the distribution over both labels and latent nuisance parameters is different between train and target data. We refer to this type of distributional shift as generalized label shift (GLS). Direct classification using observed data $\mathbf{X}$ as covariates leads to biased predictions and invalid uncertainty estimates of labels $Y$. We overcome these biases by proposing a new method for robust uncertainty quantification that casts classification as a hypothesis testing problem under nuisance parameters. The key idea is to estimate the classifier's receiver operating characteristic (ROC) across the entire nuisance parameter space, which allows us to devise cutoffs that are invariant under GLS. Our method effectively endows a pre-trained classifier with domain adaptation capabilities and returns valid prediction sets while maintaining high power. We demonstrate its performance on two challenging scientific problems in biology and astroparticle physics with data from realistic mechanistic models.
comment: 26 pages, 19 figures, code available at https://github.com/lee-group-cmu/lf2i
♻ ☆ RouteLLM: Learning to Route LLMs with Preference Data
Large language models (LLMs) exhibit impressive capabilities across a wide range of tasks, yet the choice of which model to use often involves a trade-off between performance and cost. More powerful models, though effective, come with higher expenses, while less capable models are more cost-effective. To address this dilemma, we propose several efficient router models that dynamically select between a stronger and a weaker LLM during inference, aiming to optimize the balance between cost and response quality. We develop a training framework for these routers leveraging human preference data and data augmentation techniques to enhance performance. Our evaluation on widely-recognized benchmarks shows that our approach significantly reduces costs-by over 2 times in certain cases-without compromising the quality of responses. Interestingly, our router models also demonstrate significant transfer learning capabilities, maintaining their performance even when the strong and weak models are changed at test time. This highlights the potential of these routers to provide a cost-effective yet high-performance solution for deploying LLMs.
♻ ☆ Mutual Information Assisted Ensemble Recommender System for Identifying Critical Risk Factors in Healthcare Prognosis
Purpose: Health recommenders act as important decision support systems, aiding patients and medical professionals in taking actions that lead to patients' well-being. These systems extract the information which may be of particular relevance to the end-user, helping them in making appropriate decisions. The present study proposes a feature recommender, as a part of a disease management system, that identifies and recommends the most important risk factors for an illness. Methods: A novel mutual information and ensemble-based feature ranking approach for identifying critical risk factors in healthcare prognosis is proposed. Results: To establish the effectiveness of the proposed method, experiments have been conducted on four benchmark datasets of diverse diseases (clear cell renal cell carcinoma (ccRCC), chronic kidney disease, Indian liver patient, and cervical cancer risk factors). The performance of the proposed recommender is compared with four state-of-the-art methods using recommender systems' performance metrics like average precision@K, precision@K, recall@K, F1@K, reciprocal rank@K. The method is able to recommend all relevant critical risk factors for ccRCC. It also attains a higher accuracy (96.6% and 98.6% using support vector machine and neural network, respectively) for ccRCC staging with a reduced feature set as compared to existing methods. Moreover, the top two features recommended using the proposed method with ccRCC, viz. size of tumor and metastasis status, are medically validated from the existing TNM system. Results are also found to be superior for the other three datasets. Conclusion: The proposed recommender can identify and recommend risk factors that have the most discriminating power for detecting diseases.
♻ ☆ Efficient and Flexible Method for Reducing Moderate-size Deep Neural Networks with Condensation
Neural networks have been extensively applied to a variety of tasks, achieving astounding results. Applying neural networks in the scientific field is an important research direction that is gaining increasing attention. In scientific applications, the scale of neural networks is generally moderate-size, mainly to ensure the speed of inference during application. Additionally, comparing neural networks to traditional algorithms in scientific applications is inevitable. These applications often require rapid computations, making the reduction of neural network sizes increasingly important. Existing work has found that the powerful capabilities of neural networks are primarily due to their non-linearity. Theoretical work has discovered that under strong non-linearity, neurons in the same layer tend to behave similarly, a phenomenon known as condensation. Condensation offers an opportunity to reduce the scale of neural networks to a smaller subnetwork with similar performance. In this article, we propose a condensation reduction algorithm to verify the feasibility of this idea in practical problems. Our reduction method can currently be applied to both fully connected networks and convolutional networks, achieving positive results. In complex combustion acceleration tasks, we reduced the size of the neural network to 41.7% of its original scale while maintaining prediction accuracy. In the CIFAR10 image classification task, we reduced the network size to 11.5% of the original scale, still maintaining a satisfactory validation accuracy. Our method can be applied to most trained neural networks, reducing computational pressure and improving inference speed.
♻ ☆ CoMadOut -- A Robust Outlier Detection Algorithm based on CoMAD
Unsupervised learning methods are well established in the area of anomaly detection and achieve state of the art performances on outlier datasets. Outliers play a significant role, since they bear the potential to distort the predictions of a machine learning algorithm on a given dataset. Especially among PCA-based methods, outliers have an additional destructive potential regarding the result: they may not only distort the orientation and translation of the principal components, they also make it more complicated to detect outliers. To address this problem, we propose the robust outlier detection algorithm CoMadOut, which satisfies two required properties: (1) being robust towards outliers and (2) detecting them. Our CoMadOut outlier detection variants using comedian PCA define, dependent on its variant, an inlier region with a robust noise margin by measures of in-distribution (variant CMO) and optimized scores by measures of out-of-distribution (variants CMO*), e.g. kurtosis-weighting by CMO+k. These measures allow distribution based outlier scoring for each principal component, and thus, an appropriate alignment of the degree of outlierness between normal and abnormal instances. Experiments comparing CoMadOut with traditional, deep and other comparable robust outlier detection methods showed that the performance of the introduced CoMadOut approach is competitive to well established methods related to average precision (AP), area under the precision recall curve (AUPRC) and area under the receiver operating characteristic (AUROC) curve. In summary our approach can be seen as a robust alternative for outlier detection tasks.
comment: published in Springer Machine Learning Journal (MLJ)
♻ ☆ ASCENT: Amplifying Power Side-Channel Resilience via Learning & Monte-Carlo Tree Search
Power side-channel (PSC) analysis is pivotal for securing cryptographic hardware. Prior art focused on securing gate-level netlists obtained as-is from chip design automation, neglecting all the complexities and potential side-effects for security arising from the design automation process. That is, automation traditionally prioritizes power, performance, and area (PPA), sidelining security. We propose a "security-first" approach, refining the logic synthesis stage to enhance the overall resilience of PSC countermeasures. We introduce ASCENT, a learning-and-search-based framework that (i) drastically reduces the time for post-design PSC evaluation and (ii) explores the security-vs-PPA design space. Thus, ASCENT enables an efficient exploration of a large number of candidate netlists, leading to an improvement in PSC resilience compared to regular PPA-optimized netlists. ASCENT is up to 120x faster than traditional PSC analysis and yields a 3.11x improvement for PSC resilience of state-of-the-art PSC countermeasures
comment: Accepted at 2024 ACM/IEEE International Conference on Computer-Aided Design
♻ ☆ FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch
The sample efficiency of Bayesian optimization algorithms depends on carefully crafted acquisition functions (AFs) guiding the sequential collection of function evaluations. The best-performing AF can vary significantly across optimization problems, often requiring ad-hoc and problem-specific choices. This work tackles the challenge of designing novel AFs that perform well across a variety of experimental settings. Based on FunSearch, a recent work using Large Language Models (LLMs) for discovery in mathematical sciences, we propose FunBO, an LLM-based method that can be used to learn new AFs written in computer code by leveraging access to a limited number of evaluations for a set of objective functions. We provide the analytic expression of all discovered AFs and evaluate them on various global optimization benchmarks and hyperparameter optimization tasks. We show how FunBO identifies AFs that generalize well in and out of the training distribution of functions, thus outperforming established general-purpose AFs and achieving competitive performance against AFs that are customized to specific function types and are learned via transfer-learning algorithms.
♻ ☆ Capacity Provisioning Motivated Online Non-Convex Optimization Problem with Memory and Switching Cost
An online non-convex optimization problem is considered where the goal is to minimize the flow time (total delay) of a set of jobs by modulating the number of active servers, but with a switching cost associated with changing the number of active servers over time. Each job can be processed by at most one fixed speed server at any time. Compared to the usual online convex optimization (OCO) problem with switching cost, the objective function considered is non-convex and more importantly, at each time, it depends on all past decisions and not just the present one. Both worst-case and stochastic inputs are considered; for both cases, competitive algorithms are derived.
♻ ☆ FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting
Time Series Forecasting plays a crucial role in various fields such as industrial equipment maintenance, meteorology, energy consumption, traffic flow and financial investment. However, despite their considerable advantages over traditional statistical approaches, current deep learning-based predictive models often exhibit a significant deviation between their forecasting outcomes and the ground truth. This discrepancy is largely due to an insufficient emphasis on extracting the sequence's latent information, particularly its global information within the frequency domain and the relationship between different variables. To address this issue, we propose a novel model Frequency-domain Attention In Two Horizons, which decomposes time series into trend and seasonal components using a multi-scale sequence adaptive decomposition and fusion architecture, and processes them separately. FAITH utilizes Frequency Channel feature Extraction Module and Frequency Temporal feature Extraction Module to capture inter-channel relationships and temporal global information in the sequence, significantly improving its ability to handle long-term dependencies and complex patterns. Furthermore, FAITH achieves theoretically linear complexity by modifying the time-frequency domain transformation method, effectively reducing computational costs. Extensive experiments on 6 benchmarks for long-term forecasting and 3 benchmarks for short-term forecasting demonstrate that FAITH outperforms existing models in many fields, such as electricity, weather and traffic, proving its effectiveness and superiority both in long-term and short-term time series forecasting tasks. Our codes and data are available at https://github.com/LRQ577/FAITH.
comment: We think there are some errors in the experiment result, it may lead to a wrong conclusion. So we think it will be responsible to withdraw it
♻ ☆ Backdoor for Debias: Mitigating Model Bias with Backdoor Attack-based Artificial Bias
With the swift advancement of deep learning, state-of-the-art algorithms have been utilized in various social situations. Nonetheless, some algorithms have been discovered to exhibit biases and provide unequal results. The current debiasing methods face challenges such as poor utilization of data or intricate training requirements. In this work, we found that the backdoor attack can construct an artificial bias similar to the model bias derived in standard training. Considering the strong adjustability of backdoor triggers, we are motivated to mitigate the model bias by carefully designing reverse artificial bias created from backdoor attack. Based on this, we propose a backdoor debiasing framework based on knowledge distillation, which effectively reduces the model bias from original data and minimizes security risks from the backdoor attack. The proposed solution is validated on both image and structured datasets, showing promising results. This work advances the understanding of backdoor attacks and highlights its potential for beneficial applications. The code for the study can be found at \url{https://anonymous.4open.science/r/DwB-BC07/}.
♻ ☆ Multi-State TD Target for Model-Free Reinforcement Learning
Temporal difference (TD) learning is a fundamental technique in reinforcement learning that updates value estimates for states or state-action pairs using a TD target. This target represents an improved estimate of the true value by incorporating both immediate rewards and the estimated value of subsequent states. Traditionally, TD learning relies on the value of a single subsequent state. We propose an enhanced multi-state TD (MSTD) target that utilizes the estimated values of multiple subsequent states. Building on this new MSTD concept, we develop complete actor-critic algorithms that include management of replay buffers in two modes, and integrate with deep deterministic policy optimization (DDPG) and soft actor-critic (SAC). Experimental results demonstrate that algorithms employing the MSTD target significantly improve learning performance compared to traditional methods.The code is provided on GitHub.
comment: 8 pages, 16 figures
♻ ☆ Fast Unsupervised Deep Outlier Model Selection with Hypernetworks
Outlier detection (OD) finds many applications with a rich literature of numerous techniques. Deep neural network based OD (DOD) has seen a recent surge of attention thanks to the many advances in deep learning. In this paper, we consider a critical-yet-understudied challenge with unsupervised DOD, that is, effective hyperparameter (HP) tuning/model selection. While several prior work report the sensitivity of OD models to HPs, it becomes ever so critical for the modern DOD models that exhibit a long list of HPs. We introduce HYPER for tuning DOD models, tackling two fundamental challenges: (1) validation without supervision (due to lack of labeled anomalies), and (2) efficient search of the HP/model space (due to exponential growth in the number of HPs). A key idea is to design and train a novel hypernetwork (HN) that maps HPs onto optimal weights of the main DOD model. In turn, HYPER capitalizes on a single HN that can dynamically generate weights for many DOD models (corresponding to varying HPs), which offers significant speed-up. In addition, it employs meta-learning on historical OD tasks with labels to train a proxy validation function, likewise trained with our proposed HN efficiently. Extensive experiments on 35 OD tasks show that HYPER achieves high performance against 8 baselines with significant efficiency gains.
comment: 12 pages, 7 figures
♻ ☆ UniST: A Prompt-Empowered Universal Model for Urban Spatio-Temporal Prediction KDD
Urban spatio-temporal prediction is crucial for informed decision-making, such as traffic management, resource optimization, and emergence response. Despite remarkable breakthroughs in pretrained natural language models that enable one model to handle diverse tasks, a universal solution for spatio-temporal prediction remains challenging Existing prediction approaches are typically tailored for specific spatio-temporal scenarios, requiring task-specific model designs and extensive domain-specific training data. In this study, we introduce UniST, a universal model designed for general urban spatio-temporal prediction across a wide range of scenarios. Inspired by large language models, UniST achieves success through: (i) utilizing diverse spatio-temporal data from different scenarios, (ii) effective pre-training to capture complex spatio-temporal dynamics, (iii) knowledge-guided prompts to enhance generalization capabilities. These designs together unlock the potential of building a universal model for various scenarios Extensive experiments on more than 20 spatio-temporal scenarios demonstrate UniST's efficacy in advancing state-of-the-art performance, especially in few-shot and zero-shot prediction. The datasets and code implementation are released on https://github.com/tsinghua-fib-lab/UniST.
comment: 2024 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2024
♻ ☆ Cost Aware Best Arm Identification
In this paper, we study a best arm identification problem with dual objects. In addition to the classic reward, each arm is associated with a cost distribution and the goal is to identify the largest reward arm using the minimum expected cost. We call it \emph{Cost Aware Best Arm Identification} (CABAI), which captures the separation of testing and implementation phases in product development pipelines and models the objective shift between phases, i.e., cost for testing and reward for implementation. We first derive a theoretical lower bound for CABAI and propose an algorithm called $\mathsf{CTAS}$ to match it asymptotically. To reduce the computation of $\mathsf{CTAS}$, we further propose a simple algorithm called \emph{Chernoff Overlap} (CO), based on a square-root rule, which we prove is optimal in simplified two-armed models and generalizes well in numerical experiments. Our results show that (i) ignoring the heterogeneous action cost results in sub-optimality in practice, and (ii) simple algorithms can deliver near-optimal performance over a wide range of problems.
♻ ☆ From molecules to scaffolds to functional groups: building context-dependent molecular representation via multi-channel learning
Reliable molecular property prediction is essential for various scientific endeavors and industrial applications, such as drug discovery. However, the data scarcity, combined with the highly non-linear causal relationships between physicochemical and biological properties and conventional molecular featurization schemes, complicates the development of robust molecular machine learning models. Self-supervised learning (SSL) has emerged as a popular solution, utilizing large-scale, unannotated molecular data to learn a foundational representation of chemical space that might be advantageous for downstream tasks. Yet, existing molecular SSL methods largely overlook chemical knowledge, including molecular structure similarity, scaffold composition, and the context-dependent aspects of molecular properties when operating over the chemical space. They also struggle to learn the subtle variations in structure-activity relationship. This paper introduces a novel pre-training framework that learns robust and generalizable chemical knowledge. It leverages the structural hierarchy within the molecule, embeds them through distinct pre-training tasks across channels, and aggregates channel information in a task-specific manner during fine-tuning. Our approach demonstrates competitive performance across various molecular property benchmarks and offers strong advantages in particularly challenging yet ubiquitous scenarios like activity cliffs.
♻ ☆ SketchQL Demonstration: Zero-shot Video Moment Querying with Sketches
In this paper, we will present SketchQL, a video database management system (VDBMS) for retrieving video moments with a sketch-based query interface. This novel interface allows users to specify object trajectory events with simple mouse drag-and-drop operations. Users can use trajectories of single objects as building blocks to compose complex events. Using a pre-trained model that encodes trajectory similarity, SketchQL achieves zero-shot video moments retrieval by performing similarity searches over the video to identify clips that are the most similar to the visual query. In this demonstration, we introduce the graphic user interface of SketchQL and detail its functionalities and interaction mechanisms. We also demonstrate the end-to-end usage of SketchQL from query composition to video moments retrieval using real-world scenarios.
♻ ☆ A Survey on Deep Clustering: From the Prior Perspective
Facilitated by the powerful feature extraction ability of neural networks, deep clustering has achieved great success in analyzing high-dimensional and complex real-world data. The performance of deep clustering methods is affected by various factors such as network structures and learning objectives. However, as pointed out in this survey, the essence of deep clustering lies in the incorporation and utilization of prior knowledge, which is largely ignored by existing works. From pioneering deep clustering methods based on data structure assumptions to recent contrastive clustering methods based on data augmentation invariances, the development of deep clustering intrinsically corresponds to the evolution of prior knowledge. In this survey, we provide a comprehensive review of deep clustering methods by categorizing them into six types of prior knowledge. We find that in general the prior innovation follows two trends, namely, i) from mining to constructing, and ii) from internal to external. Besides, we provide a benchmark on five widely-used datasets and analyze the performance of methods with diverse priors. By providing a novel prior knowledge perspective, we hope this survey could provide some novel insights and inspire future research in the deep clustering community.
♻ ☆ Towards Graph Foundation Models: A Survey and Beyond
Foundation models have emerged as critical components in a variety of artificial intelligence applications, and showcase significant success in natural language processing and several other domains. Meanwhile, the field of graph machine learning is witnessing a paradigm transition from shallow methods to more sophisticated deep learning approaches. The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm. This paradigm envisions models that are pre-trained on extensive graph data and can be adapted for various graph tasks. Despite this burgeoning interest, there is a noticeable lack of clear definitions and systematic analyses pertaining to this new domain. To this end, this article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies. We proceed to classify the existing work related to GFMs into three distinct categories, based on their dependence on graph neural networks and large language models. In addition to providing a thorough review of the current state of GFMs, this article also outlooks potential avenues for future research in this rapidly evolving domain.
Multimedia 1
♻ ☆ Proceedings of The second international workshop on eXplainable AI for the Arts (XAIxArts)
This second international workshop on explainable AI for the Arts (XAIxArts) brought together a community of researchers in HCI, Interaction Design, AI, explainable AI (XAI), and digital arts to explore the role of XAI for the Arts. Workshop held at the 16th ACM Conference on Creativity and Cognition (C&C 2024), Chicago, USA.
Database 3
♻ ☆ $R^3$-NL2GQL: A Model Coordination and Knowledge Graph Alignment Approach for NL2GQL
While current tasks of converting natural language to SQL (NL2SQL) using Foundation Models have shown impressive achievements, adapting these approaches for converting natural language to Graph Query Language (NL2GQL) encounters hurdles due to the distinct nature of GQL compared to SQL, alongside the diverse forms of GQL. Moving away from traditional rule-based and slot-filling methodologies, we introduce a novel approach, $R^3$-NL2GQL, integrating both small and large Foundation Models for ranking, rewriting, and refining tasks. This method leverages the interpretative strengths of smaller models for initial ranking and rewriting stages, while capitalizing on the superior generalization and query generation prowess of larger models for the final transformation of natural language queries into GQL formats. Addressing the scarcity of datasets in this emerging field, we have developed a bilingual dataset, sourced from graph database manuals and selected open-source Knowledge Graphs (KGs). Our evaluation of this methodology on this dataset demonstrates its promising efficacy and robustness.
♻ ☆ Autumn: A Scalable Read Optimized LSM-tree based Key-Value Stores with Fast Point and Range Read Speed
The Log Structured Merge Trees (LSM-tree) based key-value stores are widely used in many storage systems to support a variety of operations such as updates, point reads, and range reads. Traditionally, LSM-tree's merge policy organizes data into multiple levels of exponentially increasing capacity to support high-speed writes. However, we contend that the traditional merge policies are not optimized for reads. In this work, we present Autumn, a scalable and read optimized LSM-tree based key-value stores with minimal point and range read cost. The key idea in improving the read performance is to dynamically adjust the capacity ratio between two adjacent levels as more data are stored. As a result, smaller levels gradually increase their capacities and merge more often. In particular, the point and range read cost improves from the previous best known $O(logN)$ complexity to $O(\sqrt{logN})$ in Autumn by applying the novel Garnering merge policy. While Garnering merge policy optimizes for both point reads and range reads, it maintains high performance for updates. Moreover, to further improve the update costs, Autumn uses a small amount of bounded space of DRAM to pin/keep the first level of LSM-tree. We implemented Autumn on top of LevelDB and experimentally showcases the gain in performance for real world workloads.
♻ ☆ SketchQL Demonstration: Zero-shot Video Moment Querying with Sketches
In this paper, we will present SketchQL, a video database management system (VDBMS) for retrieving video moments with a sketch-based query interface. This novel interface allows users to specify object trajectory events with simple mouse drag-and-drop operations. Users can use trajectories of single objects as building blocks to compose complex events. Using a pre-trained model that encodes trajectory similarity, SketchQL achieves zero-shot video moments retrieval by performing similarity searches over the video to identify clips that are the most similar to the visual query. In this demonstration, we introduce the graphic user interface of SketchQL and detail its functionalities and interaction mechanisms. We also demonstrate the end-to-end usage of SketchQL from query composition to video moments retrieval using real-world scenarios.
Computation and Language 23
♻ ☆ Cost-Efficient Large Language Model Serving for Multi-turn Conversations with CachedAttention ATC
Interacting with humans through multi-turn conversations is a fundamental feature of large language models (LLMs). However, existing LLM serving engines executing multi-turn conversations are inefficient due to the need to repeatedly compute the key-value (KV) caches of historical tokens, incurring high serving costs. To address the problem, this paper proposes CachedAttention, a new attention mechanism that enables reuse of KV caches across multi-turn conversations, significantly reducing the repetitive computation overheads. CachedAttention maintains a hierarchical KV caching system that leverages cost-effective memory/storage mediums to save KV caches for all requests. To reduce KV cache access overheads from slow mediums, CachedAttention employs layer-wise pre-loading and asynchronous saving schemes to overlap the KV cache access with the GPU computation. To ensure that the KV caches to be accessed are placed in the fastest hierarchy, CachedAttention employs scheduler-aware fetching and eviction schemes to consciously place the KV caches in different layers based on the hints from the inference job scheduler. To avoid the invalidation of the saved KV caches incurred by context window overflow, CachedAttention enables the saved KV caches to remain valid via decoupling the positional encoding and effectively truncating the KV caches. Extensive experimental results demonstrate that CachedAttention significantly decreases the time to the first token (TTFT) by up to 87%, improves the prompt prefilling throughput by up to 7.8$\times$ for multi-turn conversations, and reduces the end-to-end inference cost by up to 70%.
comment: Accepted to USENIX Annual Technical Conference (ATC) 2024
♻ ☆ LQ-LoRA: Low-rank Plus Quantized Matrix Decomposition for Efficient Language Model Finetuning
We propose a simple approach for memory-efficient adaptation of pretrained language models. Our approach uses an iterative algorithm to decompose each pretrained matrix into a high-precision low-rank component and a memory-efficient quantized component. During finetuning, the quantized component remains fixed and only the low-rank component is updated. We present an integer linear programming formulation of the quantization component which enables dynamic configuration of quantization parameters (e.g., bit-width, block size) for each matrix given an overall target memory budget. We further explore a data-aware version of the algorithm which uses an approximation of the Fisher information matrix to weight the reconstruction objective during matrix decomposition. Experiments on finetuning RoBERTa and LLaMA-2 (7B and 70B) demonstrate that our low-rank plus quantized matrix decomposition approach (LQ-LoRA) outperforms strong QLoRA and GPTQ-LoRA baselines and enables aggressive quantization to sub-3 bits with only minor performance degradations. When finetuned on a language modeling calibration dataset, LQ-LoRA can also be used for model compression; in this setting our 2.75-bit LLaMA-2-70B model (which has 2.85 bits on average when including the low-rank components and requires 27GB of GPU memory) performs respectably compared to the 16-bit baseline.
♻ ☆ X-ray Made Simple: Radiology Report Generation and Evaluation with Layman's Terms
Radiology Report Generation (RRG) has achieved significant progress with the advancements of multimodal generative models. However, the evaluation in the domain suffers from a lack of fair and robust metrics. We reveal that, high performance on RRG with existing lexical-based metrics (e.g. BLEU) might be more of a mirage - a model can get a high BLEU only by learning the template of reports. This has become an urgent problem for RRG due to the highly patternized nature of these reports. In this work, we un-intuitively approach this problem by proposing the Layman's RRG framework, a layman's terms-based dataset, evaluation and training framework that systematically improves RRG with day-to-day language. We first contribute the translated Layman's terms dataset. Building upon the dataset, we then propose a semantics-based evaluation method, which is proved to mitigate the inflated numbers of BLEU and provides fairer evaluation. Last, we show that training on the layman's terms dataset encourages models to focus on the semantics of the reports, as opposed to overfitting to learning the report templates. We reveal a promising scaling law between the number of training examples and semantics gain provided by our dataset, compared to the inverse pattern brought by the original formats. Our code is available at \url{https://github.com/hegehongcha/LaymanRRG}.
♻ ☆ SimsChat: A Customisable Persona-Driven Role-Playing Agent
Large Language Models (LLMs) possess the remarkable capability to understand human instructions and generate high-quality text, enabling them to act as agents that simulate human behaviours. This capability allows LLMs to emulate human beings in a more advanced manner, beyond merely replicating simple human behaviours. However, there is a lack of exploring into leveraging LLMs to craft characters from several aspects. In this work, we introduce the Customisable Conversation Agent Framework, which employs LLMs to simulate real-world characters that can be freely customised according to different user preferences. The customisable framework is helpful for designing customisable characters and role-playing agents according to human's preferences. We first propose the SimsConv dataset, which comprises 68 different customised characters, 1,360 multi-turn role-playing dialogues, and encompasses 13,971 interaction dialogues in total. The characters are created from several real-world elements, such as career, aspiration, trait, and skill. Building on these foundations, we present SimsChat, a freely customisable role-playing agent. It incorporates different real-world scenes and topic-specific character interaction dialogues, simulating characters' life experiences in various scenarios and topic-specific interactions with specific emotions. Experimental results show that our proposed framework achieves desirable performance and provides helpful guideline for building better simulacra of human beings in the future. Our data and code are available at https://github.com/Bernard-Yang/SimsChat.
♻ ☆ PANGeA: Procedural Artificial Narrative using Generative AI for Turn-Based Video Games
This research introduces Procedural Artificial Narrative using Generative AI (PANGeA), a structured approach for leveraging large language models (LLMs), guided by a game designer's high-level criteria, to generate narrative content for turn-based role-playing video games (RPGs). Distinct from prior applications of LLMs used for video game design, PANGeA innovates by not only generating game level data (which includes, but is not limited to, setting, key items, and non-playable characters (NPCs)), but by also fostering dynamic, free-form interactions between the player and the environment that align with the procedural game narrative. The NPCs generated by PANGeA are personality-biased and express traits from the Big 5 Personality Model in their generated responses. PANGeA addresses challenges behind ingesting free-form text input, which can prompt LLM responses beyond the scope of the game narrative. A novel validation system that uses the LLM's intelligence evaluates text input and aligns generated responses with the unfolding narrative. Making these interactions possible, PANGeA is supported by a server that hosts a custom memory system that supplies context for augmenting generated responses thus aligning them with the procedural narrative. For its broad application, the server has a REST interface enabling any game engine to integrate directly with PANGeA, as well as an LLM interface adaptable with local or private LLMs. PANGeA's ability to foster dynamic narrative generation by aligning responses with the procedural narrative is demonstrated through an empirical study and ablation test of two versions of a demo game. These are, a custom, browser-based GPT and a Unity demo. As the results show, PANGeA holds potential to assist game designers in using LLMs to generate narrative-consistent content even when provided varied and unpredictable, free-form text input.
♻ ☆ SEMQA: Semi-Extractive Multi-Source Question Answering NAACL 2024
Recently proposed long-form question answering (QA) systems, supported by large language models (LLMs), have shown promising capabilities. Yet, attributing and verifying their generated abstractive answers can be difficult, and automatically evaluating their accuracy remains an ongoing challenge. In this work, we introduce a new QA task for answering multi-answer questions by summarizing multiple diverse sources in a semi-extractive fashion. Specifically, Semi-extractive Multi-source QA (SEMQA) requires models to output a comprehensive answer, while mixing factual quoted spans -- copied verbatim from given input sources -- and non-factual free-text connectors that glue these spans together into a single cohesive passage. This setting bridges the gap between the outputs of well-grounded but constrained extractive QA systems and more fluent but harder to attribute fully abstractive answers. Particularly, it enables a new mode for language models that leverages their advanced language generation capabilities, while also producing fine in-line attributions by-design that are easy to verify, interpret, and evaluate. To study this task, we create the first dataset of this kind, QuoteSum, with human-written semi-extractive answers to natural and generated questions, and define text-based evaluation metrics. Experimenting with several LLMs in various settings, we find this task to be surprisingly challenging, demonstrating the importance of QuoteSum for developing and studying such consolidation capabilities.
comment: NAACL 2024
♻ ☆ AIM: Let Any Multi-modal Large Language Models Embrace Efficient In-Context Learning
In-context learning (ICL) facilitates Large Language Models (LLMs) exhibiting emergent ability on downstream tasks without updating billions of parameters. However, in the area of multi-modal Large Language Models (MLLMs), two problems hinder the application of multi-modal ICL: (1) Most primary MLLMs are only trained on single-image datasets, making them unable to read multi-modal demonstrations. (2) With the demonstrations increasing, thousands of visual tokens highly challenge hardware and degrade ICL performance. During preliminary explorations, we discovered that the inner LLM tends to focus more on the linguistic modality within multi-modal demonstrations to generate responses. Therefore, we propose a general and light-weighted framework \textbf{AIM} to tackle the mentioned problems through \textbf{A}ggregating \textbf{I}mage information of \textbf{M}ultimodal demonstrations to the dense latent space of the corresponding linguistic part. Specifically, AIM first uses the frozen backbone MLLM to read each image-text demonstration and extracts the vector representations on top of the text. These vectors naturally fuse the information of the image-text pair, and AIM transforms them into fused virtual tokens acceptable for the inner LLM via a trainable projection layer. Ultimately, these fused tokens function as variants of multi-modal demonstrations, fed into the MLLM to direct its response to the current query as usual. Because these fused tokens stem from the textual component of the image-text pair, a multi-modal demonstration is nearly reduced to a pure textual demonstration, thus seamlessly applying to any MLLMs. With its de facto MLLM frozen, AIM is parameter-efficient and we train it on public multi-modal web corpora which have nothing to do with downstream test tasks.
♻ ☆ MedCalc-Bench: Evaluating Large Language Models for Medical Calculations
As opposed to evaluating computation and logic-based reasoning, current benchmarks for evaluating large language models (LLMs) in medicine are primarily focused on question-answering involving domain knowledge and descriptive reasoning. While such qualitative capabilities are vital to medical diagnosis, in real-world scenarios, doctors frequently use clinical calculators that follow quantitative equations and rule-based reasoning paradigms for evidence-based decision support. To this end, we propose MedCalc-Bench, a first-of-its-kind dataset focused on evaluating the medical calculation capability of LLMs. MedCalc-Bench contains an evaluation set of over 1000 manually reviewed instances from 55 different medical calculation tasks. Each instance in MedCalc-Bench consists of a patient note, a question requesting to compute a specific medical value, a ground truth answer, and a step-by-step explanation showing how the answer is obtained. While our evaluation results show the potential of LLMs in this area, none of them are effective enough for clinical settings. Common issues include extracting the incorrect entities, not using the correct equation or rules for a calculation task, or incorrectly performing the arithmetic for the computation. We hope our study highlights the quantitative knowledge and reasoning gaps in LLMs within medical settings, encouraging future improvements of LLMs for various clinical calculation tasks.
comment: Github link: https://github.com/ncbi-nlp/MedCalc-Bench HuggingFace link: https://huggingface.co/datasets/nsk7153/MedCalc-Bench
♻ ☆ EAGLE-2: Faster Inference of Language Models with Dynamic Draft Trees
Inference with modern Large Language Models (LLMs) is expensive and time-consuming, and speculative sampling has proven to be an effective solution. Most speculative sampling methods such as EAGLE use a static draft tree, implicitly assuming that the acceptance rate of draft tokens depends only on their position. Interestingly, we found that the acceptance rate of draft tokens is also context-dependent. In this paper, building upon EAGLE, we propose EAGLE-2, which introduces a new technique of context-aware dynamic draft tree into drafting modeling. This improvement leverages the fact that the draft model of EAGLE is well-calibrated: the confidence scores from the draft model approximate acceptance rates with small errors. We conducted extensive evaluations on three series of LLMs and six tasks, with EAGLE-2 achieving speedup ratios 3.05x-4.26x, which is 20%-40% faster than EAGLE-1. EAGLE-2 also ensures that the distribution of the generated text remains unchanged, making it a lossless acceleration algorithm.
♻ ☆ LongRAG: Enhancing Retrieval-Augmented Generation with Long-context LLMs
In traditional RAG framework, the basic retrieval units are normally short. The common retrievers like DPR normally work with 100-word Wikipedia paragraphs. Such a design forces the retriever to search over a large corpus to find the `needle' unit. In contrast, the readers only need to extract answers from the short retrieved units. Such an imbalanced `heavy' retriever and `light' reader design can lead to sub-optimal performance. In order to alleviate the imbalance, we propose a new framework LongRAG, consisting of a `long retriever' and a `long reader'. LongRAG processes the entire Wikipedia into 4K-token units, which is 30x longer than before. By increasing the unit size, we significantly reduce the total units from 22M to 700K. This significantly lowers the burden of retriever, which leads to a remarkable retrieval score: answer recall@1=71% on NQ (previously 52%) and answer recall@2=72% (previously 47%) on HotpotQA (full-wiki). Then we feed the top-k retrieved units ($\approx$ 30K tokens) to an existing long-context LLM to perform zero-shot answer extraction. Without requiring any training, LongRAG achieves an EM of 62.7% on NQ, which is the best known result. LongRAG also achieves 64.3% on HotpotQA (full-wiki), which is on par of the SoTA model. Our study offers insights into the future roadmap for combining RAG with long-context LLMs.
comment: Technical Report
♻ ☆ Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models
Large Language Models (LLMs) have the unique capability to understand and generate human-like text from input queries. When fine-tuned, these models show enhanced performance on domain-specific queries. OpenAI highlights the process of fine-tuning, stating: "To fine-tune a model, you are required to provide at least 10 examples. We typically see clear improvements from fine-tuning on 50 to 100 training examples, but the right number varies greatly based on the exact use case." This study extends this concept to the integration of LLMs within Retrieval-Augmented Generation (RAG) pipelines, which aim to improve accuracy and relevance by leveraging external corpus data for information retrieval. However, RAG's promise of delivering optimal responses often falls short in complex query scenarios. This study aims to specifically examine the effects of fine-tuning LLMs on their ability to extract and integrate contextual data to enhance the performance of RAG systems across multiple domains. We evaluate the impact of fine-tuning on the LLMs' capacity for data extraction and contextual understanding by comparing the accuracy and completeness of fine-tuned models against baseline performances across datasets from multiple domains. Our findings indicate that fine-tuning resulted in a decline in performance compared to the baseline models, contrary to the improvements observed in standalone LLM applications as suggested by OpenAI. This study highlights the need for vigorous investigation and validation of fine-tuned models for domain-specific tasks.
comment: 8 pages, 4 figures
♻ ☆ LLM Critics Help Catch Bugs in Mathematics: Towards a Better Mathematical Verifier with Natural Language Feedback
Mathematical verfier achieves success in mathematical reasoning tasks by validating the correctness of solutions. However, existing verifiers are trained with binary classification labels, which are not informative enough for the model to accurately assess the solutions. To mitigate the aforementioned insufficiency of binary labels, we introduce step-wise natural language feedbacks as rationale labels (i.e., the correctness of the current step and the explanations). In this paper, we propose \textbf{Math-Minos}, a natural language feedback enhanced verifier by constructing automatically-generated training data and a two-stage training paradigm for effective training and efficient inference. Our experiments reveal that a small set (30k) of natural language feedbacks can significantly boost the performance of the verifier by the accuracy of 1.6\% (86.6\% $\rightarrow$ 88.2\%) on GSM8K and 0.8\% (37.8\% $\rightarrow$ 38.6\%) on MATH. We have released our code and data for further exploration.
comment: 9 pages
♻ ☆ Can Many-Shot In-Context Learning Help Long-Context LLM Judges? See More, Judge Better!
Leveraging Large Language Models (LLMs) as judges for judging the performance of LLMs has recently garnered attention. However, this type of approach is affected by the potential biases in LLMs, raising concerns about the reliability of the evaluation results. To mitigate this issue, we propose and study two versions of many-shot in-context prompts, which rely on two existing settings of many-shot ICL for helping GPT-4o-as-a-Judge in single answer grading to mitigate the potential biases in LLMs, Reinforced ICL and Unsupervised ICL. Concretely, the former utilizes in-context examples with model-generated rationales, and the latter without. Based on the designed prompts, we investigate the impact of scaling the number of in-context examples on the consistency and quality of the judgment results. Furthermore, we reveal the symbol bias hidden in the pairwise comparison of GPT-4o-as-a-Judge and propose a simple yet effective approach to mitigate it. Experimental results show that advanced long-context LLMs, such as GPT-4o, perform better in the many-shot regime than in the zero-shot regime. Meanwhile, the experimental results further verify the effectiveness of the symbol bias mitigation approach.
comment: work in progress
♻ ☆ Identifying User Goals from UI Trajectories
Autonomous agents that interact with graphical user interfaces (GUIs) hold significant potential for enhancing user experiences. To further improve these experiences, agents need to be personalized and proactive. By effectively comprehending user intentions through their actions and interactions with GUIs, agents will be better positioned to achieve these goals. This paper introduces the task of goal identification from observed UI trajectories, aiming to infer the user's intended task based on their GUI interactions. We propose a novel evaluation metric to assess whether two task descriptions are paraphrases within a specific UI environment. By Leveraging the inverse relation with the UI automation task, we utilized the Android-In-The-Wild and Mind2Web datasets for our experiments. Using our metric and these datasets, we conducted several experiments comparing the performance of humans and state-of-the-art models, specifically GPT-4 and Gemini-1.5 Pro. Our results show that Gemini performs better than GPT but still underperforms compared to humans, indicating significant room for improvement.
♻ ☆ On the Use of Large Language Models to Generate Capability Ontologies
Capability ontologies are increasingly used to model functionalities of systems or machines. The creation of such ontological models with all properties and constraints of capabilities is very complex and can only be done by ontology experts. However, Large Language Models (LLMs) have shown that they can generate machine-interpretable models from natural language text input and thus support engineers / ontology experts. Therefore, this paper investigates how LLMs can be used to create capability ontologies. We present a study with a series of experiments in which capabilities with varying complexities are generated using different prompting techniques and with different LLMs. Errors in the generated ontologies are recorded and compared. To analyze the quality of the generated ontologies, a semi-automated approach based on RDF syntax checking, OWL reasoning, and SHACL constraints is used. The results of this study are very promising because even for complex capabilities, the generated ontologies are almost free of errors.
♻ ☆ Small Language Models Learn Enhanced Reasoning Skills from Medical Textbooks
While recent advancements in commercial large language models (LM) have shown promising results in medical tasks, their closed-source nature poses significant privacy and security concerns, hindering their widespread use in the medical field. Despite efforts to create open-source models, their limited parameters often result in insufficient multi-step reasoning capabilities required for solving complex medical problems. To address this, we introduce Meerkat, a new family of medical AI systems ranging from 7 to 70 billion parameters. The models were trained using our new synthetic dataset consisting of high-quality chain-of-thought reasoning paths sourced from 18 medical textbooks, along with diverse instruction-following datasets. Our systems achieved remarkable accuracy across six medical benchmarks, surpassing the previous best models such as MediTron and BioMistral, and GPT-3.5 by a large margin. Notably, Meerkat-7B surpassed the passing threshold of the United States Medical Licensing Examination (USMLE) for the first time for a 7B-parameter model, while Meerkat-70B outperformed GPT-4 by an average of 1.3%. Additionally, Meerkat-70B correctly diagnosed 21 out of 38 complex clinical cases, outperforming humans' 13.8 and closely matching GPT-4's 21.8. Our systems offered more detailed free-form responses to clinical queries compared to existing small models, approaching the performance level of large commercial models. This significantly narrows the performance gap with large LMs, showcasing its effectiveness in addressing complex medical challenges.
comment: Added new LLaMA-3-based models and experiments on NEJM case challenges
♻ ☆ StrucText-Eval: An Autogenerated Benchmark for Evaluating Large Language Model's Ability in Structure-Rich Text Understanding
Given the substantial volumes of structured data held by many companies, enabling Large Language Models (LLMs) to directly understand structured text in non-structured forms could significantly enhance their capabilities across various business scenarios. To this end, we propose evaluation data generation method for assessing LLM's ability in understanding the structure-rich text, which generates structured data of controllable complexity based on manually crafted question templates and generation rules. Building on this generation method, we introduce StrucText-Eval, a benchmark comprising 6,032 questions across 8 different structured languages and 29 specific tasks. Furthermore, considering human proficiency in rule-based tasks, we also present StrucText-Eval-Hard, which includes 3,016 questions designed to further examine the gap between LLMs and human performance. Results indicate that the best-performing LLM currently achieve an accuracy of 65.0\% on StrucText-Eval-Hard, while human accuracy reaches up to 95.7\%. Moreover, while fine-tuning using StrucText-Eval can enhance existing LLMs' understanding of all structured languages, it does not necessarily improve performance across all task types. The benchmark and generation codes are open sourced in https://github.com/MikeGu721/StrucText-Eval
♻ ☆ TemPrompt: Multi-Task Prompt Learning for Temporal Relation Extraction in RAG-based Crowdsourcing Systems
Temporal relation extraction (TRE) aims to grasp the evolution of events or actions, and thus shape the workflow of associated tasks, so it holds promise in helping understand task requests initiated by requesters in crowdsourcing systems. However, existing methods still struggle with limited and unevenly distributed annotated data. Therefore, inspired by the abundant global knowledge stored within pre-trained language models (PLMs), we propose a multi-task prompt learning framework for TRE (TemPrompt), incorporating prompt tuning and contrastive learning to tackle these issues. To elicit more effective prompts for PLMs, we introduce a task-oriented prompt construction approach that thoroughly takes the myriad factors of TRE into consideration for automatic prompt generation. In addition, we present temporal event reasoning as a supplement to bolster the model's focus on events and temporal cues. The experimental results demonstrate that TemPrompt outperforms all compared baselines across the majority of metrics under both standard and few-shot settings. A case study is provided to validate its effectiveness in crowdsourcing scenarios.
comment: I submitted the manuscript without obtaining consent from all co-authors
♻ ☆ Mamo: a Mathematical Modeling Benchmark with Solvers
Mathematical modeling involves representing real-world phenomena, systems, or problems using mathematical expressions and equations to analyze, understand, and predict their behavior. Given that this process typically requires experienced experts, there is an interest in exploring whether Large Language Models (LLMs) can undertake mathematical modeling to potentially decrease human labor. To evaluate of LLMs in mathematical modeling, we introduce a new benchmark, Mamo, that transcends traditional result-oriented assessments. Unlike conventional methods that primarily assess LLMs based on the accuracy of solutions to mathematical problems, our approach offers deeper insight into the modeling process itself. By focusing on the processes LLMs undertake rather than the correctness of their final solutions, Mamo pioneers a novel evaluation paradigm. This shift underscores the importance of understanding the inherent modeling capabilities of LLMs, paving the way for a more nuanced and comprehensive analysis of their problem-solving strategies. Our work marks a significant advancement in the field, suggesting a new direction for future research by emphasizing the evaluation of LLMs' modeling processes over the mere correctness of answers. This benchmark not only facilitates a better understanding of LLMs' mathematical modeling capabilities but also sets a new standard for evaluating their performance in complex problem-solving scenarios.
comment: Project: https://github.com/FreedomIntelligence/Mamo Updates: 1. include more models 2. minor modification of the metric with new results 3. fix some typos 4. add error analysis with examples
♻ ☆ Unveiling Themes in Judicial Proceedings: A Cross-Country Study Using Topic Modeling on Legal Documents from India and the UK
Legal documents are indispensable in every country for legal practices and serve as the primary source of information regarding previous cases and employed statutes. In today's world, with an increasing number of judicial cases, it is crucial to systematically categorize past cases into subgroups, which can then be utilized for upcoming cases and practices. Our primary focus in this endeavor was to annotate cases using topic modeling algorithms such as Latent Dirichlet Allocation, Non-Negative Matrix Factorization, and Bertopic for a collection of lengthy legal documents from India and the UK. This step is crucial for distinguishing the generated labels between the two countries, highlighting the differences in the types of cases that arise in each jurisdiction. Furthermore, an analysis of the timeline of cases from India was conducted to discern the evolution of dominant topics over the years.
♻ ☆ Continual Learning of Large Language Models: A Comprehensive Survey
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at https://github.com/Wang-ML-Lab/llm-continual-learning-survey.
comment: 47 pages, 2 figures, 4 tables. Work in progress
♻ ☆ CFMatch: Aligning Automated Answer Equivalence Evaluation with Expert Judgments For Open-Domain Question Answering
Question answering (QA) can only make progress if we know if an answer is correct, but for many of the most challenging and interesting QA examples, current evaluation metrics to determine answer equivalence (AE) often do not align with human judgments, particularly more verbose, free-form answers from large language models (LLM). There are two challenges: a lack of data and that models are too big: LLM-based scorers can correlate better with human judges, but this task has only been tested on limited QA datasets, and even when available, update of the model is limited because LLMs are large and often expensive. We rectify both of these issues by providing clear and consistent guidelines for evaluating AE in machine QA adopted from professional human QA contests. We also introduce a combination of standard evaluation and a more efficient, robust, and lightweight discriminate AE classifier-based matching method (CFMatch, smaller than 1 MB), trained and validated to more accurately evaluate answer correctness in accordance with adopted expert AE rules that are more aligned with human judgments.
comment: A duplicate and polished version is in arXiv:2402.11161
♻ ☆ Biomedical Visual Instruction Tuning with Clinician Preference Alignment
Recent advancements in multimodal foundation models have showcased impressive capabilities in understanding and reasoning with visual and textual information. Adapting these foundation models trained for general usage to specialized domains like biomedicine requires large-scale domain-specific instruction datasets. While existing works have explored curating such datasets automatically, the resultant datasets are not explicitly aligned with domain expertise. In this work, we propose a data-centric framework, Biomedical Visual Instruction Tuning with Clinician Preference Alignment (BioMed-VITAL), that incorporates clinician preferences into both stages of generating and selecting instruction data for tuning biomedical multimodal foundation models. First, during the generation stage, we prompt the GPT-4V generator with a diverse set of clinician-selected demonstrations for preference-aligned data candidate generation. Then, during the selection phase, we train a separate selection model, which explicitly distills clinician and policy-guided model preferences into a rating function to select high-quality data for medical instruction tuning. Results show that the model tuned with the instruction-following data from our method demonstrates a significant improvement in open visual chat (18.5% relatively) and medical VQA (win rate up to 81.73%). Our instruction-following data and models are available at BioMed-VITAL.github.io.
Computer Vision and Pattern Recognition 23
♻ ☆ Simplex Clustering via sBeta with Applications to Online Adjustment of Black-Box Predictions
We explore clustering the softmax predictions of deep neural networks and introduce a novel probabilistic clustering method, referred to as k-sBetas. In the general context of clustering discrete distributions, the existing methods focused on exploring distortion measures tailored to simplex data, such as the KL divergence, as alternatives to the standard Euclidean distance. We provide a general maximum a posteriori (MAP) perspective of clustering distributions, emphasizing that the statistical models underlying the existing distortion-based methods may not be descriptive enough. Instead, we optimize a mixed-variable objective measuring data conformity within each cluster to the introduced sBeta density function, whose parameters are constrained and estimated jointly with binary assignment variables. Our versatile formulation approximates various parametric densities for modeling simplex data and enables the control of the cluster-balance bias. This yields highly competitive performances for the unsupervised adjustment of black-box model predictions in various scenarios. Our code and comparisons with the existing simplex-clustering approaches and our introduced softmax-prediction benchmarks are publicly available: https://github.com/fchiaroni/Clustering_Softmax_Predictions.
♻ ☆ A Linear Time and Space Local Point Cloud Geometry Encoder via Vectorized Kernel Mixture (VecKM) ICML2024
We propose VecKM, a local point cloud geometry encoder that is descriptive and efficient to compute. VecKM leverages a unique approach by vectorizing a kernel mixture to represent the local point cloud. Such representation's descriptiveness is supported by two theorems that validate its ability to reconstruct and preserve the similarity of the local shape. Unlike existing encoders downsampling the local point cloud, VecKM constructs the local geometry encoding using all neighboring points, producing a more descriptive encoding. Moreover, VecKM is efficient to compute and scalable to large point cloud inputs: VecKM reduces the memory cost from $(n^2+nKd)$ to $(nd+np)$; and reduces the major runtime cost from computing $nK$ MLPs to $n$ MLPs, where $n$ is the size of the point cloud, $K$ is the neighborhood size, $d$ is the encoding dimension, and $p$ is a marginal factor. The efficiency is due to VecKM's unique factorizable property that eliminates the need of explicitly grouping points into neighbors. In the normal estimation task, VecKM demonstrates not only 100x faster inference speed but also highest accuracy and strongest robustness. In classification and segmentation tasks, integrating VecKM as a preprocessing module achieves consistently better performance than the PointNet, PointNet++, and point transformer baselines, and runs consistently faster by up to 10 times.
comment: ICML2024 Conference Paper
♻ ☆ InstantSplat: Unbounded Sparse-view Pose-free Gaussian Splatting in 40 Seconds
While novel view synthesis (NVS) from a sparse set of images has advanced significantly in 3D computer vision, it relies on precise initial estimation of camera parameters using Structure-from-Motion (SfM). For instance, the recently developed Gaussian Splatting depends heavily on the accuracy of SfM-derived points and poses. However, SfM processes are time-consuming and often prove unreliable in sparse-view scenarios, where matched features are scarce, leading to accumulated errors and limited generalization capability across datasets. In this study, we introduce a novel and efficient framework to enhance robust NVS from sparse-view images. Our framework, InstantSplat, integrates multi-view stereo(MVS) predictions with point-based representations to construct 3D Gaussians of large-scale scenes from sparse-view data within seconds, addressing the aforementioned performance and efficiency issues by SfM. Specifically, InstantSplat generates densely populated surface points across all training views and determines the initial camera parameters using pixel-alignment. Nonetheless, the MVS points are not globally accurate, and the pixel-wise prediction from all views results in an excessive Gaussian number, yielding a overparameterized scene representation that compromises both training speed and accuracy. To address this issue, we employ a grid-based, confidence-aware Farthest Point Sampling to strategically position point primitives at representative locations in parallel. Next, we enhance pose accuracy and tune scene parameters through a gradient-based joint optimization framework from self-supervision. By employing this simplified framework, InstantSplat achieves a substantial reduction in training time, from hours to mere seconds, and demonstrates robust performance across various numbers of views in diverse datasets.
comment: Project Page: https://instantsplat.github.io/
♻ ☆ Inconsistency-Aware Cross-Attention for Audio-Visual Fusion in Dimensional Emotion Recognition
Leveraging complementary relationships across modalities has recently drawn a lot of attention in multimodal emotion recognition. Most of the existing approaches explored cross-attention to capture the complementary relationships across the modalities. However, the modalities may also exhibit weak complementary relationships, which may deteriorate the cross-attended features, resulting in poor multimodal feature representations. To address this problem, we propose Inconsistency-Aware Cross-Attention (IACA), which can adaptively select the most relevant features on-the-fly based on the strong or weak complementary relationships across audio and visual modalities. Specifically, we design a two-stage gating mechanism that can adaptively select the appropriate relevant features to deal with weak complementary relationships. Extensive experiments are conducted on the challenging Aff-Wild2 dataset to show the robustness of the proposed model.
comment: arXiv admin note: substantial text overlap with arXiv:2403.19554
♻ ☆ Vox-UDA: Voxel-wise Unsupervised Domain Adaptation for Cryo-Electron Subtomogram Segmentation with Denoised Pseudo Labeling
Cryo-Electron Tomography (cryo-ET) is a 3D imaging technology facilitating the study of macromolecular structures at near-atomic resolution. Recent volumetric segmentation approaches on cryo-ET images have drawn widespread interest in biological sector. However, existing methods heavily rely on manually labeled data, which requires highly professional skills, thereby hindering the adoption of fully-supervised approaches for cryo-ET images. Some unsupervised domain adaptation (UDA) approaches have been designed to enhance the segmentation network performance using unlabeled data. However, applying these methods directly to cryo-ET images segmentation tasks remains challenging due to two main issues: 1) the source data, usually obtained through simulation, contain a certain level of noise, while the target data, directly collected from raw-data from real-world scenario, have unpredictable noise levels. 2) the source data used for training typically consists of known macromoleculars, while the target domain data are often unknown, causing the model's segmenter to be biased towards these known macromolecules, leading to a domain shift problem. To address these challenges, in this work, we introduce the first voxel-wise unsupervised domain adaptation approach, termed Vox-UDA, specifically for cryo-ET subtomogram segmentation. Vox-UDA incorporates a noise generation module to simulate target-like noises in the source dataset for cross-noise level adaptation. Additionally, we propose a denoised pseudo-labeling strategy based on improved Bilateral Filter to alleviate the domain shift problem. Experimental results on both simulated and real cryo-ET subtomogram datasets demonstrate the superiority of our proposed approach compared to state-of-the-art UDA methods.
comment: 11 pages
♻ ☆ Common and Rare Fundus Diseases Identification Using Vision-Language Foundation Model with Knowledge of Over 400 Diseases
Previous foundation models for retinal images were pre-trained with limited disease categories and knowledge base. Here we introduce RetiZero, a vision-language foundation model that leverages knowledge from over 400 fundus diseases. To RetiZero's pre-training, we compiled 341,896 fundus images paired with text descriptions, sourced from public datasets, ophthalmic literature, and online resources, encompassing a diverse range of diseases across multiple ethnicities and countries. RetiZero exhibits superior performance in several downstream tasks, including zero-shot disease recognition, image-to-image retrieval, and internal- and cross-domain disease identification. In zero-shot scenarios, RetiZero achieves Top5 accuracy scores of 0.8430 for 15 fundus diseases and 0.7561 for 52 fundus diseases. For image retrieval, it achieves Top5 scores of 0.9500 and 0.8860 for the same disease sets, respectively. Clinical evaluations show that RetiZero's Top3 zero-shot performance surpasses the average of 19 ophthalmologists from Singapore, China and the United States. Furthermore, RetiZero significantly enhances clinicians' accuracy in diagnosing fundus disease. These findings underscore the value of integrating the RetiZero foundation model into clinical settings, where a variety of fundus diseases are encountered.
♻ ☆ Outlier-Robust Geometric Perception: A Novel Thresholding-Based Estimator with Intra-Class Variance Maximization
Geometric perception problems are fundamental tasks in robotics and computer vision. In real-world applications, they often encounter the inevitable issue of outliers, preventing traditional algorithms from making correct estimates. In this paper, we present a novel general-purpose robust estimator TIVM (Thresholding with Intra-class Variance Maximization) that can collaborate with standard non-minimal solvers to efficiently reject outliers for geometric perception problems. First, we introduce the technique of intra-class variance maximization to design a dynamic 2-group thresholding method on the measurement residuals, aiming to distinctively separate inliers from outliers. Then, we develop an iterative framework that robustly optimizes the model by approaching the pure-inlier group using a multi-layered dynamic thresholding strategy as subroutine, in which a self-adaptive mechanism for layer-number tuning is further employed to minimize the user-defined parameters. We validate the proposed estimator on 3 classic geometric perception problems: rotation averaging, point cloud registration and category-level perception, and experiments show that it is robust against 70--90\% of outliers and can converge typically in only 3--15 iterations, much faster than state-of-the-art robust solvers such as RANSAC, GNC and ADAPT. Furthermore, another highlight is that: our estimator can retain approximately the same level of robustness even when the inlier-noise statistics of the problem are fully unknown.
♻ ☆ Fortify the Guardian, Not the Treasure: Resilient Adversarial Detectors
This paper presents RADAR-Robust Adversarial Detection via Adversarial Retraining-an approach designed to enhance the robustness of adversarial detectors against adaptive attacks, while maintaining classifier performance. An adaptive attack is one where the attacker is aware of the defenses and adapts their strategy accordingly. Our proposed method leverages adversarial training to reinforce the ability to detect attacks, without compromising clean accuracy. During the training phase, we integrate into the dataset adversarial examples, which were optimized to fool both the classifier and the adversarial detector, enabling the adversarial detector to learn and adapt to potential attack scenarios. Experimental evaluations on the CIFAR-10 and SVHN datasets demonstrate that our proposed algorithm significantly improves a detector's ability to accurately identify adaptive adversarial attacks -- without sacrificing clean accuracy.
♻ ☆ WebXR, A-Frame and Networked-Aframe as a Basis for an Open Metaverse: A Conceptual Architecture
This work proposes a WebXR-based cross-platform conceptual architecture, leveraging the A-Frame and Networked-Aframe frameworks, in order to facilitate the development of an open, accessible, and interoperable metaverse. By introducing the concept of spatial web app, this research contributes to the discourse on the metaverse, offering an architecture that democratizes access to virtual environments and extended reality through the web, and aligns with Tim Berners-Lee's original vision of the World Wide Web as an open platform in the digital realm.
comment: draftcls option
♻ ☆ ViDiT-Q: Efficient and Accurate Quantization of Diffusion Transformers for Image and Video Generation
Diffusion transformers (DiTs) have exhibited remarkable performance in visual generation tasks, such as generating realistic images or videos based on textual instructions. However, larger model sizes and multi-frame processing for video generation lead to increased computational and memory costs, posing challenges for practical deployment on edge devices. Post-Training Quantization (PTQ) is an effective method for reducing memory costs and computational complexity. When quantizing diffusion transformers, we find that applying existing diffusion quantization methods designed for U-Net faces challenges in preserving quality. After analyzing the major challenges for quantizing diffusion transformers, we design an improved quantization scheme: "ViDiT-Q": Video and Image Diffusion Transformer Quantization) to address these issues. Furthermore, we identify highly sensitive layers and timesteps hinder quantization for lower bit-widths. To tackle this, we improve ViDiT-Q with a novel metric-decoupled mixed-precision quantization method (ViDiT-Q-MP). We validate the effectiveness of ViDiT-Q across a variety of text-to-image and video models. While baseline quantization methods fail at W8A8 and produce unreadable content at W4A8, ViDiT-Q achieves lossless W8A8 quantization. ViDiTQ-MP achieves W4A8 with negligible visual quality degradation, resulting in a 2.5x memory optimization and a 1.5x latency speedup.
comment: Project Page: https://a-suozhang.xyz/viditq.github.io/
♻ ☆ Learning to Adapt Foundation Model DINOv2 for Capsule Endoscopy Diagnosis
Foundation models have become prominent in computer vision, achieving notable success in various tasks. However, their effectiveness largely depends on pre-training with extensive datasets. Applying foundation models directly to small datasets of capsule endoscopy images from scratch is challenging. Pre-training on broad, general vision datasets is crucial for successfully fine-tuning our model for specific tasks. In this work, we introduce a simplified approach called Adapt foundation models with a low-rank adaptation (LoRA) technique for easier customization. Our method, inspired by the DINOv2 foundation model, applies low-rank adaptation learning to tailor foundation models for capsule endoscopy diagnosis effectively. Unlike traditional fine-tuning methods, our strategy includes LoRA layers designed to absorb specific surgical domain knowledge. During the training process, we keep the main model (the backbone encoder) fixed and focus on optimizing the LoRA layers and the disease classification component. We tested our method on two publicly available datasets for capsule endoscopy disease classification. The results were impressive, with our model achieving 97.75% accuracy on the Kvasir-Capsule dataset and 98.81% on the Kvasirv2 dataset. Our solution demonstrates that foundation models can be adeptly adapted for capsule endoscopy diagnosis, highlighting that mere reliance on straightforward fine-tuning or pre-trained models from general computer vision tasks is inadequate for such specific applications.
comment: To appear in ICBIR 2024
♻ ☆ PUDD: Towards Robust Multi-modal Prototype-based Deepfake Detection CVPR2024
Deepfake techniques generate highly realistic data, making it challenging for humans to discern between actual and artificially generated images. Recent advancements in deep learning-based deepfake detection methods, particularly with diffusion models, have shown remarkable progress. However, there is a growing demand for real-world applications to detect unseen individuals, deepfake techniques, and scenarios. To address this limitation, we propose a Prototype-based Unified Framework for Deepfake Detection (PUDD). PUDD offers a detection system based on similarity, comparing input data against known prototypes for video classification and identifying potential deepfakes or previously unseen classes by analyzing drops in similarity. Our extensive experiments reveal three key findings: (1) PUDD achieves an accuracy of 95.1% on Celeb-DF, outperforming state-of-the-art deepfake detection methods; (2) PUDD leverages image classification as the upstream task during training, demonstrating promising performance in both image classification and deepfake detection tasks during inference; (3) PUDD requires only 2.7 seconds for retraining on new data and emits 10$^{5}$ times less carbon compared to the state-of-the-art model, making it significantly more environmentally friendly.
comment: CVPR2024
♻ ☆ NaVid: Video-based VLM Plans the Next Step for Vision-and-Language Navigation
Vision-and-language navigation (VLN) stands as a key research problem of Embodied AI, aiming at enabling agents to navigate in unseen environments following linguistic instructions. In this field, generalization is a long-standing challenge, either to out-of-distribution scenes or from Sim to Real. In this paper, we propose NaVid, a video-based large vision language model (VLM), to mitigate such a generalization gap. NaVid makes the first endeavor to showcase the capability of VLMs to achieve state-of-the-art level navigation performance without any maps, odometers, or depth inputs. Following human instruction, NaVid only requires an on-the-fly video stream from a monocular RGB camera equipped on the robot to output the next-step action. Our formulation mimics how humans navigate and naturally gets rid of the problems introduced by odometer noises, and the Sim2Real gaps from map or depth inputs. Moreover, our video-based approach can effectively encode the historical observations of robots as spatio-temporal contexts for decision making and instruction following. We train NaVid with 510k navigation samples collected from continuous environments, including action-planning and instruction-reasoning samples, along with 763k large-scale web data. Extensive experiments show that NaVid achieves state-of-the-art performance in simulation environments and the real world, demonstrating superior cross-dataset and Sim2Real transfer. We thus believe our proposed VLM approach plans the next step for not only the navigation agents but also this research field.
comment: Accepted by Robotics: Science and Systems (RSS 2024)
♻ ☆ IntegratedPIFu: Integrated Pixel Aligned Implicit Function for Single-view Human Reconstruction ECCV 2022
We propose IntegratedPIFu, a new pixel aligned implicit model that builds on the foundation set by PIFuHD. IntegratedPIFu shows how depth and human parsing information can be predicted and capitalised upon in a pixel-aligned implicit model. In addition, IntegratedPIFu introduces depth oriented sampling, a novel training scheme that improve any pixel aligned implicit model ability to reconstruct important human features without noisy artefacts. Lastly, IntegratedPIFu presents a new architecture that, despite using less model parameters than PIFuHD, is able to improves the structural correctness of reconstructed meshes. Our results show that IntegratedPIFu significantly outperforms existing state of the arts methods on single view human reconstruction. Our code has been made available online.
comment: Accepted to ECCV 2022
♻ ☆ AdaTreeFormer: Few Shot Domain Adaptation for Tree Counting from a Single High-Resolution Image SP
The process of estimating and counting tree density using only a single aerial or satellite image is a difficult task in the fields of photogrammetry and remote sensing. However, it plays a crucial role in the management of forests. The huge variety of trees in varied topography severely hinders tree counting models to perform well. The purpose of this paper is to propose a framework that is learnt from the source domain with sufficient labeled trees and is adapted to the target domain with only a limited number of labeled trees. Our method, termed as AdaTreeFormer, contains one shared encoder with a hierarchical feature extraction scheme to extract robust features from the source and target domains. It also consists of three subnets: two for extracting self-domain attention maps from source and target domains respectively and one for extracting cross-domain attention maps. For the latter, an attention-to-adapt mechanism is introduced to distill relevant information from different domains while generating tree density maps; a hierarchical cross-domain feature alignment scheme is proposed that progressively aligns the features from the source and target domains. We also adopt adversarial learning into the framework to further reduce the gap between source and target domains. Our AdaTreeFormer is evaluated on six designed domain adaptation tasks using three tree counting datasets, \ie Jiangsu, Yosemite, and London. Experimental results show that AdaTreeFormer significantly surpasses the state of the art, \eg in the cross domain from the Yosemite to Jiangsu dataset, it achieves a reduction of 15.9 points in terms of the absolute counting errors and an increase of 10.8\% in the accuracy of the detected trees' locations. The codes and datasets are available at https://github.com/HAAClassic/AdaTreeFormer.
comment: Accepted in ISPRS Journal of Photogrammetry and Remote Sensing
♻ ☆ Diffusion Schrödinger Bridge Models for High-Quality MR-to-CT Synthesis for Head and Neck Proton Treatment Planning
In recent advancements in proton therapy, MR-based treatment planning is gaining momentum to minimize additional radiation exposure compared to traditional CT-based methods. This transition highlights the critical need for accurate MR-to-CT image synthesis, which is essential for precise proton dose calculations. Our research introduces the Diffusion Schr\"odinger Bridge Models (DSBM), an innovative approach for high-quality MR-to-CT synthesis. DSBM learns the nonlinear diffusion processes between MR and CT data distributions. This method improves upon traditional diffusion models by initiating synthesis from the prior distribution rather than the Gaussian distribution, enhancing both generation quality and efficiency. We validated the effectiveness of DSBM on a head and neck cancer dataset, demonstrating its superiority over traditional image synthesis methods through both image-level and dosimetric-level evaluations. The effectiveness of DSBM in MR-based proton treatment planning highlights its potential as a valuable tool in various clinical scenarios.
comment: International Conference on the use of Computers in Radiation therapy (ICCR)
♻ ☆ Segment Anything Model for automated image data annotation: empirical studies using text prompts from Grounding DINO
Grounding DINO and the Segment Anything Model (SAM) have achieved impressive performance in zero-shot object detection and image segmentation, respectively. Together, they have a great potential to revolutionize applications in zero-shot semantic segmentation or data annotation. Yet, in specialized domains like medical image segmentation, objects of interest (e.g., organs, tissues, and tumors) may not fall in existing class names. To address this problem, the referring expression comprehension (REC) ability of Grounding DINO is leveraged to detect arbitrary targets by their language descriptions. However, recent studies have highlighted severe limitation of the REC framework in this application setting owing to its tendency to make false positive predictions when the target is absent in the given image. And, while this bottleneck is central to the prospect of open-set semantic segmentation, it is still largely unknown how much improvement can be achieved by studying the prediction errors. To this end, we perform empirical studies on six publicly available datasets across different domains and reveal that these errors consistently follow a predictable pattern and can, thus, be mitigated by a simple strategy. Specifically, we show that false positive detections with appreciable confidence scores generally occupy large image areas and can usually be filtered by their relative sizes. More importantly, we expect these observations to inspire future research in improving REC-based detection and automated segmentation. Meanwhile, we evaluate the performance of SAM on multiple datasets from various specialized domains and report significant improvements in segmentation performance and annotation time savings over manual approaches.
♻ ☆ IDLS: Inverse Depth Line based Visual-Inertial SLAM
For robust visual-inertial SLAM in perceptually-challenging indoor environments,recent studies exploit line features to extract descriptive information about scene structure to deal with the degeneracy of point features. But existing point-line-based SLAM methods mainly use Pl\"ucker matrix or orthogonal representation to represent a line, which needs to calculate at least four variables to determine a line. Given the numerous line features to determine in each frame, the overly flexible line representation increases the computation burden and comprises the accuracy of the results. In this paper, we propose inverse depth representation for a line, which models each extracted line feature using only two variables, i.e., the inverse depths of the two ending points. It exploits the fact that the projected line's pixel coordinates on the image plane are rather accurate, which partially restrict the line. Using this compact line presentation, Inverse Depth Line SLAM (IDLS) is proposed to track the line features in SLAM in an accurate and efficient way. A robust line triangulation method and a novel line re-projection error model are introduced. And a two-step optimization method is proposed to firstly determine the lines and then to estimate the camera poses in each frame. IDLS is extensively evaluated in multiple perceptually-challenging datasets. The results show it is more accurate, robust, and needs lower computational overhead than the current state-of-the-art of point-line-based SLAM methods.
♻ ☆ CDFormer:When Degradation Prediction Embraces Diffusion Model for Blind Image Super-Resolution
Existing Blind image Super-Resolution (BSR) methods focus on estimating either kernel or degradation information, but have long overlooked the essential content details. In this paper, we propose a novel BSR approach, Content-aware Degradation-driven Transformer (CDFormer), to capture both degradation and content representations. However, low-resolution images cannot provide enough content details, and thus we introduce a diffusion-based module $CDFormer_{diff}$ to first learn Content Degradation Prior (CDP) in both low- and high-resolution images, and then approximate the real distribution given only low-resolution information. Moreover, we apply an adaptive SR network $CDFormer_{SR}$ that effectively utilizes CDP to refine features. Compared to previous diffusion-based SR methods, we treat the diffusion model as an estimator that can overcome the limitations of expensive sampling time and excessive diversity. Experiments show that CDFormer can outperform existing methods, establishing a new state-of-the-art performance on various benchmarks under blind settings. Codes and models will be available at \href{https://github.com/I2-Multimedia-Lab/CDFormer}{https://github.com/I2-Multimedia-Lab/CDFormer}.
♻ ☆ Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams
Benefiting from the advancements in large language models and cross-modal alignment, existing multi-modal video understanding methods have achieved prominent performance in offline scenario. However, online video streams, as one of the most common media forms in the real world, have seldom received attention. Compared to offline videos, the 'dynamic' nature of online video streams poses challenges for the direct application of existing models and introduces new problems, such as the storage of extremely long-term information, interaction between continuous visual content and 'asynchronous' user questions. Therefore, in this paper we present Flash-VStream, a video-language model that simulates the memory mechanism of human. Our model is able to process extremely long video streams in real-time and respond to user queries simultaneously. Compared to existing models, Flash-VStream achieves significant reductions in inference latency and VRAM consumption, which is intimately related to performing understanding of online streaming video. In addition, given that existing video understanding benchmarks predominantly concentrate on offline scenario, we propose VStream-QA, a novel question answering benchmark specifically designed for online video streaming understanding. Comparisons with popular existing methods on the proposed benchmark demonstrate the superiority of our method for such challenging setting. To verify the generalizability of our approach, we further evaluate it on existing video understanding benchmarks and achieves state-of-the-art performance in offline scenarios as well. All code, models, and datasets are available at the https://invinciblewyq.github.io/vstream-page/
♻ ☆ BMapEst: Estimation of Brain Tissue Probability Maps using a Differentiable MRI Simulator
Reconstructing digital brain phantoms in the form of voxel-based, multi-channeled tissue probability maps for individual subjects is essential for capturing brain anatomical variability, understanding neurological diseases, as well as for testing image processing methods. We demonstrate the first framework that estimates brain tissue probability maps (Grey Matter - GM, White Matter - WM, and Cerebrospinal fluid - CSF) with the help of a Physics-based differentiable MRI simulator that models the magnetization signal at each voxel in the volume. Given an observed $T_1$/$T_2$-weighted MRI scan, the corresponding clinical MRI sequence, and the MRI differentiable simulator, we estimate the simulator's input probability maps by back-propagating the L2 loss between the simulator's output and the $T_1$/$T_2$-weighted scan. This approach has the significant advantage of not relying on any training data and instead uses the strong inductive bias of the MRI simulator. We tested the model on 20 scans from the BrainWeb database and demonstrated a highly accurate reconstruction of GM, WM, and CSF. Our source code is available online: https://github.com/BioMedAI-UCSC/BMapEst.
♻ ☆ Biomedical Visual Instruction Tuning with Clinician Preference Alignment
Recent advancements in multimodal foundation models have showcased impressive capabilities in understanding and reasoning with visual and textual information. Adapting these foundation models trained for general usage to specialized domains like biomedicine requires large-scale domain-specific instruction datasets. While existing works have explored curating such datasets automatically, the resultant datasets are not explicitly aligned with domain expertise. In this work, we propose a data-centric framework, Biomedical Visual Instruction Tuning with Clinician Preference Alignment (BioMed-VITAL), that incorporates clinician preferences into both stages of generating and selecting instruction data for tuning biomedical multimodal foundation models. First, during the generation stage, we prompt the GPT-4V generator with a diverse set of clinician-selected demonstrations for preference-aligned data candidate generation. Then, during the selection phase, we train a separate selection model, which explicitly distills clinician and policy-guided model preferences into a rating function to select high-quality data for medical instruction tuning. Results show that the model tuned with the instruction-following data from our method demonstrates a significant improvement in open visual chat (18.5% relatively) and medical VQA (win rate up to 81.73%). Our instruction-following data and models are available at BioMed-VITAL.github.io.
♻ ☆ AnoFPDM: Anomaly Segmentation with Forward Process of Diffusion Models for Brain MRI
Weakly-supervised diffusion models (DMs) in anomaly segmentation, leveraging image-level labels, have attracted significant attention for their superior performance compared to unsupervised methods. It eliminates the need for pixel-level labels in training, offering a more cost-effective alternative to supervised methods. However, existing methods are not fully weakly-supervised because they heavily rely on costly pixel-level labels for hyperparameter tuning in inference. To tackle this challenge, we introduce Anomaly Segmentation with Forward Process of Diffusion Models (AnoFPDM), a fully weakly-supervised framework that operates without the need of pixel-level labels. Leveraging the unguided forward process as a reference for the guided forward process, we select hyperparameters such as the noise scale, the threshold for segmentation and the guidance strength. We aggregate anomaly maps from guided forward process, enhancing the signal strength of anomalous regions. Remarkably, our proposed method outperforms recent state-of-the-art weakly-supervised approaches, even without utilizing pixel-level labels.
comment: v2: updated introduction, experiments and supplementary material
Information Retrieval 2
♻ ☆ Towards Efficient and Effective Unlearning of Large Language Models for Recommendation
The significant advancements in large language models (LLMs) give rise to a promising research direction, i.e., leveraging LLMs as recommenders (LLMRec). The efficacy of LLMRec arises from the open-world knowledge and reasoning capabilities inherent in LLMs. LLMRec acquires the recommendation capabilities through instruction tuning based on user interaction data. However, in order to protect user privacy and optimize utility, it is also crucial for LLMRec to intentionally forget specific user data, which is generally referred to as recommendation unlearning. In the era of LLMs, recommendation unlearning poses new challenges for LLMRec in terms of \textit{inefficiency} and \textit{ineffectiveness}. Existing unlearning methods require updating billions of parameters in LLMRec, which is costly and time-consuming. Besides, they always impact the model utility during the unlearning process. To this end, we propose \textbf{E2URec}, the first \underline{E}fficient and \underline{E}ffective \underline{U}nlearning method for LLM\underline{Rec}. Our proposed E2URec enhances the unlearning efficiency by updating only a few additional LoRA parameters, and improves the unlearning effectiveness by employing a teacher-student framework, where we maintain multiple teacher networks to guide the unlearning process. Extensive experiments show that E2URec outperforms state-of-the-art baselines on two real-world datasets. Specifically, E2URec can efficiently forget specific data without affecting recommendation performance. The source code is at \url{https://github.com/justarter/E2URec}.
comment: Accepted by Frontier of Computer Science
♻ ☆ LLM-Powered Explanations: Unraveling Recommendations Through Subgraph Reasoning
Recommender systems are pivotal in enhancing user experiences across various web applications by analyzing the complicated relationships between users and items. Knowledge graphs(KGs) have been widely used to enhance the performance of recommender systems. However, KGs are known to be noisy and incomplete, which are hard to provide reliable explanations for recommendation results. An explainable recommender system is crucial for the product development and subsequent decision-making. To address these challenges, we introduce a novel recommender that synergies Large Language Models (LLMs) and KGs to enhance the recommendation and provide interpretable results. Specifically, we first harness the power of LLMs to augment KG reconstruction. LLMs comprehend and decompose user reviews into new triples that are added into KG. In this way, we can enrich KGs with explainable paths that express user preferences. To enhance the recommendation on augmented KGs, we introduce a novel subgraph reasoning module that effectively measures the importance of nodes and discovers reasoning for recommendation. Finally, these reasoning paths are fed into the LLMs to generate interpretable explanations of the recommendation results. Our approach significantly enhances both the effectiveness and interpretability of recommender systems, especially in cross-selling scenarios where traditional methods falter. The effectiveness of our approach has been rigorously tested on four open real-world datasets, with our methods demonstrating a superior performance over contemporary state-of-the-art techniques by an average improvement of 12%. The application of our model in a multinational engineering and technology company cross-selling recommendation system further underscores its practical utility and potential to redefine recommendation practices through improved accuracy and user trust.
Machine Learning 37
♻ ☆ Cost-Efficient Large Language Model Serving for Multi-turn Conversations with CachedAttention ATC
Interacting with humans through multi-turn conversations is a fundamental feature of large language models (LLMs). However, existing LLM serving engines executing multi-turn conversations are inefficient due to the need to repeatedly compute the key-value (KV) caches of historical tokens, incurring high serving costs. To address the problem, this paper proposes CachedAttention, a new attention mechanism that enables reuse of KV caches across multi-turn conversations, significantly reducing the repetitive computation overheads. CachedAttention maintains a hierarchical KV caching system that leverages cost-effective memory/storage mediums to save KV caches for all requests. To reduce KV cache access overheads from slow mediums, CachedAttention employs layer-wise pre-loading and asynchronous saving schemes to overlap the KV cache access with the GPU computation. To ensure that the KV caches to be accessed are placed in the fastest hierarchy, CachedAttention employs scheduler-aware fetching and eviction schemes to consciously place the KV caches in different layers based on the hints from the inference job scheduler. To avoid the invalidation of the saved KV caches incurred by context window overflow, CachedAttention enables the saved KV caches to remain valid via decoupling the positional encoding and effectively truncating the KV caches. Extensive experimental results demonstrate that CachedAttention significantly decreases the time to the first token (TTFT) by up to 87%, improves the prompt prefilling throughput by up to 7.8$\times$ for multi-turn conversations, and reduces the end-to-end inference cost by up to 70%.
comment: Accepted to USENIX Annual Technical Conference (ATC) 2024
♻ ☆ Simplex Clustering via sBeta with Applications to Online Adjustment of Black-Box Predictions
We explore clustering the softmax predictions of deep neural networks and introduce a novel probabilistic clustering method, referred to as k-sBetas. In the general context of clustering discrete distributions, the existing methods focused on exploring distortion measures tailored to simplex data, such as the KL divergence, as alternatives to the standard Euclidean distance. We provide a general maximum a posteriori (MAP) perspective of clustering distributions, emphasizing that the statistical models underlying the existing distortion-based methods may not be descriptive enough. Instead, we optimize a mixed-variable objective measuring data conformity within each cluster to the introduced sBeta density function, whose parameters are constrained and estimated jointly with binary assignment variables. Our versatile formulation approximates various parametric densities for modeling simplex data and enables the control of the cluster-balance bias. This yields highly competitive performances for the unsupervised adjustment of black-box model predictions in various scenarios. Our code and comparisons with the existing simplex-clustering approaches and our introduced softmax-prediction benchmarks are publicly available: https://github.com/fchiaroni/Clustering_Softmax_Predictions.
♻ ☆ LQ-LoRA: Low-rank Plus Quantized Matrix Decomposition for Efficient Language Model Finetuning
We propose a simple approach for memory-efficient adaptation of pretrained language models. Our approach uses an iterative algorithm to decompose each pretrained matrix into a high-precision low-rank component and a memory-efficient quantized component. During finetuning, the quantized component remains fixed and only the low-rank component is updated. We present an integer linear programming formulation of the quantization component which enables dynamic configuration of quantization parameters (e.g., bit-width, block size) for each matrix given an overall target memory budget. We further explore a data-aware version of the algorithm which uses an approximation of the Fisher information matrix to weight the reconstruction objective during matrix decomposition. Experiments on finetuning RoBERTa and LLaMA-2 (7B and 70B) demonstrate that our low-rank plus quantized matrix decomposition approach (LQ-LoRA) outperforms strong QLoRA and GPTQ-LoRA baselines and enables aggressive quantization to sub-3 bits with only minor performance degradations. When finetuned on a language modeling calibration dataset, LQ-LoRA can also be used for model compression; in this setting our 2.75-bit LLaMA-2-70B model (which has 2.85 bits on average when including the low-rank components and requires 27GB of GPU memory) performs respectably compared to the 16-bit baseline.
♻ ☆ Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning
Pursuing causality from data is a fundamental problem in scientific discovery, treatment intervention, and transfer learning. This paper introduces a novel algorithmic method for addressing nonparametric invariance and causality learning in regression models across multiple environments, where the joint distribution of response variables and covariates varies, but the conditional expectations of outcome given an unknown set of quasi-causal variables are invariant. The challenge of finding such an unknown set of quasi-causal or invariant variables is compounded by the presence of endogenous variables that have heterogeneous effects across different environments, including even one of them in the regression would make the estimation inconsistent. The proposed Focused Adversial Invariant Regularization (FAIR) framework utilizes an innovative minimax optimization approach that breaks down the barriers, driving regression models toward prediction-invariant solutions through adversarial testing. Leveraging the representation power of neural networks, FAIR neural networks (FAIR-NN) are introduced for causality pursuit. It is shown that FAIR-NN can find the invariant variables and quasi-causal variables under a minimal identification condition and that the resulting procedure is adaptive to low-dimensional composition structures in a non-asymptotic analysis. Under a structural causal model, variables identified by FAIR-NN represent pragmatic causality and provably align with exact causal mechanisms under conditions of sufficient heterogeneity. Computationally, FAIR-NN employs a novel Gumbel approximation with decreased temperature and stochastic gradient descent ascent algorithm. The procedures are convincingly demonstrated using simulated and real-data examples.
comment: 48 pages, 7 figures with appendix
♻ ☆ Accelerating Reinforcement Learning with Value-Conditional State Entropy Exploration NeurIPS 2024
A promising technique for exploration is to maximize the entropy of visited state distribution, i.e., state entropy, by encouraging uniform coverage of visited state space. While it has been effective for an unsupervised setup, it tends to struggle in a supervised setup with a task reward, where an agent prefers to visit high-value states to exploit the task reward. Such a preference can cause an imbalance between the distributions of high-value states and low-value states, which biases exploration towards low-value state regions as a result of the state entropy increasing when the distribution becomes more uniform. This issue is exacerbated when high-value states are narrowly distributed within the state space, making it difficult for the agent to complete the tasks. In this paper, we present a novel exploration technique that maximizes the value-conditional state entropy, which separately estimates the state entropies that are conditioned on the value estimates of each state, then maximizes their average. By only considering the visited states with similar value estimates for computing the intrinsic bonus, our method prevents the distribution of low-value states from affecting exploration around high-value states, and vice versa. We demonstrate that the proposed alternative to the state entropy baseline significantly accelerates various reinforcement learning algorithms across a variety of tasks within MiniGrid, DeepMind Control Suite, and Meta-World benchmarks. Source code is available at https://sites.google.com/view/rl-vcse.
comment: NeurIPS 2024. Project webpage: https://sites.google.com/view/rl-vcse
♻ ☆ SEMQA: Semi-Extractive Multi-Source Question Answering NAACL 2024
Recently proposed long-form question answering (QA) systems, supported by large language models (LLMs), have shown promising capabilities. Yet, attributing and verifying their generated abstractive answers can be difficult, and automatically evaluating their accuracy remains an ongoing challenge. In this work, we introduce a new QA task for answering multi-answer questions by summarizing multiple diverse sources in a semi-extractive fashion. Specifically, Semi-extractive Multi-source QA (SEMQA) requires models to output a comprehensive answer, while mixing factual quoted spans -- copied verbatim from given input sources -- and non-factual free-text connectors that glue these spans together into a single cohesive passage. This setting bridges the gap between the outputs of well-grounded but constrained extractive QA systems and more fluent but harder to attribute fully abstractive answers. Particularly, it enables a new mode for language models that leverages their advanced language generation capabilities, while also producing fine in-line attributions by-design that are easy to verify, interpret, and evaluate. To study this task, we create the first dataset of this kind, QuoteSum, with human-written semi-extractive answers to natural and generated questions, and define text-based evaluation metrics. Experimenting with several LLMs in various settings, we find this task to be surprisingly challenging, demonstrating the importance of QuoteSum for developing and studying such consolidation capabilities.
comment: NAACL 2024
♻ ☆ Novel Node Category Detection Under Subpopulation Shift ECML-PKDD 2024
In real-world graph data, distribution shifts can manifest in various ways, such as the emergence of new categories and changes in the relative proportions of existing categories. It is often important to detect nodes of novel categories under such distribution shifts for safety or insight discovery purposes. We introduce a new approach, Recall-Constrained Optimization with Selective Link Prediction (RECO-SLIP), to detect nodes belonging to novel categories in attributed graphs under subpopulation shifts. By integrating a recall-constrained learning framework with a sample-efficient link prediction mechanism, RECO-SLIP addresses the dual challenges of resilience against subpopulation shifts and the effective exploitation of graph structure. Our extensive empirical evaluation across multiple graph datasets demonstrates the superior performance of RECO-SLIP over existing methods. The experimental code is available at https://github.com/hsinghuan/novel-node-category-detection.
comment: Accepted to ECML-PKDD 2024
♻ ☆ Conformal Depression Prediction
While existing depression prediction methods based on deep learning show promise, their practical application is hindered by the lack of trustworthiness, as these deep models are often deployed as \textit{black box} models, leaving us uncertain about the confidence of the model predictions. For high-risk clinical applications like depression prediction, uncertainty quantification is essential in decision-making. In this paper, we introduce conformal depression prediction (CDP), a depression prediction method with uncertainty quantification based on conformal prediction (CP), giving valid confidence intervals with theoretical coverage guarantees for the model predictions. CDP is a plug-and-play module that requires neither model retraining nor an assumption about the depression data distribution. As CDP provides only an average coverage guarantee across all inputs rather than per-input performance guarantee, we further propose CDP-ACC, an improved conformal prediction with approximate conditional coverage. CDP-ACC firstly estimates the prediction distribution through neighborhood relaxation, and then introduces a conformal score function by constructing nested sequences, so as to provide a tighter prediction interval for each specific input. We empirically demonstrate the application of CDP in uncertainty-aware depression prediction, as well as the effectiveness and superiority of CDP-ACC on the AVEC 2013 and AVEC 2014 datasets.
♻ ☆ The Benefits of Reusing Batches for Gradient Descent in Two-Layer Networks: Breaking the Curse of Information and Leap Exponents ICML
We investigate the training dynamics of two-layer neural networks when learning multi-index target functions. We focus on multi-pass gradient descent (GD) that reuses the batches multiple times and show that it significantly changes the conclusion about which functions are learnable compared to single-pass gradient descent. In particular, multi-pass GD with finite stepsize is found to overcome the limitations of gradient flow and single-pass GD given by the information exponent (Ben Arous et al., 2021) and leap exponent (Abbe et al., 2023) of the target function. We show that upon re-using batches, the network achieves in just two time steps an overlap with the target subspace even for functions not satisfying the staircase property (Abbe et al., 2021). We characterize the (broad) class of functions efficiently learned in finite time. The proof of our results is based on the analysis of the Dynamical Mean-Field Theory (DMFT). We further provide a closed-form description of the dynamical process of the low-dimensional projections of the weights, and numerical experiments illustrating the theory.
comment: Accepted at the International Conference on Machine Learning (ICML), 2024
♻ ☆ Braced Fourier Continuation and Regression for Anomaly Detection
In this work, the concept of Braced Fourier Continuation and Regression (BFCR) is introduced. BFCR is a novel and computationally efficient means of finding nonlinear regressions or trend lines in arbitrary one-dimensional data sets. The Braced Fourier Continuation (BFC) and BFCR algorithms are first outlined, followed by a discussion of the properties of BFCR as well as demonstrations of how BFCR trend lines may be used effectively for anomaly detection both within and at the edges of arbitrary one-dimensional data sets. Finally, potential issues which may arise while using BFCR for anomaly detection as well as possible mitigation techniques are outlined and discussed. All source code and example data sets are either referenced or available via GitHub, and all associated code is written entirely in Python.
comment: 16 pages, 9 figures, associated Github link: https://github.com/j4sabuda/Braced-Fourier-Continuation-and-Regression -6/30/2024 update corrected and reworded erroneous figure references, minor typos
♻ ☆ Langevin dynamics based algorithm e-TH$\varepsilon$O POULA for stochastic optimization problems with discontinuous stochastic gradient
We introduce a new Langevin dynamics based algorithm, called e-TH$\varepsilon$O POULA, to solve optimization problems with discontinuous stochastic gradients which naturally appear in real-world applications such as quantile estimation, vector quantization, CVaR minimization, and regularized optimization problems involving ReLU neural networks. We demonstrate both theoretically and numerically the applicability of the e-TH$\varepsilon$O POULA algorithm. More precisely, under the conditions that the stochastic gradient is locally Lipschitz in average and satisfies a certain convexity at infinity condition, we establish non-asymptotic error bounds for e-TH$\varepsilon$O POULA in Wasserstein distances and provide a non-asymptotic estimate for the expected excess risk, which can be controlled to be arbitrarily small. Three key applications in finance and insurance are provided, namely, multi-period portfolio optimization, transfer learning in multi-period portfolio optimization, and insurance claim prediction, which involve neural networks with (Leaky)-ReLU activation functions. Numerical experiments conducted using real-world datasets illustrate the superior empirical performance of e-TH$\varepsilon$O POULA compared to SGLD, TUSLA, ADAM, and AMSGrad in terms of model accuracy.
♻ ☆ On the convergence of nonlinear averaging dynamics with three-body interactions on hypergraphs
Complex networked systems in fields such as physics, biology, and social sciences often involve interactions that extend beyond simple pairwise ones. Hypergraphs serve as powerful modeling tools for describing and analyzing the intricate behaviors of systems with multi-body interactions. Herein, we investigate a discrete-time nonlinear averaging dynamics with three-body interactions: an underlying hypergraph, comprising triples as hyperedges, delineates the structure of these interactions, while the vertices update their states through a weighted, state-dependent average of neighboring pairs' states. This dynamics captures reinforcing group effects, such as peer pressure, and exhibits higher-order dynamical effects resulting from a complex interplay between initial states, hypergraph topology, and nonlinearity of the update. Differently from linear averaging dynamics on graphs with two-body interactions, this model does not converge to the average of the initial states but rather induces a shift. By assuming random initial states and by making some regularity and density assumptions on the hypergraph, we prove that the dynamics converges to a multiplicatively-shifted average of the initial states, with high probability. We further characterize the shift as a function of two parameters describing the initial state and interaction strength, as well as the convergence time as a function of the hypergraph structure.
comment: To appear in SIAM Journal on Applied Dynamical Systems
♻ ☆ EAGLE-2: Faster Inference of Language Models with Dynamic Draft Trees
Inference with modern Large Language Models (LLMs) is expensive and time-consuming, and speculative sampling has proven to be an effective solution. Most speculative sampling methods such as EAGLE use a static draft tree, implicitly assuming that the acceptance rate of draft tokens depends only on their position. Interestingly, we found that the acceptance rate of draft tokens is also context-dependent. In this paper, building upon EAGLE, we propose EAGLE-2, which introduces a new technique of context-aware dynamic draft tree into drafting modeling. This improvement leverages the fact that the draft model of EAGLE is well-calibrated: the confidence scores from the draft model approximate acceptance rates with small errors. We conducted extensive evaluations on three series of LLMs and six tasks, with EAGLE-2 achieving speedup ratios 3.05x-4.26x, which is 20%-40% faster than EAGLE-1. EAGLE-2 also ensures that the distribution of the generated text remains unchanged, making it a lossless acceleration algorithm.
♻ ☆ RoboGPT: an intelligent agent of making embodied long-term decisions for daily instruction tasks
Robotic agents must master common sense and long-term sequential decisions to solve daily tasks through natural language instruction. The developments in Large Language Models (LLMs) in natural language processing have inspired efforts to use LLMs in complex robot planning. Despite LLMs' great generalization and comprehension of instruction tasks, LLMs-generated task plans sometimes lack feasibility and correctness. To address the problem, we propose a RoboGPT agent\footnote{our code and dataset will be released soon} for making embodied long-term decisions for daily tasks, with two modules: 1) LLMs-based planning with re-plan to break the task into multiple sub-goals; 2) RoboSkill individually designed for sub-goals to learn better navigation and manipulation skills. The LLMs-based planning is enhanced with a new robotic dataset and re-plan, called RoboGPT. The new robotic dataset of 67k daily instruction tasks is gathered for fine-tuning the Llama model and obtaining RoboGPT. RoboGPT planner with strong generalization can plan hundreds of daily instruction tasks. Additionally, a low-computational Re-Plan module is designed to allow plans to flexibly adapt to the environment, thereby addressing the nomenclature diversity challenge. The proposed RoboGPT agent outperforms SOTA methods on the ALFRED daily tasks. Moreover, RoboGPT planner exceeds SOTA LLM-based planners like ChatGPT in task-planning rationality for hundreds of unseen daily tasks, and even other domain tasks, while keeping the large model's original broad application and generality.
♻ ☆ Two Trades is not Baffled: Condensing Graph via Crafting Rational Gradient Matching
Training on large-scale graphs has achieved remarkable results in graph representation learning, but its cost and storage have raised growing concerns. As one of the most promising directions, graph condensation methods address these issues by employing gradient matching, aiming to condense the full graph into a more concise yet information-rich synthetic set. Though encouraging, these strategies primarily emphasize matching directions of the gradients, which leads to deviations in the training trajectories. Such deviations are further magnified by the differences between the condensation and evaluation phases, culminating in accumulated errors, which detrimentally affect the performance of the condensed graphs. In light of this, we propose a novel graph condensation method named \textbf{C}raf\textbf{T}ing \textbf{R}ationa\textbf{L} trajectory (\textbf{CTRL}), which offers an optimized starting point closer to the original dataset's feature distribution and a more refined strategy for gradient matching. Theoretically, CTRL can effectively neutralize the impact of accumulated errors on the performance of condensed graphs. We provide extensive experiments on various graph datasets and downstream tasks to support the effectiveness of CTRL. Code is released at https://github.com/NUS-HPC-AI-Lab/CTRL.
comment: An effective method for graph condensation
♻ ☆ Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes ICML
Machine Learning (ML) in low-data settings remains an underappreciated yet crucial problem. Hence, data augmentation methods to increase the sample size of datasets needed for ML are key to unlocking the transformative potential of ML in data-deprived regions and domains. Unfortunately, the limited training set constrains traditional tabular synthetic data generators in their ability to generate a large and diverse augmented dataset needed for ML tasks. To address this challenge, we introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime. However, not all the data generated by LLMs will improve downstream utility, as for any generative model. Consequently, we introduce a principled curation mechanism, leveraging learning dynamics, coupled with confidence and uncertainty metrics, to obtain a high-quality dataset. Empirically, on multiple real-world datasets, we demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators. Additionally, we provide insights into the LLM generation and curation mechanism, shedding light on the features that enable them to output high-quality augmented datasets.
comment: Presented at the 41st International Conference on Machine Learning (ICML) 2024. *Seedat & Huynh contributed equally
♻ ☆ Scaffold Splits Overestimate Virtual Screening Performance
Virtual Screening (VS) of vast compound libraries guided by Artificial Intelligence (AI) models is a highly productive approach to early drug discovery. Data splitting is crucial for better benchmarking of such AI models. Traditional random data splits produce similar molecules between training and test sets, conflicting with the reality of VS libraries which mostly contain structurally distinct compounds. Scaffold split, grouping molecules by shared core structure, is widely considered to reflect this real-world scenario. However, here we show that the scaffold split also overestimates VS performance. The reason is that molecules with different chemical scaffolds are often similar, which hence introduces unrealistically high similarities between training molecules and test molecules following a scaffold split. Our study examined three representative AI models on 60 NCI-60 datasets, each with approximately 30,000 to 50,000 molecules tested on a different cancer cell line. Each dataset was split with three methods: scaffold, Butina clustering and the more accurate Uniform Manifold Approximation and Projection (UMAP) clustering. Regardless of the model, model performance is much worse with UMAP splits from the results of the 2100 models trained and evaluated for each algorithm and split. These robust results demonstrate the need for more realistic data splits to tune, compare, and select models for VS. For the same reason, avoiding the scaffold split is also recommended for other molecular property prediction problems. The code to reproduce these results is available at https://github.com/ScaffoldSplitsOverestimateVS
♻ ☆ Interpretable Multi-task Learning with Shared Variable Embeddings
This paper proposes a general interpretable predictive system with shared information. The system is able to perform predictions in a multi-task setting where distinct tasks are not bound to have the same input/output structure. Embeddings of input and output variables in a common space are obtained, where the input embeddings are produced through attending to a set of shared embeddings, reused across tasks. All the embeddings are treated as model parameters and learned. Specific restrictions on the space of shared embedings and the sparsity of the attention mechanism are considered. Experiments show that the introduction of shared embeddings does not deteriorate the results obtained from a vanilla variable embeddings method. We run a number of further ablations. Inducing sparsity in the attention mechanism leads to both an increase in accuracy and a significant decrease in the number of training steps required. Shared embeddings provide a measure of interpretability in terms of both a qualitative assessment and the ability to map specific shared embeddings to pre-defined concepts that are not tailored to the considered model. There seems to be a trade-off between accuracy and interpretability. The basic shared embeddings method favors interpretability, whereas the sparse attention method promotes accuracy. The results lead to the conclusion that variable embedding methods may be extended with shared information to provide increased interpretability and accuracy.
♻ ☆ Partially Observable Stochastic Games with Neural Perception Mechanisms
Stochastic games are a well established model for multi-agent sequential decision making under uncertainty. In practical applications, though, agents often have only partial observability of their environment. Furthermore, agents increasingly perceive their environment using data-driven approaches such as neural networks trained on continuous data. We propose the model of neuro-symbolic partially-observable stochastic games (NS-POSGs), a variant of continuous-space concurrent stochastic games that explicitly incorporates neural perception mechanisms. We focus on a one-sided setting with a partially-informed agent using discrete, data-driven observations and another, fully-informed agent. We present a new method, called one-sided NS-HSVI, for approximate solution of one-sided NS-POSGs, which exploits the piecewise constant structure of the model. Using neural network pre-image analysis to construct finite polyhedral representations and particle-based representations for beliefs, we implement our approach and illustrate its practical applicability to the analysis of pedestrian-vehicle and pursuit-evasion scenarios.
comment: 42 pages, 6 figures. Extended version of paper to be published in FM 2024
♻ ☆ Dynamic Relative Representations for Goal-Oriented Semantic Communications
In future 6G wireless networks, semantic and effectiveness aspects of communications will play a fundamental role, incorporating meaning and relevance into transmissions. However, obstacles arise when devices employ diverse languages, logic, or internal representations, leading to semantic mismatches that might jeopardize understanding. In latent space communication, this challenge manifests as misalignment within high-dimensional representations where deep neural networks encode data. This paper presents a novel framework for goal-oriented semantic communication, leveraging relative representations to mitigate semantic mismatches via latent space alignment. We propose a dynamic optimization strategy that adapts relative representations, communication parameters, and computation resources for energy-efficient, low-latency, goal-oriented semantic communications. Numerical results demonstrate our methodology's effectiveness in mitigating mismatches among devices, while optimizing energy consumption, delay, and effectiveness.
♻ ☆ Plum: Prompt Learning using Metaheuristic ACL 2024
Since the emergence of large language models, prompt learning has become a popular method for optimizing and customizing these models. Special prompts, such as Chain-of-Thought, have even revealed previously unknown reasoning capabilities within these models. However, the progress of discovering effective prompts has been slow, driving a desire for general prompt optimization methods. Unfortunately, few existing prompt learning methods satisfy the criteria of being truly "general", i.e., automatic, discrete, black-box, gradient-free, and interpretable all at once. In this paper, we introduce metaheuristics, a branch of discrete non-convex optimization methods with over 100 options, as a promising approach to prompt learning. Within our paradigm, we test six typical methods: hill climbing, simulated annealing, genetic algorithms with/without crossover, tabu search, and harmony search, demonstrating their effectiveness in white-box and black-box prompt learning. Furthermore, we show that these methods can be used to discover more human-understandable prompts that were previously unknown in both reasoning and image generation tasks, opening the door to a cornucopia of possibilities in prompt optimization. We release all the codes in \url{https://github.com/research4pan/Plum}.
comment: Published at Findings of ACL 2024
♻ ☆ AdaTreeFormer: Few Shot Domain Adaptation for Tree Counting from a Single High-Resolution Image SP
The process of estimating and counting tree density using only a single aerial or satellite image is a difficult task in the fields of photogrammetry and remote sensing. However, it plays a crucial role in the management of forests. The huge variety of trees in varied topography severely hinders tree counting models to perform well. The purpose of this paper is to propose a framework that is learnt from the source domain with sufficient labeled trees and is adapted to the target domain with only a limited number of labeled trees. Our method, termed as AdaTreeFormer, contains one shared encoder with a hierarchical feature extraction scheme to extract robust features from the source and target domains. It also consists of three subnets: two for extracting self-domain attention maps from source and target domains respectively and one for extracting cross-domain attention maps. For the latter, an attention-to-adapt mechanism is introduced to distill relevant information from different domains while generating tree density maps; a hierarchical cross-domain feature alignment scheme is proposed that progressively aligns the features from the source and target domains. We also adopt adversarial learning into the framework to further reduce the gap between source and target domains. Our AdaTreeFormer is evaluated on six designed domain adaptation tasks using three tree counting datasets, \ie Jiangsu, Yosemite, and London. Experimental results show that AdaTreeFormer significantly surpasses the state of the art, \eg in the cross domain from the Yosemite to Jiangsu dataset, it achieves a reduction of 15.9 points in terms of the absolute counting errors and an increase of 10.8\% in the accuracy of the detected trees' locations. The codes and datasets are available at https://github.com/HAAClassic/AdaTreeFormer.
comment: Accepted in ISPRS Journal of Photogrammetry and Remote Sensing
♻ ☆ Reconciling Spatial and Temporal Abstractions for Goal Representation
Goal representation affects the performance of Hierarchical Reinforcement Learning (HRL) algorithms by decomposing the complex learning problem into easier subtasks. Recent studies show that representations that preserve temporally abstract environment dynamics are successful in solving difficult problems and provide theoretical guarantees for optimality. These methods however cannot scale to tasks where environment dynamics increase in complexity i.e. the temporally abstract transition relations depend on larger number of variables. On the other hand, other efforts have tried to use spatial abstraction to mitigate the previous issues. Their limitations include scalability to high dimensional environments and dependency on prior knowledge. In this paper, we propose a novel three-layer HRL algorithm that introduces, at different levels of the hierarchy, both a spatial and a temporal goal abstraction. We provide a theoretical study of the regret bounds of the learned policies. We evaluate the approach on complex continuous control tasks, demonstrating the effectiveness of spatial and temporal abstractions learned by this approach. Find open-source code at https://github.com/cosynus-lix/STAR.
♻ ☆ Machine Learning for Synthetic Data Generation: A Review
Machine learning heavily relies on data, but real-world applications often encounter various data-related issues. These include data of poor quality, insufficient data points leading to under-fitting of machine learning models, and difficulties in data access due to concerns surrounding privacy, safety, and regulations. In light of these challenges, the concept of synthetic data generation emerges as a promising alternative that allows for data sharing and utilization in ways that real-world data cannot facilitate. This paper presents a comprehensive systematic review of existing studies that employ machine learning models for the purpose of generating synthetic data. The review encompasses various perspectives, starting with the applications of synthetic data generation, spanning computer vision, speech, natural language processing, healthcare, and business domains. Additionally, it explores different machine learning methods, with particular emphasis on neural network architectures and deep generative models. The paper also addresses the crucial aspects of privacy and fairness concerns related to synthetic data generation. Furthermore, this study identifies the challenges and opportunities prevalent in this emerging field, shedding light on the potential avenues for future research. By delving into the intricacies of synthetic data generation, this paper aims to contribute to the advancement of knowledge and inspire further exploration in synthetic data generation.
♻ ☆ Heterophily-Aware Graph Attention Network
Graph Neural Networks (GNNs) have shown remarkable success in graph representation learning. Unfortunately, current weight assignment schemes in standard GNNs, such as the calculation based on node degrees or pair-wise representations, can hardly be effective in processing the networks with heterophily, in which the connected nodes usually possess different labels or features. Existing heterophilic GNNs tend to ignore the modeling of heterophily of each edge, which is also a vital part in tackling the heterophily problem. In this paper, we firstly propose a heterophily-aware attention scheme and reveal the benefits of modeling the edge heterophily, i.e., if a GNN assigns different weights to edges according to different heterophilic types, it can learn effective local attention patterns, which enable nodes to acquire appropriate information from distinct neighbors. Then, we propose a novel Heterophily-Aware Graph Attention Network (HA-GAT) by fully exploring and utilizing the local distribution as the underlying heterophily, to handle the networks with different homophily ratios. To demonstrate the effectiveness of the proposed HA-GAT, we analyze the proposed heterophily-aware attention scheme and local distribution exploration, by seeking for an interpretation from their mechanism. Extensive results demonstrate that our HA-GAT achieves state-of-the-art performances on eight datasets with different homophily ratios in both the supervised and semi-supervised node classification tasks.
comment: Accepted by Pattern Recognition
♻ ☆ AB-Training: A Communication-Efficient Approach for Distributed Low-Rank Learning
Communication bottlenecks severely hinder the scalability of distributed neural network training, particularly in high-performance computing (HPC) environments. We introduce AB-training, a novel data-parallel method that leverages low-rank representations and independent training groups to significantly reduce communication overhead. Our experiments demonstrate an average reduction in network traffic of approximately 70.31\% across various scaling scenarios, increasing the training potential of communication-constrained systems and accelerating convergence at scale. AB-training also exhibits a pronounced regularization effect at smaller scales, leading to improved generalization while maintaining or even reducing training time. We achieve a remarkable 44.14 : 1 compression ratio on VGG16 trained on CIFAR-10 with minimal accuracy loss, and outperform traditional data parallel training by 1.55\% on ResNet-50 trained on ImageNet-2012. While AB-training is promising, our findings also reveal that large batch effects persist even in low-rank regimes, underscoring the need for further research into optimized update mechanisms for massively distributed training.
♻ ☆ Segment Anything Model for automated image data annotation: empirical studies using text prompts from Grounding DINO
Grounding DINO and the Segment Anything Model (SAM) have achieved impressive performance in zero-shot object detection and image segmentation, respectively. Together, they have a great potential to revolutionize applications in zero-shot semantic segmentation or data annotation. Yet, in specialized domains like medical image segmentation, objects of interest (e.g., organs, tissues, and tumors) may not fall in existing class names. To address this problem, the referring expression comprehension (REC) ability of Grounding DINO is leveraged to detect arbitrary targets by their language descriptions. However, recent studies have highlighted severe limitation of the REC framework in this application setting owing to its tendency to make false positive predictions when the target is absent in the given image. And, while this bottleneck is central to the prospect of open-set semantic segmentation, it is still largely unknown how much improvement can be achieved by studying the prediction errors. To this end, we perform empirical studies on six publicly available datasets across different domains and reveal that these errors consistently follow a predictable pattern and can, thus, be mitigated by a simple strategy. Specifically, we show that false positive detections with appreciable confidence scores generally occupy large image areas and can usually be filtered by their relative sizes. More importantly, we expect these observations to inspire future research in improving REC-based detection and automated segmentation. Meanwhile, we evaluate the performance of SAM on multiple datasets from various specialized domains and report significant improvements in segmentation performance and annotation time savings over manual approaches.
♻ ☆ Verifying the Generalization of Deep Learning to Out-of-Distribution Domains
Deep neural networks (DNNs) play a crucial role in the field of machine learning, demonstrating state-of-the-art performance across various application domains. However, despite their success, DNN-based models may occasionally exhibit challenges with generalization, i.e., may fail to handle inputs that were not encountered during training. This limitation is a significant challenge when it comes to deploying deep learning for safety-critical tasks, as well as in real-world settings characterized by substantial variability. We introduce a novel approach for harnessing DNN verification technology to identify DNN-driven decision rules that exhibit robust generalization to previously unencountered input domains. Our method assesses generalization within an input domain by measuring the level of agreement between independently trained deep neural networks for inputs in this domain. We also efficiently realize our approach by using off-the-shelf DNN verification engines, and extensively evaluate it on both supervised and unsupervised DNN benchmarks, including a deep reinforcement learning (DRL) system for Internet congestion control -- demonstrating the applicability of our approach for real-world settings. Moreover, our research introduces a fresh objective for formal verification, offering the prospect of mitigating the challenges linked to deploying DNN-driven systems in real-world scenarios.
comment: To appear in the Journal of Automated Reasoning (JAR), 2024. This is an extended version of a CAV 2023 paper, titled: "Verifying Generalization in Deep Learning"
♻ ☆ Time Series Diffusion Method: A Denoising Diffusion Probabilistic Model for Vibration Signal Generation
Diffusion models have demonstrated powerful data generation capabilities in various research fields such as image generation. However, in the field of vibration signal generation, the criteria for evaluating the quality of the generated signal are different from that of image generation and there is a fundamental difference between them. At present, there is no research on the ability of diffusion model to generate vibration signal. In this paper, a Time Series Diffusion Method (TSDM) is proposed for vibration signal generation, leveraging the foundational principles of diffusion models. The TSDM uses an improved U-net architecture with attention block, ResBlock and TimeEmbedding to effectively segment and extract features from one-dimensional time series data. It operates based on forward diffusion and reverse denoising processes for time-series generation. Experimental validation is conducted using single-frequency, multi-frequency datasets, and bearing fault datasets. The results show that TSDM can accurately generate the single-frequency and multi-frequency features in the time series and retain the basic frequency features for the diffusion generation results of the bearing fault series. It is also found that the original DDPM could not generate high quality vibration signals, but the improved U-net in TSDM, which applied the combination of attention block and ResBlock, could effectively improve the quality of vibration signal generation. Finally, TSDM is applied to the small sample fault diagnosis of three public bearing fault datasets, and the results show that the accuracy of small sample fault diagnosis of the three datasets is improved by 32.380%, 18.355% and 9.298% at most, respectively.
♻ ☆ Topology-aware Embedding Memory for Continual Learning on Expanding Networks KDD 2024
Memory replay based techniques have shown great success for continual learning with incrementally accumulated Euclidean data. Directly applying them to continually expanding networks, however, leads to the potential memory explosion problem due to the need to buffer representative nodes and their associated topological neighborhood structures. To this end, we systematically analyze the key challenges in the memory explosion problem, and present a general framework, \textit{i.e.}, Parameter Decoupled Graph Neural Networks (PDGNNs) with Topology-aware Embedding Memory (TEM), to tackle this issue. The proposed framework not only reduces the memory space complexity from $\mathcal{O}(nd^L)$ to $\mathcal{O}(n)$~\footnote{$n$: memory budget, $d$: average node degree, $L$: the radius of the GNN receptive field}, but also fully utilizes the topological information for memory replay. Specifically, PDGNNs decouple trainable parameters from the computation ego-subnetwork via \textit{Topology-aware Embeddings} (TEs), which compress ego-subnetworks into compact vectors (\textit{i.e.}, TEs) to reduce the memory consumption. Based on this framework, we discover a unique \textit{pseudo-training effect} in continual learning on expanding networks and this effect motivates us to develop a novel \textit{coverage maximization sampling} strategy that can enhance the performance with a tight memory budget. Thorough empirical studies demonstrate that, by tackling the memory explosion problem and incorporating topological information into memory replay, PDGNNs with TEM significantly outperform state-of-the-art techniques, especially in the challenging class-incremental setting.
comment: This paper has been accepted by KDD 2024
♻ ☆ Uncertainty-Aware Reward-Free Exploration with General Function Approximation ICML 2024
Mastering multiple tasks through exploration and learning in an environment poses a significant challenge in reinforcement learning (RL). Unsupervised RL has been introduced to address this challenge by training policies with intrinsic rewards rather than extrinsic rewards. However, current intrinsic reward designs and unsupervised RL algorithms often overlook the heterogeneous nature of collected samples, thereby diminishing their sample efficiency. To overcome this limitation, in this paper, we propose a reward-free RL algorithm called \alg. The key idea behind our algorithm is an uncertainty-aware intrinsic reward for exploring the environment and an uncertainty-weighted learning process to handle heterogeneous uncertainty in different samples. Theoretically, we show that in order to find an $\epsilon$-optimal policy, GFA-RFE needs to collect $\tilde{O} (H^2 \log N_{\mathcal F} (\epsilon) \mathrm{dim} (\mathcal F) / \epsilon^2 )$ number of episodes, where $\mathcal F$ is the value function class with covering number $N_{\mathcal F} (\epsilon)$ and generalized eluder dimension $\mathrm{dim} (\mathcal F)$. Such a result outperforms all existing reward-free RL algorithms. We further implement and evaluate GFA-RFE across various domains and tasks in the DeepMind Control Suite. Experiment results show that GFA-RFE outperforms or is comparable to the performance of state-of-the-art unsupervised RL algorithms.
comment: 32 pages, 5 figures, 4 tables, accepted by ICML 2024
♻ ☆ Forecasting the Forced van der Pol Equation with Frequent Phase Shifts Using Reservoir Computing
We tested the performance of reservoir computing (RC) in predicting the dynamics of a certain non-autonomous dynamical system. Specifically, we considered a van del Pol oscillator subjected to periodic external force with frequent phase shifts. The reservoir computer, which was trained and optimized with simulation data generated for a particular phase shift, was designed to predict the oscillation dynamics under periodic external forces with different phase shifts. The results suggest that if the training data have some complexity, it is possible to quantitatively predict the oscillation dynamics exposed to different phase shifts. The setting of this study was motivated by the problem of predicting the state of the circadian rhythm of shift workers and designing a better shift work schedule for each individual. Our results suggest that RC could be exploited for such applications.
♻ ☆ Continual Learning of Large Language Models: A Comprehensive Survey
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at https://github.com/Wang-ML-Lab/llm-continual-learning-survey.
comment: 47 pages, 2 figures, 4 tables. Work in progress
♻ ☆ Compact Proofs of Model Performance via Mechanistic Interpretability ICML
In this work, we propose using mechanistic interpretability -- techniques for reverse engineering model weights into human-interpretable algorithms -- to derive and compactly prove formal guarantees on model performance. We prototype this approach by formally proving lower bounds on the accuracy of 151 small transformers trained on a Max-of-$K$ task. We create 102 different computer-assisted proof strategies and assess their length and tightness of bound on each of our models. Using quantitative metrics, we find that shorter proofs seem to require and provide more mechanistic understanding. Moreover, we find that more faithful mechanistic understanding leads to tighter performance bounds. We confirm these connections by qualitatively examining a subset of our proofs. Finally, we identify compounding structureless noise as a key challenge for using mechanistic interpretability to generate compact proofs on model performance.
comment: accepted to 2024 ICML MI Workshop (Spotlight)
♻ ☆ Counterfactual Fairness through Transforming Data Orthogonal to Bias
Machine learning models have shown exceptional prowess in solving complex issues across various domains. However, these models can sometimes exhibit biased decision-making, resulting in unequal treatment of different groups. Despite substantial research on counterfactual fairness, methods to reduce the impact of multivariate and continuous sensitive variables on decision-making outcomes are still underdeveloped. We propose a novel data pre-processing algorithm, Orthogonal to Bias (OB), which is designed to eliminate the influence of a group of continuous sensitive variables, thus promoting counterfactual fairness in machine learning applications. Our approach, based on the assumption of a jointly normal distribution within a structural causal model (SCM), demonstrates that counterfactual fairness can be achieved by ensuring the data is orthogonal to the observed sensitive variables. The OB algorithm is model-agnostic, making it applicable to a wide range of machine learning models and tasks. Additionally, it includes a sparse variant to improve numerical stability through regularization. Empirical evaluations on both simulated and real-world datasets, encompassing settings with both discrete and continuous sensitive variables, show that our methodology effectively promotes fairer outcomes without compromising accuracy.
♻ ☆ Biomedical Visual Instruction Tuning with Clinician Preference Alignment
Recent advancements in multimodal foundation models have showcased impressive capabilities in understanding and reasoning with visual and textual information. Adapting these foundation models trained for general usage to specialized domains like biomedicine requires large-scale domain-specific instruction datasets. While existing works have explored curating such datasets automatically, the resultant datasets are not explicitly aligned with domain expertise. In this work, we propose a data-centric framework, Biomedical Visual Instruction Tuning with Clinician Preference Alignment (BioMed-VITAL), that incorporates clinician preferences into both stages of generating and selecting instruction data for tuning biomedical multimodal foundation models. First, during the generation stage, we prompt the GPT-4V generator with a diverse set of clinician-selected demonstrations for preference-aligned data candidate generation. Then, during the selection phase, we train a separate selection model, which explicitly distills clinician and policy-guided model preferences into a rating function to select high-quality data for medical instruction tuning. Results show that the model tuned with the instruction-following data from our method demonstrates a significant improvement in open visual chat (18.5% relatively) and medical VQA (win rate up to 81.73%). Our instruction-following data and models are available at BioMed-VITAL.github.io.
♻ ☆ A Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task
Transformers demonstrate impressive performance on a range of reasoning benchmarks. To evaluate the degree to which these abilities are a result of actual reasoning, existing work has focused on developing sophisticated benchmarks for behavioral studies. However, these studies do not provide insights into the internal mechanisms driving the observed capabilities. To improve our understanding of the internal mechanisms of transformers, we present a comprehensive mechanistic analysis of a transformer trained on a synthetic reasoning task. We identify a set of interpretable mechanisms the model uses to solve the task, and validate our findings using correlational and causal evidence. Our results suggest that it implements a depth-bounded recurrent mechanisms that operates in parallel and stores intermediate results in selected token positions. We anticipate that the motifs we identified in our synthetic setting can provide valuable insights into the broader operating principles of transformers and thus provide a basis for understanding more complex models.
Multimedia 2
♻ ☆ AIM: Let Any Multi-modal Large Language Models Embrace Efficient In-Context Learning
In-context learning (ICL) facilitates Large Language Models (LLMs) exhibiting emergent ability on downstream tasks without updating billions of parameters. However, in the area of multi-modal Large Language Models (MLLMs), two problems hinder the application of multi-modal ICL: (1) Most primary MLLMs are only trained on single-image datasets, making them unable to read multi-modal demonstrations. (2) With the demonstrations increasing, thousands of visual tokens highly challenge hardware and degrade ICL performance. During preliminary explorations, we discovered that the inner LLM tends to focus more on the linguistic modality within multi-modal demonstrations to generate responses. Therefore, we propose a general and light-weighted framework \textbf{AIM} to tackle the mentioned problems through \textbf{A}ggregating \textbf{I}mage information of \textbf{M}ultimodal demonstrations to the dense latent space of the corresponding linguistic part. Specifically, AIM first uses the frozen backbone MLLM to read each image-text demonstration and extracts the vector representations on top of the text. These vectors naturally fuse the information of the image-text pair, and AIM transforms them into fused virtual tokens acceptable for the inner LLM via a trainable projection layer. Ultimately, these fused tokens function as variants of multi-modal demonstrations, fed into the MLLM to direct its response to the current query as usual. Because these fused tokens stem from the textual component of the image-text pair, a multi-modal demonstration is nearly reduced to a pure textual demonstration, thus seamlessly applying to any MLLMs. With its de facto MLLM frozen, AIM is parameter-efficient and we train it on public multi-modal web corpora which have nothing to do with downstream test tasks.
♻ ☆ WebXR, A-Frame and Networked-Aframe as a Basis for an Open Metaverse: A Conceptual Architecture
This work proposes a WebXR-based cross-platform conceptual architecture, leveraging the A-Frame and Networked-Aframe frameworks, in order to facilitate the development of an open, accessible, and interoperable metaverse. By introducing the concept of spatial web app, this research contributes to the discourse on the metaverse, offering an architecture that democratizes access to virtual environments and extended reality through the web, and aligns with Tim Berners-Lee's original vision of the World Wide Web as an open platform in the digital realm.
comment: draftcls option
Computation and Language 23
♻ ☆ Improving Word Translation via Two-Stage Contrastive Learning ACL 2022
Word translation or bilingual lexicon induction (BLI) is a key cross-lingual task, aiming to bridge the lexical gap between different languages. In this work, we propose a robust and effective two-stage contrastive learning framework for the BLI task. At Stage C1, we propose to refine standard cross-lingual linear maps between static word embeddings (WEs) via a contrastive learning objective; we also show how to integrate it into the self-learning procedure for even more refined cross-lingual maps. In Stage C2, we conduct BLI-oriented contrastive fine-tuning of mBERT, unlocking its word translation capability. We also show that static WEs induced from the `C2-tuned' mBERT complement static WEs from Stage C1. Comprehensive experiments on standard BLI datasets for diverse languages and different experimental setups demonstrate substantial gains achieved by our framework. While the BLI method from Stage C1 already yields substantial gains over all state-of-the-art BLI methods in our comparison, even stronger improvements are met with the full two-stage framework: e.g., we report gains for 112/112 BLI setups, spanning 28 language pairs.
comment: ACL 2022 Main
♻ ☆ Data Shapley in One Training Run
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts. However, existing approaches require re-training models on different data subsets, which is computationally intensive, foreclosing their application to large-scale models. Furthermore, they produce the same attribution score for any models produced by running the learning algorithm, meaning they cannot perform targeted attribution towards a specific model obtained from a single run of the algorithm. This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest. In its most efficient implementation, our technique incurs negligible additional runtime compared to standard model training. This dramatic efficiency improvement makes it possible to perform data attribution for the foundation model pretraining stage for the first time. We present several case studies that offer fresh insights into pretraining data's contribution and discuss their implications for copyright in generative AI and pretraining data curation.
♻ ☆ Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark NAACL 2024
We introduce Universal NER (UNER), an open, community-driven project to develop gold-standard NER benchmarks in many languages. The overarching goal of UNER is to provide high-quality, cross-lingually consistent annotations to facilitate and standardize multilingual NER research. UNER v1 contains 18 datasets annotated with named entities in a cross-lingual consistent schema across 12 diverse languages. In this paper, we detail the dataset creation and composition of UNER; we also provide initial modeling baselines on both in-language and cross-lingual learning settings. We release the data, code, and fitted models to the public.
comment: NAACL 2024 Camera-ready
♻ ☆ OccamLLM: Fast and Exact Language Model Arithmetic in a Single Step
Despite significant advancements in text generation and reasoning, Large Language Models (LLMs) still face challenges in accurately performing complex arithmetic operations. To achieve accurate calculations, language model systems often enable LLMs to generate code for arithmetic operations. However, this approach compromises speed and security and, if finetuning is involved, risks the language model losing prior capabilities. We propose a framework that enables exact arithmetic in \textit{a single autoregressive step}, providing faster, more secure, and more interpretable LLM systems with arithmetic capabilities. We use the hidden states of an LLM to control a symbolic architecture which performs arithmetic. Our implementation using Llama 3 8B Instruct with OccamNet as a symbolic model (OccamLlama) achieves 100\% accuracy on single arithmetic operations ($+,-,\times,\div,\sin{},\cos{},\log{},\exp{},\sqrt{}$), outperforming GPT 4o and on par with GPT 4o using a code interpreter. OccamLlama also outperforms GPT 4o both with and without a code interpreter on mathematical problem solving benchmarks involving challenging arithmetic, thus enabling small LLMs to match the arithmetic performance of even much larger models. We will make our code public shortly.
♻ ☆ How Well Do Large Language Models Truly Ground? NAACL 2022
To reduce issues like hallucinations and lack of control in Large Language Models (LLMs), a common method is to generate responses by grounding on external contexts given as input, known as knowledge-augmented models. However, previous research often narrowly defines "grounding" as just having the correct answer, which does not ensure the reliability of the entire response. To overcome this, we propose a stricter definition of grounding: a model is truly grounded if it (1) fully utilizes the necessary knowledge from the provided context, and (2) stays within the limits of that knowledge. We introduce a new dataset and a grounding metric to evaluate model capability under the definition. We perform experiments across 25 LLMs of different sizes and training methods and provide insights into factors that influence grounding performance. Our findings contribute to a better understanding of how to improve grounding capabilities and suggest an area of improvement toward more reliable and controllable LLM applications.
comment: published at NAACL 2022
♻ ☆ Question Translation Training for Better Multilingual Reasoning ACL 2024
Large language models show compelling performance on reasoning tasks but they tend to perform much worse in languages other than English. This is unsurprising given that their training data largely consists of English text and instructions. A typical solution is to translate instruction data into all languages of interest, and then train on the resulting multilingual data, which is called translate-training. This approach not only incurs high cost, but also results in poorly translated data due to the non-standard formatting of mathematical chain-of-thought. In this paper, we explore the benefits of question alignment, where we train the model to translate reasoning questions into English by finetuning on X-English parallel question data. In this way we perform targeted, in-domain language alignment which makes best use of English instruction data to unlock the LLMs' multilingual reasoning abilities. Experimental results on LLaMA2-13B show that question alignment leads to consistent improvements over the translate-training approach: an average improvement of 11.3% and 16.1% accuracy across ten languages on the MGSM and MSVAMP multilingual reasoning benchmarks. The project will be available at: https://github.com/NJUNLP/QAlign.
comment: Accepted to Findings of ACL 2024
♻ ☆ OptBA: Optimizing Hyperparameters with the Bees Algorithm for Improved Medical Text Classification
One of the main challenges in the field of deep learning is obtaining the optimal model hyperparameters. The search for optimal hyperparameters usually hinders the progress of solutions to real-world problems such as healthcare. Previous solutions have been proposed, but they can still get stuck in local optima. To overcome this hurdle, we propose OptBA to automatically fine-tune the hyperparameters of deep learning models by leveraging the Bees Algorithm, which is a recent promising swarm intelligence algorithm. In this paper, the optimization problem of OptBA is to maximize the accuracy in classifying ailments using medical text, where initial hyperparameters are iteratively adjusted by specific criteria. Experimental results demonstrate a noteworthy enhancement in accuracy with approximately 1.4%. This outcome highlights the effectiveness of the proposed mechanism in addressing the critical issue of hyperparameter optimization and its potential impact on advancing solutions for healthcare. The code is available publicly at \url{https://github.com/Mai-CS/OptBA}.
♻ ☆ IoT-Based Preventive Mental Health Using Knowledge Graphs and Standards for Better Well-Being
Sustainable Development Goals (SDGs) give the UN a road map for development with Agenda 2030 as a target. SDG3 "Good Health and Well-Being" ensures healthy lives and promotes well-being for all ages. Digital technologies can support SDG3. Burnout and even depression could be reduced by encouraging better preventive health. Due to the lack of patient knowledge and focus to take care of their health, it is necessary to help patients before it is too late. New trends such as positive psychology and mindfulness are highly encouraged in the USA. Digital Twin (DT) can help with the continuous monitoring of emotion using physiological signals (e.g., collected via wearables). Digital twins facilitate monitoring and provide constant health insight to improve quality of life and well-being with better personalization. Healthcare DT challenges are standardizing data formats, communication protocols, and data exchange mechanisms. To achieve those data integration and knowledge challenges, we designed the Mental Health Knowledge Graph (ontology and dataset) to boost mental health. The Knowledge Graph (KG) acquires knowledge from ontology-based mental health projects classified within the LOV4IoT ontology catalog (Emotion, Depression, and Mental Health). Furthermore, the KG is mapped to standards (e.g., ontologies) when possible. Standards from ETSI SmartM2M, ITU/WHO, ISO, W3C, NIST, and IEEE are relevant to mental health.
comment: 20 pages, Book chapter, Smart Technologies for Achieving Good Health and Well-Being: Towards Sustainable Development Goal, Taylor & Francis
♻ ☆ LangGPT: Rethinking Structured Reusable Prompt Design Framework for LLMs from the Programming Language
LLMs have demonstrated commendable performance across diverse domains. Nevertheless, formulating high-quality prompts to instruct LLMs proficiently poses a challenge for non-AI experts. Existing research in prompt engineering suggests somewhat scattered optimization principles and designs empirically dependent prompt optimizers. Unfortunately, these endeavors lack a structured design template, incurring high learning costs and resulting in low reusability. In addition, it is not conducive to the iterative updating of prompts. Inspired by structured reusable programming languages, we propose LangGPT, a dual-layer prompt design framework as the programming language for LLMs. LangGPT has an easy-to-learn normative structure and provides an extended structure for migration and reuse. Experiments illustrate that LangGPT significantly enhances the performance of LLMs. Moreover, the case study shows that LangGPT leads LLMs to generate higher-quality responses. Furthermore, we analyzed the ease of use and reusability of LangGPT through a user survey in our online community.
♻ ☆ XAMPLER: Learning to Retrieve Cross-Lingual In-Context Examples
Recent studies indicate that leveraging off-the-shelf or fine-tuned retrievers, capable of retrieving relevant in-context examples tailored to the input query, enhances few-shot in-context learning of English. However, adapting these methods to other languages, especially low-resource ones, poses challenges due to the scarcity of cross-lingual retrievers and annotated data. Thus, we introduce XAMPLER: Cross-Lingual Example Retrieval, a method tailored to tackle the challenge of cross-lingual in-context learning using only annotated English data. XAMPLER first trains a retriever based on Glot500, a multilingual small language model, using positive and negative English examples constructed from the predictions of a multilingual large language model, i.e., MaLA500. Leveraging the cross-lingual capacity of the retriever, it can directly retrieve English examples as few-shot examples for in-context learning of target languages. Experiments on the multilingual text classification benchmark SIB200 with 176 languages show that XAMPLER substantially improves the in-context learning performance across languages. Our code is available at \url{https://github.com/cisnlp/XAMPLER}.
♻ ☆ LLMs' Classification Performance is Overclaimed
In many classification tasks designed for AI or human to solve, gold labels are typically included within the label space by default, often posed as "which of the following is correct?" This standard setup has traditionally highlighted the strong performance of advanced AI, particularly top-performing Large Language Models (LLMs), in routine classification tasks. However, when the gold label is intentionally excluded from the label space, it becomes evident that LLMs still attempt to select from the available label candidates, even when none are correct. This raises a pivotal question: Do LLMs truly demonstrate their intelligence in understanding the essence of classification tasks? In this study, we evaluate both closed-source and open-source LLMs across representative classification tasks, arguing that the perceived performance of LLMs is overstated due to their inability to exhibit the expected comprehension of the task. This paper makes a threefold contribution: i) To our knowledge, this is the first work to identify the limitations of LLMs in classification tasks when gold labels are absent. We define this task as Classify-w/o-Gold and propose it as a new testbed for LLMs. ii) We introduce a benchmark, Know-No, comprising two existing classification tasks and one new task, to evaluate Classify-w/o-Gold. iii) This work defines and advocates for a new evaluation metric, OmniAccuracy, which assesses LLMs' performance in classification tasks both when gold labels are present and absent.
♻ ☆ LLM-Driven Multimodal Opinion Expression Identification
Opinion Expression Identification (OEI) is essential in NLP for applications ranging from voice assistants to depression diagnosis. This study extends OEI to encompass multimodal inputs, underlining the significance of auditory cues in delivering emotional subtleties beyond the capabilities of text. We introduce a novel multimodal OEI (MOEI) task, integrating text and speech to mirror real-world scenarios. Utilizing CMU MOSEI and IEMOCAP datasets, we construct the CI-MOEI dataset. Additionally, Text-to-Speech (TTS) technology is applied to the MPQA dataset to obtain the CIM-OEI dataset. We design a template for the OEI task to take full advantage of the generative power of large language models (LLMs). Advancing further, we propose an LLM-driven method STOEI, which combines speech and text modal to identify opinion expressions. Our experiments demonstrate that MOEI significantly improves the performance while our method outperforms existing methods by 9.20\% and obtains SOTA results.
comment: 5 pages, 3 Figures, Accept by Interspeech 2024
♻ ☆ Retrieval-style In-Context Learning for Few-shot Hierarchical Text Classification
Hierarchical text classification (HTC) is an important task with broad applications, while few-shot HTC has gained increasing interest recently. While in-context learning (ICL) with large language models (LLMs) has achieved significant success in few-shot learning, it is not as effective for HTC because of the expansive hierarchical label sets and extremely-ambiguous labels. In this work, we introduce the first ICL-based framework with LLM for few-shot HTC. We exploit a retrieval database to identify relevant demonstrations, and an iterative policy to manage multi-layer hierarchical labels. Particularly, we equip the retrieval database with HTC label-aware representations for the input texts, which is achieved by continual training on a pretrained language model with masked language modeling (MLM), layer-wise classification (CLS, specifically for HTC), and a novel divergent contrastive learning (DCL, mainly for adjacent semantically-similar labels) objective. Experimental results on three benchmark datasets demonstrate superior performance of our method, and we can achieve state-of-the-art results in few-shot HTC.
comment: 17 pages
♻ ☆ End-to-End Training for Back-Translation with Categorical Reparameterization Trick
Back-translation (BT) is an effective semi-supervised learning framework in neural machine translation (NMT). A pre-trained NMT model translates monolingual sentences and makes synthetic bilingual sentence pairs for the training of the other NMT model, and vice versa. Understanding the two NMT models as inference and generation models, respectively, the training method of variational auto-encoder (VAE) was applied in previous works, which is a mainstream framework of generative models. However, the discrete property of translated sentences prevents gradient information from flowing between the two NMT models. In this paper, we propose the categorical reparameterization trick (CRT) that makes NMT models generate differentiable sentences so that the VAE's training framework can work in an end-to-end fashion. Our BT experiment conducted on a WMT benchmark dataset demonstrates the superiority of our proposed CRT compared to the Gumbel-softmax trick, which is a popular reparameterization method for categorical variable. Moreover, our experiments conducted on multiple WMT benchmark datasets demonstrate that our proposed end-to-end training framework is effective in terms of BLEU scores not only compared to its counterpart baseline which is not trained in an end-to-end fashion, but also compared to other previous BT works. The code is available at the web.
♻ ☆ Boosting Protein Language Models with Negative Sample Mining ECML-PKDD 2024
We introduce a pioneering methodology for boosting large language models in the domain of protein representation learning. Our primary contribution lies in the refinement process for correlating the over-reliance on co-evolution knowledge, in a way that networks are trained to distill invaluable insights from negative samples, constituted by protein pairs sourced from disparate categories. By capitalizing on this novel approach, our technique steers the training of transformer-based models within the attention score space. This advanced strategy not only amplifies performance but also reflects the nuanced biological behaviors exhibited by proteins, offering aligned evidence with traditional biological mechanisms such as protein-protein interaction. We experimentally observed improved performance on various tasks over datasets, on top of several well-established large protein models. This innovative paradigm opens up promising horizons for further progress in the realms of protein research and computational biology.
comment: 16 pages, 4 figures. Accepted by ECML-PKDD 2024
♻ ☆ Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data
Role-playing agents (RPA) have been a popular application area for large language models (LLMs), attracting significant interest from both industry and academia.While existing RPAs well portray the characters' knowledge and tones, they face challenges in capturing their minds, especially for small role-playing language models (RPLMs). In this paper, we propose to enhance RPLMs via personality-indicative data. Specifically, we leverage questions from psychological scales and distill advanced RPAs to generate dialogues that grasp the minds of characters. Experimental results validate that RPLMs trained with our dataset exhibit advanced role-playing capabilities for both general and personality-related evaluations. Code and data are available at \href{https://github.com/alienet1109/RolePersonality}{this URL}.
comment: 10pages
♻ ☆ Large Language Model Bias Mitigation from the Perspective of Knowledge Editing
Existing debiasing methods inevitably make unreasonable or undesired predictions as they are designated and evaluated to achieve parity across different social groups but leave aside individual facts, resulting in modified existing knowledge. In this paper, we first establish a new bias mitigation benchmark BiasKE leveraging existing and additional constructed datasets, which systematically assesses debiasing performance by complementary metrics on fairness, specificity, and generalization. Meanwhile, we propose a novel debiasing method, Fairness Stamp (FAST), which enables editable fairness through fine-grained calibration on individual biased knowledge. Comprehensive experiments demonstrate that FAST surpasses state-of-the-art baselines with remarkable debiasing performance while not hampering overall model capability for knowledge preservation, highlighting the prospect of fine-grained debiasing strategies for editable fairness in LLMs.
♻ ☆ Self-Supervised Position Debiasing for Large Language Models ACL 2024
Fine-tuning has been demonstrated to be an effective method to improve the domain performance of large language models (LLMs). However, LLMs might fit the dataset bias and shortcuts for prediction, leading to poor generation performance. Previous works have proven that LLMs are prone to exhibit position bias, i.e., leveraging information positioned at the beginning or end, or specific positional cues within the input. Existing debiasing methods for LLMs require external bias knowledge or annotated non-biased samples, which is lacking for position debiasing and impractical in reality. In this work, we propose a self-supervised position debiasing (SOD) framework to mitigate position bias for LLMs. SOD leverages unsupervised responses from pre-trained LLMs for debiasing without relying on any external knowledge. To improve the quality of unsupervised responses, we propose an objective alignment (OAM) module to prune these responses. Experiments on eight datasets and five tasks show that SOD consistently outperforms existing methods in mitigating three types of position biases. Besides, SOD achieves this by sacrificing only a small performance on biased samples, which is general and effective. To facilitate the reproducibility of the results, we share the code of all methods and datasets on https://github.com/LZKSKY/SOD.
comment: Accepted by ACL 2024 findings, this is the camera-ready version; 21 pages, 22 figures
♻ ☆ When large language models meet evolutionary algorithms
Pre-trained large language models (LLMs) have powerful capabilities for generating creative natural text. Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems. Motivated by the common collective and directionality of text generation and evolution, this paper illustrates the parallels between LLMs and EAs, which includes multiple one-to-one key characteristics: token representation and individual representation, position encoding and fitness shaping, position embedding and selection, Transformers block and reproduction, and model training and parameter adaptation. By examining these parallels, we analyze existing interdisciplinary research, with a specific focus on evolutionary fine-tuning and LLM-enhanced EAs. Drawing from these insights, valuable future directions are presented for advancing the integration of LLMs and EAs, while highlighting key challenges along the way. These parallels not only reveal the evolution mechanism behind LLMs but also facilitate the development of evolved artificial agents that approach or surpass biological organisms.
comment: A review article under two review
♻ ☆ Uncertainty Estimation and Quantification for LLMs: A Simple Supervised Approach
In this paper, we study the problem of uncertainty estimation and calibration for LLMs. We first formulate the uncertainty estimation problem for LLMs and then propose a supervised approach that takes advantage of the labeled datasets and estimates the uncertainty of the LLMs' responses. Based on the formulation, we illustrate the difference between the uncertainty estimation for LLMs and that for standard ML models and explain why the hidden neurons of the LLMs may contain uncertainty information. Our designed approach demonstrates the benefits of utilizing hidden activations to enhance uncertainty estimation across various tasks and shows robust transferability in out-of-distribution settings. We distinguish the uncertainty estimation task from the uncertainty calibration task and show that a better uncertainty estimation mode leads to a better calibration performance. Furthermore, our method is easy to implement and adaptable to different levels of model accessibility including black box, grey box, and white box.
comment: 29 pages, 14 figures
♻ ☆ TWIN-GPT: Digital Twins for Clinical Trials via Large Language Model
Clinical trials are indispensable for medical research and the development of new treatments. However, clinical trials often involve thousands of participants and can span several years to complete, with a high probability of failure during the process. Recently, there has been a burgeoning interest in virtual clinical trials, which simulate real-world scenarios and hold the potential to significantly enhance patient safety, expedite development, reduce costs, and contribute to the broader scientific knowledge in healthcare. Existing research often focuses on leveraging electronic health records (EHRs) to support clinical trial outcome prediction. Yet, trained with limited clinical trial outcome data, existing approaches frequently struggle to perform accurate predictions. Some research has attempted to generate EHRs to augment model development but has fallen short in personalizing the generation for individual patient profiles. Recently, the emergence of large language models has illuminated new possibilities, as their embedded comprehensive clinical knowledge has proven beneficial in addressing medical issues. In this paper, we propose a large language model-based digital twin creation approach, called TWIN-GPT. TWIN-GPT can establish cross-dataset associations of medical information given limited data, generating unique personalized digital twins for different patients, thereby preserving individual patient characteristics. Comprehensive experiments show that using digital twins created by TWIN-GPT can boost the clinical trial outcome prediction, exceeding various previous prediction approaches.
♻ ☆ TIC: Translate-Infer-Compile for accurate "text to plan" using LLMs and Logical Representations
We study the problem of generating plans for given natural language planning task requests. On one hand, LLMs excel at natural language processing but do not perform well on planning. On the other hand, classical planning tools excel at planning tasks but require input in a structured language such as the Planning Domain Definition Language (PDDL). We leverage the strengths of both the techniques by using an LLM for generating the PDDL representation (task PDDL) of planning task requests followed by using a classical planner for computing a plan. Unlike previous approaches that use LLMs for generating task PDDLs directly, our approach comprises of (a) translate: using an LLM only for generating a logically interpretable intermediate representation of natural language task description, (b) infer: deriving additional logically dependent information from the intermediate representation using a logic reasoner (currently, Answer Set Programming solver), and (c) compile: generating the target task PDDL from the base and inferred information. We observe that using an LLM to only output the intermediate representation significantly reduces LLM errors. Consequently, TIC approach achieves, for at least one LLM, high accuracy on task PDDL generation for all seven domains of our evaluation dataset.
comment: 20 pages (7 main + 2 references + 11 appendix), 4 figures, 2 tables
♻ ☆ Sycophancy to Subterfuge: Investigating Reward-Tampering in Large Language Models
In reinforcement learning, specification gaming occurs when AI systems learn undesired behaviors that are highly rewarded due to misspecified training goals. Specification gaming can range from simple behaviors like sycophancy to sophisticated and pernicious behaviors like reward-tampering, where a model directly modifies its own reward mechanism. However, these more pernicious behaviors may be too complex to be discovered via exploration. In this paper, we study whether Large Language Model (LLM) assistants which find easily discovered forms of specification gaming will generalize to perform rarer and more blatant forms, up to and including reward-tampering. We construct a curriculum of increasingly sophisticated gameable environments and find that training on early-curriculum environments leads to more specification gaming on remaining environments. Strikingly, a small but non-negligible proportion of the time, LLM assistants trained on the full curriculum generalize zero-shot to directly rewriting their own reward function. Retraining an LLM not to game early-curriculum environments mitigates, but does not eliminate, reward-tampering in later environments. Moreover, adding harmlessness training to our gameable environments does not prevent reward-tampering. These results demonstrate that LLMs can generalize from common forms of specification gaming to more pernicious reward tampering and that such behavior may be nontrivial to remove.
comment: Make it easier to find samples from the model, and highlight that our operational definition of reward tampering has false positives where the model attempts to complete the task honestly but edits the reward. Add paragraph to conclusion to this effect, and add sentence to figure 1 to this effect
Computer Vision and Pattern Recognition 10
♻ ☆ Fast-DiM: Towards Fast Diffusion Morphs
Diffusion Morphs (DiM) are a recent state-of-the-art method for creating high quality face morphs; however, they require a high number of network function evaluations (NFE) to create the morphs. We propose a new DiM pipeline, Fast-DiM, which can create morphs of a similar quality but with fewer NFE. We investigate the ODE solvers used to solve the Probability Flow ODE and the impact they have on the the creation of face morphs. Additionally, we employ an alternative method for encoding images into the latent space of the Diffusion model by solving the Probability Flow ODE as time runs forwards. Our experiments show that we can reduce the NFE by upwards of 85% in the encoding process while experiencing only 1.6\% reduction in Mated Morph Presentation Match Rate (MMPMR). Likewise, we showed we could cut NFE, in the sampling process, in half with only a maximal reduction of 0.23% in MMPMR.
comment: Accepted as a paper in IEEE Security and Privacy
♻ ☆ EmoLLM: Multimodal Emotional Understanding Meets Large Language Models
Multi-modal large language models (MLLMs) have achieved remarkable performance on objective multimodal perception tasks, but their ability to interpret subjective, emotionally nuanced multimodal content remains largely unexplored. Thus, it impedes their ability to effectively understand and react to the intricate emotions expressed by humans through multimodal media. To bridge this gap, we introduce EmoBench, the first comprehensive benchmark designed specifically to evaluate the emotional capabilities of MLLMs across five popular emotional tasks, using a diverse dataset of 287k images and videos paired with corresponding textual instructions. Meanwhile, we propose EmoLLM, a novel model for multimodal emotional understanding, incorporating with two core techniques. 1) Multi-perspective Visual Projection, it captures diverse emotional cues from visual data from multiple perspectives. 2) EmoPrompt, it guides MLLMs to reason about emotions in the correct direction. Experimental results demonstrate that EmoLLM significantly elevates multimodal emotional understanding performance, with an average improvement of 12.1% across multiple foundation models on EmoBench. Our work contributes to the advancement of MLLMs by facilitating a deeper and more nuanced comprehension of intricate human emotions, paving the way for the development of artificial emotional intelligence capabilities with wide-ranging applications in areas such as human-computer interaction, mental health support, and empathetic AI systems. Code, data, and model will be released.
comment: 9 pages
♻ ☆ Progressive Visual Prompt Learning with Contrastive Feature Re-formation
Prompt learning has been designed as an alternative to fine-tuning for adapting Vision-language (V-L) models to the downstream tasks. Previous works mainly focus on text prompt while visual prompt works are limited for V-L models. The existing visual prompt methods endure either mediocre performance or unstable training process, indicating the difficulty of visual prompt learning. In this paper, we propose a new Progressive Visual Prompt (ProVP) structure to strengthen the interactions among prompts of different layers. More importantly, our ProVP could effectively propagate the image embeddings to deep layers and behave partially similar to an instance adaptive prompt method. To alleviate generalization deterioration, we further propose a new contrastive feature re-formation, which prevents the serious deviation of the prompted visual feature from the fixed CLIP visual feature distribution. Combining both, our method (ProVP-Ref) is evaluated on 11 image benchmark datasets and achieves 7/11 state-of-theart results on both few-shot and base-to-novel settings. To the best of our knowledge, we are the first to demonstrate the superior performance of visual prompts in V-L models to previous prompt-based methods in downstream tasks. Meanwhile, it implies that our ProVP-Ref shows the best capability to adapt and to generalize.
comment: IJCV 2024 Accepted
♻ ☆ Which Backbone to Use: A Resource-efficient Domain Specific Comparison for Computer Vision
In contemporary computer vision applications, particularly image classification, architectural backbones pre-trained on large datasets like ImageNet are commonly employed as feature extractors. Despite the widespread use of these pre-trained convolutional neural networks (CNNs), there remains a gap in understanding the performance of various resource-efficient backbones across diverse domains and dataset sizes. Our study systematically evaluates multiple lightweight, pre-trained CNN backbones under consistent training settings across a variety of datasets, including natural images, medical images, galaxy images, and remote sensing images. This comprehensive analysis aims to aid machine learning practitioners in selecting the most suitable backbone for their specific problem, especially in scenarios involving small datasets where fine-tuning a pre-trained network is crucial. Even though attention-based architectures are gaining popularity, we observed that they tend to perform poorly under low data finetuning tasks compared to CNNs. We also observed that some CNN architectures such as ConvNeXt, RegNet and EfficientNet performs well compared to others on a diverse set of domains consistently. Our findings provide actionable insights into the performance trade-offs and effectiveness of different backbones, facilitating informed decision-making in model selection for a broad spectrum of computer vision domains. Our code is available here: https://github.com/pranavphoenix/Backbones
comment: 12 pages, 2 figures
♻ ☆ Challenging Forgets: Unveiling the Worst-Case Forget Sets in Machine Unlearning
The trustworthy machine learning (ML) community is increasingly recognizing the crucial need for models capable of selectively 'unlearning' data points after training. This leads to the problem of machine unlearning (MU), aiming to eliminate the influence of chosen data points on model performance, while still maintaining the model's utility post-unlearning. Despite various MU methods for data influence erasure, evaluations have largely focused on random data forgetting, ignoring the vital inquiry into which subset should be chosen to truly gauge the authenticity of unlearning performance. To tackle this issue, we introduce a new evaluative angle for MU from an adversarial viewpoint. We propose identifying the data subset that presents the most significant challenge for influence erasure, i.e., pinpointing the worst-case forget set. Utilizing a bi-level optimization principle, we amplify unlearning challenges at the upper optimization level to emulate worst-case scenarios, while simultaneously engaging in standard training and unlearning at the lower level, achieving a balance between data influence erasure and model utility. Our proposal offers a worst-case evaluation of MU's resilience and effectiveness. Through extensive experiments across different datasets (including CIFAR-10, 100, CelebA, Tiny ImageNet, and ImageNet) and models (including both image classifiers and generative models), we expose critical pros and cons in existing (approximate) unlearning strategies. Our results illuminate the complex challenges of MU in practice, guiding the future development of more accurate and robust unlearning algorithms. The code is available at https://github.com/OPTML-Group/Unlearn-WorstCase.
♻ ☆ Predictive Accuracy-Based Active Learning for Medical Image Segmentation
Active learning is considered a viable solution to alleviate the contradiction between the high dependency of deep learning-based segmentation methods on annotated data and the expensive pixel-level annotation cost of medical images. However, most existing methods suffer from unreliable uncertainty assessment and the struggle to balance diversity and informativeness, leading to poor performance in segmentation tasks. In response, we propose an efficient Predictive Accuracy-based Active Learning (PAAL) method for medical image segmentation, first introducing predictive accuracy to define uncertainty. Specifically, PAAL mainly consists of an Accuracy Predictor (AP) and a Weighted Polling Strategy (WPS). The former is an attached learnable module that can accurately predict the segmentation accuracy of unlabeled samples relative to the target model with the predicted posterior probability. The latter provides an efficient hybrid querying scheme by combining predicted accuracy and feature representation, aiming to ensure the uncertainty and diversity of the acquired samples. Extensive experiment results on multiple datasets demonstrate the superiority of PAAL. PAAL achieves comparable accuracy to fully annotated data while reducing annotation costs by approximately 50% to 80%, showcasing significant potential in clinical applications. The code is available at https://github.com/shijun18/PAAL-MedSeg.
comment: 9 pages, 4 figures
♻ ☆ Holmes-VAD: Towards Unbiased and Explainable Video Anomaly Detection via Multi-modal LLM
Towards open-ended Video Anomaly Detection (VAD), existing methods often exhibit biased detection when faced with challenging or unseen events and lack interpretability. To address these drawbacks, we propose Holmes-VAD, a novel framework that leverages precise temporal supervision and rich multimodal instructions to enable accurate anomaly localization and comprehensive explanations. Firstly, towards unbiased and explainable VAD system, we construct the first large-scale multimodal VAD instruction-tuning benchmark, i.e., VAD-Instruct50k. This dataset is created using a carefully designed semi-automatic labeling paradigm. Efficient single-frame annotations are applied to the collected untrimmed videos, which are then synthesized into high-quality analyses of both abnormal and normal video clips using a robust off-the-shelf video captioner and a large language model (LLM). Building upon the VAD-Instruct50k dataset, we develop a customized solution for interpretable video anomaly detection. We train a lightweight temporal sampler to select frames with high anomaly response and fine-tune a multimodal large language model (LLM) to generate explanatory content. Extensive experimental results validate the generality and interpretability of the proposed Holmes-VAD, establishing it as a novel interpretable technique for real-world video anomaly analysis. To support the community, our benchmark and model will be publicly available at https://holmesvad.github.io.
comment: 19 pages, 9 figures
♻ ☆ VMRNN: Integrating Vision Mamba and LSTM for Efficient and Accurate Spatiotemporal Forecasting CVPR2024
Combining CNNs or ViTs, with RNNs for spatiotemporal forecasting, has yielded unparalleled results in predicting temporal and spatial dynamics. However, modeling extensive global information remains a formidable challenge; CNNs are limited by their narrow receptive fields, and ViTs struggle with the intensive computational demands of their attention mechanisms. The emergence of recent Mamba-based architectures has been met with enthusiasm for their exceptional long-sequence modeling capabilities, surpassing established vision models in efficiency and accuracy, which motivates us to develop an innovative architecture tailored for spatiotemporal forecasting. In this paper, we propose the VMRNN cell, a new recurrent unit that integrates the strengths of Vision Mamba blocks with LSTM. We construct a network centered on VMRNN cells to tackle spatiotemporal prediction tasks effectively. Our extensive evaluations show that our proposed approach secures competitive results on a variety of tasks while maintaining a smaller model size. Our code is available at https://github.com/yyyujintang/VMRNN-PyTorch.
comment: CVPR2024 Precognition Workshop
♻ ☆ Research on Foundation Model for Spatial Data Intelligence: China's 2024 White Paper on Strategic Development of Spatial Data Intelligence
This report focuses on spatial data intelligent large models, delving into the principles, methods, and cutting-edge applications of these models. It provides an in-depth discussion on the definition, development history, current status, and trends of spatial data intelligent large models, as well as the challenges they face. The report systematically elucidates the key technologies of spatial data intelligent large models and their applications in urban environments, aerospace remote sensing, geography, transportation, and other scenarios. Additionally, it summarizes the latest application cases of spatial data intelligent large models in themes such as urban development, multimodal systems, remote sensing, smart transportation, and resource environments. Finally, the report concludes with an overview and outlook on the development prospects of spatial data intelligent large models.
comment: in Chinese language
♻ ☆ PneumoLLM: Harnessing the Power of Large Language Model for Pneumoconiosis Diagnosis
The conventional pretraining-and-finetuning paradigm, while effective for common diseases with ample data, faces challenges in diagnosing data-scarce occupational diseases like pneumoconiosis. Recently, large language models (LLMs) have exhibits unprecedented ability when conducting multiple tasks in dialogue, bringing opportunities to diagnosis. A common strategy might involve using adapter layers for vision-language alignment and diagnosis in a dialogic manner. Yet, this approach often requires optimization of extensive learnable parameters in the text branch and the dialogue head, potentially diminishing the LLMs' efficacy, especially with limited training data. In our work, we innovate by eliminating the text branch and substituting the dialogue head with a classification head. This approach presents a more effective method for harnessing LLMs in diagnosis with fewer learnable parameters. Furthermore, to balance the retention of detailed image information with progression towards accurate diagnosis, we introduce the contextual multi-token engine. This engine is specialized in adaptively generating diagnostic tokens. Additionally, we propose the information emitter module, which unidirectionally emits information from image tokens to diagnosis tokens. Comprehensive experiments validate the superiority of our methods and the effectiveness of proposed modules. Our codes can be found at https://github.com/CodeMonsterPHD/PneumoLLM/tree/main.
comment: Medical Image Analysis
Information Retrieval 4
♻ ☆ Improving Word Translation via Two-Stage Contrastive Learning ACL 2022
Word translation or bilingual lexicon induction (BLI) is a key cross-lingual task, aiming to bridge the lexical gap between different languages. In this work, we propose a robust and effective two-stage contrastive learning framework for the BLI task. At Stage C1, we propose to refine standard cross-lingual linear maps between static word embeddings (WEs) via a contrastive learning objective; we also show how to integrate it into the self-learning procedure for even more refined cross-lingual maps. In Stage C2, we conduct BLI-oriented contrastive fine-tuning of mBERT, unlocking its word translation capability. We also show that static WEs induced from the `C2-tuned' mBERT complement static WEs from Stage C1. Comprehensive experiments on standard BLI datasets for diverse languages and different experimental setups demonstrate substantial gains achieved by our framework. While the BLI method from Stage C1 already yields substantial gains over all state-of-the-art BLI methods in our comparison, even stronger improvements are met with the full two-stage framework: e.g., we report gains for 112/112 BLI setups, spanning 28 language pairs.
comment: ACL 2022 Main
♻ ☆ Exploring the Best Practices of Query Expansion with Large Language Models
Large Language Models (LLMs) are foundational in language technologies, particularly in information retrieval (IR). Previous studies have utilized LLMs for query expansion, achieving notable improvements in IR. In this paper, we thoroughly explore the best practice of leveraging LLMs for query expansion. To this end, we introduce a training-free, straightforward yet effective framework called Multi-Text Generation Integration (\textsc{MuGI}). It leverages LLMs to generate multiple pseudo-references, integrating them with queries to enhance both sparse and dense retrievers. Our empirical findings reveal that: (1) Increasing the number of samples from LLMs benefits IR systems; (2) A balance between the query and pseudo-documents, and an effective integration strategy, is critical for high performance; (3) Contextual information from LLMs is essential, even boost a 23M model to outperform a 7B baseline model; (4) Pseudo relevance feedback can further calibrate queries for improved performance; and (5) Query expansion is widely applicable and versatile, consistently enhancing models ranging from 23M to 7B parameters. Our code and all generated references are made available at \url{https://github.com/lezhang7/Retrieval_MuGI}
♻ ☆ Mamba4Rec: Towards Efficient Sequential Recommendation with Selective State Space Models
Sequential recommendation aims to estimate the dynamic user preferences and sequential dependencies among historical user behaviors. Although Transformer-based models have proven to be effective for sequential recommendation, they suffer from the inference inefficiency problem stemming from the quadratic computational complexity of attention operators, especially for long behavior sequences. Inspired by the recent success of state space models (SSMs), we propose Mamba4Rec, which is the first work to explore the potential of selective SSMs for efficient sequential recommendation. Built upon the basic Mamba block which is a selective SSM with an efficient hardware-aware parallel algorithm, we design a series of sequential modeling techniques to further promote model performance while maintaining inference efficiency. Through experiments on public datasets, we demonstrate how Mamba4Rec effectively tackles the effectiveness-efficiency dilemma, outperforming both RNN- and attention-based baselines in terms of both effectiveness and efficiency. The code is available at https://github.com/chengkai-liu/Mamba4Rec.
♻ ☆ Wasserstein Dependent Graph Attention Network for Collaborative Filtering with Uncertainty
Collaborative filtering (CF) is an essential technique in recommender systems that provides personalized recommendations by only leveraging user-item interactions. However, most CF methods represent users and items as fixed points in the latent space, lacking the ability to capture uncertainty. While probabilistic embedding is proposed to intergrate uncertainty, they suffer from several limitations when introduced to graph-based recommender systems. Graph convolutional network framework would confuse the semantic of uncertainty in the nodes, and similarity measured by Kullback-Leibler (KL) divergence suffers from degradation problem and demands an exponential number of samples. To address these challenges, we propose a novel approach, called the Wasserstein dependent Graph Attention network (W-GAT), for collaborative filtering with uncertainty. We utilize graph attention network and Wasserstein distance to learn Gaussian embedding for each user and item. Additionally, our method incorporates Wasserstein-dependent mutual information further to increase the similarity between positive pairs. Experimental results on three benchmark datasets show the superiority of W-GAT compared to several representative baselines. Extensive experimental analysis validates the effectiveness of W-GAT in capturing uncertainty by modeling the range of user preferences and categories associated with items.
comment: Accepted by IEEE TCSS
Machine Learning 31
♻ ☆ Meta-Learning Loss Functions for Deep Neural Networks
Humans can often quickly and efficiently solve complex new learning tasks given only a small set of examples. In contrast, modern artificially intelligent systems often require thousands or millions of observations in order to solve even the most basic tasks. Meta-learning aims to resolve this issue by leveraging past experiences from similar learning tasks to embed the appropriate inductive biases into the learning system. Historically methods for meta-learning components such as optimizers, parameter initializations, and more have led to significant performance increases. This thesis aims to explore the concept of meta-learning to improve performance, through the often-overlooked component of the loss function. The loss function is a vital component of a learning system, as it represents the primary learning objective, where success is determined and quantified by the system's ability to optimize for that objective successfully.
comment: PhD thesis
♻ ☆ Improving Word Translation via Two-Stage Contrastive Learning ACL 2022
Word translation or bilingual lexicon induction (BLI) is a key cross-lingual task, aiming to bridge the lexical gap between different languages. In this work, we propose a robust and effective two-stage contrastive learning framework for the BLI task. At Stage C1, we propose to refine standard cross-lingual linear maps between static word embeddings (WEs) via a contrastive learning objective; we also show how to integrate it into the self-learning procedure for even more refined cross-lingual maps. In Stage C2, we conduct BLI-oriented contrastive fine-tuning of mBERT, unlocking its word translation capability. We also show that static WEs induced from the `C2-tuned' mBERT complement static WEs from Stage C1. Comprehensive experiments on standard BLI datasets for diverse languages and different experimental setups demonstrate substantial gains achieved by our framework. While the BLI method from Stage C1 already yields substantial gains over all state-of-the-art BLI methods in our comparison, even stronger improvements are met with the full two-stage framework: e.g., we report gains for 112/112 BLI setups, spanning 28 language pairs.
comment: ACL 2022 Main
♻ ☆ Data Shapley in One Training Run
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts. However, existing approaches require re-training models on different data subsets, which is computationally intensive, foreclosing their application to large-scale models. Furthermore, they produce the same attribution score for any models produced by running the learning algorithm, meaning they cannot perform targeted attribution towards a specific model obtained from a single run of the algorithm. This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest. In its most efficient implementation, our technique incurs negligible additional runtime compared to standard model training. This dramatic efficiency improvement makes it possible to perform data attribution for the foundation model pretraining stage for the first time. We present several case studies that offer fresh insights into pretraining data's contribution and discuss their implications for copyright in generative AI and pretraining data curation.
♻ ☆ Regularization-Based Efficient Continual Learning in Deep State-Space Models
Deep state-space models (DSSMs) have gained popularity in recent years due to their potent modeling capacity for dynamic systems. However, existing DSSM works are limited to single-task modeling, which requires retraining with historical task data upon revisiting a forepassed task. To address this limitation, we propose continual learning DSSMs (CLDSSMs), which are capable of adapting to evolving tasks without catastrophic forgetting. Our proposed CLDSSMs integrate mainstream regularization-based continual learning (CL) methods, ensuring efficient updates with constant computational and memory costs for modeling multiple dynamic systems. We also conduct a comprehensive cost analysis of each CL method applied to the respective CLDSSMs, and demonstrate the efficacy of CLDSSMs through experiments on real-world datasets. The results corroborate that while various competing CL methods exhibit different merits, the proposed CLDSSMs consistently outperform traditional DSSMs in terms of effectively addressing catastrophic forgetting, enabling swift and accurate parameter transfer to new tasks.
comment: 7 pages, 14 figures
♻ ☆ Interpretable Fine-Tuning and Error Indication for Graph Neural Network Surrogate Models
Data-driven surrogate modeling has surged in capability in recent years with the emergence of graph neural networks (GNNs), which can operate directly on mesh-based representations of data. The goal of this work is to introduce an interpretable fine-tuning strategy for GNNs, with application to unstructured mesh-based fluid dynamics modeling. The end result is an enhanced fine-tuned model that isolates regions in physical space, corresponding to sub-graphs, that are intrinsically linked to the forecasting task while retaining the predictive capability of the baseline. These structures, identified by the fine-tuned GNNs, are adaptively produced in the forward pass and serve as explainable links between the baseline model architecture, the optimization goal, and known problem-specific physics. Additionally, through a regularization procedure, the fine-tuned GNNs can also be used to identify, during inference, graph nodes that correspond to a majority of the anticipated forecasting error, adding a novel interpretable error-tagging capability to baseline models. Demonstrations are performed using unstructured flow field data sourced from flow over a backward-facing step at high Reynolds numbers, with geometry extrapolations demonstrated for ramp and wall-mounted cube configurations.
♻ ☆ Causal K-Means Clustering
Causal effects are often characterized with population summaries. These might provide an incomplete picture when there are heterogeneous treatment effects across subgroups. Since the subgroup structure is typically unknown, it is more challenging to identify and evaluate subgroup effects than population effects. We propose a new solution to this problem: Causal k-Means Clustering, which harnesses the widely-used k-means clustering algorithm to uncover the unknown subgroup structure. Our problem differs significantly from the conventional clustering setup since the variables to be clustered are unknown counterfactual functions. We present a plug-in estimator which is simple and readily implementable using off-the-shelf algorithms, and study its rate of convergence. We also develop a new bias-corrected estimator based on nonparametric efficiency theory and double machine learning, and show that this estimator achieves fast root-n rates and asymptotic normality in large nonparametric models. Our proposed methods are especially useful for modern outcome-wide studies with multiple treatment levels. Further, our framework is extensible to clustering with generic pseudo-outcomes, such as partially observed outcomes or otherwise unknown functions. Finally, we explore finite sample properties via simulation, and illustrate the proposed methods in a study of treatment programs for adolescent substance abuse.
♻ ☆ An Effective Software Risk Prediction Management Analysis of Data Using Machine Learning and Data Mining Method
For one to guarantee higher-quality software development processes, risk management is essential. Furthermore, risks are those that could negatively impact an organization's operations or a project's progress. The appropriate prioritisation of software project risks is a crucial factor in ascertaining the software project's performance features and eventual success. They can be used harmoniously with the same training samples and have good complement and compatibility. We carried out in-depth tests on four benchmark datasets to confirm the efficacy of our CIA approach in closed-world and open-world scenarios, with and without defence. We also present a sequential augmentation parameter optimisation technique that captures the interdependencies of the latest deep learning state-of-the-art WF attack models. To achieve precise software risk assessment, the enhanced crow search algorithm (ECSA) is used to modify the ANFIS settings. Solutions that very slightly alter the local optimum and stay inside it are extracted using the ECSA. ANFIS variable when utilising the ANFIS technique. An experimental validation with NASA 93 dataset and 93 software project values was performed. This method's output presents a clear image of the software risk elements that are essential to achieving project performance. The results of our experiments show that, when compared to other current methods, our integrative fuzzy techniques may perform more accurately and effectively in the evaluation of software project risks.
♻ ☆ Synthetic Programming Elicitation and Repair for Text-to-Code in Very Low-Resource Programming Languages
Recent advances in large language models (LLMs) for code applications have demonstrated remarkable zero-shot fluency and instruction following on challenging code related tasks ranging from test case generation to self-repair. Unsurprisingly, however, models struggle to compose syntactically valid programs in programming languages unrepresented in pre-training, referred to as very low-resource Programming Languages (VLPLs). VLPLs appear in crucial settings, including domain-specific languages for internal tools and tool-chains for legacy languages. Inspired by an HCI technique called natural program elicitation, we propose designing an intermediate language that LLMs ``naturally'' know how to use and which can be automatically compiled to a target VLPL. When LLMs generate code that lies outside of this intermediate language, we use compiler techniques to repair the code into programs in the intermediate language. Overall, we introduce \emph{synthetic programming elicitation and compilation} (SPEAC), an approach that enables LLMs to generate syntactically valid code even for VLPLs. We empirically evaluate the performance of SPEAC in a case study and find that, compared to existing retrieval and fine-tuning baselines, SPEAC produces syntactically correct programs significantly more frequently without sacrificing semantic correctness.
comment: 15 pages, 6 figures, 1 table
♻ ☆ A Library of Mirrors: Deep Neural Nets in Low Dimensions are Convex Lasso Models with Reflection Features
We prove that training neural networks on 1-D data is equivalent to solving a convex Lasso problem with a fixed, explicitly defined dictionary matrix of features. The specific dictionary depends on the activation and depth. We consider 2 and 3-layer networks with piecewise linear activations, and rectangular and tree networks with sign activation and arbitrary depth. Interestingly in absolute value and symmetrized ReLU networks, a third layer creates features that represent reflections of training data about themselves. The Lasso representation sheds insight to globally optimal networks and the solution landscape.
♻ ☆ OccamLLM: Fast and Exact Language Model Arithmetic in a Single Step
Despite significant advancements in text generation and reasoning, Large Language Models (LLMs) still face challenges in accurately performing complex arithmetic operations. To achieve accurate calculations, language model systems often enable LLMs to generate code for arithmetic operations. However, this approach compromises speed and security and, if finetuning is involved, risks the language model losing prior capabilities. We propose a framework that enables exact arithmetic in \textit{a single autoregressive step}, providing faster, more secure, and more interpretable LLM systems with arithmetic capabilities. We use the hidden states of an LLM to control a symbolic architecture which performs arithmetic. Our implementation using Llama 3 8B Instruct with OccamNet as a symbolic model (OccamLlama) achieves 100\% accuracy on single arithmetic operations ($+,-,\times,\div,\sin{},\cos{},\log{},\exp{},\sqrt{}$), outperforming GPT 4o and on par with GPT 4o using a code interpreter. OccamLlama also outperforms GPT 4o both with and without a code interpreter on mathematical problem solving benchmarks involving challenging arithmetic, thus enabling small LLMs to match the arithmetic performance of even much larger models. We will make our code public shortly.
♻ ☆ Federated Graph Semantic and Structural Learning
Federated graph learning collaboratively learns a global graph neural network with distributed graphs, where the non-independent and identically distributed property is one of the major challenges. Most relative arts focus on traditional distributed tasks like images and voices, incapable of graph structures. This paper firstly reveals that local client distortion is brought by both node-level semantics and graph-level structure. First, for node-level semantics, we find that contrasting nodes from distinct classes is beneficial to provide a well-performing discrimination. We pull the local node towards the global node of the same class and push it away from the global node of different classes. Second, we postulate that a well-structural graph neural network possesses similarity for neighbors due to the inherent adjacency relationships. However, aligning each node with adjacent nodes hinders discrimination due to the potential class inconsistency. We transform the adjacency relationships into the similarity distribution and leverage the global model to distill the relation knowledge into the local model, which preserves the structural information and discriminability of the local model. Empirical results on three graph datasets manifest the superiority of the proposed method over its counterparts.
♻ ☆ Fast-DiM: Towards Fast Diffusion Morphs
Diffusion Morphs (DiM) are a recent state-of-the-art method for creating high quality face morphs; however, they require a high number of network function evaluations (NFE) to create the morphs. We propose a new DiM pipeline, Fast-DiM, which can create morphs of a similar quality but with fewer NFE. We investigate the ODE solvers used to solve the Probability Flow ODE and the impact they have on the the creation of face morphs. Additionally, we employ an alternative method for encoding images into the latent space of the Diffusion model by solving the Probability Flow ODE as time runs forwards. Our experiments show that we can reduce the NFE by upwards of 85% in the encoding process while experiencing only 1.6\% reduction in Mated Morph Presentation Match Rate (MMPMR). Likewise, we showed we could cut NFE, in the sampling process, in half with only a maximal reduction of 0.23% in MMPMR.
comment: Accepted as a paper in IEEE Security and Privacy
♻ ☆ IoT-Based Preventive Mental Health Using Knowledge Graphs and Standards for Better Well-Being
Sustainable Development Goals (SDGs) give the UN a road map for development with Agenda 2030 as a target. SDG3 "Good Health and Well-Being" ensures healthy lives and promotes well-being for all ages. Digital technologies can support SDG3. Burnout and even depression could be reduced by encouraging better preventive health. Due to the lack of patient knowledge and focus to take care of their health, it is necessary to help patients before it is too late. New trends such as positive psychology and mindfulness are highly encouraged in the USA. Digital Twin (DT) can help with the continuous monitoring of emotion using physiological signals (e.g., collected via wearables). Digital twins facilitate monitoring and provide constant health insight to improve quality of life and well-being with better personalization. Healthcare DT challenges are standardizing data formats, communication protocols, and data exchange mechanisms. To achieve those data integration and knowledge challenges, we designed the Mental Health Knowledge Graph (ontology and dataset) to boost mental health. The Knowledge Graph (KG) acquires knowledge from ontology-based mental health projects classified within the LOV4IoT ontology catalog (Emotion, Depression, and Mental Health). Furthermore, the KG is mapped to standards (e.g., ontologies) when possible. Standards from ETSI SmartM2M, ITU/WHO, ISO, W3C, NIST, and IEEE are relevant to mental health.
comment: 20 pages, Book chapter, Smart Technologies for Achieving Good Health and Well-Being: Towards Sustainable Development Goal, Taylor & Francis
♻ ☆ Knowing When to Stop: Delay-Adaptive Spiking Neural Network Classifiers with Reliability Guarantees
Spiking neural networks (SNNs) process time-series data via internal event-driven neural dynamics. The energy consumption of an SNN depends on the number of spikes exchanged between neurons over the course of the input presentation. Typically, decisions are produced after the entire input sequence has been processed. This results in latency and energy consumption levels that are fairly uniform across inputs. However, as explored in recent work, SNNs can produce an early decision when the SNN model is sufficiently ``confident'', adapting delay and energy consumption to the difficulty of each example. Existing techniques are based on heuristic measures of confidence that do not provide reliability guarantees, potentially exiting too early. In this paper, we introduce a novel delay-adaptive SNN-based inference methodology that, wrapping around any pre-trained SNN classifier, provides guaranteed reliability for the decisions produced at input-dependent stopping times. The approach, dubbed SpikeCP, leverages tools from conformal prediction (CP). It entails minimal complexity increase as compared to the underlying SNN, requiring only additional thresholding and counting operations at run time. SpikeCP is also extended to integrate a CP-aware training phase that targets delay performance. Variants of CP based on alternative confidence correction schemes, from Bonferroni to Simes, are explored, and extensive experiments are described using the MNIST-DVS data set, DVS128 Gesture dataset, and CIFAR-10 dataset.
♻ ☆ Cross-silo Federated Learning with Record-level Personalized Differential Privacy CCS'2024
Federated learning (FL) enhanced by differential privacy has emerged as a popular approach to better safeguard the privacy of client-side data by protecting clients' contributions during the training process. Existing solutions typically assume a uniform privacy budget for all records and provide one-size-fits-all solutions that may not be adequate to meet each record's privacy requirement. In this paper, we explore the uncharted territory of cross-silo FL with record-level personalized differential privacy. We devise a novel framework named \textit{rPDP-FL}, employing a two-stage hybrid sampling scheme with both uniform client-level sampling and non-uniform record-level sampling to accommodate varying privacy requirements. A critical and non-trivial problem is how to determine the ideal per-record sampling probability $q$ given the personalized privacy budget $\varepsilon$. We introduce a versatile solution named \textit{Simulation-CurveFitting}, allowing us to uncover a significant insight into the nonlinear correlation between $q$ and $\varepsilon$ and derive an elegant mathematical model to tackle the problem. Our evaluation demonstrates that our solution can provide significant performance gains over the baselines that do not consider personalized privacy preservation.
comment: 15 pages, 8 figures, accepted by CCS'2024
♻ ☆ PanopticNDT: Efficient and Robust Panoptic Mapping IROS
As the application scenarios of mobile robots are getting more complex and challenging, scene understanding becomes increasingly crucial. A mobile robot that is supposed to operate autonomously in indoor environments must have precise knowledge about what objects are present, where they are, what their spatial extent is, and how they can be reached; i.e., information about free space is also crucial. Panoptic mapping is a powerful instrument providing such information. However, building 3D panoptic maps with high spatial resolution is challenging on mobile robots, given their limited computing capabilities. In this paper, we propose PanopticNDT - an efficient and robust panoptic mapping approach based on occupancy normal distribution transform (NDT) mapping. We evaluate our approach on the publicly available datasets Hypersim and ScanNetV2. The results reveal that our approach can represent panoptic information at a higher level of detail than other state-of-the-art approaches while enabling real-time panoptic mapping on mobile robots. Finally, we prove the real-world applicability of PanopticNDT with qualitative results in a domestic application.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023. This version includes some minor fixes, see: https://github.com/TUI-NICR/panoptic-mapping#changelog
♻ ☆ Causal Contrastive Learning for Counterfactual Regression Over Time
Estimating treatment effects over time holds significance in various domains, including precision medicine, epidemiology, economy, and marketing. This paper introduces a unique approach to counterfactual regression over time, emphasizing long-term predictions. Distinguishing itself from existing models like Causal Transformer, our approach highlights the efficacy of employing RNNs for long-term forecasting, complemented by Contrastive Predictive Coding (CPC) and Information Maximization (InfoMax). Emphasizing efficiency, we avoid the need for computationally expensive transformers. Leveraging CPC, our method captures long-term dependencies in the presence of time-varying confounders. Notably, recent models have disregarded the importance of invertible representation, compromising identification assumptions. To remedy this, we employ the InfoMax principle, maximizing a lower bound of mutual information between sequence data and its representation. Our method achieves state-of-the-art counterfactual estimation results using both synthetic and real-world data, marking the pioneering incorporation of Contrastive Predictive Encoding in causal inference.
♻ ☆ MALLM-GAN: Multi-Agent Large Language Model as Generative Adversarial Network for Synthesizing Tabular Data
In the era of big data, access to abundant data is crucial for driving research forward. However, such data is often inaccessible due to privacy concerns or high costs, particularly in healthcare domain. Generating synthetic (tabular) data can address this, but existing models typically require substantial amounts of data to train effectively, contradicting our objective to solve data scarcity. To address this challenge, we propose a novel framework to generate synthetic tabular data, powered by large language models (LLMs) that emulates the architecture of a Generative Adversarial Network (GAN). By incorporating data generation process as contextual information and utilizing LLM as the optimizer, our approach significantly enhance the quality of synthetic data generation in common scenarios with small sample sizes. Our experimental results on public and private datasets demonstrate that our model outperforms several state-of-art models regarding generating higher quality synthetic data for downstream tasks while keeping privacy of the real data.
♻ ☆ Generative AI Agents with Large Language Model for Satellite Networks via a Mixture of Experts Transmission
In response to the needs of 6G global communications, satellite communication networks have emerged as a key solution. However, the large-scale development of satellite communication networks is constrained by the complex system models, whose modeling is challenging for massive users. Moreover, transmission interference between satellites and users seriously affects communication performance. To solve these problems, this paper develops generative artificial intelligence (AI) agents for model formulation and then applies a mixture of experts (MoE) approach to design transmission strategies. Specifically, we leverage large language models (LLMs) to build an interactive modeling paradigm and utilize retrieval-augmented generation (RAG) to extract satellite expert knowledge that supports mathematical modeling. Afterward, by integrating the expertise of multiple specialized components, we propose an MoE-proximal policy optimization (PPO) approach to solve the formulated problem. Each expert can optimize the optimization variables at which it excels through specialized training through its own network and then aggregates them through the gating network to perform joint optimization. The simulation results validate the accuracy and effectiveness of employing a generative agent for problem formulation. Furthermore, the superiority of the proposed MoE-ppo approach over other benchmarks is confirmed in solving the formulated problem. The adaptability of MoE-PPO to various customized modeling problems has also been demonstrated.
comment: 15 pages, 10 figures
♻ ☆ A Comprehensive Survey on Graph Reduction: Sparsification, Coarsening, and Condensation IJCAI 2024
Many real-world datasets can be naturally represented as graphs, spanning a wide range of domains. However, the increasing complexity and size of graph datasets present significant challenges for analysis and computation. In response, graph reduction, or graph summarization, has gained prominence for simplifying large graphs while preserving essential properties. In this survey, we aim to provide a comprehensive understanding of graph reduction methods, including graph sparsification, graph coarsening, and graph condensation. Specifically, we establish a unified definition for these methods and introduce a hierarchical taxonomy to categorize the challenges they address. Our survey then systematically reviews the technical details of these methods and emphasizes their practical applications across diverse scenarios. Furthermore, we outline critical research directions to ensure the continued effectiveness of graph reduction techniques, as well as provide a comprehensive paper list at \url{https://github.com/Emory-Melody/awesome-graph-reduction}. We hope this survey will bridge literature gaps and propel the advancement of this promising field.
comment: Accepted by IJCAI 2024 (This ArXiv version is a long version of our IJCAI paper)
♻ ☆ Pruner: A Speculative Exploration Mechanism to Accelerate Tensor Program Tuning
Tensor program tuning is essential for the efficient deployment of deep neural networks. Search-based approaches have demonstrated scalability and effectiveness in automatically finding high-performance programs for specific hardware. However, the search process is often inefficient, taking hours or even days to discover optimal programs due to the exploration mechanisms guided by an accurate but slow learned cost model. Meanwhile, the learned cost model trained on one platform cannot seamlessly adapt online to another, which we call cross-platform online unawareness. In this work, we propose Pruner and MoA-Pruner. Pruner is a speculative exploration mechanism that accelerates the search process using a "Draft-then-Verify" paradigm. Instead of applying the complex learned cost model to all explored candidates, Pruner drafts small-scale speculative candidates by introducing a naive symbol analyzer (draft model), then identifies the best candidates by the learned cost model. MoA-Pruner introduces Momentum online Adaptation to address the cross-platform online unawareness. We incorporate these techniques into the Ansor and conduct extensive experiments on three GPU-based platforms. Results show that in online cost model tuning scenarios, Pruner and MoA-Pruner can achieve an average speedup of $2.6 \times$ and $4.82 \times$ compared to Ansor. In offline tuning scenarios, Pruner can achieve an average speedup of $4.75 \times$ and $4.05\times$ compared to TenSet and TLP, respectively. The code is available at https://github.com/qiaolian9/Pruner.
♻ ☆ Which Backbone to Use: A Resource-efficient Domain Specific Comparison for Computer Vision
In contemporary computer vision applications, particularly image classification, architectural backbones pre-trained on large datasets like ImageNet are commonly employed as feature extractors. Despite the widespread use of these pre-trained convolutional neural networks (CNNs), there remains a gap in understanding the performance of various resource-efficient backbones across diverse domains and dataset sizes. Our study systematically evaluates multiple lightweight, pre-trained CNN backbones under consistent training settings across a variety of datasets, including natural images, medical images, galaxy images, and remote sensing images. This comprehensive analysis aims to aid machine learning practitioners in selecting the most suitable backbone for their specific problem, especially in scenarios involving small datasets where fine-tuning a pre-trained network is crucial. Even though attention-based architectures are gaining popularity, we observed that they tend to perform poorly under low data finetuning tasks compared to CNNs. We also observed that some CNN architectures such as ConvNeXt, RegNet and EfficientNet performs well compared to others on a diverse set of domains consistently. Our findings provide actionable insights into the performance trade-offs and effectiveness of different backbones, facilitating informed decision-making in model selection for a broad spectrum of computer vision domains. Our code is available here: https://github.com/pranavphoenix/Backbones
comment: 12 pages, 2 figures
♻ ☆ Consistent algorithms for multi-label classification with macro-at-$k$ metrics ICLR 2024
We consider the optimization of complex performance metrics in multi-label classification under the population utility framework. We mainly focus on metrics linearly decomposable into a sum of binary classification utilities applied separately to each label with an additional requirement of exactly $k$ labels predicted for each instance. These "macro-at-$k$" metrics possess desired properties for extreme classification problems with long tail labels. Unfortunately, the at-$k$ constraint couples the otherwise independent binary classification tasks, leading to a much more challenging optimization problem than standard macro-averages. We provide a statistical framework to study this problem, prove the existence and the form of the optimal classifier, and propose a statistically consistent and practical learning algorithm based on the Frank-Wolfe method. Interestingly, our main results concern even more general metrics being non-linear functions of label-wise confusion matrices. Empirical results provide evidence for the competitive performance of the proposed approach.
comment: This is the authors' version of the work accepted to ICLR 2024; the final version of the paper, errors and typos corrected, and minor modifications to improve clarity
♻ ☆ Partitioned Least Squares
In this paper we propose a variant of the linear least squares model allowing practitioners to partition the input features into groups of variables that they require to contribute similarly to the final result. The output allows practitioners to assess the importance of each group and of each variable in the group. We formally show that the new formulation is not convex and provide two alternative methods to deal with the problem: one non-exact method based on an alternating least squares approach; and one exact method based on a reformulation of the problem using an exponential number of sub-problems whose minimum is guaranteed to be the optimal solution. We formally show the correctness of the exact method and also compare the two solutions showing that the exact solution provides better results in a fraction of the time required by the alternating least squares solution (assuming that the number of partitions is small). For the sake of completeness, we also provide an alternative branch and bound algorithm that can be used in place of the exact method when the number of partitions is too large, and a proof of NP-completeness of the optimization problem introduced in this paper.
comment: To appear in Springer Machine Learning Journal (https://link.springer.com/journal/10994)
♻ ☆ Challenging Forgets: Unveiling the Worst-Case Forget Sets in Machine Unlearning
The trustworthy machine learning (ML) community is increasingly recognizing the crucial need for models capable of selectively 'unlearning' data points after training. This leads to the problem of machine unlearning (MU), aiming to eliminate the influence of chosen data points on model performance, while still maintaining the model's utility post-unlearning. Despite various MU methods for data influence erasure, evaluations have largely focused on random data forgetting, ignoring the vital inquiry into which subset should be chosen to truly gauge the authenticity of unlearning performance. To tackle this issue, we introduce a new evaluative angle for MU from an adversarial viewpoint. We propose identifying the data subset that presents the most significant challenge for influence erasure, i.e., pinpointing the worst-case forget set. Utilizing a bi-level optimization principle, we amplify unlearning challenges at the upper optimization level to emulate worst-case scenarios, while simultaneously engaging in standard training and unlearning at the lower level, achieving a balance between data influence erasure and model utility. Our proposal offers a worst-case evaluation of MU's resilience and effectiveness. Through extensive experiments across different datasets (including CIFAR-10, 100, CelebA, Tiny ImageNet, and ImageNet) and models (including both image classifiers and generative models), we expose critical pros and cons in existing (approximate) unlearning strategies. Our results illuminate the complex challenges of MU in practice, guiding the future development of more accurate and robust unlearning algorithms. The code is available at https://github.com/OPTML-Group/Unlearn-WorstCase.
♻ ☆ Contextual Bandits with Packing and Covering Constraints: A Modular Lagrangian Approach via Regression COLT 2023
We consider contextual bandits with linear constraints (CBwLC), a variant of contextual bandits in which the algorithm consumes multiple resources subject to linear constraints on total consumption. This problem generalizes contextual bandits with knapsacks (CBwK), allowing for packing and covering constraints, as well as positive and negative resource consumption. We provide the first algorithm for CBwLC (or CBwK) that is based on regression oracles. The algorithm is simple, computationally efficient, and statistically optimal under mild assumptions. Further, we provide the first vanishing-regret guarantees for CBwLC (or CBwK) that extend beyond the stochastic environment. We side-step strong impossibility results from prior work by identifying a weaker (and, arguably, fairer) benchmark to compare against. Our algorithm builds on LagrangeBwK (Immorlica et al., FOCS 2019), a Lagrangian-based technique for CBwK, and SquareCB (Foster and Rakhlin, ICML 2020), a regression-based technique for contextual bandits. Our analysis leverages the inherent modularity of both techniques.
comment: A preliminary version of this paper, authored by A. Slivkins, K.A. Sankararaman and D.J. Foster, has been published at COLT 2023. The present version features an important improvement, due to Xingyu Zhou. Specifically, the $\sqrt{T}$-regret result in Theorem 3.6(a) holds under a much weaker assumption, and is now positioned as the main guarantee
♻ ☆ Extended Flow Matching: a Method of Conditional Generation with Generalized Continuity Equation
The task of conditional generation is one of the most important applications of generative models, and numerous methods have been developed to date based on the celebrated flow-based models. However, many flow-based models in use today are not built to allow one to introduce an explicit inductive bias to how the conditional distribution to be generated changes with respect to conditions. This can result in unexpected behavior in the task of style transfer, for example. In this research, we introduce extended flow matching (EFM), a direct extension of flow matching that learns a ``matrix field'' corresponding to the continuous map from the space of conditions to the space of distributions. We show that we can introduce inductive bias to the conditional generation through the matrix field and demonstrate this fact with MMOT-EFM, a version of EFM that aims to minimize the Dirichlet energy or the sensitivity of the distribution with respect to conditions. We will present our theory along with experimental results that support the competitiveness of EFM in conditional generation.
comment: 27 pages, 10 figures, We have found a mistake in the implementation of COT, and we are confirming that COT-FM performs much better in the observed condition domains than Version 4, dated 27 May 2024
♻ ☆ Towards Improving Unit Commitment Economics: An Add-On Tailor for Renewable Energy and Reserve Predictions
Generally, day-ahead unit commitment (UC) is conducted in a predict-then-optimize process: it starts by predicting the renewable energy source (RES) availability and system reserve requirements; given the predictions, the UC model is then optimized to determine the economic operation plans. In fact, predictions within the process are raw. In other words, if the predictions are further tailored to assist UC in making the economic operation plans against realizations of the RES and reserve requirements, UC economics will benefit significantly. To this end, this paper presents a cost-oriented tailor of RES-and-reserve predictions for UC, deployed as an add-on to the predict-then-optimize process. The RES-and-reserve tailor is trained by solving a bi-level mixed-integer programming model: the upper level trains the tailor based on its induced operating cost; the lower level, given tailored predictions, mimics the system operation process and feeds the induced operating cost back to the upper level; finally, the upper level evaluates the training quality according to the fed-back cost. Through this training, the tailor learns to customize the raw predictions into cost-oriented predictions. Moreover, the tailor can be embedded into the existing predict-then-optimize process as an add-on, improving the UC economics. Lastly, the presented method is compared to traditional, binary-relaxation, neural network-based, stochastic, and robust methods.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ End-to-End Training for Back-Translation with Categorical Reparameterization Trick
Back-translation (BT) is an effective semi-supervised learning framework in neural machine translation (NMT). A pre-trained NMT model translates monolingual sentences and makes synthetic bilingual sentence pairs for the training of the other NMT model, and vice versa. Understanding the two NMT models as inference and generation models, respectively, the training method of variational auto-encoder (VAE) was applied in previous works, which is a mainstream framework of generative models. However, the discrete property of translated sentences prevents gradient information from flowing between the two NMT models. In this paper, we propose the categorical reparameterization trick (CRT) that makes NMT models generate differentiable sentences so that the VAE's training framework can work in an end-to-end fashion. Our BT experiment conducted on a WMT benchmark dataset demonstrates the superiority of our proposed CRT compared to the Gumbel-softmax trick, which is a popular reparameterization method for categorical variable. Moreover, our experiments conducted on multiple WMT benchmark datasets demonstrate that our proposed end-to-end training framework is effective in terms of BLEU scores not only compared to its counterpart baseline which is not trained in an end-to-end fashion, but also compared to other previous BT works. The code is available at the web.
♻ ☆ Bayesian Safety Validation for Failure Probability Estimation of Black-Box Systems
Estimating the probability of failure is an important step in the certification of safety-critical systems. Efficient estimation methods are often needed due to the challenges posed by high-dimensional input spaces, risky test scenarios, and computationally expensive simulators. This work frames the problem of black-box safety validation as a Bayesian optimization problem and introduces a method that iteratively fits a probabilistic surrogate model to efficiently predict failures. The algorithm is designed to search for failures, compute the most-likely failure, and estimate the failure probability over an operating domain using importance sampling. We introduce three acquisition functions that aim to reduce uncertainty by covering the design space, optimize the analytically derived failure boundaries, and sample the predicted failure regions. Results show this Bayesian safety validation approach provides a more accurate estimate of failure probability with orders of magnitude fewer samples and performs well across various safety validation metrics. We demonstrate this approach on three test problems, a stochastic decision making system, and a neural network-based runway detection system. This work is open sourced (https://github.com/sisl/BayesianSafetyValidation.jl) and currently being used to supplement the FAA certification process of the machine learning components for an autonomous cargo aircraft.
♻ ☆ Boosting Protein Language Models with Negative Sample Mining ECML-PKDD 2024
We introduce a pioneering methodology for boosting large language models in the domain of protein representation learning. Our primary contribution lies in the refinement process for correlating the over-reliance on co-evolution knowledge, in a way that networks are trained to distill invaluable insights from negative samples, constituted by protein pairs sourced from disparate categories. By capitalizing on this novel approach, our technique steers the training of transformer-based models within the attention score space. This advanced strategy not only amplifies performance but also reflects the nuanced biological behaviors exhibited by proteins, offering aligned evidence with traditional biological mechanisms such as protein-protein interaction. We experimentally observed improved performance on various tasks over datasets, on top of several well-established large protein models. This innovative paradigm opens up promising horizons for further progress in the realms of protein research and computational biology.
comment: 16 pages, 4 figures. Accepted by ECML-PKDD 2024
Database 1
♻ ☆ A framework for optimisation based stochastic process discovery
Process mining is concerned with deriving formal models capable of reproducing the behaviour of a given organisational process by analysing observed executions collected in an event log. The elements of an event log are finite sequences (i.e., traces or words) of actions. Many effective algorithms have been introduced which issue a control flow model (commonly in Petri net form) aimed at reproducing, as precisely as possible, the language of the considered event log. However, given that identical executions can be observed several times, traces of an event log are associated with a frequency and, hence, an event log inherently yields also a stochastic language. By exploiting the trace frequencies contained in the event log, the stochastic extension of process mining, therefore, consists in deriving stochastic (Petri nets) models capable of reproducing the likelihood of the observed executions. In this paper, we introduce a novel stochastic process mining approach. Starting from a ``standard'' Petri net model mined through classical mining algorithms, we employ optimization to identify optimal weights for the transitions of the mined net so that the stochastic language issued by the stochastic interpretation of the mined net closely resembles that of the event log. The optimization is either based on the maximum likelihood principle or on the earth moving distance. Experiments on some popular real system logs show an improved accuracy w.r.t. to alternative approaches.
Computation and Language 96
☆ Web2Code: A Large-scale Webpage-to-Code Dataset and Evaluation Framework for Multimodal LLMs
Multimodal large language models (MLLMs) have shown impressive success across modalities such as image, video, and audio in a variety of understanding and generation tasks. However, current MLLMs are surprisingly poor at understanding webpage screenshots and generating their corresponding HTML code. To address this problem, we propose Web2Code, a benchmark consisting of a new large-scale webpage-to-code dataset for instruction tuning and an evaluation framework for the webpage understanding and HTML code translation abilities of MLLMs. For dataset construction, we leverage pretrained LLMs to enhance existing webpage-to-code datasets as well as generate a diverse pool of new webpages rendered into images. Specifically, the inputs are webpage images and instructions, while the responses are the webpage's HTML code. We further include diverse natural language QA pairs about the webpage content in the responses to enable a more comprehensive understanding of the web content. To evaluate model performance in these tasks, we develop an evaluation framework for testing MLLMs' abilities in webpage understanding and web-to-code generation. Extensive experiments show that our proposed dataset is beneficial not only to our proposed tasks but also in the general visual domain, while previous datasets result in worse performance. We hope our work will contribute to the development of general MLLMs suitable for web-based content generation and task automation. Our data and code will be available at https://github.com/MBZUAI-LLM/web2code.
comment: Website at https://mbzuai-llm.github.io/webpage2code/
☆ LLaRA: Supercharging Robot Learning Data for Vision-Language Policy
Large Language Models (LLMs) equipped with extensive world knowledge and strong reasoning skills can tackle diverse tasks across domains, often by posing them as conversation-style instruction-response pairs. In this paper, we propose LLaRA: Large Language and Robotics Assistant, a framework which formulates robot action policy as conversations, and provides improved responses when trained with auxiliary data that complements policy learning. LLMs with visual inputs, i.e., Vision Language Models (VLMs), have the capacity to process state information as visual-textual prompts and generate optimal policy decisions in text. To train such action policy VLMs, we first introduce an automated pipeline to generate diverse high-quality robotics instruction data from existing behavior cloning data. A VLM finetuned with the resulting collection of datasets based on a conversation-style formulation tailored for robotics tasks, can generate meaningful robot action policy decisions. Our experiments across multiple simulated and real-world environments demonstrate the state-of-the-art performance of the proposed LLaRA framework. The code, datasets, and pretrained models are available at https://github.com/LostXine/LLaRA.
☆ Scaling Synthetic Data Creation with 1,000,000,000 Personas
We propose a novel persona-driven data synthesis methodology that leverages various perspectives within a large language model (LLM) to create diverse synthetic data. To fully exploit this methodology at scale, we introduce Persona Hub -- a collection of 1 billion diverse personas automatically curated from web data. These 1 billion personas (~13% of the world's total population), acting as distributed carriers of world knowledge, can tap into almost every perspective encapsulated within the LLM, thereby facilitating the creation of diverse synthetic data at scale for various scenarios. By showcasing Persona Hub's use cases in synthesizing high-quality mathematical and logical reasoning problems, instructions (i.e., user prompts), knowledge-rich texts, game NPCs and tools (functions) at scale, we demonstrate persona-driven data synthesis is versatile, scalable, flexible, and easy to use, potentially driving a paradigm shift in synthetic data creation and applications in practice, which may have a profound impact on LLM research and development.
comment: Work in progress
☆ ProgressGym: Alignment with a Millennium of Moral Progress
Frontier AI systems, including large language models (LLMs), hold increasing influence over the epistemology of human users. Such influence can reinforce prevailing societal values, potentially contributing to the lock-in of misguided moral beliefs and, consequently, the perpetuation of problematic moral practices on a broad scale. We introduce progress alignment as a technical solution to mitigate this imminent risk. Progress alignment algorithms learn to emulate the mechanics of human moral progress, thereby addressing the susceptibility of existing alignment methods to contemporary moral blindspots. To empower research in progress alignment, we introduce ProgressGym, an experimental framework allowing the learning of moral progress mechanics from history, in order to facilitate future progress in real-world moral decisions. Leveraging 9 centuries of historical text and 18 historical LLMs, ProgressGym enables codification of real-world progress alignment challenges into concrete benchmarks. Specifically, we introduce three core challenges: tracking evolving values (PG-Follow), preemptively anticipating moral progress (PG-Predict), and regulating the feedback loop between human and AI value shifts (PG-Coevolve). Alignment methods without a temporal dimension are inapplicable to these tasks. In response, we present lifelong and extrapolative algorithms as baseline methods of progress alignment, and build an open leaderboard soliciting novel algorithms and challenges. The framework and the leaderboard are available at https://github.com/PKU-Alignment/ProgressGym and https://huggingface.co/spaces/PKU-Alignment/ProgressGym-LeaderBoard respectively.
☆ Token Erasure as a Footprint of Implicit Vocabulary Items in LLMs
LLMs process text as sequences of tokens that roughly correspond to words, where less common words are represented by multiple tokens. However, individual tokens are often semantically unrelated to the meanings of the words/concepts they comprise. For example, Llama-2-7b's tokenizer splits the word "northeastern" into the tokens ['_n', 'ort', 'he', 'astern'], none of which correspond to semantically meaningful units like "north" or "east." Similarly, the overall meanings of named entities like "Neil Young" and multi-word expressions like "break a leg" cannot be directly inferred from their constituent tokens. Mechanistically, how do LLMs convert such arbitrary groups of tokens into useful higher-level representations? In this work, we find that last token representations of named entities and multi-token words exhibit a pronounced "erasure" effect, where information about previous and current tokens is rapidly forgotten in early layers. Using this observation, we propose a method to "read out" the implicit vocabulary of an autoregressive LLM by examining differences in token representations across layers, and present results of this method for Llama-2-7b and Llama-3-8B. To our knowledge, this is the first attempt to probe the implicit vocabulary of an LLM.
comment: 13 pages, 14 figures. Code and data at https://footprints.baulab.info/
☆ Molecular Facts: Desiderata for Decontextualization in LLM Fact Verification
Automatic factuality verification of large language model (LLM) generations is becoming more and more widely used to combat hallucinations. A major point of tension in the literature is the granularity of this fact-checking: larger chunks of text are hard to fact-check, but more atomic facts like propositions may lack context to interpret correctly. In this work, we assess the role of context in these atomic facts. We argue that fully atomic facts are not the right representation, and define two criteria for molecular facts: decontextuality, or how well they can stand alone, and minimality, or how little extra information is added to achieve decontexuality. We quantify the impact of decontextualization on minimality, then present a baseline methodology for generating molecular facts automatically, aiming to add the right amount of information. We compare against various methods of decontextualization and find that molecular facts balance minimality with fact verification accuracy in ambiguous settings.
☆ Applying RLAIF for Code Generation with API-usage in Lightweight LLMs
Reinforcement Learning from AI Feedback (RLAIF) has demonstrated significant potential across various domains, including mitigating harm in LLM outputs, enhancing text summarization, and mathematical reasoning. This paper introduces an RLAIF framework for improving the code generation abilities of lightweight (<1B parameters) LLMs. We specifically focus on code generation tasks that require writing appropriate API calls, which is challenging due to the well-known issue of hallucination in LLMs. Our framework extracts AI feedback from a larger LLM (e.g., GPT-3.5) through a specialized prompting strategy and uses this data to train a reward model towards better alignment from smaller LLMs. We run our experiments on the Gorilla dataset and meticulously assess the quality of the model-generated code across various metrics, including AST, ROUGE, and Code-BLEU, and develop a pipeline to compute its executability rate accurately. Our approach significantly enhances the fine-tuned LLM baseline's performance, achieving a 4.5% improvement in executability rate. Notably, a smaller LLM model (780M parameters) trained with RLAIF surpasses a much larger fine-tuned baseline with 7B parameters, achieving a 1.0% higher code executability rate.
☆ To Word Senses and Beyond: Inducing Concepts with Contextualized Language Models
Polysemy and synonymy are two crucial interrelated facets of lexical ambiguity. While both phenomena have been studied extensively in NLP, leading to dedicated systems, they are often been considered independently. While many tasks dealing with polysemy (e.g. Word Sense Disambiguiation or Induction) highlight the role of a word's senses, the study of synonymy is rooted in the study of concepts, i.e. meaning shared across the lexicon. In this paper, we introduce Concept Induction, the unsupervised task of learning a soft clustering among words that defines a set of concepts directly from data. This task generalizes that of Word Sense Induction. We propose a bi-level approach to Concept Induction that leverages both a local lemma-centric view and a global cross-lexicon perspective to induce concepts. We evaluate the obtained clustering on SemCor's annotated data and obtain good performances (BCubed F1 above 0.60). We find that the local and the global levels are mutually beneficial to induce concepts and also senses in our setting. Finally, we create static embeddings representing our induced concepts and use them on the Word-in-Context task, obtaining competitive performances with the State-of-the-Art.
☆ Covert Malicious Finetuning: Challenges in Safeguarding LLM Adaptation
Black-box finetuning is an emerging interface for adapting state-of-the-art language models to user needs. However, such access may also let malicious actors undermine model safety. To demonstrate the challenge of defending finetuning interfaces, we introduce covert malicious finetuning, a method to compromise model safety via finetuning while evading detection. Our method constructs a malicious dataset where every individual datapoint appears innocuous, but finetuning on the dataset teaches the model to respond to encoded harmful requests with encoded harmful responses. Applied to GPT-4, our method produces a finetuned model that acts on harmful instructions 99% of the time and avoids detection by defense mechanisms such as dataset inspection, safety evaluations, and input/output classifiers. Our findings question whether black-box finetuning access can be secured against sophisticated adversaries.
comment: 22 pages
☆ Understanding and Mitigating Language Confusion in LLMs
We investigate a surprising limitation of LLMs: their inability to consistently generate text in a user's desired language. We create the Language Confusion Benchmark (LCB) to evaluate such failures, covering 15 typologically diverse languages with existing and newly-created English and multilingual prompts. We evaluate a range of LLMs on monolingual and cross-lingual generation reflecting practical use cases, finding that Llama Instruct and Mistral models exhibit high degrees of language confusion and even the strongest models fail to consistently respond in the correct language. We observe that base and English-centric instruct models are more prone to language confusion, which is aggravated by complex prompts and high sampling temperatures. We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning. We release our language confusion benchmark, which serves as a first layer of efficient, scalable multilingual evaluation at https://github.com/for-ai/language-confusion.
☆ BioMNER: A Dataset for Biomedical Method Entity Recognition
Named entity recognition (NER) stands as a fundamental and pivotal task within the realm of Natural Language Processing. Particularly within the domain of Biomedical Method NER, this task presents notable challenges, stemming from the continual influx of domain-specific terminologies in scholarly literature. Current research in Biomedical Method (BioMethod) NER suffers from a scarcity of resources, primarily attributed to the intricate nature of methodological concepts, which necessitate a profound understanding for precise delineation. In this study, we propose a novel dataset for biomedical method entity recognition, employing an automated BioMethod entity recognition and information retrieval system to assist human annotation. Furthermore, we comprehensively explore a range of conventional and contemporary open-domain NER methodologies, including the utilization of cutting-edge large-scale language models (LLMs) customised to our dataset. Our empirical findings reveal that the large parameter counts of language models surprisingly inhibit the effective assimilation of entity extraction patterns pertaining to biomedical methods. Remarkably, the approach, leveraging the modestly sized ALBERT model (only 11MB), in conjunction with conditional random fields (CRF), achieves state-of-the-art (SOTA) performance.
☆ LEMoE: Advanced Mixture of Experts Adaptor for Lifelong Model Editing of Large Language Models
Large language models (LLMs) require continual knowledge updates to stay abreast of the ever-changing world facts, prompting the formulation of lifelong model editing task. While recent years have witnessed the development of various techniques for single and batch editing, these methods either fail to apply or perform sub-optimally when faced with lifelong editing. In this paper, we introduce LEMoE, an advanced Mixture of Experts (MoE) adaptor for lifelong model editing. We first analyze the factors influencing the effectiveness of conventional MoE adaptor in lifelong editing, including catastrophic forgetting, inconsistent routing and order sensitivity. Based on these insights, we propose a tailored module insertion method to achieve lifelong editing, incorporating a novel KV anchor routing to enhance routing consistency between training and inference stage, along with a concise yet effective clustering-based editing order planning. Experimental results demonstrate the effectiveness of our method in lifelong editing, surpassing previous model editing techniques while maintaining outstanding performance in batch editing task. Our code will be available.
☆ ToolBeHonest: A Multi-level Hallucination Diagnostic Benchmark for Tool-Augmented Large Language Models
Tool-augmented large language models (LLMs) are rapidly being integrated into real-world applications. Due to the lack of benchmarks, the community still needs to fully understand the hallucination issues within these models. To address this challenge, we introduce a comprehensive diagnostic benchmark, ToolBH. Specifically, we assess the LLM's hallucinations through two perspectives: depth and breadth. In terms of depth, we propose a multi-level diagnostic process, including (1) solvability detection, (2) solution planning, and (3) missing-tool analysis. For breadth, we consider three scenarios based on the characteristics of the toolset: missing necessary tools, potential tools, and limited functionality tools. Furthermore, we developed seven tasks and collected 700 evaluation samples through multiple rounds of manual annotation. The results show the significant challenges presented by the ToolBH benchmark. The current advanced models Gemini-1.5-Pro and GPT-4o only achieve a total score of 45.3 and 37.0, respectively, on a scale of 100. In this benchmark, larger model parameters do not guarantee better performance; the training data and response strategies also play a crucial role in tool-enhanced LLM scenarios. Our diagnostic analysis indicates that the primary reason for model errors lies in assessing task solvability. Additionally, open-weight models suffer from performance drops with verbose replies, whereas proprietary models excel with longer reasoning.
☆ The SIFo Benchmark: Investigating the Sequential Instruction Following Ability of Large Language Models
Following multiple instructions is a crucial ability for large language models (LLMs). Evaluating this ability comes with significant challenges: (i) limited coherence between multiple instructions, (ii) positional bias where the order of instructions affects model performance, and (iii) a lack of objectively verifiable tasks. To address these issues, we introduce a benchmark designed to evaluate models' abilities to follow multiple instructions through sequential instruction following (SIFo) tasks. In SIFo, the successful completion of multiple instructions is verifiable by examining only the final instruction. Our benchmark evaluates instruction following using four tasks (text modification, question answering, mathematics, and security rule following), each assessing different aspects of sequential instruction following. Our evaluation of popular LLMs, both closed-source and open-source, shows that more recent and larger models significantly outperform their older and smaller counterparts on the SIFo tasks, validating the benchmark's effectiveness. All models struggle with following sequences of instructions, hinting at an important lack of robustness of today's language models.
☆ Single Parent Family: A Spectrum of Family Members from a Single Pre-Trained Foundation Model
This paper introduces a novel method of Progressive Low Rank Decomposition (PLRD) tailored for the compression of large language models. Our approach leverages a pre-trained model, which is then incrementally decompressed to smaller sizes using progressively lower ranks. This method allows for significant reductions in computational overhead and energy consumption, as subsequent models are derived from the original without the need for retraining from scratch. We detail the implementation of PLRD, which strategically decreases the tensor ranks, thus optimizing the trade-off between model performance and resource usage. The efficacy of PLRD is demonstrated through extensive experiments showing that models trained with PLRD method on only 1B tokens maintain comparable performance with traditionally trained models while using 0.1% of the tokens. The versatility of PLRD is highlighted by its ability to generate multiple model sizes from a single foundational model, adapting fluidly to varying computational and memory budgets. Our findings suggest that PLRD could set a new standard for the efficient scaling of LLMs, making advanced AI more feasible on diverse platforms.
☆ Into the Unknown: Generating Geospatial Descriptions for New Environments
Similar to vision-and-language navigation (VLN) tasks that focus on bridging the gap between vision and language for embodied navigation, the new Rendezvous (RVS) task requires reasoning over allocentric spatial relationships (independent of the observer's viewpoint) using non-sequential navigation instructions and maps. However, performance substantially drops in new environments with no training data. Using opensource descriptions paired with coordinates (e.g., Wikipedia) provides training data but suffers from limited spatially-oriented text resulting in low geolocation resolution. We propose a large-scale augmentation method for generating high-quality synthetic data for new environments using readily available geospatial data. Our method constructs a grounded knowledge-graph, capturing entity relationships. Sampled entities and relations (`shop north of school') generate navigation instructions via (i) generating numerous templates using context-free grammar (CFG) to embed specific entities and relations; (ii) feeding the entities and relation into a large language model (LLM) for instruction generation. A comprehensive evaluation on RVS, showed that our approach improves the 100-meter accuracy by 45.83% on unseen environments. Furthermore, we demonstrate that models trained with CFG-based augmentation achieve superior performance compared with those trained with LLM-based augmentation, both in unseen and seen environments. These findings suggest that the potential advantages of explicitly structuring spatial information for text-based geospatial reasoning in previously unknown, can unlock data-scarce scenarios.
☆ Simulating Financial Market via Large Language Model based Agents
Most economic theories typically assume that financial market participants are fully rational individuals and use mathematical models to simulate human behavior in financial markets. However, human behavior is often not entirely rational and is challenging to predict accurately with mathematical models. In this paper, we propose \textbf{A}gent-based \textbf{S}imulated \textbf{F}inancial \textbf{M}arket (ASFM), which first constructs a simulated stock market with a real order matching system. Then, we propose a large language model based agent as the stock trader, which contains the profile, observation, and tool-learning based action module. The trading agent can comprehensively understand current market dynamics and financial policy information, and make decisions that align with their trading strategy. In the experiments, we first verify that the reactions of our ASFM are consistent with the real stock market in two controllable scenarios. In addition, we also conduct experiments in two popular economics research directions, and we find that conclusions drawn in our \model align with the preliminary findings in economics research. Based on these observations, we believe our proposed ASFM provides a new paradigm for economic research.
☆ BESTOW: Efficient and Streamable Speech Language Model with the Best of Two Worlds in GPT and T5
Incorporating speech understanding capabilities into pretrained large-language models has become a vital research direction (SpeechLLM). The previous architectures can be categorized as: i) GPT-style, prepend speech prompts to the text prompts as a sequence of LLM inputs like a decoder-only model; ii) T5-style, introduce speech cross-attention to each layer of the pretrained LLMs. We propose BESTOW architecture to bring the BESt features from TwO Worlds into a single model that is highly efficient and has strong multitask capabilities. Moreover, there is no clear streaming solution for either style, especially considering the solution should generalize to speech multitask. We reformulate streamable SpeechLLM as a read-write policy problem and unifies the offline and streaming research with BESTOW architecture. Hence we demonstrate the first open-source SpeechLLM solution that enables Streaming and Multitask at scale (beyond ASR) at the same time. This streamable solution achieves very strong performance on a wide range of speech tasks (ASR, AST, SQA, unseen DynamicSuperb). It is end-to-end optimizable, with lower training/inference cost, and demonstrates LLM knowledge transferability to speech.
☆ Mining Reasons For And Against Vaccination From Unstructured Data Using Nichesourcing and AI Data Augmentation
We present Reasons For and Against Vaccination (RFAV), a dataset for predicting reasons for and against vaccination, and scientific authorities used to justify them, annotated through nichesourcing and augmented using GPT4 and GPT3.5-Turbo. We show how it is possible to mine these reasons in non-structured text, under different task definitions, despite the high level of subjectivity involved and explore the impact of artificially augmented data using in-context learning with GPT4 and GPT3.5-Turbo. We publish the dataset and the trained models along with the annotation manual used to train annotators and define the task.
comment: 8 pages + references and appendix
☆ Calibrating LLMs with Preference Optimization on Thought Trees for Generating Rationale in Science Question Scoring
Generating rationales that justify scoring decisions has been a promising way to facilitate explainability in automated scoring systems. However, existing methods do not match the accuracy of classifier-based methods. Plus, the generated rationales often contain hallucinated information. To address these issues, we propose a novel framework capable of generating more faithful rationales and, more importantly, matching performance with classifier-based black-box scoring systems. We first mimic the human assessment process by querying Large Language Models (LLMs) to generate a thought tree. We then summarise intermediate assessment decisions from each thought tree path for creating synthetic rationale data and rationale preference data. Finally, we utilise the generated synthetic data to calibrate LLMs through a two-step training process: supervised fine-tuning and preference optimization. Extensive experimental results demonstrate that our framework achieves a 38% assessment performance improvement in the QWK score compared to prior work while producing higher-quality rationales, as recognised by human evaluators and LLMs. Our work sheds light on the effectiveness of performing preference optimization using synthetic preference data obtained from thought tree paths.
☆ From the Least to the Most: Building a Plug-and-Play Visual Reasoner via Data Synthesis
We explore multi-step reasoning in vision-language models (VLMs). The problem is challenging, as reasoning data consisting of multiple steps of visual and language processing are barely available. To overcome the challenge, we first introduce a least-to-most visual reasoning paradigm, which interleaves steps of decomposing a question into sub-questions and invoking external tools for resolving sub-questions. Based on the paradigm, we further propose a novel data synthesis approach that can automatically create questions and multi-step reasoning paths for an image in a bottom-up manner. Our approach divides the complex synthesis task into a few simple sub-tasks, and (almost entirely) relies on open-sourced models to accomplish the sub-tasks. Therefore, the entire synthesis process is reproducible and cost-efficient, and the synthesized data is quality guaranteed. With the approach, we construct $50$k visual reasoning examples. Then, we develop a visual reasoner through supervised fine-tuning, which is capable of generally enhancing the reasoning abilities of a wide range of existing VLMs in a plug-and-play fashion. Extensive experiments indicate that the visual reasoner can consistently and significantly improve four VLMs on four VQA benchmarks. Our code and dataset are available at https://github.com/steven-ccq/VisualReasoner.
☆ Interactive Topic Models with Optimal Transport
Topic models are widely used to analyze document collections. While they are valuable for discovering latent topics in a corpus when analysts are unfamiliar with the corpus, analysts also commonly start with an understanding of the content present in a corpus. This may be through categories obtained from an initial pass over the corpus or a desire to analyze the corpus through a predefined set of categories derived from a high level theoretical framework (e.g. political ideology). In these scenarios analysts desire a topic modeling approach which incorporates their understanding of the corpus while supporting various forms of interaction with the model. In this work, we present EdTM, as an approach for label name supervised topic modeling. EdTM models topic modeling as an assignment problem while leveraging LM/LLM based document-topic affinities and using optimal transport for making globally coherent topic-assignments. In experiments, we show the efficacy of our framework compared to few-shot LLM classifiers, and topic models based on clustering and LDA. Further, we show EdTM's ability to incorporate various forms of analyst feedback and while remaining robust to noisy analyst inputs.
comment: Pre-print; Work in progress
☆ Paraphrase Types Elicit Prompt Engineering Capabilities
Much of the success of modern language models depends on finding a suitable prompt to instruct the model. Until now, it has been largely unknown how variations in the linguistic expression of prompts affect these models. This study systematically and empirically evaluates which linguistic features influence models through paraphrase types, i.e., different linguistic changes at particular positions. We measure behavioral changes for five models across 120 tasks and six families of paraphrases (i.e., morphology, syntax, lexicon, lexico-syntax, discourse, and others). We also control for other prompt engineering factors (e.g., prompt length, lexical diversity, and proximity to training data). Our results show a potential for language models to improve tasks when their prompts are adapted in specific paraphrase types (e.g., 6.7% median gain in Mixtral 8x7B; 5.5% in LLaMA 3 8B). In particular, changes in morphology and lexicon, i.e., the vocabulary used, showed promise in improving prompts. These findings contribute to developing more robust language models capable of handling variability in linguistic expression.
☆ Untangling the Unrestricted Web: Automatic Identification of Multilingual Registers
This article explores deep learning models for the automatic identification of registers - text varieties such as news reports and discussion forums - in web-based datasets across 16 languages. Web register (or genre) identification would provide a robust solution for understanding the content of web-scale datasets, which have become crucial in computational linguistics. Despite recent advances, the potential of register classifiers on the noisy web remains largely unexplored, particularly in multilingual settings and when targeting the entire unrestricted web. We experiment with a range of deep learning models using the new Multilingual CORE corpora, which includes 16 languages annotated using a detailed, hierarchical taxonomy of 25 registers designed to cover the entire unrestricted web. Our models achieve state-of-the-art results, showing that a detailed taxonomy in a hierarchical multi-label setting can yield competitive classification performance. However, all models hit a glass ceiling at approximately 80% F1 score, which we attribute to the non-discrete nature of web registers and the inherent uncertainty in labeling some documents. By pruning ambiguous examples, we improve model performance to over 90%. Finally, multilingual models outperform monolingual ones, particularly benefiting languages with fewer training examples and smaller registers. Although a zero-shot setting decreases performance by an average of 7%, these drops are not linked to specific registers or languages. Instead, registers show surprising similarity across languages.
☆ Investigating the Timescales of Language Processing with EEG and Language Models
This study explores the temporal dynamics of language processing by examining the alignment between word representations from a pre-trained transformer-based language model, and EEG data. Using a Temporal Response Function (TRF) model, we investigate how neural activity corresponds to model representations across different layers, revealing insights into the interaction between artificial language models and brain responses during language comprehension. Our analysis reveals patterns in TRFs from distinct layers, highlighting varying contributions to lexical and compositional processing. Additionally, we used linear discriminant analysis (LDA) to isolate part-of-speech (POS) representations, offering insights into their influence on neural responses and the underlying mechanisms of syntactic processing. These findings underscore EEG's utility for probing language processing dynamics with high temporal resolution. By bridging artificial language models and neural activity, this study advances our understanding of their interaction at fine timescales.
comment: Accepted at the 2024 Conference on Cognitive Computational Neuroscience (CCN 2024)
☆ Detecting Subtle Differences between Human and Model Languages Using Spectrum of Relative Likelihood
Human and model-generated texts can be distinguished by examining the magnitude of likelihood in language. However, it is becoming increasingly difficult as language model's capabilities of generating human-like texts keep evolving. This study provides a new perspective by using the relative likelihood values instead of absolute ones, and extracting useful features from the spectrum-view of likelihood for the human-model text detection task. We propose a detection procedure with two classification methods, supervised and heuristic-based, respectively, which results in competitive performances with previous zero-shot detection methods and a new state-of-the-art on short-text detection. Our method can also reveal subtle differences between human and model languages, which find theoretical roots in psycholinguistics studies. Our code is available at https://github.com/CLCS-SUSTech/FourierGPT
comment: 13 pages, 12 figures
☆ YuLan: An Open-source Large Language Model
Large language models (LLMs) have become the foundation of many applications, leveraging their extensive capabilities in processing and understanding natural language. While many open-source LLMs have been released with technical reports, the lack of training details hinders further research and development. This paper presents the development of YuLan, a series of open-source LLMs with $12$ billion parameters. The base model of YuLan is pre-trained on approximately $1.7$T tokens derived from a diverse corpus, including massive English, Chinese, and multilingual texts. We design a three-stage pre-training method to enhance YuLan's overall capabilities. Subsequent phases of training incorporate instruction-tuning and human alignment, employing a substantial volume of high-quality synthesized data. To facilitate the learning of complex and long-tail knowledge, we devise a curriculum-learning framework throughout across these stages, which helps LLMs learn knowledge in an easy-to-hard manner. YuLan's training is finished on Jan, 2024 and has achieved performance on par with state-of-the-art LLMs across various English and Chinese benchmarks. This paper outlines a comprehensive technical roadmap for developing LLMs from scratch. Our model and codes are available at https://github.com/RUC-GSAI/YuLan-Chat.
☆ AnomaLLMy -- Detecting anomalous tokens in black-box LLMs through low-confidence single-token predictions
This paper introduces AnomaLLMy, a novel technique for the automatic detection of anomalous tokens in black-box Large Language Models (LLMs) with API-only access. Utilizing low-confidence single-token predictions as a cost-effective indicator, AnomaLLMy identifies irregularities in model behavior, addressing the issue of anomalous tokens degrading the quality and reliability of models. Validated on the cl100k_base dataset, the token set of GPT-4, AnomaLLMy detected 413 major and 65 minor anomalies, demonstrating the method's efficiency with just \$24.39 spent in API credits. The insights from this research are expected to be beneficial for enhancing the robustness of and accuracy of LLMs, particularly in the development and assessment of tokenizers.
comment: 6 pages
☆ BeamAggR: Beam Aggregation Reasoning over Multi-source Knowledge for Multi-hop Question Answering ACL 2024
Large language models (LLMs) have demonstrated strong reasoning capabilities. Nevertheless, they still suffer from factual errors when tackling knowledge-intensive tasks. Retrieval-augmented reasoning represents a promising approach. However, significant challenges still persist, including inaccurate and insufficient retrieval for complex questions, as well as difficulty in integrating multi-source knowledge. To address this, we propose Beam Aggregation Reasoning, BeamAggR, a reasoning framework for knowledge-intensive multi-hop QA. BeamAggR explores and prioritizes promising answers at each hop of question. Concretely, we parse the complex questions into trees, which include atom and composite questions, followed by bottom-up reasoning. For atomic questions, the LLM conducts reasoning on multi-source knowledge to get answer candidates. For composite questions, the LLM combines beam candidates, explores multiple reasoning paths through probabilistic aggregation, and prioritizes the most promising trajectory. Extensive experiments on four open-domain multi-hop reasoning datasets show that our method significantly outperforms SOTA methods by 8.5%. Furthermore, our analysis reveals that BeamAggR elicits better knowledge collaboration and answer aggregation.
comment: Accepted to ACL 2024
☆ Scalable and Domain-General Abstractive Proposition Segmentation
Segmenting text into fine-grained units of meaning is important to a wide range of NLP applications. The default approach of segmenting text into sentences is often insufficient, especially since sentences are usually complex enough to include multiple units of meaning that merit separate treatment in the downstream task. We focus on the task of abstractive proposition segmentation: transforming text into simple, self-contained, well-formed sentences. Several recent works have demonstrated the utility of proposition segmentation with few-shot prompted LLMs for downstream tasks such as retrieval-augmented grounding and fact verification. However, this approach does not scale to large amounts of text and may not always extract all the facts from the input text. In this paper, we first introduce evaluation metrics for the task to measure several dimensions of quality. We then propose a scalable, yet accurate, proposition segmentation model. We model proposition segmentation as a supervised task by training LLMs on existing annotated datasets and show that training yields significantly improved results. We further show that by using the fine-tuned LLMs as teachers for annotating large amounts of multi-domain synthetic distillation data, we can train smaller student models with results similar to the teacher LLMs. We then demonstrate that our technique leads to effective domain generalization, by annotating data in two domains outside the original training data and evaluating on them. Finally, as a key contribution of the paper, we share an easy-to-use API for NLP practitioners to use.
☆ NLPerturbator: Studying the Robustness of Code LLMs to Natural Language Variations
Large language models (LLMs) achieve promising results in code generation based on a given natural language description. They have been integrated into open-source projects and commercial products to facilitate daily coding activities. The natural language description in the prompt is crucial for LLMs to comprehend users' requirements. Prior studies uncover that LLMs are sensitive to the changes in the prompts, including slight changes that look inconspicuous. However, the natural language descriptions often vary in real-world scenarios (e.g., different formats, grammar, and wording). Prior studies on the robustness of LLMs are often based on random perturbations and such perturbations may not actually happen. In this paper, we conduct a comprehensive study to investigate how are code LLMs robust to variations of natural language description in real-world scenarios. We summarize 18 categories of perturbations of natural language and 3 combinations of co-occurred categories based on our literature review and an online survey with practitioners. We propose an automated framework, NLPerturbator, which can perform perturbations of each category given a set of prompts. Through a series of experiments on code generation using six code LLMs, we find that the perturbed prompts can decrease the performance of code generation by a considerable margin (e.g., up to 21.2%, and 4.8% to 6.1% on average). Our study highlights the importance of enhancing the robustness of LLMs to real-world variations in the prompts, as well as the essentiality of attentively constructing the prompts.
☆ Direct Preference Knowledge Distillation for Large Language Models
In the field of large language models (LLMs), Knowledge Distillation (KD) is a critical technique for transferring capabilities from teacher models to student models. However, existing KD methods face limitations and challenges in distillation of LLMs, including efficiency and insufficient measurement capabilities of traditional KL divergence. It is shown that LLMs can serve as an implicit reward function, which we define as a supplement to KL divergence. In this work, we propose Direct Preference Knowledge Distillation (DPKD) for LLMs. DPKD utilizes distribution divergence to represent the preference loss and implicit reward function. We re-formulate KD of LLMs into two stages: first optimizing and objective consisting of implicit reward and reverse KL divergence and then improving the preference probability of teacher outputs over student outputs. We conducted experiments and analysis on various datasets with LLM parameters ranging from 120M to 13B and demonstrate the broad applicability and effectiveness of our DPKD approach. Meanwhile, we prove the value and effectiveness of the introduced implicit reward and output preference in KD through experiments and theoretical analysis. The DPKD method outperforms the baseline method in both output response precision and exact match percentage. Code and data are available at https://aka.ms/dpkd.
☆ Belief Revision: The Adaptability of Large Language Models Reasoning
The capability to reason from text is crucial for real-world NLP applications. Real-world scenarios often involve incomplete or evolving data. In response, individuals update their beliefs and understandings accordingly. However, most existing evaluations assume that language models (LMs) operate with consistent information. We introduce Belief-R, a new dataset designed to test LMs' belief revision ability when presented with new evidence. Inspired by how humans suppress prior inferences, this task assesses LMs within the newly proposed delta reasoning ($\Delta R$) framework. Belief-R features sequences of premises designed to simulate scenarios where additional information could necessitate prior conclusions drawn by LMs. We evaluate $\sim$30 LMs across diverse prompting strategies and found that LMs generally struggle to appropriately revise their beliefs in response to new information. Further, models adept at updating often underperformed in scenarios without necessary updates, highlighting a critical trade-off. These insights underscore the importance of improving LMs' adaptiveness to changing information, a step toward more reliable AI systems.
☆ Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation
Legal case retrieval for sourcing similar cases is critical in upholding judicial fairness. Different from general web search, legal case retrieval involves processing lengthy, complex, and highly specialized legal documents. Existing methods in this domain often overlook the incorporation of legal expert knowledge, which is crucial for accurately understanding and modeling legal cases, leading to unsatisfactory retrieval performance. This paper introduces KELLER, a legal knowledge-guided case reformulation approach based on large language models (LLMs) for effective and interpretable legal case retrieval. By incorporating professional legal knowledge about crimes and law articles, we enable large language models to accurately reformulate the original legal case into concise sub-facts of crimes, which contain the essential information of the case. Extensive experiments on two legal case retrieval benchmarks demonstrate superior retrieval performance and robustness on complex legal case queries of KELLER over existing methods.
☆ Breaking the Script Barrier in Multilingual Pre-Trained Language Models with Transliteration-Based Post-Training Alignment
Multilingual pre-trained models (mPLMs) have shown impressive performance on cross-lingual transfer tasks. However, the transfer performance is often hindered when a low-resource target language is written in a different script than the high-resource source language, even though the two languages may be related or share parts of their vocabularies. Inspired by recent work that uses transliteration to address this problem, our paper proposes a transliteration-based post-pretraining alignment (PPA) method aiming to improve the cross-lingual alignment between languages using diverse scripts. We select two areal language groups, $\textbf{Mediterranean-Amharic-Farsi}$ and $\textbf{South+East Asian Languages}$, wherein the languages are mutually influenced but use different scripts. We apply our method to these language groups and conduct extensive experiments on a spectrum of downstream tasks. The results show that after PPA, models consistently outperform the original model (up to 50% for some tasks) in English-centric transfer. In addition, when we use languages other than English as sources in transfer, our method obtains even larger improvements. We will make our code and models publicly available at \url{https://github.com/cisnlp/Transliteration-PPA}.
comment: preprint
☆ MM-Instruct: Generated Visual Instructions for Large Multimodal Model Alignment
This paper introduces MM-Instruct, a large-scale dataset of diverse and high-quality visual instruction data designed to enhance the instruction-following capabilities of large multimodal models (LMMs). While existing visual instruction datasets often focus on question-answering, they struggle to generalize to broader application scenarios such as creative writing, summarization, or image analysis. To address these limitations, we propose a novel approach to constructing MM-Instruct that leverages the strong instruction-following capabilities of existing LLMs to generate novel visual instruction data from large-scale but conventional image captioning datasets. MM-Instruct first leverages ChatGPT to automatically generate diverse instructions from a small set of seed instructions through augmenting and summarization. It then matches these instructions with images and uses an open-sourced large language model (LLM) to generate coherent answers to the instruction-image pairs. The LLM is grounded by the detailed text descriptions of images in the whole answer generation process to guarantee the alignment of the instruction data. Moreover, we introduce a benchmark based on the generated instruction data to evaluate the instruction-following capabilities of existing LMMs. We demonstrate the effectiveness of MM-Instruct by training a LLaVA-1.5 model on the generated data, denoted as LLaVA-Instruct, which exhibits significant improvements in instruction-following capabilities compared to LLaVA-1.5 models. The MM-Instruct dataset, benchmark, and pre-trained models are available at https://github.com/jihaonew/MM-Instruct.
comment: Dataset and models are available at https://github.com/jihaonew/MM-Instruct
☆ Message du troisi{è}me type : irruption d'un tiers dans un dialogue en ligne
Our study focuses on Wikipedia talk pages, from a global perspective analyzing contributors' behaviors in online interactions. Using a corpus comprising all Wikipedia talk pages in French, totaling more than 300,000 discussion threads, we examine how discussions with more than two participants (multiparty conversation) unfold and we specifically investigate the role of a third participant's intervention when two Wikipedians have already initiated an exchange. In this regard, we concentrate on the sequential structure of these interactions in terms of articulation among different participants and aim to specify this third message by exploring its lexical particularities, while also proposing an initial typology of the third participant's message role and how it aligns with preceding messages.
comment: in French language. JADT 2024 - 17es Journ{\'e}es internationales d'Analyse statistique des Donn{\'e}es Textuelles, SeSLa (S{\'e}minaire des Sciences du Langage de l'UCLouvain -- Site Saint-Louis); LASLA (Laboratoire d'Analyse statistique des Langues anciennes de l'Universit{\'e} de Li{\`e}ge), 2024, Bruxelles, Belgique
☆ Le sens de la famille : analyse du vocabulaire de la parent{é} par les plongements de mots
In this study, we propose a corpus analysis of an area of the French lexicon that is both dense and highly structured: the vocabulary of family relationships. Starting with a lexicon of 25 nouns designating the main relationships (son, cousin, mother, grandfather, sister-in-law etc.), we examine how these terms are positioned in relation to each other through distributional analyses based on the use of these terms in corpora. We show that distributional information can capture certain features that organize this vocabulary (descent, alliance, siblings, genre), in ways that vary according to the different corpora compared.
comment: in French language. JADT 2024 - 17es Journ{\'e}es internationales d'Analyse statistique des Donn{\'e}es Textuelles, SeSLa (S{\'e}minaire des Sciences du Langage de l'UCLouvain -- Site Saint-Louis), 2024, Bruxelles, Belgique
☆ Uncertainty Quantification in Large Language Models Through Convex Hull Analysis
Uncertainty quantification approaches have been more critical in large language models (LLMs), particularly high-risk applications requiring reliable outputs. However, traditional methods for uncertainty quantification, such as probabilistic models and ensemble techniques, face challenges when applied to the complex and high-dimensional nature of LLM-generated outputs. This study proposes a novel geometric approach to uncertainty quantification using convex hull analysis. The proposed method leverages the spatial properties of response embeddings to measure the dispersion and variability of model outputs. The prompts are categorized into three types, i.e., `easy', `moderate', and `confusing', to generate multiple responses using different LLMs at varying temperature settings. The responses are transformed into high-dimensional embeddings via a BERT model and subsequently projected into a two-dimensional space using Principal Component Analysis (PCA). The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is utilized to cluster the embeddings and compute the convex hull for each selected cluster. The experimental results indicate that the uncertainty of the model for LLMs depends on the prompt complexity, the model, and the temperature setting.
comment: 17 pages
☆ Less is More: Accurate Speech Recognition & Translation without Web-Scale Data
Recent advances in speech recognition and translation rely on hundreds of thousands of hours of Internet speech data. We argue that state-of-the art accuracy can be reached without relying on web-scale data. Canary - multilingual ASR and speech translation model, outperforms current state-of-the-art models - Whisper, OWSM, and Seamless-M4T on English, French, Spanish, and German languages, while being trained on an order of magnitude less data than these models. Three key factors enables such data-efficient model: (1) a FastConformer-based attention encoder-decoder architecture (2) training on synthetic data generated with machine translation and (3) advanced training techniques: data-balancing, dynamic data blending, dynamic bucketing and noise-robust fine-tuning. The model, weights, and training code will be open-sourced.
comment: Accepted at Interspeech-2024
☆ DECOR: Improving Coherence in L2 English Writing with a Novel Benchmark for Incoherence Detection, Reasoning, and Rewriting
Coherence in writing, an aspect that second-language (L2) English learners often struggle with, is crucial in assessing L2 English writing. Existing automated writing evaluation systems primarily use basic surface linguistic features to detect coherence in writing. However, little effort has been made to correct the detected incoherence, which could significantly benefit L2 language learners seeking to improve their writing. To bridge this gap, we introduce DECOR, a novel benchmark that includes expert annotations for detecting incoherence in L2 English writing, identifying the underlying reasons, and rewriting the incoherent sentences. To our knowledge, DECOR is the first coherence assessment dataset specifically designed for improving L2 English writing, featuring pairs of original incoherent sentences alongside their expert-rewritten counterparts. Additionally, we fine-tuned models to automatically detect and rewrite incoherence in student essays. We find that incorporating specific reasons for incoherence during fine-tuning consistently improves the quality of the rewrites, achieving a result that is favored in both automatic and human evaluations.
comment: 21 pages, 5 figures, 20 tables
☆ Designing and Evaluating Multi-Chatbot Interface for Human-AI Communication: Preliminary Findings from a Persuasion Task
The dynamics of human-AI communication have been reshaped by language models such as ChatGPT. However, extant research has primarily focused on dyadic communication, leaving much to be explored regarding the dynamics of human-AI communication in group settings. The availability of multiple language model chatbots presents a unique opportunity for scholars to better understand the interaction between humans and multiple chatbots. This study examines the impact of multi-chatbot communication in a specific persuasion setting: promoting charitable donations. We developed an online environment that enables multi-chatbot communication and conducted a pilot experiment utilizing two GPT-based chatbots, Save the Children and UNICEF chatbots, to promote charitable donations. In this study, we present our development process of the multi-chatbot interface and present preliminary findings from a pilot experiment. Analysis of qualitative and quantitative feedback are presented, and limitations are addressed.
☆ Unlocking Varied Perspectives: A Persona-Based Multi-Agent Framework with Debate-Driven Text Planning for Argument Generation
Writing persuasive arguments is a challenging task for both humans and machines. It entails incorporating high-level beliefs from various perspectives on the topic, along with deliberate reasoning and planning to construct a coherent narrative. Current language models often generate surface tokens autoregressively, lacking explicit integration of these underlying controls, resulting in limited output diversity and coherence. In this work, we propose a persona-based multi-agent framework for argument writing. Inspired by the human debate, we first assign each agent a persona representing its high-level beliefs from a unique perspective, and then design an agent interaction process so that the agents can collaboratively debate and discuss the idea to form an overall plan for argument writing. Such debate process enables fluid and nonlinear development of ideas. We evaluate our framework on argumentative essay writing. The results show that our framework can generate more diverse and persuasive arguments through both automatic and human evaluations.
☆ IDT: Dual-Task Adversarial Attacks for Privacy Protection
Natural language processing (NLP) models may leak private information in different ways, including membership inference, reconstruction or attribute inference attacks. Sensitive information may not be explicit in the text, but hidden in underlying writing characteristics. Methods to protect privacy can involve using representations inside models that are demonstrated not to detect sensitive attributes or -- for instance, in cases where users might not trust a model, the sort of scenario of interest here -- changing the raw text before models can have access to it. The goal is to rewrite text to prevent someone from inferring a sensitive attribute (e.g. the gender of the author, or their location by the writing style) whilst keeping the text useful for its original intention (e.g. the sentiment of a product review). The few works tackling this have focused on generative techniques. However, these often create extensively different texts from the original ones or face problems such as mode collapse. This paper explores a novel adaptation of adversarial attack techniques to manipulate a text to deceive a classifier w.r.t one task (privacy) whilst keeping the predictions of another classifier trained for another task (utility) unchanged. We propose IDT, a method that analyses predictions made by auxiliary and interpretable models to identify which tokens are important to change for the privacy task, and which ones should be kept for the utility task. We evaluate different datasets for NLP suitable for different tasks. Automatic and human evaluations show that IDT retains the utility of text, while also outperforming existing methods when deceiving a classifier w.r.t privacy task.
comment: 28 pages, 1 figure
☆ Mixture of In-Context Experts Enhance LLMs' Long Context Awareness
Many studies have revealed that large language models (LLMs) exhibit uneven awareness of different contextual positions.Their limited context awareness can lead to overlooking critical information and subsequent task failures. While several approaches have been proposed to enhance LLMs' context awareness, achieving both effectiveness and efficiency remains challenging.In this paper, for LLMs utilizing RoPE as position embeddings, we introduce a novel method called ``Mixture of In-Context Experts'' (MoICE) to address this challenge. MoICE comprises two key components: a router integrated into each attention head within LLMs and a lightweight router-only training optimization strategy: (1) MoICE views each RoPE angle as an `in-context' expert, demonstrated to be capable of directing the attention of a head to specific contextual positions. Consequently, each attention head flexibly processes tokens using multiple RoPE angles dynamically selected by the router to attend to the needed positions. This approach mitigates the risk of overlooking essential contextual information. (2) The router-only training strategy entails freezing LLM parameters and exclusively updating routers for only a few steps. When applied to open-source LLMs including Llama and Mistral, MoICE surpasses prior methods across multiple tasks on long context understanding and generation, all while maintaining commendable inference efficiency.
comment: 14 pages, 5 figures
☆ SK-VQA: Synthetic Knowledge Generation at Scale for Training Context-Augmented Multimodal LLMs
Synthetic data generation has gained significant attention recently for its utility in training large vision and language models. However, the application of synthetic data to the training of multimodal context-augmented generation systems has been relatively unexplored. This gap in existing work is important because existing vision and language models (VLMs) are not trained specifically for context-augmented generation. Resources for adapting such models are therefore crucial for enabling their use in retrieval-augmented generation (RAG) settings, where a retriever is used to gather relevant information that is then subsequently provided to a generative model via context augmentation. To address this challenging problem, we generate SK-VQA: a large synthetic multimodal dataset containing over 2 million question-answer pairs which require external knowledge to determine the final answer. Our dataset is both larger and significantly more diverse than existing resources of its kind, possessing over 11x more unique questions and containing images from a greater variety of sources than previously-proposed datasets. Through extensive experiments, we demonstrate that our synthetic dataset can not only serve as a challenging benchmark, but is also highly effective for adapting existing generative multimodal models for context-augmented generation.
♻ ☆ AutoMix: Automatically Mixing Language Models
Large language models (LLMs) are now available from cloud API providers in various sizes and configurations. While this diversity offers a broad spectrum of choices, effectively leveraging the options to optimize computational cost and performance remains challenging. In this work, we present Automix, an approach that strategically routes queries to larger LMs, based on the approximate correctness of outputs from a smaller LM. Central to Automix are two key technical contributions. First, it has a few-shot self-verification mechanism, which estimates the reliability of its own outputs without requiring extensive training. Second, given that self-verification can be noisy, it employs a POMDP based router that can effectively select an appropriately sized model, based on answer confidence. Experiments across five language models and five challenging datasets show that Automix consistently surpasses strong baselines, reducing computational cost by over 50% for comparable performance.
comment: The first two authors contributed equally. Work started and partly done during Aman's internship at Google. This version adds results on additional models and datasets
♻ ☆ MBIAS: Mitigating Bias in Large Language Models While Retaining Context
The deployment of Large Language Models (LLMs) in diverse applications necessitates an assurance of safety without compromising the contextual integrity of the generated content. Traditional approaches, including safety-specific fine-tuning or adversarial testing, often yield safe outputs at the expense of contextual meaning. This can result in a diminished capacity to handle nuanced aspects of bias and toxicity, such as underrepresentation or negative portrayals across various demographics. To address these challenges, we introduce MBIAS, an LLM framework carefully instruction fine-tuned on a custom dataset designed specifically for safety interventions. MBIAS is designed to significantly reduce biases and toxic elements in LLM outputs while preserving the main information. This work also details our further use of LLMs: as annotator under human supervision and as evaluator of generated content. Empirical analysis reveals that MBIAS achieves a reduction in bias and toxicity by over 30\% in standard evaluations, and by more than 90\% in diverse demographic tests, highlighting the robustness of our approach. We make the dataset and the fine-tuned model available to the research community for further investigation and ensure reproducibility. The code for this project can be accessed here https://github.com/shainarazavi/MBIAS/tree/main. Warning: This paper contains examples that may be offensive or upsetting.
♻ ☆ MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering
Large Language Models (LLMs), although powerful in general domains, often perform poorly on domain-specific tasks like medical question answering (QA). Moreover, they tend to function as "black-boxes," making it challenging to modify their behavior. To address the problem, our study delves into retrieval augmented generation (RAG), aiming to improve LLM responses without the need for fine-tuning or retraining. Specifically, we propose a comprehensive retrieval strategy to extract medical facts from an external knowledge base, and then inject them into the query prompt for LLMs. Focusing on medical QA using the MedQA-SMILE dataset, we evaluate the impact of different retrieval models and the number of facts provided to the LLM. Notably, our retrieval-augmented Vicuna-7B model exhibited an accuracy improvement from 44.46% to 48.54%. This work underscores the potential of RAG to enhance LLM performance, offering a practical approach to mitigate the challenges of black-box LLMs.
comment: Accepted by AMIA 2024 Annual Symposium
♻ ☆ LLMs and Memorization: On Quality and Specificity of Copyright Compliance
Memorization in large language models (LLMs) is a growing concern. LLMs have been shown to easily reproduce parts of their training data, including copyrighted work. This is an important problem to solve, as it may violate existing copyright laws as well as the European AI Act. In this work, we propose a systematic analysis to quantify the extent of potential copyright infringements in LLMs using European law as an example. Unlike previous work, we evaluate instruction-finetuned models in a realistic end-user scenario. Our analysis builds on a proposed threshold of 160 characters, which we borrow from the German Copyright Service Provider Act and a fuzzy text matching algorithm to identify potentially copyright-infringing textual reproductions. The specificity of countermeasures against copyright infringement is analyzed by comparing model behavior on copyrighted and public domain data. We investigate what behaviors models show instead of producing protected text (such as refusal or hallucination) and provide a first legal assessment of these behaviors. We find that there are huge differences in copyright compliance, specificity, and appropriate refusal among popular LLMs. Alpaca, GPT 4, GPT 3.5, and Luminous perform best in our comparison, with OpenGPT-X, Alpaca, and Luminous producing a particularly low absolute number of potential copyright violations. Code will be published soon.
comment: 10 pages, 3 figures
♻ ☆ A Small and Fast BERT for Chinese Medical Punctuation Restoration INTERSPEECH 2024
In clinical dictation, utterances after automatic speech recognition (ASR) without explicit punctuation marks may lead to the misunderstanding of dictated reports. To give a precise and understandable clinical report with ASR, automatic punctuation restoration is required. Considering a practical scenario, we propose a fast and light pre-trained model for Chinese medical punctuation restoration based on 'pretraining and fine-tuning' paradigm. In this work, we distill pre-trained models by incorporating supervised contrastive learning and a novel auxiliary pre-training task (Punctuation Mark Prediction) to make it well-suited for punctuation restoration. Our experiments on various distilled models reveal that our model can achieve 95% performance while 10% model size relative to state-of-the-art Chinese RoBERTa.
comment: 5 pages, 2 figures, Accepted by INTERSPEECH 2024
♻ ☆ Distributed Speculative Inference of Large Language Models
Accelerating the inference of large language models (LLMs) is an important challenge in artificial intelligence. This paper introduces distributed speculative inference (DSI), a novel distributed inference algorithm that is provably faster than speculative inference (SI) [leviathan2023fast, chen2023accelerating, miao2023specinfer] and traditional autoregressive inference (non-SI). Like other SI algorithms, DSI works on frozen LLMs, requiring no training or architectural modifications, and it preserves the target distribution. Prior studies on SI have demonstrated empirical speedups (compared to non-SI) but require a fast and accurate drafter LLM. In practice, off-the-shelf LLMs often do not have matching drafters that are sufficiently fast and accurate. We show a gap: SI gets slower than non-SI when using slower or less accurate drafters. We close this gap by proving that DSI is faster than both SI and non-SI given any drafters. By orchestrating multiple instances of the target and drafters, DSI is not only faster than SI but also supports LLMs that cannot be accelerated with SI. Our simulations show speedups of off-the-shelf LLMs in realistic settings: DSI is 1.29-1.92x faster than SI.
♻ ☆ How well ChatGPT understand Malaysian English? An Evaluation on Named Entity Recognition and Relation Extraction EMNLP 2023
Recently, ChatGPT has attracted a lot of interest from both researchers and the general public. While the performance of ChatGPT in named entity recognition and relation extraction from Standard English texts is satisfactory, it remains to be seen if it can perform similarly for Malaysian English. Malaysian English is unique as it exhibits morphosyntactic and semantical adaptation from local contexts. In this study, we assess ChatGPT's capability in extracting entities and relations from the Malaysian English News (MEN) dataset. We propose a three-step methodology referred to as \textbf{\textit{educate-predict-evaluate}}. The performance of ChatGPT is assessed using F1-Score across 18 unique prompt settings, which were carefully engineered for a comprehensive review. From our evaluation, we found that ChatGPT does not perform well in extracting entities from Malaysian English news articles, with the highest F1-Score of 0.497. Further analysis shows that the morphosyntactic adaptation in Malaysian English caused the limitation. However, interestingly, this morphosyntactic adaptation does not impact the performance of ChatGPT for relation extraction.
comment: Accepted in Generation, Evaluation & Metrics (GEM) Workshop at EMNLP 2023
♻ ☆ Are LLM-based Evaluators Confusing NLG Quality Criteria? ACL 2024
Some prior work has shown that LLMs perform well in NLG evaluation for different tasks. However, we discover that LLMs seem to confuse different evaluation criteria, which reduces their reliability. For further verification, we first consider avoiding issues of inconsistent conceptualization and vague expression in existing NLG quality criteria themselves. So we summarize a clear hierarchical classification system for 11 common aspects with corresponding different criteria from previous studies involved. Inspired by behavioral testing, we elaborately design 18 types of aspect-targeted perturbation attacks for fine-grained analysis of the evaluation behaviors of different LLMs. We also conduct human annotations beyond the guidance of the classification system to validate the impact of the perturbations. Our experimental results reveal confusion issues inherent in LLMs, as well as other noteworthy phenomena, and necessitate further research and improvements for LLM-based evaluation.
comment: Accepted by ACL 2024
♻ ☆ NoteChat: A Dataset of Synthetic Doctor-Patient Conversations Conditioned on Clinical Notes
We introduce NoteChat, a novel cooperative multi-agent framework leveraging Large Language Models (LLMs) to generate patient-physician dialogues. NoteChat embodies the principle that an ensemble of role-specific LLMs, through structured role-play and strategic prompting, can perform their assigned roles more effectively. The synergy among these role-playing LLMs results in a cohesive and efficient dialogue generation. Evaluation on MTS-dialogue, a benchmark dataset for patient-physician dialogues-note pairs, shows that models trained with the augmented synthetic patient-physician dialogues by NoteChat outperforms other state-of-the-art models for generating clinical notes. Our comprehensive automatic and human evaluation demonstrates that NoteChat substantially surpasses state-of-the-art models like ChatGPT and GPT-4 up to 22.78% by domain experts in generating superior synthetic patient-physician dialogues based on clinical notes. NoteChat has the potential to engage patients directly and help clinical documentation, a leading cause of physician burnout.
♻ ☆ JMLR: Joint Medical LLM and Retrieval Training for Enhancing Reasoning and Professional Question Answering Capability
Large Language Models (LLMs) have demonstrated a remarkable potential in medical knowledge acquisition and question-answering. However, LLMs can potentially hallucinate and yield factually incorrect outcomes, even with domain-specific pretraining. Previously, retrieval augmented generation (RAG) has limited success in addressing hallucinations. Unlike previous methods in RAG where the retrieval model was trained separately from the LLM, we introduce JMLR (for Jointly trains LLM and information Retrieval) during the fine-tuning phase. The synchronized training mechanism enhances JMLR's ability to retrieve clinical guidelines and leverage medical knowledge to reason and answer questions and reduces the demand for computational resources. We evaluated JMLR on the important medical question-answering application. Our experimental results demonstrate that JMLR-13B (70.5%) outperforms a previous state-of-the-art open-source model using conventional pre-training and fine-tuning Meditron-70B (68.9%) and Llama2-13B with RAG (67.7%) on a medical question-answering dataset. Comprehensive evaluations reveal JMLR-13B enhances reasoning quality and reduces hallucinations better than Claude3-Opus. Additionally, JMLR-13B (148 GPU hours) also trains much faster than Meditron-70B (42630 GPU hours). Through this work, we provide a new and efficient knowledge enhancement method for healthcare, demonstrating the potential of integrating retrieval and LLM training for medical question-answering systems.
♻ ☆ LatentExplainer: Explaining Latent Representations in Deep Generative Models with Multi-modal Foundation Models
Deep generative models like VAEs and diffusion models have advanced various generation tasks by leveraging latent variables to learn data distributions and generate high-quality samples. Despite the field of explainable AI making strides in interpreting machine learning models, understanding latent variables in generative models remains challenging. This paper introduces LatentExplainer, a framework for automatically generating semantically meaningful explanations of latent variables in deep generative models. LatentExplainer tackles three main challenges: inferring the meaning of latent variables, aligning explanations with inductive biases, and handling varying degrees of explainability. By perturbing latent variables and interpreting changes in generated data, the framework provides a systematic approach to understanding and controlling the data generation process, enhancing the transparency and interpretability of deep generative models. We evaluate our proposed method on several real-world and synthetic datasets, and the results demonstrate superior performance in generating high-quality explanations of latent variables.
♻ ☆ A Unified Data Augmentation Framework for Low-Resource Multi-Domain Dialogue Generation ECML-PKDD
Current state-of-the-art dialogue systems heavily rely on extensive training datasets. However, challenges arise in domains where domain-specific training datasets are insufficient or entirely absent. To tackle this challenge, we propose a novel data \textbf{A}ugmentation framework for \textbf{M}ulti-\textbf{D}omain \textbf{D}ialogue \textbf{G}eneration, referred to as \textbf{AMD$^2$G}. The AMD$^2$G framework consists of a data augmentation process and a two-stage training approach: domain-agnostic training and domain adaptation training. We posit that domain corpora are a blend of domain-agnostic and domain-specific features, with certain representation patterns shared among diverse domains. Domain-agnostic training aims to enable models to learn these common expressive patterns. To construct domain-agnostic dialogue corpora, we employ a \textit{\textbf{de-domaining}} data processing technique used to remove domain-specific features. By mitigating the effects of domain-specific features, the model trained on the de-domained corpora can effectively learn common expression patterns in different domains. Subsequently, we adapt the learned domain-agnostic features to the target domain through domain adaptation training. We conduct experiments on Chinese dialogue datasets from five different domains and show that AMD$^2$G achieves superior performance compared to both direct training on the target domain corpus and collective training on all five domain corpora. Our work underscores AMD$^2$G as a viable alternative solution for low-resource multi-domain dialogue generation. Code and data associated with our work are available on GitHub repository$^{\text 1}$.
comment: 17pages,ECML-PKDD
♻ ☆ Do prompt positions really matter?
Prompt-based models have gathered a lot of attention from researchers due to their remarkable advancements in the fields of zero-shot and few-shot learning. Developing an effective prompt template plays a critical role. However, prior studies have mainly focused on prompt vocabulary searching or embedding initialization within a predefined template with the prompt position fixed. In this empirical study, we conduct the most comprehensive analysis to date of prompt position for diverse Natural Language Processing (NLP) tasks. Our findings quantify the substantial impact prompt position has on model performance. We observe that the prompt positions used in prior studies are often sub-optimal, and this observation is consistent even in widely used instruction-tuned models. These findings suggest prompt position optimisation as a valuable research direction to augment prompt engineering methodologies and prompt position-aware instruction tuning as a potential way to build more robust models in the future.
comment: 8 pages, 2 figures
♻ ☆ Advancing Airport Tower Command Recognition: Integrating Squeeze-and-Excitation and Broadcasted Residual Learning
Accurate recognition of aviation commands is vital for flight safety and efficiency, as pilots must follow air traffic control instructions precisely. This paper addresses challenges in speech command recognition, such as noisy environments and limited computational resources, by advancing keyword spotting technology. We create a dataset of standardized airport tower commands, including routine and emergency instructions. We enhance broadcasted residual learning with squeeze-and-excitation and time-frame frequency-wise squeeze-and-excitation techniques, resulting in our BC-SENet model. This model focuses on crucial information with fewer parameters. Our tests on five keyword spotting models, including BC-SENet, demonstrate superior accuracy and efficiency. These findings highlight the effectiveness of our model advancements in improving speech command recognition for aviation safety and efficiency in noisy, high-stakes environments. Additionally, BC-SENet shows comparable performance on the common Google Speech Command dataset.
comment: Accepted by IALP 2024
♻ ☆ RuBLiMP: Russian Benchmark of Linguistic Minimal Pairs
Minimal pairs are a well-established approach to evaluating the grammatical knowledge of language models. However, existing resources for minimal pairs address a limited number of languages and lack diversity of language-specific grammatical phenomena. This paper introduces the Russian Benchmark of Linguistic Minimal Pairs (RuBLiMP), which includes 45k pairs of sentences that differ in grammaticality and isolate a morphological, syntactic, or semantic phenomenon. In contrast to existing benchmarks of linguistic minimal pairs, RuBLiMP is created by applying linguistic perturbations to automatically annotated sentences from open text corpora and carefully curating test data. We describe the data collection protocol and present the results of evaluating 25 language models in various scenarios. We find that the widely used language models for Russian are sensitive to morphological and agreement-oriented contrasts but fall behind humans on phenomena requiring understanding of structural relations, negation, transitivity, and tense. RuBLiMP, the codebase, and other materials are publicly available.
♻ ☆ TimeBench: A Comprehensive Evaluation of Temporal Reasoning Abilities in Large Language Models ACL 2024
Grasping the concept of time is a fundamental facet of human cognition, indispensable for truly comprehending the intricacies of the world. Previous studies typically focus on specific aspects of time, lacking a comprehensive temporal reasoning benchmark. To address this, we propose TimeBench, a comprehensive hierarchical temporal reasoning benchmark that covers a broad spectrum of temporal reasoning phenomena. TimeBench provides a thorough evaluation for investigating the temporal reasoning capabilities of large language models. We conduct extensive experiments on GPT-4, LLaMA2, and other popular LLMs under various settings. Our experimental results indicate a significant performance gap between the state-of-the-art LLMs and humans, highlighting that there is still a considerable distance to cover in temporal reasoning. Besides, LLMs exhibit capability discrepancies across different reasoning categories. Furthermore, we thoroughly analyze the impact of multiple aspects on temporal reasoning and emphasize the associated challenges. We aspire for TimeBench to serve as a comprehensive benchmark, fostering research in temporal reasoning. Resources are available at: https://github.com/zchuz/TimeBench
comment: Accepted to ACL 2024
♻ ☆ A synthetic data approach for domain generalization of NLI models
Natural Language Inference (NLI) remains an important benchmark task for LLMs. NLI datasets are a springboard for transfer learning to other semantic tasks, and NLI models are standard tools for identifying the faithfulness of model-generated text. There are several large scale NLI datasets today, and models have improved greatly by hill-climbing on these collections. Yet their realistic performance on out-of-distribution/domain data is less well-understood. We explore the opportunity for synthetic high-quality datasets to adapt NLI models for zero-shot use in downstream applications across new and unseen text domains. We demonstrate a new approach for generating NLI data in diverse domains and lengths, so far not covered by existing training sets. The resulting examples have meaningful premises, the hypotheses are formed in creative ways rather than simple edits to a few premise tokens, and the labels have high accuracy. We show that models trained on this data ($685$K synthetic examples) have the best generalization to completely new downstream test settings. On the TRUE benchmark, a T5-small model trained with our data improves around $7\%$ on average compared to training on the best alternative dataset. The improvements are more pronounced for smaller models, while still meaningful on a T5 XXL model. We also demonstrate gains on test sets when in-domain training data is augmented with our domain-general synthetic data.
♻ ☆ Chitchat as Interference: Adding User Backstories to Task-Oriented Dialogues LREC
During task-oriented dialogues (TODs), human users naturally introduce chitchat that is beyond the immediate scope of the task, interfering with the flow of the conversation. To address this issue without the need for expensive manual data creation, we use few-shot prompting with Llama-2-70B to enhance the MultiWOZ dataset with user backstories, a typical example of chitchat interference in TODs. We assess the impact of this addition by testing two models: one trained solely on TODs and another trained on TODs with a preliminary chitchat interaction. Our analysis demonstrates that our enhanced dataset poses a challenge for these systems. Moreover, we demonstrate that our dataset can be effectively used for training purposes, enabling a system to consistently acknowledge the user's backstory while also successfully moving the task forward in the same turn, as confirmed by human evaluation. These findings highlight the benefits of generating novel chitchat-TOD scenarios to test TOD systems more thoroughly and improve their resilience to natural user interferences
comment: Accepted @ LREC-COLING 2024
♻ ☆ MathChat: Converse to Tackle Challenging Math Problems with LLM Agents
Employing Large Language Models (LLMs) to address mathematical problems is an intriguing research endeavor, considering the abundance of math problems expressed in natural language across numerous science and engineering fields. LLMs, with their generalized ability, are used as a foundation model to build AI agents for different tasks. In this paper, we study the effectiveness of utilizing LLM agents to solve math problems through conversations. We propose MathChat, a conversational problem-solving framework designed for math problems. MathChat consists of an LLM agent and a user proxy agent which is responsible for tool execution and additional guidance. This synergy facilitates a collaborative problem-solving process, where the agents engage in a dialogue to solve the problems. We perform evaluation on difficult high school competition problems from the MATH dataset. Utilizing Python, we show that MathChat can further improve previous tool-using prompting methods by 6%.
comment: Update version
♻ ☆ A Unified Approach to Emotion Detection and Task-Oriented Dialogue Modeling
In current text-based task-oriented dialogue (TOD) systems, user emotion detection (ED) is often overlooked or is typically treated as a separate and independent task, requiring additional training. In contrast, our work demonstrates that seamlessly unifying ED and TOD modeling brings about mutual benefits, and is therefore an alternative to be considered. Our method consists in augmenting SimpleToD, an end-to-end TOD system, by extending belief state tracking to include ED, relying on a single language model. We evaluate our approach using GPT-2 and Llama-2 on the EmoWOZ benchmark, a version of MultiWOZ annotated with emotions. Our results reveal a general increase in performance for ED and task results. Our findings also indicate that user emotions provide useful contextual conditioning for system responses, and can be leveraged to further refine responses in terms of empathy.
comment: Accepted @ IWSDS 2024
♻ ☆ M2Lingual: Enhancing Multilingual, Multi-Turn Instruction Alignment in Large Language Models
Instruction finetuning (IFT) is critical for aligning Large Language Models (LLMs) to follow instructions. While many effective IFT datasets have been introduced recently, they predominantly focus on high-resource languages like English. To better align LLMs across a broad spectrum of languages and tasks, we propose a fully synthetic, novel taxonomy (Evol) guided Multilingual, Multi-turn instruction finetuning dataset, called M2Lingual. It is constructed by first selecting a diverse set of seed examples and then utilizing the proposed Evol taxonomy to convert these seeds into complex and challenging multi-turn instructions. We demonstrate the effectiveness of M2Lingual by training LLMs of varying sizes and showcasing the enhanced performance across a diverse set of languages. We contribute the 2 step Evol taxonomy with the guided generation code: https://github.com/ServiceNow/M2Lingual, as well as the first fully synthetic, general and task-oriented, multi-turn, multilingual dataset built with Evol - M2Lingual: https://huggingface.co/datasets/ServiceNow-AI/ M2Lingual - containing 182K total IFT pairs, covering 70 languages and 17+ NLP tasks.
comment: 39 pages
♻ ☆ BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation
In this paper, we present a new embedding model, called M3-Embedding, which is distinguished for its versatility in Multi-Linguality, Multi-Functionality, and Multi-Granularity. It can support more than 100 working languages, leading to new state-of-the-art performances on multi-lingual and cross-lingual retrieval tasks. It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval, which provides a unified model foundation for real-world IR applications. It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens. The effective training of M3-Embedding involves the following technical contributions. We propose a novel self-knowledge distillation approach, where the relevance scores from different retrieval functionalities can be integrated as the teacher signal to enhance the training quality. We also optimize the batching strategy, enabling a large batch size and high training throughput to ensure the discriminativeness of embeddings. To the best of our knowledge, M3-Embedding is the first embedding model which realizes such a strong versatility. The model and code will be publicly available at https://github.com/FlagOpen/FlagEmbedding.
♻ ☆ Large Language Model Enhanced Clustering for News Event Detection
The news landscape is continuously evolving, with an ever-increasing volume of information from around the world. Automated event detection within this vast data repository is essential for monitoring, identifying, and categorizing significant news occurrences across diverse platforms. This paper presents an event detection framework that leverages Large Language Models (LLMs) combined with clustering analysis to detect news events from the Global Database of Events, Language, and Tone (GDELT). The framework enhances event clustering through both pre-event detection tasks (keyword extraction and text embedding) and post-event detection tasks (event summarization and topic labelling). We also evaluate the impact of various textual embeddings on the quality of clustering outcomes, ensuring robust news categorization. Additionally, we introduce a novel Cluster Stability Assessment Index (CSAI) to assess the validity and robustness of clustering results. CSAI utilizes multiple feature vectors to provide a new way of measuring clustering quality. Our experiments indicate that the use of LLM embedding in the event detection framework has significantly improved the results, demonstrating greater robustness in terms of CSAI scores. Moreover, post-event detection tasks generate meaningful insights, facilitating effective interpretation of event clustering results. Overall, our experimental results indicate that the proposed framework offers valuable insights and could enhance the accuracy in news analysis and reporting.
♻ ☆ SampleAttention: Near-Lossless Acceleration of Long Context LLM Inference with Adaptive Structured Sparse Attention
Large language models (LLMs) now support extremely long context windows, but the quadratic complexity of vanilla attention results in significantly long Time-to-First-Token (TTFT) latency. Existing approaches to address this complexity require additional pretraining or finetuning, and often sacrifice model accuracy. In this paper, we first provide both theoretical and empirical foundations for near-lossless sparse attention. We find dynamically capturing head-specific sparse patterns at runtime with low overhead is crucial. To address this, we propose SampleAttention, an adaptive structured and near-lossless sparse attention. Leveraging observed significant sparse patterns, SampleAttention attends to a fixed percentage of adjacent tokens to capture local window patterns, and employs a two-stage query-guided key-value filtering approach, which adaptively select a minimum set of key-values with low overhead, to capture column stripe patterns. Comprehensive evaluations show that SampleAttention can seamlessly replace vanilla attention in off-the-shelf LLMs with nearly no accuracy loss, and reduces TTFT by up to $2.42\times$ compared with FlashAttention.
♻ ☆ SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models ICML 2024
Most of the existing Large Language Model (LLM) benchmarks on scientific problem reasoning focus on problems grounded in high-school subjects and are confined to elementary algebraic operations. To systematically examine the reasoning capabilities required for solving complex scientific problems, we introduce an expansive benchmark suite SciBench for LLMs. SciBench contains a carefully curated dataset featuring a range of collegiate-level scientific problems from mathematics, chemistry, and physics domains. Based on the dataset, we conduct an in-depth benchmarking study of representative open-source and proprietary LLMs with various prompting strategies. The results reveal that the current LLMs fall short of delivering satisfactory performance, with the best overall score of merely 43.22%. Furthermore, through a detailed user study, we categorize the errors made by LLMs into ten problem-solving abilities. Our analysis indicates that no single prompting strategy significantly outperforms the others and some strategies that demonstrate improvements in certain problem-solving skills could result in declines in other skills. We envision that SciBench will catalyze further developments in the reasoning abilities of LLMs, thereby ultimately contributing to scientific research and discovery.
comment: To appear at ICML 2024
♻ ☆ Active Preference Learning for Large Language Models
As large language models (LLMs) become more capable, fine-tuning techniques for aligning with human intent are increasingly important. A key consideration for aligning these models is how to most effectively use human resources, or model resources in the case where LLMs themselves are used as oracles. Reinforcement learning from Human or AI preferences (RLHF/RLAIF) is the most prominent example of such a technique, but is complex and often unstable. Direct Preference Optimization (DPO) has recently been proposed as a simpler and more stable alternative. In this work, we develop an active learning strategy for DPO to make better use of preference labels. We propose a practical acquisition function for prompt/completion pairs based on the predictive entropy of the language model and a measure of certainty of the implicit preference model optimized by DPO. We demonstrate how our approach improves both the rate of learning and final performance of fine-tuning on pairwise preference data.
comment: 13 pages, 5 figures, 6 tables
♻ ☆ UniGen: A Unified Framework for Textual Dataset Generation Using Large Language Models
Large Language Models (LLMs) such as GPT-4 and Llama3 have significantly impacted various fields by enabling high-quality synthetic data generation and reducing dependence on expensive human-generated datasets. Despite this, challenges remain in the areas of generalization, controllability, diversity, and truthfulness within the existing generative frameworks. To address these challenges, this paper presents UniGen, a comprehensive LLM-powered framework designed to produce diverse, accurate, and highly controllable datasets. UniGen is adaptable, supporting all types of text datasets and enhancing the generative process through innovative mechanisms. To augment data diversity, UniGen incorporates an attribute-guided generation module and a group checking feature. For accuracy, it employs a code-based mathematical assessment for label verification alongside a retrieval-augmented generation technique for factual validation. The framework also allows for user-specified constraints, enabling customization of the data generation process to suit particular requirements. Extensive experiments demonstrate the superior quality of data generated by UniGen, and each module within UniGen plays a critical role in this enhancement. Additionally, UniGen is applied in two practical scenarios: benchmarking LLMs and data augmentation. The results indicate that UniGen effectively supports dynamic and evolving benchmarking, and that data augmentation improves LLM capabilities in various domains, including agent-oriented abilities and reasoning skills.
♻ ☆ Concept-aware Data Construction Improves In-context Learning of Language Models ACL 2024
Many recent language models (LMs) are capable of in-context learning (ICL), manifested in the LMs' ability to perform a new task solely from natural-language instruction. Previous work curating in-context learners assumes that ICL emerges from a vast over-parametrization or the scale of multi-task training. However, recent theoretical work attributes the ICL ability to concept-dependent training data and creates functional in-context learners even in small-scale, synthetic settings. In this work, we practically explore this newly identified axis of ICL quality. We propose Concept-aware Training (CoAT), a framework for constructing training scenarios that make it beneficial for the LM to learn to utilize the analogical reasoning concepts from demonstrations. We find that by using CoAT, pre-trained transformers can learn to better utilise new latent concepts from demonstrations and that such ability makes ICL more robust to the functional deficiencies of the previous models. Finally, we show that concept-aware in-context learning is more effective for a majority of new tasks when compared to traditional instruction tuning, resulting in a performance comparable to the previous in-context learners using magnitudes of more training data.
comment: Long paper to appear in Findings of ACL 2024
♻ ☆ Latent Logic Tree Extraction for Event Sequence Explanation from LLMs
Modern high-stakes systems, such as healthcare or robotics, often generate vast streaming event sequences. Our goal is to design an efficient, plug-and-play tool to elicit logic tree-based explanations from Large Language Models (LLMs) to provide customized insights into each observed event sequence. Built on the temporal point process model for events, our method employs the likelihood function as a score to evaluate generated logic trees. We propose an amortized Expectation-Maximization (EM) learning framework and treat the logic tree as latent variables. In the E-step, we evaluate the posterior distribution over the latent logic trees using an LLM prior and the likelihood of the observed event sequences. LLM provides a high-quality prior for the latent logic trees, however, since the posterior is built over a discrete combinatorial space, we cannot get the closed-form solution. We propose to generate logic tree samples from the posterior using a learnable GFlowNet, which is a diversity-seeking generator for structured discrete variables. The M-step employs the generated logic rules to approximate marginalization over the posterior, facilitating the learning of model parameters and refining the tunable LLM prior parameters. In the online setting, our locally built, lightweight model will iteratively extract the most relevant rules from LLMs for each sequence using only a few iterations. Empirical demonstrations showcase the promising performance and adaptability of our framework.
♻ ☆ Logical Closed Loop: Uncovering Object Hallucinations in Large Vision-Language Models ACL 2024
Object hallucination has been an Achilles' heel which hinders the broader applications of large vision-language models (LVLMs). Object hallucination refers to the phenomenon that the LVLMs claim non-existent objects in the image. To mitigate the object hallucinations, instruction tuning and external model-based detection methods have been proposed, which either require large-scare computational resources or depend on the detection result of external models. However, there remains an under-explored field to utilize the LVLM itself to alleviate object hallucinations. In this work, we adopt the intuition that the LVLM tends to respond logically consistently for existent objects but inconsistently for hallucinated objects. Therefore, we propose a Logical Closed Loop-based framework for Object Hallucination Detection and Mitigation, namely LogicCheckGPT. In specific, we devise logical consistency probing to raise questions with logical correlations, inquiring about attributes from objects and vice versa. Whether their responses can form a logical closed loop serves as an indicator of object hallucination. As a plug-and-play method, it can be seamlessly applied to all existing LVLMs. Comprehensive experiments conducted on three benchmarks across four LVLMs have demonstrated significant improvements brought by our method, indicating its effectiveness and generality.
comment: Accept to ACL 2024; 19 Pages, 15 Figures, 6 Tables
♻ ☆ ANLS* -- A Universal Document Processing Metric for Generative Large Language Models
Traditionally, discriminative models have been the predominant choice for tasks like document classification and information extraction. These models make predictions that fall into a limited number of predefined classes, facilitating a binary true or false evaluation and enabling the direct calculation of metrics such as the F1 score. However, recent advancements in generative large language models (GLLMs) have prompted a shift in the field due to their enhanced zero-shot capabilities, which eliminate the need for a downstream dataset and computationally expensive fine-tuning. However, evaluating GLLMs presents a challenge as the binary true or false evaluation used for discriminative models is not applicable to the predictions made by GLLMs. This paper introduces a new metric for generative models called ANLS* for evaluating a wide variety of tasks, including information extraction and classification tasks. The ANLS* metric extends existing ANLS metrics as a drop-in-replacement and is still compatible with previously reported ANLS scores. An evaluation of 7 different datasets, and more than 10 different GLLMs together with 3 different prompting methods using the ANLS* metric is also provided, demonstrating the importance of the proposed metric. We also benchmark a novel approach to generate prompts for documents, called SFT, against other prompting techniques such as LATIN. In 6 out of 7 cases, SFT outperforms other techniques and improves the state-of-the-art, sometimes by as much as $10$ percentage points. Sources are available at https://github.com/deepopinion/anls_star_metric
♻ ☆ Does Geo-co-location Matter? A Case Study of Public Health Conversations during COVID-19
Social media platforms like Twitter (now X) have been pivotal in information dissemination and public engagement, especially during COVID-19. A key goal for public health experts was to encourage prosocial behavior that could impact local outcomes such as masking and social distancing. Given the importance of local news and guidance during COVID-19, the objective of our research is to analyze the effect of localized engagement, on social media conversations. This study examines the impact of geographic co-location, as a proxy for localized engagement between public health experts (PHEs) and the public, on social media. We analyze a Twitter conversation dataset from January 2020 to November 2021, comprising over 19 K tweets from nearly five hundred PHEs, along with approximately 800 K replies from 350 K participants. Our findings reveal that geo-co-location is associated with higher engagement rates, especially in conversations on topics including masking, lockdowns, and education, and in conversations with academic and medical professionals. Lexical features associated with emotion and personal experiences were more common in geo-co-located contexts. This research provides insights into how geographic co-location influences social media engagement and can inform strategies to improve public health messaging.
♻ ☆ Apollo: A Lightweight Multilingual Medical LLM towards Democratizing Medical AI to 6B People
Despite the vast repository of global medical knowledge predominantly being in English, local languages are crucial for delivering tailored healthcare services, particularly in areas with limited medical resources. To extend the reach of medical AI advancements to a broader population, we aim to develop medical LLMs across the six most widely spoken languages, encompassing a global population of 6.1 billion. This effort culminates in the creation of the ApolloCorpora multilingual medical dataset and the XMedBench benchmark. In the multilingual medical benchmark, the released Apollo models, at various relatively-small sizes (i.e., 0.5B, 1.8B, 2B, 6B, and 7B), achieve the best performance among models of equivalent size. Especially, Apollo-7B is the state-of-the-art multilingual medical LLMs up to 70B. Additionally, these lite models could be used to improve the multi-lingual medical capabilities of larger models without fine-tuning in a proxy-tuning fashion. We will open-source training corpora, code, model weights and evaluation benchmark.
comment: Preprint
♻ ☆ SafeAligner: Safety Alignment against Jailbreak Attacks via Response Disparity Guidance
As the development of large language models (LLMs) rapidly advances, securing these models effectively without compromising their utility has become a pivotal area of research. However, current defense strategies against jailbreak attacks (i.e., efforts to bypass security protocols) often suffer from limited adaptability, restricted general capability, and high cost. To address these challenges, we introduce SafeAligner, a methodology implemented at the decoding stage to fortify defenses against jailbreak attacks. We begin by developing two specialized models: the Sentinel Model, which is trained to foster safety, and the Intruder Model, designed to generate riskier responses. SafeAligner leverages the disparity in security levels between the responses from these models to differentiate between harmful and beneficial tokens, effectively guiding the safety alignment by altering the output token distribution of the target model. Extensive experiments show that SafeAligner can increase the likelihood of beneficial tokens, while reducing the occurrence of harmful ones, thereby ensuring secure alignment with minimal loss to generality.
♻ ☆ FlowVQA: Mapping Multimodal Logic in Visual Question Answering with Flowcharts ACL 2024
Existing benchmarks for visual question answering lack in visual grounding and complexity, particularly in evaluating spatial reasoning skills. We introduce FlowVQA, a novel benchmark aimed at assessing the capabilities of visual question-answering multimodal language models in reasoning with flowcharts as visual contexts. FlowVQA comprises 2,272 carefully generated and human-verified flowchart images from three distinct content sources, along with 22,413 diverse question-answer pairs, to test a spectrum of reasoning tasks, including information localization, decision-making, and logical progression. We conduct a thorough baseline evaluation on a suite of both open-source and proprietary multimodal language models using various strategies, followed by an analysis of directional bias. The results underscore the benchmark's potential as a vital tool for advancing the field of multimodal modeling, providing a focused and challenging environment for enhancing model performance in visual and logical reasoning tasks.
comment: Accepted in ACL 2024 (Findings), 21 pages, 7 figures, 9 Tables
♻ ☆ WellDunn: On the Robustness and Explainability of Language Models and Large Language Models in Identifying Wellness Dimensions
Language Models (LMs) are being proposed for mental health applications where the heightened risk of adverse outcomes means predictive performance may not be a sufficient litmus test of a model's utility in clinical practice. A model that can be trusted for practice should have a correspondence between explanation and clinical determination, yet no prior research has examined the attention fidelity of these models and their effect on ground truth explanations. We introduce an evaluation design that focuses on the robustness and explainability of LMs in identifying Wellness Dimensions (WD). We focus on two mental health and well-being datasets: (a) Multi-label Classification-based MultiWD, and (b) WellXplain for evaluating attention mechanism veracity against expert-labeled explanations. The labels are based on Halbert Dunn's theory of wellness, which gives grounding to our evaluation. We reveal four surprising results about LMs/LLMs: (1) Despite their human-like capabilities, GPT-3.5/4 lag behind RoBERTa, and MedAlpaca, a fine-tuned LLM fails to deliver any remarkable improvements in performance or explanations. (2) Re-examining LMs' predictions based on a confidence-oriented loss function reveals a significant performance drop. (3) Across all LMs/LLMs, the alignment between attention and explanations remains low, with LLMs scoring a dismal 0.0. (4) Most mental health-specific LMs/LLMs overlook domain-specific knowledge and undervalue explanations, causing these discrepancies. This study highlights the need for further research into their consistency and explanations in mental health and well-being.
comment: 26 pages, including reference and appendix sections, 8 figures, and 16 tables
♻ ☆ AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator
Artificial intelligence has significantly advanced healthcare, particularly through large language models (LLMs) that excel in medical question answering benchmarks. However, their real-world clinical application remains limited due to the complexities of doctor-patient interactions. To address this, we introduce \textbf{AI Hospital}, a multi-agent framework simulating dynamic medical interactions between \emph{Doctor} as player and NPCs including \emph{Patient}, \emph{Examiner}, \emph{Chief Physician}. This setup allows for realistic assessments of LLMs in clinical scenarios. We develop the Multi-View Medical Evaluation (MVME) benchmark, utilizing high-quality Chinese medical records and NPCs to evaluate LLMs' performance in symptom collection, examination recommendations, and diagnoses. Additionally, a dispute resolution collaborative mechanism is proposed to enhance diagnostic accuracy through iterative discussions. Despite improvements, current LLMs exhibit significant performance gaps in multi-turn interactions compared to one-step approaches. Our findings highlight the need for further research to bridge these gaps and improve LLMs' clinical diagnostic capabilities. Our data, code, and experimental results are all open-sourced at \url{https://github.com/LibertFan/AI_Hospital}.
comment: https://github.com/LibertFan/AI_Hospital
♻ ☆ Navigating LLM Ethics: Advancements, Challenges, and Future Directions
This study addresses ethical issues surrounding Large Language Models (LLMs) within the field of artificial intelligence. It explores the common ethical challenges posed by both LLMs and other AI systems, such as privacy and fairness, as well as ethical challenges uniquely arising from LLMs. It highlights challenges such as hallucination, verifiable accountability, and decoding censorship complexity, which are unique to LLMs and distinct from those encountered in traditional AI systems. The study underscores the need to tackle these complexities to ensure accountability, reduce biases, and enhance transparency in the influential role that LLMs play in shaping information dissemination. It proposes mitigation strategies and future directions for LLM ethics, advocating for interdisciplinary collaboration. It recommends ethical frameworks tailored to specific domains and dynamic auditing systems adapted to diverse contexts. This roadmap aims to guide responsible development and integration of LLMs, envisioning a future where ethical considerations govern AI advancements in society.
♻ ☆ The global landscape of academic guidelines for generative AI and Large Language Models
The integration of Generative Artificial Intelligence (GAI) and Large Language Models (LLMs) in academia has spurred a global discourse on their potential pedagogical benefits and ethical considerations. Positive reactions highlight some potential, such as collaborative creativity, increased access to education, and empowerment of trainers and trainees. However, negative reactions raise concerns about ethical complexities, balancing innovation and academic integrity, unequal access, and misinformation risks. Through a systematic survey and text-mining-based analysis of global and national directives, insights from independent research, and eighty university-level guidelines, this study provides a nuanced understanding of the opportunities and challenges posed by GAI and LLMs in education. It emphasizes the importance of balanced approaches that harness the benefits of these technologies while addressing ethical considerations and ensuring equitable access and educational outcomes. The paper concludes with recommendations for fostering responsible innovation and ethical practices to guide the integration of GAI and LLMs in academia.
♻ ☆ Data Augmentation using LLMs: Data Perspectives, Learning Paradigms and Challenges
In the rapidly evolving field of large language models (LLMs), data augmentation (DA) has emerged as a pivotal technique for enhancing model performance by diversifying training examples without the need for additional data collection. This survey explores the transformative impact of LLMs on DA, particularly addressing the unique challenges and opportunities they present in the context of natural language processing (NLP) and beyond. From both data and learning perspectives, we examine various strategies that utilize LLMs for data augmentation, including a novel exploration of learning paradigms where LLM-generated data is used for diverse forms of further training. Additionally, this paper highlights the primary open challenges faced in this domain, ranging from controllable data augmentation to multi-modal data augmentation. This survey highlights a paradigm shift introduced by LLMs in DA, and aims to serve as a comprehensive guide for researchers and practitioners.
♻ ☆ MIntRec2.0: A Large-scale Benchmark Dataset for Multimodal Intent Recognition and Out-of-scope Detection in Conversations ICLR 2024
Multimodal intent recognition poses significant challenges, requiring the incorporation of non-verbal modalities from real-world contexts to enhance the comprehension of human intentions. Existing benchmark datasets are limited in scale and suffer from difficulties in handling out-of-scope samples that arise in multi-turn conversational interactions. We introduce MIntRec2.0, a large-scale benchmark dataset for multimodal intent recognition in multi-party conversations. It contains 1,245 dialogues with 15,040 samples, each annotated within a new intent taxonomy of 30 fine-grained classes. Besides 9,304 in-scope samples, it also includes 5,736 out-of-scope samples appearing in multi-turn contexts, which naturally occur in real-world scenarios. Furthermore, we provide comprehensive information on the speakers in each utterance, enriching its utility for multi-party conversational research. We establish a general framework supporting the organization of single-turn and multi-turn dialogue data, modality feature extraction, multimodal fusion, as well as in-scope classification and out-of-scope detection. Evaluation benchmarks are built using classic multimodal fusion methods, ChatGPT, and human evaluators. While existing methods incorporating nonverbal information yield improvements, effectively leveraging context information and detecting out-of-scope samples remains a substantial challenge. Notably, large language models exhibit a significant performance gap compared to humans, highlighting the limitations of machine learning methods in the cognitive intent understanding task. We believe that MIntRec2.0 will serve as a valuable resource, providing a pioneering foundation for research in human-machine conversational interactions, and significantly facilitating related applications. The full dataset and codes are available at https://github.com/thuiar/MIntRec2.0.
comment: Accepted by ICLR 2024, Long Paper; The abstract is slightly modified due to the length limitation
♻ ☆ Prompting Explicit and Implicit Knowledge for Multi-hop Question Answering Based on Human Reading Process COLING 2024
Pre-trained language models (PLMs) leverage chains-of-thought (CoT) to simulate human reasoning and inference processes, achieving proficient performance in multi-hop QA. However, a gap persists between PLMs' reasoning abilities and those of humans when tackling complex problems. Psychological studies suggest a vital connection between explicit information in passages and human prior knowledge during reading. Nevertheless, current research has given insufficient attention to linking input passages and PLMs' pre-training-based knowledge from the perspective of human cognition studies. In this study, we introduce a Prompting Explicit and Implicit knowledge (PEI) framework, which uses prompts to connect explicit and implicit knowledge, aligning with human reading process for multi-hop QA. We consider the input passages as explicit knowledge, employing them to elicit implicit knowledge through unified prompt reasoning. Furthermore, our model incorporates type-specific reasoning via prompts, a form of implicit knowledge. Experimental results show that PEI performs comparably to the state-of-the-art on HotpotQA. Ablation studies confirm the efficacy of our model in bridging and integrating explicit and implicit knowledge.
comment: This paper has been accepted at COLING 2024
♻ ☆ Prompting Techniques for Reducing Social Bias in LLMs through System 1 and System 2 Cognitive Processes
Dual process theory posits that human cognition arises via two systems. System 1, which is a quick, emotional, and intuitive process, which is subject to cognitive biases, and System 2, a slow, onerous, and deliberate process. NLP researchers often compare zero-shot prompting in LLMs to System 1 reasoning and chain-of-thought (CoT) prompting to System 2. In line with this interpretation, prior research has found that using CoT prompting in LLMs leads to reduced gender bias. We investigate the relationship between bias, CoT prompting, and dual process theory in LLMs directly. We compare zero-shot, CoT, and a variety of dual process theory-based prompting strategies on two bias datasets spanning nine different social bias categories. We also use human and machine personas to determine whether the effects of dual process theory in LLMs are based on modeling human cognition or inherent to the system. We find that a human persona, System 2, and CoT prompting all tend to reduce social biases in LLMs, though the best combination of features depends on the exact model and bias category -- resulting in up to a 13 percent drop in stereotypical judgments by an LLM.
♻ ☆ Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory ICLR
The interactive use of large language models (LLMs) in AI assistants (at work, home, etc.) introduces a new set of inference-time privacy risks: LLMs are fed different types of information from multiple sources in their inputs and are expected to reason about what to share in their outputs, for what purpose and with whom, within a given context. In this work, we draw attention to the highly critical yet overlooked notion of contextual privacy by proposing ConfAIde, a benchmark designed to identify critical weaknesses in the privacy reasoning capabilities of instruction-tuned LLMs. Our experiments show that even the most capable models such as GPT-4 and ChatGPT reveal private information in contexts that humans would not, 39% and 57% of the time, respectively. This leakage persists even when we employ privacy-inducing prompts or chain-of-thought reasoning. Our work underscores the immediate need to explore novel inference-time privacy-preserving approaches, based on reasoning and theory of mind.
comment: 2024 ICLR Spotlight. The dataset and code can be found at https://confaide.github.io
♻ ☆ Integrating Pre-Trained Language Model with Physical Layer Communications
The burgeoning field of on-device AI communication, where devices exchange information directly through embedded foundation models, such as language models (LMs), requires robust, efficient, and generalizable communication frameworks. However, integrating these frameworks with existing wireless systems and effectively managing noise and bit errors pose significant challenges. In this work, we introduce a practical ondevice AI communication framework, integrated with physical layer (PHY) communication functions, demonstrated through its performance on a link-level simulator. Our framework incorporates end-to-end training with channel noise to enhance resilience, incorporates vector quantized variational autoencoders (VQ-VAE) for efficient and robust communication, and utilizes pre-trained encoder-decoder transformers for improved generalization capabilities. Simulations, across various communication scenarios, reveal that our framework achieves a 50% reduction in transmission size while demonstrating substantial generalization ability and noise robustness under standardized 3GPP channel models.
♻ ☆ Watermarking Language Models for Many Adaptive Users
We study watermarking schemes for language models with provable guarantees. As we show, prior works offer no robustness guarantees against adaptive prompting: when a user queries a language model more than once, as even benign users do. And with just a single exception (Christ and Gunn, 2024), prior works are restricted to zero-bit watermarking: machine-generated text can be detected as such, but no additional information can be extracted from the watermark. Unfortunately, merely detecting AI-generated text may not prevent future abuses. We introduce multi-user watermarks, which allow tracing model-generated text to individual users or to groups of colluding users, even in the face of adaptive prompting. We construct multi-user watermarking schemes from undetectable, adaptively robust, zero-bit watermarking schemes (and prove that the undetectable zero-bit scheme of Christ, Gunn, and Zamir (2024) is adaptively robust). Importantly, our scheme provides both zero-bit and multi-user assurances at the same time. It detects shorter snippets just as well as the original scheme, and traces longer excerpts to individuals. The main technical component is a construction of message-embedding watermarks from zero-bit watermarks. Ours is the first generic reduction between watermarking schemes for language models. A challenge for such reductions is the lack of a unified abstraction for robustness -- that marked text is detectable even after edits. We introduce a new unifying abstraction called AEB-robustness. AEB-robustness provides that the watermark is detectable whenever the edited text "approximates enough blocks" of model-generated output.
comment: 39 pages
♻ ☆ Knowledge Graph Large Language Model (KG-LLM) for Link Prediction
The task of multi-hop link prediction within knowledge graphs (KGs) stands as a challenge in the field of knowledge graph analysis, as it requires the model to reason through and understand all intermediate connections before making a prediction. In this paper, we introduce the Knowledge Graph Large Language Model (KG-LLM), a novel framework that leverages large language models (LLMs) for knowledge graph tasks. We first convert structured knowledge graph data into natural language and then use these natural language prompts to fine-tune LLMs to enhance multi-hop link prediction in KGs. By converting the KG to natural language prompts, our framework is designed to learn the latent representations of entities and their interrelations. To show the efficacy of the KG-LLM Framework, we fine-tune three leading LLMs within this framework, including Flan-T5, LLaMa2 and Gemma. Further, we explore the framework's potential to provide LLMs with zero-shot capabilities for handling previously unseen prompts. Experimental results show that KG-LLM significantly improves the models' generalization capabilities, leading to more accurate predictions in unfamiliar scenarios.
comment: 13 pages, 5 figures
♻ ☆ Psychological Profiling in Cybersecurity: A Look at LLMs and Psycholinguistic Features
The increasing sophistication of cyber threats necessitates innovative approaches to cybersecurity. In this paper, we explore the potential of psychological profiling techniques, particularly focusing on the utilization of Large Language Models (LLMs) and psycholinguistic features. We investigate the intersection of psychology and cybersecurity, discussing how LLMs can be employed to analyze textual data for identifying psychological traits of threat actors. We explore the incorporation of psycholinguistic features, such as linguistic patterns and emotional cues, into cybersecurity frameworks. Our research underscores the importance of integrating psychological perspectives into cybersecurity practices to bolster defense mechanisms against evolving threats.
♻ ☆ If in a Crowdsourced Data Annotation Pipeline, a GPT-4
Recent studies indicated GPT-4 outperforms online crowd workers in data labeling accuracy, notably workers from Amazon Mechanical Turk (MTurk). However, these studies were criticized for deviating from standard crowdsourcing practices and emphasizing individual workers' performances over the whole data-annotation process. This paper compared GPT-4 and an ethical and well-executed MTurk pipeline, with 415 workers labeling 3,177 sentence segments from 200 scholarly articles using the CODA-19 scheme. Two worker interfaces yielded 127,080 labels, which were then used to infer the final labels through eight label-aggregation algorithms. Our evaluation showed that despite best practices, MTurk pipeline's highest accuracy was 81.5%, whereas GPT-4 achieved 83.6%. Interestingly, when combining GPT-4's labels with crowd labels collected via an advanced worker interface for aggregation, 2 out of the 8 algorithms achieved an even higher accuracy (87.5%, 87.0%). Further analysis suggested that, when the crowd's and GPT-4's labeling strengths are complementary, aggregating them could increase labeling accuracy.
comment: Accepted By CHI 2024
♻ ☆ Reduce, Reuse, Recycle: Is Perturbed Data better than Other Language augmentation for Low Resource Self-Supervised Speech Models
Self-supervised representation learning (SSRL) has demonstrated superior performance than supervised models for tasks including phoneme recognition. Training SSRL models poses a challenge for low-resource languages where sufficient pre-training data may not be available. A common approach is cross-lingual pre-training. Instead, we propose to use audio augmentation techniques, namely: pitch variation, noise addition, accented target language and other language speech to pre-train SSRL models in a low resource condition and evaluate phoneme recognition. Our comparisons found that a combined synthetic augmentations (noise/pitch) strategy outperformed accent and language knowledge transfer. Furthermore, we examined the scaling factor of augmented data to achieve equivalent performance to model pre-trained with target domain speech. Our findings suggest that for resource-constrained languages, combined augmentations can be a viable option than other augmentations.
comment: Paper accepted in Interspeech2024
Computer Vision and Pattern Recognition 94
☆ Odd-One-Out: Anomaly Detection by Comparing with Neighbors
This paper introduces a novel anomaly detection (AD) problem that focuses on identifying `odd-looking' objects relative to the other instances within a scene. Unlike the traditional AD benchmarks, in our setting, anomalies in this context are scene-specific, defined by the regular instances that make up the majority. Since object instances are often partly visible from a single viewpoint, our setting provides multiple views of each scene as input. To provide a testbed for future research in this task, we introduce two benchmarks, ToysAD-8K and PartsAD-15K. We propose a novel method that generates 3D object-centric representations for each instance and detects the anomalous ones through a cross-examination between the instances. We rigorously analyze our method quantitatively and qualitatively in the presented benchmarks.
comment: Codes & Dataset at https://github.com/VICO-UoE/OddOneOutAD
☆ Web2Code: A Large-scale Webpage-to-Code Dataset and Evaluation Framework for Multimodal LLMs
Multimodal large language models (MLLMs) have shown impressive success across modalities such as image, video, and audio in a variety of understanding and generation tasks. However, current MLLMs are surprisingly poor at understanding webpage screenshots and generating their corresponding HTML code. To address this problem, we propose Web2Code, a benchmark consisting of a new large-scale webpage-to-code dataset for instruction tuning and an evaluation framework for the webpage understanding and HTML code translation abilities of MLLMs. For dataset construction, we leverage pretrained LLMs to enhance existing webpage-to-code datasets as well as generate a diverse pool of new webpages rendered into images. Specifically, the inputs are webpage images and instructions, while the responses are the webpage's HTML code. We further include diverse natural language QA pairs about the webpage content in the responses to enable a more comprehensive understanding of the web content. To evaluate model performance in these tasks, we develop an evaluation framework for testing MLLMs' abilities in webpage understanding and web-to-code generation. Extensive experiments show that our proposed dataset is beneficial not only to our proposed tasks but also in the general visual domain, while previous datasets result in worse performance. We hope our work will contribute to the development of general MLLMs suitable for web-based content generation and task automation. Our data and code will be available at https://github.com/MBZUAI-LLM/web2code.
comment: Website at https://mbzuai-llm.github.io/webpage2code/
☆ LLaRA: Supercharging Robot Learning Data for Vision-Language Policy
Large Language Models (LLMs) equipped with extensive world knowledge and strong reasoning skills can tackle diverse tasks across domains, often by posing them as conversation-style instruction-response pairs. In this paper, we propose LLaRA: Large Language and Robotics Assistant, a framework which formulates robot action policy as conversations, and provides improved responses when trained with auxiliary data that complements policy learning. LLMs with visual inputs, i.e., Vision Language Models (VLMs), have the capacity to process state information as visual-textual prompts and generate optimal policy decisions in text. To train such action policy VLMs, we first introduce an automated pipeline to generate diverse high-quality robotics instruction data from existing behavior cloning data. A VLM finetuned with the resulting collection of datasets based on a conversation-style formulation tailored for robotics tasks, can generate meaningful robot action policy decisions. Our experiments across multiple simulated and real-world environments demonstrate the state-of-the-art performance of the proposed LLaRA framework. The code, datasets, and pretrained models are available at https://github.com/LostXine/LLaRA.
☆ LLaVolta: Efficient Multi-modal Models via Stage-wise Visual Context Compression
While significant advancements have been made in compressed representations for text embeddings in large language models (LLMs), the compression of visual tokens in large multi-modal models (LMMs) has remained a largely overlooked area. In this work, we present the study on the analysis of redundancy concerning visual tokens and efficient training within these models. Our initial experiments show that eliminating up to 70% of visual tokens at the testing stage by simply average pooling only leads to a minimal 3% reduction in visual question answering accuracy on the GQA benchmark, indicating significant redundancy in visual context. Addressing this, we introduce Visual Context Compressor, which reduces the number of visual tokens during training to enhance training efficiency without sacrificing performance. To minimize information loss caused by the compression on visual tokens while maintaining training efficiency, we develop LLaVolta as a lite training scheme. LLaVolta incorporates stage-wise visual context compression to progressively compress the visual tokens from heavily to lightly, and finally no compression at the end of training, yielding no loss of information when testing. Extensive experiments demonstrate that our approach enhances the performance of MLLMs in both image-language and video-language understanding, while also significantly cutting training costs. Code is available at https://github.com/Beckschen/LLaVolta
comment: Code is available at https://github.com/Beckschen/LLaVolta
☆ Auto Cherry-Picker: Learning from High-quality Generative Data Driven by Language
Diffusion-based models have shown great potential in generating high-quality images with various layouts, which can benefit downstream perception tasks. However, a fully automatic layout generation driven only by language and a suitable metric for measuring multiple generated instances has not been well explored. In this work, we present Auto Cherry-Picker (ACP), a novel framework that generates high-quality multi-modal training examples to augment perception and multi-modal training. Starting with a simple list of natural language concepts, we prompt large language models (LLMs) to generate a detailed description and design reasonable layouts. Next, we use an off-the-shelf text-to-image model to generate multiple images. Then, the generated data are refined using a comprehensively designed metric to ensure quality. In particular, we present a new metric, Composite Layout and Image Score (CLIS), to evaluate the generated images fairly. Our synthetic high-quality examples boost performance in various scenarios by customizing the initial concept list, especially in addressing challenges associated with long-tailed distribution and imbalanced datasets. Experiment results on downstream tasks demonstrate that Auto Cherry-Picker can significantly improve the performance of existing models. In addition, we have thoroughly investigated the correlation between CLIS and performance gains in downstream tasks, and we find that a better CLIS score results in better performance. This finding shows the potential for evaluation metrics as the role for various visual perception and MLLM tasks. Code will be available.
comment: 19 pages, 7 figures
☆ PoliFormer: Scaling On-Policy RL with Transformers Results in Masterful Navigators
We present PoliFormer (Policy Transformer), an RGB-only indoor navigation agent trained end-to-end with reinforcement learning at scale that generalizes to the real-world without adaptation despite being trained purely in simulation. PoliFormer uses a foundational vision transformer encoder with a causal transformer decoder enabling long-term memory and reasoning. It is trained for hundreds of millions of interactions across diverse environments, leveraging parallelized, multi-machine rollouts for efficient training with high throughput. PoliFormer is a masterful navigator, producing state-of-the-art results across two distinct embodiments, the LoCoBot and Stretch RE-1 robots, and four navigation benchmarks. It breaks through the plateaus of previous work, achieving an unprecedented 85.5% success rate in object goal navigation on the CHORES-S benchmark, a 28.5% absolute improvement. PoliFormer can also be trivially extended to a variety of downstream applications such as object tracking, multi-object navigation, and open-vocabulary navigation with no finetuning.
☆ Segment Anything without Supervision
The Segmentation Anything Model (SAM) requires labor-intensive data labeling. We present Unsupervised SAM (UnSAM) for promptable and automatic whole-image segmentation that does not require human annotations. UnSAM utilizes a divide-and-conquer strategy to "discover" the hierarchical structure of visual scenes. We first leverage top-down clustering methods to partition an unlabeled image into instance/semantic level segments. For all pixels within a segment, a bottom-up clustering method is employed to iteratively merge them into larger groups, thereby forming a hierarchical structure. These unsupervised multi-granular masks are then utilized to supervise model training. Evaluated across seven popular datasets, UnSAM achieves competitive results with the supervised counterpart SAM, and surpasses the previous state-of-the-art in unsupervised segmentation by 11% in terms of AR. Moreover, we show that supervised SAM can also benefit from our self-supervised labels. By integrating our unsupervised pseudo masks into SA-1B's ground-truth masks and training UnSAM with only 1% of SA-1B, a lightly semi-supervised UnSAM can often segment entities overlooked by supervised SAM, exceeding SAM's AR by over 6.7% and AP by 3.9% on SA-1B.
comment: Code: https://github.com/frank-xwang/UnSAM
☆ GM-DF: Generalized Multi-Scenario Deepfake Detection
Existing face forgery detection usually follows the paradigm of training models in a single domain, which leads to limited generalization capacity when unseen scenarios and unknown attacks occur. In this paper, we elaborately investigate the generalization capacity of deepfake detection models when jointly trained on multiple face forgery detection datasets. We first find a rapid degradation of detection accuracy when models are directly trained on combined datasets due to the discrepancy across collection scenarios and generation methods. To address the above issue, a Generalized Multi-Scenario Deepfake Detection framework (GM-DF) is proposed to serve multiple real-world scenarios by a unified model. First, we propose a hybrid expert modeling approach for domain-specific real/forgery feature extraction. Besides, as for the commonality representation, we use CLIP to extract the common features for better aligning visual and textual features across domains. Meanwhile, we introduce a masked image reconstruction mechanism to force models to capture rich forged details. Finally, we supervise the models via a domain-aware meta-learning strategy to further enhance their generalization capacities. Specifically, we design a novel domain alignment loss to strongly align the distributions of the meta-test domains and meta-train domains. Thus, the updated models are able to represent both specific and common real/forgery features across multiple datasets. In consideration of the lack of study of multi-dataset training, we establish a new benchmark leveraging multi-source data to fairly evaluate the models' generalization capacity on unseen scenarios. Both qualitative and quantitative experiments on five datasets conducted on traditional protocols as well as the proposed benchmark demonstrate the effectiveness of our approach.
☆ HouseCrafter: Lifting Floorplans to 3D Scenes with 2D Diffusion Model
We introduce HouseCrafter, a novel approach that can lift a floorplan into a complete large 3D indoor scene (e.g., a house). Our key insight is to adapt a 2D diffusion model, which is trained on web-scale images, to generate consistent multi-view color (RGB) and depth (D) images across different locations of the scene. Specifically, the RGB-D images are generated autoregressively in a batch-wise manner along sampled locations based on the floorplan, where previously generated images are used as condition to the diffusion model to produce images at nearby locations. The global floorplan and attention design in the diffusion model ensures the consistency of the generated images, from which a 3D scene can be reconstructed. Through extensive evaluation on the 3D-Front dataset, we demonstrate that HouseCraft can generate high-quality house-scale 3D scenes. Ablation studies also validate the effectiveness of different design choices. We will release our code and model weights. Project page: https://neu-vi.github.io/houseCrafter/
☆ EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model
Segment Anything Model (SAM) has attracted widespread attention for its superior interactive segmentation capabilities with visual prompts while lacking further exploration of text prompts. In this paper, we empirically investigate what text prompt encoders (e.g., CLIP or LLM) are good for adapting SAM for referring expression segmentation and introduce the Early Vision-language Fusion-based SAM (EVF-SAM). EVF-SAM is a simple yet effective referring segmentation method which exploits multimodal prompts (i.e., image and text) and comprises a pre-trained vision-language model to generate referring prompts and a SAM model for segmentation. Surprisingly, we observe that: (1) multimodal prompts and (2) vision-language models with early fusion (e.g., BEIT-3) are beneficial for prompting SAM for accurate referring segmentation. Our experiments show that the proposed EVF-SAM based on BEIT-3 can obtain state-of-the-art performance on RefCOCO/+/g for referring expression segmentation and demonstrate the superiority of prompting SAM with early vision-language fusion. In addition, the proposed EVF-SAM with 1.32B parameters achieves remarkably higher performance while reducing nearly 82% of parameters compared to previous SAM methods based on large multimodal models.
comment: Preprint
☆ ASSR-NeRF: Arbitrary-Scale Super-Resolution on Voxel Grid for High-Quality Radiance Fields Reconstruction
NeRF-based methods reconstruct 3D scenes by building a radiance field with implicit or explicit representations. While NeRF-based methods can perform novel view synthesis (NVS) at arbitrary scale, the performance in high-resolution novel view synthesis (HRNVS) with low-resolution (LR) optimization often results in oversmoothing. On the other hand, single-image super-resolution (SR) aims to enhance LR images to HR counterparts but lacks multi-view consistency. To address these challenges, we propose Arbitrary-Scale Super-Resolution NeRF (ASSR-NeRF), a novel framework for super-resolution novel view synthesis (SRNVS). We propose an attention-based VoxelGridSR model to directly perform 3D super-resolution (SR) on the optimized volume. Our model is trained on diverse scenes to ensure generalizability. For unseen scenes trained with LR views, we then can directly apply our VoxelGridSR to further refine the volume and achieve multi-view consistent SR. We demonstrate quantitative and qualitatively that the proposed method achieves significant performance in SRNVS.
☆ SpotlessSplats: Ignoring Distractors in 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) is a promising technique for 3D reconstruction, offering efficient training and rendering speeds, making it suitable for real-time applications.However, current methods require highly controlled environments (no moving people or wind-blown elements, and consistent lighting) to meet the inter-view consistency assumption of 3DGS. This makes reconstruction of real-world captures problematic. We present SpotlessSplats, an approach that leverages pre-trained and general-purpose features coupled with robust optimization to effectively ignore transient distractors. Our method achieves state-of-the-art reconstruction quality both visually and quantitatively, on casual captures.
☆ HAITCH: A Framework for Distortion and Motion Correction in Fetal Multi-Shell Diffusion-Weighted MRI
Diffusion magnetic resonance imaging (dMRI) is pivotal for probing the microstructure of the rapidly-developing fetal brain. However, fetal motion during scans and its interaction with magnetic field inhomogeneities result in artifacts and data scattering across spatial and angular domains. The effects of those artifacts are more pronounced in high-angular resolution fetal dMRI, where signal-to-noise ratio is very low. Those effects lead to biased estimates and compromise the consistency and reliability of dMRI analysis. This work presents HAITCH, the first and the only publicly available tool to correct and reconstruct multi-shell high-angular resolution fetal dMRI data. HAITCH offers several technical advances that include a blip-reversed dual-echo acquisition for dynamic distortion correction, advanced motion correction for model-free and robust reconstruction, optimized multi-shell design for enhanced information capture and increased tolerance to motion, and outlier detection for improved reconstruction fidelity. The framework is open-source, flexible, and can be used to process any type of fetal dMRI data including single-echo or single-shell acquisitions, but is most effective when used with multi-shell multi-echo fetal dMRI data that cannot be processed with any of the existing tools. Validation experiments on real fetal dMRI scans demonstrate significant improvements and accurate correction across diverse fetal ages and motion levels. HAITCH successfully removes artifacts and reconstructs high-fidelity fetal dMRI data suitable for advanced diffusion modeling, including fiber orientation distribution function estimation. These advancements pave the way for more reliable analysis of the fetal brain microstructure and tractography under challenging imaging conditions.
☆ eMoE-Tracker: Environmental MoE-based Transformer for Robust Event-guided Object Tracking
The unique complementarity of frame-based and event cameras for high frame rate object tracking has recently inspired some research attempts to develop multi-modal fusion approaches. However, these methods directly fuse both modalities and thus ignore the environmental attributes, e.g., motion blur, illumination variance, occlusion, scale variation, etc. Meanwhile, no interaction between search and template features makes distinguishing target objects and backgrounds difficult. As a result, performance degradation is induced especially in challenging conditions. This paper proposes a novel and effective Transformer-based event-guided tracking framework, called eMoE-Tracker, which achieves new SOTA performance under various conditions. Our key idea is to disentangle the environment into several learnable attributes to dynamically learn the attribute-specific features for better interaction and discriminability between the target information and background. To achieve the goal, we first propose an environmental Mix-of-Experts (eMoE) module that is built upon the environmental Attributes Disentanglement to learn attribute-specific features and environmental Attributes Gating to assemble the attribute-specific features by the learnable attribute scores dynamically. The eMoE module is a subtle router that fine-tunes the transformer backbone more efficiently. We then introduce a contrastive relation modeling (CRM) module to improve interaction and discriminability between the target information and background. Extensive experiments on diverse event-based benchmark datasets showcase the superior performance of our eMoE-Tracker compared to the prior arts.
comment: RGB-event single object tracking
☆ Malaria Cell Detection Using Deep Neural Networks
Malaria remains one of the most pressing public health concerns globally, causing significant morbidity and mortality, especially in sub-Saharan Africa. Rapid and accurate diagnosis is crucial for effective treatment and disease management. Traditional diagnostic methods, such as microscopic examination of blood smears, are labor-intensive and require significant expertise, which may not be readily available in resource-limited settings. This project aims to automate the detection of malaria-infected cells using a deep learning approach. We employed a convolutional neural network (CNN) based on the ResNet50 architecture, leveraging transfer learning to enhance performance. The Malaria Cell Images Dataset from Kaggle, containing 27,558 images categorized into infected and uninfected cells, was used for training and evaluation. Our model demonstrated high accuracy, precision, and recall, indicating its potential as a reliable tool for assisting in malaria diagnosis. Additionally, a web application was developed using Streamlit to allow users to upload cell images and receive predictions about malaria infection, making the technology accessible and user-friendly. This paper provides a comprehensive overview of the methodology, experiments, and results, highlighting the effectiveness of deep learning in medical image analysis.
☆ Wavelets Are All You Need for Autoregressive Image Generation
In this paper, we take a new approach to autoregressive image generation that is based on two main ingredients. The first is wavelet image coding, which allows to tokenize the visual details of an image from coarse to fine details by ordering the information starting with the most significant bits of the most significant wavelet coefficients. The second is a variant of a language transformer whose architecture is re-designed and optimized for token sequences in this 'wavelet language'. The transformer learns the significant statistical correlations within a token sequence, which are the manifestations of well-known correlations between the wavelet subbands at various resolutions. We show experimental results with conditioning on the generation process.
comment: 16 pages, 10 figures
☆ STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical
Large Vision-Language Models (LVLMs) have shown significant potential in assisting medical diagnosis by leveraging extensive biomedical datasets. However, the advancement of medical image understanding and reasoning critically depends on building high-quality visual instruction data, which is costly and labor-intensive to obtain, particularly in the medical domain. To mitigate this data-starving issue, we introduce Self-Training Large Language and Vision Assistant for Medical (STLLaVA-Med). The proposed method is designed to train a policy model (an LVLM) capable of auto-generating medical visual instruction data to improve data efficiency, guided through Direct Preference Optimization (DPO). Specifically, a more powerful and larger LVLM (e.g., GPT-4o) is involved as a biomedical expert to oversee the DPO fine-tuning process on the auto-generated data, encouraging the policy model to align efficiently with human preferences. We validate the efficacy and data efficiency of STLLaVA-Med across three major medical Visual Question Answering (VQA) benchmarks, demonstrating competitive zero-shot performance with the utilization of only 9% of the medical data.
comment: 10 pages, 6 figures
☆ Impact of Initialization on Intra-subject Pediatric Brain MR Image Registration: A Comparative Analysis between SyN ANTs and Deep Learning-Based Approaches
This study evaluates the performance of conventional SyN ANTs and learning-based registration methods in the context of pediatric neuroimaging, specifically focusing on intrasubject deformable registration. The comparison involves three approaches: without (NR), with rigid (RR), and with rigid and affine (RAR) initializations. In addition to initialization, performances are evaluated in terms of accuracy, speed, and the impact of age intervals and sex per pair. Data consists of the publicly available MRI scans from the Calgary Preschool dataset, which includes 63 children aged 2-7 years, allowing for 431 registration pairs. We implemented the unsupervised DL framework with a U-Net architecture using DeepReg and it was 5-fold cross-validated. Evaluation includes Dice scores for tissue segmentation from 18 smaller regions obtained by SynthSeg, analysis of log Jacobian determinants, and registration pro-rated training and inference times. Learning-based approaches, with or without linear initializations, exhibit slight superiority over SyN ANTs in terms of Dice scores. Indeed, DL-based implementations with RR and RAR initializations significantly outperform SyN ANTs. Both SyN ANTs and DL-based registration involve parameter optimization, but the choice between these methods depends on the scale of registration: network-based for broader coverage or SyN ANTs for specific structures. Both methods face challenges with larger age intervals due to greater growth changes. The main takeaway is that while DL-based methods show promise with faster and more accurate registrations, SyN ANTs remains robust and generalizable without the need for extensive training, highlighting the importance of method selection based on specific registration needs in the pediatric context. Our code is available at https://github.com/neuropoly/pediatric-DL-registration
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2024:013
☆ GRACE: Graph-Regularized Attentive Convolutional Entanglement with Laplacian Smoothing for Robust DeepFake Video Detection
As DeepFake video manipulation techniques escalate, posing profound threats, the urgent need to develop efficient detection strategies is underscored. However, one particular issue lies with facial images being mis-detected, often originating from degraded videos or adversarial attacks, leading to unexpected temporal artifacts that can undermine the efficacy of DeepFake video detection techniques. This paper introduces a novel method for robust DeepFake video detection, harnessing the power of the proposed Graph-Regularized Attentive Convolutional Entanglement (GRACE) based on the graph convolutional network with graph Laplacian to address the aforementioned challenges. First, conventional Convolution Neural Networks are deployed to perform spatiotemporal features for the entire video. Then, the spatial and temporal features are mutually entangled by constructing a graph with sparse constraint, enforcing essential features of valid face images in the noisy face sequences remaining, thus augmenting stability and performance for DeepFake video detection. Furthermore, the Graph Laplacian prior is proposed in the graph convolutional network to remove the noise pattern in the feature space to further improve the performance. Comprehensive experiments are conducted to illustrate that our proposed method delivers state-of-the-art performance in DeepFake video detection under noisy face sequences. The source code is available at https://github.com/ming053l/GRACE.
comment: Submitted to TPAMI 2024
☆ Parallax-tolerant Image Stitching via Segmentation-guided Multi-homography Warping
Large parallax between images is an intractable issue in image stitching. Various warping-based methods are proposed to address it, yet the results are unsatisfactory. In this paper, we propose a novel image stitching method using multi-homography warping guided by image segmentation. Specifically, we leverage the Segment Anything Model to segment the target image into numerous contents and partition the feature points into multiple subsets via the energy-based multi-homography fitting algorithm. The multiple subsets of feature points are used to calculate the corresponding multiple homographies. For each segmented content in the overlapping region, we select its best-fitting homography with the lowest photometric error. For each segmented content in the non-overlapping region, we calculate a weighted combination of the linearized homographies. Finally, the target image is warped via the best-fitting homographies to align with the reference image, and the final panorama is generated via linear blending. Comprehensive experimental results on the public datasets demonstrate that our method provides the best alignment accuracy by a large margin, compared with the state-of-the-art methods. The source code is available at https://github.com/tlliao/multi-homo-warp.
comment: 11 pages, 9 figures
☆ Solving Token Gradient Conflict in Mixture-of-Experts for Large Vision-Language Model
The Mixture-of-Experts (MoE) has gained increasing attention in the study of Large Vision-Language Models (LVLMs). It uses a sparse model to replace the dense model, achieving comparable performance while activating fewer parameters during inference, thus significantly reducing the inference cost. Existing MoE methods in LVLMs encourage different experts to handle different tokens, and thus they employ a router to predict the routing for each token. However, the predictions are based solely on sample features and do not truly reveal the optimization direction of tokens. This can lead to severe optimization conflicts between different tokens within an expert. To address this problem, this paper proposes a novel method based on token-level gradient analysis. Specifically, we first use token-level gradients to identify conflicting tokens in experts. Then, we add a specialized loss tailored to eliminate conflicts among tokens within each expert. Our method can serve as a plug-in for diverse Large Vision-Language Models, and extensive experimental results demonstrate the effectiveness of our method. The code will be publicly available at https://github.com/longrongyang/STGC.
☆ On the Value of PHH3 for Mitotic Figure Detection on H&E-stained Images
The count of mitotic figures (MFs) observed in hematoxylin and eosin (H&E)-stained slides is an important prognostic marker as it is a measure for tumor cell proliferation. However, the identification of MFs has a known low inter-rater agreement. Deep learning algorithms can standardize this task, but they require large amounts of annotated data for training and validation. Furthermore, label noise introduced during the annotation process may impede the algorithm's performance. Unlike H&E, the mitosis-specific antibody phospho-histone H3 (PHH3) specifically highlights MFs. Counting MFs on slides stained against PHH3 leads to higher agreement among raters and has therefore recently been used as a ground truth for the annotation of MFs in H&E. However, as PHH3 facilitates the recognition of cells indistinguishable from H&E stain alone, the use of this ground truth could potentially introduce noise into the H&E-related dataset, impacting model performance. This study analyzes the impact of PHH3-assisted MF annotation on inter-rater reliability and object level agreement through an extensive multi-rater experiment. We found that the annotators' object-level agreement increased when using PHH3-assisted labeling. Subsequently, MF detectors were evaluated on the resulting datasets to investigate the influence of PHH3-assisted labeling on the models' performance. Additionally, a novel dual-stain MF detector was developed to investigate the interpretation-shift of PHH3-assisted labels used in H&E, which clearly outperformed single-stain detectors. However, the PHH3-assisted labels did not have a positive effect on solely H&E-based models. The high performance of our dual-input detector reveals an information mismatch between the H&E and PHH3-stained images as the cause of this effect.
comment: 10 pages, 5 figures, 1 Table
☆ InfiniBench: A Comprehensive Benchmark for Large Multimodal Models in Very Long Video Understanding
Understanding long videos, ranging from tens of minutes to several hours, presents unique challenges in video comprehension. Despite the increasing importance of long-form video content, existing benchmarks primarily focus on shorter clips. To address this gap, we introduce InfiniBench a comprehensive benchmark for very long video understanding which presents 1)The longest video duration, averaging 76.34 minutes; 2) The largest number of question-answer pairs, 108.2K; 3) Diversity in questions that examine nine different skills and include both multiple-choice questions and open-ended questions; 4) Humancentric, as the video sources come from movies and daily TV shows, with specific human-level question designs such as Movie Spoiler Questions that require critical thinking and comprehensive understanding. Using InfiniBench, we comprehensively evaluate existing Large MultiModality Models (LMMs) on each skill, including the commercial model Gemini 1.5 Flash and the open-source models. The evaluation shows significant challenges in our benchmark.Our results show that the best AI models such Gemini struggles to perform well with 42.72% average accuracy and 2.71 out of 5 average score. We hope this benchmark will stimulate the LMMs community towards long video and human-level understanding. Our benchmark can be accessed at https://vision-cair.github.io/InfiniBench/
comment: 16 page ,17 figures
☆ FootBots: A Transformer-based Architecture for Motion Prediction in Soccer ICIP 2024
Motion prediction in soccer involves capturing complex dynamics from player and ball interactions. We present FootBots, an encoder-decoder transformer-based architecture addressing motion prediction and conditioned motion prediction through equivariance properties. FootBots captures temporal and social dynamics using set attention blocks and multi-attention block decoder. Our evaluation utilizes two datasets: a real soccer dataset and a tailored synthetic one. Insights from the synthetic dataset highlight the effectiveness of FootBots' social attention mechanism and the significance of conditioned motion prediction. Empirical results on real soccer data demonstrate that FootBots outperforms baselines in motion prediction and excels in conditioned tasks, such as predicting the players based on the ball position, predicting the offensive (defensive) team based on the ball and the defensive (offensive) team, and predicting the ball position based on all players. Our evaluation connects quantitative and qualitative findings. https://youtu.be/9kaEkfzG3L8
comment: Published as a conference paper at IEEE ICIP 2024
☆ StreamMOTP: Streaming and Unified Framework for Joint 3D Multi-Object Tracking and Trajectory Prediction
3D multi-object tracking and trajectory prediction are two crucial modules in autonomous driving systems. Generally, the two tasks are handled separately in traditional paradigms and a few methods have started to explore modeling these two tasks in a joint manner recently. However, these approaches suffer from the limitations of single-frame training and inconsistent coordinate representations between tracking and prediction tasks. In this paper, we propose a streaming and unified framework for joint 3D Multi-Object Tracking and trajectory Prediction (StreamMOTP) to address the above challenges. Firstly, we construct the model in a streaming manner and exploit a memory bank to preserve and leverage the long-term latent features for tracked objects more effectively. Secondly, a relative spatio-temporal positional encoding strategy is introduced to bridge the gap of coordinate representations between the two tasks and maintain the pose-invariance for trajectory prediction. Thirdly, we further improve the quality and consistency of predicted trajectories with a dual-stream predictor. We conduct extensive experiments on popular nuSences dataset and the experimental results demonstrate the effectiveness and superiority of StreamMOTP, which outperforms previous methods significantly on both tasks. Furthermore, we also prove that the proposed framework has great potential and advantages in actual applications of autonomous driving.
☆ LightStereo: Channel Boost Is All Your Need for Efficient 2D Cost Aggregation
We present LightStereo, a cutting-edge stereo-matching network crafted to accelerate the matching process. Departing from conventional methodologies that rely on aggregating computationally intensive 4D costs, LightStereo adopts the 3D cost volume as a lightweight alternative. While similar approaches have been explored previously, our breakthrough lies in enhancing performance through a dedicated focus on the channel dimension of the 3D cost volume, where the distribution of matching costs is encapsulated. Our exhaustive exploration has yielded plenty of strategies to amplify the capacity of the pivotal dimension, ensuring both precision and efficiency. We compare the proposed LightStereo with existing state-of-the-art methods across various benchmarks, which demonstrate its superior performance in speed, accuracy, and resource utilization. LightStereo achieves a competitive EPE metric in the SceneFlow datasets while demanding a minimum of only 22 GFLOPs, with an inference time of just 17 ms. Our comprehensive analysis reveals the effect of 2D cost aggregation for stereo matching, paving the way for real-world applications of efficient stereo systems. Code will be available at \url{https://github.com/XiandaGuo/OpenStereo}.
comment: Code will be available at \url{https://github.com/XiandaGuo/OpenStereo}
☆ Emotion Loss Attacking: Adversarial Attack Perception for Skeleton based on Multi-dimensional Features
Adversarial attack on skeletal motion is a hot topic. However, existing researches only consider part of dynamic features when measuring distance between skeleton graph sequences, which results in poor imperceptibility. To this end, we propose a novel adversarial attack method to attack action recognizers for skeletal motions. Firstly, our method systematically proposes a dynamic distance function to measure the difference between skeletal motions. Meanwhile, we innovatively introduce emotional features for complementary information. In addition, we use Alternating Direction Method of Multipliers(ADMM) to solve the constrained optimization problem, which generates adversarial samples with better imperceptibility to deceive the classifiers. Experiments show that our method is effective on multiple action classifiers and datasets. When the perturbation magnitude measured by l norms is the same, the dynamic perturbations generated by our method are much lower than that of other methods. What's more, we are the first to prove the effectiveness of emotional features, and provide a new idea for measuring the distance between skeletal motions.
☆ Extract More from Less: Efficient Fine-Grained Visual Recognition in Low-Data Regimes
The emerging task of fine-grained image classification in low-data regimes assumes the presence of low inter-class variance and large intra-class variation along with a highly limited amount of training samples per class. However, traditional ways of separately dealing with fine-grained categorisation and extremely scarce data may be inefficient under both these harsh conditions presented together. In this paper, we present a novel framework, called AD-Net, aiming to enhance deep neural network performance on this challenge by leveraging the power of Augmentation and Distillation techniques. Specifically, our approach is designed to refine learned features through self-distillation on augmented samples, mitigating harmful overfitting. We conduct comprehensive experiments on popular fine-grained image classification benchmarks where our AD-Net demonstrates consistent improvement over traditional fine-tuning and state-of-the-art low-data techniques. Remarkably, with the smallest data available, our framework shows an outstanding relative accuracy increase of up to 45 % compared to standard ResNet-50 and up to 27 % compared to the closest SOTA runner-up. We emphasise that our approach is practically architecture-independent and adds zero extra cost at inference time. Additionally, we provide an extensive study on the impact of every framework's component, highlighting the importance of each in achieving optimal performance. Source code and trained models are publicly available at github.com/demidovd98/fgic_lowd.
comment: Main paper and Appendices
☆ EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting
Human activities are inherently complex, and even simple household tasks involve numerous object interactions. To better understand these activities and behaviors, it is crucial to model their dynamic interactions with the environment. The recent availability of affordable head-mounted cameras and egocentric data offers a more accessible and efficient means to understand dynamic human-object interactions in 3D environments. However, most existing methods for human activity modeling either focus on reconstructing 3D models of hand-object or human-scene interactions or on mapping 3D scenes, neglecting dynamic interactions with objects. The few existing solutions often require inputs from multiple sources, including multi-camera setups, depth-sensing cameras, or kinesthetic sensors. To this end, we introduce EgoGaussian, the first method capable of simultaneously reconstructing 3D scenes and dynamically tracking 3D object motion from RGB egocentric input alone. We leverage the uniquely discrete nature of Gaussian Splatting and segment dynamic interactions from the background. Our approach employs a clip-level online learning pipeline that leverages the dynamic nature of human activities, allowing us to reconstruct the temporal evolution of the scene in chronological order and track rigid object motion. Additionally, our method automatically segments object and background Gaussians, providing 3D representations for both static scenes and dynamic objects. EgoGaussian outperforms previous NeRF and Dynamic Gaussian methods in challenging in-the-wild videos and we also qualitatively demonstrate the high quality of the reconstructed models.
☆ Comprehensive Generative Replay for Task-Incremental Segmentation with Concurrent Appearance and Semantic Forgetting MICCAI24
Generalist segmentation models are increasingly favored for diverse tasks involving various objects from different image sources. Task-Incremental Learning (TIL) offers a privacy-preserving training paradigm using tasks arriving sequentially, instead of gathering them due to strict data sharing policies. However, the task evolution can span a wide scope that involves shifts in both image appearance and segmentation semantics with intricate correlation, causing concurrent appearance and semantic forgetting. To solve this issue, we propose a Comprehensive Generative Replay (CGR) framework that restores appearance and semantic knowledge by synthesizing image-mask pairs to mimic past task data, which focuses on two aspects: modeling image-mask correspondence and promoting scalability for diverse tasks. Specifically, we introduce a novel Bayesian Joint Diffusion (BJD) model for high-quality synthesis of image-mask pairs with their correspondence explicitly preserved by conditional denoising. Furthermore, we develop a Task-Oriented Adapter (TOA) that recalibrates prompt embeddings to modulate the diffusion model, making the data synthesis compatible with different tasks. Experiments on incremental tasks (cardiac, fundus and prostate segmentation) show its clear advantage for alleviating concurrent appearance and semantic forgetting. Code is available at https://github.com/jingyzhang/CGR.
comment: Accepted by MICCAI24
☆ Structure-aware World Model for Probe Guidance via Large-scale Self-supervised Pre-train
The complex structure of the heart leads to significant challenges in echocardiography, especially in acquisition cardiac ultrasound images. Successful echocardiography requires a thorough understanding of the structures on the two-dimensional plane and the spatial relationships between planes in three-dimensional space. In this paper, we innovatively propose a large-scale self-supervised pre-training method to acquire a cardiac structure-aware world model. The core innovation lies in constructing a self-supervised task that requires structural inference by predicting masked structures on a 2D plane and imagining another plane based on pose transformation in 3D space. To support large-scale pre-training, we collected over 1.36 million echocardiograms from ten standard views, along with their 3D spatial poses. In the downstream probe guidance task, we demonstrate that our pre-trained model consistently reduces guidance errors across the ten most common standard views on the test set with 0.29 million samples from 74 routine clinical scans, indicating that structure-aware pre-training benefits the scanning.
comment: Technical report
☆ SPIRONet: Spatial-Frequency Learning and Topological Channel Interaction Network for Vessel Segmentation
Automatic vessel segmentation is paramount for developing next-generation interventional navigation systems. However, current approaches suffer from suboptimal segmentation performances due to significant challenges in intraoperative images (i.e., low signal-to-noise ratio, small or slender vessels, and strong interference). In this paper, a novel spatial-frequency learning and topological channel interaction network (SPIRONet) is proposed to address the above issues. Specifically, dual encoders are utilized to comprehensively capture local spatial and global frequency vessel features. Then, a cross-attention fusion module is introduced to effectively fuse spatial and frequency features, thereby enhancing feature discriminability. Furthermore, a topological channel interaction module is designed to filter out task-irrelevant responses based on graph neural networks. Extensive experimental results on several challenging datasets (CADSA, CAXF, DCA1, and XCAD) demonstrate state-of-the-art performances of our method. Moreover, the inference speed of SPIRONet is 21 FPS with a 512x512 input size, surpassing clinical real-time requirements (6~12FPS). These promising outcomes indicate SPIRONet's potential for integration into vascular interventional navigation systems. Code is available at https://github.com/Dxhuang-CASIA/SPIRONet.
☆ MM-Instruct: Generated Visual Instructions for Large Multimodal Model Alignment
This paper introduces MM-Instruct, a large-scale dataset of diverse and high-quality visual instruction data designed to enhance the instruction-following capabilities of large multimodal models (LMMs). While existing visual instruction datasets often focus on question-answering, they struggle to generalize to broader application scenarios such as creative writing, summarization, or image analysis. To address these limitations, we propose a novel approach to constructing MM-Instruct that leverages the strong instruction-following capabilities of existing LLMs to generate novel visual instruction data from large-scale but conventional image captioning datasets. MM-Instruct first leverages ChatGPT to automatically generate diverse instructions from a small set of seed instructions through augmenting and summarization. It then matches these instructions with images and uses an open-sourced large language model (LLM) to generate coherent answers to the instruction-image pairs. The LLM is grounded by the detailed text descriptions of images in the whole answer generation process to guarantee the alignment of the instruction data. Moreover, we introduce a benchmark based on the generated instruction data to evaluate the instruction-following capabilities of existing LMMs. We demonstrate the effectiveness of MM-Instruct by training a LLaVA-1.5 model on the generated data, denoted as LLaVA-Instruct, which exhibits significant improvements in instruction-following capabilities compared to LLaVA-1.5 models. The MM-Instruct dataset, benchmark, and pre-trained models are available at https://github.com/jihaonew/MM-Instruct.
comment: Dataset and models are available at https://github.com/jihaonew/MM-Instruct
☆ EPOCH: Jointly Estimating the 3D Pose of Cameras and Humans
Monocular Human Pose Estimation (HPE) aims at determining the 3D positions of human joints from a single 2D image captured by a camera. However, a single 2D point in the image may correspond to multiple points in 3D space. Typically, the uniqueness of the 2D-3D relationship is approximated using an orthographic or weak-perspective camera model. In this study, instead of relying on approximations, we advocate for utilizing the full perspective camera model. This involves estimating camera parameters and establishing a precise, unambiguous 2D-3D relationship. To do so, we introduce the EPOCH framework, comprising two main components: the pose lifter network (LiftNet) and the pose regressor network (RegNet). LiftNet utilizes the full perspective camera model to precisely estimate the 3D pose in an unsupervised manner. It takes a 2D pose and camera parameters as inputs and produces the corresponding 3D pose estimation. These inputs are obtained from RegNet, which starts from a single image and provides estimates for the 2D pose and camera parameters. RegNet utilizes only 2D pose data as weak supervision. Internally, RegNet predicts a 3D pose, which is then projected to 2D using the estimated camera parameters. This process enables RegNet to establish the unambiguous 2D-3D relationship. Our experiments show that modeling the lifting as an unsupervised task with a camera in-the-loop results in better generalization to unseen data. We obtain state-of-the-art results for the 3D HPE on the Human3.6M and MPI-INF-3DHP datasets. Our code is available at: [Github link upon acceptance, see supplementary materials].
comment: 17 pages, 7 figures
☆ Vision Transformer with Key-select Routing Attention for Single Image Dehazing
We present Ksformer, utilizing Multi-scale Key-select Routing Attention (MKRA) for intelligent selection of key areas through multi-channel, multi-scale windows with a top-k operator, and Lightweight Frequency Processing Module (LFPM) to enhance high-frequency features, outperforming other dehazing methods in tests.
comment: 5 pages,4 figures,IEICE Trans. Information and Systems
☆ MMRo: Are Multimodal LLMs Eligible as the Brain for In-Home Robotics?
It is fundamentally challenging for robots to serve as useful assistants in human environments because this requires addressing a spectrum of sub-problems across robotics, including perception, language understanding, reasoning, and planning. The recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated their exceptional abilities in solving complex mathematical problems, mastering commonsense and abstract reasoning. This has led to the recent utilization of MLLMs as the brain in robotic systems, enabling these models to conduct high-level planning prior to triggering low-level control actions for task execution. However, it remains uncertain whether existing MLLMs are reliable in serving the brain role of robots. In this study, we introduce the first benchmark for evaluating Multimodal LLM for Robotic (MMRo) benchmark, which tests the capability of MLLMs for robot applications. Specifically, we identify four essential capabilities perception, task planning, visual reasoning, and safety measurement that MLLMs must possess to qualify as the robot's central processing unit. We have developed several scenarios for each capability, resulting in a total of 14 metrics for evaluation. We present experimental results for various MLLMs, including both commercial and open-source models, to assess the performance of existing systems. Our findings indicate that no single model excels in all areas, suggesting that current MLLMs are not yet trustworthy enough to serve as the cognitive core for robots. Our data can be found in https://mm-robobench.github.io/.
☆ Deep Fusion Model for Brain Tumor Classification Using Fine-Grained Gradient Preservation
Brain tumors are one of the most common diseases that lead to early death if not diagnosed at an early stage. Traditional diagnostic approaches are extremely time-consuming and prone to errors. In this context, computer vision-based approaches have emerged as an effective tool for accurate brain tumor classification. While some of the existing solutions demonstrate noteworthy accuracy, the models become infeasible to deploy in areas where computational resources are limited. This research addresses the need for accurate and fast classification of brain tumors with a priority of deploying the model in technologically underdeveloped regions. The research presents a novel architecture for precise brain tumor classification fusing pretrained ResNet152V2 and modified VGG16 models. The proposed architecture undergoes a diligent fine-tuning process that ensures fine gradients are preserved in deep neural networks, which are essential for effective brain tumor classification. The proposed solution incorporates various image processing techniques to improve image quality and achieves an astounding accuracy of 98.36% and 98.04% in Figshare and Kaggle datasets respectively. This architecture stands out for having a streamlined profile, with only 2.8 million trainable parameters. We have leveraged 8-bit quantization to produce a model of size 73.881 MB, significantly reducing it from the previous size of 289.45 MB, ensuring smooth deployment in edge devices even in resource-constrained areas. Additionally, the use of Grad-CAM improves the interpretability of the model, offering insightful information regarding its decision-making process. Owing to its high discriminative ability, this model can be a reliable option for accurate brain tumor classification.
☆ Enhancing Radiological Diagnosis: A Collaborative Approach Integrating AI and Human Expertise for Visual Miss Correction
Human-AI collaboration to identify and correct perceptual errors in chest radiographs has not been previously explored. This study aimed to develop a collaborative AI system, CoRaX, which integrates eye gaze data and radiology reports to enhance diagnostic accuracy in chest radiology by pinpointing perceptual errors and refining the decision-making process. Using public datasets REFLACX and EGD-CXR, the study retrospectively developed CoRaX, employing a large multimodal model to analyze image embeddings, eye gaze data, and radiology reports. The system's effectiveness was evaluated based on its referral-making process, the quality of referrals, and performance in collaborative diagnostic settings. CoRaX was tested on a simulated error dataset of 271 samples with 28% (93 of 332) missed abnormalities. The system corrected 21% (71 of 332) of these errors, leaving 7% (22 of 312) unresolved. The Referral-Usefulness score, indicating the accuracy of predicted regions for all true referrals, was 0.63 (95% CI 0.59, 0.68). The Total-Usefulness score, reflecting the diagnostic accuracy of CoRaX's interactions with radiologists, showed that 84% (237 of 280) of these interactions had a score above 0.40. In conclusion, CoRaX efficiently collaborates with radiologists to address perceptual errors across various abnormalities, with potential applications in the education and training of novice radiologists.
comment: Under Review in Journal
☆ MimicMotion: High-Quality Human Motion Video Generation with Confidence-aware Pose Guidance
In recent years, generative artificial intelligence has achieved significant advancements in the field of image generation, spawning a variety of applications. However, video generation still faces considerable challenges in various aspects, such as controllability, video length, and richness of details, which hinder the application and popularization of this technology. In this work, we propose a controllable video generation framework, dubbed MimicMotion, which can generate high-quality videos of arbitrary length mimicking specific motion guidance. Compared with previous methods, our approach has several highlights. Firstly, we introduce confidence-aware pose guidance that ensures high frame quality and temporal smoothness. Secondly, we introduce regional loss amplification based on pose confidence, which significantly reduces image distortion. Lastly, for generating long and smooth videos, we propose a progressive latent fusion strategy. By this means, we can produce videos of arbitrary length with acceptable resource consumption. With extensive experiments and user studies, MimicMotion demonstrates significant improvements over previous approaches in various aspects. Detailed results and comparisons are available on our project page: https://tencent.github.io/MimicMotion .
☆ Deep Learning-based Depth Estimation Methods from Monocular Image and Videos: A Comprehensive Survey
Estimating depth from single RGB images and videos is of widespread interest due to its applications in many areas, including autonomous driving, 3D reconstruction, digital entertainment, and robotics. More than 500 deep learning-based papers have been published in the past 10 years, which indicates the growing interest in the task. This paper presents a comprehensive survey of the existing deep learning-based methods, the challenges they address, and how they have evolved in their architecture and supervision methods. It provides a taxonomy for classifying the current work based on their input and output modalities, network architectures, and learning methods. It also discusses the major milestones in the history of monocular depth estimation, and different pipelines, datasets, and evaluation metrics used in existing methods.
comment: 46 pages, 10 figures, The paper has been accepted for publication in ACM Computing Surveys 2024
☆ Beyond First-Order: A Multi-Scale Approach to Finger Knuckle Print Biometrics
Recently, finger knuckle prints (FKPs) have gained attention due to their rich textural patterns, positioning them as a promising biometric for identity recognition. Prior FKP recognition methods predominantly leverage first-order feature descriptors, which capture intricate texture details but fail to account for structural information. Emerging research, however, indicates that second-order textures, which describe the curves and arcs of the textures, encompass this overlooked structural information. This paper introduces a novel FKP recognition approach, the Dual-Order Texture Competition Network (DOTCNet), designed to capture texture information in FKP images comprehensively. DOTCNet incorporates three dual-order texture competitive modules (DTCMs), each targeting textures at different scales. Each DTCM employs a learnable texture descriptor, specifically a learnable Gabor filter (LGF), to extract texture features. By leveraging LGFs, the network extracts first and second order textures to describe fine textures and structural features thoroughly. Furthermore, an attention mechanism enhances relevant features in the first-order features, thereby highlighting significant texture details. For second-order features, a competitive mechanism emphasizes structural information while reducing noise from higher-order features. Extensive experimental results reveal that DOTCNet significantly outperforms several standard algorithms on the publicly available PolyU-FKP dataset.
☆ PopAlign: Population-Level Alignment for Fair Text-to-Image Generation
Text-to-image (T2I) models achieve high-fidelity generation through extensive training on large datasets. However, these models may unintentionally pick up undesirable biases of their training data, such as over-representation of particular identities in gender or ethnicity neutral prompts. Existing alignment methods such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) fail to address this problem effectively because they operate on pairwise preferences consisting of individual samples, while the aforementioned biases can only be measured at a population level. For example, a single sample for the prompt "doctor" could be male or female, but a model generating predominantly male doctors even with repeated sampling reflects a gender bias. To address this limitation, we introduce PopAlign, a novel approach for population-level preference optimization, while standard optimization would prefer entire sets of samples over others. We further derive a stochastic lower bound that directly optimizes for individual samples from preferred populations over others for scalable training. Using human evaluation and standard image quality and bias metrics, we show that PopAlign significantly mitigates the bias of pretrained T2I models while largely preserving the generation quality. Code is available at https://github.com/jacklishufan/PopAlignSDXL.
comment: 18 pages, 10 figures
☆ CSAKD: Knowledge Distillation with Cross Self-Attention for Hyperspectral and Multispectral Image Fusion
Hyperspectral imaging, capturing detailed spectral information for each pixel, is pivotal in diverse scientific and industrial applications. Yet, the acquisition of high-resolution (HR) hyperspectral images (HSIs) often needs to be addressed due to the hardware limitations of existing imaging systems. A prevalent workaround involves capturing both a high-resolution multispectral image (HR-MSI) and a low-resolution (LR) HSI, subsequently fusing them to yield the desired HR-HSI. Although deep learning-based methods have shown promising in HR-MSI/LR-HSI fusion and LR-HSI super-resolution (SR), their substantial model complexities hinder deployment on resource-constrained imaging devices. This paper introduces a novel knowledge distillation (KD) framework for HR-MSI/LR-HSI fusion to achieve SR of LR-HSI. Our KD framework integrates the proposed Cross-Layer Residual Aggregation (CLRA) block to enhance efficiency for constructing Dual Two-Streamed (DTS) network structure, designed to extract joint and distinct features from LR-HSI and HR-MSI simultaneously. To fully exploit the spatial and spectral feature representations of LR-HSI and HR-MSI, we propose a novel Cross Self-Attention (CSA) fusion module to adaptively fuse those features to improve the spatial and spectral quality of the reconstructed HR-HSI. Finally, the proposed KD-based joint loss function is employed to co-train the teacher and student networks. Our experimental results demonstrate that the student model not only achieves comparable or superior LR-HSI SR performance but also significantly reduces the model-size and computational requirements. This marks a substantial advancement over existing state-of-the-art methods. The source code is available at https://github.com/ming053l/CSAKD.
comment: Submitted to TIP 2024
☆ PM-VIS+: High-Performance Video Instance Segmentation without Video Annotation
Video instance segmentation requires detecting, segmenting, and tracking objects in videos, typically relying on costly video annotations. This paper introduces a method that eliminates video annotations by utilizing image datasets. The PM-VIS algorithm is adapted to handle both bounding box and instance-level pixel annotations dynamically. We introduce ImageNet-bbox to supplement missing categories in video datasets and propose the PM-VIS+ algorithm to adjust supervision based on annotation types. To enhance accuracy, we use pseudo masks and semi-supervised optimization techniques on unannotated video data. This method achieves high video instance segmentation performance without manual video annotations, offering a cost-effective solution and new perspectives for video instance segmentation applications. The code will be available in https://github.com/ldknight/PM-VIS-plus
comment: MIPR 2024
☆ Basketball-SORT: An Association Method for Complex Multi-object Occlusion Problems in Basketball Multi-object Tracking
Recent deep learning-based object detection approaches have led to significant progress in multi-object tracking (MOT) algorithms. The current MOT methods mainly focus on pedestrian or vehicle scenes, but basketball sports scenes are usually accompanied by three or more object occlusion problems with similar appearances and high-intensity complex motions, which we call complex multi-object occlusion (CMOO). Here, we propose an online and robust MOT approach, named Basketball-SORT, which focuses on the CMOO problems in basketball videos. To overcome the CMOO problem, instead of using the intersection-over-union-based (IoU-based) approach, we use the trajectories of neighboring frames based on the projected positions of the players. Our method designs the basketball game restriction (BGR) and reacquiring Long-Lost IDs (RLLI) based on the characteristics of basketball scenes, and we also solve the occlusion problem based on the player trajectories and appearance features. Experimental results show that our method achieves a Higher Order Tracking Accuracy (HOTA) score of 63.48$\%$ on the basketball fixed video dataset and outperforms other recent popular approaches. Overall, our approach solved the CMOO problem more effectively than recent MOT algorithms.
☆ AstMatch: Adversarial Self-training Consistency Framework for Semi-Supervised Medical Image Segmentation
Semi-supervised learning (SSL) has shown considerable potential in medical image segmentation, primarily leveraging consistency regularization and pseudo-labeling. However, many SSL approaches only pay attention to low-level consistency and overlook the significance of pseudo-label reliability. Therefore, in this work, we propose an adversarial self-training consistency framework (AstMatch). Firstly, we design an adversarial consistency regularization (ACR) approach to enhance knowledge transfer and strengthen prediction consistency under varying perturbation intensities. Second, we apply a feature matching loss for adversarial training to incorporate high-level consistency regularization. Additionally, we present the pyramid channel attention (PCA) and efficient channel and spatial attention (ECSA) modules to improve the discriminator's performance. Finally, we propose an adaptive self-training (AST) approach to ensure the pseudo-labels' quality. The proposed AstMatch has been extensively evaluated with cutting-edge SSL methods on three public-available datasets. The experimental results under different labeled ratios indicate that AstMatch outperforms other existing methods, achieving new state-of-the-art performance. Our code will be available at https://github.com/GuanghaoZhu663/AstMatch.
☆ Efficient Event Stream Super-Resolution with Recursive Multi-Branch Fusion
Current Event Stream Super-Resolution (ESR) methods overlook the redundant and complementary information present in positive and negative events within the event stream, employing a direct mixing approach for super-resolution, which may lead to detail loss and inefficiency. To address these issues, we propose an efficient Recursive Multi-Branch Information Fusion Network (RMFNet) that separates positive and negative events for complementary information extraction, followed by mutual supplementation and refinement. Particularly, we introduce Feature Fusion Modules (FFM) and Feature Exchange Modules (FEM). FFM is designed for the fusion of contextual information within neighboring event streams, leveraging the coupling relationship between positive and negative events to alleviate the misleading of noises in the respective branches. FEM efficiently promotes the fusion and exchange of information between positive and negative branches, enabling superior local information enhancement and global information complementation. Experimental results demonstrate that our approach achieves over 17% and 31% improvement on synthetic and real datasets, accompanied by a 2.3X acceleration. Furthermore, we evaluate our method on two downstream event-driven applications, \emph{i.e.}, object recognition and video reconstruction, achieving remarkable results that outperform existing methods. Our code and Supplementary Material are available at https://github.com/Lqm26/RMFNet.
☆ Precision matters: Precision-aware ensemble for weakly supervised semantic segmentation AAAI 2024
Weakly Supervised Semantic Segmentation (WSSS) employs weak supervision, such as image-level labels, to train the segmentation model. Despite the impressive achievement in recent WSSS methods, we identify that introducing weak labels with high mean Intersection of Union (mIoU) does not guarantee high segmentation performance. Existing studies have emphasized the importance of prioritizing precision and reducing noise to improve overall performance. In the same vein, we propose ORANDNet, an advanced ensemble approach tailored for WSSS. ORANDNet combines Class Activation Maps (CAMs) from two different classifiers to increase the precision of pseudo-masks (PMs). To further mitigate small noise in the PMs, we incorporate curriculum learning. This involves training the segmentation model initially with pairs of smaller-sized images and corresponding PMs, gradually transitioning to the original-sized pairs. By combining the original CAMs of ResNet-50 and ViT, we significantly improve the segmentation performance over the single-best model and the naive ensemble model, respectively. We further extend our ensemble method to CAMs from AMN (ResNet-like) and MCTformer (ViT-like) models, achieving performance benefits in advanced WSSS models. It highlights the potential of our ORANDNet as a final add-on module for WSSS models.
comment: 5 pages, 5 figures, accepted in AAAI 2024 Edge Intelligence Workshop
☆ Model Predictive Simulation Using Structured Graphical Models and Transformers
We propose an approach to simulating trajectories of multiple interacting agents (road users) based on transformers and probabilistic graphical models (PGMs), and apply it to the Waymo SimAgents challenge. The transformer baseline is based on the MTR model, which predicts multiple future trajectories conditioned on the past trajectories and static road layout features. We then improve upon these generated trajectories using a PGM, which contains factors which encode prior knowledge, such as a preference for smooth trajectories, and avoidance of collisions with static obstacles and other moving agents. We perform (approximate) MAP inference in this PGM using the Gauss-Newton method. Finally we sample $K=32$ trajectories for each of the $N \sim 100$ agents for the next $T=8 \Delta$ time steps, where $\Delta=10$ is the sampling rate per second. Following the Model Predictive Control (MPC) paradigm, we only return the first element of our forecasted trajectories at each step, and then we replan, so that the simulation can constantly adapt to its changing environment. We therefore call our approach "Model Predictive Simulation" or MPS. We show that MPS improves upon the MTR baseline, especially in safety critical metrics such as collision rate. Furthermore, our approach is compatible with any underlying forecasting model, and does not require extra training, so we believe it is a valuable contribution to the community.
comment: Special Mention at the Waymo Sim Agents Challenge 2024
☆ PPTFormer: Pseudo Multi-Perspective Transformer for UAV Segmentation IJCAI 2024
The ascension of Unmanned Aerial Vehicles (UAVs) in various fields necessitates effective UAV image segmentation, which faces challenges due to the dynamic perspectives of UAV-captured images. Traditional segmentation algorithms falter as they cannot accurately mimic the complexity of UAV perspectives, and the cost of obtaining multi-perspective labeled datasets is prohibitive. To address these issues, we introduce the PPTFormer, a novel \textbf{P}seudo Multi-\textbf{P}erspective \textbf{T}rans\textbf{former} network that revolutionizes UAV image segmentation. Our approach circumvents the need for actual multi-perspective data by creating pseudo perspectives for enhanced multi-perspective learning. The PPTFormer network boasts Perspective Decomposition, novel Perspective Prototypes, and a specialized encoder and decoder that together achieve superior segmentation results through Pseudo Multi-Perspective Attention (PMP Attention) and fusion. Our experiments demonstrate that PPTFormer achieves state-of-the-art performance across five UAV segmentation datasets, confirming its capability to effectively simulate UAV flight perspectives and significantly advance segmentation precision. This work presents a pioneering leap in UAV scene understanding and sets a new benchmark for future developments in semantic segmentation.
comment: IJCAI 2024
☆ Optimal Video Compression using Pixel Shift Tracking
The Video comprises approximately ~85\% of all internet traffic, but video encoding/compression is being historically done with hard coded rules, which has worked well but only to a certain limit. We have seen a surge in video compression algorithms using ML-based models in the last few years and many of them have outperformed several legacy codecs. The models range from encoding video end to end using an ML approach or replacing some intermediate steps in legacy codecs using ML models to increase the efficiency of those steps. Optimizing video storage is an essential aspect of video processing, so we are proposing one of the possible approaches to achieve it is by avoiding redundant data at each frame. In this paper, we want to introduce the approach of redundancies removal in subsequent frames for a given video as a main approach for video compression. We call this method Redundancy Removal using Shift (R\textsuperscript2S). This method can be utilized across various Machine Learning model algorithms, and make the compression more accessible and adaptable. In this study, we have utilized a computer vision-based pixel point tracking method to identify redundant pixels to encode video for optimal storage.
☆ A Survey on Deep Clustering: From the Prior Perspective
Facilitated by the powerful feature extraction ability of neural networks, deep clustering has achieved great success in analyzing high-dimensional and complex real-world data. The performance of deep clustering methods is affected by various factors such as network structures and learning objectives. However, as pointed out in this survey, the essence of deep clustering lies in the incorporation and utilization of prior knowledge, which is largely ignored by existing works. From pioneering deep clustering methods based on data structure assumptions to recent contrastive clustering methods based on data augmentation invariances, the development of deep clustering intrinsically corresponds to the evolution of prior knowledge. In this survey, we provide a comprehensive review of deep clustering methods by categorizing them into six types of prior knowledge. We find that in general the prior innovation follows two trends, namely, i) from mining to constructing, and ii) from internal to external. Besides, we provide a benchmark on five widely-used datasets and analyze the performance of methods with diverse priors. By providing a novel prior knowledge perspective, we hope this survey could provide some novel insights and inspire future research in the deep clustering community.
☆ SK-VQA: Synthetic Knowledge Generation at Scale for Training Context-Augmented Multimodal LLMs
Synthetic data generation has gained significant attention recently for its utility in training large vision and language models. However, the application of synthetic data to the training of multimodal context-augmented generation systems has been relatively unexplored. This gap in existing work is important because existing vision and language models (VLMs) are not trained specifically for context-augmented generation. Resources for adapting such models are therefore crucial for enabling their use in retrieval-augmented generation (RAG) settings, where a retriever is used to gather relevant information that is then subsequently provided to a generative model via context augmentation. To address this challenging problem, we generate SK-VQA: a large synthetic multimodal dataset containing over 2 million question-answer pairs which require external knowledge to determine the final answer. Our dataset is both larger and significantly more diverse than existing resources of its kind, possessing over 11x more unique questions and containing images from a greater variety of sources than previously-proposed datasets. Through extensive experiments, we demonstrate that our synthetic dataset can not only serve as a challenging benchmark, but is also highly effective for adapting existing generative multimodal models for context-augmented generation.
♻ ☆ Exploiting Diffusion Prior for Real-World Image Super-Resolution
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution (SR). Specifically, by employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model, thereby preserving the generative prior and minimizing training cost. To remedy the loss of fidelity caused by the inherent stochasticity of diffusion models, we employ a controllable feature wrapping module that allows users to balance quality and fidelity by simply adjusting a scalar value during the inference process. Moreover, we develop a progressive aggregation sampling strategy to overcome the fixed-size constraints of pre-trained diffusion models, enabling adaptation to resolutions of any size. A comprehensive evaluation of our method using both synthetic and real-world benchmarks demonstrates its superiority over current state-of-the-art approaches. Code and models are available at https://github.com/IceClear/StableSR.
comment: Accepted by IJCV'2024. Some Figs are compressed due to size limits. Uncompressed ver.: https://github.com/IceClear/StableSR/releases/download/UncompressedPDF/StableSR_IJCV_Uncompressed.pdf. Project page: https://iceclear.github.io/projects/stablesr/
♻ ☆ EnSolver: Uncertainty-Aware Ensemble CAPTCHA Solvers with Theoretical Guarantees UAI 2023
The popularity of text-based CAPTCHA as a security mechanism to protect websites from automated bots has prompted researches in CAPTCHA solvers, with the aim of understanding its failure cases and subsequently making CAPTCHAs more secure. Recently proposed solvers, built on advances in deep learning, are able to crack even the very challenging CAPTCHAs with high accuracy. However, these solvers often perform poorly on out-of-distribution samples that contain visual features different from those in the training set. Furthermore, they lack the ability to detect and avoid such samples, making them susceptible to being locked out by defense systems after a certain number of failed attempts. In this paper, we propose EnSolver, a family of CAPTCHA solvers that use deep ensemble uncertainty to detect and skip out-of-distribution CAPTCHAs, making it harder to be detected. We prove novel theoretical bounds on the effectiveness of our solvers and demonstrate their use with state-of-the-art CAPTCHA solvers. Our experiments show that the proposed approaches perform well when cracking CAPTCHA datasets that contain both in-distribution and out-of-distribution samples.
comment: A previous version of this paper was presented at the Epistemic Uncertainty - E-pi UAI 2023 Workshop
♻ ☆ Robustness Assessment of a Runway Object Classifier for Safe Aircraft Taxiing SC
As deep neural networks (DNNs) are becoming the prominent solution for many computational problems, the aviation industry seeks to explore their potential in alleviating pilot workload and in improving operational safety. However, the use of DNNs in this type of safety-critical applications requires a thorough certification process. This need can be addressed through formal verification, which provides rigorous assurances -- e.g.,~by proving the absence of certain mispredictions. In this case-study paper, we demonstrate this process using an image-classifier DNN currently under development at Airbus and intended for use during the aircraft taxiing phase. We use formal methods to assess this DNN's robustness to three common image perturbation types: noise, brightness and contrast, and some of their combinations. This process entails multiple invocations of the underlying verifier, which might be computationally expensive; and we therefore propose a method that leverages the monotonicity of these robustness properties, as well as the results of past verification queries, in order to reduce the overall number of verification queries required by nearly 60%. Our results provide an indication of the level of robustness achieved by the DNN classifier under study, and indicate that it is considerably more vulnerable to noise than to brightness or contrast perturbations.
comment: This is a preprint version of the paper in the proceedings of 43rd Digital Avionics Systems Conference (DASC)
♻ ☆ Learning to utilize image second-order derivative information for crisp edge detection
Edge detection is a fundamental task in computer vision. It has made great progress under the development of deep convolutional neural networks (DCNNs), some of which have achieved a beyond human-level performance. However, recent top-performing edge detection methods tend to generate thick and noisy edge lines. In this work, we solve this problem from two aspects: (1) the lack of prior knowledge regarding image edges, and (2) the issue of imbalanced pixel distribution. We propose a second-order derivative-based multi-scale contextual enhancement module (SDMCM) to help the model locate true edge pixels accurately by introducing the edge prior knowledge. We also construct a hybrid focal loss function (HFL) to alleviate the imbalanced distribution issue. In addition, we employ the conditionally parameterized convolution (CondConv) to develop a novel boundary refinement module (BRM), which can further refine the final output edge maps. In the end, we propose a U-shape network named LUS-Net which is based on the SDMCM and BRM for crisp edge detection. We perform extensive experiments on three standard benchmarks, and the experiment results illustrate that our method can predict crisp and clean edge maps and achieves state-of-the-art performance on the BSDS500 dataset (ODS=0.829), NYUD-V2 dataset (ODS=0.768), and BIPED dataset (ODS=0.903).
♻ ☆ DWARF: Disease-weighted network for attention map refinement
The interpretability of deep learning is crucial for evaluating the reliability of medical imaging models and reducing the risks of inaccurate patient recommendations. This study addresses the "human out of the loop" and "trustworthiness" issues in medical image analysis by integrating medical professionals into the interpretability process. We propose a disease-weighted attention map refinement network (DWARF) that leverages expert feedback to enhance model relevance and accuracy. Our method employs cyclic training to iteratively improve diagnostic performance, generating precise and interpretable feature maps. Experimental results demonstrate significant improvements in interpretability and diagnostic accuracy across multiple medical imaging datasets. This approach fosters effective collaboration between AI systems and healthcare professionals, ultimately aiming to improve patient outcomes
♻ ☆ Modeling State Shifting via Local-Global Distillation for Event-Frame Gaze Tracking
This paper tackles the problem of passive gaze estimation using both event and frame data. Considering the inherently different physiological structures, it is intractable to accurately estimate gaze purely based on a given state. Thus, we reformulate gaze estimation as the quantification of the state shifting from the current state to several prior registered anchor states. Specifically, we propose a two-stage learning-based gaze estimation framework that divides the whole gaze estimation process into a coarse-to-fine approach involving anchor state selection and final gaze location. Moreover, to improve the generalization ability, instead of learning a large gaze estimation network directly, we align a group of local experts with a student network, where a novel denoising distillation algorithm is introduced to utilize denoising diffusion techniques to iteratively remove inherent noise in event data. Extensive experiments demonstrate the effectiveness of the proposed method, which surpasses state-of-the-art methods by a large margin of 15$\%$. The code will be publicly available at https://github.com/jdjdli/Denoise_distill_EF_gazetracker.
♻ ☆ Tracking Object Positions in Reinforcement Learning: A Metric for Keypoint Detection (extended version)
Reinforcement learning (RL) for robot control typically requires a detailed representation of the environment state, including information about task-relevant objects not directly measurable. Keypoint detectors, such as spatial autoencoders (SAEs), are a common approach to extracting a low-dimensional representation from high-dimensional image data. SAEs aim at spatial features such as object positions, which are often useful representations in robotic RL. However, whether an SAE is actually able to track objects in the scene and thus yields a spatial state representation well suited for RL tasks has rarely been examined due to a lack of established metrics. In this paper, we propose to assess the performance of an SAE instance by measuring how well keypoints track ground truth objects in images. We present a computationally lightweight metric and use it to evaluate common baseline SAE architectures on image data from a simulated robot task. We find that common SAEs differ substantially in their spatial extraction capability. Furthermore, we validate that SAEs that perform well in our metric achieve superior performance when used in downstream RL. Thus, our metric is an effective and lightweight indicator of RL performance before executing expensive RL training. Building on these insights, we identify three key modifications of SAE architectures to improve tracking performance. We make our code available at anonymous.4open.science/r/sae-rl.
comment: 19 pages, 12 figures
♻ ☆ LatentExplainer: Explaining Latent Representations in Deep Generative Models with Multi-modal Foundation Models
Deep generative models like VAEs and diffusion models have advanced various generation tasks by leveraging latent variables to learn data distributions and generate high-quality samples. Despite the field of explainable AI making strides in interpreting machine learning models, understanding latent variables in generative models remains challenging. This paper introduces LatentExplainer, a framework for automatically generating semantically meaningful explanations of latent variables in deep generative models. LatentExplainer tackles three main challenges: inferring the meaning of latent variables, aligning explanations with inductive biases, and handling varying degrees of explainability. By perturbing latent variables and interpreting changes in generated data, the framework provides a systematic approach to understanding and controlling the data generation process, enhancing the transparency and interpretability of deep generative models. We evaluate our proposed method on several real-world and synthetic datasets, and the results demonstrate superior performance in generating high-quality explanations of latent variables.
♻ ☆ Mining Open Semantics from CLIP: A Relation Transition Perspective for Few-Shot Learning
Contrastive Vision-Language Pre-training(CLIP) demonstrates impressive zero-shot capability. The key to improve the adaptation of CLIP to downstream task with few exemplars lies in how to effectively model and transfer the useful knowledge embedded in CLIP. Previous work mines the knowledge typically based on the limited visual samples and close-set semantics (i.e., within target category set of downstream task). However, the aligned CLIP image/text encoders contain abundant relationships between visual features and almost infinite open semantics, which may benefit the few-shot learning but remains unexplored. In this paper, we propose to mine open semantics as anchors to perform a relation transition from image-anchor relationship to image-target relationship to make predictions. Specifically, we adopt a transformer module which takes the visual feature as "Query", the text features of the anchors as "Key" and the similarity matrix between the text features of anchor and target classes as "Value". In this way, the output of such a transformer module represents the relationship between the image and target categories, i.e., the classification predictions. To avoid manually selecting the open semantics, we make the [CLASS] token of input text embedding learnable. We conduct extensive experiments on eleven representative classification datasets. The results show that our method performs favorably against previous state-of-the-arts considering few-shot classification settings.
♻ ☆ Kandinsky 3.0 Technical Report
We present Kandinsky 3.0, a large-scale text-to-image generation model based on latent diffusion, continuing the series of text-to-image Kandinsky models and reflecting our progress to achieve higher quality and realism of image generation. In this report we describe the architecture of the model, the data collection procedure, the training technique, and the production system for user interaction. We focus on the key components that, as we have identified as a result of a large number of experiments, had the most significant impact on improving the quality of our model compared to the others. We also describe extensions and applications of our model, including super resolution, inpainting, image editing, image-to-video generation, and a distilled version of Kandinsky 3.0 - Kandinsky 3.1, which does inference in 4 steps of the reverse process and 20 times faster without visual quality decrease. By side-by-side human preferences comparison, Kandinsky becomes better in text understanding and works better on specific domains. The code is available at https://github.com/ai-forever/Kandinsky-3
comment: Project page: https://ai-forever.github.io/Kandinsky-3
♻ ☆ Deformable MRI Sequence Registration for AI-based Prostate Cancer Diagnosis
The PI-CAI (Prostate Imaging: Cancer AI) challenge led to expert-level diagnostic algorithms for clinically significant prostate cancer detection. The algorithms receive biparametric MRI scans as input, which consist of T2-weighted and diffusion-weighted scans. These scans can be misaligned due to multiple factors in the scanning process. Image registration can alleviate this issue by predicting the deformation between the sequences. We investigate the effect of image registration on the diagnostic performance of AI-based prostate cancer diagnosis. First, the image registration algorithm, developed in MeVisLab, is analyzed using a dataset with paired lesion annotations. Second, the effect on diagnosis is evaluated by comparing case-level cancer diagnosis performance between using the original dataset, rigidly aligned diffusion-weighted scans, or deformably aligned diffusion-weighted scans. Rigid registration showed no improvement. Deformable registration demonstrated a substantial improvement in lesion overlap (+10% median Dice score) and a positive yet non-significant improvement in diagnostic performance (+0.3% AUROC, p=0.18). Our investigation shows that a substantial improvement in lesion alignment does not directly lead to a significant improvement in diagnostic performance. Qualitative analysis indicated that jointly developing image registration methods and diagnostic AI algorithms could enhance diagnostic accuracy and patient outcomes.
♻ ☆ Automatic Data Curation for Self-Supervised Learning: A Clustering-Based Approach
Self-supervised features are the cornerstone of modern machine learning systems. They are typically pre-trained on data collections whose construction and curation typically require extensive human effort. This manual process has some limitations similar to those encountered in supervised learning, e.g., the crowd-sourced selection of data is costly and time-consuming, preventing scaling the dataset size. In this work, we consider the problem of automatic curation of high-quality datasets for self-supervised pre-training. We posit that such datasets should be large, diverse and balanced, and propose a clustering-based approach for building ones satisfying all these criteria. Our method involves successive and hierarchical applications of $k$-means on a large and diverse data repository to obtain clusters that distribute uniformly among data concepts, followed by a hierarchical, balanced sampling step from these clusters. Extensive experiments on three different data domains including web-based images, satellite images and text show that features trained on our automatically curated datasets outperform those trained on uncurated data while being on par or better than ones trained on manually curated data. Code is available at https://github.com/facebookresearch/ssl-data-curation.
♻ ☆ LiverUSRecon: Automatic 3D Reconstruction and Volumetry of the Liver with a Few Partial Ultrasound Scans MICCAI 2024
3D reconstruction of the liver for volumetry is important for qualitative analysis and disease diagnosis. Liver volumetry using ultrasound (US) scans, although advantageous due to less acquisition time and safety, is challenging due to the inherent noisiness in US scans, blurry boundaries, and partial liver visibility. We address these challenges by using the segmentation masks of a few incomplete sagittal-plane US scans of the liver in conjunction with a statistical shape model (SSM) built using a set of CT scans of the liver. We compute the shape parameters needed to warp this canonical SSM to fit the US scans through a parametric regression network. The resulting 3D liver reconstruction is accurate and leads to automatic liver volume calculation. We evaluate the accuracy of the estimated liver volumes with respect to CT segmentation volumes using RMSE. Our volume computation is statistically much closer to the volume estimated using CT scans than the volume computed using Childs' method by radiologists: p-value of 0.094 (>0.05) says that there is no significant difference between CT segmentation volumes and ours in contrast to Childs' method. We validate our method using investigations (ablation studies) on the US image resolution, the number of CT scans used for SSM, the number of principal components, and the number of input US scans. To the best of our knowledge, this is the first automatic liver volumetry system using a few incomplete US scans given a set of CT scans of livers for SSM.
comment: 10 pages, Accepted to MICCAI 2024
♻ ☆ Cross-domain Denoising for Low-dose Multi-frame Spiral Computed Tomography
Computed tomography (CT) has been used worldwide as a non-invasive test to assist in diagnosis. However, the ionizing nature of X-ray exposure raises concerns about potential health risks such as cancer. The desire for lower radiation doses has driven researchers to improve reconstruction quality. Although previous studies on low-dose computed tomography (LDCT) denoising have demonstrated the effectiveness of learning-based methods, most were developed on the simulated data. However, the real-world scenario differs significantly from the simulation domain, especially when using the multi-slice spiral scanner geometry. This paper proposes a two-stage method for the commercially available multi-slice spiral CT scanners that better exploits the complete reconstruction pipeline for LDCT denoising across different domains. Our approach makes good use of the high redundancy of multi-slice projections and the volumetric reconstructions while leveraging the over-smoothing problem in conventional cascaded frameworks caused by aggressive denoising. The dedicated design also provides a more explicit interpretation of the data flow. Extensive experiments on various datasets showed that the proposed method could remove up to 70\% of noise without compromised spatial resolution, and subjective evaluations by two experienced radiologists further supported its superior performance against state-of-the-art methods in clinical practice.
♻ ☆ Defect Detection in Synthetic Fibre Ropes using Detectron2 Framework
Fibre ropes with the latest technology have emerged as an appealing alternative to steel ropes for offshore industries due to their lightweight and high tensile strength. At the same time, frequent inspection of these ropes is essential to ensure the proper functioning and safety of the entire system. The development of deep learning (DL) models in condition monitoring (CM) applications offers a simpler and more effective approach for defect detection in synthetic fibre ropes (SFRs). The present paper investigates the performance of Detectron2, a state-of-the-art library for defect detection and instance segmentation. Detectron2 with Mask R-CNN architecture is used for segmenting defects in SFRs. Mask R-CNN with various backbone configurations has been trained and tested on an experimentally obtained dataset comprising 1,803 high-dimensional images containing seven damage classes (placking high, placking medium, placking low, compression, core out, chafing, and normal respectively) for SFRs. By leveraging the capabilities of Detectron2, this study aims to develop an automated and efficient method for detecting defects in SFRs, enhancing the inspection process, and ensuring the safety of the fibre ropes.
comment: 12 pages, 8 figures, 4 tables
♻ ☆ Assessment of Sentinel-2 spatial and temporal coverage based on the scene classification layer
Since the launch of the Sentinel-2 (S2) satellites, many ML models have used the data for diverse applications. The scene classification layer (SCL) inside the S2 product provides rich information for training, such as filtering images with high cloud coverage. However, there is more potential in this. We propose a technique to assess the clean optical coverage of a region, expressed by a SITS and calculated with the S2-based SCL data. With a manual threshold and specific labels in the SCL, the proposed technique assigns a percentage of spatial and temporal coverage across the time series and a high/low assessment. By evaluating the AI4EO challenge for Enhanced Agriculture, we show that the assessment is correlated to the predictive results of ML models. The classification results in a region with low spatial and temporal coverage is worse than in a region with high coverage. Finally, we applied the technique across all continents of the global dataset LandCoverNet.
comment: Accepted at IEEE International Geoscience and Remote Sensing Symposium 2024
♻ ☆ Logical Closed Loop: Uncovering Object Hallucinations in Large Vision-Language Models ACL 2024
Object hallucination has been an Achilles' heel which hinders the broader applications of large vision-language models (LVLMs). Object hallucination refers to the phenomenon that the LVLMs claim non-existent objects in the image. To mitigate the object hallucinations, instruction tuning and external model-based detection methods have been proposed, which either require large-scare computational resources or depend on the detection result of external models. However, there remains an under-explored field to utilize the LVLM itself to alleviate object hallucinations. In this work, we adopt the intuition that the LVLM tends to respond logically consistently for existent objects but inconsistently for hallucinated objects. Therefore, we propose a Logical Closed Loop-based framework for Object Hallucination Detection and Mitigation, namely LogicCheckGPT. In specific, we devise logical consistency probing to raise questions with logical correlations, inquiring about attributes from objects and vice versa. Whether their responses can form a logical closed loop serves as an indicator of object hallucination. As a plug-and-play method, it can be seamlessly applied to all existing LVLMs. Comprehensive experiments conducted on three benchmarks across four LVLMs have demonstrated significant improvements brought by our method, indicating its effectiveness and generality.
comment: Accept to ACL 2024; 19 Pages, 15 Figures, 6 Tables
♻ ☆ Viewport Prediction for Volumetric Video Streaming by Exploring Video Saliency and Trajectory Information
Volumetric video, also known as hologram video, is a novel medium that portrays natural content in Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR). It is expected to be the next-gen video technology and a prevalent use case for 5G and beyond wireless communication. Considering that each user typically only watches a section of the volumetric video, known as the viewport, it is essential to have precise viewport prediction for optimal performance. However, research on this topic is still in its infancy. In the end, this paper presents and proposes a novel approach, named Saliency and Trajectory Viewport Prediction (STVP), which aims to improve the precision of viewport prediction in volumetric video streaming. The STVP extensively utilizes video saliency information and viewport trajectory. To our knowledge, this is the first comprehensive study of viewport prediction in volumetric video streaming. In particular, we introduce a novel sampling method, Uniform Random Sampling (URS), to reduce computational complexity while still preserving video features in an efficient manner. Then we present a saliency detection technique that incorporates both spatial and temporal information for detecting static, dynamic geometric, and color salient regions. Finally, we intelligently fuse saliency and trajectory information to achieve more accurate viewport prediction. We conduct extensive simulations to evaluate the effectiveness of our proposed viewport prediction methods using state-of-the-art volumetric video sequences. The experimental results show the superiority of the proposed method over existing schemes. The dataset and source code will be publicly accessible after acceptance.
♻ ☆ FAGhead: Fully Animate Gaussian Head from Monocular Videos
High-fidelity reconstruction of 3D human avatars has a wild application in visual reality. In this paper, we introduce FAGhead, a method that enables fully controllable human portraits from monocular videos. We explicit the traditional 3D morphable meshes (3DMM) and optimize the neutral 3D Gaussians to reconstruct with complex expressions. Furthermore, we employ a novel Point-based Learnable Representation Field (PLRF) with learnable Gaussian point positions to enhance reconstruction performance. Meanwhile, to effectively manage the edges of avatars, we introduced the alpha rendering to supervise the alpha value of each pixel. Extensive experimental results on the open-source datasets and our capturing datasets demonstrate that our approach is able to generate high-fidelity 3D head avatars and fully control the expression and pose of the virtual avatars, which is outperforming than existing works.
♻ ☆ A Refer-and-Ground Multimodal Large Language Model for Biomedicine MICCAI2024
With the rapid development of multimodal large language models (MLLMs), especially their capabilities in visual chat through refer and ground functionalities, their significance is increasingly recognized. However, the biomedical field currently exhibits a substantial gap in this area, primarily due to the absence of a dedicated refer and ground dataset for biomedical images. To address this challenge, we devised the Med-GRIT-270k dataset. It comprises 270k question-and-answer pairs and spans eight distinct medical imaging modalities. Most importantly, it is the first dedicated to the biomedical domain and integrating refer and ground conversations. The key idea is to sample large-scale biomedical image-mask pairs from medical segmentation datasets and generate instruction datasets from text using chatGPT. Additionally, we introduce a Refer-and-Ground Multimodal Large Language Model for Biomedicine (BiRD) by using this dataset and multi-task instruction learning. Extensive experiments have corroborated the efficacy of the Med-GRIT-270k dataset and the multi-modal, fine-grained interactive capabilities of the BiRD model. This holds significant reference value for the exploration and development of intelligent biomedical assistants.
comment: Accepted by MICCAI2024
♻ ☆ ProbRadarM3F: mmWave Radar based Human Skeletal Pose Estimation with Probability Map Guided Multi-Format Feature Fusion
Millimeter wave (mmWave) radar is a non-intrusive privacy and relatively convenient and inexpensive device, which has been demonstrated to be applicable in place of RGB cameras in human indoor pose estimation tasks. However, mmWave radar relies on the collection of reflected signals from the target, and the radar signals containing information is difficult to be fully applied. This has been a long-standing hindrance to the improvement of pose estimation accuracy. To address this major challenge, this paper introduces a probability map guided multi-format feature fusion model, ProbRadarM3F. This is a novel radar feature extraction framework using a traditional FFT method in parallel with a probability map based positional encoding method. ProbRadarM3F fuses the traditional heatmap features and the positional features, then effectively achieves the estimation of 14 keypoints of the human body. Experimental evaluation on the HuPR dataset proves the effectiveness of the model proposed in this paper, outperforming other methods experimented on this dataset with an AP of 69.9 %. The emphasis of our study is focusing on the position information that is not exploited before in radar singal. This provides direction to investigate other potential non-redundant information from mmWave rader.
♻ ☆ SimTxtSeg: Weakly-Supervised Medical Image Segmentation with Simple Text Cues MICCAI 2024
Weakly-supervised medical image segmentation is a challenging task that aims to reduce the annotation cost while keep the segmentation performance. In this paper, we present a novel framework, SimTxtSeg, that leverages simple text cues to generate high-quality pseudo-labels and study the cross-modal fusion in training segmentation models, simultaneously. Our contribution consists of two key components: an effective Textual-to-Visual Cue Converter that produces visual prompts from text prompts on medical images, and a text-guided segmentation model with Text-Vision Hybrid Attention that fuses text and image features. We evaluate our framework on two medical image segmentation tasks: colonic polyp segmentation and MRI brain tumor segmentation, and achieve consistent state-of-the-art performance.
comment: accepted by MICCAI 2024
♻ ☆ Leveraging Knowledge Distillation for Lightweight Skin Cancer Classification: Balancing Accuracy and Computational Efficiency
Skin cancer is a major concern to public health, accounting for one-third of the reported cancers. If not detected early, the cancer has the potential for severe consequences. Recognizing the critical need for effective skin cancer classification, we address the limitations of existing models, which are often too large to deploy in areas with limited computational resources. In response, we present a knowledge distillation based approach for creating a lightweight yet high-performing classifier. The proposed solution involves fusing three models, namely ResNet152V2, ConvNeXtBase, and ViT Base, to create an effective teacher model. The teacher model is then employed to guide a lightweight student model of size 2.03 MB. This student model is further compressed to 469.77 KB using 16-bit quantization, enabling smooth incorporation into edge devices. With six-stage image preprocessing, data augmentation, and a rigorous ablation study, the model achieves an impressive accuracy of 98.75% on the HAM10000 dataset and 98.94% on the Kaggle dataset in classifying benign and malignant skin cancers. With its high accuracy and compact size, our model appears to be a potential choice for accurate skin cancer classification, particularly in resource-constrained settings.
♻ ☆ FlowVQA: Mapping Multimodal Logic in Visual Question Answering with Flowcharts ACL 2024
Existing benchmarks for visual question answering lack in visual grounding and complexity, particularly in evaluating spatial reasoning skills. We introduce FlowVQA, a novel benchmark aimed at assessing the capabilities of visual question-answering multimodal language models in reasoning with flowcharts as visual contexts. FlowVQA comprises 2,272 carefully generated and human-verified flowchart images from three distinct content sources, along with 22,413 diverse question-answer pairs, to test a spectrum of reasoning tasks, including information localization, decision-making, and logical progression. We conduct a thorough baseline evaluation on a suite of both open-source and proprietary multimodal language models using various strategies, followed by an analysis of directional bias. The results underscore the benchmark's potential as a vital tool for advancing the field of multimodal modeling, providing a focused and challenging environment for enhancing model performance in visual and logical reasoning tasks.
comment: Accepted in ACL 2024 (Findings), 21 pages, 7 figures, 9 Tables
♻ ☆ CSI4Free: GAN-Augmented mmWave CSI for Improved Pose Classification
In recent years, Joint Communication and Sensing (JC&S), has demonstrated significant success, particularly in utilizing sub-6 GHz frequencies with commercial-off-the-shelf (COTS) Wi-Fi devices for applications such as localization, gesture recognition, and pose classification. Deep learning and the existence of large public datasets has been pivotal in achieving such results. However, at mmWave frequencies (30-300 GHz), which has shown potential for more accurate sensing performance, there is a noticeable lack of research in the domain of COTS Wi-Fi sensing. Challenges such as limited research hardware, the absence of large datasets, limited functionality in COTS hardware, and the complexities of data collection present obstacles to a comprehensive exploration of this field. In this work, we aim to address these challenges by developing a method that can generate synthetic mmWave channel state information (CSI) samples. In particular, we use a generative adversarial network (GAN) on an existing dataset, to generate 30,000 additional CSI samples. The augmented samples exhibit a remarkable degree of consistency with the original data, as indicated by the notably high GAN-train and GAN-test scores. Furthermore, we integrate the augmented samples in training a pose classification model. We observe that the augmented samples complement the real data and improve the generalization of the classification model.
♻ ☆ All-In-One Medical Image Restoration via Task-Adaptive Routing MICCAI 2024
Although single-task medical image restoration (MedIR) has witnessed remarkable success, the limited generalizability of these methods poses a substantial obstacle to wider application. In this paper, we focus on the task of all-in-one medical image restoration, aiming to address multiple distinct MedIR tasks with a single universal model. Nonetheless, due to significant differences between different MedIR tasks, training a universal model often encounters task interference issues, where different tasks with shared parameters may conflict with each other in the gradient update direction. This task interference leads to deviation of the model update direction from the optimal path, thereby affecting the model's performance. To tackle this issue, we propose a task-adaptive routing strategy, allowing conflicting tasks to select different network paths in spatial and channel dimensions, thereby mitigating task interference. Experimental results demonstrate that our proposed \textbf{A}ll-in-one \textbf{M}edical \textbf{I}mage \textbf{R}estoration (\textbf{AMIR}) network achieves state-of-the-art performance in three MedIR tasks: MRI super-resolution, CT denoising, and PET synthesis, both in single-task and all-in-one settings. The code and data will be available at \href{https://github.com/Yaziwel/All-In-One-Medical-Image-Restoration-via-Task-Adaptive-Routing.git}{https://github.com/Yaziwel/AMIR}.
comment: This article has been early accepted by MICCAI 2024
♻ ☆ Revisiting Backdoor Attacks against Large Vision-Language Models
Instruction tuning enhances large vision-language models (LVLMs) but raises security risks through potential backdoor attacks due to their openness. Previous backdoor studies focus on enclosed scenarios with consistent training and testing instructions, neglecting the practical domain gaps that could affect attack effectiveness. This paper empirically examines the generalizability of backdoor attacks during the instruction tuning of LVLMs for the first time, revealing certain limitations of most backdoor strategies in practical scenarios. We quantitatively evaluate the generalizability of six typical backdoor attacks on image caption benchmarks across multiple LVLMs, considering both visual and textual domain offsets. Our findings indicate that attack generalizability is positively correlated with the backdoor trigger's irrelevance to specific images/models and the preferential correlation of the trigger pattern. Additionally, we modify existing backdoor attacks based on the above key observations, demonstrating significant improvements in cross-domain scenario generalizability (+86% attack success rate). Notably, even without access to the instruction datasets, a multimodal instruction set can be successfully poisoned with a very low poisoning rate (0.2%), achieving an attack success rate of over 97%. This paper underscores that even simple traditional backdoor strategies pose a serious threat to LVLMs, necessitating more attention and in-depth research.
comment: 23 pages, 8 figures
♻ ☆ Generative Autoencoding of Dropout Patterns
We propose a generative model termed Deciphering Autoencoders. In this model, we assign a unique random dropout pattern to each data point in the training dataset and then train an autoencoder to reconstruct the corresponding data point using this pattern as information to be encoded. Even if a completely random dropout pattern is assigned to each data point regardless of their similarities, a sufficiently large encoder can smoothly map them to a low-dimensional latent space to reconstruct individual training data points. During inference, using a dropout pattern different from those used during training allows the model to function as a generator. Since the training of Deciphering Autoencoders relies solely on reconstruction error, it offers more stable training compared to other generative models. Despite their simplicity, Deciphering Autoencoders show sampling quality comparable to DCGAN on the CIFAR-10 dataset.
♻ ☆ EgoVideo: Exploring Egocentric Foundation Model and Downstream Adaptation CVPR 2024
In this report, we present our solutions to the EgoVis Challenges in CVPR 2024, including five tracks in the Ego4D challenge and three tracks in the EPIC-Kitchens challenge. Building upon the video-language two-tower model and leveraging our meticulously organized egocentric video data, we introduce a novel foundation model called EgoVideo. This model is specifically designed to cater to the unique characteristics of egocentric videos and provides strong support for our competition submissions. In the Ego4D challenges, we tackle various tasks including Natural Language Queries, Step Grounding, Moment Queries, Short-term Object Interaction Anticipation, and Long-term Action Anticipation. In addition, we also participate in the EPIC-Kitchens challenge, where we engage in the Action Recognition, Multiple Instance Retrieval, and Domain Adaptation for Action Recognition tracks. By adapting EgoVideo to these diverse tasks, we showcase its versatility and effectiveness in different egocentric video analysis scenarios, demonstrating the powerful representation ability of EgoVideo as an egocentric foundation model. Our codebase and pretrained models are publicly available at https://github.com/OpenGVLab/EgoVideo.
comment: Champion solutions in the EgoVis CVPR 2024 workshop
♻ ☆ AlignIT: Enhancing Prompt Alignment in Customization of Text-to-Image Models
We consider the problem of customizing text-to-image diffusion models with user-supplied reference images. Given new prompts, the existing methods can capture the key concept from the reference images but fail to align the generated image with the prompt. In this work, we seek to address this key issue by proposing new methods that can easily be used in conjunction with existing customization methods that optimize the embeddings/weights at various intermediate stages of the text encoding process. The first contribution of this paper is a dissection of the various stages of the text encoding process leading up to the conditioning vector for text-to-image models. We take a holistic view of existing customization methods and notice that key and value outputs from this process differs substantially from their corresponding baseline (non-customized) models (e.g., baseline stable diffusion). While this difference does not impact the concept being customized, it leads to other parts of the generated image not being aligned with the prompt. Further, we also observe that these keys and values allow independent control various aspects of the final generation, enabling semantic manipulation of the output. Taken together, the features spanning these keys and values, serve as the basis for our next contribution where we fix the aforementioned issues with existing methods. We propose a new post-processing algorithm, AlignIT, that infuses the keys and values for the concept of interest while ensuring the keys and values for all other tokens in the input prompt are unchanged. Our proposed method can be plugged in directly to existing customization methods, leading to a substantial performance improvement in the alignment of the final result with the input prompt while retaining the customization quality.
comment: 10 pages, 9 figures
♻ ☆ Character-Adapter: Prompt-Guided Region Control for High-Fidelity Character Customization
Customized image generation, which seeks to synthesize images with consistent characters, holds significant relevance for applications such as storytelling, portrait generation, and character design. However, previous approaches have encountered challenges in preserving characters with high-fidelity consistency due to inadequate feature extraction and concept confusion of reference characters. Therefore, we propose Character-Adapter, a plug-and-play framework designed to generate images that preserve the details of reference characters, ensuring high-fidelity consistency. Character-Adapter employs prompt-guided segmentation to ensure fine-grained regional features of reference characters and dynamic region-level adapters to mitigate concept confusion. Extensive experiments are conducted to validate the effectiveness of Character-Adapter. Both quantitative and qualitative results demonstrate that Character-Adapter achieves the state-of-the-art performance of consistent character generation, with an improvement of 24.8% compared with other methods. Our code will be released at https://github.com/Character-Adapter/Character-Adapte
♻ ☆ MolX: Enhancing Large Language Models for Molecular Learning with A Multi-Modal Extension
Recently, Large Language Models (LLMs) with their strong task-handling capabilities have shown remarkable advancements across a spectrum of fields, moving beyond natural language understanding. However, their proficiency within the chemistry domain remains restricted, especially in solving professional molecule-related tasks. This challenge is attributed to their inherent limitations in comprehending molecules using only common textual representations, i.e., SMILES strings. In this study, we seek to enhance the ability of LLMs to comprehend molecules by designing and equipping them with a multi-modal external module, namely MolX. In particular, instead of directly using a SMILES string to represent a molecule, we utilize specific encoders to extract fine-grained features from both SMILES string and 2D molecular graph representations for feeding into an LLM. Moreover, a human-defined molecular fingerprint is incorporated to leverage its embedded domain knowledge. Then, to establish an alignment between MolX and the LLM's textual input space, the whole model in which the LLM is frozen, is pre-trained with a versatile strategy including a diverse set of tasks. Extensive experimental evaluations demonstrate that our proposed method only introduces a small number of trainable parameters while outperforming baselines on various downstream molecule-related tasks ranging from molecule-to-text translation to retrosynthesis, with and without fine-tuning the LLM.
♻ ☆ AnyControl: Create Your Artwork with Versatile Control on Text-to-Image Generation
The field of text-to-image (T2I) generation has made significant progress in recent years, largely driven by advancements in diffusion models. Linguistic control enables effective content creation, but struggles with fine-grained control over image generation. This challenge has been explored, to a great extent, by incorporating additional user-supplied spatial conditions, such as depth maps and edge maps, into pre-trained T2I models through extra encoding. However, multi-control image synthesis still faces several challenges. Specifically, current approaches are limited in handling free combinations of diverse input control signals, overlook the complex relationships among multiple spatial conditions, and often fail to maintain semantic alignment with provided textual prompts. This can lead to suboptimal user experiences. To address these challenges, we propose AnyControl, a multi-control image synthesis framework that supports arbitrary combinations of diverse control signals. AnyControl develops a novel Multi-Control Encoder that extracts a unified multi-modal embedding to guide the generation process. This approach enables a holistic understanding of user inputs, and produces high-quality, faithful results under versatile control signals, as demonstrated by extensive quantitative and qualitative evaluations. Our project page is available in https://any-control.github.io.
♻ ☆ Manipulate-Anything: Automating Real-World Robots using Vision-Language Models
Large-scale endeavors like RT-1 and widespread community efforts such as Open-X-Embodiment have contributed to growing the scale of robot demonstration data. However, there is still an opportunity to improve the quality, quantity, and diversity of robot demonstration data. Although vision-language models have been shown to automatically generate demonstration data, their utility has been limited to environments with privileged state information, they require hand-designed skills, and are limited to interactions with few object instances. We propose Manipulate-Anything, a scalable automated generation method for real-world robotic manipulation. Unlike prior work, our method can operate in real-world environments without any privileged state information, hand-designed skills, and can manipulate any static object. We evaluate our method using two setups. First, Manipulate-Anything successfully generates trajectories for all 5 real-world and 12 simulation tasks, significantly outperforming existing methods like VoxPoser. Second, Manipulate-Anything's demonstrations can train more robust behavior cloning policies than training with human demonstrations, or from data generated by VoxPoser and Code-As-Policies. We believe Manipulate-Anything can be the scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting.
comment: Project page: https://robot-ma.github.io/
♻ ☆ Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration MICCAI 2024
A comprehensive guidance view for cardiac interventional surgery can be provided by the real-time fusion of the intraoperative 2D images and preoperative 3D volume based on the ultrasound frame-to-volume registration. However, cardiac ultrasound images are characterized by a low signal-to-noise ratio and small differences between adjacent frames, coupled with significant dimension variations between 2D frames and 3D volumes to be registered, resulting in real-time and accurate cardiac ultrasound frame-to-volume registration being a very challenging task. This paper introduces a lightweight end-to-end Cardiac Ultrasound frame-to-volume Registration network, termed CU-Reg. Specifically, the proposed model leverages epicardium prompt-guided anatomical clues to reinforce the interaction of 2D sparse and 3D dense features, followed by a voxel-wise local-global aggregation of enhanced features, thereby boosting the cross-dimensional matching effectiveness of low-quality ultrasound modalities. We further embed an inter-frame discriminative regularization term within the hybrid supervised learning to increase the distinction between adjacent slices in the same ultrasound volume to ensure registration stability. Experimental results on the reprocessed CAMUS dataset demonstrate that our CU-Reg surpasses existing methods in terms of registration accuracy and efficiency, meeting the guidance requirements of clinical cardiac interventional surgery.
comment: This paper has been accepted by MICCAI 2024
♻ ☆ Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey
Cardiac digital twins are personalized virtual representations used to understand complex heart mechanisms. Solving the ECG inverse problem is crucial for accurate virtual heart modelling, enabling the derivation of internal electrical activity information from recorded surface potentials. Despite challenges from cardiac complexity, noisy ECG data, and computational efficiency, recent advancements hold significant promise for enhancing virtual heart modelling, ultimately advancing precision medicine in cardiology. This paper aims to provide a comprehensive review of the methods of solving ECG inverse problem, the validation strategies, the clinical applications, and future perspectives. For the computing methodologies, we broadly classify state-of-the-art approaches into two categories: deterministic and probabilistic methods, including conventional and deep learning-based techniques. Integrating physics laws with deep learning models holds promise, but challenges such as capturing dynamic electrophysiology accurately, accessing accurate domain knowledge, and quantifying prediction uncertainty persist. Integrating models into clinical workflows while ensuring interpretability and usability for healthcare professionals is essential. Overcoming these challenges will drive further research in cardiac digital twins.
♻ ☆ Harnessing the Power of MLLMs for Transferable Text-to-Image Person ReID CVPR 2024
Text-to-image person re-identification (ReID) retrieves pedestrian images according to textual descriptions. Manually annotating textual descriptions is time-consuming, restricting the scale of existing datasets and therefore the generalization ability of ReID models. As a result, we study the transferable text-to-image ReID problem, where we train a model on our proposed large-scale database and directly deploy it to various datasets for evaluation. We obtain substantial training data via Multi-modal Large Language Models (MLLMs). Moreover, we identify and address two key challenges in utilizing the obtained textual descriptions. First, an MLLM tends to generate descriptions with similar structures, causing the model to overfit specific sentence patterns. Thus, we propose a novel method that uses MLLMs to caption images according to various templates. These templates are obtained using a multi-turn dialogue with a Large Language Model (LLM). Therefore, we can build a large-scale dataset with diverse textual descriptions. Second, an MLLM may produce incorrect descriptions. Hence, we introduce a novel method that automatically identifies words in a description that do not correspond with the image. This method is based on the similarity between one text and all patch token embeddings in the image. Then, we mask these words with a larger probability in the subsequent training epoch, alleviating the impact of noisy textual descriptions. The experimental results demonstrate that our methods significantly boost the direct transfer text-to-image ReID performance. Benefiting from the pre-trained model weights, we also achieve state-of-the-art performance in the traditional evaluation settings.
comment: CVPR 2024
♻ ☆ Deciphering the Definition of Adversarial Robustness for post-hoc OOD Detectors
Detecting out-of-distribution (OOD) inputs is critical for safely deploying deep learning models in real-world scenarios. In recent years, many OOD detectors have been developed, and even the benchmarking has been standardized, i.e. OpenOOD. The number of post-hoc detectors is growing fast and showing an option to protect a pre-trained classifier against natural distribution shifts, claiming to be ready for real-world scenarios. However, its efficacy in handling adversarial examples has been neglected in the majority of studies. This paper investigates the adversarial robustness of the 16 post-hoc detectors on several evasion attacks and discuss a roadmap towards adversarial defense in OOD detectors.
♻ ☆ Semihierarchical Reconstruction and Weak-area Revisiting for Robotic Visual Seafloor Mapping
Despite impressive results achieved by many on-land visual mapping algorithms in the recent decades, transferring these methods from land to the deep sea remains a challenge due to harsh environmental conditions. Images captured by autonomous underwater vehicles (AUVs), equipped with high-resolution cameras and artificial illumination systems, often suffer from heterogeneous illumination and quality degradation caused by attenuation and scattering, on top of refraction of light rays. These challenges often result in the failure of on-land SLAM approaches when applied underwater or cause SfM approaches to exhibit drifting or omit challenging images. Consequently, this leads to gaps, jumps, or weakly reconstructed areas. In this work, we present a navigation-aided hierarchical reconstruction approach to facilitate the automated robotic 3D reconstruction of hectares of seafloor. Our hierarchical approach combines the advantages of SLAM and global SfM that is much more efficient than incremental SfM, while ensuring the completeness and consistency of the global map. This is achieved through identifying and revisiting problematic or weakly reconstructed areas, avoiding to omit images and making better use of limited dive time. The proposed system has been extensively tested and evaluated during several research cruises, demonstrating its robustness and practicality in real-world conditions.
comment: 24 pages, 19 figures
♻ ☆ SRViT: Vision Transformers for Estimating Radar Reflectivity from Satellite Observations at Scale ICML 2024
We introduce a transformer-based neural network to generate high-resolution (3km) synthetic radar reflectivity fields at scale from geostationary satellite imagery. This work aims to enhance short-term convective-scale forecasts of high-impact weather events and aid in data assimilation for numerical weather prediction over the United States. Compared to convolutional approaches, which have limited receptive fields, our results show improved sharpness and higher accuracy across various composite reflectivity thresholds. Additional case studies over specific atmospheric phenomena support our quantitative findings, while a novel attribution method is introduced to guide domain experts in understanding model outputs.
comment: Published as a workshop paper at "Machine Learning for Earth System Modeling", ICML 2024; added acknowledgements and github link
♻ ☆ MotionClone: Training-Free Motion Cloning for Controllable Video Generation
Motion-based controllable text-to-video generation involves motions to control the video generation. Previous methods typically require the training of models to encode motion cues or the fine-tuning of video diffusion models. However, these approaches often result in suboptimal motion generation when applied outside the trained domain. In this work, we propose MotionClone, a training-free framework that enables motion cloning from a reference video to control text-to-video generation. We employ temporal attention in video inversion to represent the motions in the reference video and introduce primary temporal-attention guidance to mitigate the influence of noisy or very subtle motions within the attention weights. Furthermore, to assist the generation model in synthesizing reasonable spatial relationships and enhance its prompt-following capability, we propose a location-aware semantic guidance mechanism that leverages the coarse location of the foreground from the reference video and original classifier-free guidance features to guide the video generation. Extensive experiments demonstrate that MotionClone exhibits proficiency in both global camera motion and local object motion, with notable superiority in terms of motion fidelity, textual alignment, and temporal consistency.
comment: 17 pages, 12 figures, https://bujiazi.github.io/motionclone.github.io/
Information Retrieval 10
☆ Interactive Topic Models with Optimal Transport
Topic models are widely used to analyze document collections. While they are valuable for discovering latent topics in a corpus when analysts are unfamiliar with the corpus, analysts also commonly start with an understanding of the content present in a corpus. This may be through categories obtained from an initial pass over the corpus or a desire to analyze the corpus through a predefined set of categories derived from a high level theoretical framework (e.g. political ideology). In these scenarios analysts desire a topic modeling approach which incorporates their understanding of the corpus while supporting various forms of interaction with the model. In this work, we present EdTM, as an approach for label name supervised topic modeling. EdTM models topic modeling as an assignment problem while leveraging LM/LLM based document-topic affinities and using optimal transport for making globally coherent topic-assignments. In experiments, we show the efficacy of our framework compared to few-shot LLM classifiers, and topic models based on clustering and LDA. Further, we show EdTM's ability to incorporate various forms of analyst feedback and while remaining robust to noisy analyst inputs.
comment: Pre-print; Work in progress
☆ Rateless Stochastic Coding for Delay-constrained Semantic Communication
We consider the problem of joint source-channel coding with distortion and perception constraints from a rateless perspective, the purpose of which is to settle the balance between reliability (distortion/perception) and effectiveness (rate) of transmission over uncertain channels. We find a new finite-blocklength bound for the achievable joint source-channel code rate with the above two constraints. To achieve a superior rateless characteristic of JSCC coding, we perform multi-level optimization on various finite-blocklength codes. Based on these two, we then propose a new JSCC coding scheme called rateless stochastic coding (RSC). We experimentally demonstrate that the proposed RSC can achieve variable rates of transmission maintaining an excellent trade-off between distortion and perception.
☆ Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation
Legal case retrieval for sourcing similar cases is critical in upholding judicial fairness. Different from general web search, legal case retrieval involves processing lengthy, complex, and highly specialized legal documents. Existing methods in this domain often overlook the incorporation of legal expert knowledge, which is crucial for accurately understanding and modeling legal cases, leading to unsatisfactory retrieval performance. This paper introduces KELLER, a legal knowledge-guided case reformulation approach based on large language models (LLMs) for effective and interpretable legal case retrieval. By incorporating professional legal knowledge about crimes and law articles, we enable large language models to accurately reformulate the original legal case into concise sub-facts of crimes, which contain the essential information of the case. Extensive experiments on two legal case retrieval benchmarks demonstrate superior retrieval performance and robustness on complex legal case queries of KELLER over existing methods.
☆ Doc2Token: Bridging Vocabulary Gap by Predicting Missing Tokens for E-commerce Search SIGIR 2024
Addressing the "vocabulary mismatch" issue in information retrieval is a central challenge for e-commerce search engines, because product pages often miss important keywords that customers search for. Doc2Query[1] is a popular document-expansion technique that predicts search queries for a document and includes the predicted queries with the document for retrieval. However, this approach can be inefficient for e-commerce search, because the predicted query tokens are often already present in the document. In this paper, we propose Doc2Token, a technique that predicts relevant tokens (instead of queries) that are missing from the document and includes these tokens in the document for retrieval. For the task of predicting missing tokens, we introduce a new metric, "novel ROUGE score". Doc2Token is demonstrated to be superior to Doc2Query in terms of novel ROUGE score and diversity of predictions. Doc2Token also exhibits efficiency gains by reducing both training and inference times. We deployed the feature to production and observed significant revenue gain in an online A/B test, and launched the feature to full traffic on Walmart.com. [1] R. Nogueira, W. Yang, J. Lin, K. Cho, Document expansion by query prediction, arXiv preprint arXiv:1904.08375 (2019)
comment: 9 pages, 1 figure, SIGIR 2024 Workshop on eCommerce
♻ ☆ GEO: Generative Engine Optimization KDD 2024
The advent of large language models (LLMs) has ushered in a new paradigm of search engines that use generative models to gather and summarize information to answer user queries. This emerging technology, which we formalize under the unified framework of generative engines (GEs), can generate accurate and personalized responses, rapidly replacing traditional search engines like Google and Bing. Generative Engines typically satisfy queries by synthesizing information from multiple sources and summarizing them using LLMs. While this shift significantly improves $\textit{user}$ utility and $\textit{generative search engine}$ traffic, it poses a huge challenge for the third stakeholder -- website and content creators. Given the black-box and fast-moving nature of generative engines, content creators have little to no control over $\textit{when}$ and $\textit{how}$ their content is displayed. With generative engines here to stay, we must ensure the creator economy is not disadvantaged. To address this, we introduce Generative Engine Optimization (GEO), the first novel paradigm to aid content creators in improving their content visibility in generative engine responses through a flexible black-box optimization framework for optimizing and defining visibility metrics. We facilitate systematic evaluation by introducing GEO-bench, a large-scale benchmark of diverse user queries across multiple domains, along with relevant web sources to answer these queries. Through rigorous evaluation, we demonstrate that GEO can boost visibility by up to $40\%$ in generative engine responses. Moreover, we show the efficacy of these strategies varies across domains, underscoring the need for domain-specific optimization methods. Our work opens a new frontier in information discovery systems, with profound implications for both developers of generative engines and content creators.
comment: Accepted to KDD 2024
♻ ☆ JMLR: Joint Medical LLM and Retrieval Training for Enhancing Reasoning and Professional Question Answering Capability
Large Language Models (LLMs) have demonstrated a remarkable potential in medical knowledge acquisition and question-answering. However, LLMs can potentially hallucinate and yield factually incorrect outcomes, even with domain-specific pretraining. Previously, retrieval augmented generation (RAG) has limited success in addressing hallucinations. Unlike previous methods in RAG where the retrieval model was trained separately from the LLM, we introduce JMLR (for Jointly trains LLM and information Retrieval) during the fine-tuning phase. The synchronized training mechanism enhances JMLR's ability to retrieve clinical guidelines and leverage medical knowledge to reason and answer questions and reduces the demand for computational resources. We evaluated JMLR on the important medical question-answering application. Our experimental results demonstrate that JMLR-13B (70.5%) outperforms a previous state-of-the-art open-source model using conventional pre-training and fine-tuning Meditron-70B (68.9%) and Llama2-13B with RAG (67.7%) on a medical question-answering dataset. Comprehensive evaluations reveal JMLR-13B enhances reasoning quality and reduces hallucinations better than Claude3-Opus. Additionally, JMLR-13B (148 GPU hours) also trains much faster than Meditron-70B (42630 GPU hours). Through this work, we provide a new and efficient knowledge enhancement method for healthcare, demonstrating the potential of integrating retrieval and LLM training for medical question-answering systems.
♻ ☆ Transparency, Privacy, and Fairness in Recommender Systems
Recommender systems have become a pervasive part of our daily online experience, and are one of the most widely used applications of artificial intelligence and machine learning. Therefore, regulations and requirements for trustworthy artificial intelligence, for example, the European AI Act, which includes notions such as transparency, privacy, and fairness are also highly relevant for the design of recommender systems in practice. This habilitation elaborates on aspects related to these three notions in the light of recommender systems, namely: (i) transparency and cognitive models, (ii) privacy and limited preference information, and (iii) fairness and popularity bias in recommender systems. Specifically, with respect to aspect (i), we highlight the usefulness of incorporating psychological theories for a transparent design process of recommender systems. We term this type of systems psychology-informed recommender systems. In aspect (ii), we study and address the trade-off between accuracy and privacy in differentially-private recommendations. We design a novel recommendation approach for collaborative filtering based on an efficient neighborhood reuse concept, which reduces the number of users that need to be protected with differential privacy. Furthermore, we address the related issue of limited availability of user preference information, e.g., click data, in the settings of session-based and cold-start recommendations. With respect to aspect (iii), we analyze popularity bias in recommender systems. We find that the recommendation frequency of an item is positively correlated with this item's popularity. This also leads to the unfair treatment of users with little interest in popular content. Finally, we study long-term fairness dynamics in algorithmic decision support in the labor market using agent-based modeling techniques.
comment: Habilitation (post-doctoral thesis) at Graz University of Technology for the scientific subject "Applied Computer Science" (accepted in June 2024)
♻ ☆ FlowVQA: Mapping Multimodal Logic in Visual Question Answering with Flowcharts ACL 2024
Existing benchmarks for visual question answering lack in visual grounding and complexity, particularly in evaluating spatial reasoning skills. We introduce FlowVQA, a novel benchmark aimed at assessing the capabilities of visual question-answering multimodal language models in reasoning with flowcharts as visual contexts. FlowVQA comprises 2,272 carefully generated and human-verified flowchart images from three distinct content sources, along with 22,413 diverse question-answer pairs, to test a spectrum of reasoning tasks, including information localization, decision-making, and logical progression. We conduct a thorough baseline evaluation on a suite of both open-source and proprietary multimodal language models using various strategies, followed by an analysis of directional bias. The results underscore the benchmark's potential as a vital tool for advancing the field of multimodal modeling, providing a focused and challenging environment for enhancing model performance in visual and logical reasoning tasks.
comment: Accepted in ACL 2024 (Findings), 21 pages, 7 figures, 9 Tables
♻ ☆ GRILLBot In Practice: Lessons and Tradeoffs Deploying Large Language Models for Adaptable Conversational Task Assistants KDD
We tackle the challenge of building real-world multimodal assistants for complex real-world tasks. We describe the practicalities and challenges of developing and deploying GRILLBot, a leading (first and second prize winning in 2022 and 2023) system deployed in the Alexa Prize TaskBot Challenge. Building on our Open Assistant Toolkit (OAT) framework, we propose a hybrid architecture that leverages Large Language Models (LLMs) and specialised models tuned for specific subtasks requiring very low latency. OAT allows us to define when, how and which LLMs should be used in a structured and deployable manner. For knowledge-grounded question answering and live task adaptations, we show that LLM reasoning abilities over task context and world knowledge outweigh latency concerns. For dialogue state management, we implement a code generation approach and show that specialised smaller models have 84% effectiveness with 100x lower latency. Overall, we provide insights and discuss tradeoffs for deploying both traditional models and LLMs to users in complex real-world multimodal environments in the Alexa TaskBot challenge. These experiences will continue to evolve as LLMs become more capable and efficient -- fundamentally reshaping OAT and future assistant architectures.
comment: 11 pages, KDD Preprint
♻ ☆ Counterfactual Editing for Search Result Explanation ICTIR 2024
Search Result Explanation (SeRE) aims to improve search sessions' effectiveness and efficiency by helping users interpret documents' relevance. Existing works mostly focus on factual explanation, i.e. to find/generate supporting evidence about documents' relevance to search queries. However, research in cognitive sciences has shown that human explanations are contrastive i.e. people explain an observed event using some counterfactual events; such explanations reduce cognitive load and provide actionable insights. Though already proven effective in machine learning and NLP communities, there lacks a strict formulation on how counterfactual explanations should be defined and structured, in the context of web search. In this paper, we first discuss the possible formulation of counterfactual explanations in the IR context. Next, we formulate a suite of desiderata for counterfactual explanation in SeRE task and corresponding automatic metrics. With this desiderata, we propose a method named \textbf{C}ounter\textbf{F}actual \textbf{E}diting for Search Research \textbf{E}xplanation (\textbf{CFE2}). CFE2 provides pairwise counterfactual explanations for document pairs within a search engine result page. Our experiments on five public search datasets demonstrate that CFE2 can significantly outperform baselines in both automatic metrics and human evaluations.
comment: ICTIR 2024
Machine Learning 132
☆ LLaRA: Supercharging Robot Learning Data for Vision-Language Policy
Large Language Models (LLMs) equipped with extensive world knowledge and strong reasoning skills can tackle diverse tasks across domains, often by posing them as conversation-style instruction-response pairs. In this paper, we propose LLaRA: Large Language and Robotics Assistant, a framework which formulates robot action policy as conversations, and provides improved responses when trained with auxiliary data that complements policy learning. LLMs with visual inputs, i.e., Vision Language Models (VLMs), have the capacity to process state information as visual-textual prompts and generate optimal policy decisions in text. To train such action policy VLMs, we first introduce an automated pipeline to generate diverse high-quality robotics instruction data from existing behavior cloning data. A VLM finetuned with the resulting collection of datasets based on a conversation-style formulation tailored for robotics tasks, can generate meaningful robot action policy decisions. Our experiments across multiple simulated and real-world environments demonstrate the state-of-the-art performance of the proposed LLaRA framework. The code, datasets, and pretrained models are available at https://github.com/LostXine/LLaRA.
☆ Scaling Synthetic Data Creation with 1,000,000,000 Personas
We propose a novel persona-driven data synthesis methodology that leverages various perspectives within a large language model (LLM) to create diverse synthetic data. To fully exploit this methodology at scale, we introduce Persona Hub -- a collection of 1 billion diverse personas automatically curated from web data. These 1 billion personas (~13% of the world's total population), acting as distributed carriers of world knowledge, can tap into almost every perspective encapsulated within the LLM, thereby facilitating the creation of diverse synthetic data at scale for various scenarios. By showcasing Persona Hub's use cases in synthesizing high-quality mathematical and logical reasoning problems, instructions (i.e., user prompts), knowledge-rich texts, game NPCs and tools (functions) at scale, we demonstrate persona-driven data synthesis is versatile, scalable, flexible, and easy to use, potentially driving a paradigm shift in synthetic data creation and applications in practice, which may have a profound impact on LLM research and development.
comment: Work in progress
☆ ProgressGym: Alignment with a Millennium of Moral Progress
Frontier AI systems, including large language models (LLMs), hold increasing influence over the epistemology of human users. Such influence can reinforce prevailing societal values, potentially contributing to the lock-in of misguided moral beliefs and, consequently, the perpetuation of problematic moral practices on a broad scale. We introduce progress alignment as a technical solution to mitigate this imminent risk. Progress alignment algorithms learn to emulate the mechanics of human moral progress, thereby addressing the susceptibility of existing alignment methods to contemporary moral blindspots. To empower research in progress alignment, we introduce ProgressGym, an experimental framework allowing the learning of moral progress mechanics from history, in order to facilitate future progress in real-world moral decisions. Leveraging 9 centuries of historical text and 18 historical LLMs, ProgressGym enables codification of real-world progress alignment challenges into concrete benchmarks. Specifically, we introduce three core challenges: tracking evolving values (PG-Follow), preemptively anticipating moral progress (PG-Predict), and regulating the feedback loop between human and AI value shifts (PG-Coevolve). Alignment methods without a temporal dimension are inapplicable to these tasks. In response, we present lifelong and extrapolative algorithms as baseline methods of progress alignment, and build an open leaderboard soliciting novel algorithms and challenges. The framework and the leaderboard are available at https://github.com/PKU-Alignment/ProgressGym and https://huggingface.co/spaces/PKU-Alignment/ProgressGym-LeaderBoard respectively.
☆ Token Erasure as a Footprint of Implicit Vocabulary Items in LLMs
LLMs process text as sequences of tokens that roughly correspond to words, where less common words are represented by multiple tokens. However, individual tokens are often semantically unrelated to the meanings of the words/concepts they comprise. For example, Llama-2-7b's tokenizer splits the word "northeastern" into the tokens ['_n', 'ort', 'he', 'astern'], none of which correspond to semantically meaningful units like "north" or "east." Similarly, the overall meanings of named entities like "Neil Young" and multi-word expressions like "break a leg" cannot be directly inferred from their constituent tokens. Mechanistically, how do LLMs convert such arbitrary groups of tokens into useful higher-level representations? In this work, we find that last token representations of named entities and multi-token words exhibit a pronounced "erasure" effect, where information about previous and current tokens is rapidly forgotten in early layers. Using this observation, we propose a method to "read out" the implicit vocabulary of an autoregressive LLM by examining differences in token representations across layers, and present results of this method for Llama-2-7b and Llama-3-8B. To our knowledge, this is the first attempt to probe the implicit vocabulary of an LLM.
comment: 13 pages, 14 figures. Code and data at https://footprints.baulab.info/
☆ Segment Anything without Supervision
The Segmentation Anything Model (SAM) requires labor-intensive data labeling. We present Unsupervised SAM (UnSAM) for promptable and automatic whole-image segmentation that does not require human annotations. UnSAM utilizes a divide-and-conquer strategy to "discover" the hierarchical structure of visual scenes. We first leverage top-down clustering methods to partition an unlabeled image into instance/semantic level segments. For all pixels within a segment, a bottom-up clustering method is employed to iteratively merge them into larger groups, thereby forming a hierarchical structure. These unsupervised multi-granular masks are then utilized to supervise model training. Evaluated across seven popular datasets, UnSAM achieves competitive results with the supervised counterpart SAM, and surpasses the previous state-of-the-art in unsupervised segmentation by 11% in terms of AR. Moreover, we show that supervised SAM can also benefit from our self-supervised labels. By integrating our unsupervised pseudo masks into SA-1B's ground-truth masks and training UnSAM with only 1% of SA-1B, a lightly semi-supervised UnSAM can often segment entities overlooked by supervised SAM, exceeding SAM's AR by over 6.7% and AP by 3.9% on SA-1B.
comment: Code: https://github.com/frank-xwang/UnSAM
☆ Cost-aware Bayesian optimization via the Pandora's Box Gittins index
Bayesian optimization is a technique for efficiently optimizing unknown functions in a black-box manner. To handle practical settings where gathering data requires use of finite resources, it is desirable to explicitly incorporate function evaluation costs into Bayesian optimization policies. To understand how to do so, we develop a previously-unexplored connection between cost-aware Bayesian optimization and the Pandora's Box problem, a decision problem from economics. The Pandora's Box problem admits a Bayesian-optimal solution based on an expression called the Gittins index, which can be reinterpreted as an acquisition function. We study the use of this acquisition function for cost-aware Bayesian optimization, and demonstrate empirically that it performs well, particularly in medium-high dimensions. We further show that this performance carries over to classical Bayesian optimization without explicit evaluation costs. Our work constitutes a first step towards integrating techniques from Gittins index theory into Bayesian optimization.
☆ SpotlessSplats: Ignoring Distractors in 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) is a promising technique for 3D reconstruction, offering efficient training and rendering speeds, making it suitable for real-time applications.However, current methods require highly controlled environments (no moving people or wind-blown elements, and consistent lighting) to meet the inter-view consistency assumption of 3DGS. This makes reconstruction of real-world captures problematic. We present SpotlessSplats, an approach that leverages pre-trained and general-purpose features coupled with robust optimization to effectively ignore transient distractors. Our method achieves state-of-the-art reconstruction quality both visually and quantitatively, on casual captures.
☆ Covert Malicious Finetuning: Challenges in Safeguarding LLM Adaptation
Black-box finetuning is an emerging interface for adapting state-of-the-art language models to user needs. However, such access may also let malicious actors undermine model safety. To demonstrate the challenge of defending finetuning interfaces, we introduce covert malicious finetuning, a method to compromise model safety via finetuning while evading detection. Our method constructs a malicious dataset where every individual datapoint appears innocuous, but finetuning on the dataset teaches the model to respond to encoded harmful requests with encoded harmful responses. Applied to GPT-4, our method produces a finetuned model that acts on harmful instructions 99% of the time and avoids detection by defense mechanisms such as dataset inspection, safety evaluations, and input/output classifiers. Our findings question whether black-box finetuning access can be secured against sophisticated adversaries.
comment: 22 pages
☆ Evaluation of autonomous systems under data distribution shifts
We posit that data can only be safe to use up to a certain threshold of the data distribution shift, after which control must be relinquished by the autonomous system and operation halted or handed to a human operator. With the use of a computer vision toy example we demonstrate that network predictive accuracy is impacted by data distribution shifts and propose distance metrics between training and testing data to define safe operation limits within said shifts. We conclude that beyond an empirically obtained threshold of the data distribution shift, it is unreasonable to expect network predictive accuracy not to degrade
comment: 13 pages, 10 figures, 4 tables
☆ Explore as a Storm, Exploit as a Raindrop: On the Benefit of Fine-Tuning Kernel Schedulers with Coordinate Descent
Machine-learning models consist of kernels, which are algorithms applying operations on tensors -- data indexed by a linear combination of natural numbers. Examples of kernels include convolutions, transpositions, and vectorial products. There are many ways to implement a kernel. These implementations form the kernel's optimization space. Kernel scheduling is the problem of finding the best implementation, given an objective function -- typically execution speed. Kernel optimizers such as Ansor, Halide, and AutoTVM solve this problem via search heuristics, which combine two phases: exploration and exploitation. The first step evaluates many different kernel optimization spaces. The latter tries to improve the best implementations by investigating a kernel within the same space. For example, Ansor combines kernel generation through sketches for exploration and leverages an evolutionary algorithm to exploit the best sketches. In this work, we demonstrate the potential to reduce Ansor's search time while enhancing kernel quality by incorporating Droplet Search, an AutoTVM algorithm, into Ansor's exploration phase. The approach involves limiting the number of samples explored by Ansor, selecting the best, and exploiting it with a coordinate descent algorithm. By applying this approach to the first 300 kernels that Ansor generates, we usually obtain better kernels in less time than if we let Ansor analyze 10,000 kernels. This result has been replicated in 20 well-known deep-learning models (AlexNet, ResNet, VGG, DenseNet, etc.) running on four architectures: an AMD Ryzen 7 (x86), an NVIDIA A100 tensor core, an NVIDIA RTX 3080 GPU, and an ARM A64FX. A patch with this combined approach was approved in Ansor in February 2024. As evidence of the generality of this search methodology, a similar patch, achieving equally good results, was submitted to TVM's MetaSchedule in June 2024.
comment: 22 pages, 19 figures, original work
☆ Pairwise Difference Learning for Classification
Pairwise difference learning (PDL) has recently been introduced as a new meta-learning technique for regression. Instead of learning a mapping from instances to outcomes in the standard way, the key idea is to learn a function that takes two instances as input and predicts the difference between the respective outcomes. Given a function of this kind, predictions for a query instance are derived from every training example and then averaged. This paper extends PDL toward the task of classification and proposes a meta-learning technique for inducing a PDL classifier by solving a suitably defined (binary) classification problem on a paired version of the original training data. We analyze the performance of the PDL classifier in a large-scale empirical study and find that it outperforms state-of-the-art methods in terms of prediction performance. Last but not least, we provide an easy-to-use and publicly available implementation of PDL in a Python package.
☆ On the Trade-off between Flatness and Optimization in Distributed Learning
This paper proposes a theoretical framework to evaluate and compare the performance of gradient-descent algorithms for distributed learning in relation to their behavior around local minima in nonconvex environments. Previous works have noticed that convergence toward flat local minima tend to enhance the generalization ability of learning algorithms. This work discovers two interesting results. First, it shows that decentralized learning strategies are able to escape faster away from local minimizers and favor convergence toward flatter minima relative to the centralized solution in the large-batch training regime. Second, and importantly, the ultimate classification accuracy is not solely dependent on the flatness of the local minimizer but also on how well a learning algorithm can approach that minimum. In other words, the classification accuracy is a function of both flatness and optimization performance. The paper examines the interplay between the two measures of flatness and optimization error closely. One important conclusion is that decentralized strategies of the diffusion type deliver enhanced classification accuracy because it strikes a more favorable balance between flatness and optimization performance.
☆ Wavelets Are All You Need for Autoregressive Image Generation
In this paper, we take a new approach to autoregressive image generation that is based on two main ingredients. The first is wavelet image coding, which allows to tokenize the visual details of an image from coarse to fine details by ordering the information starting with the most significant bits of the most significant wavelet coefficients. The second is a variant of a language transformer whose architecture is re-designed and optimized for token sequences in this 'wavelet language'. The transformer learns the significant statistical correlations within a token sequence, which are the manifestations of well-known correlations between the wavelet subbands at various resolutions. We show experimental results with conditioning on the generation process.
comment: 16 pages, 10 figures
☆ Single Parent Family: A Spectrum of Family Members from a Single Pre-Trained Foundation Model
This paper introduces a novel method of Progressive Low Rank Decomposition (PLRD) tailored for the compression of large language models. Our approach leverages a pre-trained model, which is then incrementally decompressed to smaller sizes using progressively lower ranks. This method allows for significant reductions in computational overhead and energy consumption, as subsequent models are derived from the original without the need for retraining from scratch. We detail the implementation of PLRD, which strategically decreases the tensor ranks, thus optimizing the trade-off between model performance and resource usage. The efficacy of PLRD is demonstrated through extensive experiments showing that models trained with PLRD method on only 1B tokens maintain comparable performance with traditionally trained models while using 0.1% of the tokens. The versatility of PLRD is highlighted by its ability to generate multiple model sizes from a single foundational model, adapting fluidly to varying computational and memory budgets. Our findings suggest that PLRD could set a new standard for the efficient scaling of LLMs, making advanced AI more feasible on diverse platforms.
☆ Machine Learning Predictors for Min-Entropy Estimation
This study investigates the application of machine learning predictors for min-entropy estimation in Random Number Generators (RNGs), a key component in cryptographic applications where accurate entropy assessment is essential for cybersecurity. Our research indicates that these predictors, and indeed any predictor that leverages sequence correlations, primarily estimate average min-entropy, a metric not extensively studied in this context. We explore the relationship between average min-entropy and the traditional min-entropy, focusing on their dependence on the number of target bits being predicted. Utilizing data from Generalized Binary Autoregressive Models, a subset of Markov processes, we demonstrate that machine learning models (including a hybrid of convolutional and recurrent Long Short-Term Memory layers and the transformer-based GPT-2 model) outperform traditional NIST SP 800-90B predictors in certain scenarios. Our findings underscore the importance of considering the number of target bits in min-entropy assessment for RNGs and highlight the potential of machine learning approaches in enhancing entropy estimation techniques for improved cryptographic security.
☆ Comparative Analysis of LSTM Neural Networks and Traditional Machine Learning Models for Predicting Diabetes Patient Readmission
Diabetes mellitus is a chronic metabolic disorder that has emerged as one of the major health problems worldwide due to its high prevalence and serious complications, which are pricey to manage. Effective management requires good glycemic control and regular follow-up in the clinic; however, non-adherence to scheduled follow-ups is very common. This study uses the Diabetes 130-US Hospitals dataset for analysis and prediction of readmission patients by various traditional machine learning models, such as XGBoost, LightGBM, CatBoost, Decision Tree, and Random Forest, and also uses an in-house LSTM neural network for comparison. The quality of the data was assured by preprocessing it, and the performance evaluation for all these models was based on accuracy, precision, recall, and F1-score. LightGBM turned out to be the best traditional model, while XGBoost was the runner-up. The LSTM model suffered from overfitting despite high training accuracy. A major strength of LSTM is capturing temporal dependencies among the patient data. Further, SHAP values were used, which improved model interpretability, whereby key factors among them number of lab procedures and discharge disposition were identified as critical in the prediction of readmissions. This study demonstrates that model selection, validation, and interpretability are key steps in predictive healthcare modeling. This will help health providers design interventions for improved follow-up adherence and better management of diabetes.
☆ ScaleBiO: Scalable Bilevel Optimization for LLM Data Reweighting
Bilevel optimization has shown its utility across various machine learning settings, yet most algorithms in practice require second-order information, making it challenging to scale them up. Only recently, a paradigm of first-order algorithms emerged, capable of effectively addressing bilevel optimization problems. Nevertheless, the practical efficiency of this paradigm remains unverified, particularly in the context of large language models (LLMs). This paper introduces the first scalable instantiation of this paradigm called ScaleBiO, focusing on bilevel optimization for large-scale LLM data reweighting. By combining with a recently proposed memory-efficient training technique called LISA, our novel algorithm allows the paradigm to scale to 34-billion-parameter LLMs on eight A40 GPUs, marking the first successful application of bilevel optimization under practical scenarios for large-sized LLMs. Empirically, extensive experiments on data reweighting verify the effectiveness of ScaleBiO for different-scaled models, including GPT-2, LLaMA-3-8B, GPT-NeoX-20B, and Yi-34B, where bilevel optimization succeeds in filtering irrelevant data samples and selecting informative samples. Theoretically, ScaleBiO ensures the optimality of the learned data weights, along with a convergence guarantee matching the conventional first-order bilevel optimization paradigm on smooth and strongly convex objectives.
☆ STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical
Large Vision-Language Models (LVLMs) have shown significant potential in assisting medical diagnosis by leveraging extensive biomedical datasets. However, the advancement of medical image understanding and reasoning critically depends on building high-quality visual instruction data, which is costly and labor-intensive to obtain, particularly in the medical domain. To mitigate this data-starving issue, we introduce Self-Training Large Language and Vision Assistant for Medical (STLLaVA-Med). The proposed method is designed to train a policy model (an LVLM) capable of auto-generating medical visual instruction data to improve data efficiency, guided through Direct Preference Optimization (DPO). Specifically, a more powerful and larger LVLM (e.g., GPT-4o) is involved as a biomedical expert to oversee the DPO fine-tuning process on the auto-generated data, encouraging the policy model to align efficiently with human preferences. We validate the efficacy and data efficiency of STLLaVA-Med across three major medical Visual Question Answering (VQA) benchmarks, demonstrating competitive zero-shot performance with the utilization of only 9% of the medical data.
comment: 10 pages, 6 figures
☆ Text2Robot: Evolutionary Robot Design from Text Descriptions
Robot design has traditionally been costly and labor-intensive. Despite advancements in automated processes, it remains challenging to navigate a vast design space while producing physically manufacturable robots. We introduce Text2Robot, a framework that converts user text specifications and performance preferences into physical quadrupedal robots. Within minutes, Text2Robot can use text-to-3D models to provide strong initializations of diverse morphologies. Within a day, our geometric processing algorithms and body-control co-optimization produce a walking robot by explicitly considering real-world electronics and manufacturability. Text2Robot enables rapid prototyping and opens new opportunities for robot design with generative models.
comment: Our project website is at: https://generalroboticslab.com/Text2Robot
☆ The Computational Curse of Big Data for Bayesian Additive Regression Trees: A Hitting Time Analysis
Bayesian Additive Regression Trees (BART) is a popular Bayesian non-parametric regression model that is commonly used in causal inference and beyond. Its strong predictive performance is supported by theoretical guarantees that its posterior distribution concentrates around the true regression function at optimal rates under various data generative settings and for appropriate prior choices. In this paper, we show that the BART sampler often converges slowly, confirming empirical observations by other researchers. Assuming discrete covariates, we show that, while the BART posterior concentrates on a set comprising all optimal tree structures (smallest bias and complexity), the Markov chain's hitting time for this set increases with $n$ (training sample size), under several common data generative settings. As $n$ increases, the approximate BART posterior thus becomes increasingly different from the exact posterior (for the same number of MCMC samples), contrasting with earlier concentration results on the exact posterior. This contrast is highlighted by our simulations showing worsening frequentist undercoverage for approximate posterior intervals and a growing ratio between the MSE of the approximate posterior and that obtainable by artificially improving convergence via averaging multiple sampler chains. Finally, based on our theoretical insights, possibilities are discussed to improve the BART sampler convergence performance.
☆ Kolmogorov-Smirnov GAN
We propose a novel deep generative model, the Kolmogorov-Smirnov Generative Adversarial Network (KSGAN). Unlike existing approaches, KSGAN formulates the learning process as a minimization of the Kolmogorov-Smirnov (KS) distance, generalized to handle multivariate distributions. This distance is calculated using the quantile function, which acts as the critic in the adversarial training process. We formally demonstrate that minimizing the KS distance leads to the trained approximate distribution aligning with the target distribution. We propose an efficient implementation and evaluate its effectiveness through experiments. The results show that KSGAN performs on par with existing adversarial methods, exhibiting stability during training, resistance to mode dropping and collapse, and tolerance to variations in hyperparameter settings. Additionally, we review the literature on the Generalized KS test and discuss the connections between KSGAN and existing adversarial generative models.
comment: Code available at https://github.com/DMML-Geneva/ksgan
☆ Decoupling General and Personalized Knowledge in Federated Learning via Additive and Low-Rank Decomposition
To address data heterogeneity, the key strategy of Personalized Federated Learning (PFL) is to decouple general knowledge (shared among clients) and client-specific knowledge, as the latter can have a negative impact on collaboration if not removed. Existing PFL methods primarily adopt a parameter partitioning approach, where the parameters of a model are designated as one of two types: parameters shared with other clients to extract general knowledge and parameters retained locally to learn client-specific knowledge. However, as these two types of parameters are put together like a jigsaw puzzle into a single model during the training process, each parameter may simultaneously absorb both general and client-specific knowledge, thus struggling to separate the two types of knowledge effectively. In this paper, we introduce FedDecomp, a simple but effective PFL paradigm that employs parameter additive decomposition to address this issue. Instead of assigning each parameter of a model as either a shared or personalized one, FedDecomp decomposes each parameter into the sum of two parameters: a shared one and a personalized one, thus achieving a more thorough decoupling of shared and personalized knowledge compared to the parameter partitioning method. In addition, as we find that retaining local knowledge of specific clients requires much lower model capacity compared with general knowledge across all clients, we let the matrix containing personalized parameters be low rank during the training process. Moreover, a new alternating training strategy is proposed to further improve the performance. Experimental results across multiple datasets and varying degrees of data heterogeneity demonstrate that FedDecomp outperforms state-of-the-art methods up to 4.9\%.
comment: 12 pages, 8 figures
☆ `Just One More Sensor is Enough' -- Iterative Water Leak Localization with Physical Simulation and a Small Number of Pressure Sensors
In this article, we propose an approach to leak localisation in a complex water delivery grid with the use of data from physical simulation (e.g. EPANET software). This task is usually achieved by a network of multiple water pressure sensors and analysis of the so-called sensitivity matrix of pressure differences between the network's simulated data and actual data of the network affected by the leak. However, most algorithms using this approach require a significant number of pressure sensors -- a condition that is not easy to fulfil in the case of many less equipped networks. Therefore, we answer the question of whether leak localisation is possible by utilising very few sensors but having the ability to relocate one of them. Our algorithm is based on physical simulations (EPANET software) and an iterative scheme for mobile sensor relocation. The experiments show that the proposed system can equalise the low number of sensors with adjustments made for their positioning, giving a very good approximation of leak's position both in simulated cases and real-life example taken from BattLeDIM competition L-Town data.
☆ FI-CBL: A Probabilistic Method for Concept-Based Learning with Expert Rules
A method for solving concept-based learning (CBL) problem is proposed. The main idea behind the method is to divide each concept-annotated image into patches, to transform the patches into embeddings by using an autoencoder, and to cluster the embeddings assuming that each cluster will mainly contain embeddings of patches with certain concepts. To find concepts of a new image, the method implements the frequentist inference by computing prior and posterior probabilities of concepts based on rates of patches from images with certain values of the concepts. Therefore, the proposed method is called the Frequentist Inference CBL (FI-CBL). FI-CBL allows us to incorporate the expert rules in the form of logic functions into the inference procedure. An idea behind the incorporation is to update prior and conditional probabilities of concepts to satisfy the rules. The method is transparent because it has an explicit sequence of probabilistic calculations and a clear frequency interpretation. Numerical experiments show that FI-CBL outperforms the concept bottleneck model in cases when the number of training data is small. The code of proposed algorithms is publicly available.
☆ Attention Meets UAVs: A Comprehensive Evaluation of DDoS Detection in Low-Cost UAVs
This paper explores the critical issue of enhancing cybersecurity measures for low-cost, Wi-Fi-based Unmanned Aerial Vehicles (UAVs) against Distributed Denial of Service (DDoS) attacks. In the current work, we have explored three variants of DDoS attacks, namely Transmission Control Protocol (TCP), Internet Control Message Protocol (ICMP), and TCP + ICMP flooding attacks, and developed a detection mechanism that runs on the companion computer of the UAV system. As a part of the detection mechanism, we have evaluated various machine learning, and deep learning algorithms, such as XGBoost, Isolation Forest, Long Short-Term Memory (LSTM), Bidirectional-LSTM (Bi-LSTM), LSTM with attention, Bi-LSTM with attention, and Time Series Transformer (TST) in terms of various classification metrics. Our evaluation reveals that algorithms with attention mechanisms outperform their counterparts in general, and TST stands out as the most efficient model with a run time of 0.1 seconds. TST has demonstrated an F1 score of 0.999, 0.997, and 0.943 for TCP, ICMP, and TCP + ICMP flooding attacks respectively. In this work, we present the necessary steps required to build an on-board DDoS detection mechanism. Further, we also present the ablation study to identify the best TST hyperparameters for DDoS detection, and we have also underscored the advantage of adapting learnable positional embeddings in TST for DDoS detection with an improvement in F1 score from 0.94 to 0.99.
☆ Koopman based trajectory model and computation offloading for high mobility paradigm in ISAC enabled IoT system
User experience on mobile devices is constrained by limited battery capacity and processing power, but 6G technology advancements are diving rapidly into mobile technical evolution. Mobile edge computing (MEC) offers a solution, offloading computationally intensive tasks to edge cloud servers, reducing battery drain compared to local processing. The upcoming integrated sensing and communication in mobile communication may improve the trajectory prediction and processing delays. This study proposes a greedy resource allocation optimization strategy for multi-user networks to minimize aggregate energy usage. Numerical results show potential improvement at 33\% for every 1000 iteration. Addressing prediction model division and velocity accuracy issues is crucial for better results. A plan for further improvement and achieving objectives is outlined for the upcoming work phase.
☆ Operator World Models for Reinforcement Learning
Policy Mirror Descent (PMD) is a powerful and theoretically sound methodology for sequential decision-making. However, it is not directly applicable to Reinforcement Learning (RL) due to the inaccessibility of explicit action-value functions. We address this challenge by introducing a novel approach based on learning a world model of the environment using conditional mean embeddings. We then leverage the operatorial formulation of RL to express the action-value function in terms of this quantity in closed form via matrix operations. Combining these estimators with PMD leads to POWR, a new RL algorithm for which we prove convergence rates to the global optimum. Preliminary experiments in finite and infinite state settings support the effectiveness of our method.
☆ MuGSI: Distilling GNNs with Multi-Granularity Structural Information for Graph Classification
Recent works have introduced GNN-to-MLP knowledge distillation (KD) frameworks to combine both GNN's superior performance and MLP's fast inference speed. However, existing KD frameworks are primarily designed for node classification within single graphs, leaving their applicability to graph classification largely unexplored. Two main challenges arise when extending KD for node classification to graph classification: (1) The inherent sparsity of learning signals due to soft labels being generated at the graph level; (2) The limited expressiveness of student MLPs, especially in datasets with limited input feature spaces. To overcome these challenges, we introduce MuGSI, a novel KD framework that employs Multi-granularity Structural Information for graph classification. Specifically, we propose multi-granularity distillation loss in MuGSI to tackle the first challenge. This loss function is composed of three distinct components: graph-level distillation, subgraph-level distillation, and node-level distillation. Each component targets a specific granularity of the graph structure, ensuring a comprehensive transfer of structural knowledge from the teacher model to the student model. To tackle the second challenge, MuGSI proposes to incorporate a node feature augmentation component, thereby enhancing the expressiveness of the student MLPs and making them more capable learners. We perform extensive experiments across a variety of datasets and different teacher/student model architectures. The experiment results demonstrate the effectiveness, efficiency, and robustness of MuGSI. Codes are publicly available at: \textbf{\url{https://github.com/tianyao-aka/MuGSI}.}
comment: 12 pages, 4 figures. Accepted by TheWebConf2024
☆ Towards Stable and Storage-efficient Dataset Distillation: Matching Convexified Trajectory
The rapid evolution of deep learning and large language models has led to an exponential growth in the demand for training data, prompting the development of Dataset Distillation methods to address the challenges of managing large datasets. Among these, Matching Training Trajectories (MTT) has been a prominent approach, which replicates the training trajectory of an expert network on real data with a synthetic dataset. However, our investigation found that this method suffers from three significant limitations: 1. Instability of expert trajectory generated by Stochastic Gradient Descent (SGD); 2. Low convergence speed of the distillation process; 3. High storage consumption of the expert trajectory. To address these issues, we offer a new perspective on understanding the essence of Dataset Distillation and MTT through a simple transformation of the objective function, and introduce a novel method called Matching Convexified Trajectory (MCT), which aims to provide better guidance for the student trajectory. MCT leverages insights from the linearized dynamics of Neural Tangent Kernel methods to create a convex combination of expert trajectories, guiding the student network to converge rapidly and stably. This trajectory is not only easier to store, but also enables a continuous sampling strategy during distillation, ensuring thorough learning and fitting of the entire expert trajectory. Comprehensive experiments across three public datasets validate the superiority of MCT over traditional MTT methods.
comment: 11 pages
☆ Reinforcement Learning for Efficient Design and Control Co-optimisation of Energy Systems
The ongoing energy transition drives the development of decentralised renewable energy sources, which are heterogeneous and weather-dependent, complicating their integration into energy systems. This study tackles this issue by introducing a novel reinforcement learning (RL) framework tailored for the co-optimisation of design and control in energy systems. Traditionally, the integration of renewable sources in the energy sector has relied on complex mathematical modelling and sequential processes. By leveraging RL's model-free capabilities, the framework eliminates the need for explicit system modelling. By optimising both control and design policies jointly, the framework enhances the integration of renewable sources and improves system efficiency. This contribution paves the way for advanced RL applications in energy management, leading to more efficient and effective use of renewable energy sources.
☆ Deceptive Diffusion: Generating Synthetic Adversarial Examples
We introduce the concept of deceptive diffusion -- training a generative AI model to produce adversarial images. Whereas a traditional adversarial attack algorithm aims to perturb an existing image to induce a misclassificaton, the deceptive diffusion model can create an arbitrary number of new, misclassified images that are not directly associated with training or test images. Deceptive diffusion offers the possibility of strengthening defence algorithms by providing adversarial training data at scale, including types of misclassification that are otherwise difficult to find. In our experiments, we also investigate the effect of training on a partially attacked data set. This highlights a new type of vulnerability for generative diffusion models: if an attacker is able to stealthily poison a portion of the training data, then the resulting diffusion model will generate a similar proportion of misleading outputs.
☆ MulTi-Wise Sampling: Trading Uniform T-Wise Feature Interaction Coverage for Smaller Samples
Ensuring the functional safety of highly configurable systems often requires testing representative subsets of all possible configurations to reduce testing effort and save resources. The ratio of covered t-wise feature interactions (i.e., T-Wise Feature Interaction Coverage) is a common criterion for determining whether a subset of configurations is representative and capable of finding faults. Existing t-wise sampling algorithms uniformly cover t-wise feature interactions for all features, resulting in lengthy execution times and large sample sizes, particularly when large t-wise feature interactions are considered (i.e., high values of t). In this paper, we introduce a novel approach to t-wise feature interaction sampling, questioning the necessity of uniform coverage across all t-wise feature interactions, called \emph{\mulTiWise{}}. Our approach prioritizes between subsets of critical and non-critical features, considering higher t-values for subsets of critical features when generating a t-wise feature interaction sample. We evaluate our approach using subject systems from real-world applications, including \busybox{}, \soletta{}, \fiasco{}, and \uclibc{}. Our results show that sacrificing uniform t-wise feature interaction coverage between all features reduces the time needed to generate a sample and the resulting sample size. Hence, \mulTiWise{} Sampling offers an alternative to existing approaches if knowledge about feature criticality is available.
☆ Modeling the Real World with High-Density Visual Particle Dynamics
We present High-Density Visual Particle Dynamics (HD-VPD), a learned world model that can emulate the physical dynamics of real scenes by processing massive latent point clouds containing 100K+ particles. To enable efficiency at this scale, we introduce a novel family of Point Cloud Transformers (PCTs) called Interlacers leveraging intertwined linear-attention Performer layers and graph-based neighbour attention layers. We demonstrate the capabilities of HD-VPD by modeling the dynamics of high degree-of-freedom bi-manual robots with two RGB-D cameras. Compared to the previous graph neural network approach, our Interlacer dynamics is twice as fast with the same prediction quality, and can achieve higher quality using 4x as many particles. We illustrate how HD-VPD can evaluate motion plan quality with robotic box pushing and can grasping tasks. See videos and particle dynamics rendered by HD-VPD at https://sites.google.com/view/hd-vpd.
☆ Improving Performance Prediction of Electrolyte Formulations with Transformer-based Molecular Representation Model ICML 2024
Development of efficient and high-performing electrolytes is crucial for advancing energy storage technologies, particularly in batteries. Predicting the performance of battery electrolytes rely on complex interactions between the individual constituents. Consequently, a strategy that adeptly captures these relationships and forms a robust representation of the formulation is essential for integrating with machine learning models to predict properties accurately. In this paper, we introduce a novel approach leveraging a transformer-based molecular representation model to effectively and efficiently capture the representation of electrolyte formulations. The performance of the proposed approach is evaluated on two battery property prediction tasks and the results show superior performance compared to the state-of-the-art methods.
comment: Accepted in ML4LMS Workshop at ICML 2024
Self-Supervised Spatial-Temporal Normality Learning for Time Series Anomaly Detection ECML
Time Series Anomaly Detection (TSAD) finds widespread applications across various domains such as financial markets, industrial production, and healthcare. Its primary objective is to learn the normal patterns of time series data, thereby identifying deviations in test samples. Most existing TSAD methods focus on modeling data from the temporal dimension, while ignoring the semantic information in the spatial dimension. To address this issue, we introduce a novel approach, called Spatial-Temporal Normality learning (STEN). STEN is composed of a sequence Order prediction-based Temporal Normality learning (OTN) module that captures the temporal correlations within sequences, and a Distance prediction-based Spatial Normality learning (DSN) module that learns the relative spatial relations between sequences in a feature space. By synthesizing these two modules, STEN learns expressive spatial-temporal representations for the normal patterns hidden in the time series data. Extensive experiments on five popular TSAD benchmarks show that STEN substantially outperforms state-of-the-art competing methods. Our code is available at https://github.com/mala-lab/STEN.
comment: 18 pages, 4 figures, accepted in ECML PKDD2024
☆ Contextualized Hybrid Ensemble Q-learning: Learning Fast with Control Priors
Combining Reinforcement Learning (RL) with a prior controller can yield the best out of two worlds: RL can solve complex nonlinear problems, while the control prior ensures safer exploration and speeds up training. Prior work largely blends both components with a fixed weight, neglecting that the RL agent's performance varies with the training progress and across regions in the state space. Therefore, we advocate for an adaptive strategy that dynamically adjusts the weighting based on the RL agent's current capabilities. We propose a new adaptive hybrid RL algorithm, Contextualized Hybrid Ensemble Q-learning (CHEQ). CHEQ combines three key ingredients: (i) a time-invariant formulation of the adaptive hybrid RL problem treating the adaptive weight as a context variable, (ii) a weight adaption mechanism based on the parametric uncertainty of a critic ensemble, and (iii) ensemble-based acceleration for data-efficient RL. Evaluating CHEQ on a car racing task reveals substantially stronger data efficiency, exploration safety, and transferability to unknown scenarios than state-of-the-art adaptive hybrid RL methods.
comment: 20 pages, 12 figures
☆ Systematic Literature Review on Application of Learning-based Approaches in Continuous Integration
Context: Machine learning (ML) and deep learning (DL) analyze raw data to extract valuable insights in specific phases. The rise of continuous practices in software projects emphasizes automating Continuous Integration (CI) with these learning-based methods, while the growing adoption of such approaches underscores the need for systematizing knowledge. Objective: Our objective is to comprehensively review and analyze existing literature concerning learning-based methods within the CI domain. We endeavour to identify and analyse various techniques documented in the literature, emphasizing the fundamental attributes of training phases within learning-based solutions in the context of CI. Method: We conducted a Systematic Literature Review (SLR) involving 52 primary studies. Through statistical and thematic analyses, we explored the correlations between CI tasks and the training phases of learning-based methodologies across the selected studies, encompassing a spectrum from data engineering techniques to evaluation metrics. Results: This paper presents an analysis of the automation of CI tasks utilizing learning-based methods. We identify and analyze nine types of data sources, four steps in data preparation, four feature types, nine subsets of data features, five approaches for hyperparameter selection and tuning, and fifteen evaluation metrics. Furthermore, we discuss the latest techniques employed, existing gaps in CI task automation, and the characteristics of the utilized learning-based techniques. Conclusion: This study provides a comprehensive overview of learning-based methods in CI, offering valuable insights for researchers and practitioners developing CI task automation. It also highlights the need for further research to advance these methods in CI.
comment: This paper has been accepted to be published in IEEE Access
☆ Backdoor Attack in Prompt-Based Continual Learning
Prompt-based approaches offer a cutting-edge solution to data privacy issues in continual learning, particularly in scenarios involving multiple data suppliers where long-term storage of private user data is prohibited. Despite delivering state-of-the-art performance, its impressive remembering capability can become a double-edged sword, raising security concerns as it might inadvertently retain poisoned knowledge injected during learning from private user data. Following this insight, in this paper, we expose continual learning to a potential threat: backdoor attack, which drives the model to follow a desired adversarial target whenever a specific trigger is present while still performing normally on clean samples. We highlight three critical challenges in executing backdoor attacks on incremental learners and propose corresponding solutions: (1) \emph{Transferability}: We employ a surrogate dataset and manipulate prompt selection to transfer backdoor knowledge to data from other suppliers; (2) \emph{Resiliency}: We simulate static and dynamic states of the victim to ensure the backdoor trigger remains robust during intense incremental learning processes; and (3) \emph{Authenticity}: We apply binary cross-entropy loss as an anti-cheating factor to prevent the backdoor trigger from devolving into adversarial noise. Extensive experiments across various benchmark datasets and continual learners validate our continual backdoor framework, achieving up to $100\%$ attack success rate, with further ablation studies confirming our contributions' effectiveness.
☆ Classical Bandit Algorithms for Entanglement Detection in Parameterized Qubit States
Entanglement is a key resource for a wide range of tasks in quantum information and computing. Thus, verifying availability of this quantum resource is essential. Extensive research on entanglement detection has led to no-go theorems (Lu et al. [Phys. Rev. Lett., 116, 230501 (2016)]) that highlight the need for full state tomography (FST) in the absence of adaptive or joint measurements. Recent advancements, as proposed by Zhu, Teo, and Englert [Phys. Rev. A, 81, 052339, 2010], introduce a single-parameter family of entanglement witness measurements which are capable of conclusively detecting certain entangled states and only resort to FST when all witness measurements are inconclusive. We find a variety of realistic noisy two-qubit quantum states $\mathcal{F}$ that yield conclusive results under this witness family. We solve the problem of detecting entanglement among $K$ quantum states in $\mathcal{F}$, of which $m$ states are entangled, with $m$ potentially unknown. We recognize a structural connection of this problem to the Bad Arm Identification problem in stochastic Multi-Armed Bandits (MAB). In contrast to existing quantum bandit frameworks, we establish a new correspondence tailored for entanglement detection and term it the $(m,K)$-quantum Multi-Armed Bandit. We implement two well-known MAB policies for arbitrary states derived from $\mathcal{F}$, present theoretical guarantees on the measurement/sample complexity and demonstrate the practicality of the policies through numerical simulations. More broadly, this paper highlights the potential for employing classical machine learning techniques for quantum entanglement detection.
comment: 20 pages, 5 figures
☆ MM-Instruct: Generated Visual Instructions for Large Multimodal Model Alignment
This paper introduces MM-Instruct, a large-scale dataset of diverse and high-quality visual instruction data designed to enhance the instruction-following capabilities of large multimodal models (LMMs). While existing visual instruction datasets often focus on question-answering, they struggle to generalize to broader application scenarios such as creative writing, summarization, or image analysis. To address these limitations, we propose a novel approach to constructing MM-Instruct that leverages the strong instruction-following capabilities of existing LLMs to generate novel visual instruction data from large-scale but conventional image captioning datasets. MM-Instruct first leverages ChatGPT to automatically generate diverse instructions from a small set of seed instructions through augmenting and summarization. It then matches these instructions with images and uses an open-sourced large language model (LLM) to generate coherent answers to the instruction-image pairs. The LLM is grounded by the detailed text descriptions of images in the whole answer generation process to guarantee the alignment of the instruction data. Moreover, we introduce a benchmark based on the generated instruction data to evaluate the instruction-following capabilities of existing LMMs. We demonstrate the effectiveness of MM-Instruct by training a LLaVA-1.5 model on the generated data, denoted as LLaVA-Instruct, which exhibits significant improvements in instruction-following capabilities compared to LLaVA-1.5 models. The MM-Instruct dataset, benchmark, and pre-trained models are available at https://github.com/jihaonew/MM-Instruct.
comment: Dataset and models are available at https://github.com/jihaonew/MM-Instruct
☆ EPOCH: Jointly Estimating the 3D Pose of Cameras and Humans
Monocular Human Pose Estimation (HPE) aims at determining the 3D positions of human joints from a single 2D image captured by a camera. However, a single 2D point in the image may correspond to multiple points in 3D space. Typically, the uniqueness of the 2D-3D relationship is approximated using an orthographic or weak-perspective camera model. In this study, instead of relying on approximations, we advocate for utilizing the full perspective camera model. This involves estimating camera parameters and establishing a precise, unambiguous 2D-3D relationship. To do so, we introduce the EPOCH framework, comprising two main components: the pose lifter network (LiftNet) and the pose regressor network (RegNet). LiftNet utilizes the full perspective camera model to precisely estimate the 3D pose in an unsupervised manner. It takes a 2D pose and camera parameters as inputs and produces the corresponding 3D pose estimation. These inputs are obtained from RegNet, which starts from a single image and provides estimates for the 2D pose and camera parameters. RegNet utilizes only 2D pose data as weak supervision. Internally, RegNet predicts a 3D pose, which is then projected to 2D using the estimated camera parameters. This process enables RegNet to establish the unambiguous 2D-3D relationship. Our experiments show that modeling the lifting as an unsupervised task with a camera in-the-loop results in better generalization to unseen data. We obtain state-of-the-art results for the 3D HPE on the Human3.6M and MPI-INF-3DHP datasets. Our code is available at: [Github link upon acceptance, see supplementary materials].
comment: 17 pages, 7 figures
☆ State Matching and Multiple References in Adaptive Active Automata Learning
Active automata learning (AAL) is a method to infer state machines by interacting with black-box systems. Adaptive AAL aims to reduce the sample complexity of AAL by incorporating domain specific knowledge in the form of (similar) reference models. Such reference models appear naturally when learning multiple versions or variants of a software system. In this paper, we present state matching, which allows flexible use of the structure of these reference models by the learner. State matching is the main ingredient of adaptive L#, a novel framework for adaptive learning, built on top of L#. Our empirical evaluation shows that adaptive L# improves the state of the art by up to two orders of magnitude.
comment: Extended paper for FM 2024
☆ CHASE: A Causal Heterogeneous Graph based Framework for Root Cause Analysis in Multimodal Microservice Systems
In recent years, the widespread adoption of distributed microservice architectures within the industry has significantly increased the demand for enhanced system availability and robustness. Due to the complex service invocation paths and dependencies at enterprise-level microservice systems, it is challenging to locate the anomalies promptly during service invocations, thus causing intractable issues for normal system operations and maintenance. In this paper, we propose a Causal Heterogeneous grAph baSed framEwork for root cause analysis, namely CHASE, for microservice systems with multimodal data, including traces, logs, and system monitoring metrics. Specifically, related information is encoded into representative embeddings and further modeled by a multimodal invocation graph. Following that, anomaly detection is performed on each instance node with attentive heterogeneous message passing from its adjacent metric and log nodes. Finally, CHASE learns from the constructed hypergraph with hyperedges representing the flow of causality and performs root cause localization. We evaluate the proposed framework on two public microservice datasets with distinct attributes and compare with the state-of-the-art methods. The results show that CHASE achieves the average performance gain up to 36.2%(A@1) and 29.4%(Percentage@1), respectively to its best counterpart.
☆ InfiniGen: Efficient Generative Inference of Large Language Models with Dynamic KV Cache Management OSDI 2024
Transformer-based large language models (LLMs) demonstrate impressive performance across various natural language processing tasks. Serving LLM inference for generating long contents, however, poses a challenge due to the enormous memory footprint of the transient state, known as the key-value (KV) cache, which scales with the sequence length and batch size. In this paper, we present InfiniGen, a novel KV cache management framework tailored for long-text generation, which synergistically works with modern offloading-based inference systems. InfiniGen leverages the key insight that a few important tokens that are essential for computing the subsequent attention layer in the Transformer can be speculated by performing a minimal rehearsal with the inputs of the current layer and part of the query weight and key cache of the subsequent layer. This allows us to prefetch only the essential KV cache entries (without fetching them all), thereby mitigating the fetch overhead from the host memory in offloading-based LLM serving systems. Our evaluation on several representative LLMs shows that InfiniGen improves the overall performance of a modern offloading-based system by up to 3.00x compared to prior KV cache management methods while offering substantially better model accuracy.
comment: OSDI 2024
☆ Less is More: Accurate Speech Recognition & Translation without Web-Scale Data
Recent advances in speech recognition and translation rely on hundreds of thousands of hours of Internet speech data. We argue that state-of-the art accuracy can be reached without relying on web-scale data. Canary - multilingual ASR and speech translation model, outperforms current state-of-the-art models - Whisper, OWSM, and Seamless-M4T on English, French, Spanish, and German languages, while being trained on an order of magnitude less data than these models. Three key factors enables such data-efficient model: (1) a FastConformer-based attention encoder-decoder architecture (2) training on synthetic data generated with machine translation and (3) advanced training techniques: data-balancing, dynamic data blending, dynamic bucketing and noise-robust fine-tuning. The model, weights, and training code will be open-sourced.
comment: Accepted at Interspeech-2024
☆ Function+Data Flow: A Framework to Specify Machine Learning Pipelines for Digital Twinning
The development of digital twins (DTs) for physical systems increasingly leverages artificial intelligence (AI), particularly for combining data from different sources or for creating computationally efficient, reduced-dimension models. Indeed, even in very different application domains, twinning employs common techniques such as model order reduction and modelization with hybrid data (that is, data sourced from both physics-based models and sensors). Despite this apparent generality, current development practices are ad-hoc, making the design of AI pipelines for digital twinning complex and time-consuming. Here we propose Function+Data Flow (FDF), a domain-specific language (DSL) to describe AI pipelines within DTs. FDF aims to facilitate the design and validation of digital twins. Specifically, FDF treats functions as first-class citizens, enabling effective manipulation of models learned with AI. We illustrate the benefits of FDF on two concrete use cases from different domains: predicting the plastic strain of a structure and modeling the electromagnetic behavior of a bearing.
comment: 10 pages, 5 figures, to be published in AIware'24
☆ Finite basis Kolmogorov-Arnold networks: domain decomposition for data-driven and physics-informed problems
Kolmogorov-Arnold networks (KANs) have attracted attention recently as an alternative to multilayer perceptrons (MLPs) for scientific machine learning. However, KANs can be expensive to train, even for relatively small networks. Inspired by finite basis physics-informed neural networks (FBPINNs), in this work, we develop a domain decomposition method for KANs that allows for several small KANs to be trained in parallel to give accurate solutions for multiscale problems. We show that finite basis KANs (FBKANs) can provide accurate results with noisy data and for physics-informed training.
LLMEasyQuant -- An Easy to Use Toolkit for LLM Quantization
Currently, there are many quantization methods appeared for LLM quantization, yet few are user-friendly and easy to be deployed locally. Packages like TensorRT and Quantohave many underlying structures and self-invoking internal functions, which are not conducive to developers' personalized development and learning for deployment. Therefore, we develop LLMEasyQuant, it is a package aiming to for easy quantization deployment which is user-friendly and suitable for beginners' learning.
☆ ACES: Automatic Cohort Extraction System for Event-Stream Datasets
Reproducibility remains a significant challenge in machine learning (ML) for healthcare. In this field, datasets, model pipelines, and even task/cohort definitions are often private, leading to a significant barrier in sharing, iterating, and understanding ML results on electronic health record (EHR) datasets. In this paper, we address a significant part of this problem by introducing the Automatic Cohort Extraction System for Event-Stream Datasets (ACES). This tool is designed to simultaneously simplify the development of task/cohorts for ML in healthcare and enable the reproduction of these cohorts, both at an exact level for single datasets and at a conceptual level across datasets. To accomplish this, ACES provides (1) a highly intuitive and expressive configuration language for defining both dataset-specific concepts and dataset-agnostic inclusion/exclusion criteria, and (2) a pipeline to automatically extract patient records that meet these defined criteria from real-world data. ACES can be automatically applied to any dataset in either the Medical Event Data Standard (MEDS) or EventStreamGPT (ESGPT) formats, or to *any* dataset for which the necessary task-specific predicates can be extracted in an event-stream form. ACES has the potential to significantly lower the barrier to entry for defining ML tasks, redefine the way researchers interact with EHR datasets, and significantly improve the state of reproducibility for ML studies in this modality. ACES is available at https://github.com/justin13601/aces.
comment: For ACES Online Documentation, see https://eventstreamaces.readthedocs.io/en/latest/
☆ IDT: Dual-Task Adversarial Attacks for Privacy Protection
Natural language processing (NLP) models may leak private information in different ways, including membership inference, reconstruction or attribute inference attacks. Sensitive information may not be explicit in the text, but hidden in underlying writing characteristics. Methods to protect privacy can involve using representations inside models that are demonstrated not to detect sensitive attributes or -- for instance, in cases where users might not trust a model, the sort of scenario of interest here -- changing the raw text before models can have access to it. The goal is to rewrite text to prevent someone from inferring a sensitive attribute (e.g. the gender of the author, or their location by the writing style) whilst keeping the text useful for its original intention (e.g. the sentiment of a product review). The few works tackling this have focused on generative techniques. However, these often create extensively different texts from the original ones or face problems such as mode collapse. This paper explores a novel adaptation of adversarial attack techniques to manipulate a text to deceive a classifier w.r.t one task (privacy) whilst keeping the predictions of another classifier trained for another task (utility) unchanged. We propose IDT, a method that analyses predictions made by auxiliary and interpretable models to identify which tokens are important to change for the privacy task, and which ones should be kept for the utility task. We evaluate different datasets for NLP suitable for different tasks. Automatic and human evaluations show that IDT retains the utility of text, while also outperforming existing methods when deceiving a classifier w.r.t privacy task.
comment: 28 pages, 1 figure
☆ Enforcing Equity in Neural Climate Emulators
Neural network emulators have become an invaluable tool for a wide variety of climate and weather prediction tasks. While showing incredibly promising results, these networks do not have an inherent ability to produce equitable predictions. That is, they are not guaranteed to provide a uniform quality of prediction along any particular class or group of people. This potential for inequitable predictions motivates the need for explicit representations of fairness in these neural networks. To that end, we draw on methods for enforcing analytical physical constraints in neural networks to bias networks towards more equitable predictions. We demonstrate the promise of this methodology using the task of climate model emulation. Specifically, we propose a custom loss function which punishes emulators with unequal quality of predictions across any prespecified regions or category, here defined using human development index (HDI). This loss function weighs a standard loss metric such as mean squared error against another metric which captures inequity along the equity category (HDI), allowing us to adjust the priority of each term before training. Importantly, the loss function does not specify a particular definition of equity to bias the neural network towards, opening the door for custom fairness metrics. Our results show that neural climate emulators trained with our loss function provide more equitable predictions and that the equity metric improves with greater weighting in the loss function. We empirically demonstrate that while there is a tradeoff between accuracy and equity when prioritizing the latter during training, an appropriate selection of the equity priority hyperparameter can minimize loss of performance.
comment: 10 pages, 9 figures
☆ Model Predictive Simulation Using Structured Graphical Models and Transformers
We propose an approach to simulating trajectories of multiple interacting agents (road users) based on transformers and probabilistic graphical models (PGMs), and apply it to the Waymo SimAgents challenge. The transformer baseline is based on the MTR model, which predicts multiple future trajectories conditioned on the past trajectories and static road layout features. We then improve upon these generated trajectories using a PGM, which contains factors which encode prior knowledge, such as a preference for smooth trajectories, and avoidance of collisions with static obstacles and other moving agents. We perform (approximate) MAP inference in this PGM using the Gauss-Newton method. Finally we sample $K=32$ trajectories for each of the $N \sim 100$ agents for the next $T=8 \Delta$ time steps, where $\Delta=10$ is the sampling rate per second. Following the Model Predictive Control (MPC) paradigm, we only return the first element of our forecasted trajectories at each step, and then we replan, so that the simulation can constantly adapt to its changing environment. We therefore call our approach "Model Predictive Simulation" or MPS. We show that MPS improves upon the MTR baseline, especially in safety critical metrics such as collision rate. Furthermore, our approach is compatible with any underlying forecasting model, and does not require extra training, so we believe it is a valuable contribution to the community.
comment: Special Mention at the Waymo Sim Agents Challenge 2024
☆ Personalized Interpretation on Federated Learning: A Virtual Concepts approach
Tackling non-IID data is an open challenge in federated learning research. Existing FL methods, including robust FL and personalized FL, are designed to improve model performance without consideration of interpreting non-IID across clients. This paper aims to design a novel FL method to robust and interpret the non-IID data across clients. Specifically, we interpret each client's dataset as a mixture of conceptual vectors that each one represents an interpretable concept to end-users. These conceptual vectors could be pre-defined or refined in a human-in-the-loop process or be learnt via the optimization procedure of the federated learning system. In addition to the interpretability, the clarity of client-specific personalization could also be applied to enhance the robustness of the training process on FL system. The effectiveness of the proposed method have been validated on benchmark datasets.
☆ Data-Driven Lipschitz Continuity: A Cost-Effective Approach to Improve Adversarial Robustness
The security and robustness of deep neural networks (DNNs) have become increasingly concerning. This paper aims to provide both a theoretical foundation and a practical solution to ensure the reliability of DNNs. We explore the concept of Lipschitz continuity to certify the robustness of DNNs against adversarial attacks, which aim to mislead the network with adding imperceptible perturbations into inputs. We propose a novel algorithm that remaps the input domain into a constrained range, reducing the Lipschitz constant and potentially enhancing robustness. Unlike existing adversarially trained models, where robustness is enhanced by introducing additional examples from other datasets or generative models, our method is almost cost-free as it can be integrated with existing models without requiring re-training. Experimental results demonstrate the generalizability of our method, as it can be combined with various models and achieve enhancements in robustness. Furthermore, our method achieves the best robust accuracy for CIFAR10, CIFAR100, and ImageNet datasets on the RobustBench leaderboard.
☆ Machine-Learning-Driven Runtime Optimization of BLAS Level 3 on Modern Multi-Core Systems
BLAS Level 3 operations are essential for scientific computing, but finding the optimal number of threads for multi-threaded implementations on modern multi-core systems is challenging. We present an extension to the Architecture and Data-Structure Aware Linear Algebra (ADSALA) library that uses machine learning to optimize the runtime of all BLAS Level 3 operations. Our method predicts the best number of threads for each operation based on the matrix dimensions and the system architecture. We test our method on two HPC platforms with Intel and AMD processors, using MKL and BLIS as baseline BLAS implementations. We achieve speedups of 1.5 to 3.0 for all operations, compared to using the maximum number of threads. We also analyze the runtime patterns of different BLAS operations and explain the sources of speedup. Our work shows the effectiveness and generality of the ADSALA approach for optimizing BLAS routines on modern multi-core systems.
comment: Multi-Thread, Matrix Multiplication, Optimization, BLAS, Machine Learning
☆ ScoreFusion: fusing score-based generative models via Kullback-Leibler barycenters
We study the problem of fusing pre-trained (auxiliary) generative models to enhance the training of a target generative model. We propose using KL-divergence weighted barycenters as an optimal fusion mechanism, in which the barycenter weights are optimally trained to minimize a suitable loss for the target population. While computing the optimal KL-barycenter weights can be challenging, we demonstrate that this process can be efficiently executed using diffusion score training when the auxiliary generative models are also trained based on diffusion score methods. Moreover, we show that our fusion method has a dimension-free sample complexity in total variation distance provided that the auxiliary models are well fitted for their own task and the auxiliary tasks combined capture the target well. The main takeaway of our method is that if the auxiliary models are well-trained and can borrow features from each other that are present in the target, our fusion method significantly improves the training of generative models. We provide a concise computational implementation of the fusion algorithm, and validate its efficiency in the low-data regime with numerical experiments involving mixtures models and image datasets.
comment: 40 pages, 6 figures
☆ Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity
Optimization of convex functions under stochastic zeroth-order feedback has been a major and challenging question in online learning. In this work, we consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries. We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds. We propose an algorithm that features a combination of a bootstrapping stage and a mirror-descent stage. Our main technical innovation consists of a sharp characterization for the spherical-sampling gradient estimator under higher-order smoothness conditions, which allows the algorithm to optimally balance the bias-variance tradeoff, and a new iterative method for the bootstrapping stage, which maintains the performance for unbounded Hessian.
☆ VarteX: Enhancing Weather Forecast through Distributed Variable Representation ICML 2024
Weather forecasting is essential for various human activities. Recent data-driven models have outperformed numerical weather prediction by utilizing deep learning in forecasting performance. However, challenges remain in efficiently handling multiple meteorological variables. This study proposes a new variable aggregation scheme and an efficient learning framework for that challenge. Experiments show that VarteX outperforms the conventional model in forecast performance, requiring significantly fewer parameters and resources. The effectiveness of learning through multiple aggregations and regional split training is demonstrated, enabling more efficient and accurate deep learning-based weather forecasting.
comment: ICML 2024, Workshop on Machine Learning for Earth System Modeling
☆ A Survey on Data Quality Dimensions and Tools for Machine Learning
Machine learning (ML) technologies have become substantial in practically all aspects of our society, and data quality (DQ) is critical for the performance, fairness, robustness, safety, and scalability of ML models. With the large and complex data in data-centric AI, traditional methods like exploratory data analysis (EDA) and cross-validation (CV) face challenges, highlighting the importance of mastering DQ tools. In this survey, we review 17 DQ evaluation and improvement tools in the last 5 years. By introducing the DQ dimensions, metrics, and main functions embedded in these tools, we compare their strengths and limitations and propose a roadmap for developing open-source DQ tools for ML. Based on the discussions on the challenges and emerging trends, we further highlight the potential applications of large language models (LLMs) and generative AI in DQ evaluation and improvement for ML. We believe this comprehensive survey can enhance understanding of DQ in ML and could drive progress in data-centric AI. A complete list of the literature investigated in this survey is available on GitHub at: https://github.com/haihua0913/awesome-dq4ml.
comment: This paper has been accepted by The 6th IEEE International Conference on Artificial Intelligence Testing (IEEE AITest 2024) as an invited paper
☆ A Survey on Deep Clustering: From the Prior Perspective
Facilitated by the powerful feature extraction ability of neural networks, deep clustering has achieved great success in analyzing high-dimensional and complex real-world data. The performance of deep clustering methods is affected by various factors such as network structures and learning objectives. However, as pointed out in this survey, the essence of deep clustering lies in the incorporation and utilization of prior knowledge, which is largely ignored by existing works. From pioneering deep clustering methods based on data structure assumptions to recent contrastive clustering methods based on data augmentation invariances, the development of deep clustering intrinsically corresponds to the evolution of prior knowledge. In this survey, we provide a comprehensive review of deep clustering methods by categorizing them into six types of prior knowledge. We find that in general the prior innovation follows two trends, namely, i) from mining to constructing, and ii) from internal to external. Besides, we provide a benchmark on five widely-used datasets and analyze the performance of methods with diverse priors. By providing a novel prior knowledge perspective, we hope this survey could provide some novel insights and inspire future research in the deep clustering community.
☆ Optimizing Cyber Defense in Dynamic Active Directories through Reinforcement Learning ESORICS
This paper addresses a significant gap in Autonomous Cyber Operations (ACO) literature: the absence of effective edge-blocking ACO strategies in dynamic, real-world networks. It specifically targets the cybersecurity vulnerabilities of organizational Active Directory (AD) systems. Unlike the existing literature on edge-blocking defenses which considers AD systems as static entities, our study counters this by recognizing their dynamic nature and developing advanced edge-blocking defenses through a Stackelberg game model between attacker and defender. We devise a Reinforcement Learning (RL)-based attack strategy and an RL-assisted Evolutionary Diversity Optimization-based defense strategy, where the attacker and defender improve each other strategy via parallel gameplay. To address the computational challenges of training attacker-defender strategies on numerous dynamic AD graphs, we propose an RL Training Facilitator that prunes environments and neural networks to eliminate irrelevant elements, enabling efficient and scalable training for large graphs. We extensively train the attacker strategy, as a sophisticated attacker model is essential for a robust defense. Our empirical results successfully demonstrate that our proposed approach enhances defender's proficiency in hardening dynamic AD graphs while ensuring scalability for large-scale AD.
comment: The manuscript has been accepted as full paper at European Symposium on Research in Computer Security (ESORICS) 2024
☆ Network Bending of Diffusion Models for Audio-Visual Generation
In this paper we present the first steps towards the creation of a tool which enables artists to create music visualizations using pre-trained, generative, machine learning models. First, we investigate the application of network bending, the process of applying transforms within the layers of a generative network, to image generation diffusion models by utilizing a range of point-wise, tensor-wise, and morphological operators. We identify a number of visual effects that result from various operators, including some that are not easily recreated with standard image editing tools. We find that this process allows for continuous, fine-grain control of image generation which can be helpful for creative applications. Next, we generate music-reactive videos using Stable Diffusion by passing audio features as parameters to network bending operators. Finally, we comment on certain transforms which radically shift the image and the possibilities of learning more about the latent space of Stable Diffusion based on these transforms.
comment: 8 pages, 5 figures, to be published in the proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), for additional image and video examples see https://dzluke.github.io/DAFX2024/
☆ HarmonICA: Neural non-stationarity correction and source separation for motor neuron interfaces
A major outstanding problem when interfacing with spinal motor neurons is how to accurately compensate for non-stationary effects in the signal during source separation routines, particularly when they cannot be estimated in advance. This forces current systems to instead use undifferentiated bulk signal, which limits the potential degrees of freedom for control. In this study we propose a potential solution, using an unsupervised learning algorithm to blindly correct for the effects of latent processes which drive the signal non-stationarities. We implement this methodology within the theoretical framework of a quasilinear version of independent component analysis (ICA). The proposed design, HarmonICA, sidesteps the identifiability problems of nonlinear ICA, allowing for equivalent predictability to linear ICA whilst retaining the ability to learn complex nonlinear relationships between non-stationary latents and their effects on the signal. We test HarmonICA on both invasive and non-invasive recordings both simulated and real, demonstrating an ability to blindly compensate for the non-stationary effects specific to each, and thus to significantly enhance the quality of a source separation routine.
☆ FRED: Flexible REduction-Distribution Interconnect and Communication Implementation for Wafer-Scale Distributed Training of DNN Models
Distributed Deep Neural Network (DNN) training is a technique to reduce the training overhead by distributing the training tasks into multiple accelerators, according to a parallelization strategy. However, high-performance compute and interconnects are needed for maximum speed-up and linear scaling of the system. Wafer-scale systems are a promising technology that allows for tightly integrating high-end accelerators with high-speed wafer-scale interconnects, making it an attractive platform for distributed training. However, the wafer-scale interconnect should offer high performance and flexibility for various parallelization strategies to enable maximum optimizations for compute and memory usage. In this paper, we propose FRED, a wafer-scale interconnect that is tailored for the high-BW requirements of wafer-scale networks and can efficiently execute communication patterns of different parallelization strategies. Furthermore, FRED supports in-switch collective communication execution that reduces the network traffic by approximately 2X. Our results show that FRED can improve the average end-to-end training time of ResNet-152, Transformer-17B, GPT-3, and Transformer-1T by 1.76X, 1.87X, 1.34X, and 1.4X, respectively when compared to a baseline waferscale 2D-Mesh fabric.
♻ ☆ GEO: Generative Engine Optimization KDD 2024
The advent of large language models (LLMs) has ushered in a new paradigm of search engines that use generative models to gather and summarize information to answer user queries. This emerging technology, which we formalize under the unified framework of generative engines (GEs), can generate accurate and personalized responses, rapidly replacing traditional search engines like Google and Bing. Generative Engines typically satisfy queries by synthesizing information from multiple sources and summarizing them using LLMs. While this shift significantly improves $\textit{user}$ utility and $\textit{generative search engine}$ traffic, it poses a huge challenge for the third stakeholder -- website and content creators. Given the black-box and fast-moving nature of generative engines, content creators have little to no control over $\textit{when}$ and $\textit{how}$ their content is displayed. With generative engines here to stay, we must ensure the creator economy is not disadvantaged. To address this, we introduce Generative Engine Optimization (GEO), the first novel paradigm to aid content creators in improving their content visibility in generative engine responses through a flexible black-box optimization framework for optimizing and defining visibility metrics. We facilitate systematic evaluation by introducing GEO-bench, a large-scale benchmark of diverse user queries across multiple domains, along with relevant web sources to answer these queries. Through rigorous evaluation, we demonstrate that GEO can boost visibility by up to $40\%$ in generative engine responses. Moreover, we show the efficacy of these strategies varies across domains, underscoring the need for domain-specific optimization methods. Our work opens a new frontier in information discovery systems, with profound implications for both developers of generative engines and content creators.
comment: Accepted to KDD 2024
♻ ☆ Fishnets: Information-Optimal, Scalable Aggregation for Sets and Graphs
Set-based learning is an essential component of modern deep learning and network science. Graph Neural Networks (GNNs) and their edge-free counterparts Deepsets have proven remarkably useful on ragged and topologically challenging datasets. The key to learning informative embeddings for set members is a specified aggregation function, usually a sum, max, or mean. We propose Fishnets, an aggregation strategy for learning information-optimal embeddings for sets of data for both Bayesian inference and graph aggregation. We demonstrate that i) Fishnets neural summaries can be scaled optimally to an arbitrary number of data objects, ii) Fishnets aggregations are robust to changes in data distribution, unlike standard deepsets, iii) Fishnets saturate Bayesian information content and extend to regimes where MCMC techniques fail and iv) Fishnets can be used as a drop-in aggregation scheme within GNNs. We show that by adopting a Fishnets aggregation scheme for message passing, GNNs can achieve state-of-the-art performance versus architecture size on ogbn-protein data over existing benchmarks with a fraction of learnable parameters and faster training time.
comment: 15 pages, 6 figures, 2 tables. Submitted to JMLR
♻ ☆ Scalable Training of Graph Foundation Models for Atomistic Materials Modeling: A Case Study with HydraGNN
We present our work on developing and training scalable graph foundation models (GFM) using HydraGNN, a multi-headed graph convolutional neural network architecture. HydraGNN expands the boundaries of graph neural network (GNN) in both training scale and data diversity. It abstracts over message passing algorithms, allowing both reproduction of and comparison across algorithmic innovations that define convolution in GNNs. This work discusses a series of optimizations that have allowed scaling up the GFM training to tens of thousands of GPUs on datasets that consist of hundreds of millions of graphs. Our GFMs use multi-task learning (MTL) to simultaneously learn graph-level and node-level properties of atomistic structures, such as the total energy and atomic forces. Using over 150 million atomistic structures for training, we illustrate the performance of our approach along with the lessons learned on two United States Department of Energy (US-DOE) supercomputers, namely the Perlmutter petascale system at the National Energy Research Scientific Computing Center and the Frontier exascale system at Oak Ridge National Laboratory. The HydraGNN architecture enables the GFM to achieve near-linear strong scaling performance using more than 2,000 GPUs on Perlmutter and 16,000 GPUs on Frontier. Hyperparameter optimization (HPO) was performed on over 64,000 GPUs on Frontier to select GFM architectures with high accuracy. Early stopping was applied on each GFM architecture for energy awareness in performing such an extreme-scale task. The training of an ensemble of highest-ranked GFM architectures continued until convergence to establish uncertainty quantification (UQ) capabilities with ensemble learning. Our contribution opens the door for rapidly developing, training, and deploying GFMs using large-scale computational resources to enable AI-accelerated materials discovery and design.
comment: 16 pages, 13 figures
♻ ☆ ChIRAAG: ChatGPT Informed Rapid and Automated Assertion Generation
System Verilog Assertion (SVA) formulation -- a critical yet complex task is a prerequisite in the Assertion Based Verification (ABV) process. Traditionally, SVA formulation involves expert-driven interpretation of specifications, which is time-consuming and prone to human error. Recently, LLM-informed automatic assertion generation is gaining interest. We designed a novel framework called ChIRAAG, based on OpenAI GPT4, to generate SVA from natural language specifications of a design. ChIRAAG constitutes the systematic breakdown of design specifications into a standardized format, further generating assertions from formatted specifications using LLM. Furthermore, we used few test cases to validate the LLM-generated assertions. Automatic feedback of log messages from the simulation tool to the LLM ensures that the framework can generate correct SVAs. In our experiments, only 27% of LLM-generated raw assertions had errors, which was rectified in few iterations based on the simulation log. Our results on OpenTitan designs show that LLMs can streamline and assist engineers in the assertion generation process, reshaping verification workflows.
comment: 4 pages, 2 figures and 2 tables
♻ ☆ Solving Differential Equations using Physics-Informed Deep Equilibrium Models
This paper introduces Physics-Informed Deep Equilibrium Models (PIDEQs) for solving initial value problems (IVPs) of ordinary differential equations (ODEs). Leveraging recent advancements in deep equilibrium models (DEQs) and physics-informed neural networks (PINNs), PIDEQs combine the implicit output representation of DEQs with physics-informed training techniques. We validate PIDEQs using the Van der Pol oscillator as a benchmark problem, demonstrating their efficiency and effectiveness in solving IVPs. Our analysis includes key hyperparameter considerations for optimizing PIDEQ performance. By bridging deep learning and physics-based modeling, this work advances computational techniques for solving IVPs, with implications for scientific computing and engineering applications.
comment: Accepted at CASE 2024; Extended Sec. III.B
♻ ☆ The Impact of Feature Representation on the Accuracy of Photonic Neural Networks
Photonic Neural Networks (PNNs) are gaining significant interest in the research community due to their potential for high parallelization, low latency, and energy efficiency. PNNs compute using light, which leads to several differences in implementation when compared to electronics, such as the need to represent input features in the photonic domain before feeding them into the network. In this encoding process, it is common to combine multiple features into a single input to reduce the number of inputs and associated devices, leading to smaller and more energy-efficient PNNs. Although this alters the network's handling of input data, its impact on PNNs remains understudied. This paper addresses this open question, investigating the effect of commonly used encoding strategies that combine features on the performance and learning capabilities of PNNs. Here, using the concept of feature importance, we develop a mathematical methodology for analyzing feature combination. Through this methodology, we demonstrate that encoding multiple features together in a single input determines their relative importance, thus limiting the network's ability to learn from the data. Given some prior knowledge of the data, however, this can also be leveraged for higher accuracy. By selecting an optimal encoding method, we achieve up to a 12.3% improvement in accuracy of PNNs trained on the Iris dataset compared to other encoding techniques, surpassing the performance of networks where features are not combined. These findings highlight the importance of carefully choosing the encoding to the accuracy and decision-making strategies of PNNs, particularly in size or power constrained applications.
♻ ☆ Importance Weighted Expectation-Maximization for Protein Sequence Design
Designing protein sequences with desired biological function is crucial in biology and chemistry. Recent machine learning methods use a surrogate sequence-function model to replace the expensive wet-lab validation. How can we efficiently generate diverse and novel protein sequences with high fitness? In this paper, we propose IsEM-Pro, an approach to generate protein sequences towards a given fitness criterion. At its core, IsEM-Pro is a latent generative model, augmented by combinatorial structure features from a separately learned Markov random fields (MRFs). We develop an Monte Carlo Expectation-Maximization method (MCEM) to learn the model. During inference, sampling from its latent space enhances diversity while its MRFs features guide the exploration in high fitness regions. Experiments on eight protein sequence design tasks show that our IsEM-Pro outperforms the previous best methods by at least 55% on average fitness score and generates more diverse and novel protein sequences.
♻ ☆ A Simple Mixture Policy Parameterization for Improving Sample Efficiency of CVaR Optimization
Reinforcement learning algorithms utilizing policy gradients (PG) to optimize Conditional Value at Risk (CVaR) face significant challenges with sample inefficiency, hindering their practical applications. This inefficiency stems from two main facts: a focus on tail-end performance that overlooks many sampled trajectories, and the potential of gradient vanishing when the lower tail of the return distribution is overly flat. To address these challenges, we propose a simple mixture policy parameterization. This method integrates a risk-neutral policy with an adjustable policy to form a risk-averse policy. By employing this strategy, all collected trajectories can be utilized for policy updating, and the issue of vanishing gradients is counteracted by stimulating higher returns through the risk-neutral component, thus lifting the tail and preventing flatness. Our empirical study reveals that this mixture parameterization is uniquely effective across a variety of benchmark domains. Specifically, it excels in identifying risk-averse CVaR policies in some Mujoco environments where the traditional CVaR-PG fails to learn a reasonable policy.
comment: RLC 2024
♻ ☆ Robustness Assessment of a Runway Object Classifier for Safe Aircraft Taxiing SC
As deep neural networks (DNNs) are becoming the prominent solution for many computational problems, the aviation industry seeks to explore their potential in alleviating pilot workload and in improving operational safety. However, the use of DNNs in this type of safety-critical applications requires a thorough certification process. This need can be addressed through formal verification, which provides rigorous assurances -- e.g.,~by proving the absence of certain mispredictions. In this case-study paper, we demonstrate this process using an image-classifier DNN currently under development at Airbus and intended for use during the aircraft taxiing phase. We use formal methods to assess this DNN's robustness to three common image perturbation types: noise, brightness and contrast, and some of their combinations. This process entails multiple invocations of the underlying verifier, which might be computationally expensive; and we therefore propose a method that leverages the monotonicity of these robustness properties, as well as the results of past verification queries, in order to reduce the overall number of verification queries required by nearly 60%. Our results provide an indication of the level of robustness achieved by the DNN classifier under study, and indicate that it is considerably more vulnerable to noise than to brightness or contrast perturbations.
comment: This is a preprint version of the paper in the proceedings of 43rd Digital Avionics Systems Conference (DASC)
♻ ☆ Scaling laws for learning with real and surrogate data
Collecting large quantities of high-quality data can be prohibitively expensive or impractical, and a bottleneck in machine learning. One may instead augment a small set of $n$ data points from the target distribution with data from more accessible sources, e.g. data collected under different circumstances or synthesized by generative models. We refer to such data as `surrogate data.' We introduce a weighted empirical risk minimization (ERM) approach for integrating surrogate data into training. We analyze mathematically this method under several classical statistical models, and validate our findings empirically on datasets from different domains. Our main findings are: $(i)$ Integrating surrogate data can significantly reduce the test error on the original distribution. Surprisingly, this can happen even when the surrogate data is unrelated to the original ones. We trace back this behavior to the classical Stein's paradox. $(ii)$ In order to reap the benefit of surrogate data, it is crucial to use optimally weighted ERM. $(iii)$ The test error of models trained on mixtures of real and surrogate data is approximately described by a scaling law. This scaling law can be used to predict the optimal weighting scheme, and to choose the amount of surrogate data to add.
comment: Added new experiments
♻ ☆ Distributed Speculative Inference of Large Language Models
Accelerating the inference of large language models (LLMs) is an important challenge in artificial intelligence. This paper introduces distributed speculative inference (DSI), a novel distributed inference algorithm that is provably faster than speculative inference (SI) [leviathan2023fast, chen2023accelerating, miao2023specinfer] and traditional autoregressive inference (non-SI). Like other SI algorithms, DSI works on frozen LLMs, requiring no training or architectural modifications, and it preserves the target distribution. Prior studies on SI have demonstrated empirical speedups (compared to non-SI) but require a fast and accurate drafter LLM. In practice, off-the-shelf LLMs often do not have matching drafters that are sufficiently fast and accurate. We show a gap: SI gets slower than non-SI when using slower or less accurate drafters. We close this gap by proving that DSI is faster than both SI and non-SI given any drafters. By orchestrating multiple instances of the target and drafters, DSI is not only faster than SI but also supports LLMs that cannot be accelerated with SI. Our simulations show speedups of off-the-shelf LLMs in realistic settings: DSI is 1.29-1.92x faster than SI.
♻ ☆ Scalable Bayesian uncertainty quantification with data-driven priors for radio interferometric imaging
Next-generation radio interferometers like the Square Kilometer Array have the potential to unlock scientific discoveries thanks to their unprecedented angular resolution and sensitivity. One key to unlocking their potential resides in handling the deluge and complexity of incoming data. This challenge requires building radio interferometric imaging methods that can cope with the massive data sizes and provide high-quality image reconstructions with uncertainty quantification (UQ). This work proposes a method coined QuantifAI to address UQ in radio-interferometric imaging with data-driven (learned) priors for high-dimensional settings. Our model, rooted in the Bayesian framework, uses a physically motivated model for the likelihood. The model exploits a data-driven convex prior, which can encode complex information learned implicitly from simulations and guarantee the log-concavity of the posterior. We leverage probability concentration phenomena of high-dimensional log-concave posteriors that let us obtain information about the posterior, avoiding MCMC sampling techniques. We rely on convex optimisation methods to compute the MAP estimation, which is known to be faster and better scale with dimension than MCMC sampling strategies. Our method allows us to compute local credible intervals, i.e., Bayesian error bars, and perform hypothesis testing of structure on the reconstructed image. In addition, we propose a novel blazing-fast method to compute pixel-wise uncertainties at different scales. We demonstrate our method by reconstructing radio-interferometric images in a simulated setting and carrying out fast and scalable UQ, which we validate with MCMC sampling. Our method shows an improved image quality and more meaningful uncertainties than the benchmark method based on a sparsity-promoting prior. QuantifAI's source code: https://github.com/astro-informatics/QuantifAI.
comment: 30 pages, 14 figures, 10 tables, code available at https://github.com/astro-informatics/QuantifAI
♻ ☆ Dynamic planning in hierarchical active inference
By dynamic planning, we refer to the ability of the human brain to infer and impose motor trajectories related to cognitive decisions. A recent paradigm, active inference, brings fundamental insights into the adaptation of biological organisms, constantly striving to minimize prediction errors to restrict themselves to life-compatible states. Over the past years, many studies have shown how human and animal behavior could be explained in terms of an active inferential process - either as discrete decision-making or continuous motor control - inspiring innovative solutions in robotics and artificial intelligence. Still, the literature lacks a comprehensive outlook on how to effectively plan actions in changing environments. Setting ourselves the goal of modeling tool use, we delve into the topic of dynamic planning in active inference, keeping in mind two crucial aspects of biological goal-directed behavior: the capacity to understand and exploit affordances for object manipulation, and to learn the hierarchical interactions between the self and the environment, including other agents. We start from a simple unit and gradually describe more advanced structures, comparing recently proposed design choices and providing basic examples for each section. This study distances itself from traditional views centered on neural networks and reinforcement learning, and points toward a yet unexplored direction in active inference: hybrid representations in hierarchical models.
♻ ☆ Digital Twin Calibration for Biological System-of-Systems: Cell Culture Manufacturing Process
Biomanufacturing innovation relies on an efficient Design of Experiments (DoEs) to optimize processes and product quality. Traditional DoE methods, ignoring the underlying bioprocessing mechanisms, often suffer from a lack of interpretability and sample efficiency. This limitation motivates us to create a new optimal learning approach for digital twin model calibration. In this study, we consider the cell culture process multi-scale mechanistic model, also known as Biological System-of-Systems (Bio-SoS). This model with a modular design, composed of sub-models, allows us to integrate data across various production processes. To calibrate the Bio-SoS digital twin, we evaluate the mean squared error of model prediction and develop a computational approach to quantify the impact of parameter estimation error of individual sub-models on the prediction accuracy of digital twin, which can guide sample-efficient and interpretable DoEs.
comment: 11 pages, 5 figures
♻ ☆ Nearest Neighbor Sampling for Covariate Shift Adaptation
Many existing covariate shift adaptation methods estimate sample weights given to loss values to mitigate the gap between the source and the target distribution. However, estimating the optimal weights typically involves computationally expensive matrix inversion and hyper-parameter tuning. In this paper, we propose a new covariate shift adaptation method which avoids estimating the weights. The basic idea is to directly work on unlabeled target data, labeled according to the $k$-nearest neighbors in the source dataset. Our analysis reveals that setting $k = 1$ is an optimal choice. This property removes the necessity of tuning the only hyper-parameter $k$ and leads to a running time quasi-linear in the sample size. Our results include sharp rates of convergence for our estimator, with a tight control of the mean square error and explicit constants. In particular, the variance of our estimators has the same rate of convergence as for standard parametric estimation despite their non-parametric nature. The proposed estimator shares similarities with some matching-based treatment effect estimators used, e.g., in biostatistics, econometrics, and epidemiology. Our experiments show that it achieves drastic reduction in the running time with remarkable accuracy.
♻ ☆ Latent variable model for high-dimensional point process with structured missingness
Longitudinal data are important in numerous fields, such as healthcare, sociology and seismology, but real-world datasets present notable challenges for practitioners because they can be high-dimensional, contain structured missingness patterns, and measurement time points can be governed by an unknown stochastic process. While various solutions have been suggested, the majority of them have been designed to account for only one of these challenges. In this work, we propose a flexible and efficient latent-variable model that is capable of addressing all these limitations. Our approach utilizes Gaussian processes to capture temporal correlations between samples and their associated missingness masks as well as to model the underlying point process. We construct our model as a variational autoencoder together with deep neural network parameterised encoder and decoder models, and develop a scalable amortised variational inference approach for efficient model training. We demonstrate competitive performance using both simulated and real datasets.
♻ ☆ Catastrophic-risk-aware reinforcement learning with extreme-value-theory-based policy gradients
This paper tackles the problem of mitigating catastrophic risk (which is risk with very low frequency but very high severity) in the context of a sequential decision making process. This problem is particularly challenging due to the scarcity of observations in the far tail of the distribution of cumulative costs (negative rewards). A policy gradient algorithm is developed, that we call POTPG. It is based on approximations of the tail risk derived from extreme value theory. Numerical experiments highlight the out-performance of our method over common benchmarks, relying on the empirical distribution. An application to financial risk management, more precisely to the dynamic hedging of a financial option, is presented.
comment: The Python code to replicate the various numerical experiments of this paper is available at https://github.com/parisadavar/EVT-policy-gradient-RL
♻ ☆ Tracking Object Positions in Reinforcement Learning: A Metric for Keypoint Detection (extended version)
Reinforcement learning (RL) for robot control typically requires a detailed representation of the environment state, including information about task-relevant objects not directly measurable. Keypoint detectors, such as spatial autoencoders (SAEs), are a common approach to extracting a low-dimensional representation from high-dimensional image data. SAEs aim at spatial features such as object positions, which are often useful representations in robotic RL. However, whether an SAE is actually able to track objects in the scene and thus yields a spatial state representation well suited for RL tasks has rarely been examined due to a lack of established metrics. In this paper, we propose to assess the performance of an SAE instance by measuring how well keypoints track ground truth objects in images. We present a computationally lightweight metric and use it to evaluate common baseline SAE architectures on image data from a simulated robot task. We find that common SAEs differ substantially in their spatial extraction capability. Furthermore, we validate that SAEs that perform well in our metric achieve superior performance when used in downstream RL. Thus, our metric is an effective and lightweight indicator of RL performance before executing expensive RL training. Building on these insights, we identify three key modifications of SAE architectures to improve tracking performance. We make our code available at anonymous.4open.science/r/sae-rl.
comment: 19 pages, 12 figures
♻ ☆ The G-invariant graph Laplacian
Graph Laplacian based algorithms for data lying on a manifold have been proven effective for tasks such as dimensionality reduction, clustering, and denoising. In this work, we consider data sets whose data points lie on a manifold that is closed under the action of a known unitary matrix Lie group G. We propose to construct the graph Laplacian by incorporating the distances between all the pairs of points generated by the action of G on the data set. We deem the latter construction the ``G-invariant Graph Laplacian'' (G-GL). We show that the G-GL converges to the Laplace-Beltrami operator on the data manifold, while enjoying a significantly improved convergence rate compared to the standard graph Laplacian which only utilizes the distances between the points in the given data set. Furthermore, we show that the G-GL admits a set of eigenfunctions that have the form of certain products between the group elements and eigenvectors of certain matrices, which can be estimated from the data efficiently using FFT-type algorithms. We demonstrate our construction and its advantages on the problem of filtering data on a noisy manifold closed under the action of the special unitary group SU(2).
♻ ☆ Learning Decision Policies with Instrumental Variables through Double Machine Learning ICML 2024
A common issue in learning decision-making policies in data-rich settings is spurious correlations in the offline dataset, which can be caused by hidden confounders. Instrumental variable (IV) regression, which utilises a key unconfounded variable known as the instrument, is a standard technique for learning causal relationships between confounded action, outcome, and context variables. Most recent IV regression algorithms use a two-stage approach, where a deep neural network (DNN) estimator learnt in the first stage is directly plugged into the second stage, in which another DNN is used to estimate the causal effect. Naively plugging the estimator can cause heavy bias in the second stage, especially when regularisation bias is present in the first stage estimator. We propose DML-IV, a non-linear IV regression method that reduces the bias in two-stage IV regressions and effectively learns high-performing policies. We derive a novel learning objective to reduce bias and design the DML-IV algorithm following the double/debiased machine learning (DML) framework. The learnt DML-IV estimator has strong convergence rate and $O(N^{-1/2})$ suboptimality guarantees that match those when the dataset is unconfounded. DML-IV outperforms state-of-the-art IV regression methods on IV regression benchmarks and learns high-performing policies in the presence of instruments.
comment: Accepted at ICML 2024
♻ ☆ MatText: Do Language Models Need More than Text & Scale for Materials Modeling?
Effectively representing materials as text has the potential to leverage the vast advancements of large language models (LLMs) for discovering new materials. While LLMs have shown remarkable success in various domains, their application to materials science remains underexplored. A fundamental challenge is the lack of understanding of how to best utilize text-based representations for materials modeling. This challenge is further compounded by the absence of a comprehensive benchmark to rigorously evaluate the capabilities and limitations of these text representations in capturing the complexity of material systems. To address this gap, we propose MatText, a suite of benchmarking tools and datasets designed to systematically evaluate the performance of language models in modeling materials. MatText encompasses nine distinct text-based representations for material systems, including several novel representations. Each representation incorporates unique inductive biases that capture relevant information and integrate prior physical knowledge about materials. Additionally, MatText provides essential tools for training and benchmarking the performance of language models in the context of materials science. These tools include standardized dataset splits for each representation, probes for evaluating sensitivity to geometric factors, and tools for seamlessly converting crystal structures into text. Using MatText, we conduct an extensive analysis of the capabilities of language models in modeling materials. Our findings reveal that current language models consistently struggle to capture the geometric information crucial for materials modeling across all representations. Instead, these models tend to leverage local information, which is emphasized in some of our novel representations. Our analysis underscores MatText's ability to reveal shortcomings of text-based methods for materials design.
♻ ☆ The Intelligible and Effective Graph Neural Additive Networks
Graph Neural Networks (GNNs) have emerged as the predominant approach for learning over graph-structured data. However, most GNNs operate as black-box models and require post-hoc explanations, which may not suffice in high-stakes scenarios where transparency is crucial. In this paper, we present a GNN that is interpretable by design. Our model, Graph Neural Additive Network (GNAN), is a novel extension of the interpretable class of Generalized Additive Models, and can be visualized and fully understood by humans. GNAN is designed to be fully interpretable, allowing both global and local explanations at the feature and graph levels through direct visualization of the model. These visualizations describe the exact way the model uses the relationships between the target variable, the features, and the graph. We demonstrate the intelligibility of GNANs in a series of examples on different tasks and datasets. In addition, we show that the accuracy of GNAN is on par with black-box GNNs, making it suitable for critical applications where transparency is essential, alongside high accuracy.
♻ ☆ LatentExplainer: Explaining Latent Representations in Deep Generative Models with Multi-modal Foundation Models
Deep generative models like VAEs and diffusion models have advanced various generation tasks by leveraging latent variables to learn data distributions and generate high-quality samples. Despite the field of explainable AI making strides in interpreting machine learning models, understanding latent variables in generative models remains challenging. This paper introduces LatentExplainer, a framework for automatically generating semantically meaningful explanations of latent variables in deep generative models. LatentExplainer tackles three main challenges: inferring the meaning of latent variables, aligning explanations with inductive biases, and handling varying degrees of explainability. By perturbing latent variables and interpreting changes in generated data, the framework provides a systematic approach to understanding and controlling the data generation process, enhancing the transparency and interpretability of deep generative models. We evaluate our proposed method on several real-world and synthetic datasets, and the results demonstrate superior performance in generating high-quality explanations of latent variables.
♻ ☆ Towards Learning Stochastic Population Models by Gradient Descent
Increasing effort is put into the development of methods for learning mechanistic models from data. This task entails not only the accurate estimation of parameters but also a suitable model structure. Recent work on the discovery of dynamical systems formulates this problem as a linear equation system. Here, we explore several simulation-based optimization approaches, which allow much greater freedom in the objective formulation and weaker conditions on the available data. We show that even for relatively small stochastic population models, simultaneous estimation of parameters and structure poses major challenges for optimization procedures. Particularly, we investigate the application of the local stochastic gradient descent method, commonly used for training machine learning models. We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty. We give an outlook on how this challenge can be overcome.
comment: 5 pages, 2 figures
♻ ☆ Deep Maxout Network-based Feature Fusion and Political Tangent Search Optimizer enabled Transfer Learning for Thalassemia Detection
Thalassemia is a heritable blood disorder which is the outcome of a genetic defect causing lack of production of hemoglobin polypeptide chains. However, there is less understanding of the precise frequency as well as sharing in these areas. Knowing about the frequency of thalassemia occurrence and dependable mutations is thus a significant step in preventing, controlling, and treatment planning. Here, Political Tangent Search Optimizer based Transfer Learning (PTSO_TL) is introduced for thalassemia detection. Initially, input data obtained from a particular dataset is normalized in the data normalization stage. Quantile normalization is utilized in the data normalization stage, and the data are then passed to the feature fusion phase, in which Weighted Euclidean Distance with Deep Maxout Network (DMN) is utilized. Thereafter, data augmentation is performed using the oversampling method to increase data dimensionality. Lastly, thalassemia detection is carried out by TL, wherein a convolutional neural network (CNN) is utilized with hyperparameters from a trained model such as Xception. TL is tuned by PTSO, and the training algorithm PTSO is presented by merging of Political Optimizer (PO) and Tangent Search Algorithm (TSA). Furthermore, PTSO_TL obtained maximal precision, recall, and f-measure values of about 94.3%, 96.1%, and 95.2%, respectively.
♻ ☆ MALIBO: Meta-learning for Likelihood-free Bayesian Optimization
Bayesian optimization (BO) is a popular method to optimize costly black-box functions. While traditional BO optimizes each new target task from scratch, meta-learning has emerged as a way to leverage knowledge from related tasks to optimize new tasks faster. However, existing meta-learning BO methods rely on surrogate models that suffer from scalability issues and are sensitive to observations with different scales and noise types across tasks. Moreover, they often overlook the uncertainty associated with task similarity. This leads to unreliable task adaptation when only limited observations are obtained or when the new tasks differ significantly from the related tasks. To address these limitations, we propose a novel meta-learning BO approach that bypasses the surrogate model and directly learns the utility of queries across tasks. Our method explicitly models task uncertainty and includes an auxiliary model to enable robust adaptation to new tasks. Extensive experiments show that our method demonstrates strong anytime performance and outperforms state-of-the-art meta-learning BO methods in various benchmarks.
♻ ☆ PDFA Distillation via String Probability Queries
Probabilistic deterministic finite automata (PDFA) are discrete event systems modeling conditional probabilities over languages: Given an already seen sequence of tokens they return the probability of tokens of interest to appear next. These types of models have gained interest in the domain of explainable machine learning, where they are used as surrogate models for neural networks trained as language models. In this work we present an algorithm to distill PDFA from neural networks. Our algorithm is a derivative of the L# algorithm and capable of learning PDFA from a new type of query, in which the algorithm infers conditional probabilities from the probability of the queried string to occur. We show its effectiveness on a recent public dataset by distilling PDFA from a set of trained neural networks.
comment: LearnAUT 2024
♻ ☆ Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey
The Internet of things (IoT) can significantly enhance the quality of human life, specifically in healthcare, attracting extensive attentions to IoT-healthcare services. Meanwhile, the human digital twin (HDT) is proposed as an innovative paradigm that can comprehensively characterize the replication of the individual human body in the digital world and reflect its physical status in real time. Naturally, HDT is envisioned to empower IoT-healthcare beyond the application of healthcare monitoring by acting as a versatile and vivid human digital testbed, simulating the outcomes and guiding the practical treatments. However, successfully establishing HDT requires high-fidelity virtual modeling and strong information interactions but possibly with scarce, biased and noisy data. Fortunately, a recent popular technology called generative artificial intelligence (GAI) may be a promising solution because it can leverage advanced AI algorithms to automatically create, manipulate, and modify valuable while diverse data. This survey particularly focuses on the implementation of GAI-driven HDT in IoT-healthcare. We start by introducing the background of IoT-healthcare and the potential of GAI-driven HDT. Then, we delve into the fundamental techniques and present the overall framework of GAI-driven HDT. After that, we explore the realization of GAI-driven HDT in detail, including GAI-enabled data acquisition, communication, data management, digital modeling, and data analysis. Besides, we discuss typical IoT-healthcare applications that can be revolutionized by GAI-driven HDT, namely personalized health monitoring and diagnosis, personalized prescription, and personalized rehabilitation. Finally, we conclude this survey by highlighting some future research directions.
♻ ☆ Networked Communication for Decentralised Agents in Mean-Field Games
We introduce networked communication to the mean-field game framework, in particular to oracle-free settings where $N$ decentralised agents learn along a single, non-episodic run of the empirical system. We prove that our architecture, with only a few reasonable assumptions about network structure, has sample guarantees bounded between those of the centralised- and independent-learning cases. We discuss how the sample guarantees of the three theoretical algorithms do not actually result in practical convergence. We therefore show that in practical settings where the theoretical parameters are not observed (leading to poor estimation of the Q-function), our communication scheme significantly accelerates convergence over the independent case (and often even the centralised case), without relying on the assumption of a centralised learner. We contribute further practical enhancements to all three theoretical algorithms, allowing us to present their first empirical demonstrations. Our experiments confirm that we can remove several of the theoretical assumptions of the algorithms, and display the empirical convergence benefits brought by our new networked communication. We additionally show that the networked approach has significant advantages, over both the centralised and independent alternatives, in terms of robustness to unexpected learning failures and to changes in population size.
♻ ☆ Kandinsky 3.0 Technical Report
We present Kandinsky 3.0, a large-scale text-to-image generation model based on latent diffusion, continuing the series of text-to-image Kandinsky models and reflecting our progress to achieve higher quality and realism of image generation. In this report we describe the architecture of the model, the data collection procedure, the training technique, and the production system for user interaction. We focus on the key components that, as we have identified as a result of a large number of experiments, had the most significant impact on improving the quality of our model compared to the others. We also describe extensions and applications of our model, including super resolution, inpainting, image editing, image-to-video generation, and a distilled version of Kandinsky 3.0 - Kandinsky 3.1, which does inference in 4 steps of the reverse process and 20 times faster without visual quality decrease. By side-by-side human preferences comparison, Kandinsky becomes better in text understanding and works better on specific domains. The code is available at https://github.com/ai-forever/Kandinsky-3
comment: Project page: https://ai-forever.github.io/Kandinsky-3
♻ ☆ Straggler-Resilient Differentially-Private Decentralized Learning
We consider the straggler problem in decentralized learning over a logical ring while preserving user data privacy. Especially, we extend the recently proposed framework of differential privacy (DP) amplification by decentralization by Cyffers and Bellet to include overall training latency--comprising both computation and communication latency. Analytical results on both the convergence speed and the DP level are derived for both a skipping scheme (which ignores the stragglers after a timeout) and a baseline scheme that waits for each node to finish before the training continues. A trade-off between overall training latency, accuracy, and privacy, parameterized by the timeout of the skipping scheme, is identified and empirically validated for logistic regression on a real-world dataset and for image classification using the MNIST and CIFAR-10 datasets.
comment: To appear in the IEEE Journal on Selected Areas in Information Theory (special issue on Information-Theoretic Methods for Trustworthy and Reliable Machine Learning)
♻ ☆ M2Lingual: Enhancing Multilingual, Multi-Turn Instruction Alignment in Large Language Models
Instruction finetuning (IFT) is critical for aligning Large Language Models (LLMs) to follow instructions. While many effective IFT datasets have been introduced recently, they predominantly focus on high-resource languages like English. To better align LLMs across a broad spectrum of languages and tasks, we propose a fully synthetic, novel taxonomy (Evol) guided Multilingual, Multi-turn instruction finetuning dataset, called M2Lingual. It is constructed by first selecting a diverse set of seed examples and then utilizing the proposed Evol taxonomy to convert these seeds into complex and challenging multi-turn instructions. We demonstrate the effectiveness of M2Lingual by training LLMs of varying sizes and showcasing the enhanced performance across a diverse set of languages. We contribute the 2 step Evol taxonomy with the guided generation code: https://github.com/ServiceNow/M2Lingual, as well as the first fully synthetic, general and task-oriented, multi-turn, multilingual dataset built with Evol - M2Lingual: https://huggingface.co/datasets/ServiceNow-AI/ M2Lingual - containing 182K total IFT pairs, covering 70 languages and 17+ NLP tasks.
comment: 39 pages
♻ ☆ Optimal Rate of Kernel Regression in Large Dimensions
We perform a study on kernel regression for large-dimensional data (where the sample size $n$ is polynomially depending on the dimension $d$ of the samples, i.e., $n\asymp d^{\gamma}$ for some $\gamma >0$ ). We first build a general tool to characterize the upper bound and the minimax lower bound of kernel regression for large dimensional data through the Mendelson complexity $\varepsilon_{n}^{2}$ and the metric entropy $\bar{\varepsilon}_{n}^{2}$ respectively. When the target function falls into the RKHS associated with a (general) inner product model defined on $\mathbb{S}^{d}$, we utilize the new tool to show that the minimax rate of the excess risk of kernel regression is $n^{-1/2}$ when $n\asymp d^{\gamma}$ for $\gamma =2, 4, 6, 8, \cdots$. We then further determine the optimal rate of the excess risk of kernel regression for all the $\gamma>0$ and find that the curve of optimal rate varying along $\gamma$ exhibits several new phenomena including the multiple descent behavior and the periodic plateau behavior. As an application, For the neural tangent kernel (NTK), we also provide a similar explicit description of the curve of optimal rate. As a direct corollary, we know these claims hold for wide neural networks as well.
♻ ☆ BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation
In this paper, we present a new embedding model, called M3-Embedding, which is distinguished for its versatility in Multi-Linguality, Multi-Functionality, and Multi-Granularity. It can support more than 100 working languages, leading to new state-of-the-art performances on multi-lingual and cross-lingual retrieval tasks. It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval, which provides a unified model foundation for real-world IR applications. It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens. The effective training of M3-Embedding involves the following technical contributions. We propose a novel self-knowledge distillation approach, where the relevance scores from different retrieval functionalities can be integrated as the teacher signal to enhance the training quality. We also optimize the batching strategy, enabling a large batch size and high training throughput to ensure the discriminativeness of embeddings. To the best of our knowledge, M3-Embedding is the first embedding model which realizes such a strong versatility. The model and code will be publicly available at https://github.com/FlagOpen/FlagEmbedding.
♻ ☆ Automatic Data Curation for Self-Supervised Learning: A Clustering-Based Approach
Self-supervised features are the cornerstone of modern machine learning systems. They are typically pre-trained on data collections whose construction and curation typically require extensive human effort. This manual process has some limitations similar to those encountered in supervised learning, e.g., the crowd-sourced selection of data is costly and time-consuming, preventing scaling the dataset size. In this work, we consider the problem of automatic curation of high-quality datasets for self-supervised pre-training. We posit that such datasets should be large, diverse and balanced, and propose a clustering-based approach for building ones satisfying all these criteria. Our method involves successive and hierarchical applications of $k$-means on a large and diverse data repository to obtain clusters that distribute uniformly among data concepts, followed by a hierarchical, balanced sampling step from these clusters. Extensive experiments on three different data domains including web-based images, satellite images and text show that features trained on our automatically curated datasets outperform those trained on uncurated data while being on par or better than ones trained on manually curated data. Code is available at https://github.com/facebookresearch/ssl-data-curation.
♻ ☆ Large Language Model Enhanced Clustering for News Event Detection
The news landscape is continuously evolving, with an ever-increasing volume of information from around the world. Automated event detection within this vast data repository is essential for monitoring, identifying, and categorizing significant news occurrences across diverse platforms. This paper presents an event detection framework that leverages Large Language Models (LLMs) combined with clustering analysis to detect news events from the Global Database of Events, Language, and Tone (GDELT). The framework enhances event clustering through both pre-event detection tasks (keyword extraction and text embedding) and post-event detection tasks (event summarization and topic labelling). We also evaluate the impact of various textual embeddings on the quality of clustering outcomes, ensuring robust news categorization. Additionally, we introduce a novel Cluster Stability Assessment Index (CSAI) to assess the validity and robustness of clustering results. CSAI utilizes multiple feature vectors to provide a new way of measuring clustering quality. Our experiments indicate that the use of LLM embedding in the event detection framework has significantly improved the results, demonstrating greater robustness in terms of CSAI scores. Moreover, post-event detection tasks generate meaningful insights, facilitating effective interpretation of event clustering results. Overall, our experimental results indicate that the proposed framework offers valuable insights and could enhance the accuracy in news analysis and reporting.
♻ ☆ Effort and Size Estimation in Software Projects with Large Language Model-based Intelligent Interfaces
The advancement of Large Language Models (LLM) has also resulted in an equivalent proliferation in its applications. Software design, being one, has gained tremendous benefits in using LLMs as an interface component that extends fixed user stories. However, inclusion of LLM-based AI agents in software design often poses unexpected challenges, especially in the estimation of development efforts. Through the example of UI-based user stories, we provide a comparison against traditional methods and propose a new way to enhance specifications of natural language-based questions that allows for the estimation of development effort by taking into account data sources, interfaces and algorithms.
♻ ☆ SampleAttention: Near-Lossless Acceleration of Long Context LLM Inference with Adaptive Structured Sparse Attention
Large language models (LLMs) now support extremely long context windows, but the quadratic complexity of vanilla attention results in significantly long Time-to-First-Token (TTFT) latency. Existing approaches to address this complexity require additional pretraining or finetuning, and often sacrifice model accuracy. In this paper, we first provide both theoretical and empirical foundations for near-lossless sparse attention. We find dynamically capturing head-specific sparse patterns at runtime with low overhead is crucial. To address this, we propose SampleAttention, an adaptive structured and near-lossless sparse attention. Leveraging observed significant sparse patterns, SampleAttention attends to a fixed percentage of adjacent tokens to capture local window patterns, and employs a two-stage query-guided key-value filtering approach, which adaptively select a minimum set of key-values with low overhead, to capture column stripe patterns. Comprehensive evaluations show that SampleAttention can seamlessly replace vanilla attention in off-the-shelf LLMs with nearly no accuracy loss, and reduces TTFT by up to $2.42\times$ compared with FlashAttention.
♻ ☆ ULLER: A Unified Language for Learning and Reasoning
The field of neuro-symbolic artificial intelligence (NeSy), which combines learning and reasoning, has recently experienced significant growth. There now are a wide variety of NeSy frameworks, each with its own specific language for expressing background knowledge and how to relate it to neural networks. This heterogeneity hinders accessibility for newcomers and makes comparing different NeSy frameworks challenging. We propose a language for NeSy, which we call ULLER, a Unfied Language for LEarning and Reasoning. ULLER encompasses a wide variety of settings, while ensuring that knowledge described in it can be used in existing NeSy systems. ULLER has a first-order logic syntax specialised for NeSy for which we provide example semantics including classical FOL, fuzzy logic, and probabilistic logic. We believe ULLER is a first step towards making NeSy research more accessible and comparable, paving the way for libraries that streamline training and evaluation across a multitude of semantics, knowledge bases, and NeSy systems.
comment: Accepted at NeSy 2024
♻ ☆ Position: Explain to Question not to Justify
Explainable Artificial Intelligence (XAI) is a young but very promising field of research. Unfortunately, the progress in this field is currently slowed down by divergent and incompatible goals. We separate various threads tangled within the area of XAI into two complementary cultures of human/value-oriented explanations (BLUE XAI) and model/validation-oriented explanations (RED XAI). This position paper argues that the area of RED XAI is currently under-explored, i.e., more methods for explainability are desperately needed to question models (e.g., extract knowledge from well-performing models as well as spotting and fixing bugs in faulty models), and the area of RED XAI hides great opportunities and potential for important research necessary to ensure the safety of AI systems. We conclude this paper by presenting promising challenges in this area.
♻ ☆ Automatic Regularization for Linear MMSE Filters
In this work, we consider the problem of regularization in the design of minimum mean square error (MMSE) linear filters. Using the relationship with statistical machine learning methods, using a Bayesian approach, the regularization parameter is found from the observed signals in a simple and automatic manner. The proposed approach is illustrated in system identification and beamforming examples, where the automatic regularization is shown to yield near-optimal results.
♻ ☆ SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models ICML 2024
Most of the existing Large Language Model (LLM) benchmarks on scientific problem reasoning focus on problems grounded in high-school subjects and are confined to elementary algebraic operations. To systematically examine the reasoning capabilities required for solving complex scientific problems, we introduce an expansive benchmark suite SciBench for LLMs. SciBench contains a carefully curated dataset featuring a range of collegiate-level scientific problems from mathematics, chemistry, and physics domains. Based on the dataset, we conduct an in-depth benchmarking study of representative open-source and proprietary LLMs with various prompting strategies. The results reveal that the current LLMs fall short of delivering satisfactory performance, with the best overall score of merely 43.22%. Furthermore, through a detailed user study, we categorize the errors made by LLMs into ten problem-solving abilities. Our analysis indicates that no single prompting strategy significantly outperforms the others and some strategies that demonstrate improvements in certain problem-solving skills could result in declines in other skills. We envision that SciBench will catalyze further developments in the reasoning abilities of LLMs, thereby ultimately contributing to scientific research and discovery.
comment: To appear at ICML 2024
♻ ☆ Active Preference Learning for Large Language Models
As large language models (LLMs) become more capable, fine-tuning techniques for aligning with human intent are increasingly important. A key consideration for aligning these models is how to most effectively use human resources, or model resources in the case where LLMs themselves are used as oracles. Reinforcement learning from Human or AI preferences (RLHF/RLAIF) is the most prominent example of such a technique, but is complex and often unstable. Direct Preference Optimization (DPO) has recently been proposed as a simpler and more stable alternative. In this work, we develop an active learning strategy for DPO to make better use of preference labels. We propose a practical acquisition function for prompt/completion pairs based on the predictive entropy of the language model and a measure of certainty of the implicit preference model optimized by DPO. We demonstrate how our approach improves both the rate of learning and final performance of fine-tuning on pairwise preference data.
comment: 13 pages, 5 figures, 6 tables
♻ ☆ Latent Logic Tree Extraction for Event Sequence Explanation from LLMs
Modern high-stakes systems, such as healthcare or robotics, often generate vast streaming event sequences. Our goal is to design an efficient, plug-and-play tool to elicit logic tree-based explanations from Large Language Models (LLMs) to provide customized insights into each observed event sequence. Built on the temporal point process model for events, our method employs the likelihood function as a score to evaluate generated logic trees. We propose an amortized Expectation-Maximization (EM) learning framework and treat the logic tree as latent variables. In the E-step, we evaluate the posterior distribution over the latent logic trees using an LLM prior and the likelihood of the observed event sequences. LLM provides a high-quality prior for the latent logic trees, however, since the posterior is built over a discrete combinatorial space, we cannot get the closed-form solution. We propose to generate logic tree samples from the posterior using a learnable GFlowNet, which is a diversity-seeking generator for structured discrete variables. The M-step employs the generated logic rules to approximate marginalization over the posterior, facilitating the learning of model parameters and refining the tunable LLM prior parameters. In the online setting, our locally built, lightweight model will iteratively extract the most relevant rules from LLMs for each sequence using only a few iterations. Empirical demonstrations showcase the promising performance and adaptability of our framework.
♻ ☆ QQQ: Quality Quattuor-Bit Quantization for Large Language Models
Quantization is a proven effective method for compressing large language models. Although popular techniques like W8A8 and W4A16 effectively maintain model performance, they often fail to concurrently speed up the prefill and decoding stages of inference. W4A8 is a promising strategy to accelerate both of them while usually leads to a significant performance degradation. To address these issues, we present QQQ, a Quality Quattuor-bit Quantization method with 4-bit weights and 8-bit activations. QQQ employs adaptive smoothing and Hessian-based compensation, significantly enhancing the performance of quantized models without extensive training. Furthermore, we meticulously engineer W4A8 GEMM kernels to increase inference speed. Our specialized per-channel W4A8 GEMM and per-group W4A8 GEMM achieve impressive speed increases of 3.67$\times$ and 3.29 $\times$ over FP16 GEMM. Our extensive experiments show that QQQ achieves performance on par with existing state-of-the-art LLM quantization methods while significantly accelerating inference, achieving speed boosts up to 2.24 $\times$, 2.10$\times$, and 1.25$\times$ compared to FP16, W8A8, and W4A16, respectively.
♻ ☆ MOYU: A Theoretical Study on Massive Over-activation Yielded Uplifts in LLMs
Massive Over-activation Yielded Uplifts(MOYU) is an inherent property of large language models, and dynamic activation(DA) based on the MOYU property is a clever yet under-explored strategy designed to accelerate inference in these models. Existing methods that utilize MOYU often face a significant 'Impossible Trinity': struggling to simultaneously maintain model performance, enhance inference speed, and extend applicability across various architectures. Due to the theoretical ambiguities surrounding MOYU, this paper elucidates the root cause of the MOYU property and outlines the mechanisms behind two primary limitations encountered by current DA methods: 1) history-related activation uncertainty, and 2) semantic-irrelevant activation inertia. Our analysis not only underscores the limitations of current dynamic activation strategies within large-scale LLaMA models but also proposes opportunities for refining the design of future sparsity schemes.
♻ ☆ Logical Closed Loop: Uncovering Object Hallucinations in Large Vision-Language Models ACL 2024
Object hallucination has been an Achilles' heel which hinders the broader applications of large vision-language models (LVLMs). Object hallucination refers to the phenomenon that the LVLMs claim non-existent objects in the image. To mitigate the object hallucinations, instruction tuning and external model-based detection methods have been proposed, which either require large-scare computational resources or depend on the detection result of external models. However, there remains an under-explored field to utilize the LVLM itself to alleviate object hallucinations. In this work, we adopt the intuition that the LVLM tends to respond logically consistently for existent objects but inconsistently for hallucinated objects. Therefore, we propose a Logical Closed Loop-based framework for Object Hallucination Detection and Mitigation, namely LogicCheckGPT. In specific, we devise logical consistency probing to raise questions with logical correlations, inquiring about attributes from objects and vice versa. Whether their responses can form a logical closed loop serves as an indicator of object hallucination. As a plug-and-play method, it can be seamlessly applied to all existing LVLMs. Comprehensive experiments conducted on three benchmarks across four LVLMs have demonstrated significant improvements brought by our method, indicating its effectiveness and generality.
comment: Accept to ACL 2024; 19 Pages, 15 Figures, 6 Tables
♻ ☆ Sequential Model for Predicting Patient Adherence in Subcutaneous Immunotherapy for Allergic Rhinitis
Objective: Subcutaneous Immunotherapy (SCIT) is the long-lasting causal treatment of allergic rhinitis (AR). How to enhance the adherence of patients to maximize the benefit of allergen immunotherapy (AIT) plays a crucial role in the management of AIT. This study aims to leverage novel machine learning models to precisely predict the risk of non-adherence of AR patients and related local symptom scores in three years SCIT. Methods: The research develops and analyzes two models, sequential latent-variable model (SLVM) of Sequential Latent Actor-Critic (SLAC) and Long Short-Term Memory (LSTM) evaluating them based on scoring and adherence prediction capabilities. Results: Excluding the biased samples at the first time step, the predictive adherence accuracy of the SLAC models is from 60\% to 72\%, and for LSTM models, it is 66\% to 84\%, varying according to the time steps. The range of Root Mean Square Error (RMSE) for SLAC models is between 0.93 and 2.22, while for LSTM models it is between 1.09 and 1.77. Notably, these RMSEs are significantly lower than the random prediction error of 4.55. Conclusion: We creatively apply sequential models in the long-term management of SCIT with promising accuracy in the prediction of SCIT nonadherence in AR patients. While LSTM outperforms SLAC in adherence prediction, SLAC excels in score prediction for patients undergoing SCIT for AR. The state-action-based SLAC adds flexibility, presenting a novel and effective approach for managing long-term AIT.
comment: Frontiers in Pharmacology, research topic: Methods and Metrics to Measure Medication Adherence
♻ ☆ Empowering Interdisciplinary Insights with Dynamic Graph Embedding Trajectories
We developed DyGETViz, a novel framework for effectively visualizing dynamic graphs (DGs) that are ubiquitous across diverse real-world systems. This framework leverages recent advancements in discrete-time dynamic graph (DTDG) models to adeptly handle the temporal dynamics inherent in dynamic graphs. DyGETViz effectively captures both micro- and macro-level structural shifts within these graphs, offering a robust method for representing complex and massive dynamic graphs. The application of DyGETViz extends to a diverse array of domains, including ethology, epidemiology, finance, genetics, linguistics, communication studies, social studies, and international relations. Through its implementation, DyGETViz has revealed or confirmed various critical insights. These include the diversity of content sharing patterns and the degree of specialization within online communities, the chronological evolution of lexicons across decades, and the distinct trajectories exhibited by aging-related and non-related genes. Importantly, DyGETViz enhances the accessibility of scientific findings to non-domain experts by simplifying the complexities of dynamic graphs. Our framework is released as an open-source Python package for use across diverse disciplines. Our work not only addresses the ongoing challenges in visualizing and analyzing DTDG models but also establishes a foundational framework for future investigations into dynamic graph representation and analysis across various disciplines.
comment: 27 pages, 11 figures
♻ ☆ Leveraging Knowledge Distillation for Lightweight Skin Cancer Classification: Balancing Accuracy and Computational Efficiency
Skin cancer is a major concern to public health, accounting for one-third of the reported cancers. If not detected early, the cancer has the potential for severe consequences. Recognizing the critical need for effective skin cancer classification, we address the limitations of existing models, which are often too large to deploy in areas with limited computational resources. In response, we present a knowledge distillation based approach for creating a lightweight yet high-performing classifier. The proposed solution involves fusing three models, namely ResNet152V2, ConvNeXtBase, and ViT Base, to create an effective teacher model. The teacher model is then employed to guide a lightweight student model of size 2.03 MB. This student model is further compressed to 469.77 KB using 16-bit quantization, enabling smooth incorporation into edge devices. With six-stage image preprocessing, data augmentation, and a rigorous ablation study, the model achieves an impressive accuracy of 98.75% on the HAM10000 dataset and 98.94% on the Kaggle dataset in classifying benign and malignant skin cancers. With its high accuracy and compact size, our model appears to be a potential choice for accurate skin cancer classification, particularly in resource-constrained settings.
♻ ☆ FlowVQA: Mapping Multimodal Logic in Visual Question Answering with Flowcharts ACL 2024
Existing benchmarks for visual question answering lack in visual grounding and complexity, particularly in evaluating spatial reasoning skills. We introduce FlowVQA, a novel benchmark aimed at assessing the capabilities of visual question-answering multimodal language models in reasoning with flowcharts as visual contexts. FlowVQA comprises 2,272 carefully generated and human-verified flowchart images from three distinct content sources, along with 22,413 diverse question-answer pairs, to test a spectrum of reasoning tasks, including information localization, decision-making, and logical progression. We conduct a thorough baseline evaluation on a suite of both open-source and proprietary multimodal language models using various strategies, followed by an analysis of directional bias. The results underscore the benchmark's potential as a vital tool for advancing the field of multimodal modeling, providing a focused and challenging environment for enhancing model performance in visual and logical reasoning tasks.
comment: Accepted in ACL 2024 (Findings), 21 pages, 7 figures, 9 Tables
♻ ☆ Transcendence: Generative Models Can Outperform The Experts That Train Them
Generative models are trained with the simple objective of imitating the conditional probability distribution induced by the data they are trained on. Therefore, when trained on data generated by humans, we may not expect the artificial model to outperform the humans on their original objectives. In this work, we study the phenomenon of transcendence: when a generative model achieves capabilities that surpass the abilities of the experts generating its data. We demonstrate transcendence by training an autoregressive transformer to play chess from game transcripts, and show that the trained model can sometimes achieve better performance than all players in the dataset. We theoretically prove that transcendence can be enabled by low-temperature sampling, and rigorously assess this claim experimentally. Finally, we discuss other sources of transcendence, laying the groundwork for future investigation of this phenomenon in a broader setting.
comment: Code, models, and data at https://transcendence.eddie.win
♻ ☆ Behavior Generation with Latent Actions
Generative modeling of complex behaviors from labeled datasets has been a longstanding problem in decision making. Unlike language or image generation, decision making requires modeling actions - continuous-valued vectors that are multimodal in their distribution, potentially drawn from uncurated sources, where generation errors can compound in sequential prediction. A recent class of models called Behavior Transformers (BeT) addresses this by discretizing actions using k-means clustering to capture different modes. However, k-means struggles to scale for high-dimensional action spaces or long sequences, and lacks gradient information, and thus BeT suffers in modeling long-range actions. In this work, we present Vector-Quantized Behavior Transformer (VQ-BeT), a versatile model for behavior generation that handles multimodal action prediction, conditional generation, and partial observations. VQ-BeT augments BeT by tokenizing continuous actions with a hierarchical vector quantization module. Across seven environments including simulated manipulation, autonomous driving, and robotics, VQ-BeT improves on state-of-the-art models such as BeT and Diffusion Policies. Importantly, we demonstrate VQ-BeT's improved ability to capture behavior modes while accelerating inference speed 5x over Diffusion Policies. Videos and code can be found https://sjlee.cc/vq-bet
comment: Github repo: https://github.com/jayLEE0301/vq_bet_official
♻ ☆ Kernel vs. Kernel: Exploring How the Data Structure Affects Neural Collapse
Recently, a vast amount of literature has focused on the "Neural Collapse" (NC) phenomenon, which emerges when training neural network (NN) classifiers beyond the zero training error point. The core component of NC is the decrease in the within class variability of the network's deepest features, dubbed as NC1. The theoretical works that study NC are typically based on simplified unconstrained features models (UFMs) that mask any effect of the data on the extent of collapse. In this paper, we provide a kernel-based analysis that does not suffer from this limitation. First, given a kernel function, we establish expressions for the traces of the within- and between-class covariance matrices of the samples' features (and consequently an NC1 metric). Then, we turn to focus on kernels associated with shallow NNs. First, we consider the NN Gaussian Process kernel (NNGP), associated with the network at initialization, and the complement Neural Tangent Kernel (NTK), associated with its training in the "lazy regime". Interestingly, we show that the NTK does not represent more collapsed features than the NNGP for prototypical data models. As NC emerges from training, we then consider an alternative to NTK: the recently proposed adaptive kernel, which generalizes NNGP to model the feature mapping learned from the training data. Contrasting our NC1 analysis for these two kernels enables gaining insights into the effect of data distribution on the extent of collapse, which are empirically aligned with the behavior observed with practical training of NNs.
comment: 34 pages, 14 figures
♻ ☆ AIGB: Generative Auto-bidding via Diffusion Modeling KDD 2024
Auto-bidding plays a crucial role in facilitating online advertising by automatically providing bids for advertisers. Reinforcement learning (RL) has gained popularity for auto-bidding. However, most current RL auto-bidding methods are modeled through the Markovian Decision Process (MDP), which assumes the Markovian state transition. This assumption restricts the ability to perform in long horizon scenarios and makes the model unstable when dealing with highly random online advertising environments. To tackle this issue, this paper introduces AI-Generated Bidding (AIGB), a novel paradigm for auto-bidding through generative modeling. In this paradigm, we propose DiffBid, a conditional diffusion modeling approach for bid generation. DiffBid directly models the correlation between the return and the entire trajectory, effectively avoiding error propagation across time steps in long horizons. Additionally, DiffBid offers a versatile approach for generating trajectories that maximize given targets while adhering to specific constraints. Extensive experiments conducted on the real-world dataset and online A/B test on Alibaba advertising platform demonstrate the effectiveness of DiffBid, achieving 2.81% increase in GMV and 3.36% increase in ROI.
comment: Accepted by KDD 2024
♻ ☆ Active Sequential Two-Sample Testing
A two-sample hypothesis test is a statistical procedure used to determine whether the distributions generating two samples are identical. We consider the two-sample testing problem in a new scenario where the sample measurements (or sample features) are inexpensive to access, but their group memberships (or labels) are costly. To address the problem, we devise the first \emph{active sequential two-sample testing framework} that not only sequentially but also \emph{actively queries}. Our test statistic is a likelihood ratio where one likelihood is found by maximization over all class priors, and the other is provided by a probabilistic classification model. The classification model is adaptively updated and used to predict where the (unlabelled) features have a high dependency on labels; labeling the ``high-dependency'' features leads to the increased power of the proposed testing framework. In theory, we provide the proof that our framework produces an \emph{anytime-valid} $p$-value. In addition, we characterize the proposed framework's gain in testing power by analyzing the mutual information between the feature and label variables in asymptotic and finite-sample scenarios. In practice, we introduce an instantiation of our framework and evaluate it using several experiments; the experiments on the synthetic, MNIST, and application-specific datasets demonstrate that the testing power of the instantiated active sequential test significantly increases while the Type I error is under control.
♻ ☆ FAdam: Adam is a natural gradient optimizer using diagonal empirical Fisher information
This paper establishes a mathematical foundation for the Adam optimizer, elucidating its connection to natural gradient descent through Riemannian and information geometry. We rigorously analyze the diagonal empirical Fisher information matrix (FIM) in Adam, clarifying all detailed approximations and advocating for the use of log probability functions as loss, which should be based on discrete distributions, due to the limitations of empirical FIM. Our analysis uncovers flaws in the original Adam algorithm, leading to proposed corrections such as enhanced momentum calculations, adjusted bias corrections, adaptive epsilon, and gradient clipping. We refine the weight decay term based on our theoretical framework. Our modified algorithm, Fisher Adam (FAdam), demonstrates superior performance across diverse domains including LLM, ASR, and VQ-VAE, achieving state-of-the-art results in ASR.
comment: 21 pages, 4 figures, 6 tables
♻ ☆ Generative Autoencoding of Dropout Patterns
We propose a generative model termed Deciphering Autoencoders. In this model, we assign a unique random dropout pattern to each data point in the training dataset and then train an autoencoder to reconstruct the corresponding data point using this pattern as information to be encoded. Even if a completely random dropout pattern is assigned to each data point regardless of their similarities, a sufficiently large encoder can smoothly map them to a low-dimensional latent space to reconstruct individual training data points. During inference, using a dropout pattern different from those used during training allows the model to function as a generator. Since the training of Deciphering Autoencoders relies solely on reconstruction error, it offers more stable training compared to other generative models. Despite their simplicity, Deciphering Autoencoders show sampling quality comparable to DCGAN on the CIFAR-10 dataset.
♻ ☆ MeGA: Merging Multiple Independently Trained Neural Networks Based on Genetic Algorithm
In this paper, we introduce a novel method for merging the weights of multiple pre-trained neural networks using a genetic algorithm called MeGA. Traditional techniques, such as weight averaging and ensemble methods, often fail to fully harness the capabilities of pre-trained networks. Our approach leverages a genetic algorithm with tournament selection, crossover, and mutation to optimize weight combinations, creating a more effective fusion. This technique allows the merged model to inherit advantageous features from both parent models, resulting in enhanced accuracy and robustness. Through experiments on the CIFAR-10 dataset, we demonstrate that our genetic algorithm-based weight merging method improves test accuracy compared to individual models and conventional methods. This approach provides a scalable solution for integrating multiple pre-trained networks across various deep learning applications. Github is available at: https://github.com/YUNBLAK/MeGA-Merging-Multiple-Independently-Trained-Neural-Networks-Based-on-Genetic-Algorithm
♻ ☆ Submodular Information Selection for Hypothesis Testing with Misclassification Penalties
We consider the problem of selecting an optimal subset of information sources for a hypothesis testing/classification task where the goal is to identify the true state of the world from a finite set of hypotheses, based on finite observation samples from the sources. In order to characterize the learning performance, we propose a misclassification penalty framework, which enables nonuniform treatment of different misclassification errors. In a centralized Bayesian learning setting, we study two variants of the subset selection problem: (i) selecting a minimum cost information set to ensure that the maximum penalty of misclassifying the true hypothesis is below a desired bound and (ii) selecting an optimal information set under a limited budget to minimize the maximum penalty of misclassifying the true hypothesis. Under certain assumptions, we prove that the objective (or constraints) of these combinatorial optimization problems are weak (or approximate) submodular, and establish high-probability performance guarantees for greedy algorithms. Further, we propose an alternate metric for information set selection which is based on the total penalty of misclassification. We prove that this metric is submodular and establish near-optimal guarantees for the greedy algorithms for both the information set selection problems. Finally, we present numerical simulations to validate our theoretical results over several randomly generated instances.
comment: 21 pages, 4 figures
♻ ☆ Robust Model-Based Optimization for Challenging Fitness Landscapes
Protein design, a grand challenge of the day, involves optimization on a fitness landscape, and leading methods adopt a model-based approach where a model is trained on a training set (protein sequences and fitness) and proposes candidates to explore next. These methods are challenged by sparsity of high-fitness samples in the training set, a problem that has been in the literature. A less recognized but equally important problem stems from the distribution of training samples in the design space: leading methods are not designed for scenarios where the desired optimum is in a region that is not only poorly represented in training data, but also relatively far from the highly represented low-fitness regions. We show that this problem of "separation" in the design space is a significant bottleneck in existing model-based optimization tools and propose a new approach that uses a novel VAE as its search model to overcome the problem. We demonstrate its advantage over prior methods in robustly finding improved samples, regardless of the imbalance and separation between low- and high-fitness samples. Our comprehensive benchmark on real and semi-synthetic protein datasets as well as solution design for physics-informed neural networks, showcases the generality of our approach in discrete and continuous design spaces. Our implementation is available at https://github.com/sabagh1994/PGVAE.
♻ ☆ Forecasting Electricity Market Signals via Generative AI
This paper presents a generative artificial intelligence approach to probabilistic forecasting of electricity market signals, such as real-time locational marginal prices and area control error signals. Inspired by the Wiener-Kallianpur innovation representation of nonparametric time series, we propose a weak innovation autoencoder architecture and a novel deep learning algorithm that extracts the canonical independent and identically distributed innovation sequence of the time series, from which samples of future time series are generated. The validity of the proposed approach is established by proving that, under ideal training conditions, the generated samples have the same conditional probability distribution as that of the ground truth. Three applications involving highly dynamic and volatile time series in real-time market operations are considered: (i) locational marginal price forecasting for self-scheduled resources such as battery storage participants, (ii) interregional price spread forecasting for virtual bidders in interchange markets, and (iii) area control error forecasting for frequency regulations. Numerical studies based on market data from multiple independent system operators demonstrate the superior performance of the proposed generative forecaster over leading classical and modern machine learning techniques under both probabilistic and point forecasting metrics.
♻ ☆ 3D-Mol: A Novel Contrastive Learning Framework for Molecular Property Prediction with 3D Information
Molecular property prediction, crucial for early drug candidate screening and optimization, has seen advancements with deep learning-based methods. While deep learning-based methods have advanced considerably, they often fall short in fully leveraging 3D spatial information. Specifically, current molecular encoding techniques tend to inadequately extract spatial information, leading to ambiguous representations where a single one might represent multiple distinct molecules. Moreover, existing molecular modeling methods focus predominantly on the most stable 3D conformations, neglecting other viable conformations present in reality. To address these issues, we propose 3D-Mol, a novel approach designed for more accurate spatial structure representation. It deconstructs molecules into three hierarchical graphs to better extract geometric information. Additionally, 3D-Mol leverages contrastive learning for pretraining on 20 million unlabeled data, treating their conformations with identical topological structures as weighted positive pairs and contrasting ones as negatives, based on the similarity of their 3D conformation descriptors and fingerprints. We compare 3D-Mol with various state-of-the-art baselines on 7 benchmarks and demonstrate our outstanding performance.
♻ ☆ Universal Checkpointing: Efficient and Flexible Checkpointing for Large Scale Distributed Training
Existing checkpointing approaches seem ill-suited for distributed training even though hardware limitations make model parallelism, i.e., sharding model state across multiple accelerators, a requirement for model scaling. Consolidating distributed model state into a single checkpoint unacceptably slows down training, and is impractical at extreme scales. Distributed checkpoints, in contrast, are tightly coupled to the model parallelism and hardware configurations of the training run, and thus unusable on different configurations. To address this problem, we propose Universal Checkpointing, a technique that enables efficient checkpoint creation while providing the flexibility of resuming on arbitrary parallelism strategy and hardware configurations. Universal Checkpointing unlocks unprecedented capabilities for large-scale training such as improved resilience to hardware failures through continued training on remaining healthy hardware, and reduced training time through opportunistic exploitation of elastic capacity. The key insight of Universal Checkpointing is the selection of the optimal representation in each phase of the checkpointing life cycle: distributed representation for saving, and consolidated representation for loading. This is achieved using two key mechanisms. First, the universal checkpoint format, which consists of a consolidated representation of each model parameter and metadata for mapping parameter fragments into training ranks of arbitrary model-parallelism configuration. Second, the universal checkpoint language, a simple but powerful specification language for converting distributed checkpoints into the universal checkpoint format. Our evaluation demonstrates the effectiveness and generality of Universal Checkpointing on state-of-the-art model architectures and a wide range of parallelism techniques.
♻ ☆ Impact of Domain Knowledge and Multi-Modality on Intelligent Molecular Property Prediction: A Systematic Survey
The precise prediction of molecular properties is essential for advancements in drug development, particularly in virtual screening and compound optimization. The recent introduction of numerous deep learning-based methods has shown remarkable potential in enhancing molecular property prediction (MPP), especially improving accuracy and insights into molecular structures. Yet, two critical questions arise: does the integration of domain knowledge augment the accuracy of molecular property prediction and does employing multi-modal data fusion yield more precise results than unique data source methods? To explore these matters, we comprehensively review and quantitatively analyze recent deep learning methods based on various benchmarks. We discover that integrating molecular information significantly improves molecular property prediction (MPP) for both regression and classification tasks. Specifically, regression improvements, measured by reductions in root mean square error (RMSE), are up to 4.0%, while classification enhancements, measured by the area under the receiver operating characteristic curve (ROC-AUC), are up to 1.7%. We also discover that enriching 2D graphs with 1D SMILES boosts multi-modal learning performance for regression tasks by up to 9.1%, and augmenting 2D graphs with 3D information increases performance for classification tasks by up to 13.2%, with both enhancements measured using ROC-AUC. The two consolidated insights offer crucial guidance for future advancements in drug discovery.
♻ ☆ Last Iterate Convergence of Incremental Methods and Applications in Continual Learning
Incremental gradient and incremental proximal methods are a fundamental class of optimization algorithms used for solving finite sum problems, broadly studied in the literature. Yet, without strong convexity, their convergence guarantees have primarily been established for the ergodic (average) iterate. Motivated by applications in continual learning, we obtain the first convergence guarantees for the last iterate of both incremental gradient and incremental proximal methods, in general convex smooth (for both) and convex Lipschitz (for the proximal variants) settings. Our oracle complexity bounds for the last iterate nearly match (i.e., match up to a square-root-log or a log factor) the best known oracle complexity bounds for the average iterate, for both classes of methods. We further obtain generalizations of our results to weighted averaging of the iterates with increasing weights and for randomly permuted ordering of updates. We study incremental proximal methods as a model of continual learning with generalization and argue that large amount of regularization is crucial to preventing catastrophic forgetting. Our results generalize last iterate guarantees for incremental methods compared to state of the art, as such results were previously known only for overparameterized linear models, which correspond to convex quadratic problems with infinitely many solutions.
♻ ☆ Mélange: Cost Efficient Large Language Model Serving by Exploiting GPU Heterogeneity
Large language models (LLMs) are increasingly integrated into many online services, yet they remain cost-prohibitive to deploy due to the requirement of expensive GPU instances. Prior work has addressed the high cost of LLM serving by improving the inference engine, but less attention has been given to selecting the most cost-efficient GPU type(s) for a specific LLM service. There is a large and growing landscape of GPU types and, within these options, higher cost does not always lead to increased performance. Instead, through a comprehensive investigation, we find that three key LLM service characteristics (request size, request rate, SLO) strongly influence GPU cost efficiency, and differing GPU types are most cost efficient for differing LLM service settings. As a result, the most cost-efficient allocation for a given service is typically a mix of heterogeneous GPU types. Based on this analysis, we introduce M\'elange, a GPU allocation framework that navigates these diverse LLM service characteristics and heterogeneous GPU option space to automatically and efficiently derive the minimal-cost GPU allocation for a given LLM service. We formulate the GPU allocation task as a cost-aware bin packing problem where GPUs are bins and items are slices of the service workload. Our formulation's constraints account for a service's unique characteristics, allowing M\'elange to be flexible to support diverse service settings and heterogeneity-aware to adapt the GPU allocation to a specific service. Compared to using only a single GPU type, M\'elange reduces deployment costs by up to 77% in conversational settings, 33% in document-based settings, and 51% in a mixed setting.
♻ ☆ FloorSet -- a VLSI Floorplanning Dataset with Design Constraints of Real-World SoCs
Floorplanning for systems-on-a-chip (SoCs) and its sub-systems is a crucial and non-trivial step of the physical design flow. It represents a difficult combinatorial optimization problem. A typical large scale SoC with 120 partitions generates a search-space of nearly 10E250. As novel machine learning (ML) approaches emerge to tackle such problems, there is a growing need for a modern benchmark that comprises a large training dataset and performance metrics that better reflect real-world constraints and objectives compared to existing benchmarks. To address this need, we present FloorSet -- two comprehensive datasets of synthetic fixed-outline floorplan layouts that reflect the distribution of real SoCs. Each dataset has 1M training samples and 100 test samples where each sample is a synthetic floor-plan. FloorSet-Prime comprises fully-abutted rectilinear partitions and near-optimal wire-length. A simplified dataset that reflects early design phases, FloorSet-Lite comprises rectangular partitions, with under 5 percent white-space and near-optimal wire-length. Both datasets define hard constraints seen in modern design flows such as shape constraints, edge-affinity, grouping constraints, and pre-placement constraints. FloorSet is intended to spur fundamental research on large-scale constrained optimization problems. Crucially, FloorSet alleviates the core issue of reproducibility in modern ML driven solutions to such problems. FloorSet is available as an open-source repository for the research community.
comment: 10 pages, 11 figures
Multimedia 8
☆ MetaDesigner: Advancing Artistic Typography through AI-Driven, User-Centric, and Multilingual WordArt Synthesis
MetaDesigner revolutionizes artistic typography synthesis by leveraging the strengths of Large Language Models (LLMs) to drive a design paradigm centered around user engagement. At the core of this framework lies a multi-agent system comprising the Pipeline, Glyph, and Texture agents, which collectively enable the creation of customized WordArt, ranging from semantic enhancements to the imposition of complex textures. MetaDesigner incorporates a comprehensive feedback mechanism that harnesses insights from multimodal models and user evaluations to refine and enhance the design process iteratively. Through this feedback loop, the system adeptly tunes hyperparameters to align with user-defined stylistic and thematic preferences, generating WordArt that not only meets but exceeds user expectations of visual appeal and contextual relevance. Empirical validations highlight MetaDesigner's capability to effectively serve diverse WordArt applications, consistently producing aesthetically appealing and context-sensitive results.
comment: 18 pages, 16 figures, Project: https://modelscope.cn/studios/WordArt/WordArt
☆ MDF: A Dynamic Fusion Model for Multi-modal Fake News Detection
Fake news detection has received increasing attention from researchers in recent years, especially multi-modal fake news detection containing both text and images.However, many previous works have fed two modal features, text and image, into a binary classifier after a simple concatenation or attention mechanism, in which the features contain a large amount of noise inherent in the data,which in turn leads to intra- and inter-modal uncertainty.In addition, although many methods based on simply splicing two modalities have achieved more prominent results, these methods ignore the drawback of holding fixed weights across modalities, which would lead to some features with higher impact factors being ignored.To alleviate the above problems, we propose a new dynamic fusion framework dubbed MDF for fake news detection.As far as we know, it is the first attempt of dynamic fusion framework in the field of fake news detection.Specifically, our model consists of two main components:(1) UEM as an uncertainty modeling module employing a multi-head attention mechanism to model intra-modal uncertainty; and (2) DFN is a dynamic fusion module based on D-S evidence theory for dynamically fusing the weights of two modalities, text and image.In order to present better results for the dynamic fusion framework, we use GAT for inter-modal uncertainty and weight modeling before DFN.Extensive experiments on two benchmark datasets demonstrate the effectiveness and superior performance of the MDF framework.We also conducted a systematic ablation study to gain insight into our motivation and architectural design.We make our model publicly available to:https://github.com/CoisiniStar/MDF
☆ MimicMotion: High-Quality Human Motion Video Generation with Confidence-aware Pose Guidance
In recent years, generative artificial intelligence has achieved significant advancements in the field of image generation, spawning a variety of applications. However, video generation still faces considerable challenges in various aspects, such as controllability, video length, and richness of details, which hinder the application and popularization of this technology. In this work, we propose a controllable video generation framework, dubbed MimicMotion, which can generate high-quality videos of arbitrary length mimicking specific motion guidance. Compared with previous methods, our approach has several highlights. Firstly, we introduce confidence-aware pose guidance that ensures high frame quality and temporal smoothness. Secondly, we introduce regional loss amplification based on pose confidence, which significantly reduces image distortion. Lastly, for generating long and smooth videos, we propose a progressive latent fusion strategy. By this means, we can produce videos of arbitrary length with acceptable resource consumption. With extensive experiments and user studies, MimicMotion demonstrates significant improvements over previous approaches in various aspects. Detailed results and comparisons are available on our project page: https://tencent.github.io/MimicMotion .
☆ Network Bending of Diffusion Models for Audio-Visual Generation
In this paper we present the first steps towards the creation of a tool which enables artists to create music visualizations using pre-trained, generative, machine learning models. First, we investigate the application of network bending, the process of applying transforms within the layers of a generative network, to image generation diffusion models by utilizing a range of point-wise, tensor-wise, and morphological operators. We identify a number of visual effects that result from various operators, including some that are not easily recreated with standard image editing tools. We find that this process allows for continuous, fine-grain control of image generation which can be helpful for creative applications. Next, we generate music-reactive videos using Stable Diffusion by passing audio features as parameters to network bending operators. Finally, we comment on certain transforms which radically shift the image and the possibilities of learning more about the latent space of Stable Diffusion based on these transforms.
comment: 8 pages, 5 figures, to be published in the proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), for additional image and video examples see https://dzluke.github.io/DAFX2024/
♻ ☆ Kandinsky 3.0 Technical Report
We present Kandinsky 3.0, a large-scale text-to-image generation model based on latent diffusion, continuing the series of text-to-image Kandinsky models and reflecting our progress to achieve higher quality and realism of image generation. In this report we describe the architecture of the model, the data collection procedure, the training technique, and the production system for user interaction. We focus on the key components that, as we have identified as a result of a large number of experiments, had the most significant impact on improving the quality of our model compared to the others. We also describe extensions and applications of our model, including super resolution, inpainting, image editing, image-to-video generation, and a distilled version of Kandinsky 3.0 - Kandinsky 3.1, which does inference in 4 steps of the reverse process and 20 times faster without visual quality decrease. By side-by-side human preferences comparison, Kandinsky becomes better in text understanding and works better on specific domains. The code is available at https://github.com/ai-forever/Kandinsky-3
comment: Project page: https://ai-forever.github.io/Kandinsky-3
♻ ☆ Viewport Prediction for Volumetric Video Streaming by Exploring Video Saliency and Trajectory Information
Volumetric video, also known as hologram video, is a novel medium that portrays natural content in Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR). It is expected to be the next-gen video technology and a prevalent use case for 5G and beyond wireless communication. Considering that each user typically only watches a section of the volumetric video, known as the viewport, it is essential to have precise viewport prediction for optimal performance. However, research on this topic is still in its infancy. In the end, this paper presents and proposes a novel approach, named Saliency and Trajectory Viewport Prediction (STVP), which aims to improve the precision of viewport prediction in volumetric video streaming. The STVP extensively utilizes video saliency information and viewport trajectory. To our knowledge, this is the first comprehensive study of viewport prediction in volumetric video streaming. In particular, we introduce a novel sampling method, Uniform Random Sampling (URS), to reduce computational complexity while still preserving video features in an efficient manner. Then we present a saliency detection technique that incorporates both spatial and temporal information for detecting static, dynamic geometric, and color salient regions. Finally, we intelligently fuse saliency and trajectory information to achieve more accurate viewport prediction. We conduct extensive simulations to evaluate the effectiveness of our proposed viewport prediction methods using state-of-the-art volumetric video sequences. The experimental results show the superiority of the proposed method over existing schemes. The dataset and source code will be publicly accessible after acceptance.
♻ ☆ MIntRec2.0: A Large-scale Benchmark Dataset for Multimodal Intent Recognition and Out-of-scope Detection in Conversations ICLR 2024
Multimodal intent recognition poses significant challenges, requiring the incorporation of non-verbal modalities from real-world contexts to enhance the comprehension of human intentions. Existing benchmark datasets are limited in scale and suffer from difficulties in handling out-of-scope samples that arise in multi-turn conversational interactions. We introduce MIntRec2.0, a large-scale benchmark dataset for multimodal intent recognition in multi-party conversations. It contains 1,245 dialogues with 15,040 samples, each annotated within a new intent taxonomy of 30 fine-grained classes. Besides 9,304 in-scope samples, it also includes 5,736 out-of-scope samples appearing in multi-turn contexts, which naturally occur in real-world scenarios. Furthermore, we provide comprehensive information on the speakers in each utterance, enriching its utility for multi-party conversational research. We establish a general framework supporting the organization of single-turn and multi-turn dialogue data, modality feature extraction, multimodal fusion, as well as in-scope classification and out-of-scope detection. Evaluation benchmarks are built using classic multimodal fusion methods, ChatGPT, and human evaluators. While existing methods incorporating nonverbal information yield improvements, effectively leveraging context information and detecting out-of-scope samples remains a substantial challenge. Notably, large language models exhibit a significant performance gap compared to humans, highlighting the limitations of machine learning methods in the cognitive intent understanding task. We believe that MIntRec2.0 will serve as a valuable resource, providing a pioneering foundation for research in human-machine conversational interactions, and significantly facilitating related applications. The full dataset and codes are available at https://github.com/thuiar/MIntRec2.0.
comment: Accepted by ICLR 2024, Long Paper; The abstract is slightly modified due to the length limitation
♻ ☆ Towards Generating Diverse Audio Captions via Adversarial Training
Automated audio captioning is a cross-modal translation task for describing the content of audio clips with natural language sentences. This task has attracted increasing attention and substantial progress has been made in recent years. Captions generated by existing models are generally faithful to the content of audio clips, however, these machine-generated captions are often deterministic (e.g., generating a fixed caption for a given audio clip), simple (e.g., using common words and simple grammar), and generic (e.g., generating the same caption for similar audio clips). When people are asked to describe the content of an audio clip, different people tend to focus on different sound events and describe an audio clip diversely from various aspects using distinct words and grammar. We believe that an audio captioning system should have the ability to generate diverse captions, either for a fixed audio clip, or across similar audio clips. To this end, we propose an adversarial training framework based on a conditional generative adversarial network (C-GAN) to improve diversity of audio captioning systems. A caption generator and two hybrid discriminators compete and are learned jointly, where the caption generator can be any standard encoder-decoder captioning model used to generate captions, and the hybrid discriminators assess the generated captions from different criteria, such as their naturalness and semantics. We conduct experiments on the Clotho dataset. The results show that our proposed model can generate captions with better diversity as compared to state-of-the-art methods.
comment: Accepted to TASLP
Database 5
☆ French wine: Combination of multiple open data sources to mapping the expected harvest value
The purpose of this paper is to estimate a representative and detailed map of the harvest value in wine using structured and unstructured open data sources. With climate change and new environmental and ecological policies, wine producers are facing new challenges. The ability to model the evolution of these risks is strategic for wine producers and research in order to adapt. Many research projects require the values exposed to risk. For example, to assess the economic impact of risks or the premium of crop insurance, or to choose between different agroecological solutions in a cost-benefit approach. The high spatial heterogeneity and complexity of wine characteristics add to the challenge of these production values and the need to improve our spatial assessment of these harvest-expected values.Structured, exhaustive and detailed historical data are collected by the customs services, but they are not open. To achieve this, we combine the aggregate of the vineyard register and the data of the Public Body for Products of Official Quality and Origin. There are several techniques available to merge, combine or complete missing data. We have chosen to use optimization methods to re-estimate the area by appellation and by county, which can then be converted into expected harvest values using olympic average yields by appellation and crop insurance prices. This approach allows us to capture the heterogeneity in production values faced by different vineyards, thereby facilitating further research on risk assessment in the wine industry.
☆ CANDY: A Benchmark for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion
Approximate K Nearest Neighbor (AKNN) algorithms play a pivotal role in various AI applications, including information retrieval, computer vision, and natural language processing. Although numerous AKNN algorithms and benchmarks have been developed recently to evaluate their effectiveness, the dynamic nature of real-world data presents significant challenges that existing benchmarks fail to address. Traditional benchmarks primarily assess retrieval effectiveness in static contexts and often overlook update efficiency, which is crucial for handling continuous data ingestion. This limitation results in an incomplete assessment of an AKNN algorithms ability to adapt to changing data patterns, thereby restricting insights into their performance in dynamic environments. To address these gaps, we introduce CANDY, a benchmark tailored for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion. CANDY comprehensively assesses a wide range of AKNN algorithms, integrating advanced optimizations such as machine learning-driven inference to supplant traditional heuristic scans, and improved distance computation methods to reduce computational overhead. Our extensive evaluations across diverse datasets demonstrate that simpler AKNN baselines often surpass more complex alternatives in terms of recall and latency. These findings challenge established beliefs about the necessity of algorithmic complexity for high performance. Furthermore, our results underscore existing challenges and illuminate future research opportunities. We have made the datasets and implementation methods available at: https://github.com/intellistream/candy.
♻ ☆ Blitzcrank: Fast Semantic Compression for In-memory Online Transaction Processing
We present BLITZCRANK, a high-speed semantic compressor designed for OLTP databases. Previous solutions are inadequate for compressing row-stores: they suffer from either low compression factor due to a coarse compression granularity or suboptimal performance due to the inefficiency in handling dynamic data sets. To solve these problems, we first propose novel semantic models that support fast inferences and dynamic value set for both discrete and continuous data types. We then introduce a new entropy encoding algorithm, called delayed coding, that achieves significant improvement in the decoding speed compared to modern arithmetic coding implementations. We evaluate BLITZCRANK in both standalone microbenchmarks and a multicore in-memory row-store using the TPC-C benchmark. Our results show that BLITZCRANK achieves a sub-microsecond latency for decompressing a random tuple while obtaining high compression factors. This leads to an 85% memory reduction in the TPC-C evaluation with a moderate (19%) throughput degradation. For data sets larger than the available physical memory, BLITZCRANK help the database sustain a high throughput for more transactions before the l/O overhead dominates.
comment: 18 pages, 19 figures
♻ ☆ The Context Model: A Graph Database Model
We propose a novel database model whose basic structure is a labeled, directed, acyclic graph with a single root, in which the nodes represent the data sets of an application and the edges represent functional relationships among the data sets. We call such a graph an application context or simply context. The query language of a context consists of two types of queries, traversal queries and analytic queries. Both types of queries are defined using a simple functional algebra whose operations are functional restriction, composition of functions, pairing of functions and Cartesian product of sets. Roughly speaking, traversal queries parallel relational algebra queries, whereas analytic queries parallel SQL Group-by queries. In other words, in our model, traversal queries and analytic queries, are both defined within the same formal framework - in contrast to the relational model, where analytic queries are defined outside the relational algebra. Therefore a distinctive feature of our model is that it supports data management and data analytics within the same formal framework. We demonstrate the expressive power of our model by showing: (a) how a relational database can be defined as a view over a context, with the context playing the role of an underlying semantic layer; (b) how an analytic query over a context can be rewritten at two orthogonal levels: at the level of the traversal queries that do the grouping and measuring, and at the level of the analytic query itself; and (c) how a context can be used as a user-friendly interface for querying relations and analysing relational data.
♻ ☆ DLRover-RM: Resource Optimization for Deep Recommendation Models Training in the Cloud VLDB'24
Deep learning recommendation models (DLRM) rely on large embedding tables to manage categorical sparse features. Expanding such embedding tables can significantly enhance model performance, but at the cost of increased GPU/CPU/memory usage. Meanwhile, tech companies have built extensive cloud-based services to accelerate training DLRM models at scale. In this paper, we conduct a deep investigation of the DLRM training platforms at AntGroup and reveal two critical challenges: low resource utilization due to suboptimal configurations by users and the tendency to encounter abnormalities due to an unstable cloud environment. To overcome them, we introduce DLRover-RM, an elastic training framework for DLRMs designed to increase resource utilization and handle the instability of a cloud environment. DLRover-RM develops a resource-performance model by considering the unique characteristics of DLRMs and a three-stage heuristic strategy to automatically allocate and dynamically adjust resources for DLRM training jobs for higher resource utilization. Further, DLRover-RM develops multiple mechanisms to ensure efficient and reliable execution of DLRM training jobs. Our extensive evaluation shows that DLRover-RM reduces job completion times by 31%, increases the job completion rate by 6%, enhances CPU usage by 15%, and improves memory utilization by 20%, compared to state-of-the-art resource scheduling frameworks. DLRover-RM has been widely deployed at AntGroup and processes thousands of DLRM training jobs on a daily basis. DLRover-RM is open-sourced and has been adopted by 10+ companies.
comment: Accepted in VLDB'24
Performance 1
♻ ☆ GVEL: Fast Graph Loading in Edgelist and Compressed Sparse Row (CSR) formats
Efficient IO techniques are crucial in high-performance graph processing frameworks like Gunrock and Hornet, as fast graph loading can help minimize processing time and reduce system/cloud usage charges. This research study presents approaches for efficiently reading an Edgelist from a text file and converting it to a Compressed Sparse Row (CSR) representation. On a server with dual 16-core Intel Xeon Gold 6226R processors and Seagate Exos 10e2400 HDDs, our approach, which we term as GVEL, outperforms Hornet, Gunrock, and PIGO by significant margins in CSR reading, exhibiting an average speedup of 78x, 112x, and 1.8x, respectively. For Edgelist reading, GVEL is 2.6x faster than PIGO on average, and achieves a Edgelist read rate of 1.9 billion edges/s. For every doubling of threads, GVEL improves performance at an average rate of 1.9x and 1.7x for reading Edgelist and reading CSR respectively.
comment: 10 pages, 9 figures, 1 table
Computation and Language 136
☆ Taming Data and Transformers for Audio Generation
Generating ambient sounds and effects is a challenging problem due to data scarcity and often insufficient caption quality, making it difficult to employ large-scale generative models for the task. In this work, we tackle the problem by introducing two new models. First, we propose AutoCap, a high-quality and efficient automatic audio captioning model. We show that by leveraging metadata available with the audio modality, we can substantially improve the quality of captions. AutoCap reaches CIDEr score of 83.2, marking a 3.2% improvement from the best available captioning model at four times faster inference speed. We then use AutoCap to caption clips from existing datasets, obtaining 761,000 audio clips with high-quality captions, forming the largest available audio-text dataset. Second, we propose GenAu, a scalable transformer-based audio generation architecture that we scale up to 1.25B parameters and train with our new dataset. When compared to state-of-the-art audio generators, GenAu obtains significant improvements of 15.7% in FAD score, 22.7% in IS, and 13.5% in CLAP score, indicating significantly improved quality of generated audio compared to previous works. This shows that the quality of data is often as important as its quantity. Besides, since AutoCap is fully automatic, new audio samples can be added to the training dataset, unlocking the training of even larger generative models for audio synthesis.
comment: Project Webpage: https://snap-research.github.io/GenAU/
☆ The Remarkable Robustness of LLMs: Stages of Inference?
We demonstrate and investigate the remarkable robustness of Large Language Models by deleting and swapping adjacent layers. We find that deleting and swapping interventions retain 72-95\% of the original model's prediction accuracy without fine-tuning, whereas models with more layers exhibit more robustness. Based on the results of the layer-wise intervention and further experiments, we hypothesize the existence of four universal stages of inference across eight different models: detokenization, feature engineering, prediction ensembling, and residual sharpening. The first stage integrates local information, lifting raw token representations into higher-level contextual representations. Next is the iterative refinement of task and entity-specific features. Then, the second half of the model begins with a phase transition, where hidden representations align more with the vocabulary space due to specialized model components. Finally, the last layer sharpens the following token distribution by eliminating obsolete features that add noise to the prediction.
☆ Suri: Multi-constraint Instruction Following for Long-form Text Generation
Existing research on instruction following largely focuses on tasks with simple instructions and short responses. In this work, we explore multi-constraint instruction following for generating long-form text. We create Suri, a dataset with 20K human-written long-form texts paired with LLM-generated backtranslated instructions that contain multiple complex constraints. Because of prohibitive challenges associated with collecting human preference judgments on long-form texts, preference-tuning algorithms such as DPO are infeasible in our setting; thus, we propose Instructional ORPO (I-ORPO), an alignment method based on the ORPO algorithm. Instead of receiving negative feedback from dispreferred responses, I-ORPO obtains negative feedback from synthetically corrupted instructions generated by an LLM. Using Suri, we perform supervised and I-ORPO fine-tuning on Mistral-7b-Instruct-v0.2. The resulting models, Suri-SFT and Suri-I-ORPO, generate significantly longer texts (~5K tokens) than base models without significant quality deterioration. Our human evaluation shows that while both SFT and I-ORPO models satisfy most constraints, Suri-I-ORPO generations are generally preferred for their coherent and informative incorporation of the constraints. We release our code at https://github.com/chtmp223/suri.
☆ The Model Arena for Cross-lingual Sentiment Analysis: A Comparative Study in the Era of Large Language Models WASSA
Sentiment analysis serves as a pivotal component in Natural Language Processing (NLP). Advancements in multilingual pre-trained models such as XLM-R and mT5 have contributed to the increasing interest in cross-lingual sentiment analysis. The recent emergence in Large Language Models (LLM) has significantly advanced general NLP tasks, however, the capability of such LLMs in cross-lingual sentiment analysis has not been fully studied. This work undertakes an empirical analysis to compare the cross-lingual transfer capability of public Small Multilingual Language Models (SMLM) like XLM-R, against English-centric LLMs such as Llama-3, in the context of sentiment analysis across English, Spanish, French and Chinese. Our findings reveal that among public models, SMLMs exhibit superior zero-shot cross-lingual performance relative to LLMs. However, in few-shot cross-lingual settings, public LLMs demonstrate an enhanced adaptive potential. In addition, we observe that proprietary GPT-3.5 and GPT-4 lead in zero-shot cross-lingual capability, but are outpaced by public models in few-shot scenarios.
comment: Accepted to WASSA workshop at ACL2024
☆ DiVERT: Distractor Generation with Variational Errors Represented as Text for Math Multiple-choice Questions
High-quality distractors are crucial to both the assessment and pedagogical value of multiple-choice questions (MCQs), where manually crafting ones that anticipate knowledge deficiencies or misconceptions among real students is difficult. Meanwhile, automated distractor generation, even with the help of large language models (LLMs), remains challenging for subjects like math. It is crucial to not only identify plausible distractors but also understand the error behind them. In this paper, we introduce DiVERT (Distractor Generation with Variational Errors Represented as Text), a novel variational approach that learns an interpretable representation of errors behind distractors in math MCQs. Through experiments on a real-world math MCQ dataset with 1,434 questions used by hundreds of thousands of students, we show that DiVERT, despite using a base open-source LLM with 7B parameters, outperforms state-of-the-art approaches using GPT-4o on downstream distractor generation. We also conduct a human evaluation with math educators and find that DiVERT leads to error labels that are of comparable quality to human-authored ones.
☆ Fundamental Problems With Model Editing: How Should Rational Belief Revision Work in LLMs?
The model editing problem concerns how language models should learn new facts about the world over time. While empirical research on model editing has drawn widespread attention, the conceptual foundations of model editing remain shaky -- perhaps unsurprisingly, since model editing is essentially belief revision, a storied problem in philosophy that has eluded succinct solutions for decades. Model editing nonetheless demands a solution, since we need to be able to control the knowledge within language models. With this goal in mind, this paper critiques the standard formulation of the model editing problem and proposes a formal testbed for model editing research. We first describe 12 open problems with model editing, based on challenges with (1) defining the problem, (2) developing benchmarks, and (3) assuming LLMs have editable beliefs in the first place. Many of these challenges are extremely difficult to address, e.g. determining far-reaching consequences of edits, labeling probabilistic entailments between facts, and updating beliefs of agent simulators. Next, we introduce a semi-synthetic dataset for model editing based on Wikidata, where we can evaluate edits against labels given by an idealized Bayesian agent. This enables us to say exactly how belief revision in language models falls short of a desirable epistemic standard. We encourage further research exploring settings where such a gold standard can be compared against. Our code is publicly available at: https://github.com/peterbhase/LLM-belief-revision
comment: 23 pages, 4 figures
☆ IndoToxic2024: A Demographically-Enriched Dataset of Hate Speech and Toxicity Types for Indonesian Language
Hate speech poses a significant threat to social harmony. Over the past two years, Indonesia has seen a ten-fold increase in the online hate speech ratio, underscoring the urgent need for effective detection mechanisms. However, progress is hindered by the limited availability of labeled data for Indonesian texts. The condition is even worse for marginalized minorities, such as Shia, LGBTQ, and other ethnic minorities because hate speech is underreported and less understood by detection tools. Furthermore, the lack of accommodation for subjectivity in current datasets compounds this issue. To address this, we introduce IndoToxic2024, a comprehensive Indonesian hate speech and toxicity classification dataset. Comprising 43,692 entries annotated by 19 diverse individuals, the dataset focuses on texts targeting vulnerable groups in Indonesia, specifically during the hottest political event in the country: the presidential election. We establish baselines for seven binary classification tasks, achieving a macro-F1 score of 0.78 with a BERT model (IndoBERTweet) fine-tuned for hate speech classification. Furthermore, we demonstrate how incorporating demographic information can enhance the zero-shot performance of the large language model, gpt-3.5-turbo. However, we also caution that an overemphasis on demographic information can negatively impact the fine-tuned model performance due to data fragmentation.
☆ Jump Starting Bandits with LLM-Generated Prior Knowledge
We present substantial evidence demonstrating the benefits of integrating Large Language Models (LLMs) with a Contextual Multi-Armed Bandit framework. Contextual bandits have been widely used in recommendation systems to generate personalized suggestions based on user-specific contexts. We show that LLMs, pre-trained on extensive corpora rich in human knowledge and preferences, can simulate human behaviours well enough to jump-start contextual multi-armed bandits to reduce online learning regret. We propose an initialization algorithm for contextual bandits by prompting LLMs to produce a pre-training dataset of approximate human preferences for the bandit. This significantly reduces online learning regret and data-gathering costs for training such models. Our approach is validated empirically through two sets of experiments with different bandit setups: one which utilizes LLMs to serve as an oracle and a real-world experiment utilizing data from a conjoint survey experiment.
LiveBench: A Challenging, Contamination-Free LLM Benchmark
Test set contamination, wherein test data from a benchmark ends up in a newer model's training set, is a well-documented obstacle for fair LLM evaluation and can quickly render benchmarks obsolete. To mitigate this, many recent benchmarks crowdsource new prompts and evaluations from human or LLM judges; however, these can introduce significant biases, and break down when scoring hard questions. In this work, we introduce a new benchmark for LLMs designed to be immune to both test set contamination and the pitfalls of LLM judging and human crowdsourcing. We release LiveBench, the first benchmark that (1) contains frequently-updated questions from recent information sources, (2) scores answers automatically according to objective ground-truth values, and (3) contains a wide variety of challenging tasks, spanning math, coding, reasoning, language, instruction following, and data analysis. To achieve this, LiveBench contains questions that are based on recently-released math competitions, arXiv papers, news articles, and datasets, and it contains harder, contamination-free versions of tasks from previous benchmarks such as Big-Bench Hard, AMPS, and IFEval. We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 110B in size. LiveBench is difficult, with top models achieving below 65% accuracy. We release all questions, code, and model answers. Questions will be added and updated on a monthly basis, and we will release new tasks and harder versions of tasks over time so that LiveBench can distinguish between the capabilities of LLMs as they improve in the future. We welcome community engagement and collaboration for expanding the benchmark tasks and models.
☆ The Odyssey of Commonsense Causality: From Foundational Benchmarks to Cutting-Edge Reasoning
Understanding commonsense causality is a unique mark of intelligence for humans. It helps people understand the principles of the real world better and benefits the decision-making process related to causation. For instance, commonsense causality is crucial in judging whether a defendant's action causes the plaintiff's loss in determining legal liability. Despite its significance, a systematic exploration of this topic is notably lacking. Our comprehensive survey bridges this gap by focusing on taxonomies, benchmarks, acquisition methods, qualitative reasoning, and quantitative measurements in commonsense causality, synthesizing insights from over 200 representative articles. Our work aims to provide a systematic overview, update scholars on recent advancements, provide a pragmatic guide for beginners, and highlight promising future research directions in this vital field.
comment: 42 pages
☆ From Artificial Needles to Real Haystacks: Improving Retrieval Capabilities in LLMs by Finetuning on Synthetic Data
Recent studies have shown that Large Language Models (LLMs) struggle to accurately retrieve information and maintain reasoning capabilities when processing long-context inputs. To address these limitations, we propose a finetuning approach utilizing a carefully designed synthetic dataset comprising numerical key-value retrieval tasks. Our experiments on models like GPT-3.5 Turbo and Mistral 7B demonstrate that finetuning LLMs on this dataset significantly improves LLMs' information retrieval and reasoning capabilities in longer-context settings. We present an analysis of the finetuned models, illustrating the transfer of skills from synthetic to real task evaluations (e.g., $10.5\%$ improvement on $20$ documents MDQA at position $10$ for GPT-3.5 Turbo). We also find that finetuned LLMs' performance on general benchmarks remains almost constant while LLMs finetuned on other baseline long-context augmentation data can encourage hallucination (e.g., on TriviaQA, Mistral 7B finetuned on our synthetic data cause no performance drop while other baseline data can cause a drop that ranges from $2.33\%$ to $6.19\%$). Our study highlights the potential of finetuning on synthetic data for improving the performance of LLMs on longer-context tasks.
☆ HuatuoGPT-Vision, Towards Injecting Medical Visual Knowledge into Multimodal LLMs at Scale
The rapid development of multimodal large language models (MLLMs), such as GPT-4V, has led to significant advancements. However, these models still face challenges in medical multimodal capabilities due to limitations in the quantity and quality of medical vision-text data, stemming from data privacy concerns and high annotation costs. While pioneering approaches utilize PubMed's large-scale, de-identified medical image-text pairs to address these limitations, they still fall short due to inherent data noise. To tackle this, we refined medical image-text pairs from PubMed and employed MLLMs (GPT-4V) in an 'unblinded' capacity to denoise and reformat the data, resulting in the creation of the PubMedVision dataset with 1.3 million medical VQA samples. Our validation demonstrates that: (1) PubMedVision can significantly enhance the medical multimodal capabilities of current MLLMs, showing significant improvement in benchmarks including the MMMU Health & Medicine track; (2) manual checks by medical experts and empirical results validate the superior data quality of our dataset compared to other data construction methods. Using PubMedVision, we train a 34B medical MLLM HuatuoGPT-Vision, which shows superior performance in medical multimodal scenarios among open-source MLLMs.
☆ VERISCORE: Evaluating the factuality of verifiable claims in long-form text generation
Existing metrics for evaluating the factuality of long-form text, such as FACTSCORE (Min et al., 2023) and SAFE (Wei et al., 2024), decompose an input text into "atomic claims" and verify each against a knowledge base like Wikipedia. These metrics are not suitable for most generation tasks because they assume that every claim is verifiable (i.e., can plausibly be proven true or false). We address this issue with VERISCORE, a metric for diverse long-form generation tasks that contain both verifiable and unverifiable content. VERISCORE can be effectively implemented with either closed or fine-tuned open-weight language models, and human evaluation confirms that VERISCORE's extracted claims are more sensible than those from competing methods across eight different long-form tasks. We use VERISCORE to evaluate generations from 16 different models across multiple long-form tasks and find that while GPT-4o is the best-performing model overall, open-weight models such as Mixtral-8x22 are closing the gap. We show that an LM's VERISCORE on one task (e.g., biography generation) does not necessarily correlate to its VERISCORE on a different task (e.g., long-form QA), highlighting the need for expanding factuality evaluation across tasks with varying fact density.
☆ AutoPureData: Automated Filtering of Web Data for LLM Fine-tuning
Up-to-date and reliable Large Language Models (LLMs) are consistently sought after. Typically, LLMs are trained on a fixed dataset and then deployed. However, the training data continually becomes outdated. Enable automatic training of AI using web data involves significant concerns regarding data quality and safety due to bias, spam, and other unsafe or unwanted text. Pure data is essential for producing reliable models. Training a model on impure data may result in undesirable outcomes. This research proposes a system that collects web data and automatically filters out unwanted text with the assistance of existing trusted AI models. In the experiment, a small sample of web data was collected and filtered, demonstrating the system's effectiveness in purifying the data.
comment: Initial version
☆ Read Anywhere Pointed: Layout-aware GUI Screen Reading with Tree-of-Lens Grounding
Graphical User Interfaces (GUIs) are central to our interaction with digital devices. Recently, growing efforts have been made to build models for various GUI understanding tasks. However, these efforts largely overlook an important GUI-referring task: screen reading based on user-indicated points, which we name the Screen Point-and-Read (SPR) task. This task is predominantly handled by rigid accessible screen reading tools, in great need of new models driven by advancements in Multimodal Large Language Models (MLLMs). In this paper, we propose a Tree-of-Lens (ToL) agent, utilizing a novel ToL grounding mechanism, to address the SPR task. Based on the input point coordinate and the corresponding GUI screenshot, our ToL agent constructs a Hierarchical Layout Tree. Based on the tree, our ToL agent not only comprehends the content of the indicated area but also articulates the layout and spatial relationships between elements. Such layout information is crucial for accurately interpreting information on the screen, distinguishing our ToL agent from other screen reading tools. We also thoroughly evaluate the ToL agent against other baselines on a newly proposed SPR benchmark, which includes GUIs from mobile, web, and operating systems. Last but not least, we test the ToL agent on mobile GUI navigation tasks, demonstrating its utility in identifying incorrect actions along the path of agent execution trajectories. Code and data: screen-point-and-read.github.io
☆ Enhancing Video-Language Representations with Structural Spatio-Temporal Alignment
While pre-training large-scale video-language models (VLMs) has shown remarkable potential for various downstream video-language tasks, existing VLMs can still suffer from certain commonly seen limitations, e.g., coarse-grained cross-modal aligning , under-modeling of temporal dynamics, detached video-language view. In this work, we target enhancing VLMs with a fine-grained structural spatio-temporal alignment learning method (namely Finsta). First of all, we represent the input texts and videos with fine-grained scene graph (SG) structures, both of which are further unified into a holistic SG (HSG) for bridging two modalities. Then, an SG-based framework is built, where the textual SG (TSG) is encoded with a graph Transformer, while the video dynamic SG (DSG) and the HSG are modeled with a novel recurrent graph Transformer for spatial and temporal feature propagation. A spatial-temporal Gaussian differential graph Transformer is further devised to strengthen the sense of the changes in objects across spatial and temporal dimensions. Next, based on the fine-grained structural features of TSG and DSG, we perform object-centered spatial alignment and predicate-centered temporal alignment respectively, enhancing the video-language grounding in both the spatiality and temporality. We design our method as a plug&play system, which can be integrated into existing well-trained VLMs for further representation augmentation, without training from scratch or relying on SG annotations in downstream applications. On 6 representative VL modeling tasks over 12 datasets in both standard and long-form video scenarios, Finsta consistently improves the existing 13 strong-performing VLMs persistently, and refreshes the current state-of-the-art end task performance significantly in both the fine-tuning and zero-shot settings.
comment: Accepted by IEEE TPAMI 2024
☆ AutoRAG-HP: Automatic Online Hyper-Parameter Tuning for Retrieval-Augmented Generation
Recent advancements in Large Language Models have transformed ML/AI development, necessitating a reevaluation of AutoML principles for the Retrieval-Augmented Generation (RAG) systems. To address the challenges of hyper-parameter optimization and online adaptation in RAG, we propose the AutoRAG-HP framework, which formulates the hyper-parameter tuning as an online multi-armed bandit (MAB) problem and introduces a novel two-level Hierarchical MAB (Hier-MAB) method for efficient exploration of large search spaces. We conduct extensive experiments on tuning hyper-parameters, such as top-k retrieved documents, prompt compression ratio, and embedding methods, using the ALCE-ASQA and Natural Questions datasets. Our evaluation from jointly optimization all three hyper-parameters demonstrate that MAB-based online learning methods can achieve Recall@5 $\approx 0.8$ for scenarios with prominent gradients in search space, using only $\sim20\%$ of the LLM API calls required by the Grid Search approach. Additionally, the proposed Hier-MAB approach outperforms other baselines in more challenging optimization scenarios. The code will be made available at https://aka.ms/autorag.
☆ Revealing Fine-Grained Values and Opinions in Large Language Models
Uncovering latent values and opinions in large language models (LLMs) can help identify biases and mitigate potential harm. Recently, this has been approached by presenting LLMs with survey questions and quantifying their stances towards morally and politically charged statements. However, the stances generated by LLMs can vary greatly depending on how they are prompted, and there are many ways to argue for or against a given position. In this work, we propose to address this by analysing a large and robust dataset of 156k LLM responses to the 62 propositions of the Political Compass Test (PCT) generated by 6 LLMs using 420 prompt variations. We perform coarse-grained analysis of their generated stances and fine-grained analysis of the plain text justifications for those stances. For fine-grained analysis, we propose to identify tropes in the responses: semantically similar phrases that are recurrent and consistent across different prompts, revealing patterns in the text that a given LLM is prone to produce. We find that demographic features added to prompts significantly affect outcomes on the PCT, reflecting bias, as well as disparities between the results of tests when eliciting closed-form vs. open domain responses. Additionally, patterns in the plain text rationales via tropes show that similar justifications are repeatedly generated across models and prompts even with disparate stances.
comment: 28 pages, 20 figures, 7 tables
☆ FlowVQA: Mapping Multimodal Logic in Visual Question Answering with Flowcharts
Existing benchmarks for visual question answering lack in visual grounding and complexity, particularly in evaluating spatial reasoning skills. We introduce FlowVQA, a novel benchmark aimed at assessing the capabilities of visual question-answering multimodal language models in reasoning with flowcharts as visual contexts. FlowVQA comprises 2,272 carefully generated and human-verified flowchart images from three distinct content sources, along with 22,413 diverse question-answer pairs, to test a spectrum of reasoning tasks, including information localization, decision-making, and logical progression. We conduct a thorough baseline evaluation on a suite of both open-source and proprietary multimodal language models using various strategies, followed by an analysis of directional bias. The results underscore the benchmark's potential as a vital tool for advancing the field of multimodal modeling, providing a focused and challenging environment for enhancing model performance in visual and logical reasoning tasks.
☆ RuBLiMP: Russian Benchmark of Linguistic Minimal Pairs
Minimal pairs are a well-established approach to evaluating the grammatical knowledge of language models. However, existing resources for minimal pairs address a limited number of languages and lack diversity of language-specific grammatical phenomena. This paper introduces the Russian Benchmark of Linguistic Minimal Pairs (RuBLiMP), which includes 45k pairs of sentences that differ in grammaticality and isolate a morphological, syntactic, or semantic phenomenon. In contrast to existing benchmarks of linguistic minimal pairs, RuBLiMP is created by applying linguistic perturbations to automatically annotated sentences from open text corpora and carefully curating test data. We describe the data collection protocol and present the results of evaluating 25 language models in various scenarios. We find that the widely used language models for Russian are sensitive to morphological and agreement-oriented contrasts but fall behind humans on phenomena requiring understanding of structural relations, negation, transitivity, and tense. RuBLiMP, the codebase, and other materials are publicly available.
☆ Spiking Convolutional Neural Networks for Text Classification
Spiking neural networks (SNNs) offer a promising pathway to implement deep neural networks (DNNs) in a more energy-efficient manner since their neurons are sparsely activated and inferences are event-driven. However, there have been very few works that have demonstrated the efficacy of SNNs in language tasks partially because it is non-trivial to represent words in the forms of spikes and to deal with variable-length texts by SNNs. This work presents a "conversion + fine-tuning" two-step method for training SNNs for text classification and proposes a simple but effective way to encode pre-trained word embeddings as spike trains. We show empirically that after fine-tuning with surrogate gradients, the converted SNNs achieve comparable results to their DNN counterparts with much less energy consumption across multiple datasets for both English and Chinese. We also show that such SNNs are more robust to adversarial attacks than DNNs.
☆ Tools Fail: Detecting Silent Errors in Faulty Tools
Tools have become a mainstay of LLMs, allowing them to retrieve knowledge not in their weights, to perform tasks on the web, and even to control robots. However, most ontologies and surveys of tool-use have assumed the core challenge for LLMs is choosing the tool. Instead, we introduce a framework for tools more broadly which guides us to explore a model's ability to detect "silent" tool errors, and reflect on how to plan. This more directly aligns with the increasingly popular use of models as tools. We provide an initial approach to failure recovery with promising results both on a controlled calculator setting and embodied agent planning.
comment: 18 pages, 12 figures
☆ Aligning Teacher with Student Preferences for Tailored Training Data Generation
Large Language Models (LLMs) have shown significant promise as copilots in various tasks. Local deployment of LLMs on edge devices is necessary when handling privacy-sensitive data or latency-sensitive tasks. The computational constraints of such devices make direct deployment of powerful large-scale LLMs impractical, necessitating the Knowledge Distillation from large-scale models to lightweight models. Lots of work has been done to elicit diversity and quality training examples from LLMs, but little attention has been paid to aligning teacher instructional content based on student preferences, akin to "responsive teaching" in pedagogy. Thus, we propose ARTE, dubbed Aligning TeacheR with StudenT PreferencEs, a framework that aligns the teacher model with student preferences to generate tailored training examples for Knowledge Distillation. Specifically, we elicit draft questions and rationales from the teacher model, then collect student preferences on these questions and rationales using students' performance with in-context learning as a proxy, and finally align the teacher model with student preferences. In the end, we repeat the first step with the aligned teacher model to elicit tailored training examples for the student model on the target task. Extensive experiments on academic benchmarks demonstrate the superiority of ARTE over existing instruction-tuning datasets distilled from powerful LLMs. Moreover, we thoroughly investigate the generalization of ARTE, including the generalization of fine-tuned student models in reasoning ability and the generalization of aligned teacher models to generate tailored training data across tasks and students. In summary, our contributions lie in proposing a novel framework for tailored training example generation, demonstrating its efficacy in experiments, and investigating the generalization of both student & aligned teacher models in ARTE.
☆ Simulating Classroom Education with LLM-Empowered Agents
Large language models (LLMs) have been employed in various intelligent educational tasks to assist teaching. While preliminary explorations have focused on independent LLM-empowered agents for specific educational tasks, the potential for LLMs within a multi-agent collaborative framework to simulate a classroom with real user participation remains unexplored. In this work, we propose SimClass, a multi-agent classroom simulation framework involving user participation. We recognize representative class roles and introduce a novel class control mechanism for automatic classroom teaching, and conduct user experiments in two real-world courses. Utilizing the Flanders Interactive Analysis System and Community of Inquiry theoretical frame works from educational analysis, we demonstrate that LLMs can simulate traditional classroom interaction patterns effectively while enhancing user's experience. We also observe emergent group behaviors among agents in SimClass, where agents collaborate to create enlivening interactions in classrooms to improve user learning process. We hope this work pioneers the application of LLM-empowered multi-agent systems in virtual classroom teaching.
☆ T-FREE: Tokenizer-Free Generative LLMs via Sparse Representations for Memory-Efficient Embeddings
Tokenizers are crucial for encoding information in Large Language Models, but their development has recently stagnated, and they contain inherent weaknesses. Major limitations include computational overhead, ineffective vocabulary use, and unnecessarily large embedding and head layers. Additionally, their performance is biased towards a reference corpus, leading to reduced effectiveness for underrepresented languages. To remedy these issues, we propose T-FREE, which directly embeds words through sparse activation patterns over character triplets, and does not require a reference corpus. T-FREE inherently exploits morphological similarities and allows for strong compression of embedding layers. In our exhaustive experimental evaluation, we achieve competitive downstream performance with a parameter reduction of more than 85% on these layers. Further, T-FREE shows significant improvements in cross-lingual transfer learning.
☆ SeaKR: Self-aware Knowledge Retrieval for Adaptive Retrieval Augmented Generation
This paper introduces Self-aware Knowledge Retrieval (SeaKR), a novel adaptive RAG model that extracts self-aware uncertainty of LLMs from their internal states. SeaKR activates retrieval when the LLMs present high self-aware uncertainty for generation. To effectively integrate retrieved knowledge snippets, SeaKR re-ranks them based on LLM's self-aware uncertainty to preserve the snippet that reduces their uncertainty to the utmost. To facilitate solving complex tasks that require multiple retrievals, SeaKR utilizes their self-aware uncertainty to choose among different reasoning strategies. Our experiments on both complex and simple Question Answering datasets show that SeaKR outperforms existing adaptive RAG methods. We release our code at https://github.com/THU-KEG/SeaKR.
☆ Annotation Errors and NER: A Study with OntoNotes 5.0 LREC 2022
Named Entity Recognition (NER) is a well-studied problem in NLP. However, there is much less focus on studying NER datasets, compared to developing new NER models. In this paper, we employed three simple techniques to detect annotation errors in the OntoNotes 5.0 corpus for English NER, which is the largest available NER corpus for English. Our techniques corrected ~10% of the sentences in train/dev/test data. In terms of entity mentions, we corrected the span and/or type of ~8% of mentions in the dataset, while adding/deleting/splitting/merging a few more. These are large numbers of changes, considering the size of OntoNotes. We used three NER libraries to train, evaluate and compare the models trained with the original and the re-annotated datasets, which showed an average improvement of 1.23% in overall F-scores, with large (>10%) improvements for some of the entity types. While our annotation error detection methods are not exhaustive and there is some manual annotation effort involved, they are largely language agnostic and can be employed with other NER datasets, and other sequence labelling tasks.
comment: Unpublished report. Originally submitted to LREC 2022
☆ The Illusion of Competence: Evaluating the Effect of Explanations on Users' Mental Models of Visual Question Answering Systems
We examine how users perceive the limitations of an AI system when it encounters a task that it cannot perform perfectly and whether providing explanations alongside its answers aids users in constructing an appropriate mental model of the system's capabilities and limitations. We employ a visual question answer and explanation task where we control the AI system's limitations by manipulating the visual inputs: during inference, the system either processes full-color or grayscale images. Our goal is to determine whether participants can perceive the limitations of the system. We hypothesize that explanations will make limited AI capabilities more transparent to users. However, our results show that explanations do not have this effect. Instead of allowing users to more accurately assess the limitations of the AI system, explanations generally increase users' perceptions of the system's competence - regardless of its actual performance.
comment: 16 pages (including Appendix); under review
☆ Resolving Discrepancies in Compute-Optimal Scaling of Language Models
Kaplan et al. and Hoffmann et al. developed influential scaling laws for the optimal model size as a function of the compute budget, but these laws yield substantially different predictions. We explain the discrepancy by reproducing the Kaplan scaling law on two datasets (OpenWebText2 and RefinedWeb) and identifying three factors causing the difference: last layer computational cost, warmup duration, and scale-dependent optimizer tuning. With these factors corrected, we obtain excellent agreement with the Hoffmann et al. (i.e., "Chinchilla") scaling law. Counter to a hypothesis of Hoffmann et al., we find that careful learning rate decay is not essential for the validity of their scaling law. As a secondary result, we derive scaling laws for the optimal learning rate and batch size, finding that tuning the AdamW $\beta_2$ parameter is essential at lower batch sizes.
☆ CHEW: A Dataset of CHanging Events in Wikipedia
We introduce CHEW, a novel dataset of changing events in Wikipedia expressed in naturally occurring text. We use CHEW for probing LLMs for their timeline understanding of Wikipedia entities and events in generative and classification experiments. Our results suggest that LLMs, despite having temporal information available, struggle to construct accurate timelines. We further show the usefulness of CHEW-derived embeddings for identifying meaning shift.
comment: Short Paper
☆ Statements: Universal Information Extraction from Tables with Large Language Models for ESG KPIs ACL 2024
Environment, Social, and Governance (ESG) KPIs assess an organization's performance on issues such as climate change, greenhouse gas emissions, water consumption, waste management, human rights, diversity, and policies. ESG reports convey this valuable quantitative information through tables. Unfortunately, extracting this information is difficult due to high variability in the table structure as well as content. We propose Statements, a novel domain agnostic data structure for extracting quantitative facts and related information. We propose translating tables to statements as a new supervised deep-learning universal information extraction task. We introduce SemTabNet - a dataset of over 100K annotated tables. Investigating a family of T5-based Statement Extraction Models, our best model generates statements which are 82% similar to the ground-truth (compared to baseline of 21%). We demonstrate the advantages of statements by applying our model to over 2700 tables from ESG reports. The homogeneous nature of statements permits exploratory data analysis on expansive information found in large collections of ESG reports.
comment: Accepted at the NLP4Climate workshop in the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024)
☆ Fairness and Bias in Multimodal AI: A Survey
The importance of addressing fairness and bias in artificial intelligence (AI) systems cannot be over-emphasized. Mainstream media has been awashed with news of incidents around stereotypes and bias in many of these systems in recent years. In this survey, we fill a gap with regards to the minimal study of fairness and bias in Large Multimodal Models (LMMs) compared to Large Language Models (LLMs), providing 50 examples of datasets and models along with the challenges affecting them; we identify a new category of quantifying bias (preuse), in addition to the two well-known ones in the literature: intrinsic and extrinsic; we critically discuss the various ways researchers are addressing these challenges. Our method involved two slightly different search queries on Google Scholar, which revealed that 33,400 and 538,000 links are the results for the terms "Fairness and bias in Large Multimodal Models" and "Fairness and bias in Large Language Models", respectively. We believe this work contributes to filling this gap and providing insight to researchers and other stakeholders on ways to address the challenge of fairness and bias in multimodal A!.
comment: 8 pages
☆ AMBROSIA: A Benchmark for Parsing Ambiguous Questions into Database Queries
Practical semantic parsers are expected to understand user utterances and map them to executable programs, even when these are ambiguous. We introduce a new benchmark, AMBROSIA, which we hope will inform and inspire the development of text-to-SQL parsers capable of recognizing and interpreting ambiguous requests. Our dataset contains questions showcasing three different types of ambiguity (scope ambiguity, attachment ambiguity, and vagueness), their interpretations, and corresponding SQL queries. In each case, the ambiguity persists even when the database context is provided. This is achieved through a novel approach that involves controlled generation of databases from scratch. We benchmark various LLMs on AMBROSIA, revealing that even the most advanced models struggle to identify and interpret ambiguity in questions.
☆ EmPO: Theory-Driven Dataset Construction for Empathetic Response Generation through Preference Optimization ACL
Empathetic response generation is a desirable aspect of conversational agents, crucial for facilitating engaging and emotionally intelligent multi-turn conversations between humans and machines. Leveraging large language models for this task has shown promising results, yet challenges persist in ensuring both the empathetic quality of the responses and retention of the generalization performance of the models. In this paper, we propose a novel approach where we construct theory-driven preference datasets and use them to align LLMs with preference optimization algorithms to address these challenges. To measure empathetic response generation, we employ the EmpatheticDialogues dataset, assessing empathy with the diff-EPITOME and BERTscore metrics, and evaluate the generalization performance on the MMLU benchmark. We make all datasets, source code, and models publicly available.
comment: v01, 4 pages short paper, ACL style
☆ STBench: Assessing the Ability of Large Language Models in Spatio-Temporal Analysis
The rapid evolution of large language models (LLMs) holds promise for reforming the methodology of spatio-temporal data mining. However, current works for evaluating the spatio-temporal understanding capability of LLMs are somewhat limited and biased. These works either fail to incorporate the latest language models or only focus on assessing the memorized spatio-temporal knowledge. To address this gap, this paper dissects LLMs' capability of spatio-temporal data into four distinct dimensions: knowledge comprehension, spatio-temporal reasoning, accurate computation, and downstream applications. We curate several natural language question-answer tasks for each category and build the benchmark dataset, namely STBench, containing 13 distinct tasks and over 60,000 QA pairs. Moreover, we have assessed the capabilities of 13 LLMs, such as GPT-4o, Gemma and Mistral. Experimental results reveal that existing LLMs show remarkable performance on knowledge comprehension and spatio-temporal reasoning tasks, with potential for further enhancement on other tasks through in-context learning, chain-of-though prompting, and fine-tuning. The code and datasets of STBench are released on https://github.com/LwbXc/STBench.
☆ Improving Weak-to-Strong Generalization with Reliability-Aware Alignment
Large language models (LLMs) are now rapidly advancing and surpassing human abilities on many natural language tasks. However, aligning these super-human LLMs with human knowledge remains challenging because the supervision signals from human annotators may be wrong. This issue, known as the "super-alignment" problem, requires enhancing weak-to-strong generalization, where a strong LLM must generalize from imperfect supervision provided by a weaker source. To address this issue, we propose an approach to improve weak-to-strong generalization by involving the reliability of weak supervision signals in the alignment process. In our method, we query the weak supervisor for multiple answers, estimate the answer reliability, and enhance the alignment process by filtering out uncertain data or re-weighting reliable data. Experiments on four datasets demonstrate that our methods effectively identify the quality of weak labels and significantly enhance weak-to-strong generalization. Our work presents effective techniques for error-robust model alignment, reducing error propagation from noisy supervision and enhancing the accuracy and reliability of LLMs. Codes are publicly available at http://github.com/Irenehere/ReliableAlignment.
☆ RoboUniView: Visual-Language Model with Unified View Representation for Robotic Manipulaiton
Utilizing Vision-Language Models (VLMs) for robotic manipulation represents a novel paradigm, aiming to enhance the model's ability to generalize to new objects and instructions. However, due to variations in camera specifications and mounting positions, existing methods exhibit significant performance disparities across different robotic platforms. To address this challenge, we propose RoboUniView in this paper, an innovative approach that decouples visual feature extraction from action learning. We first learn a unified view representation from multi-perspective views by pre-training on readily accessible data, and then derive actions from this unified view representation to control robotic manipulation. This unified view representation more accurately mirrors the physical world and is not constrained by the robotic platform's camera parameters. Thanks to this methodology, we achieve state-of-the-art performance on the demanding CALVIN benchmark, enhancing the success rate in the $D \to D$ setting from 88.7% to 96.2%, and in the $ABC \to D$ setting from 82.4% to 94.2%. Moreover, our model exhibits outstanding adaptability and flexibility: it maintains high performance under unseen camera parameters, can utilize multiple datasets with varying camera parameters, and is capable of joint cross-task learning across datasets. Code is provided for re-implementation. https://github.com/liufanfanlff/RoboUniview
☆ Applying LLMs for Rescoring N-best ASR Hypotheses of Casual Conversations: Effects of Domain Adaptation and Context Carry-over
Large language models (LLMs) have been successfully applied for rescoring automatic speech recognition (ASR) hypotheses. However, their ability to rescore ASR hypotheses of casual conversations has not been sufficiently explored. In this study, we reveal it by performing N-best ASR hypotheses rescoring using Llama2 on the CHiME-7 distant ASR (DASR) task. Llama2 is one of the most representative LLMs, and the CHiME-7 DASR task provides datasets of casual conversations between multiple participants. We investigate the effects of domain adaptation of the LLM and context carry-over when performing N-best rescoring. Experimental results show that, even without domain adaptation, Llama2 outperforms a standard-size domain-adapted Transformer-LM, especially when using a long context. Domain adaptation shortens the context length needed with Llama2 to achieve its best performance, i.e., it reduces the computational cost of Llama2.
comment: 5 pages
☆ UniGen: A Unified Framework for Textual Dataset Generation Using Large Language Models
Large Language Models (LLMs) such as GPT-4 and Llama3 have significantly impacted various fields by enabling high-quality synthetic data generation and reducing dependence on expensive human-generated datasets. Despite this, challenges remain in the areas of generalization, controllability, diversity, and truthfulness within the existing generative frameworks. To address these challenges, this paper presents UniGen, a comprehensive LLM-powered framework designed to produce diverse, accurate, and highly controllable datasets. UniGen is adaptable, supporting all types of text datasets and enhancing the generative process through innovative mechanisms. To augment data diversity, UniGen incorporates an attribute-guided generation module and a group checking feature. For accuracy, it employs a code-based mathematical assessment for label verification alongside a retrieval-augmented generation technique for factual validation. The framework also allows for user-specified constraints, enabling customization of the data generation process to suit particular requirements. Extensive experiments demonstrate the superior quality of data generated by UniGen, and each module within UniGen plays a critical role in this enhancement. Additionally, UniGen is applied in two practical scenarios: benchmarking LLMs and data augmentation. The results indicate that UniGen effectively supports dynamic and evolving benchmarking, and that data augmentation improves LLM capabilities in various domains, including agent-oriented abilities and reasoning skills.
☆ The single-use restriction for register automata and transducers over infinite alphabets
This thesis studies the single-use restriction for register automata and transducers over infinite alphabets. The restriction requires that a read-access to a register should have the side effect of destroying its contents. This constraint results in robust classes of languages and transductions. For automata models, we show that one-way register automata, two-way register automata, and orbit-finite monoids have the same expressive power. For transducer models, we show that single-use Mealy machines and single-use two-way transducers admit versions of the Krohn-Rhodes decomposition theorem. Moreover, single-use Mealy machines are equivalent to an algebraic model called local algebraic semigroup transductions. Additionally, we show that single-use two-way transducers are equivalent to single-use streaming string transducers (SSTs) over infinite alphabets and to regular list functions with atoms. Compared with the previous work arXiv:1907.10504, this thesis offers a coherent narrative on the single-use restriction. We introduce an abstract notion of single-use functions and use them to define all the discussed single-use models. We also introduce and study the algebraic models of local semigroup transduction and local rational semigroup transduction.
comment: PhD Thesis at University of Warsaw. Supervisor: Miko{\l}aj Boja\'nczyk
☆ Enhanced ASR Robustness to Packet Loss with a Front-End Adaptation Network INTERSPEECH 2024
In the realm of automatic speech recognition (ASR), robustness in noisy environments remains a significant challenge. Recent ASR models, such as Whisper, have shown promise, but their efficacy in noisy conditions can be further enhanced. This study is focused on recovering from packet loss to improve the word error rate (WER) of ASR models. We propose using a front-end adaptation network connected to a frozen ASR model. The adaptation network is trained to modify the corrupted input spectrum by minimizing the criteria of the ASR model in addition to an enhancement loss function. Our experiments demonstrate that the adaptation network, trained on Whisper's criteria, notably reduces word error rates across domains and languages in packet-loss scenarios. This improvement is achieved with minimal affect to Whisper model's foundational performance, underscoring our method's practicality and potential in enhancing ASR models in challenging acoustic environments.
comment: Accepted for publication at INTERSPEECH 2024
☆ Selective Vision is the Challenge for Visual Reasoning: A Benchmark for Visual Argument Understanding
Visual arguments, often used in advertising or social causes, rely on images to persuade viewers to do or believe something. Understanding these arguments requires selective vision: only specific visual stimuli within an image are relevant to the argument, and relevance can only be understood within the context of a broader argumentative structure. While visual arguments are readily appreciated by human audiences, we ask: are today's AI capable of similar understanding? We collect and release VisArgs, an annotated corpus designed to make explicit the (usually implicit) structures underlying visual arguments. VisArgs includes 1,611 images accompanied by three types of textual annotations: 5,112 visual premises (with region annotations), 5,574 commonsense premises, and reasoning trees connecting them to a broader argument. We propose three tasks over VisArgs to probe machine capacity for visual argument understanding: localization of premises, identification of premises, and deduction of conclusions. Experiments demonstrate that 1) machines cannot fully identify the relevant visual cues. The top-performing model, GPT-4-O, achieved an accuracy of only 78.5%, whereas humans reached 98.0%. All models showed a performance drop, with an average decrease in accuracy of 19.5%, when the comparison set was changed from objects outside the image to irrelevant objects within the image. Furthermore, 2) this limitation is the greatest factor impacting their performance in understanding visual arguments. Most models improved the most when given relevant visual premises as additional inputs, compared to other inputs, for deducing the conclusion of the visual argument.
comment: 12 pages, 5 figures
☆ Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data
Role-playing agents (RPA) have been a popular application area for large language models (LLMs), attracting significant interest from both industry and academia.While existing RPAs well portray the characters' knowledge and tones, they face challenges in capturing their minds, especially for small role-playing language models (RPLMs). In this paper, we propose to enhance RPLMs via personality-indicative data. Specifically, we leverage questions from psychological scales and distill advanced RPAs to generate dialogues that grasp the minds of characters. Experimental results validate that RPLMs trained with our dataset exhibit advanced role-playing capabilities for both general and personality-related evaluations. Code and data are available at \href{https://github.com/alienet1109/RolePersonality}{this URL}.
comment: 10pages
☆ TrustUQA: A Trustful Framework for Unified Structured Data Question Answering
Natural language question answering (QA) over structured data sources such as tables and knowledge graphs (KGs) have been widely investigated, for example with Large Language Models (LLMs). The main solutions include question to formal query parsing and retrieval-based answer generation. However, current methods of the former often suffer from weak generalization, failing to dealing with multiple sources simultaneously, while the later is limited in trustfulness. In this paper, we propose UnifiedTQA, a trustful QA framework that can simultaneously support multiple types of structured data in a unified way. To this end, it adopts an LLM-friendly and unified knowledge representation method called Condition Graph (CG), and uses an LLM and demonstration-based two-level method for CG querying. For enhancement, it is also equipped with dynamic demonstration retrieval. We have evaluated UnifiedTQA with 5 benchmarks covering 3 types of structured data. It outperforms 2 existing unified structured data QA methods and in comparison with the baselines that are specific to a data type, it achieves state-of-the-art on 2 of them. Further more, we demonstrates potential of our method for more general QA tasks, QA over mixed structured data and QA across structured data.
☆ Factor-Conditioned Speaking-Style Captioning
This paper presents a novel speaking-style captioning method that generates diverse descriptions while accurately predicting speaking-style information. Conventional learning criteria directly use original captions that contain not only speaking-style factor terms but also syntax words, which disturbs learning speaking-style information. To solve this problem, we introduce factor-conditioned captioning (FCC), which first outputs a phrase representing speaking-style factors (e.g., gender, pitch, etc.), and then generates a caption to ensure the model explicitly learns speaking-style factors. We also propose greedy-then-sampling (GtS) decoding, which first predicts speaking-style factors deterministically to guarantee semantic accuracy, and then generates a caption based on factor-conditioned sampling to ensure diversity. Experiments show that FCC outperforms the original caption-based training, and with GtS, it generates more diverse captions while keeping style prediction performance.
comment: Accepted to Interspeech 2024
☆ Historia Magistra Vitae: Dynamic Topic Modeling of Roman Literature using Neural Embeddings
Dynamic topic models have been proposed as a tool for historical analysis, but traditional approaches have had limited usefulness, being difficult to configure, interpret, and evaluate. In this work, we experiment with a recent approach for dynamic topic modeling using BERT embeddings. We compare topic models built using traditional statistical models (LDA and NMF) and the BERT-based model, modeling topics over the entire surviving corpus of Roman literature. We find that while quantitative metrics prefer statistical models, qualitative evaluation finds better insights from the neural model. Furthermore, the neural topic model is less sensitive to hyperparameter configuration and thus may make dynamic topic modeling more viable for historical researchers.
comment: 6 pages, 2 figures
☆ Sonnet or Not, Bot? Poetry Evaluation for Large Models and Datasets
Large language models (LLMs) can now generate and recognize text in a wide range of styles and genres, including highly specialized, creative genres like poetry. But what do LLMs really know about poetry? What can they know about poetry? We develop a task to evaluate how well LLMs recognize a specific aspect of poetry, poetic form, for more than 20 forms and formal elements in the English language. Poetic form captures many different poetic features, including rhyme scheme, meter, and word or line repetition. We use this task to reflect on LLMs' current poetic capabilities, as well as the challenges and pitfalls of creating NLP benchmarks for poetry and for other creative tasks. In particular, we use this task to audit and reflect on the poems included in popular pretraining datasets. Our findings have implications for NLP researchers interested in model evaluation, digital humanities and cultural analytics scholars, and cultural heritage professionals.
☆ Can we teach language models to gloss endangered languages?
Interlinear glossed text (IGT) is a popular format in language documentation projects, where each morpheme is labeled with a descriptive annotation. Automating the creation of interlinear glossed text can be desirable to reduce annotator effort and maintain consistency across annotated corpora. Prior research has explored a number of statistical and neural methods for automatically producing IGT. As large language models (LLMs) have showed promising results across multilingual tasks, even for rare, endangered languages, it is natural to wonder whether they can be utilized for the task of generating IGT. We explore whether LLMs can be effective at the task of interlinear glossing with in-context learning, without any traditional training. We propose new approaches for selecting examples to provide in-context, observing that targeted selection can significantly improve performance. We find that LLM-based methods beat standard transformer baselines, despite requiring no training at all. These approaches still underperform state-of-the-art supervised systems for the task, but are highly practical for researchers outside of the NLP community, requiring minimal effort to use.
☆ SSP: Self-Supervised Prompting for Cross-Lingual Transfer to Low-Resource Languages using Large Language Models
Recently, very large language models (LLMs) have shown exceptional performance on several English NLP tasks with just in-context learning (ICL), but their utility in other languages is still underexplored. We investigate their effectiveness for NLP tasks in low-resource languages (LRLs), especially in the setting of zero-labelled cross-lingual transfer (0-CLT), where no labelled training data for the target language is available -- however training data from one or more related medium-resource languages (MRLs) is utilized, alongside the available unlabeled test data for a target language. We introduce Self-Supervised Prompting (SSP), a novel ICL approach tailored for the 0-CLT setting. SSP is based on the key observation that LLMs output more accurate labels if in-context exemplars are from the target language (even if their labels are slightly noisy). To operationalize this, since target language training data is not available in 0-CLT, SSP operates in two stages. In Stage I, using source MRL training data, target language's test data is noisily labeled. In Stage II, these noisy test data points are used as exemplars in ICL for further improved labelling. Additionally, our implementation of SSP uses a novel Integer Linear Programming (ILP)-based exemplar selection that balances similarity, prediction confidence (when available) and label coverage. Experiments on three tasks and eleven LRLs (from three regions) demonstrate that SSP strongly outperforms existing SOTA fine-tuned and prompting-based baselines in 0-CLT setup.
☆ DeSTA: Enhancing Speech Language Models through Descriptive Speech-Text Alignment
Recent speech language models (SLMs) typically incorporate pre-trained speech models to extend the capabilities from large language models (LLMs). In this paper, we propose a Descriptive Speech-Text Alignment approach that leverages speech captioning to bridge the gap between speech and text modalities, enabling SLMs to interpret and generate comprehensive natural language descriptions, thereby facilitating the capability to understand both linguistic and non-linguistic features in speech. Enhanced with the proposed approach, our model demonstrates superior performance on the Dynamic-SUPERB benchmark, particularly in generalizing to unseen tasks. Moreover, we discover that the aligned model exhibits a zero-shot instruction-following capability without explicit speech instruction tuning. These findings highlight the potential to reshape instruction-following SLMs by incorporating rich, descriptive speech captions.
comment: Accepted to Interspeech 2024
☆ Efficacy of Language Model Self-Play in Non-Zero-Sum Games
Game-playing agents like AlphaGo have achieved superhuman performance through self-play, which is theoretically guaranteed to yield optimal policies in competitive games. However, most language tasks are partially or fully cooperative, so it is an open question whether techniques like self-play can effectively be used to improve language models. We empirically investigate this question in a negotiation game setting known as Deal or No Deal (DoND). Crucially, the objective in DoND can be modified to produce a fully cooperative game, a strictly competitive one, or anything in between. We finetune language models in self-play over multiple rounds of filtered behavior cloning in DoND for each of these objectives. Contrary to expectations, we find that language model self-play leads to significant performance gains in both cooperation and competition with humans, suggesting that self-play and related techniques have promise despite a lack of theoretical guarantees.
☆ Two-Pronged Human Evaluation of ChatGPT Self-Correction in Radiology Report Simplification
Radiology reports are highly technical documents aimed primarily at doctor-doctor communication. There has been an increasing interest in sharing those reports with patients, necessitating providing them patient-friendly simplifications of the original reports. This study explores the suitability of large language models in automatically generating those simplifications. We examine the usefulness of chain-of-thought and self-correction prompting mechanisms in this domain. We also propose a new evaluation protocol that employs radiologists and laypeople, where radiologists verify the factual correctness of simplifications, and laypeople assess simplicity and comprehension. Our experimental results demonstrate the effectiveness of self-correction prompting in producing high-quality simplifications. Our findings illuminate the preferences of radiologists and laypeople regarding text simplification, informing future research on this topic.
☆ FFN: a Fine-grained Chinese-English Financial Domain Parallel Corpus
Large Language Models (LLMs) have stunningly advanced the field of machine translation, though their effectiveness within the financial domain remains largely underexplored. To probe this issue, we constructed a fine-grained Chinese-English parallel corpus of financial news called FFN. We acquired financial news articles spanning between January 1st, 2014, to December 31, 2023, from mainstream media websites such as CNN, FOX, and China Daily. The dataset consists of 1,013 main text and 809 titles, all of which have been manually corrected. We measured the translation quality of two LLMs -- ChatGPT and ERNIE-bot, utilizing BLEU, TER and chrF scores as the evaluation metrics. For comparison, we also trained an OpenNMT model based on our dataset. We detail problems of LLMs and provide in-depth analysis, intending to stimulate further research and solutions in this largely uncharted territory. Our research underlines the need to optimize LLMs within the specific field of financial translation to ensure accuracy and quality.
comment: a simplified version of this paper is accepted by International Conference on Asian Language Processing 2024
☆ Learning Retrieval Augmentation for Personalized Dialogue Generation EMNLP-2023
Personalized dialogue generation, focusing on generating highly tailored responses by leveraging persona profiles and dialogue context, has gained significant attention in conversational AI applications. However, persona profiles, a prevalent setting in current personalized dialogue datasets, typically composed of merely four to five sentences, may not offer comprehensive descriptions of the persona about the agent, posing a challenge to generate truly personalized dialogues. To handle this problem, we propose $\textbf{L}$earning Retrieval $\textbf{A}$ugmentation for $\textbf{P}$ersonalized $\textbf{D}$ial$\textbf{O}$gue $\textbf{G}$eneration ($\textbf{LAPDOG}$), which studies the potential of leveraging external knowledge for persona dialogue generation. Specifically, the proposed LAPDOG model consists of a story retriever and a dialogue generator. The story retriever uses a given persona profile as queries to retrieve relevant information from the story document, which serves as a supplementary context to augment the persona profile. The dialogue generator utilizes both the dialogue history and the augmented persona profile to generate personalized responses. For optimization, we adopt a joint training framework that collaboratively learns the story retriever and dialogue generator, where the story retriever is optimized towards desired ultimate metrics (e.g., BLEU) to retrieve content for the dialogue generator to generate personalized responses. Experiments conducted on the CONVAI2 dataset with ROCStory as a supplementary data source show that the proposed LAPDOG method substantially outperforms the baselines, indicating the effectiveness of the proposed method. The LAPDOG model code is publicly available for further exploration. https://github.com/hqsiswiliam/LAPDOG
comment: Accepted to EMNLP-2023
☆ OutlierTune: Efficient Channel-Wise Quantization for Large Language Models
Quantizing the activations of large language models (LLMs) has been a significant challenge due to the presence of structured outliers. Most existing methods focus on the per-token or per-tensor quantization of activations, making it difficult to achieve both accuracy and hardware efficiency. To address this problem, we propose OutlierTune, an efficient per-channel post-training quantization (PTQ) method for the activations of LLMs. OutlierTune consists of two components: pre-execution of dequantization and symmetrization. The pre-execution of dequantization updates the model weights by the activation scaling factors, avoiding the internal scaling and costly additional computational overheads brought by the per-channel activation quantization. The symmetrization further reduces the quantization differences arising from the weight updates by ensuring the balanced numerical ranges across different activation channels. OutlierTune is easy to implement and hardware-efficient, introducing almost no additional computational overheads during the inference. Extensive experiments show that the proposed framework outperforms existing methods across multiple different tasks. Demonstrating better generalization, this framework improves the Int6 quantization of the instruction-tuning LLMs, such as OPT-IML, to the same level as half-precision (FP16). Moreover, we have shown that the proposed framework is 1.48x faster than the FP16 implementation while reducing approximately 2x memory usage.
☆ PathAlign: A vision-language model for whole slide images in histopathology
Microscopic interpretation of histopathology images underlies many important diagnostic and treatment decisions. While advances in vision-language modeling raise new opportunities for analysis of such images, the gigapixel-scale size of whole slide images (WSIs) introduces unique challenges. Additionally, pathology reports simultaneously highlight key findings from small regions while also aggregating interpretation across multiple slides, often making it difficult to create robust image-text pairs. As such, pathology reports remain a largely untapped source of supervision in computational pathology, with most efforts relying on region-of-interest annotations or self-supervision at the patch-level. In this work, we develop a vision-language model based on the BLIP-2 framework using WSIs paired with curated text from pathology reports. This enables applications utilizing a shared image-text embedding space, such as text or image retrieval for finding cases of interest, as well as integration of the WSI encoder with a frozen large language model (LLM) for WSI-based generative text capabilities such as report generation or AI-in-the-loop interactions. We utilize a de-identified dataset of over 350,000 WSIs and diagnostic text pairs, spanning a wide range of diagnoses, procedure types, and tissue types. We present pathologist evaluation of text generation and text retrieval using WSI embeddings, as well as results for WSI classification and workflow prioritization (slide-level triaging). Model-generated text for WSIs was rated by pathologists as accurate, without clinically significant error or omission, for 78% of WSIs on average. This work demonstrates exciting potential capabilities for language-aligned WSI embeddings.
comment: 9 main pages and 19 pages of supplemental material; 3 main tables, 3 main figures and 11 supplemental tables, 7 supplemental figures
☆ Voices Unheard: NLP Resources and Models for Yorùbá Regional Dialects
Yor\`ub\'a an African language with roughly 47 million speakers encompasses a continuum with several dialects. Recent efforts to develop NLP technologies for African languages have focused on their standard dialects, resulting in disparities for dialects and varieties for which there are little to no resources or tools. We take steps towards bridging this gap by introducing a new high-quality parallel text and speech corpus YOR\`ULECT across three domains and four regional Yor\`ub\'a dialects. To develop this corpus, we engaged native speakers, travelling to communities where these dialects are spoken, to collect text and speech data. Using our newly created corpus, we conducted extensive experiments on (text) machine translation, automatic speech recognition, and speech-to-text translation. Our results reveal substantial performance disparities between standard Yor\`ub\'a and the other dialects across all tasks. However, we also show that with dialect-adaptive finetuning, we are able to narrow this gap. We believe our dataset and experimental analysis will contribute greatly to developing NLP tools for Yor\`ub\'a and its dialects, and potentially for other African languages, by improving our understanding of existing challenges and offering a high-quality dataset for further development. We release YOR\`ULECT dataset and models publicly under an open license.
☆ Rethinking harmless refusals when fine-tuning foundation models ICLR 2024
In this paper, we investigate the degree to which fine-tuning in Large Language Models (LLMs) effectively mitigates versus merely conceals undesirable behavior. Through the lens of semi-realistic role-playing exercises designed to elicit such behaviors, we explore the response dynamics of LLMs post fine-tuning interventions. Our methodology involves prompting models for Chain-of-Thought (CoT) reasoning and analyzing the coherence between the reasoning traces and the resultant outputs. Notably, we identify a pervasive phenomenon we term \emph{reason-based deception}, where models either stop producing reasoning traces or produce seemingly ethical reasoning traces that belie the unethical nature of their final outputs. We further examine the efficacy of response strategies (polite refusal versus explicit rebuttal) in curbing the occurrence of undesired behavior in subsequent outputs of multi-turn interactions. Our findings reveal that explicit rebuttals significantly outperform polite refusals in preventing the continuation of undesired outputs and nearly eliminate reason-based deception, challenging current practices in model fine-tuning. Accordingly, the two key contributions of this paper are (1) defining and studying reason-based deception, a new type of hidden behavior, and (2) demonstrating that rebuttals provide a more robust response model to harmful requests than refusals, thereby highlighting the need to reconsider the response strategies in fine-tuning approaches.
comment: ICLR 2024 AGI Workshop Poster
☆ Leveraging Machine-Generated Rationales to Facilitate Social Meaning Detection in Conversations
We present a generalizable classification approach that leverages Large Language Models (LLMs) to facilitate the detection of implicitly encoded social meaning in conversations. We design a multi-faceted prompt to extract a textual explanation of the reasoning that connects visible cues to underlying social meanings. These extracted explanations or rationales serve as augmentations to the conversational text to facilitate dialogue understanding and transfer. Our empirical results over 2,340 experimental settings demonstrate the significant positive impact of adding these rationales. Our findings hold true for in-domain classification, zero-shot, and few-shot domain transfer for two different social meaning detection tasks, each spanning two different corpora.
comment: To appear at The Proceedings of the Association for Computational Linguistics, 2024
☆ Demarked: A Strategy for Enhanced Abusive Speech Moderation through Counterspeech, Detoxification, and Message Management
Despite regulations imposed by nations and social media platforms, such as recent EU regulations targeting digital violence, abusive content persists as a significant challenge. Existing approaches primarily rely on binary solutions, such as outright blocking or banning, yet fail to address the complex nature of abusive speech. In this work, we propose a more comprehensive approach called Demarcation scoring abusive speech based on four aspect -- (i) severity scale; (ii) presence of a target; (iii) context scale; (iv) legal scale -- and suggesting more options of actions like detoxification, counter speech generation, blocking, or, as a final measure, human intervention. Through a thorough analysis of abusive speech regulations across diverse jurisdictions, platforms, and research papers we highlight the gap in preventing measures and advocate for tailored proactive steps to combat its multifaceted manifestations. Our work aims to inform future strategies for effectively addressing abusive speech online.
☆ Context Matters: An Empirical Study of the Impact of Contextual Information in Temporal Question Answering Systems
Large language models (LLMs) often struggle with temporal reasoning, crucial for tasks like historical event analysis and time-sensitive information retrieval. Despite advancements, state-of-the-art models falter in handling temporal information, especially when faced with irrelevant or noisy contexts. This paper addresses this gap by empirically examining the robustness of temporal question-answering (TQA) systems trained on various context types, including relevant, irrelevant, slightly altered, and no context. Our findings indicate that training with a mix of these contexts enhances model robustness and accuracy. Additionally, we show that the position of context relative to the question significantly impacts performance, with question-first positioning yielding better results. We introduce two new context-rich TQA datasets, ContextAQA and ContextTQE, and provide comprehensive evaluations and guidelines for training robust TQA models. Our work lays the foundation for developing reliable and context-aware temporal QA systems, with broader implications for enhancing LLM robustness against diverse and potentially adversarial information.
☆ Handling Ontology Gaps in Semantic Parsing
The majority of Neural Semantic Parsing (NSP) models are developed with the assumption that there are no concepts outside the ones such models can represent with their target symbols (closed-world assumption). This assumption leads to generate hallucinated outputs rather than admitting their lack of knowledge. Hallucinations can lead to wrong or potentially offensive responses to users. Hence, a mechanism to prevent this behavior is crucial to build trusted NSP-based Question Answering agents. To that end, we propose the Hallucination Simulation Framework (HSF), a general setting for stimulating and analyzing NSP model hallucinations. The framework can be applied to any NSP task with a closed-ontology. Using the proposed framework and KQA Pro as the benchmark dataset, we assess state-of-the-art techniques for hallucination detection. We then present a novel hallucination detection strategy that exploits the computational graph of the NSP model to detect the NSP hallucinations in the presence of ontology gaps, out-of-domain utterances, and to recognize NSP errors, improving the F1-Score respectively by ~21, ~24% and ~1%. This is the first work in closed-ontology NSP that addresses the problem of recognizing ontology gaps. We release our code and checkpoints at https://github.com/amazon-science/handling-ontology-gaps-in-semantic-parsing.
☆ TocBERT: Medical Document Structure Extraction Using Bidirectional Transformers
Text segmentation holds paramount importance in the field of Natural Language Processing (NLP). It plays an important role in several NLP downstream tasks like information retrieval and document summarization. In this work, we propose a new solution, namely TocBERT, for segmenting texts using bidirectional transformers. TocBERT represents a supervised solution trained on the detection of titles and sub-titles from their semantic representations. This task was formulated as a named entity recognition (NER) problem. The solution has been applied on a medical text segmentation use-case where the Bio-ClinicalBERT model is fine-tuned to segment discharge summaries of the MIMIC-III dataset. The performance of TocBERT has been evaluated on a human-labeled ground truth corpus of 250 notes. It achieved an F1-score of 84.6% when evaluated on a linear text segmentation problem and 72.8% on a hierarchical text segmentation problem. It outperformed a carefully designed rule-based solution, particularly in distinguishing titles from subtitles.
comment: 6 pages, 6 figures
☆ Captioning Visualizations with Large Language Models (CVLLM): A Tutorial
Automatically captioning visualizations is not new, but recent advances in large language models(LLMs) open exciting new possibilities. In this tutorial, after providing a brief review of Information Visualization (InfoVis) principles and past work in captioning, we introduce neural models and the transformer architecture used in generic LLMs. We then discuss their recent applications in InfoVis, with a focus on captioning. Additionally, we explore promising future directions in this field.
comment: 6 pages, 4 figures
☆ Are Generative Language Models Multicultural? A Study on Hausa Culture and Emotions using ChatGPT
Large Language Models (LLMs), such as ChatGPT, are widely used to generate content for various purposes and audiences. However, these models may not reflect the cultural and emotional diversity of their users, especially for low-resource languages. In this paper, we investigate how ChatGPT represents Hausa's culture and emotions. We compare responses generated by ChatGPT with those provided by native Hausa speakers on 37 culturally relevant questions. We conducted experiments using emotion analysis and applied two similarity metrics to measure the alignment between human and ChatGPT responses. We also collected human participants ratings and feedback on ChatGPT responses. Our results show that ChatGPT has some level of similarity to human responses, but also exhibits some gaps and biases in its knowledge and awareness of the Hausa culture and emotions. We discuss the implications and limitations of our methodology and analysis and suggest ways to improve the performance and evaluation of LLMs for low-resource languages.
☆ Investigating How Large Language Models Leverage Internal Knowledge to Perform Complex Reasoning
Despite significant advancements, there is a limited understanding of how large language models (LLMs) utilize knowledge for reasoning. To address this, we propose a method that deconstructs complex real-world questions into a graph, representing each question as a node with parent nodes of background knowledge needed to solve the question. We develop the DepthQA dataset, deconstructing questions into three depths: (i) recalling conceptual knowledge, (ii) applying procedural knowledge, and (iii) analyzing strategic knowledge. Based on a hierarchical graph, we quantify forward discrepancy, discrepancies in LLMs' performance on simpler sub-problems versus complex questions. We also measure backward discrepancy, where LLMs answer complex questions but struggle with simpler ones. Our analysis shows that smaller models have more discrepancies than larger models. Additionally, guiding models from simpler to complex questions through multi-turn interactions improves performance across model sizes, highlighting the importance of structured intermediate steps in knowledge reasoning. This work enhances our understanding of LLM reasoning and suggests ways to improve their problem-solving abilities.
comment: Work in progress; code is available at https://github.com/kaistAI/knowledge-reasoning
☆ Monitoring Latent World States in Language Models with Propositional Probes
Language models are susceptible to bias, sycophancy, backdoors, and other tendencies that lead to unfaithful responses to the input context. Interpreting internal states of language models could help monitor and correct unfaithful behavior. We hypothesize that language models represent their input contexts in a latent world model, and seek to extract this latent world state from the activations. We do so with 'propositional probes', which compositionally probe tokens for lexical information and bind them into logical propositions representing the world state. For example, given the input context ''Greg is a nurse. Laura is a physicist.'', we decode the propositions ''WorksAs(Greg, nurse)'' and ''WorksAs(Laura, physicist)'' from the model's activations. Key to this is identifying a 'binding subspace' in which bound tokens have high similarity (''Greg'' and ''nurse'') but unbound ones do not (''Greg'' and ''physicist''). We validate propositional probes in a closed-world setting with finitely many predicates and properties. Despite being trained on simple templated contexts, propositional probes generalize to contexts rewritten as short stories and translated to Spanish. Moreover, we find that in three settings where language models respond unfaithfully to the input context -- prompt injections, backdoor attacks, and gender bias -- the decoded propositions remain faithful. This suggests that language models often encode a faithful world model but decode it unfaithfully, which motivates the search for better interpretability tools for monitoring LMs.
☆ Knowledge acquisition for dialogue agents using reinforcement learning on graph representations
We develop an artificial agent motivated to augment its knowledge base beyond its initial training. The agent actively participates in dialogues with other agents, strategically acquiring new information. The agent models its knowledge as an RDF knowledge graph, integrating new beliefs acquired through conversation. Responses in dialogue are generated by identifying graph patterns around these new integrated beliefs. We show that policies can be learned using reinforcement learning to select effective graph patterns during an interaction, without relying on explicit user feedback. Within this context, our study is a proof of concept for leveraging users as effective sources of information.
☆ Inclusivity in Large Language Models: Personality Traits and Gender Bias in Scientific Abstracts
Large language models (LLMs) are increasingly utilized to assist in scientific and academic writing, helping authors enhance the coherence of their articles. Previous studies have highlighted stereotypes and biases present in LLM outputs, emphasizing the need to evaluate these models for their alignment with human narrative styles and potential gender biases. In this study, we assess the alignment of three prominent LLMs - Claude 3 Opus, Mistral AI Large, and Gemini 1.5 Flash - by analyzing their performance on benchmark text-generation tasks for scientific abstracts. We employ the Linguistic Inquiry and Word Count (LIWC) framework to extract lexical, psychological, and social features from the generated texts. Our findings indicate that, while these models generally produce text closely resembling human authored content, variations in stylistic features suggest significant gender biases. This research highlights the importance of developing LLMs that maintain a diversity of writing styles to promote inclusivity in academic discourse.
☆ Development and Evaluation of a Retrieval-Augmented Generation Tool for Creating SAPPhIRE Models of Artificial Systems
Representing systems using the SAPPhIRE causality model is found useful in supporting design-by-analogy. However, creating a SAPPhIRE model of artificial or biological systems is an effort-intensive process that requires human experts to source technical knowledge from multiple technical documents regarding how the system works. This research investigates how to leverage Large Language Models (LLMs) in creating structured descriptions of systems using the SAPPhIRE model of causality. This paper, the second part of the two-part research, presents a new Retrieval-Augmented Generation (RAG) tool for generating information related to SAPPhIRE constructs of artificial systems and reports the results from a preliminary evaluation of the tool's success - focusing on the factual accuracy and reliability of outcomes.
☆ LoPT: Low-Rank Prompt Tuning for Parameter Efficient Language Models
In prompt tuning, a prefix or suffix text is added to the prompt, and the embeddings (soft prompts) or token indices (hard prompts) of the prefix/suffix are optimized to gain more control over language models for specific tasks. This approach eliminates the need for hand-crafted prompt engineering or explicit model fine-tuning. Prompt tuning is significantly more parameter-efficient than model fine-tuning, as it involves optimizing partial inputs of language models to produce desired outputs. In this work, we aim to further reduce the amount of trainable parameters required for a language model to perform well on specific tasks. We propose Low-rank Prompt Tuning (LoPT), a low-rank model for prompts that achieves efficient prompt optimization. The proposed method demonstrates similar outcomes to full parameter prompt tuning while reducing the number of trainable parameters by a factor of 5. It also provides promising results compared to the state-of-the-art methods that would require 10 to 20 times more parameters.
☆ xTower: A Multilingual LLM for Explaining and Correcting Translation Errors
While machine translation (MT) systems are achieving increasingly strong performance on benchmarks, they often produce translations with errors and anomalies. Understanding these errors can potentially help improve the translation quality and user experience. This paper introduces xTower, an open large language model (LLM) built on top of TowerBase designed to provide free-text explanations for translation errors in order to guide the generation of a corrected translation. The quality of the generated explanations by xTower are assessed via both intrinsic and extrinsic evaluation. We ask expert translators to evaluate the quality of the explanations across two dimensions: relatedness towards the error span being explained and helpfulness in error understanding and improving translation quality. Extrinsically, we test xTower across various experimental setups in generating translation corrections, demonstrating significant improvements in translation quality. Our findings highlight xTower's potential towards not only producing plausible and helpful explanations of automatic translations, but also leveraging them to suggest corrected translations.
☆ Sparse Regression for Machine Translation
We use transductive regression techniques to learn mappings between source and target features of given parallel corpora and use these mappings to generate machine translation outputs. We show the effectiveness of $L_1$ regularized regression (\textit{lasso}) to learn the mappings between sparsely observed feature sets versus $L_2$ regularized regression. Proper selection of training instances plays an important role to learn correct feature mappings within limited computational resources and at expected accuracy levels. We introduce \textit{dice} instance selection method for proper selection of training instances, which plays an important role to learn correct feature mappings for improving the source and target coverage of the training set. We show that $L_1$ regularized regression performs better than $L_2$ regularized regression both in regression measurements and in the translation experiments using graph decoding. We present encouraging results when translating from German to English and Spanish to English. We also demonstrate results when the phrase table of a phrase-based decoder is replaced with the mappings we find with the regression model.
comment: 8 pages, 4 figures, 4 tables
☆ Changing Answer Order Can Decrease MMLU Accuracy
As large language models (LLMs) have grown in prevalence, particular benchmarks have become essential for the evaluation of these models and for understanding model capabilities. Most commonly, we use test accuracy averaged across multiple subtasks in order to rank models on leaderboards, to determine which model is best for our purposes. In this paper, we investigate the robustness of the accuracy measurement on a widely used multiple choice question answering dataset, MMLU. When shuffling the answer label contents, we find that all explored models decrease in accuracy on MMLU, but not every model is equally sensitive. These findings suggest a possible adjustment to the standard practice of leaderboard testing, where we additionally consider the percentage of examples each model answers correctly by random chance.
comment: Short paper, 9 pages
☆ Can Large Language Models Generate High-quality Patent Claims?
Large language models (LLMs) have shown exceptional performance across various text generation tasks but remain under-explored in the patent domain, which offers highly structured and precise language. This paper constructs a dataset to investigate the performance of current LLMs in patent claim generation. Our results demonstrate that generating claims based on patent descriptions outperforms previous research relying on abstracts. Interestingly, current patent-specific LLMs perform much worse than state-of-the-art general LLMs, highlighting the necessity for future research on in-domain LLMs. We also find that LLMs can produce high-quality first independent claims, but their performances markedly decrease for subsequent dependent claims. Moreover, fine-tuning can enhance the completeness of inventions' features, conceptual clarity, and feature linkage. Among the tested LLMs, GPT-4 demonstrates the best performance in comprehensive human evaluations by patent experts, with better feature coverage, conceptual clarity, and technical coherence. Despite these capabilities, comprehensive revision and modification are still necessary to pass rigorous patent scrutiny and ensure legal robustness.
comment: 13 pages
♻ ☆ Assessing the Brittleness of Safety Alignment via Pruning and Low-Rank Modifications
Large language models (LLMs) show inherent brittleness in their safety mechanisms, as evidenced by their susceptibility to jailbreaking and even non-malicious fine-tuning. This study explores this brittleness of safety alignment by leveraging pruning and low-rank modifications. We develop methods to identify critical regions that are vital for safety guardrails, and that are disentangled from utility-relevant regions at both the neuron and rank levels. Surprisingly, the isolated regions we find are sparse, comprising about $3\%$ at the parameter level and $2.5\%$ at the rank level. Removing these regions compromises safety without significantly impacting utility, corroborating the inherent brittleness of the model's safety mechanisms. Moreover, we show that LLMs remain vulnerable to low-cost fine-tuning attacks even when modifications to the safety-critical regions are restricted. These findings underscore the urgent need for more robust safety strategies in LLMs.
comment: 22 pages, 9 figures. Project page is available at https://boyiwei.com/alignment-attribution/
♻ ☆ VDebugger: Harnessing Execution Feedback for Debugging Visual Programs
Visual programs are executable code generated by large language models to address visual reasoning problems. They decompose complex questions into multiple reasoning steps and invoke specialized models for each step to solve the problems. However, these programs are prone to logic errors, with our preliminary evaluation showing that 58% of the total errors are caused by program logic errors. Debugging complex visual programs remains a major bottleneck for visual reasoning. To address this, we introduce VDebugger, a novel critic-refiner framework trained to localize and debug visual programs by tracking execution step by step. VDebugger identifies and corrects program errors leveraging detailed execution feedback, improving interpretability and accuracy. The training data is generated through an automated pipeline that injects errors into correct visual programs using a novel mask-best decoding technique. Evaluations on six datasets demonstrate VDebugger's effectiveness, showing performance improvements of up to 3.2% in downstream task accuracy. Further studies show VDebugger's ability to generalize to unseen tasks, bringing a notable improvement of 2.3% on the unseen COVR task. Code, data and models are made publicly available at https://github.com/shirley-wu/vdebugger/
comment: update reference
♻ ☆ WebCanvas: Benchmarking Web Agents in Online Environments
For web agents to be practically useful, they must adapt to the continuously evolving web environment characterized by frequent updates to user interfaces and content. However, most existing benchmarks only capture the static aspects of the web. To bridge this gap, we introduce WebCanvas, an innovative online evaluation framework for web agents that effectively addresses the dynamic nature of web interactions. WebCanvas contains three main components to facilitate realistic assessments: (1) A novel evaluation metric which reliably capture critical intermediate actions or states necessary for task completions while disregarding noise caused by insignificant events or changed web-elements. (2) A benchmark dataset called Mind2Web-Live, a refined version of original Mind2Web static dataset containing 542 tasks with 2439 intermediate evaluation states; (3) Lightweight and generalizable annotation tools and testing pipelines that enables the community to collect and maintain the high-quality, up-to-date dataset. Building on WebCanvas, we open-source an agent framework with extensible modules for reasoning, providing a foundation for the community to conduct online inference and evaluations. Our best-performing agent achieves a task success rate of 23.1% and a task completion rate of 48.8% on the Mind2Web-Live test set. Additionally, we analyze the performance discrepancies across various websites, domains, and experimental environments. We encourage the community to contribute further insights on online agent evaluation, thereby advancing this field of research.
comment: Our platform, tool and dataset are publically available at https://www.imean.ai/web-canvas/ and https://huggingface.co/datasets/iMeanAI/Mind2Web-Live/
♻ ☆ Step-On-Feet Tuning: Scaling Self-Alignment of LLMs via Bootstrapping
Self-alignment is an effective way to reduce the cost of human annotation while ensuring promising model capability. However, most current methods complete the data collection and training steps in a single round, which may overlook the continuously improving ability of self-aligned models. This gives rise to a key query: What if we do multi-time bootstrapping self-alignment? Does this strategy enhance model performance or lead to rapid degradation? In this paper, our pioneering exploration delves into the impact of bootstrapping self-alignment on large language models. Our findings reveal that bootstrapping self-alignment markedly surpasses the single-round approach, by guaranteeing data diversity from in-context learning. To further exploit the capabilities of bootstrapping, we investigate and adjust the training order of data, which yields improved performance of the model. Drawing on these findings, we propose Step-On-Feet Tuning (SOFT) which leverages model's continuously enhanced few-shot ability to boost zero or one-shot performance. Based on easy-to-hard training recipe, we propose SOFT+ which further boost self-alignment's performance. Our experiments demonstrate the efficiency of SOFT (SOFT+) across various classification and generation tasks, highlighting the potential of bootstrapping self-alignment on continually enhancing model alignment performance.
♻ ☆ Thermometer: Towards Universal Calibration for Large Language Models ICML 2024
We consider the issue of calibration in large language models (LLM). Recent studies have found that common interventions such as instruction tuning often result in poorly calibrated LLMs. Although calibration is well-explored in traditional applications, calibrating LLMs is uniquely challenging. These challenges stem as much from the severe computational requirements of LLMs as from their versatility, which allows them to be applied to diverse tasks. Addressing these challenges, we propose THERMOMETER, a calibration approach tailored to LLMs. THERMOMETER learns an auxiliary model, given data from multiple tasks, for calibrating a LLM. It is computationally efficient, preserves the accuracy of the LLM, and produces better-calibrated responses for new tasks. Extensive empirical evaluations across various benchmarks demonstrate the effectiveness of the proposed method.
comment: Camera ready version for ICML 2024
♻ ☆ MuTox: Universal MUltilingual Audio-based TOXicity Dataset and Zero-shot Detector
Research in toxicity detection in natural language processing for the speech modality (audio-based) is quite limited, particularly for languages other than English. To address these limitations and lay the groundwork for truly multilingual audio-based toxicity detection, we introduce MuTox, the first highly multilingual audio-based dataset with toxicity labels. The dataset comprises 20,000 audio utterances for English and Spanish, and 4,000 for the other 19 languages. To demonstrate the quality of this dataset, we trained the MuTox audio-based toxicity classifier, which enables zero-shot toxicity detection across a wide range of languages. This classifier outperforms existing text-based trainable classifiers by more than 1% AUC, while expanding the language coverage more than tenfold. When compared to a wordlist-based classifier that covers a similar number of languages, MuTox improves precision and recall by approximately 2.5 times. This significant improvement underscores the potential of MuTox in advancing the field of audio-based toxicity detection.
♻ ☆ MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic
The advent of large language models (LLMs) like GPT-4 has catalyzed the exploration of multi-task learning (MTL), in which a single model demonstrates proficiency across diverse tasks. Task arithmetic has emerged as a cost-effective approach for MTL. It enables performance enhancement across multiple tasks by adding their corresponding task vectors to a pre-trained model. However, the current lack of a method that can simultaneously achieve optimal performance, computational efficiency, and data privacy limits their application to LLMs. In this paper, we propose \textbf{M}odel \textbf{E}xclusive \textbf{T}ask \textbf{A}rithmetic for merging \textbf{GPT}-scale models, which formalizes the objective of model merging into a multi-task learning framework, aiming to minimize the average loss difference between the merged model and each individual task model. Since data privacy limits the use of multi-task training data, we leverage LLMs' local linearity and task vectors' orthogonality to separate the data term and scaling coefficients term and derive a model-exclusive task arithmetic method. Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs.Extensive experiments demonstrate that MetaGPT leads to improvements in task arithmetic and achieves state-of-the-art performance on multiple tasks.
comment: 19 pages
♻ ☆ CLERC: A Dataset for Legal Case Retrieval and Retrieval-Augmented Analysis Generation
Legal professionals need to write analyses that rely on citations to relevant precedents, i.e., previous case decisions. Intelligent systems assisting legal professionals in writing such documents provide great benefits but are challenging to design. Such systems need to help locate, summarize, and reason over salient precedents in order to be useful. To enable systems for such tasks, we work with legal professionals to transform a large open-source legal corpus into a dataset supporting two important backbone tasks: information retrieval (IR) and retrieval-augmented generation (RAG). This dataset CLERC (Case Law Evaluation Retrieval Corpus), is constructed for training and evaluating models on their ability to (1) find corresponding citations for a given piece of legal analysis and to (2) compile the text of these citations (as well as previous context) into a cogent analysis that supports a reasoning goal. We benchmark state-of-the-art models on CLERC, showing that current approaches still struggle: GPT-4o generates analyses with the highest ROUGE F-scores but hallucinates the most, while zero-shot IR models only achieve 48.3% recall@1000.
♻ ☆ Assessing the nature of large language models: A caution against anthropocentrism
Generative AI models garnered a large amount of public attention and speculation with the release of OpenAIs chatbot, ChatGPT. At least two opinion camps exist: one excited about possibilities these models offer for fundamental changes to human tasks, and another highly concerned about power these models seem to have. To address these concerns, we assessed several LLMs, primarily GPT 3.5, using standard, normed, and validated cognitive and personality measures. For this seedling project, we developed a battery of tests that allowed us to estimate the boundaries of some of these models capabilities, how stable those capabilities are over a short period of time, and how they compare to humans. Our results indicate that LLMs are unlikely to have developed sentience, although its ability to respond to personality inventories is interesting. GPT3.5 did display large variability in both cognitive and personality measures over repeated observations, which is not expected if it had a human-like personality. Variability notwithstanding, LLMs display what in a human would be considered poor mental health, including low self-esteem, marked dissociation from reality, and in some cases narcissism and psychopathy, despite upbeat and helpful responses.
comment: 31 pages, 6 figures
♻ ☆ AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator
Artificial intelligence has significantly advanced healthcare, particularly through large language models (LLMs) that excel in medical question answering benchmarks. However, their real-world clinical application remains limited due to the complexities of doctor-patient interactions. To address this, we introduce \textbf{AI Hospital}, a multi-agent framework simulating dynamic medical interactions between \emph{Doctor} as player and NPCs including \emph{Patient}, \emph{Examiner}, \emph{Chief Physician}. This setup allows for realistic assessments of LLMs in clinical scenarios. We develop the Multi-View Medical Evaluation (MVME) benchmark, utilizing high-quality Chinese medical records and NPCs to evaluate LLMs' performance in symptom collection, examination recommendations, and diagnoses. Additionally, a dispute resolution collaborative mechanism is proposed to enhance diagnostic accuracy through iterative discussions. Despite improvements, current LLMs exhibit significant performance gaps in multi-turn interactions compared to one-step approaches. Our findings highlight the need for further research to bridge these gaps and improve LLMs' clinical diagnostic capabilities. Our data, code, and experimental results are all open-sourced at \url{https://github.com/LibertFan/AI_Hospital}.
comment: https://github.com/LibertFan/AI_Hospital
♻ ☆ Muffin or Chihuahua? Challenging Multimodal Large Language Models with Multipanel VQA ACL 2024
Multipanel images, commonly seen as web screenshots, posters, etc., pervade our daily lives. These images, characterized by their composition of multiple subfigures in distinct layouts, effectively convey information to people. Toward building advanced multimodal AI applications, such as agents that understand complex scenes and navigate through webpages, the skill of multipanel visual reasoning is essential, and a comprehensive evaluation of models in this regard is important. Therefore, we introduce Multipanel Visual Question Answering (MultipanelVQA), a novel benchmark comprising 6,600 triplets of questions, answers, and multipanel images that specifically challenge models in comprehending multipanel images. Our evaluation shows that questions in the MultipanelVQA benchmark pose significant challenges to the state-of-the-art Multimodal Large Language Models (MLLMs) tested, even though humans can attain approximately 99% accuracy on these questions. Distinctively, the MultipanelVQA benchmark features synthetically generated multipanel images specifically crafted to isolate and assess the impact of various factors, such as the layout, on MLLMs' multipanel image comprehension abilities. As a result, in addition to benchmarking the capabilities of MLLMs in understanding multipanel images, we analyze various factors of the multipanel image that affect MLLMs' performance with synthetic data and offer insights for enhancement. Code and data are released at https://sites.google.com/view/multipanelvqa/home.
comment: ACL 2024
♻ ☆ Unified Active Retrieval for Retrieval Augmented Generation
In Retrieval-Augmented Generation (RAG), retrieval is not always helpful and applying it to every instruction is sub-optimal. Therefore, determining whether to retrieve is crucial for RAG, which is usually referred to as Active Retrieval. However, existing active retrieval methods face two challenges: 1. They usually rely on a single criterion, which struggles with handling various types of instructions. 2. They depend on specialized and highly differentiated procedures, and thus combining them makes the RAG system more complicated and leads to higher response latency. To address these challenges, we propose Unified Active Retrieval (UAR). UAR contains four orthogonal criteria and casts them into plug-and-play classification tasks, which achieves multifaceted retrieval timing judgements with negligible extra inference cost. We further introduce the Unified Active Retrieval Criteria (UAR-Criteria), designed to process diverse active retrieval scenarios through a standardized procedure. Experiments on four representative types of user instructions show that UAR significantly outperforms existing work on the retrieval timing judgement and the performance of downstream tasks, which shows the effectiveness of UAR and its helpfulness to downstream tasks.
♻ ☆ ReFT: Reasoning with Reinforced Fine-Tuning ACL 2024
One way to enhance the reasoning capability of Large Language Models (LLMs) is to conduct Supervised Fine-Tuning (SFT) using Chain-of-Thought (CoT) annotations. This approach does not show sufficiently strong generalization ability, however, because the training only relies on the given CoT data. In math problem-solving, for example, there is usually only one annotated reasoning path for each question in the training data. Intuitively, it would be better for the algorithm to learn from multiple annotated reasoning paths given a question. To address this issue, we propose a simple yet effective approach called Reinforced Fine-Tuning (ReFT) to enhance the generalizability of learning LLMs for reasoning, with math problem-solving as an example. ReFT first warmups the model with SFT, and then employs on-line reinforcement learning, specifically the PPO algorithm in this paper, to further fine-tune the model, where an abundance of reasoning paths are automatically sampled given the question and the rewards are naturally derived from the ground-truth answers. Extensive experiments on GSM8K, MathQA, and SVAMP datasets show that ReFT significantly outperforms SFT, and the performance can be potentially further boosted by combining inference-time strategies such as majority voting and re-ranking. Note that ReFT obtains the improvement by learning from the same training questions as SFT, without relying on extra or augmented training questions. This indicates a superior generalization ability for ReFT.
comment: ACL 2024 main conference; adjust with reviewer comments; 13 pages
♻ ☆ Token-level Direct Preference Optimization
Fine-tuning pre-trained Large Language Models (LLMs) is essential to align them with human values and intentions. This process often utilizes methods like pairwise comparisons and KL divergence against a reference LLM, focusing on the evaluation of full answers generated by the models. However, the generation of these responses occurs in a token level, following a sequential, auto-regressive fashion. In this paper, we introduce Token-level Direct Preference Optimization (TDPO), a novel approach to align LLMs with human preferences by optimizing policy at the token level. Unlike previous methods, which face challenges in divergence efficiency, TDPO incorporates forward KL divergence constraints for each token, improving alignment and diversity. Utilizing the Bradley-Terry model for a token-based reward system, TDPO enhances the regulation of KL divergence, while preserving simplicity without the need for explicit reward modeling. Experimental results across various text tasks demonstrate TDPO's superior performance in balancing alignment with generation diversity. Notably, fine-tuning with TDPO strikes a better balance than DPO in the controlled sentiment generation and single-turn dialogue datasets, and significantly improves the quality of generated responses compared to both DPO and PPO-based RLHF methods. Our code is open-sourced at https://github.com/Vance0124/Token-level-Direct-Preference-Optimization.
♻ ☆ MedCalc-Bench: Evaluating Large Language Models for Medical Calculations
As opposed to evaluating computation and logic-based reasoning, current benchmarks for evaluating large language models (LLMs) in medicine are primarily focused on question-answering involving domain knowledge and descriptive reasoning. While such qualitative capabilities are vital to medical diagnosis, in real-world scenarios, doctors frequently use clinical calculators that follow quantitative equations and rule-based reasoning paradigms for evidence-based decision support. To this end, we propose MedCalc-Bench, a first-of-its-kind dataset focused on evaluating the medical calculation capability of LLMs. MedCalc-Bench contains an evaluation set of over 1000 manually reviewed instances from 55 different medical calculation tasks. Each instance in MedCalc-Bench consists of a patient note, a question requesting to compute a specific medical value, a ground truth answer, and a step-by-step explanation showing how the answer is obtained. While our evaluation results show the potential of LLMs in this area, none of them are effective enough for clinical settings. Common issues include extracting the incorrect entities, not using the correct equation or rules for a calculation task, or incorrectly performing the arithmetic for the computation. We hope our study highlights the quantitative knowledge and reasoning gaps in LLMs within medical settings, encouraging future improvements of LLMs for various clinical calculation tasks.
comment: Github link: https://github.com/ncbi-nlp/MedCalc-Bench HuggingFace link: https://huggingface.co/datasets/nsk7153/MedCalc-Bench
♻ ☆ Daisy-TTS: Simulating Wider Spectrum of Emotions via Prosody Embedding Decomposition
We often verbally express emotions in a multifaceted manner, they may vary in their intensities and may be expressed not just as a single but as a mixture of emotions. This wide spectrum of emotions is well-studied in the structural model of emotions, which represents variety of emotions as derivative products of primary emotions with varying degrees of intensity. In this paper, we propose an emotional text-to-speech design to simulate a wider spectrum of emotions grounded on the structural model. Our proposed design, Daisy-TTS, incorporates a prosody encoder to learn emotionally-separable prosody embedding as a proxy for emotion. This emotion representation allows the model to simulate: (1) Primary emotions, as learned from the training samples, (2) Secondary emotions, as a mixture of primary emotions, (3) Intensity-level, by scaling the emotion embedding, and (4) Emotions polarity, by negating the emotion embedding. Through a series of perceptual evaluations, Daisy-TTS demonstrated overall higher emotional speech naturalness and emotion perceiveability compared to the baseline.
comment: Project Page: https://rendchevi.github.io/daisy-tts; Updates: (1) Fixed typos, missing references, and layout, (2) Revise explanation on emotion classifier or discriminator
♻ ☆ CLIMATELI: Evaluating Entity Linking on Climate Change Data ACL 2024
Climate Change (CC) is a pressing topic of global importance, attracting increasing attention across research fields, from social sciences to Natural Language Processing (NLP). CC is also discussed in various settings and communication platforms, from academic publications to social media forums. Understanding who and what is mentioned in such data is a first critical step to gaining new insights into CC. We present CLIMATELI (CLIMATe Entity LInking), the first manually annotated CC dataset that links 3,087 entity spans to Wikipedia. Using CLIMATELI (CLIMATe Entity LInking), we evaluate existing entity linking (EL) systems on the CC topic across various genres and propose automated filtering methods for CC entities. We find that the performance of EL models notably lags behind humans at both token and entity levels. Testing within the scope of retaining or excluding non-nominal and/or non-CC entities particularly impacts the models' performances.
comment: 8 pages, accepted at ClimateNLP 2024 workshop @ ACL 2024
♻ ☆ Hierarchical Prompting Taxonomy: A Universal Evaluation Framework for Large Language Models
Assessing the effectiveness of large language models (LLMs) in addressing diverse tasks is essential for comprehending their strengths and weaknesses. Conventional evaluation techniques typically apply a single prompting strategy uniformly across datasets, not considering the varying degrees of task complexity. We introduce the Hierarchical Prompting Taxonomy (HPT), a taxonomy that employs a Hierarchical Prompt Framework (HPF) composed of five unique prompting strategies, arranged from the simplest to the most complex, to assess LLMs more precisely and to offer a clearer perspective. This taxonomy assigns a score, called the Hierarchical Prompting Score (HP-Score), to datasets as well as LLMs based on the rules of the taxonomy, providing a nuanced understanding of their ability to solve diverse tasks and offering a universal measure of task complexity. Additionally, we introduce the Adaptive Hierarchical Prompt framework, which automates the selection of appropriate prompting strategies for each task. This study compares manual and adaptive hierarchical prompt frameworks using four instruction-tuned LLMs, namely Llama 3 8B, Phi 3 3.8B, Mistral 7B, and Gemma 7B, across four datasets: BoolQ, CommonSenseQA (CSQA), IWSLT-2017 en-fr (IWSLT), and SamSum. Experiments demonstrate the effectiveness of HPT, providing a reliable way to compare different tasks and LLM capabilities. This paper leads to the development of a universal evaluation metric that can be used to evaluate both the complexity of the datasets and the capabilities of LLMs. The implementation of both manual HPF and adaptive HPF is publicly available.
♻ ☆ QUB-Cirdan at "Discharge Me!": Zero shot discharge letter generation by open-source LLM
The BioNLP ACL'24 Shared Task on Streamlining Discharge Documentation aims to reduce the administrative burden on clinicians by automating the creation of critical sections of patient discharge letters. This paper presents our approach using the Llama3 8B quantized model to generate the "Brief Hospital Course" and "Discharge Instructions" sections. We employ a zero-shot method combined with Retrieval-Augmented Generation (RAG) to produce concise, contextually accurate summaries. Our contributions include the development of a curated template-based approach to ensure reliability and consistency, as well as the integration of RAG for word count prediction. We also describe several unsuccessful experiments to provide insights into our pathway for the competition. Our results demonstrate the effectiveness and efficiency of our approach, achieving high scores across multiple evaluation metrics.
comment: BioNLP 2024 workshop
♻ ☆ VLSM-Adapter: Finetuning Vision-Language Segmentation Efficiently with Lightweight Blocks MICCAI 2024
Foundation Vision-Language Models (VLMs) trained using large-scale open-domain images and text pairs have recently been adapted to develop Vision-Language Segmentation Models (VLSMs) that allow providing text prompts during inference to guide image segmentation. If robust and powerful VLSMs can be built for medical images, it could aid medical professionals in many clinical tasks where they must spend substantial time delineating the target structure of interest. VLSMs for medical images resort to fine-tuning base VLM or VLSM pretrained on open-domain natural image datasets due to fewer annotated medical image datasets; this fine-tuning is resource-consuming and expensive as it usually requires updating all or a significant fraction of the pretrained parameters. Recently, lightweight blocks called adapters have been proposed in VLMs that keep the pretrained model frozen and only train adapters during fine-tuning, substantially reducing the computing resources required. We introduce a novel adapter, VLSM-Adapter, that can fine-tune pretrained vision-language segmentation models using transformer encoders. Our experiments in widely used CLIP-based segmentation models show that with only 3 million trainable parameters, the VLSM-Adapter outperforms state-of-the-art and is comparable to the upper bound end-to-end fine-tuning. The source code is available at: https://github.com/naamiinepal/vlsm-adapter.
comment: Accepted at MICCAI 2024, the 27th International Conference on Medical Image Computing and Computer Assisted Intervention
♻ ☆ How to Handle Different Types of Out-of-Distribution Scenarios in Computational Argumentation? A Comprehensive and Fine-Grained Field Study
The advent of pre-trained Language Models (LMs) has markedly advanced natural language processing, but their efficacy in out-of-distribution (OOD) scenarios remains a significant challenge. Computational argumentation (CA), modeling human argumentation processes, is a field notably impacted by these challenges because complex annotation schemes and high annotation costs naturally lead to resources barely covering the multiplicity of available text sources and topics. Due to this data scarcity, generalization to data from uncovered covariant distributions is a common challenge for CA tasks like stance detection or argument classification. This work systematically assesses LMs' capabilities for such OOD scenarios. While previous work targets specific OOD types like topic shifts or OOD uniformly, we address three prevalent OOD scenarios in CA: topic shift, domain shift, and language shift. Our findings challenge the previously asserted general superiority of in-context learning (ICL) for OOD. We find that the efficacy of such learning paradigms varies with the type of OOD. Specifically, while ICL excels for domain shifts, prompt-based fine-tuning surpasses for topic shifts. To sum up, we navigate the heterogeneity of OOD scenarios in CA and empirically underscore the potential of base-sized LMs in overcoming these challenges.
♻ ☆ Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL
Generating accurate SQL according to natural language questions (text-to-SQL) is a long-standing challenge due to the complexities involved in user question understanding, database schema comprehension, and SQL generation. Conventional text-to-SQL systems, comprising human engineering and deep neural networks, have made substantial progress. Subsequently, pre-trained language models (PLMs) have been developed and utilized for text-to-SQL tasks, achieving promising performance. As modern databases become more complex, the corresponding user questions also grow more challenging, leading PLMs with limited comprehension capabilities to produce incorrect SQL. This necessitates more sophisticated and tailored optimization methods for PLMs, which, in turn, restricts the applications of PLM-based systems. Most recently, large language models (LLMs) have demonstrated significant capabilities in natural language understanding as the model scale remains increasing. Therefore, integrating the LLM-based implementation can bring unique opportunities, improvements, and solutions to text-to-SQL research. In this survey, we present a comprehensive review of LLM-based text-to-SQL. Specifically, we propose a brief overview of the technical challenges and the evolutionary process of text-to-SQL. Then, we provide a detailed introduction to the datasets and metrics designed to evaluate text-to-SQL systems. After that, we present a systematic analysis of recent advances in LLM-based text-to-SQL. Finally, we discuss the remaining challenges in this field and propose expectations for future research directions.
♻ ☆ WsiCaption: Multiple Instance Generation of Pathology Reports for Gigapixel Whole-Slide Images
Whole slide images are the foundation of digital pathology for the diagnosis and treatment of carcinomas. Writing pathology reports is laborious and error-prone for inexperienced pathologists. To reduce the workload and improve clinical automation, we investigate how to generate pathology reports given whole slide images. On the data end, we curated the largest WSI-text dataset (PathText). In specific, we collected nearly 10000 high-quality WSI-text pairs for visual-language models by recognizing and cleaning pathology reports which narrate diagnostic slides in TCGA. On the model end, we propose the multiple instance generative model (MI-Gen) which can produce pathology reports for gigapixel WSIs. We benchmark our model on the largest subset of TCGA-PathoText. Experimental results show our model can generate pathology reports which contain multiple clinical clues and achieve competitive performance on certain slide-level tasks. We observe that simple semantic extraction from the pathology reports can achieve the best performance (0.838 of F1 score) on BRCA subtyping surpassing previous state-of-the-art approaches. Our collected dataset and related code are available.
♻ ☆ Beyond Under-Alignment: Atomic Preference Enhanced Factuality Tuning for Large Language Models
Large language models (LLMs) have achieved remarkable success but still tend to generate factually erroneous responses, a phenomenon known as hallucination. A recent trend is to use preference learning to fine-tune models to align with factuality. However, existing work primarily evaluates fine-tuned models on in-domain (ID) datasets and the factuality on out-of-domain (OOD) datasets remains underexplored. In this paper, we conduct a comprehensive evaluation of the factuality of different models tuned by various preference learning algorithms and demonstrate that their performance on OOD datasets either increases minimally or decreases. Subsequently, we reveal that the main cause of model's failure to uphold factuality under a distribution shift is \textbf{under-alignment}, rather than \textbf{over-alignment}, by analyzing the token distribution shift of the models before and after tuning. Finally, we propose \textbf{APEFT} (\textbf{A}tomic \textbf{P}reference \textbf{E}nhanced \textbf{F}actuality \textbf{T}uning), a framework that enhances model's awareness of factuality at the granularity of individual facts. Extensive experiments demonstrate that APEFT improves model performance by an average of $\boldsymbol{3.45\%}$ on both ID and OOD datasets, which is highly effective.
♻ ☆ Weak Reward Model Transforms Generative Models into Robust Causal Event Extraction Systems
The inherent ambiguity of cause and effect boundaries poses a challenge in evaluating causal event extraction tasks. Traditional metrics like Exact Match and BertScore poorly reflect model performance, so we trained evaluation models to approximate human evaluation, achieving high agreement. We used them to perform Reinforcement Learning with extraction models to align them with human preference, prioritising semantic understanding. We successfully explored our approach through multiple datasets, including transferring an evaluator trained on one dataset to another as a way to decrease the reliance on human-annotated data. In that vein, we also propose a weak-to-strong supervision method that uses a fraction of the annotated data to train an evaluation model while still achieving high performance in training an RL model. Our code is available at https://github.com/oyarsa/event_extraction/tree/causal-event-extraction.
comment: 13 pages, 6 figures, 6 tables
♻ ☆ CrAM: Credibility-Aware Attention Modification in LLMs for Combating Misinformation in RAG
Retrieval-Augmented Generation (RAG) can alleviate hallucinations of Large Language Models (LLMs) by referencing external documents. However, the misinformation in external documents may mislead LLMs' generation. To address this issue, we explore the task of "credibility-aware RAG", in which LLMs automatically adjust the influence of retrieved documents based on their credibility scores to counteract misinformation. To this end, we introduce a plug-and-play method named $\textbf{Cr}$edibility-aware $\textbf{A}$ttention $\textbf{M}$odification (CrAM). CrAM identifies influential attention heads in LLMs and adjusts their attention weights based on the credibility of the documents, thereby reducing the impact of low-credibility documents. Experiments on Natual Questions and TriviaQA using Llama2-13B, Llama3-8B, and Qwen-7B show that CrAM improves the RAG performance of LLMs against misinformation pollution by over 20%, even surpassing supervised fine-tuning methods.
comment: Under review
♻ ☆ Exploring Defeasibility in Causal Reasoning ACL 2024
Defeasibility in causal reasoning implies that the causal relationship between cause and effect can be strengthened or weakened. Namely, the causal strength between cause and effect should increase or decrease with the incorporation of strengthening arguments (supporters) or weakening arguments (defeaters), respectively. However, existing works ignore defeasibility in causal reasoning and fail to evaluate existing causal strength metrics in defeasible settings. In this work, we present $\delta$-CAUSAL, the first benchmark dataset for studying defeasibility in causal reasoning. $\delta$-CAUSAL includes around 11K events spanning ten domains, featuring defeasible causality pairs, i.e., cause-effect pairs accompanied by supporters and defeaters. We further show current causal strength metrics fail to reflect the change of causal strength with the incorporation of supporters or defeaters in $\delta$-CAUSAL. To this end, we propose CESAR (Causal Embedding aSsociation with Attention Rating), a metric that measures causal strength based on token-level causal relationships. CESAR achieves a significant 69.7% relative improvement over existing metrics, increasing from 47.2% to 80.1% in capturing the causal strength change brought by supporters and defeaters. We further demonstrate even Large Language Models (LLMs) like GPT-3.5 still lag 4.5 and 10.7 points behind humans in generating supporters and defeaters, emphasizing the challenge posed by $\delta$-CAUSAL.
comment: Accepted by ACL 2024 (Findings)
♻ ☆ Leveraging Synthetic Audio Data for End-to-End Low-Resource Speech Translation
This paper describes our system submission to the International Conference on Spoken Language Translation (IWSLT 2024) for Irish-to-English speech translation. We built end-to-end systems based on Whisper, and employed a number of data augmentation techniques, such as speech back-translation and noise augmentation. We investigate the effect of using synthetic audio data and discuss several methods for enriching signal diversity.
comment: IWSLT 2024
♻ ☆ 1000 African Voices: Advancing inclusive multi-speaker multi-accent speech synthesis
Recent advances in speech synthesis have enabled many useful applications like audio directions in Google Maps, screen readers, and automated content generation on platforms like TikTok. However, these systems are mostly dominated by voices sourced from data-rich geographies with personas representative of their source data. Although 3000 of the world's languages are domiciled in Africa, African voices and personas are under-represented in these systems. As speech synthesis becomes increasingly democratized, it is desirable to increase the representation of African English accents. We present Afro-TTS, the first pan-African accented English speech synthesis system able to generate speech in 86 African accents, with 1000 personas representing the rich phonological diversity across the continent for downstream application in Education, Public Health, and Automated Content Creation. Speaker interpolation retains naturalness and accentedness, enabling the creation of new voices.
comment: Accepted at Interspeech 2024
♻ ☆ Continual Learning Under Language Shift
The recent increase in data and model scale for language model pre-training has led to huge training costs. In scenarios where new data become available over time, updating a model instead of fully retraining it would therefore provide significant gains. We study the pros and cons of updating a language model when new data comes from new languages -- the case of continual learning under language shift. Starting from a monolingual English language model, we incrementally add data from Danish, Icelandic, and Norwegian to investigate how forward and backward transfer effects depend on pre-training order and characteristics of languages, for three different model sizes. Our results show that, while forward transfer is largely positive and independent of language order, backward transfer can be positive or negative depending on the order and characteristics of new languages. We explore a number of potentially explanatory factors and find that a combination of language contamination and syntactic similarity best fits our results.
comment: Accepted to TSD 2024
♻ ☆ Accelerating Complex Disease Treatment through Network Medicine and GenAI: A Case Study on Drug Repurposing for Breast Cancer
The objective of this research is to introduce a network specialized in predicting drugs that can be repurposed by investigating real-world evidence sources, such as clinical trials and biomedical literature. Specifically, it aims to generate drug combination therapies for complex diseases (e.g., cancer, Alzheimer's). We present a multilayered network medicine approach, empowered by a highly configured ChatGPT prompt engineering system, which is constructed on the fly to extract drug mentions in clinical trials. Additionally, we introduce a novel algorithm that connects real-world evidence with disease-specific signaling pathways (e.g., KEGG database). This sheds light on the repurposability of drugs if they are found to bind with one or more protein constituents of a signaling pathway. To demonstrate, we instantiated the framework for breast cancer and found that, out of 46 breast cancer signaling pathways, the framework identified 38 pathways that were covered by at least two drugs. This evidence signals the potential for combining those drugs. Specifically, the most covered signaling pathway, ID hsa:2064, was covered by 108 drugs, some of which can be combined. Conversely, the signaling pathway ID hsa:1499 was covered by only two drugs, indicating a significant gap for further research. Our network medicine framework, empowered by GenAI, shows promise in identifying drug combinations with a high degree of specificity, knowing the exact signaling pathways and proteins that serve as targets. It is noteworthy that ChatGPT successfully accelerated the process of identifying drug mentions in clinical trials, though further investigations are required to determine the relationships among the drug mentions.
comment: 9 pages double columns, 5 figures, 3 algorithms, 3 tables, and 1 listing, Submitted to IEEE MedAI'24 Conference, to be held November 15-17, Chongqing, China
♻ ☆ Efficient Continual Pre-training by Mitigating the Stability Gap
Continual pre-training has increasingly become the predominant approach for adapting Large Language Models (LLMs) to new domains. This process involves updating the pre-trained LLM with a corpus from a new domain, resulting in a shift in the training distribution. To study the behavior of LLMs during this shift, we measured the model's performance throughout the continual pre-training process. we observed a temporary performance drop at the beginning, followed by a recovery phase, a phenomenon known as the "stability gap," previously noted in vision models classifying new classes. To address this issue and enhance LLM performance within a fixed compute budget, we propose three effective strategies: (1) Continually pre-training the LLM on a subset with a proper size for multiple epochs, resulting in faster performance recovery than pre-training the LLM on a large corpus in a single epoch; (2) Pre-training the LLM only on high-quality sub-corpus, which rapidly boosts domain performance; and (3) Using a data mixture similar to the pre-training data to reduce distribution gap. We conduct various experiments on Llama-family models to validate the effectiveness of our strategies in both medical continual pre-training and instruction tuning. For example, our strategies improve the average medical task performance of the OpenLlama-3B model from 36.2% to 40.7% with only 40% of the original training budget and enhance the average general task performance without causing forgetting. Furthermore, we apply our strategies to the Llama-3-8B model. The resulting model, Llama-3-Physician, achieves the best medical performance among current open-source models, and performs comparably to or even better than GPT-4 on several medical benchmarks. We release our models at \url{https://huggingface.co/YiDuo1999/Llama-3-Physician-8B-Instruct}.
♻ ☆ mHuBERT-147: A Compact Multilingual HuBERT Model
We present mHuBERT-147, the first general-purpose massively multilingual HuBERT speech representation model trained on 90K hours of clean, open-license data. To scale up the multi-iteration HuBERT approach, we use faiss-based clustering, achieving 5.2x faster label assignment than the original method. We also apply a new multilingual batching up-sampling strategy, leveraging both language and dataset diversity. After 3 training iterations, our compact 95M parameter mHuBERT-147 outperforms larger models trained on substantially more data. We rank second and first on the ML-SUPERB 10min and 1h leaderboards, with SOTA scores for 3 tasks. Across ASR/LID tasks, our model consistently surpasses XLS-R (300M params; 436K hours) and demonstrates strong competitiveness against the much larger MMS (1B params; 491K hours). Our findings indicate that mHuBERT-147 is a promising model for multilingual speech tasks, offering an unprecedented balance between high performance and parameter efficiency.
comment: Extended version of the Interspeech 2024 paper of same name
♻ ☆ Focus on Your Question! Interpreting and Mitigating Toxic CoT Problems in Commonsense Reasoning ACL 2024
Large language models exhibit high-level commonsense reasoning abilities, especially with enhancement methods like Chain-of-Thought (CoT). However, we find these CoT-like methods lead to a considerable number of originally correct answers turning wrong, which we define as the Toxic CoT problem. To interpret and mitigate this problem, we first utilize attribution tracing and causal tracing methods to probe the internal working mechanism of the LLM during CoT reasoning. Through comparisons, we prove that the model exhibits information loss from the question over the shallow attention layers when generating rationales or answers. Based on the probing findings, we design a novel method called RIDERS (Residual decodIng and sERial-position Swap), which compensates for the information deficit in the model from both decoding and serial-position perspectives. Through extensive experiments on multiple commonsense reasoning benchmarks, we validate that this method not only significantly eliminates Toxic CoT problems (decreased by 23.6%), but also effectively improves the model's overall commonsense reasoning performance (increased by 5.5%).
comment: Accepted as a long paper to ACL 2024 Main, 25 pages, 22 figures
♻ ☆ GCRE-GPT: A Generative Model for Comparative Relation Extraction
Given comparative text, comparative relation extraction aims to extract two targets (\eg two cameras) in comparison and the aspect they are compared for (\eg image quality). The extracted comparative relations form the basis of further opinion analysis.Existing solutions formulate this task as a sequence labeling task, to extract targets and aspects. However, they cannot directly extract comparative relation(s) from text. In this paper, we show that comparative relations can be directly extracted with high accuracy, by generative model. Based on GPT-2, we propose a Generation-based Comparative Relation Extractor (GCRE-GPT). Experiment results show that \modelname achieves state-of-the-art accuracy on two datasets.
comment: 6 pages, 6 tables, 1 figure
♻ ☆ Concentrate Attention: Towards Domain-Generalizable Prompt Optimization for Language Models NeurIPS 2024
Recent advances in prompt optimization have notably enhanced the performance of pre-trained language models (PLMs) on downstream tasks. However, the potential of optimized prompts on domain generalization has been under-explored. To explore the nature of prompt generalization on unknown domains, we conduct pilot experiments and find that (i) Prompts gaining more attention weight from PLMs' deep layers are more generalizable and (ii) Prompts with more stable attention distributions in PLMs' deep layers are more generalizable. Thus, we offer a fresh objective towards domain-generalizable prompts optimization named "Concentration", which represents the "lookback" attention from the current decoding token to the prompt tokens, to increase the attention strength on prompts and reduce the fluctuation of attention distribution. We adapt this new objective to popular soft prompt and hard prompt optimization methods, respectively. Extensive experiments demonstrate that our idea improves comparison prompt optimization methods by 1.42% for soft prompt generalization and 2.16% for hard prompt generalization in accuracy on the multi-source domain generalization setting, while maintaining satisfying in-domain performance. The promising results validate the effectiveness of our proposed prompt optimization objective and provide key insights into domain-generalizable prompts.
comment: Submitted to NeurIPS 2024, Preprint, Under review
♻ ☆ M4GT-Bench: Evaluation Benchmark for Black-Box Machine-Generated Text Detection
The advent of Large Language Models (LLMs) has brought an unprecedented surge in machine-generated text (MGT) across diverse channels. This raises legitimate concerns about its potential misuse and societal implications. The need to identify and differentiate such content from genuine human-generated text is critical in combating disinformation, preserving the integrity of education and scientific fields, and maintaining trust in communication. In this work, we address this problem by introducing a new benchmark based on a multilingual, multi-domain, and multi-generator corpus of MGTs -- M4GT-Bench. The benchmark is compiled of three tasks: (1) mono-lingual and multi-lingual binary MGT detection; (2) multi-way detection where one need to identify, which particular model generated the text; and (3) mixed human-machine text detection, where a word boundary delimiting MGT from human-written content should be determined. On the developed benchmark, we have tested several MGT detection baselines and also conducted an evaluation of human performance. We see that obtaining good performance in MGT detection usually requires an access to the training data from the same domain and generators. The benchmark is available at https://github.com/mbzuai-nlp/M4GT-Bench.
comment: 29 pages
♻ ☆ Evaluating LLMs' Mathematical and Coding Competency through Ontology-guided Interventions
Recent advancements in Large Language Models (LLMs) have showcased striking results on existing logical reasoning benchmarks, with some models even surpassing human performance. However, the true depth of their competencies and robustness in reasoning tasks remains an open question. To this end, in this paper, we focus on two popular reasoning tasks: arithmetic reasoning and code generation. Particularly, we introduce: (i) a general ontology of perturbations for maths and coding questions, (ii) a semi-automatic method to apply these perturbations, and (iii) two datasets, MORE and CORE, respectively, of perturbed maths and coding problems to probe the limits of LLM capabilities in numeric reasoning and coding tasks. Through comprehensive evaluations of both closed-source and open-source LLMs, we show a significant performance drop across all the models against the perturbed questions, suggesting that the current LLMs lack robust problem solving skills and structured reasoning abilities in many areas, as defined by our ontology. We open source the datasets and source codes at: https://github.com/declare-lab/llm_robustness.
♻ ☆ GlossLM: Multilingual Pretraining for Low-Resource Interlinear Glossing ACL
Language documentation projects often involve the creation of annotated text in a format such as interlinear glossed text (IGT), which captures fine-grained morphosyntactic analyses in a morpheme-by-morpheme format. However, there are few existing resources providing large amounts of standardized, easily accessible IGT data, limiting their applicability to linguistic research, and making it difficult to use such data in NLP modeling. We compile the largest existing corpus of IGT data from a variety of sources, covering over 450k examples across 1.8k languages, to enable research on crosslingual transfer and IGT generation. We normalize much of our data to follow a standard set of labels across languages. Furthermore, we explore the task of automatically generating IGT in order to aid documentation projects. As many languages lack sufficient monolingual data, we pretrain a large multilingual model on our corpus. We demonstrate the utility of this model by finetuning it on monolingual corpora, outperforming SOTA models by up to 6.6%. We will make our pretrained model and dataset available through Hugging Face, as well as provide access through a web interface for use in language documentation efforts.
comment: 19 pages, 7 figures Submitted to ACL ARR June 2024. First two authors are equal contribution
♻ ☆ Enhancing Text-based Knowledge Graph Completion with Zero-Shot Large Language Models: A Focus on Semantic Enhancement
The design and development of text-based knowledge graph completion (KGC) methods leveraging textual entity descriptions are at the forefront of research. These methods involve advanced optimization techniques such as soft prompts and contrastive learning to enhance KGC models. The effectiveness of text-based methods largely hinges on the quality and richness of the training data. Large language models (LLMs) can utilize straightforward prompts to alter text data, thereby enabling data augmentation for KGC. Nevertheless, LLMs typically demand substantial computational resources. To address these issues, we introduce a framework termed constrained prompts for KGC (CP-KGC). This CP-KGC framework designs prompts that adapt to different datasets to enhance semantic richness. Additionally, CP-KGC employs a context constraint strategy to effectively identify polysemous entities within KGC datasets. Through extensive experimentation, we have verified the effectiveness of this framework. Even after quantization, the LLM (Qwen-7B-Chat-int4) still enhances the performance of text-based KGC methods \footnote{Code and datasets are available at \href{https://github.com/sjlmg/CP-KGC}{https://github.com/sjlmg/CP-KGC}}. This study extends the performance limits of existing models and promotes further integration of KGC with LLMs.
comment: new version
♻ ☆ NutePrune: Efficient Progressive Pruning with Numerous Teachers for Large Language Models
The considerable size of Large Language Models (LLMs) presents notable deployment challenges, particularly on resource-constrained hardware. Structured pruning, offers an effective means to compress LLMs, thereby reducing storage costs and enhancing inference speed for more efficient utilization. In this work, we study data-efficient and resource-efficient structure pruning methods to obtain smaller yet still powerful models. Knowledge Distillation is well-suited for pruning, as the intact model can serve as an excellent teacher for pruned students. However, it becomes challenging in the context of LLMs due to memory constraints. To address this, we propose an efficient progressive Numerous-teacher pruning method (NutePrune). NutePrune mitigates excessive memory costs by loading only one intact model and integrating it with various masks and LoRA modules, enabling it to seamlessly switch between teacher and student roles. This approach allows us to leverage numerous teachers with varying capacities to progressively guide the pruned model, enhancing overall performance. Extensive experiments across various tasks demonstrate the effectiveness of NutePrune. In LLaMA-7B zero-shot experiments, NutePrune retains 97.17% of the performance of the original model at 20% sparsity and 95.07% at 25% sparsity. Our code is available at https://github.com/Lucius-lsr/NutePrune.
♻ ☆ Metric Dimension and Resolvability of Jaccard Spaces
A subset of points in a metric space is said to resolve it if each point in the space is uniquely characterized by its distance to each point in the subset. In particular, resolving sets can be used to represent points in abstract metric spaces as Euclidean vectors. Importantly, due to the triangle inequality, points close by in the space are represented as vectors with similar coordinates, which may find applications in classification problems of symbolic objects under suitably chosen metrics. In this manuscript, we address the resolvability of Jaccard spaces, i.e., metric spaces of the form $(2^X,\text{Jac})$, where $2^X$ is the power set of a finite set $X$, and $\text{Jac}$ is the Jaccard distance between subsets of $X$. Specifically, for different $a,b\in 2^X$, $\text{Jac}(a,b)=|a\Delta b|/|a\cup b|$, where $|\cdot|$ denotes size (i.e., cardinality) and $\Delta$ denotes the symmetric difference of sets. We combine probabilistic and linear algebra arguments to construct highly likely but nearly optimal (i.e., of minimal size) resolving sets of $(2^X,\text{Jac})$. In particular, we show that the metric dimension of $(2^X,\text{Jac})$, i.e., the minimum size of a resolving set of this space, is $\Theta(|X|/\ln|X|)$. In addition, we show that a much smaller subset of $2^X$ suffices to resolve, with high probability, all different pairs of subsets of $X$ of cardinality at most $\sqrt{|X|}/\ln|X|$, up to a factor.
comment: 13 pages, 1 table
♻ ☆ Hierarchical Context Pruning: Optimizing Real-World Code Completion with Repository-Level Pretrained Code LLMs
Some recently developed code large language models (Code LLMs) have been pre-trained on repository-level code data (Repo-Code LLMs), enabling these models to recognize repository structures and utilize cross-file information for code completion. However, in real-world development scenarios, simply concatenating the entire code repository often exceeds the context window limits of these Repo-Code LLMs, leading to significant performance degradation. In this study, we conducted extensive preliminary experiments and analyses on six Repo-Code LLMs. The results indicate that maintaining the topological dependencies of files and increasing the code file content in the completion prompts can improve completion accuracy; pruning the specific implementations of functions in all dependent files does not significantly reduce the accuracy of completions. Based on these findings, we proposed a strategy named Hierarchical Context Pruning (HCP) to construct completion prompts with high informational code content. The HCP models the code repository at the function level, maintaining the topological dependencies between code files while removing a large amount of irrelevant code content, significantly reduces the input length for repository-level code completion. We applied the HCP strategy in experiments with six Repo-Code LLMs, and the results demonstrate that our proposed method can significantly enhance completion accuracy while substantially reducing the length of input. Our code and data are available at https://github.com/Hambaobao/HCP-Coder.
♻ ☆ EHRNoteQA: An LLM Benchmark for Real-World Clinical Practice Using Discharge Summaries
Discharge summaries in Electronic Health Records (EHRs) are crucial for clinical decision-making, but their length and complexity make information extraction challenging, especially when dealing with accumulated summaries across multiple patient admissions. Large Language Models (LLMs) show promise in addressing this challenge by efficiently analyzing vast and complex data. Existing benchmarks, however, fall short in properly evaluating LLMs' capabilities in this context, as they typically focus on single-note information or limited topics, failing to reflect the real-world inquiries required by clinicians. To bridge this gap, we introduce EHRNoteQA, a novel benchmark built on the MIMIC-IV EHR, comprising 962 different QA pairs each linked to distinct patients' discharge summaries. Every QA pair is initially generated using GPT-4 and then manually reviewed and refined by three clinicians to ensure clinical relevance. EHRNoteQA includes questions that require information across multiple discharge summaries and covers eight diverse topics, mirroring the complexity and diversity of real clinical inquiries. We offer EHRNoteQA in two formats: open-ended and multi-choice question answering, and propose a reliable evaluation method for each. We evaluate 27 LLMs using EHRNoteQA and examine various factors affecting the model performance (e.g., the length and number of discharge summaries). Furthermore, to validate EHRNoteQA as a reliable proxy for expert evaluations in clinical practice, we measure the correlation between the LLM performance on EHRNoteQA, and the LLM performance manually evaluated by clinicians. Results show that LLM performance on EHRNoteQA have higher correlation with clinician-evaluated performance (Spearman: 0.78, Kendall: 0.62) compared to other benchmarks, demonstrating its practical relevance in evaluating LLMs in clinical settings.
comment: Under Review
♻ ☆ Can Large Language Model Summarizers Adapt to Diverse Scientific Communication Goals? ACL 2024
In this work, we investigate the controllability of large language models (LLMs) on scientific summarization tasks. We identify key stylistic and content coverage factors that characterize different types of summaries such as paper reviews, abstracts, and lay summaries. By controlling stylistic features, we find that non-fine-tuned LLMs outperform humans in the MuP review generation task, both in terms of similarity to reference summaries and human preferences. Also, we show that we can improve the controllability of LLMs with keyword-based classifier-free guidance (CFG) while achieving lexical overlap comparable to strong fine-tuned baselines on arXiv and PubMed. However, our results also indicate that LLMs cannot consistently generate long summaries with more than 8 sentences. Furthermore, these models exhibit limited capacity to produce highly abstractive lay summaries. Although LLMs demonstrate strong generic summarization competency, sophisticated content control without costly fine-tuning remains an open problem for domain-specific applications.
comment: ACL 2024 camera ready
♻ ☆ Large Language Models for Cuffless Blood Pressure Measurement From Wearable Biosignals
Large language models (LLMs) have captured significant interest from both academia and industry due to their impressive performance across various textual tasks. However, the potential of LLMs to analyze physiological time-series data remains an emerging research field. Particularly, there is a notable gap in the utilization of LLMs for analyzing wearable biosignals to achieve cuffless blood pressure (BP) measurement, which is critical for the management of cardiovascular diseases. This paper presents the first work to explore the capacity of LLMs to perform cuffless BP estimation based on wearable biosignals. We extracted physiological features from electrocardiogram (ECG) and photoplethysmogram (PPG) signals and designed context-enhanced prompts by combining these features with BP domain knowledge and user information. Subsequently, we adapted LLMs to BP estimation tasks through fine-tuning. To evaluate the proposed approach, we conducted assessments of ten advanced LLMs using a comprehensive public dataset of wearable biosignals from 1,272 participants. The experimental results demonstrate that the optimally fine-tuned LLM significantly surpasses conventional task-specific baselines, achieving an estimation error of 0.00 $\pm$ 9.25 mmHg for systolic BP and 1.29 $\pm$ 6.37 mmHg for diastolic BP. Notably, the ablation studies highlight the benefits of our context enhancement strategy, leading to an 8.9% reduction in mean absolute error for systolic BP estimation. This paper pioneers the exploration of LLMs for cuffless BP measurement, providing a potential solution to enhance the accuracy of cuffless BP measurement.
♻ ☆ EVALALIGN: Supervised Fine-Tuning Multimodal LLMs with Human-Aligned Data for Evaluating Text-to-Image Models
The recent advancements in text-to-image generative models have been remarkable. Yet, the field suffers from a lack of evaluation metrics that accurately reflect the performance of these models, particularly lacking fine-grained metrics that can guide the optimization of the models. In this paper, we propose EvalAlign, a metric characterized by its accuracy, stability, and fine granularity. Our approach leverages the capabilities of Multimodal Large Language Models (MLLMs) pre-trained on extensive datasets. We develop evaluation protocols that focus on two key dimensions: image faithfulness and text-image alignment. Each protocol comprises a set of detailed, fine-grained instructions linked to specific scoring options, enabling precise manual scoring of the generated images. We Supervised Fine-Tune (SFT) the MLLM to align closely with human evaluative judgments, resulting in a robust evaluation model. Our comprehensive tests across 24 text-to-image generation models demonstrate that EvalAlign not only provides superior metric stability but also aligns more closely with human preferences than existing metrics, confirming its effectiveness and utility in model assessment.
comment: Github Repository: https://github.com/SAIS-FUXI/EvalAlign
♻ ☆ MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases ICML 2024
This paper addresses the growing need for efficient large language models (LLMs) on mobile devices, driven by increasing cloud costs and latency concerns. We focus on designing top-quality LLMs with fewer than a billion parameters, a practical choice for mobile deployment. Contrary to prevailing belief emphasizing the pivotal role of data and parameter quantity in determining model quality, our investigation underscores the significance of model architecture for sub-billion scale LLMs. Leveraging deep and thin architectures, coupled with embedding sharing and grouped-query attention mechanisms, we establish a strong baseline network denoted as MobileLLM, which attains a remarkable 2.7%/4.3% accuracy boost over preceding 125M/350M state-of-the-art models. Additionally, we propose an immediate block-wise weight-sharing approach with no increase in model size and only marginal latency overhead. The resultant models, denoted as MobileLLM-LS, demonstrate a further accuracy enhancement of 0.7%/0.8% than MobileLLM 125M/350M. Moreover, MobileLLM model family shows significant improvements compared to previous sub-billion models on chat benchmarks, and demonstrates close correctness to LLaMA-v2 7B in API calling tasks, highlighting the capability of small models for common on-device use cases.
comment: ICML 2024. Code is available at https://github.com/facebookresearch/MobileLLM
♻ ☆ Can Large Language Models Follow Concept Annotation Guidelines? A Case Study on Scientific and Financial Domains ACL 2024
Although large language models (LLMs) exhibit remarkable capacity to leverage in-context demonstrations, it is still unclear to what extent they can learn new concepts or facts from ground-truth labels. To address this question, we examine the capacity of instruction-tuned LLMs to follow in-context concept guidelines for sentence labeling tasks. We design guidelines that present different types of factual and counterfactual concept definitions, which are used as prompts for zero-shot sentence classification tasks. Our results show that although concept definitions consistently help in task performance, only the larger models (with 70B parameters or more) have limited ability to work under counterfactual contexts. Importantly, only proprietary models such as GPT-3.5 and GPT-4 can recognize nonsensical guidelines, which we hypothesize is due to more sophisticated alignment methods. Finally, we find that Falcon-180B-chat is outperformed by Llama-2-70B-chat is most cases, which indicates that careful fine-tuning is more effective than increasing model scale. Altogether, our simple evaluation method reveals significant gaps in concept understanding between the most capable open-source language models and the leading proprietary APIs.
comment: ACL 2024 camera ready
♻ ☆ Linear Cross-Lingual Mapping of Sentence Embeddings ACL
Semantics of a sentence is defined with much less ambiguity than semantics of a single word, and we assume that it should be better preserved by translation to another language. If multilingual sentence embeddings intend to represent sentence semantics, then the similarity between embeddings of any two sentences must be invariant with respect to translation. Based on this suggestion, we consider a simple linear cross-lingual mapping as a possible improvement of the multilingual embeddings. We also consider deviation from orthogonality conditions as a measure of deficiency of the embeddings.
comment: Accepted to ACL Findings 2024
♻ ☆ MM-MATH: Advancing Multimodal Math Evaluation with Process Evaluation and Fine-grained Classification
To advance the evaluation of multimodal math reasoning in large multimodal models (LMMs), this paper introduces a novel benchmark, MM-MATH. MM-MATH consists of 5,929 open-ended middle school math problems with visual contexts, with fine-grained classification across difficulty, grade level, and knowledge points. Unlike existing benchmarks relying on binary answer comparison, MM-MATH incorporates both outcome and process evaluations. Process evaluation employs LMM-as-a-judge to automatically analyze solution steps, identifying and categorizing errors into specific error types. Extensive evaluation of ten models on MM-MATH reveals significant challenges for existing LMMs, highlighting their limited utilization of visual information and struggles with higher-difficulty problems. The best-performing model achieves only 31% accuracy on MM-MATH, compared to 82% for humans. This highlights the challenging nature of our benchmark for existing models and the significant gap between the multimodal reasoning capabilities of current models and humans. Our process evaluation reveals that diagram misinterpretation is the most common error, accounting for more than half of the total error cases, underscoring the need for improved image comprehension in multimodal reasoning.
comment: It has changed a lot from the previous version and needs to set up a new one
♻ ☆ Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation
The scaling laws and extraordinary performance of large foundation models motivate the development and utilization of such models in biomedicine. However, despite early promising results on some biomedical benchmarks, there are still major challenges that need to be addressed before these models can be used in real-world clinics. Frontier general-domain models such as GPT-4V still have significant performance gaps in multimodal biomedical applications. More importantly, less-acknowledged pragmatic issues, including accessibility, model cost, and tedious manual evaluation make it hard for clinicians to use state-of-the-art large models directly on private patient data. Here, we explore training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology. To maximize data efficiency, we adopt a modular approach by incorporating state-of-the-art pre-trained models for image and text modalities, and focusing on training a lightweight adapter to ground each modality to the text embedding space, as exemplified by LLaVA-Med. For training, we assemble a large dataset of over 697 thousand radiology image-text pairs. For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation. For best practice, we conduct a systematic ablation study on various choices in data engineering and multimodal training. The resulting LlaVA-Rad (7B) model attains state-of-the-art results on standard radiology tasks such as report generation and cross-modal retrieval, even outperforming much larger models such as GPT-4V and Med-PaLM M (84B). The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
♻ ☆ A Large Language Model Approach to Educational Survey Feedback Analysis
This paper assesses the potential for the large language models (LLMs) GPT-4 and GPT-3.5 to aid in deriving insight from education feedback surveys. Exploration of LLM use cases in education has focused on teaching and learning, with less exploration of capabilities in education feedback analysis. Survey analysis in education involves goals such as finding gaps in curricula or evaluating teachers, often requiring time-consuming manual processing of textual responses. LLMs have the potential to provide a flexible means of achieving these goals without specialized machine learning models or fine-tuning. We demonstrate a versatile approach to such goals by treating them as sequences of natural language processing (NLP) tasks including classification (multi-label, multi-class, and binary), extraction, thematic analysis, and sentiment analysis, each performed by LLM. We apply these workflows to a real-world dataset of 2500 end-of-course survey comments from biomedical science courses, and evaluate a zero-shot approach (i.e., requiring no examples or labeled training data) across all tasks, reflecting education settings, where labeled data is often scarce. By applying effective prompting practices, we achieve human-level performance on multiple tasks with GPT-4, enabling workflows necessary to achieve typical goals. We also show the potential of inspecting LLMs' chain-of-thought (CoT) reasoning for providing insight that may foster confidence in practice. Moreover, this study features development of a versatile set of classification categories, suitable for various course types (online, hybrid, or in-person) and amenable to customization. Our results suggest that LLMs can be used to derive a range of insights from survey text.
♻ ☆ Methodology of Adapting Large English Language Models for Specific Cultural Contexts
The rapid growth of large language models(LLMs) has emerged as a prominent trend in the field of artificial intelligence. However, current state-of-the-art LLMs are predominantly based on English. They encounter limitations when directly applied to tasks in specific cultural domains, due to deficiencies in domain-specific knowledge and misunderstandings caused by differences in cultural values. To address this challenge, our paper proposes a rapid adaptation method for large models in specific cultural contexts, which leverages instruction-tuning based on specific cultural knowledge and safety values data. Taking Chinese as the specific cultural context and utilizing the LLaMA3-8B as the experimental English LLM, the evaluation results demonstrate that the adapted LLM significantly enhances its capabilities in domain-specific knowledge and adaptability to safety values, while maintaining its original expertise advantages.
comment: 11 pages, 2 figures
♻ ☆ Symbolic Prompt Program Search: A Structure-Aware Approach to Efficient Compile-Time Prompt Optimization
In many modern LLM applications, such as retrieval augmented generation, prompts have become programs themselves. In these settings, prompt programs are repeatedly called with different user queries or data instances. A big practical challenge is optimizing such prompt programs. Recent work has mostly focused on either simple prompt programs or assumed that the general structure of a prompt program is fixed. We introduce SAMMO, a framework to perform symbolic prompt program search for compile-time optimizations of prompt programs. SAMMO represents prompt programs on a symbolic level which allows for a rich set of transformations that can be searched over during optimization. We show that SAMMO generalizes previous methods and improves the performance of complex prompts on (1) instruction tuning, (2) RAG pipeline tuning, and (3) prompt compression, across several different LLMs. We make all code available open-source at https://github.com/microsoft/sammo .
♻ ☆ LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models ACL 2024
Efficient fine-tuning is vital for adapting large language models (LLMs) to downstream tasks. However, it requires non-trivial efforts to implement these methods on different models. We present LlamaFactory, a unified framework that integrates a suite of cutting-edge efficient training methods. It provides a solution for flexibly customizing the fine-tuning of 100+ LLMs without the need for coding through the built-in web UI LlamaBoard. We empirically validate the efficiency and effectiveness of our framework on language modeling and text generation tasks. It has been released at https://github.com/hiyouga/LLaMA-Factory and received over 25,000 stars and 3,000 forks.
comment: 13 pages, accepted to ACL 2024 System Demonstration Track
♻ ☆ Fine-Tuning BERTs for Definition Extraction from Mathematical Text
In this paper, we fine-tuned three pre-trained BERT models on the task of "definition extraction" from mathematical English written in LaTeX. This is presented as a binary classification problem, where either a sentence contains a definition of a mathematical term or it does not. We used two original data sets, "Chicago" and "TAC," to fine-tune and test these models. We also tested on WFMALL, a dataset presented by Vanetik and Litvak in 2021 and compared the performance of our models to theirs. We found that a high-performance Sentence-BERT transformer model performed best based on overall accuracy, recall, and precision metrics, achieving comparable results to the earlier models with less computational effort.
♻ ☆ Target Span Detection for Implicit Harmful Content
Identifying the targets of hate speech is a crucial step in grasping the nature of such speech and, ultimately, in improving the detection of offensive posts on online forums. Much harmful content on online platforms uses implicit language especially when targeting vulnerable and protected groups such as using stereotypical characteristics instead of explicit target names, making it harder to detect and mitigate the language. In this study, we focus on identifying implied targets of hate speech, essential for recognizing subtler hate speech and enhancing the detection of harmful content on digital platforms. We define a new task aimed at identifying the targets even when they are not explicitly stated. To address that task, we collect and annotate target spans in three prominent implicit hate speech datasets: SBIC, DynaHate, and IHC. We call the resulting merged collection Implicit-Target-Span. The collection is achieved using an innovative pooling method with matching scores based on human annotations and Large Language Models (LLMs). Our experiments indicate that Implicit-Target-Span provides a challenging test bed for target span detection methods.
♻ ☆ Software Engineering Methods For AI-Driven Deductive Legal Reasoning SP
The recent proliferation of generative artificial intelligence (AI) technologies such as pre-trained large language models (LLMs) has opened up new frontiers in computational law. An exciting area of development is the use of AI to automate the deductive rule-based reasoning inherent in statutory and contract law. This paper argues that such automated deductive legal reasoning can now be viewed from the lens of software engineering, treating LLMs as interpreters of natural-language programs with natural-language inputs. We show how it is possible to apply principled software engineering techniques to enhance AI-driven legal reasoning of complex statutes and to unlock new applications in automated meta-reasoning such as mutation-guided example generation and metamorphic property-based testing.
comment: Appearing in Onward! at SPLASH 2024
♻ ☆ "Vorbeşti Româneşte?" A Recipe to Train Powerful Romanian LLMs with English Instructions
In recent years, Large Language Models (LLMs) have achieved almost human-like performance on various tasks. While some LLMs have been trained on multilingual data, most of the training data is in English; hence, their performance in English greatly exceeds other languages. To our knowledge, we are the first to collect and translate a large collection of texts, instructions, and benchmarks and train, evaluate, and release open-source LLMs tailored for Romanian. We evaluate our methods on four different categories, including academic benchmarks, MT-Bench (manually translated), and a professionally built historical, cultural, and social benchmark adapted to Romanian. We argue for the usefulness and high performance of RoLLMs by obtaining state-of-the-art results across the board. We publicly release all resources (i.e., data, training and evaluation code, models) to support and encourage research on Romanian LLMs while concurrently creating a generalizable recipe, adequate for other low or less-resourced languages.
comment: arXiv admin note: text overlap with arXiv:2405.07703
♻ ☆ Guylingo: The Republic of Guyana Creole Corpora NAACL 2024
While major languages often enjoy substantial attention and resources, the linguistic diversity across the globe encompasses a multitude of smaller, indigenous, and regional languages that lack the same level of computational support. One such region is the Caribbean. While commonly labeled as "English speaking", the ex-British Caribbean region consists of a myriad of Creole languages thriving alongside English. In this paper, we present Guylingo: a comprehensive corpus designed for advancing NLP research in the domain of Creolese (Guyanese English-lexicon Creole), the most widely spoken language in the culturally rich nation of Guyana. We first outline our framework for gathering and digitizing this diverse corpus, inclusive of colloquial expressions, idioms, and regional variations in a low-resource language. We then demonstrate the challenges of training and evaluating NLP models for machine translation in Creole. Lastly, we discuss the unique opportunities presented by recent NLP advancements for accelerating the formal adoption of Creole languages as official languages in the Caribbean.
comment: Accepted to NAACL 2024 Main Conference Special Theme Track: Languages of Latin America and The Caribbean
Computer Vision and Pattern Recognition 134
Dataset Size Recovery from LoRA Weights
Model inversion and membership inference attacks aim to reconstruct and verify the data which a model was trained on. However, they are not guaranteed to find all training samples as they do not know the size of the training set. In this paper, we introduce a new task: dataset size recovery, that aims to determine the number of samples used to train a model, directly from its weights. We then propose DSiRe, a method for recovering the number of images used to fine-tune a model, in the common case where fine-tuning uses LoRA. We discover that both the norm and the spectrum of the LoRA matrices are closely linked to the fine-tuning dataset size; we leverage this finding to propose a simple yet effective prediction algorithm. To evaluate dataset size recovery of LoRA weights, we develop and release a new benchmark, LoRA-WiSE, consisting of over 25000 weight snapshots from more than 2000 diverse LoRA fine-tuned models. Our best classifier can predict the number of fine-tuning images with a mean absolute error of 0.36 images, establishing the feasibility of this attack.
☆ HUWSOD: Holistic Self-training for Unified Weakly Supervised Object Detection
Most WSOD methods rely on traditional object proposals to generate candidate regions and are confronted with unstable training, which easily gets stuck in a poor local optimum. In this paper, we introduce a unified, high-capacity weakly supervised object detection (WSOD) network called HUWSOD, which utilizes a comprehensive self-training framework without needing external modules or additional supervision. HUWSOD innovatively incorporates a self-supervised proposal generator and an autoencoder proposal generator with a multi-rate resampling pyramid to replace traditional object proposals, enabling end-to-end WSOD training and inference. Additionally, we implement a holistic self-training scheme that refines detection scores and coordinates through step-wise entropy minimization and consistency-constraint regularization, ensuring consistent predictions across stochastic augmentations of the same image. Extensive experiments on PASCAL VOC and MS COCO demonstrate that HUWSOD competes with state-of-the-art WSOD methods, eliminating the need for offline proposals and additional data. The peak performance of HUWSOD approaches that of fully-supervised Faster R-CNN. Our findings also indicate that randomly initialized boxes, although significantly different from well-designed offline object proposals, are effective for WSOD training.
☆ Looking 3D: Anomaly Detection with 2D-3D Alignment CVPR'24
Automatic anomaly detection based on visual cues holds practical significance in various domains, such as manufacturing and product quality assessment. This paper introduces a new conditional anomaly detection problem, which involves identifying anomalies in a query image by comparing it to a reference shape. To address this challenge, we have created a large dataset, BrokenChairs-180K, consisting of around 180K images, with diverse anomalies, geometries, and textures paired with 8,143 reference 3D shapes. To tackle this task, we have proposed a novel transformer-based approach that explicitly learns the correspondence between the query image and reference 3D shape via feature alignment and leverages a customized attention mechanism for anomaly detection. Our approach has been rigorously evaluated through comprehensive experiments, serving as a benchmark for future research in this domain.
comment: Accepted at CVPR'24. Codes & dataset available at https://github.com/VICO-UoE/Looking3D
☆ ReXTime: A Benchmark Suite for Reasoning-Across-Time in Videos
We introduce ReXTime, a benchmark designed to rigorously test AI models' ability to perform temporal reasoning within video events. Specifically, ReXTime focuses on reasoning across time, i.e. human-like understanding when the question and its corresponding answer occur in different video segments. This form of reasoning, requiring advanced understanding of cause-and-effect relationships across video segments, poses significant challenges to even the frontier multimodal large language models. To facilitate this evaluation, we develop an automated pipeline for generating temporal reasoning question-answer pairs, significantly reducing the need for labor-intensive manual annotations. Our benchmark includes 921 carefully vetted validation samples and 2,143 test samples, each manually curated for accuracy and relevance. Evaluation results show that while frontier large language models outperform academic models, they still lag behind human performance by a significant 14.3% accuracy gap. Additionally, our pipeline creates a training dataset of 9,695 machine generated samples without manual effort, which empirical studies suggest can enhance the across-time reasoning via fine-tuning.
☆ Fibottention: Inceptive Visual Representation Learning with Diverse Attention Across Heads
Visual perception tasks are predominantly solved by Vision Transformer (ViT) architectures, which, despite their effectiveness, encounter a computational bottleneck due to the quadratic complexity of computing self-attention. This inefficiency is largely due to the self-attention heads capturing redundant token interactions, reflecting inherent redundancy within visual data. Many works have aimed to reduce the computational complexity of self-attention in ViTs, leading to the development of efficient and sparse transformer architectures. In this paper, viewing through the efficiency lens, we realized that introducing any sparse self-attention strategy in ViTs can keep the computational overhead low. However, these strategies are sub-optimal as they often fail to capture fine-grained visual details. This observation leads us to propose a general, efficient, sparse architecture, named Fibottention, for approximating self-attention with superlinear complexity that is built upon Fibonacci sequences. The key strategies in Fibottention include: it excludes proximate tokens to reduce redundancy, employs structured sparsity by design to decrease computational demands, and incorporates inception-like diversity across attention heads. This diversity ensures the capture of complementary information through non-overlapping token interactions, optimizing both performance and resource utilization in ViTs for visual representation learning. We embed our Fibottention mechanism into multiple state-of-the-art transformer architectures dedicated to visual tasks. Leveraging only 2-6% of the elements in the self-attention heads, Fibottention in conjunction with ViT and its variants, consistently achieves significant performance boosts compared to standard ViTs in nine datasets across three domains $\unicode{x2013}$ image classification, video understanding, and robot learning tasks.
comment: The code is publicly available at https://github.com/Charlotte-CharMLab/Fibottention
☆ SALVe: Semantic Alignment Verification for Floorplan Reconstruction from Sparse Panoramas ECCV 2022
We propose a new system for automatic 2D floorplan reconstruction that is enabled by SALVe, our novel pairwise learned alignment verifier. The inputs to our system are sparsely located 360$^\circ$ panoramas, whose semantic features (windows, doors, and openings) are inferred and used to hypothesize pairwise room adjacency or overlap. SALVe initializes a pose graph, which is subsequently optimized using GTSAM. Once the room poses are computed, room layouts are inferred using HorizonNet, and the floorplan is constructed by stitching the most confident layout boundaries. We validate our system qualitatively and quantitatively as well as through ablation studies, showing that it outperforms state-of-the-art SfM systems in completeness by over 200%, without sacrificing accuracy. Our results point to the significance of our work: poses of 81% of panoramas are localized in the first 2 connected components (CCs), and 89% in the first 3 CCs. Code and models are publicly available at https://github.com/zillow/salve.
comment: Accepted at ECCV 2022
☆ OMG-LLaVA: Bridging Image-level, Object-level, Pixel-level Reasoning and Understanding
Current universal segmentation methods demonstrate strong capabilities in pixel-level image and video understanding. However, they lack reasoning abilities and cannot be controlled via text instructions. In contrast, large vision-language multimodal models exhibit powerful vision-based conversation and reasoning capabilities but lack pixel-level understanding and have difficulty accepting visual prompts for flexible user interaction. This paper proposes OMG-LLaVA, a new and elegant framework combining powerful pixel-level vision understanding with reasoning abilities. It can accept various visual and text prompts for flexible user interaction. Specifically, we use a universal segmentation method as the visual encoder, integrating image information, perception priors, and visual prompts into visual tokens provided to the LLM. The LLM is responsible for understanding the user's text instructions and providing text responses and pixel-level segmentation results based on the visual information. We propose perception prior embedding to better integrate perception priors with image features. OMG-LLaVA achieves image-level, object-level, and pixel-level reasoning and understanding in a single model, matching or surpassing the performance of specialized methods on multiple benchmarks. Rather than using LLM to connect each specialist, our work aims at end-to-end training on one encoder, one decoder, and one LLM. The code and model have been released for further research.
☆ Taming Data and Transformers for Audio Generation
Generating ambient sounds and effects is a challenging problem due to data scarcity and often insufficient caption quality, making it difficult to employ large-scale generative models for the task. In this work, we tackle the problem by introducing two new models. First, we propose AutoCap, a high-quality and efficient automatic audio captioning model. We show that by leveraging metadata available with the audio modality, we can substantially improve the quality of captions. AutoCap reaches CIDEr score of 83.2, marking a 3.2% improvement from the best available captioning model at four times faster inference speed. We then use AutoCap to caption clips from existing datasets, obtaining 761,000 audio clips with high-quality captions, forming the largest available audio-text dataset. Second, we propose GenAu, a scalable transformer-based audio generation architecture that we scale up to 1.25B parameters and train with our new dataset. When compared to state-of-the-art audio generators, GenAu obtains significant improvements of 15.7% in FAD score, 22.7% in IS, and 13.5% in CLAP score, indicating significantly improved quality of generated audio compared to previous works. This shows that the quality of data is often as important as its quantity. Besides, since AutoCap is fully automatic, new audio samples can be added to the training dataset, unlocking the training of even larger generative models for audio synthesis.
comment: Project Webpage: https://snap-research.github.io/GenAU/
☆ Mamba or RWKV: Exploring High-Quality and High-Efficiency Segment Anything Model
Transformer-based segmentation methods face the challenge of efficient inference when dealing with high-resolution images. Recently, several linear attention architectures, such as Mamba and RWKV, have attracted much attention as they can process long sequences efficiently. In this work, we focus on designing an efficient segment-anything model by exploring these different architectures. Specifically, we design a mixed backbone that contains convolution and RWKV operation, which achieves the best for both accuracy and efficiency. In addition, we design an efficient decoder to utilize the multiscale tokens to obtain high-quality masks. We denote our method as RWKV-SAM, a simple, effective, fast baseline for SAM-like models. Moreover, we build a benchmark containing various high-quality segmentation datasets and jointly train one efficient yet high-quality segmentation model using this benchmark. Based on the benchmark results, our RWKV-SAM achieves outstanding performance in efficiency and segmentation quality compared to transformers and other linear attention models. For example, compared with the same-scale transformer model, RWKV-SAM achieves more than 2x speedup and can achieve better segmentation performance on various datasets. In addition, RWKV-SAM outperforms recent vision Mamba models with better classification and semantic segmentation results. Code and models will be publicly available.
comment: 16 pages; 8 figures
☆ SimTxtSeg: Weakly-Supervised Medical Image Segmentation with Simple Text Cues
Weakly-supervised medical image segmentation is a challenging task that aims to reduce the annotation cost while keep the segmentation performance. In this paper, we present a novel framework, SimTxtSeg, that leverages simple text cues to generate high-quality pseudo-labels and study the cross-modal fusion in training segmentation models, simultaneously. Our contribution consists of two key components: an effective Textual-to-Visual Cue Converter that produces visual prompts from text prompts on medical images, and a text-guided segmentation model with Text-Vision Hybrid Attention that fuses text and image features. We evaluate our framework on two medical image segmentation tasks: colonic polyp segmentation and MRI brain tumor segmentation, and achieve consistent state-of-the-art performance.
☆ STAL3D: Unsupervised Domain Adaptation for 3D Object Detection via Collaborating Self-Training and Adversarial Learning
Existing 3D object detection suffers from expensive annotation costs and poor transferability to unknown data due to the domain gap, Unsupervised Domain Adaptation (UDA) aims to generalize detection models trained in labeled source domains to perform robustly on unexplored target domains, providing a promising solution for cross-domain 3D object detection. Although Self-Training (ST) based cross-domain 3D detection methods with the assistance of pseudo-labeling techniques have achieved remarkable progress, they still face the issue of low-quality pseudo-labels when there are significant domain disparities due to the absence of a process for feature distribution alignment. While Adversarial Learning (AL) based methods can effectively align the feature distributions of the source and target domains, the inability to obtain labels in the target domain forces the adoption of asymmetric optimization losses, resulting in a challenging issue of source domain bias. To overcome these limitations, we propose a novel unsupervised domain adaptation framework for 3D object detection via collaborating ST and AL, dubbed as STAL3D, unleashing the complementary advantages of pseudo labels and feature distribution alignment. Additionally, a Background Suppression Adversarial Learning (BS-AL) module and a Scale Filtering Module (SFM) are designed tailored for 3D cross-domain scenes, effectively alleviating the issues of the large proportion of background interference and source domain size bias. Our STAL3D achieves state-of-the-art performance on multiple cross-domain tasks and even surpasses the Oracle results on Waymo $\rightarrow$ KITTI and Waymo $\rightarrow$ KITTI-rain.
comment: Accepted by IEEE-TIV
☆ CORE4D: A 4D Human-Object-Human Interaction Dataset for Collaborative Object REarrangement
Understanding how humans cooperatively rearrange household objects is critical for VR/AR and human-robot interaction. However, in-depth studies on modeling these behaviors are under-researched due to the lack of relevant datasets. We fill this gap by presenting CORE4D, a novel large-scale 4D human-object-human interaction dataset focusing on collaborative object rearrangement, which encompasses diverse compositions of various object geometries, collaboration modes, and 3D scenes. With 1K human-object-human motion sequences captured in the real world, we enrich CORE4D by contributing an iterative collaboration retargeting strategy to augment motions to a variety of novel objects. Leveraging this approach, CORE4D comprises a total of 11K collaboration sequences spanning 3K real and virtual object shapes. Benefiting from extensive motion patterns provided by CORE4D, we benchmark two tasks aiming at generating human-object interaction: human-object motion forecasting and interaction synthesis. Extensive experiments demonstrate the effectiveness of our collaboration retargeting strategy and indicate that CORE4D has posed new challenges to existing human-object interaction generation methodologies. Our dataset and code are available at https://github.com/leolyliu/CORE4D-Instructions.
☆ Learning Visual Conditioning Tokens to Correct Domain Shift for Fully Test-time Adaptation
Fully test-time adaptation aims to adapt the network model based on sequential analysis of input samples during the inference stage to address the cross-domain performance degradation problem of deep neural networks. This work is based on the following interesting finding: in transformer-based image classification, the class token at the first transformer encoder layer can be learned to capture the domain-specific characteristics of target samples during test-time adaptation. This learned token, when combined with input image patch embeddings, is able to gradually remove the domain-specific information from the feature representations of input samples during the transformer encoding process, thereby significantly improving the test-time adaptation performance of the source model across different domains. We refer to this class token as visual conditioning token (VCT). To successfully learn the VCT, we propose a bi-level learning approach to capture the long-term variations of domain-specific characteristics while accommodating local variations of instance-specific characteristics. Experimental results on the benchmark datasets demonstrate that our proposed bi-level visual conditioning token learning method is able to achieve significantly improved test-time adaptation performance by up to 1.9%.
comment: accepted by TMM
☆ LiverUSRecon: Automatic 3D Reconstruction and Volumetry of the Liver with a Few Partial Ultrasound Scans MICCAI 2024
3D reconstruction of the liver for volumetry is important for qualitative analysis and disease diagnosis. Liver volumetry using ultrasound (US) scans, although advantageous due to less acquisition time and safety, is challenging due to the inherent noisiness in US scans, blurry boundaries, and partial liver visibility. We address these challenges by using the segmentation masks of a few incomplete sagittal-plane US scans of the liver in conjunction with a statistical shape model (SSM) built using a set of CT scans of the liver. We compute the shape parameters needed to warp this canonical SSM to fit the US scans through a parametric regression network. The resulting 3D liver reconstruction is accurate and leads to automatic liver volume calculation. We evaluate the accuracy of the estimated liver volumes with respect to CT segmentation volumes using RMSE. Our volume computation is statistically much closer to the volume estimated using CT scans than the volume computed using Childs' method by radiologists: p-value of 0.094 (>0.05) says that there is no significant difference between CT segmentation volumes and ours in contrast to Childs' method. We validate our method using investigations (ablation studies) on the US image resolution, the number of CT scans used for SSM, the number of principal components, and the number of input US scans. To the best of our knowledge, this is the first automatic liver volumetry system using a few incomplete US scans given a set of CT scans of livers for SSM.
comment: 10 pages, Accepted to MICCAI 2024
☆ Efficient World Models with Context-Aware Tokenization ICML 2024
Scaling up deep Reinforcement Learning (RL) methods presents a significant challenge. Following developments in generative modelling, model-based RL positions itself as a strong contender. Recent advances in sequence modelling have led to effective transformer-based world models, albeit at the price of heavy computations due to the long sequences of tokens required to accurately simulate environments. In this work, we propose $\Delta$-IRIS, a new agent with a world model architecture composed of a discrete autoencoder that encodes stochastic deltas between time steps and an autoregressive transformer that predicts future deltas by summarizing the current state of the world with continuous tokens. In the Crafter benchmark, $\Delta$-IRIS sets a new state of the art at multiple frame budgets, while being an order of magnitude faster to train than previous attention-based approaches. We release our code and models at https://github.com/vmicheli/delta-iris.
comment: ICML 2024
☆ Enhanced Data Transfer Cooperating with Artificial Triplets for Scene Graph Generation
This work focuses on training dataset enhancement of informative relational triplets for Scene Graph Generation (SGG). Due to the lack of effective supervision, the current SGG model predictions perform poorly for informative relational triplets with inadequate training samples. Therefore, we propose two novel training dataset enhancement modules: Feature Space Triplet Augmentation (FSTA) and Soft Transfer. FSTA leverages a feature generator trained to generate representations of an object in relational triplets. The biased prediction based sampling in FSTA efficiently augments artificial triplets focusing on the challenging ones. In addition, we introduce Soft Transfer, which assigns soft predicate labels to general relational triplets to make more supervisions for informative predicate classes effectively. Experimental results show that integrating FSTA and Soft Transfer achieve high levels of both Recall and mean Recall in Visual Genome dataset. The mean of Recall and mean Recall is the highest among all the existing model-agnostic methods.
comment: Accepted to IEICE Transactions on Information and Systems in April 2024
☆ Mapping Land Naturalness from Sentinel-2 using Deep Contextual and Geographical Priors ICLR 2024
In recent decades, the causes and consequences of climate change have accelerated, affecting our planet on an unprecedented scale. This change is closely tied to the ways in which humans alter their surroundings. As our actions continue to impact natural areas, using satellite images to observe and measure these effects has become crucial for understanding and combating climate change. Aiming to map land naturalness on the continuum of modern human pressure, we have developed a multi-modal supervised deep learning framework that addresses the unique challenges of satellite data and the task at hand. We incorporate contextual and geographical priors, represented by corresponding coordinate information and broader contextual information, including and surrounding the immediate patch to be predicted. Our framework improves the model's predictive performance in mapping land naturalness from Sentinel-2 data, a type of multi-spectral optical satellite imagery. Recognizing that our protective measures are only as effective as our understanding of the ecosystem, quantifying naturalness serves as a crucial step toward enhancing our environmental stewardship.
comment: 6 pages, 3 figures, ICLR 2024 Tackling Climate Change with Machine Learning Workshop
☆ PNeRV: A Polynomial Neural Representation for Videos
Extracting Implicit Neural Representations (INRs) on video data poses unique challenges due to the additional temporal dimension. In the context of videos, INRs have predominantly relied on a frame-only parameterization, which sacrifices the spatiotemporal continuity observed in pixel-level (spatial) representations. To mitigate this, we introduce Polynomial Neural Representation for Videos (PNeRV), a parameter-wise efficient, patch-wise INR for videos that preserves spatiotemporal continuity. PNeRV leverages the modeling capabilities of Polynomial Neural Networks to perform the modulation of a continuous spatial (patch) signal with a continuous time (frame) signal. We further propose a custom Hierarchical Patch-wise Spatial Sampling Scheme that ensures spatial continuity while retaining parameter efficiency. We also employ a carefully designed Positional Embedding methodology to further enhance PNeRV's performance. Our extensive experimentation demonstrates that PNeRV outperforms the baselines in conventional Implicit Neural Representation tasks like compression along with downstream applications that require spatiotemporal continuity in the underlying representation. PNeRV not only addresses the challenges posed by video data in the realm of INRs but also opens new avenues for advanced video processing and analysis.
comment: 25 pages, 17 figures, published at TMLR, Feb 2024
☆ Compositional Image Decomposition with Diffusion Models ICML 2024
Given an image of a natural scene, we are able to quickly decompose it into a set of components such as objects, lighting, shadows, and foreground. We can then envision a scene where we combine certain components with those from other images, for instance a set of objects from our bedroom and animals from a zoo under the lighting conditions of a forest, even if we have never encountered such a scene before. In this paper, we present a method to decompose an image into such compositional components. Our approach, Decomp Diffusion, is an unsupervised method which, when given a single image, infers a set of different components in the image, each represented by a diffusion model. We demonstrate how components can capture different factors of the scene, ranging from global scene descriptors like shadows or facial expression to local scene descriptors like constituent objects. We further illustrate how inferred factors can be flexibly composed, even with factors inferred from other models, to generate a variety of scenes sharply different than those seen in training time. Website and code at https://energy-based-model.github.io/decomp-diffusion.
comment: ICML 2024, Webpage: https://energy-based-model.github.io/decomp-diffusion
☆ Enhancing Continual Learning in Visual Question Answering with Modality-Aware Feature Distillation
Continual learning focuses on incrementally training a model on a sequence of tasks with the aim of learning new tasks while minimizing performance drop on previous tasks. Existing approaches at the intersection of Continual Learning and Visual Question Answering (VQA) do not study how the multimodal nature of the input affects the learning dynamics of a model. In this paper, we demonstrate that each modality evolves at different rates across a continuum of tasks and that this behavior occurs in established encoder-only models as well as modern recipes for developing Vision & Language (VL) models. Motivated by this observation, we propose a modality-aware feature distillation (MAFED) approach which outperforms existing baselines across models of varying scale in three multimodal continual learning settings. Furthermore, we provide ablations showcasing that modality-aware distillation complements experience replay. Overall, our results emphasize the importance of addressing modality-specific dynamics to prevent forgetting in multimodal continual learning.
☆ Human Modelling and Pose Estimation Overview
Human modelling and pose estimation stands at the crossroads of Computer Vision, Computer Graphics, and Machine Learning. This paper presents a thorough investigation of this interdisciplinary field, examining various algorithms, methodologies, and practical applications. It explores the diverse range of sensor technologies relevant to this domain and delves into a wide array of application areas. Additionally, we discuss the challenges and advancements in 2D and 3D human modelling methodologies, along with popular datasets, metrics, and future research directions. The main contribution of this paper lies in its up-to-date comparison of state-of-the-art (SOTA) human pose estimation algorithms in both 2D and 3D domains. By providing this comprehensive overview, the paper aims to enhance understanding of 3D human modelling and pose estimation, offering insights into current SOTA achievements, challenges, and future prospects within the field.
☆ HuatuoGPT-Vision, Towards Injecting Medical Visual Knowledge into Multimodal LLMs at Scale
The rapid development of multimodal large language models (MLLMs), such as GPT-4V, has led to significant advancements. However, these models still face challenges in medical multimodal capabilities due to limitations in the quantity and quality of medical vision-text data, stemming from data privacy concerns and high annotation costs. While pioneering approaches utilize PubMed's large-scale, de-identified medical image-text pairs to address these limitations, they still fall short due to inherent data noise. To tackle this, we refined medical image-text pairs from PubMed and employed MLLMs (GPT-4V) in an 'unblinded' capacity to denoise and reformat the data, resulting in the creation of the PubMedVision dataset with 1.3 million medical VQA samples. Our validation demonstrates that: (1) PubMedVision can significantly enhance the medical multimodal capabilities of current MLLMs, showing significant improvement in benchmarks including the MMMU Health & Medicine track; (2) manual checks by medical experts and empirical results validate the superior data quality of our dataset compared to other data construction methods. Using PubMedVision, we train a 34B medical MLLM HuatuoGPT-Vision, which shows superior performance in medical multimodal scenarios among open-source MLLMs.
☆ Read Anywhere Pointed: Layout-aware GUI Screen Reading with Tree-of-Lens Grounding
Graphical User Interfaces (GUIs) are central to our interaction with digital devices. Recently, growing efforts have been made to build models for various GUI understanding tasks. However, these efforts largely overlook an important GUI-referring task: screen reading based on user-indicated points, which we name the Screen Point-and-Read (SPR) task. This task is predominantly handled by rigid accessible screen reading tools, in great need of new models driven by advancements in Multimodal Large Language Models (MLLMs). In this paper, we propose a Tree-of-Lens (ToL) agent, utilizing a novel ToL grounding mechanism, to address the SPR task. Based on the input point coordinate and the corresponding GUI screenshot, our ToL agent constructs a Hierarchical Layout Tree. Based on the tree, our ToL agent not only comprehends the content of the indicated area but also articulates the layout and spatial relationships between elements. Such layout information is crucial for accurately interpreting information on the screen, distinguishing our ToL agent from other screen reading tools. We also thoroughly evaluate the ToL agent against other baselines on a newly proposed SPR benchmark, which includes GUIs from mobile, web, and operating systems. Last but not least, we test the ToL agent on mobile GUI navigation tasks, demonstrating its utility in identifying incorrect actions along the path of agent execution trajectories. Code and data: screen-point-and-read.github.io
☆ Enhancing Video-Language Representations with Structural Spatio-Temporal Alignment
While pre-training large-scale video-language models (VLMs) has shown remarkable potential for various downstream video-language tasks, existing VLMs can still suffer from certain commonly seen limitations, e.g., coarse-grained cross-modal aligning , under-modeling of temporal dynamics, detached video-language view. In this work, we target enhancing VLMs with a fine-grained structural spatio-temporal alignment learning method (namely Finsta). First of all, we represent the input texts and videos with fine-grained scene graph (SG) structures, both of which are further unified into a holistic SG (HSG) for bridging two modalities. Then, an SG-based framework is built, where the textual SG (TSG) is encoded with a graph Transformer, while the video dynamic SG (DSG) and the HSG are modeled with a novel recurrent graph Transformer for spatial and temporal feature propagation. A spatial-temporal Gaussian differential graph Transformer is further devised to strengthen the sense of the changes in objects across spatial and temporal dimensions. Next, based on the fine-grained structural features of TSG and DSG, we perform object-centered spatial alignment and predicate-centered temporal alignment respectively, enhancing the video-language grounding in both the spatiality and temporality. We design our method as a plug&play system, which can be integrated into existing well-trained VLMs for further representation augmentation, without training from scratch or relying on SG annotations in downstream applications. On 6 representative VL modeling tasks over 12 datasets in both standard and long-form video scenarios, Finsta consistently improves the existing 13 strong-performing VLMs persistently, and refreshes the current state-of-the-art end task performance significantly in both the fine-tuning and zero-shot settings.
comment: Accepted by IEEE TPAMI 2024
☆ Local Manifold Learning for No-Reference Image Quality Assessment
Contrastive learning has considerably advanced the field of Image Quality Assessment (IQA), emerging as a widely adopted technique. The core mechanism of contrastive learning involves minimizing the distance between quality-similar (positive) examples while maximizing the distance between quality-dissimilar (negative) examples. Despite its successes, current contrastive learning methods often neglect the importance of preserving the local manifold structure. This oversight can result in a high degree of similarity among hard examples within the feature space, thereby impeding effective differentiation and assessment. To address this issue, we propose an innovative framework that integrates local manifold learning with contrastive learning for No-Reference Image Quality Assessment (NR-IQA). Our method begins by sampling multiple crops from a given image, identifying the most visually salient crop. This crop is then used to cluster other crops from the same image as the positive class, while crops from different images are treated as negative classes to increase inter-class distance. Uniquely, our approach also considers non-saliency crops from the same image as intra-class negative classes to preserve their distinctiveness. Additionally, we employ a mutual learning framework, which further enhances the model's ability to adaptively learn and identify visual saliency regions. Our approach demonstrates a better performance compared to state-of-the-art methods in 7 standard datasets, achieving PLCC values of 0.942 (compared to 0.908 in TID2013) and 0.914 (compared to 0.894 in LIVEC).
☆ ALMA: a mathematics-driven approach for determining tuning parameters in generalized LASSO problems, with applications to MRI
Magnetic Resonance Imaging (MRI) is a powerful technique employed for non-invasive in vivo visualization of internal structures. Sparsity is often deployed to accelerate the signal acquisition or overcome the presence of motion artifacts, improving the quality of image reconstruction. Image reconstruction algorithms use TV-regularized LASSO (Total Variation-regularized LASSO) to retrieve the missing information of undersampled signals, by cleaning the data of noise and while optimizing sparsity. A tuning parameter moderates the balance between these two aspects; its choice affecting the quality of the reconstructions. Currently, there is a lack of general deterministic techniques to choose these parameters, which are oftentimes manually selected and thus hinder the reliability of the reconstructions. Here, we present ALMA (Algorithm for Lagrange Multipliers Approximation), an iterative mathematics-inspired technique that computes tuning parameters for generalized LASSO problems during MRI reconstruction. We analyze quantitatively the performance of these parameters for imaging reconstructions via TV-LASSO in an MRI context on phantoms. Although our study concentrates on TV-LASSO, the techniques developed here hold significant promise for a wide array of applications. ALMA is not only adaptable to more generalized LASSO problems but is also robust to accommodate other forms of regularization beyond total variation. Moreover, it extends effectively to handle non-Cartesian sampling trajectories, broadening its utility in complex data reconstruction scenarios. More generally, ALMA provides a powerful tool for numerically solving constrained optimization problems across various disciplines, offering a versatile and impactful solution for advanced computational challenges.
☆ FlowVQA: Mapping Multimodal Logic in Visual Question Answering with Flowcharts
Existing benchmarks for visual question answering lack in visual grounding and complexity, particularly in evaluating spatial reasoning skills. We introduce FlowVQA, a novel benchmark aimed at assessing the capabilities of visual question-answering multimodal language models in reasoning with flowcharts as visual contexts. FlowVQA comprises 2,272 carefully generated and human-verified flowchart images from three distinct content sources, along with 22,413 diverse question-answer pairs, to test a spectrum of reasoning tasks, including information localization, decision-making, and logical progression. We conduct a thorough baseline evaluation on a suite of both open-source and proprietary multimodal language models using various strategies, followed by an analysis of directional bias. The results underscore the benchmark's potential as a vital tool for advancing the field of multimodal modeling, providing a focused and challenging environment for enhancing model performance in visual and logical reasoning tasks.
☆ Human-Aware Vision-and-Language Navigation: Bridging Simulation to Reality with Dynamic Human Interactions
Vision-and-Language Navigation (VLN) aims to develop embodied agents that navigate based on human instructions. However, current VLN frameworks often rely on static environments and optimal expert supervision, limiting their real-world applicability. To address this, we introduce Human-Aware Vision-and-Language Navigation (HA-VLN), extending traditional VLN by incorporating dynamic human activities and relaxing key assumptions. We propose the Human-Aware 3D (HA3D) simulator, which combines dynamic human activities with the Matterport3D dataset, and the Human-Aware Room-to-Room (HA-R2R) dataset, extending R2R with human activity descriptions. To tackle HA-VLN challenges, we present the Expert-Supervised Cross-Modal (VLN-CM) and Non-Expert-Supervised Decision Transformer (VLN-DT) agents, utilizing cross-modal fusion and diverse training strategies for effective navigation in dynamic human environments. A comprehensive evaluation, including metrics considering human activities, and systematic analysis of HA-VLN's unique challenges, underscores the need for further research to enhance HA-VLN agents' real-world robustness and adaptability. Ultimately, this work provides benchmarks and insights for future research on embodied AI and Sim2Real transfer, paving the way for more realistic and applicable VLN systems in human-populated environments.
comment: 30 pages, 18 figures, Project Page: https://lpercc.github.io/HA3D_simulator/
☆ ProtoGMM: Multi-prototype Gaussian-Mixture-based Domain Adaptation Model for Semantic Segmentation
Domain adaptive semantic segmentation aims to generate accurate and dense predictions for an unlabeled target domain by leveraging a supervised model trained on a labeled source domain. The prevalent self-training approach involves retraining the dense discriminative classifier of $p(class|pixel feature)$ using the pseudo-labels from the target domain. While many methods focus on mitigating the issue of noisy pseudo-labels, they often overlook the underlying data distribution p(pixel feature|class) in both the source and target domains. To address this limitation, we propose the multi-prototype Gaussian-Mixture-based (ProtoGMM) model, which incorporates the GMM into contrastive losses to perform guided contrastive learning. Contrastive losses are commonly executed in the literature using memory banks, which can lead to class biases due to underrepresented classes. Furthermore, memory banks often have fixed capacities, potentially restricting the model's ability to capture diverse representations of the target/source domains. An alternative approach is to use global class prototypes (i.e. averaged features per category). However, the global prototypes are based on the unimodal distribution assumption per class, disregarding within-class variation. To address these challenges, we propose the ProtoGMM model. This novel approach involves estimating the underlying multi-prototype source distribution by utilizing the GMM on the feature space of the source samples. The components of the GMM model act as representative prototypes. To achieve increased intra-class semantic similarity, decreased inter-class similarity, and domain alignment between the source and target domains, we employ multi-prototype contrastive learning between source distribution and target samples. The experiments show the effectiveness of our method on UDA benchmarks.
☆ Think Step by Step: Chain-of-Gesture Prompting for Error Detection in Robotic Surgical Videos
Despite significant advancements in robotic systems and surgical data science, ensuring safe and optimal execution in robot-assisted minimally invasive surgery (RMIS) remains a complex challenge. Current surgical error detection methods involve two parts: identifying surgical gestures and then detecting errors within each gesture clip. These methods seldom consider the rich contextual and semantic information inherent in surgical videos, limiting their performance due to reliance on accurate gesture identification. Motivated by the chain-of-thought prompting in natural language processing, this letter presents a novel and real-time end-to-end error detection framework, Chain-of-Thought (COG) prompting, leveraging contextual information from surgical videos. This encompasses two reasoning modules designed to mimic the decision-making processes of expert surgeons. Concretely, we first design a Gestural-Visual Reasoning module, which utilizes transformer and attention architectures for gesture prompting, while the second, a Multi-Scale Temporal Reasoning module, employs a multi-stage temporal convolutional network with both slow and fast paths for temporal information extraction. We extensively validate our method on the public benchmark RMIS dataset JIGSAWS. Our method encapsulates the reasoning processes inherent to surgical activities enabling it to outperform the state-of-the-art by 4.6% in F1 score, 4.6% in Accuracy, and 5.9% in Jaccard index while processing each frame in 6.69 milliseconds on average, demonstrating the great potential of our approach in enhancing the safety and efficacy of RMIS procedures and surgical education. The code will be available.
comment: 8 pages, 4 figures
☆ Towards Reducing Data Acquisition and Labeling for Defect Detection using Simulated Data
In many manufacturing settings, annotating data for machine learning and computer vision is costly, but synthetic data can be generated at significantly lower cost. Substituting the real-world data with synthetic data is therefore appealing for many machine learning applications that require large amounts of training data. However, relying solely on synthetic data is frequently inadequate for effectively training models that perform well on real-world data, primarily due to domain shifts between the synthetic and real-world data. We discuss approaches for dealing with such a domain shift when detecting defects in X-ray scans of aluminium wheels. Using both simulated and real-world X-ray images, we train an object detection model with different strategies to identify the training approach that generates the best detection results while minimising the demand for annotated real-world training samples. Our preliminary findings suggest that the sim-2-real domain adaptation approach is more cost-efficient than a fully supervised oracle - if the total number of available annotated samples is fixed. Given a certain number of labeled real-world samples, training on a mix of synthetic and unlabeled real-world data achieved comparable or even better detection results at significantly lower cost. We argue that future research into the cost-efficiency of different training strategies is important for a better understanding of how to allocate budget in applied machine learning projects.
☆ Single Image Estimation of Cell Migration Direction by Deep Circular Regression
In this paper we study the problem of estimating the migration direction of cells based on a single image. To the best of our knowledge, there is only one related work that uses a classification CNN for four classes (quadrants). This approach does not allow detailed directional resolution. We solve the single image estimation problem using deep circular regression with special attention to cycle-sensitive methods. On two databases we achieve an average accuracy of $\sim$17 degrees, which is a significant improvement over the previous work.
☆ RAVEN: Multitask Retrieval Augmented Vision-Language Learning
The scaling of large language models to encode all the world's knowledge in model parameters is unsustainable and has exacerbated resource barriers. Retrieval-Augmented Generation (RAG) presents a potential solution, yet its application to vision-language models (VLMs) is under explored. Existing methods focus on models designed for single tasks. Furthermore, they're limited by the need for resource intensive pre training, additional parameter requirements, unaddressed modality prioritization and lack of clear benefit over non-retrieval baselines. This paper introduces RAVEN, a multitask retrieval augmented VLM framework that enhances base VLMs through efficient, task specific fine-tuning. By integrating retrieval augmented samples without the need for additional retrieval-specific parameters, we show that the model acquires retrieval properties that are effective across multiple tasks. Our results and extensive ablations across retrieved modalities for the image captioning and VQA tasks indicate significant performance improvements compared to non retrieved baselines +1 CIDEr on MSCOCO, +4 CIDEr on NoCaps and nearly a +3\% accuracy on specific VQA question types. This underscores the efficacy of applying RAG approaches to VLMs, marking a stride toward more efficient and accessible multimodal learning.
☆ BackMix: Mitigating Shortcut Learning in Echocardiography with Minimal Supervision MICCAI 2024
Neural networks can learn spurious correlations that lead to the correct prediction in a validation set, but generalise poorly because the predictions are right for the wrong reason. This undesired learning of naive shortcuts (Clever Hans effect) can happen for example in echocardiogram view classification when background cues (e.g. metadata) are biased towards a class and the model learns to focus on those background features instead of on the image content. We propose a simple, yet effective random background augmentation method called BackMix, which samples random backgrounds from other examples in the training set. By enforcing the background to be uncorrelated with the outcome, the model learns to focus on the data within the ultrasound sector and becomes invariant to the regions outside this. We extend our method in a semi-supervised setting, finding that the positive effects of BackMix are maintained with as few as 5% of segmentation labels. A loss weighting mechanism, wBackMix, is also proposed to increase the contribution of the augmented examples. We validate our method on both in-distribution and out-of-distribution datasets, demonstrating significant improvements in classification accuracy, region focus and generalisability. Our source code is available at: https://github.com/kitbransby/BackMix
comment: Accepted at MICCAI 2024 (Pre-print)
☆ CELLO: Causal Evaluation of Large Vision-Language Models
Causal reasoning is fundamental to human intelligence and crucial for effective decision-making in real-world environments. Despite recent advancements in large vision-language models (LVLMs), their ability to comprehend causality remains unclear. Previous work typically focuses on commonsense causality between events and/or actions, which is insufficient for applications like embodied agents and lacks the explicitly defined causal graphs required for formal causal reasoning. To overcome these limitations, we introduce a fine-grained and unified definition of causality involving interactions between humans and/or objects. Building on the definition, we construct a novel dataset, CELLO, consisting of 14,094 causal questions across all four levels of causality: discovery, association, intervention, and counterfactual. This dataset surpasses traditional commonsense causality by including explicit causal graphs that detail the interactions between humans and objects. Extensive experiments on CELLO reveal that current LVLMs still struggle with causal reasoning tasks, but they can benefit significantly from our proposed CELLO-CoT, a causally inspired chain-of-thought prompting strategy. Both quantitative and qualitative analyses from this study provide valuable insights for future research. Our project page is at https://github.com/OpenCausaLab/CELLO.
☆ Evidential Concept Embedding Models: Towards Reliable Concept Explanations for Skin Disease Diagnosis MICCAI 2024
Due to the high stakes in medical decision-making, there is a compelling demand for interpretable deep learning methods in medical image analysis. Concept Bottleneck Models (CBM) have emerged as an active interpretable framework incorporating human-interpretable concepts into decision-making. However, their concept predictions may lack reliability when applied to clinical diagnosis, impeding concept explanations' quality. To address this, we propose an evidential Concept Embedding Model (evi-CEM), which employs evidential learning to model the concept uncertainty. Additionally, we offer to leverage the concept uncertainty to rectify concept misalignments that arise when training CBMs using vision-language models without complete concept supervision. With the proposed methods, we can enhance concept explanations' reliability for both supervised and label-efficient settings. Furthermore, we introduce concept uncertainty for effective test-time intervention. Our evaluation demonstrates that evi-CEM achieves superior performance in terms of concept prediction, and the proposed concept rectification effectively mitigates concept misalignments for label-efficient training. Our code is available at https://github.com/obiyoag/evi-CEM.
comment: accepted by MICCAI 2024
☆ FDLite: A Single Stage Lightweight Face Detector Network
Face detection is frequently attempted by using heavy pre-trained backbone networks like ResNet-50/101/152 and VGG16/19. Few recent works have also proposed lightweight detectors with customized backbones, novel loss functions and efficient training strategies. The novelty of this work lies in the design of a lightweight detector while training with only the commonly used loss functions and learning strategies. The proposed face detector grossly follows the established RetinaFace architecture. The first contribution of this work is the design of a customized lightweight backbone network (BLite) having 0.167M parameters with 0.52 GFLOPs. The second contribution is the use of two independent multi-task losses. The proposed lightweight face detector (FDLite) has 0.26M parameters with 0.94 GFLOPs. The network is trained on the WIDER FACE dataset. FDLite is observed to achieve 92.3\%, 89.8\%, and 82.2\% Average Precision (AP) on the easy, medium, and hard subsets of the WIDER FACE validation dataset, respectively.
comment: 10 pages, 14 figures
☆ DocKylin: A Large Multimodal Model for Visual Document Understanding with Efficient Visual Slimming
Current multimodal large language models (MLLMs) face significant challenges in visual document understanding (VDU) tasks due to the high resolution, dense text, and complex layouts typical of document images. These characteristics demand a high level of detail perception ability from MLLMs. While increasing input resolution improves detail perception, it also leads to longer sequences of visual tokens, increasing computational costs and straining the models' ability to handle long contexts. To address these challenges, we introduce DocKylin, a document-centric MLLM that performs visual content slimming at both the pixel and token levels, thereby reducing token sequence length in VDU scenarios. DocKylin utilizes an Adaptive Pixel Slimming (APS) preprocessing module to perform pixel-level slimming, increasing the proportion of informative pixels. Moreover, DocKylin incorporates a novel Dynamic Token Slimming (DTS) module to conduct token-level slimming, filtering essential tokens and removing others to create a compressed, adaptive visual sequence. Experiments demonstrate DocKylin's promising performance across various VDU benchmarks. Notably, both the proposed APS and DTS are parameter-free, facilitating easy integration into existing MLLMs, and our experiments indicate their potential for broader applications.
☆ Dimensions underlying the representational alignment of deep neural networks with humans
Determining the similarities and differences between humans and artificial intelligence is an important goal both in machine learning and cognitive neuroscience. However, similarities in representations only inform us about the degree of alignment, not the factors that determine it. Drawing upon recent developments in cognitive science, we propose a generic framework for yielding comparable representations in humans and deep neural networks (DNN). Applying this framework to humans and a DNN model of natural images revealed a low-dimensional DNN embedding of both visual and semantic dimensions. In contrast to humans, DNNs exhibited a clear dominance of visual over semantic features, indicating divergent strategies for representing images. While in-silico experiments showed seemingly-consistent interpretability of DNN dimensions, a direct comparison between human and DNN representations revealed substantial differences in how they process images. By making representations directly comparable, our results reveal important challenges for representational alignment, offering a means for improving their comparability.
☆ Unsupervised Latent Stain Adaption for Digital Pathology MICCAI2024
In digital pathology, deep learning (DL) models for tasks such as segmentation or tissue classification are known to suffer from domain shifts due to different staining techniques. Stain adaptation aims to reduce the generalization error between different stains by training a model on source stains that generalizes to target stains. Despite the abundance of target stain data, a key challenge is the lack of annotations. To address this, we propose a joint training between artificially labeled and unlabeled data including all available stained images called Unsupervised Latent Stain Adaption (ULSA). Our method uses stain translation to enrich labeled source images with synthetic target images in order to increase supervised signals. Moreover, we leverage unlabeled target stain images using stain-invariant feature consistency learning. With ULSA we present a semi-supervised strategy for efficient stain adaption without access to annotated target stain data. Remarkably, ULSA is task agnostic in patch-level analysis for whole slide images (WSIs). Through extensive evaluation on external datasets, we demonstrate that ULSA achieves state-of-the-art (SOTA) performance in kidney tissue segmentation and breast cancer classification across a spectrum of staining variations. Our findings suggest that ULSA is an important framework towards stain adaption in digital pathology.
comment: Accepted in MICCAI2024
☆ FAGhead: Fully Animate Gaussian Head from Monocular Videos
High-fidelity reconstruction of 3D human avatars has a wild application in visual reality. In this paper, we introduce FAGhead, a method that enables fully controllable human portraits from monocular videos. We explicit the traditional 3D morphable meshes (3DMM) and optimize the neutral 3D Gaussians to reconstruct with complex expressions. Furthermore, we employ a novel Point-based Learnable Representation Field (PLRF) with learnable Gaussian point positions to enhance reconstruction performance. Meanwhile, to effectively manage the edges of avatars, we introduced the alpha rendering to supervise the alpha value of each pixel. Extensive experimental results on the open-source datasets and our capturing datasets demonstrate that our approach is able to generate high-fidelity 3D head avatars and fully control the expression and pose of the virtual avatars, which is outperforming than existing works.
☆ Segment Anything Model for automated image data annotation: empirical studies using text prompts from Grounding DINO
Grounding DINO and the Segment Anything Model (SAM) have achieved impressive performance in zero-shot object detection and image segmentation, respectively. Together, they have a great potential in revolutionizing zero-shot semantic segmentation or data annotation. Yet, in specialized domains like medical image segmentation, objects of interest (e.g., organs, tissues, and tumors) may not fall in existing class names. To address this problem, the referring expression comprehension (REC) ability of Grounding DINO is leveraged to detect arbitrary targets by their language descriptions. However, recent studies have highlighted severe limitation of the REC framework in this application setting owing to its tendency to make false positive predictions when the target is absent in the given image. And, while this bottleneck is central to the prospect of open-set semantic segmentation, it is still largely unknown how much improvement can be achieved by studying the prediction errors. To this end, we perform empirical studies on eight publicly available datasets and reveal that these errors consistently follow a predictable pattern and can, thus, be mitigated by a simple strategy. Specifically, we show that these false positive detections with appreciable confidence scores generally occupy large image areas and can usually be filtered by their relative sizes. More importantly, we expect these observations to inspire future research in improving REC-based detection and automated segmentation. Using this technique, we evaluate the performance of SAM on multiple datasets from various specialized domains and report significant improvement in segmentation performance and annotation time savings over manual approaches.
☆ SimpleFusion: A Simple Fusion Framework for Infrared and Visible Images
Integrating visible and infrared images into one high-quality image, also known as visible and infrared image fusion, is a challenging yet critical task for many downstream vision tasks. Most existing works utilize pretrained deep neural networks or design sophisticated frameworks with strong priors for this task, which may be unsuitable or lack flexibility. This paper presents SimpleFusion, a simple yet effective framework for visible and infrared image fusion. Our framework follows the decompose-and-fusion paradigm, where the visible and the infrared images are decomposed into reflectance and illumination components via Retinex theory and followed by the fusion of these corresponding elements. The whole framework is designed with two plain convolutional neural networks without downsampling, which can perform image decomposition and fusion efficiently. Moreover, we introduce decomposition loss and a detail-to-semantic loss to preserve the complementary information between the two modalities for fusion. We conduct extensive experiments on the challenging benchmarks, verifying the superiority of our method over previous state-of-the-arts. Code is available at \href{https://github.com/hxwxss/SimpleFusion-A-Simple-Fusion-Framework-for-Infrared-and-Visible-Images}{https://github.com/hxwxss/SimpleFusion-A-Simple-Fusion-Framework-for-Infrared-and-Visible-Images}
comment: code:https://github.com/hxwxss/SimpleFusion-A-Simple-Fusion-Framework-for-Infrared-and-Visible-Images
☆ BiCo-Fusion: Bidirectional Complementary LiDAR-Camera Fusion for Semantic- and Spatial-Aware 3D Object Detection
3D object detection is an important task that has been widely applied in autonomous driving. Recently, fusing multi-modal inputs, i.e., LiDAR and camera data, to perform this task has become a new trend. Existing methods, however, either ignore the sparsity of Lidar features or fail to preserve the original spatial structure of LiDAR and the semantic density of camera features simultaneously due to the modality gap. To address issues, this letter proposes a novel bidirectional complementary Lidar-camera fusion framework, called BiCo-Fusion that can achieve robust semantic- and spatial-aware 3D object detection. The key insight is to mutually fuse the multi-modal features to enhance the semantics of LiDAR features and the spatial awareness of the camera features and adaptatively select features from both modalities to build a unified 3D representation. Specifically, we introduce Pre-Fusion consisting of a Voxel Enhancement Module (VEM) to enhance the semantics of voxel features from 2D camera features and Image Enhancement Module (IEM) to enhance the spatial characteristics of camera features from 3D voxel features. Both VEM and IEM are bidirectionally updated to effectively reduce the modality gap. We then introduce Unified Fusion to adaptively weight to select features from the enchanted Lidar and camera features to build a unified 3D representation. Extensive experiments demonstrate the superiority of our BiCo-Fusion against the prior arts. Project page: https://t-ys.github.io/BiCo-Fusion/.
comment: 8 pages, 5 figures
☆ CMRxRecon2024: A Multi-Modality, Multi-View K-Space Dataset Boosting Universal Machine Learning for Accelerated Cardiac MRI
Cardiac magnetic resonance imaging (MRI) has emerged as a clinically gold-standard technique for diagnosing cardiac diseases, thanks to its ability to provide diverse information with multiple modalities and anatomical views. Accelerated cardiac MRI is highly expected to achieve time-efficient and patient-friendly imaging, and then advanced image reconstruction approaches are required to recover high-quality, clinically interpretable images from undersampled measurements. However, the lack of publicly available cardiac MRI k-space dataset in terms of both quantity and diversity has severely hindered substantial technological progress, particularly for data-driven artificial intelligence. Here, we provide a standardized, diverse, and high-quality CMRxRecon2024 dataset to facilitate the technical development, fair evaluation, and clinical transfer of cardiac MRI reconstruction approaches, towards promoting the universal frameworks that enable fast and robust reconstructions across different cardiac MRI protocols in clinical practice. To the best of our knowledge, the CMRxRecon2024 dataset is the largest and most diverse publicly available cardiac k-space dataset. It is acquired from 330 healthy volunteers, covering commonly used modalities, anatomical views, and acquisition trajectories in clinical cardiac MRI workflows. Besides, an open platform with tutorials, benchmarks, and data processing tools is provided to facilitate data usage, advanced method development, and fair performance evaluation.
comment: 19 pages, 3 figures, 2 tables
☆ Using diffusion model as constraint: Empower Image Restoration Network Training with Diffusion Model
Image restoration has made marvelous progress with the advent of deep learning. Previous methods usually rely on designing powerful network architecture to elevate performance, however, the natural visual effect of the restored results is limited by color and texture distortions. Besides the visual perceptual quality, the semantic perception recovery is an important but often overlooked perspective of restored image, which is crucial for the deployment in high-level tasks. In this paper, we propose a new perspective to resort these issues by introducing a naturalness-oriented and semantic-aware optimization mechanism, dubbed DiffLoss. Specifically, inspired by the powerful distribution coverage capability of the diffusion model for natural image generation, we exploit the Markov chain sampling property of diffusion model and project the restored results of existing networks into the sampling space. Besides, we reveal that the bottleneck feature of diffusion models, also dubbed h-space feature, is a natural high-level semantic space. We delve into this property and propose a semantic-aware loss to further unlock its potential of semantic perception recovery, which paves the way to connect image restoration task and downstream high-level recognition task. With these two strategies, the DiffLoss can endow existing restoration methods with both more natural and semantic-aware results. We verify the effectiveness of our method on substantial common image restoration tasks and benchmarks. Code will be available at https://github.com/JosephTiTan/DiffLoss.
☆ VideoMambaPro: A Leap Forward for Mamba in Video Understanding
Video understanding requires the extraction of rich spatio-temporal representations, which transformer models achieve through self-attention. Unfortunately, self-attention poses a computational burden. In NLP, Mamba has surfaced as an efficient alternative for transformers. However, Mamba's successes do not trivially extend to computer vision tasks, including those in video analysis. In this paper, we theoretically analyze the differences between self-attention and Mamba. We identify two limitations in Mamba's token processing: historical decay and element contradiction. We propose VideoMambaPro (VMP) that solves the identified limitations by adding masked backward computation and elemental residual connections to a VideoMamba backbone. VideoMambaPro shows state-of-the-art video action recognition performance compared to transformer models, and surpasses VideoMamba by clear margins: 7.9% and 8.1% top-1 on Kinetics-400 and Something-Something V2, respectively. Our VideoMambaPro-M model achieves 91.9% top-1 on Kinetics-400, only 0.2% below InternVideo2-6B but with only 1.2% of its parameters. The combination of high performance and efficiency makes VideoMambaPro an interesting alternative for transformer models.
☆ Improving Taxonomic Image-based Out-of-distribution Detection With DNA Barcodes
Image-based species identification could help scaling biodiversity monitoring to a global scale. Many challenges still need to be solved in order to implement these systems in real-world applications. A reliable image-based monitoring system must detect out-of-distribution (OOD) classes it has not been presented before. This is challenging especially with fine-grained classes. Emerging environmental monitoring techniques, DNA metabarcoding and eDNA, can help by providing information on OOD classes that are present in a sample. In this paper, we study if DNA barcodes can also support in finding the outlier images based on the outlier DNA sequence's similarity to the seen classes. We propose a re-ordering approach that can be easily applied on any pre-trained models and existing OOD detection methods. We experimentally show that the proposed approach improves taxonomic OOD detection compared to all common baselines. We also show that the method works thanks to a correlation between visual similarity and DNA barcode proximity. The code and data are available at https://github.com/mikkoim/dnaimg-ood.
comment: Accepted to EUSIPCO 2024
☆ Zero-shot domain adaptation based on dual-level mix and contrast
Zero-shot domain adaptation (ZSDA) is a domain adaptation problem in the situation that labeled samples for a target task (task of interest) are only available from the source domain at training time, but for a task different from the task of interest (irrelevant task), labeled samples are available from both source and target domains. In this situation, classical domain adaptation techniques can only learn domain-invariant features in the irrelevant task. However, due to the difference in sample distribution between the two tasks, domain-invariant features learned in the irrelevant task are biased and not necessarily domain-invariant in the task of interest. To solve this problem, this paper proposes a new ZSDA method to learn domain-invariant features with low task bias. To this end, we propose (1) data augmentation with dual-level mixups in both task and domain to fill the absence of target task-of-interest data, (2) an extension of domain adversarial learning to learn domain-invariant features with less task bias, and (3) a new dual-level contrastive learning method that enhances domain-invariance and less task biasedness of features. Experimental results show that our proposal achieves good performance on several benchmarks.
comment: Accepted by IEEE conference on Artificial intelligence 2024
☆ Semi-supervised Concept Bottleneck Models
Concept Bottleneck Models (CBMs) have garnered increasing attention due to their ability to provide concept-based explanations for black-box deep learning models while achieving high final prediction accuracy using human-like concepts. However, the training of current CBMs heavily relies on the accuracy and richness of annotated concepts in the dataset. These concept labels are typically provided by experts, which can be costly and require significant resources and effort. Additionally, concept saliency maps frequently misalign with input saliency maps, causing concept predictions to correspond to irrelevant input features - an issue related to annotation alignment. To address these limitations, we propose a new framework called SSCBM (Semi-supervised Concept Bottleneck Model). Our SSCBM is suitable for practical situations where annotated data is scarce. By leveraging joint training on both labeled and unlabeled data and aligning the unlabeled data at the concept level, we effectively solve these issues. We proposed a strategy to generate pseudo labels and an alignment loss. Experiments demonstrate that our SSCBM is both effective and efficient. With only 20% labeled data, we achieved 93.19% (96.39% in a fully supervised setting) concept accuracy and 75.51% (79.82% in a fully supervised setting) prediction accuracy.
comment: 17 pages
☆ RoboUniView: Visual-Language Model with Unified View Representation for Robotic Manipulaiton
Utilizing Vision-Language Models (VLMs) for robotic manipulation represents a novel paradigm, aiming to enhance the model's ability to generalize to new objects and instructions. However, due to variations in camera specifications and mounting positions, existing methods exhibit significant performance disparities across different robotic platforms. To address this challenge, we propose RoboUniView in this paper, an innovative approach that decouples visual feature extraction from action learning. We first learn a unified view representation from multi-perspective views by pre-training on readily accessible data, and then derive actions from this unified view representation to control robotic manipulation. This unified view representation more accurately mirrors the physical world and is not constrained by the robotic platform's camera parameters. Thanks to this methodology, we achieve state-of-the-art performance on the demanding CALVIN benchmark, enhancing the success rate in the $D \to D$ setting from 88.7% to 96.2%, and in the $ABC \to D$ setting from 82.4% to 94.2%. Moreover, our model exhibits outstanding adaptability and flexibility: it maintains high performance under unseen camera parameters, can utilize multiple datasets with varying camera parameters, and is capable of joint cross-task learning across datasets. Code is provided for re-implementation. https://github.com/liufanfanlff/RoboUniview
☆ Structural Attention: Rethinking Transformer for Unpaired Medical Image Synthesis MICCAI2024
Unpaired medical image synthesis aims to provide complementary information for an accurate clinical diagnostics, and address challenges in obtaining aligned multi-modal medical scans. Transformer-based models excel in imaging translation tasks thanks to their ability to capture long-range dependencies. Although effective in supervised training settings, their performance falters in unpaired image synthesis, particularly in synthesizing structural details. This paper empirically demonstrates that, lacking strong inductive biases, Transformer can converge to non-optimal solutions in the absence of paired data. To address this, we introduce UNet Structured Transformer (UNest), a novel architecture incorporating structural inductive biases for unpaired medical image synthesis. We leverage the foundational Segment-Anything Model to precisely extract the foreground structure and perform structural attention within the main anatomy. This guides the model to learn key anatomical regions, thus improving structural synthesis under the lack of supervision in unpaired training. Evaluated on two public datasets, spanning three modalities, i.e., MR, CT, and PET, UNest improves recent methods by up to 19.30% across six medical image synthesis tasks. Our code is released at https://github.com/HieuPhan33/MICCAI2024-UNest.
comment: MICCAI2024 - Early Accept Top 11%
☆ AnyControl: Create Your Artwork with Versatile Control on Text-to-Image Generation
The field of text-to-image (T2I) generation has made significant progress in recent years, largely driven by advancements in diffusion models. Linguistic control enables effective content creation, but struggles with fine-grained control over image generation. This challenge has been explored, to a great extent, by incorporating additional user-supplied spatial conditions, such as depth maps and edge maps, into pre-trained T2I models through extra encoding. However, multi-control image synthesis still faces several challenges. Specifically, current approaches are limited in handling free combinations of diverse input control signals, overlook the complex relationships among multiple spatial conditions, and often fail to maintain semantic alignment with provided textual prompts. This can lead to suboptimal user experiences. To address these challenges, we propose AnyControl, a multi-control image synthesis framework that supports arbitrary combinations of diverse control signals. AnyControl develops a novel Multi-Control Encoder that extracts a unified multi-modal embedding to guide the generation process. This approach enables a holistic understanding of user inputs, and produces high-quality, faithful results under versatile control signals, as demonstrated by extensive quantitative and qualitative evaluations. Our project page is available in \url{https://any-control.github.io}.
☆ MMR-Mamba: Multi-Contrast MRI Reconstruction with Mamba and Spatial-Frequency Information Fusion
Multi-contrast MRI acceleration has become prevalent in MR imaging, enabling the reconstruction of high-quality MR images from under-sampled k-space data of the target modality, using guidance from a fully-sampled auxiliary modality. The main crux lies in efficiently and comprehensively integrating complementary information from the auxiliary modality. Existing methods either suffer from quadratic computational complexity or fail to capture long-range correlated features comprehensively. In this work, we propose MMR-Mamba, a novel framework that achieves comprehensive integration of multi-contrast features through Mamba and spatial-frequency information fusion. Firstly, we design the \textit{Target modality-guided Cross Mamba} (TCM) module in the spatial domain, which maximally restores the target modality information by selectively absorbing useful information from the auxiliary modality. Secondly, leveraging global properties of the Fourier domain, we introduce the \textit{Selective Frequency Fusion} (SFF) module to efficiently integrate global information in the frequency domain and recover high-frequency signals for the reconstruction of structure details. Additionally, we present the \textit{Adaptive Spatial-Frequency Fusion} (ASFF) module, which enhances fused features by supplementing less informative features from one domain with corresponding features from the other domain. These innovative strategies ensure efficient feature fusion across spatial and frequency domains, avoiding the introduction of redundant information and facilitating the reconstruction of high-quality target images. Extensive experiments on the BraTS and fastMRI knee datasets demonstrate the superiority of the proposed MMR-Mamba over state-of-the-art MRI reconstruction methods.
comment: 10 pages, 5 figure
☆ Investigating and Defending Shortcut Learning in Personalized Diffusion Models
Personalized diffusion models have gained popularity for adapting pre-trained text-to-image models to generate images of specific topics with only a few images. However, recent studies find that these models are vulnerable to minor adversarial perturbation, and the fine-tuning performance is largely degraded on corrupted datasets. Such characteristics are further exploited to craft protective perturbation on sensitive images like portraits that prevent unauthorized generation. In response, diffusion-based purification methods have been proposed to remove these perturbations and retain generation performance. However, existing works lack detailed analysis of the fundamental shortcut learning vulnerability of personalized diffusion models and also turn to over-purifying the images cause information loss. In this paper, we take a closer look at the fine-tuning process of personalized diffusion models through the lens of shortcut learning and propose a hypothesis that could explain the underlying manipulation mechanisms of existing perturbation methods. Specifically, we find that the perturbed images are greatly shifted from their original paired prompt in the CLIP-based latent space. As a result, training with this mismatched image-prompt pair creates a construction that causes the models to dump their out-of-distribution noisy patterns to the identifier, thus causing serious performance degradation. Based on this observation, we propose a systematic approach to retain the training performance with purification that realigns the latent image and its semantic meaning and also introduces contrastive learning with a negative token to decouple the learning of wanted clean identity and the unwanted noisy pattern, that shows strong potential capacity against further adaptive perturbation.
comment: Preprint
☆ CLIP3D-AD: Extending CLIP for 3D Few-Shot Anomaly Detection with Multi-View Images Generation
Few-shot anomaly detection methods can effectively address data collecting difficulty in industrial scenarios. Compared to 2D few-shot anomaly detection (2D-FSAD), 3D few-shot anomaly detection (3D-FSAD) is still an unexplored but essential task. In this paper, we propose CLIP3D-AD, an efficient 3D-FSAD method extended on CLIP. We successfully transfer strong generalization ability of CLIP into 3D-FSAD. Specifically, we synthesize anomalous images on given normal images as sample pairs to adapt CLIP for 3D anomaly classification and segmentation. For classification, we introduce an image adapter and a text adapter to fine-tune global visual features and text features. Meanwhile, we propose a coarse-to-fine decoder to fuse and facilitate intermediate multi-layer visual representations of CLIP. To benefit from geometry information of point cloud and eliminate modality and data discrepancy when processed by CLIP, we project and render point cloud to multi-view normal and anomalous images. Then we design multi-view fusion module to fuse features of multi-view images extracted by CLIP which are used to facilitate visual representations for further enhancing vision-language correlation. Extensive experiments demonstrate that our method has a competitive performance of 3D few-shot anomaly classification and segmentation on MVTec-3D AD dataset.
comment: 10 pages, 7 figures
☆ RoFIR: Robust Fisheye Image Rectification Framework Impervious to Optical Center Deviation
Fisheye images are categorized fisheye into central and deviated based on the optical center position. Existing rectification methods are limited to central fisheye images, while this paper proposes a novel method that extends to deviated fisheye image rectification. The challenge lies in the variant global distortion distribution pattern caused by the random optical center position. To address this challenge, we propose a distortion vector map (DVM) that measures the degree and direction of local distortion. By learning the DVM, the model can independently identify local distortions at each pixel without relying on global distortion patterns. The model adopts a pre-training and fine-tuning training paradigm. In the pre-training stage, it predicts the distortion vector map and perceives the local distortion features of each pixel. In the fine-tuning stage, it predicts a pixel-wise flow map for deviated fisheye image rectification. We also propose a data augmentation method mixing central, deviated, and distorted-free images. Such data augmentation promotes the model performance in rectifying both central and deviated fisheye images, compared with models trained on single-type fisheye images. Extensive experiments demonstrate the effectiveness and superiority of the proposed method.
☆ Selective Vision is the Challenge for Visual Reasoning: A Benchmark for Visual Argument Understanding
Visual arguments, often used in advertising or social causes, rely on images to persuade viewers to do or believe something. Understanding these arguments requires selective vision: only specific visual stimuli within an image are relevant to the argument, and relevance can only be understood within the context of a broader argumentative structure. While visual arguments are readily appreciated by human audiences, we ask: are today's AI capable of similar understanding? We collect and release VisArgs, an annotated corpus designed to make explicit the (usually implicit) structures underlying visual arguments. VisArgs includes 1,611 images accompanied by three types of textual annotations: 5,112 visual premises (with region annotations), 5,574 commonsense premises, and reasoning trees connecting them to a broader argument. We propose three tasks over VisArgs to probe machine capacity for visual argument understanding: localization of premises, identification of premises, and deduction of conclusions. Experiments demonstrate that 1) machines cannot fully identify the relevant visual cues. The top-performing model, GPT-4-O, achieved an accuracy of only 78.5%, whereas humans reached 98.0%. All models showed a performance drop, with an average decrease in accuracy of 19.5%, when the comparison set was changed from objects outside the image to irrelevant objects within the image. Furthermore, 2) this limitation is the greatest factor impacting their performance in understanding visual arguments. Most models improved the most when given relevant visual premises as additional inputs, compared to other inputs, for deducing the conclusion of the visual argument.
comment: 12 pages, 5 figures
☆ Classification of Carotid Plaque with Jellyfish Sign Through Convolutional and Recurrent Neural Networks Utilizing Plaque Surface Edges
In carotid arteries, plaque can develop as localized elevated lesions. The Jellyfish sign, marked by fluctuating plaque surfaces with blood flow pulsation, is a dynamic characteristic of these plaques that has recently attracted attention. Detecting this sign is vital, as it is often associated with cerebral infarction. This paper proposes an ultrasound video-based classification method for the Jellyfish sign, using deep neural networks. The proposed method first preprocesses carotid ultrasound videos to separate the movement of the vascular wall from plaque movements. These preprocessed videos are then combined with plaque surface information and fed into a deep learning model comprising convolutional and recurrent neural networks, enabling the efficient classification of the Jellyfish sign. The proposed method was verified using ultrasound video images from 200 patients. Ablation studies demonstrated the effectiveness of each component of the proposed method.
comment: 4 pages, 3 figures, accepted at IEEE EMBC 2024
☆ Manipulate-Anything: Automating Real-World Robots using Vision-Language Models
Large-scale endeavors like RT-1 and widespread community efforts such as Open-X-Embodiment have contributed to growing the scale of robot demonstration data. However, there is still an opportunity to improve the quality, quantity, and diversity of robot demonstration data. Although vision-language models have been shown to automatically generate demonstration data, their utility has been limited to environments with privileged state information, they require hand-designed skills, and are limited to interactions with few object instances. We propose Manipulate-Anything, a scalable automated generation method for real-world robotic manipulation. Unlike prior work, our method can operate in real-world environments without any privileged state information, hand-designed skills, and can manipulate any static object. We evaluate our method using two setups. First, Manipulate-Anything successfully generates trajectories for all 5 real-world and 12 simulation tasks, significantly outperforming existing methods like VoxPoser. Second, Manipulate-Anything's demonstrations can train more robust behavior cloning policies than training with human demonstrations, or from data generated by VoxPoser and Code-As-Policies. We believe \methodLong\ can be the scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting.
comment: Project page: https://robo-point.github.io/
☆ A Universal Railway Obstacle Detection System based on Semi-supervised Segmentation And Optical Flow
Detecting obstacles in railway scenarios is both crucial and challenging due to the wide range of obstacle categories and varying ambient conditions such as weather and light. Given the impossibility of encompassing all obstacle categories during the training stage, we address this out-of-distribution (OOD) issue with a semi-supervised segmentation approach guided by optical flow clues. We reformulate the task as a binary segmentation problem instead of the traditional object detection approach. To mitigate data shortages, we generate highly realistic synthetic images using Segment Anything (SAM) and YOLO, eliminating the need for manual annotation to produce abundant pixel-level annotations. Additionally, we leverage optical flow as prior knowledge to train the model effectively. Several experiments are conducted, demonstrating the feasibility and effectiveness of our approach.
☆ Autoencoder based approach for the mitigation of spurious correlations
Deep neural networks (DNNs) have exhibited remarkable performance across various tasks, yet their susceptibility to spurious correlations poses a significant challenge for out-of-distribution (OOD) generalization. Spurious correlations refer to erroneous associations in data that do not reflect true underlying relationships but are instead artifacts of dataset characteristics or biases. These correlations can lead DNNs to learn patterns that are not robust across diverse datasets or real-world scenarios, hampering their ability to generalize beyond training data. In this paper, we propose an autoencoder-based approach to analyze the nature of spurious correlations that exist in the Global Wheat Head Detection (GWHD) 2021 dataset. We then use inpainting followed by Weighted Boxes Fusion (WBF) to achieve a 2% increase in the Average Domain Accuracy (ADA) over the YOLOv5 baseline and consistently show that our approach has the ability to suppress some of the spurious correlations in the GWHD 2021 dataset. The key advantage of our approach is that it is more suitable in scenarios where there is limited scope to adapt or fine-tune the trained model in unseen test environments.
☆ 360 in the Wild: Dataset for Depth Prediction and View Synthesis
The large abundance of perspective camera datasets facilitated the emergence of novel learning-based strategies for various tasks, such as camera localization, single image depth estimation, or view synthesis. However, panoramic or omnidirectional image datasets, including essential information, such as pose and depth, are mostly made with synthetic scenes. In this work, we introduce a large scale 360$^{\circ}$ videos dataset in the wild. This dataset has been carefully scraped from the Internet and has been captured from various locations worldwide. Hence, this dataset exhibits very diversified environments (e.g., indoor and outdoor) and contexts (e.g., with and without moving objects). Each of the 25K images constituting our dataset is provided with its respective camera's pose and depth map. We illustrate the relevance of our dataset for two main tasks, namely, single image depth estimation and view synthesis.
☆ AlignIT: Enhancing Prompt Alignment in Customization of Text-to-Image Models
We consider the problem of customizing text-to-image diffusion models with user-supplied reference images. Given new prompts, the existing methods can capture the key concept from the reference images but fail to align the generated image with the prompt. In this work, we seek to address this key issue by proposing new methods that can easily be used in conjunction with existing customization methods that optimize the embeddings/weights at various intermediate stages of the text encoding process. The first contribution of this paper is a dissection of the various stages of the text encoding process leading up to the conditioning vector for text-to-image models. We take a holistic view of existing customization methods and notice that key and value outputs from this process differs substantially from their corresponding baseline (non-customized) models (e.g., baseline stable diffusion). While this difference does not impact the concept being customized, it leads to other parts of the generated image not being aligned with the prompt (see first row in Fig 1). Further, we also observe that these keys and values allow independent control various aspects of the final generation, enabling semantic manipulation of the output. Taken together, the features spanning these keys and values, serve as the basis for our next contribution where we fix the aforementioned issues with existing methods. We propose a new post-processing algorithm, \textbf{AlignIT}, that infuses the keys and values for the concept of interest while ensuring the keys and values for all other tokens in the input prompt are unchanged. Our proposed method can be plugged in directly to existing customization methods, leading to a substantial performance improvement in the alignment of the final result with the input prompt while retaining the customization quality.
comment: 10 pages, 9 figures
☆ Advancing Cross-domain Discriminability in Continual Learning of Vison-Language Models
Continual learning (CL) with Vision-Language Models (VLMs) has overcome the constraints of traditional CL, which only focuses on previously encountered classes. During the CL of VLMs, we need not only to prevent the catastrophic forgetting on incrementally learned knowledge but also to preserve the zero-shot ability of VLMs. However, existing methods require additional reference datasets to maintain such zero-shot ability and rely on domain-identity hints to classify images across different domains. In this study, we propose Regression-based Analytic Incremental Learning (RAIL), which utilizes a recursive ridge regression-based adapter to learn from a sequence of domains in a non-forgetting manner and decouple the cross-domain correlations by projecting features to a higher-dimensional space. Cooperating with a training-free fusion module, RAIL absolutely preserves the VLM's zero-shot ability on unseen domains without any reference data. Additionally, we introduce Cross-domain Task-Agnostic Incremental Learning (X-TAIL) setting. In this setting, a CL learner is required to incrementally learn from multiple domains and classify test images from both seen and unseen domains without any domain-identity hint. We theoretically prove RAIL's absolute memorization on incrementally learned domains. Experiment results affirm RAIL's state-of-the-art performance in both X-TAIL and existing Multi-domain Task-Incremental Learning settings. The code will be released upon acceptance.
☆ Learning Modality Knowledge Alignment for Cross-Modality Transfer ICML 2024
Cross-modality transfer aims to leverage large pretrained models to complete tasks that may not belong to the modality of pretraining data. Existing works achieve certain success in extending classical finetuning to cross-modal scenarios, yet we still lack understanding about the influence of modality gap on the transfer. In this work, a series of experiments focusing on the source representation quality during transfer are conducted, revealing the connection between larger modality gap and lesser knowledge reuse which means ineffective transfer. We then formalize the gap as the knowledge misalignment between modalities using conditional distribution P(Y|X). Towards this problem, we present Modality kNowledge Alignment (MoNA), a meta-learning approach that learns target data transformation to reduce the modality knowledge discrepancy ahead of the transfer. Experiments show that out method enables better reuse of source modality knowledge in cross-modality transfer, which leads to improvements upon existing finetuning methods.
comment: ICML 2024
☆ Dysca: A Dynamic and Scalable Benchmark for Evaluating Perception Ability of LVLMs
Currently many benchmarks have been proposed to evaluate the perception ability of the Large Vision-Language Models (LVLMs). However, most benchmarks conduct questions by selecting images from existing datasets, resulting in the potential data leakage. Besides, these benchmarks merely focus on evaluating LVLMs on the realistic style images and clean scenarios, leaving the multi-stylized images and noisy scenarios unexplored. In response to these challenges, we propose a dynamic and scalable benchmark named Dysca for evaluating LVLMs by leveraging synthesis images. Specifically, we leverage Stable Diffusion and design a rule-based method to dynamically generate novel images, questions and the corresponding answers. We consider 51 kinds of image styles and evaluate the perception capability in 20 subtasks. Moreover, we conduct evaluations under 4 scenarios (i.e., Clean, Corruption, Print Attacking and Adversarial Attacking) and 3 question types (i.e., Multi-choices, True-or-false and Free-form). Thanks to the generative paradigm, Dysca serves as a scalable benchmark for easily adding new subtasks and scenarios. A total of 8 advanced open-source LVLMs with 10 checkpoints are evaluated on Dysca, revealing the drawbacks of current LVLMs. The benchmark is released in \url{https://github.com/Benchmark-Dysca/Dysca}.
☆ Retain, Blend, and Exchange: A Quality-aware Spatial-Stereo Fusion Approach for Event Stream Recognition
Existing event stream-based pattern recognition models usually represent the event stream as the point cloud, voxel, image, etc., and design various deep neural networks to learn their features. Although considerable results can be achieved in simple cases, however, the model performance may be limited by monotonous modality expressions, sub-optimal fusion, and readout mechanisms. In this paper, we propose a novel dual-stream framework for event stream-based pattern recognition via differentiated fusion, termed EFV++. It models two common event representations simultaneously, i.e., event images and event voxels. The spatial and three-dimensional stereo information can be learned separately by utilizing Transformer and Graph Neural Network (GNN). We believe the features of each representation still contain both efficient and redundant features and a sub-optimal solution may be obtained if we directly fuse them without differentiation. Thus, we divide each feature into three levels and retain high-quality features, blend medium-quality features, and exchange low-quality features. The enhanced dual features will be fed into the fusion Transformer together with bottleneck features. In addition, we introduce a novel hybrid interaction readout mechanism to enhance the diversity of features as final representations. Extensive experiments demonstrate that our proposed framework achieves state-of-the-art performance on multiple widely used event stream-based classification datasets. Specifically, we achieve new state-of-the-art performance on the Bullying10k dataset, i.e., $90.51\%$, which exceeds the second place by $+2.21\%$. The source code of this paper has been released on \url{https://github.com/Event-AHU/EFV_event_classification/tree/EFVpp}.
comment: In Peer Review, Journal Extension of PRCV 2023
☆ Revisiting Backdoor Attacks against Large Vision-Language Models
Instruction tuning enhances large vision-language models (LVLMs) but raises security risks through potential backdoor attacks due to their openness. Previous backdoor studies focus on enclosed scenarios with consistent training and testing instructions, neglecting the practical domain gaps that could affect attack effectiveness. This paper empirically examines the generalizability of backdoor attacks during the instruction tuning of LVLMs for the first time, revealing certain limitations of most backdoor strategies in practical scenarios. We quantitatively evaluate the generalizability of six typical backdoor attacks on image caption benchmarks across multiple LVLMs, considering both visual and textual domain offsets. Our findings indicate that attack generalizability is positively correlated with the backdoor trigger's irrelevance to specific images/models and the preferential correlation of the trigger pattern. Additionally, we modify existing backdoor attacks based on the above key observations, demonstrating significant improvements in cross-domain scenario generalizability (+86% attack success rate). Notably, even without access to the instruction datasets, a multimodal instruction set can be successfully poisoned with a very low poisoning rate (0.2%), achieving an attack success rate of over 97%. This paper underscores that even simple traditional backdoor strategies pose a serious threat to LVLMs, necessitating more attention and in-depth research.
comment: 23 pages, 8 figures
☆ Dense Monocular Motion Segmentation Using Optical Flow and Pseudo Depth Map: A Zero-Shot Approach
Motion segmentation from a single moving camera presents a significant challenge in the field of computer vision. This challenge is compounded by the unknown camera movements and the lack of depth information of the scene. While deep learning has shown impressive capabilities in addressing these issues, supervised models require extensive training on massive annotated datasets, and unsupervised models also require training on large volumes of unannotated data, presenting significant barriers for both. In contrast, traditional methods based on optical flow do not require training data, however, they often fail to capture object-level information, leading to over-segmentation or under-segmentation. In addition, they also struggle in complex scenes with substantial depth variations and non-rigid motion, due to the overreliance of optical flow. To overcome these challenges, we propose an innovative hybrid approach that leverages the advantages of both deep learning methods and traditional optical flow based methods to perform dense motion segmentation without requiring any training. Our method initiates by automatically generating object proposals for each frame using foundation models. These proposals are then clustered into distinct motion groups using both optical flow and relative depth maps as motion cues. The integration of depth maps derived from state-of-the-art monocular depth estimation models significantly enhances the motion cues provided by optical flow, particularly in handling motion parallax issues. Our method is evaluated on the DAVIS-Moving and YTVOS-Moving datasets, and the results demonstrate that our method outperforms the best unsupervised method and closely matches with the state-of-theart supervised methods.
comment: For the offical publication, see https://crv.pubpub.org/pub/iunjzl55
☆ Zero-shot Composed Image Retrieval Considering Query-target Relationship Leveraging Masked Image-text Pairs ICIP 2024
This paper proposes a novel zero-shot composed image retrieval (CIR) method considering the query-target relationship by masked image-text pairs. The objective of CIR is to retrieve the target image using a query image and a query text. Existing methods use a textual inversion network to convert the query image into a pseudo word to compose the image and text and use a pre-trained visual-language model to realize the retrieval. However, they do not consider the query-target relationship to train the textual inversion network to acquire information for retrieval. In this paper, we propose a novel zero-shot CIR method that is trained end-to-end using masked image-text pairs. By exploiting the abundant image-text pairs that are convenient to obtain with a masking strategy for learning the query-target relationship, it is expected that accurate zero-shot CIR using a retrieval-focused textual inversion network can be realized. Experimental results show the effectiveness of the proposed method.
comment: Accepted as a conference paper in IEEE ICIP 2024
☆ Correspondence-Free Non-Rigid Point Set Registration Using Unsupervised Clustering Analysis CVPR 2024
This paper presents a novel non-rigid point set registration method that is inspired by unsupervised clustering analysis. Unlike previous approaches that treat the source and target point sets as separate entities, we develop a holistic framework where they are formulated as clustering centroids and clustering members, separately. We then adopt Tikhonov regularization with an $\ell_1$-induced Laplacian kernel instead of the commonly used Gaussian kernel to ensure smooth and more robust displacement fields. Our formulation delivers closed-form solutions, theoretical guarantees, independence from dimensions, and the ability to handle large deformations. Subsequently, we introduce a clustering-improved Nystr\"om method to effectively reduce the computational complexity and storage of the Gram matrix to linear, while providing a rigorous bound for the low-rank approximation. Our method achieves high accuracy results across various scenarios and surpasses competitors by a significant margin, particularly on shapes with substantial deformations. Additionally, we demonstrate the versatility of our method in challenging tasks such as shape transfer and medical registration.
comment: [CVPR 2024 Highlight] Project and code at: https://github.com/zikai1/CVPR24_PointSetReg
☆ Divide, Ensemble and Conquer: The Last Mile on Unsupervised Domain Adaptation for On-Board Semantic Segmentation
The last mile of unsupervised domain adaptation (UDA) for semantic segmentation is the challenge of solving the syn-to-real domain gap. Recent UDA methods have progressed significantly, yet they often rely on strategies customized for synthetic single-source datasets (e.g., GTA5), which limits their generalisation to multi-source datasets. Conversely, synthetic multi-source datasets hold promise for advancing the last mile of UDA but remain underutilized in current research. Thus, we propose DEC, a flexible UDA framework for multi-source datasets. Following a divide-and-conquer strategy, DEC simplifies the task by categorizing semantic classes, training models for each category, and fusing their outputs by an ensemble model trained exclusively on synthetic datasets to obtain the final segmentation mask. DEC can integrate with existing UDA methods, achieving state-of-the-art performance on Cityscapes, BDD100K, and Mapillary Vistas, significantly narrowing the syn-to-real domain gap.
☆ PathAlign: A vision-language model for whole slide images in histopathology
Microscopic interpretation of histopathology images underlies many important diagnostic and treatment decisions. While advances in vision-language modeling raise new opportunities for analysis of such images, the gigapixel-scale size of whole slide images (WSIs) introduces unique challenges. Additionally, pathology reports simultaneously highlight key findings from small regions while also aggregating interpretation across multiple slides, often making it difficult to create robust image-text pairs. As such, pathology reports remain a largely untapped source of supervision in computational pathology, with most efforts relying on region-of-interest annotations or self-supervision at the patch-level. In this work, we develop a vision-language model based on the BLIP-2 framework using WSIs paired with curated text from pathology reports. This enables applications utilizing a shared image-text embedding space, such as text or image retrieval for finding cases of interest, as well as integration of the WSI encoder with a frozen large language model (LLM) for WSI-based generative text capabilities such as report generation or AI-in-the-loop interactions. We utilize a de-identified dataset of over 350,000 WSIs and diagnostic text pairs, spanning a wide range of diagnoses, procedure types, and tissue types. We present pathologist evaluation of text generation and text retrieval using WSI embeddings, as well as results for WSI classification and workflow prioritization (slide-level triaging). Model-generated text for WSIs was rated by pathologists as accurate, without clinically significant error or omission, for 78% of WSIs on average. This work demonstrates exciting potential capabilities for language-aligned WSI embeddings.
comment: 9 main pages and 19 pages of supplemental material; 3 main tables, 3 main figures and 11 supplemental tables, 7 supplemental figures
☆ What Matters in Detecting AI-Generated Videos like Sora?
Recent advancements in diffusion-based video generation have showcased remarkable results, yet the gap between synthetic and real-world videos remains under-explored. In this study, we examine this gap from three fundamental perspectives: appearance, motion, and geometry, comparing real-world videos with those generated by a state-of-the-art AI model, Stable Video Diffusion. To achieve this, we train three classifiers using 3D convolutional networks, each targeting distinct aspects: vision foundation model features for appearance, optical flow for motion, and monocular depth for geometry. Each classifier exhibits strong performance in fake video detection, both qualitatively and quantitatively. This indicates that AI-generated videos are still easily detectable, and a significant gap between real and fake videos persists. Furthermore, utilizing the Grad-CAM, we pinpoint systematic failures of AI-generated videos in appearance, motion, and geometry. Finally, we propose an Ensemble-of-Experts model that integrates appearance, optical flow, and depth information for fake video detection, resulting in enhanced robustness and generalization ability. Our model is capable of detecting videos generated by Sora with high accuracy, even without exposure to any Sora videos during training. This suggests that the gap between real and fake videos can be generalized across various video generative models. Project page: https://justin-crchang.github.io/3DCNNDetection.github.io/
☆ Cost-efficient Active Illumination Camera For Hyper-spectral Reconstruction
Hyper-spectral imaging has recently gained increasing attention for use in different applications, including agricultural investigation, ground tracking, remote sensing and many other. However, the high cost, large physical size and complicated operation process stop hyperspectral cameras from being employed for various applications and research fields. In this paper, we introduce a cost-efficient, compact and easy to use active illumination camera that may benefit many applications. We developed a fully functional prototype of such camera. With the hope of helping with agricultural research, we tested our camera for plant root imaging. In addition, a U-Net model for spectral reconstruction was trained by using a reference hyperspectral camera's data as ground truth and our camera's data as input. We demonstrated our camera's ability to obtain additional information over a typical RGB camera. In addition, the ability to reconstruct hyperspectral data from multi-spectral input makes our device compatible to models and algorithms developed for hyperspectral applications with no modifications required.
☆ Robustness Testing of Black-Box Models Against CT Degradation Through Test-Time Augmentation
Deep learning models for medical image segmentation and object detection are becoming increasingly available as clinical products. However, as details are rarely provided about the training data, models may unexpectedly fail when cases differ from those in the training distribution. An approach allowing potential users to independently test the robustness of a model, treating it as a black box and using only a few cases from their own site, is key for adoption. To address this, a method to test the robustness of these models against CT image quality variation is presented. In this work we present this framework by demonstrating that given the same training data, the model architecture and data pre processing greatly affect the robustness of several frequently used segmentation and object detection methods to simulated CT imaging artifacts and degradation. Our framework also addresses the concern about the sustainability of deep learning models in clinical use, by considering future shifts in image quality due to scanner deterioration or imaging protocol changes which are not reflected in a limited local test dataset.
☆ BOrg: A Brain Organoid-Based Mitosis Dataset for Automatic Analysis of Brain Diseases
Recent advances have enabled the study of human brain development using brain organoids derived from stem cells. Quantifying cellular processes like mitosis in these organoids offers insights into neurodevelopmental disorders, but the manual analysis is time-consuming, and existing datasets lack specific details for brain organoid studies. We introduce BOrg, a dataset designed to study mitotic events in the embryonic development of the brain using confocal microscopy images of brain organoids. BOrg utilizes an efficient annotation pipeline with sparse point annotations and techniques that minimize expert effort, overcoming limitations of standard deep learning approaches on sparse data. We adapt and benchmark state-of-the-art object detection and cell counting models on BOrg for detecting and analyzing mitotic cells across prophase, metaphase, anaphase, and telophase stages. Our results demonstrate these adapted models significantly improve mitosis analysis efficiency and accuracy for brain organoid research compared to existing methods. BOrg facilitates the development of automated tools to quantify statistics like mitosis rates, aiding mechanistic studies of neurodevelopmental processes and disorders. Data and code are available at https://github.com/awaisrauf/borg.
☆ Weighted Circle Fusion: Ensembling Circle Representation from Different Object Detection Results
Recently, the use of circle representation has emerged as a method to improve the identification of spherical objects (such as glomeruli, cells, and nuclei) in medical imaging studies. In traditional bounding box-based object detection, combining results from multiple models improves accuracy, especially when real-time processing isn't crucial. Unfortunately, this widely adopted strategy is not readily available for combining circle representations. In this paper, we propose Weighted Circle Fusion (WCF), a simple approach for merging predictions from various circle detection models. Our method leverages confidence scores associated with each proposed bounding circle to generate averaged circles. Our method undergoes thorough evaluation on a proprietary dataset for glomerular detection in object detection within whole slide imaging (WSI). The findings reveal a performance gain of 5 %, respectively, compared to existing ensemble methods. Furthermore, the Weighted Circle Fusion technique not only improves the precision of object detection in medical images but also notably decreases false detections, presenting a promising direction for future research and application in pathological image analysis.
☆ Comparative Analysis Of Color Models For Human Perception And Visual Color Difference
Color is integral to human experience, influencing emotions, decisions, and perceptions. This paper presents a comparative analysis of various color models' alignment with human visual perception. The study evaluates color models such as RGB, HSV, HSL, XYZ, CIELAB, and CIELUV to assess their effectiveness in accurately representing how humans perceive color. We evaluate each model based on its ability to accurately reflect visual color differences and dominant palette extraction compatible with the human eye. In image processing, accurate assessment of color difference is essential for applications ranging from digital design to quality control. Current color difference metrics do not always match how people see colors, causing issues in accurately judging subtle differences. Understanding how different color models align with human visual perception is crucial for various applications in image processing, digital media, and design.
comment: The paper has been submitted to EJMCA journal for consideration. Current version is a preprint
☆ Stereo Vision Based Robot for Remote Monitoring with VR Support
The machine vision systems have been playing a significant role in visual monitoring systems. With the help of stereovision and machine learning, it will be able to mimic human-like visual system and behaviour towards the environment. In this paper, we present a stereo vision based 3-DOF robot which will be used to monitor places from remote using cloud server and internet devices. The 3-DOF robot will transmit human-like head movements, i.e., yaw, pitch, roll and produce 3D stereoscopic video and stream it in Real-time. This video stream is sent to the user through any generic internet devices with VR box support, i.e., smartphones giving the user a First-person real-time 3D experience and transfers the head motion of the user to the robot also in Real-time. The robot will also be able to track moving objects and faces as a target using deep neural networks which enables it to be a standalone monitoring robot. The user will be able to choose specific subjects to monitor in a space. The stereovision enables us to track the depth information of different objects detected and will be used to track human interest objects with its distances and sent to the cloud. A full working prototype is developed which showcases the capabilities of a monitoring system based on stereo vision, robotics, and machine learning.
comment: 6 Pages, 10 Figures
☆ High-resolution segmentations of the hypothalamus and its subregions for training of segmentation models
Segmentation of brain structures on magnetic resonance imaging (MRI) is a highly relevant neuroimaging topic, as it is a prerequisite for different analyses such as volumetry or shape analysis. Automated segmentation facilitates the study of brain structures in larger cohorts when compared with manual segmentation, which is time-consuming. However, the development of most automated methods relies on large and manually annotated datasets, which limits the generalizability of these methods. Recently, new techniques using synthetic images have emerged, reducing the need for manual annotation. Here we provide HELM, Hypothalamic ex vivo Label Maps, a dataset composed of label maps built from publicly available ultra-high resolution ex vivo MRI from 10 whole hemispheres, which can be used to develop segmentation methods using synthetic data. The label maps are obtained with a combination of manual labels for the hypothalamic regions and automated segmentations for the rest of the brain, and mirrored to simulate entire brains. We also provide the pre-processed ex vivo scans, as this dataset can support future projects to include other structures after these are manually segmented.
☆ GAPNet: Granularity Attention Network with Anatomy-Prior-Constraint for Carotid Artery Segmentation
Atherosclerosis is a chronic, progressive disease that primarily affects the arterial walls. It is one of the major causes of cardiovascular disease. Magnetic Resonance (MR) black-blood vessel wall imaging (BB-VWI) offers crucial insights into vascular disease diagnosis by clearly visualizing vascular structures. However, the complex anatomy of the neck poses challenges in distinguishing the carotid artery (CA) from surrounding structures, especially with changes like atherosclerosis. In order to address these issues, we propose GAPNet, which is a consisting of a novel geometric prior deduced from.
☆ ManiWAV: Learning Robot Manipulation from In-the-Wild Audio-Visual Data
Audio signals provide rich information for the robot interaction and object properties through contact. These information can surprisingly ease the learning of contact-rich robot manipulation skills, especially when the visual information alone is ambiguous or incomplete. However, the usage of audio data in robot manipulation has been constrained to teleoperated demonstrations collected by either attaching a microphone to the robot or object, which significantly limits its usage in robot learning pipelines. In this work, we introduce ManiWAV: an 'ear-in-hand' data collection device to collect in-the-wild human demonstrations with synchronous audio and visual feedback, and a corresponding policy interface to learn robot manipulation policy directly from the demonstrations. We demonstrate the capabilities of our system through four contact-rich manipulation tasks that require either passively sensing the contact events and modes, or actively sensing the object surface materials and states. In addition, we show that our system can generalize to unseen in-the-wild environments, by learning from diverse in-the-wild human demonstrations. Project website: https://mani-wav.github.io/
☆ Efficient and Distributed Large-Scale 3D Map Registration using Tomographic Features
A robust, resource-efficient, distributed, and minimally parameterized 3D map matching and merging algorithm is proposed. The suggested algorithm utilizes tomographic features from 2D projections of horizontal cross-sections of gravity-aligned local maps, and matches these projection slices at all possible height differences, enabling the estimation of four degrees of freedom in an efficient and parallelizable manner. The advocated algorithm improves state-of-the-art feature extraction and registration pipelines by an order of magnitude in memory use and execution time. Experimental studies are offered to investigate the efficiency of this 3D map merging scheme.
comment: Submitted to Elsevier Journal: Robotics and Autonomous Systems (RAS)
☆ A Sanity Check for AI-generated Image Detection
With the rapid development of generative models, discerning AI-generated content has evoked increasing attention from both industry and academia. In this paper, we conduct a sanity check on "whether the task of AI-generated image detection has been solved". To start with, we present Chameleon dataset, consisting AIgenerated images that are genuinely challenging for human perception. To quantify the generalization of existing methods, we evaluate 9 off-the-shelf AI-generated image detectors on Chameleon dataset. Upon analysis, almost all models classify AI-generated images as real ones. Later, we propose AIDE (AI-generated Image DEtector with Hybrid Features), which leverages multiple experts to simultaneously extract visual artifacts and noise patterns. Specifically, to capture the high-level semantics, we utilize CLIP to compute the visual embedding. This effectively enables the model to discern AI-generated images based on semantics or contextual information; Secondly, we select the highest frequency patches and the lowest frequency patches in the image, and compute the low-level patchwise features, aiming to detect AI-generated images by low-level artifacts, for example, noise pattern, anti-aliasing, etc. While evaluating on existing benchmarks, for example, AIGCDetectBenchmark and GenImage, AIDE achieves +3.5% and +4.6% improvements to state-of-the-art methods, and on our proposed challenging Chameleon benchmarks, it also achieves the promising results, despite this problem for detecting AI-generated images is far from being solved. The dataset, codes, and pre-train models will be published at https://github.com/shilinyan99/AIDE.
comment: Project page: https://shilinyan99.github.io/AIDE Code: https://github.com/shilinyan99/AIDE
♻ ☆ Towards Semantic Equivalence of Tokenization in Multimodal LLM
Multimodal Large Language Models (MLLMs) have demonstrated exceptional capabilities in processing vision-language tasks. One of the crux of MLLMs lies in vision tokenization, which involves efficiently transforming input visual signals into feature representations that are most beneficial for LLMs. However, existing vision tokenizers, essential for semantic alignment between vision and language, remain problematic. Existing methods aggressively fragment visual input, corrupting the visual semantic integrity. To address this, this paper proposes a novel dynamic Semantic-Equivalent Vision Tokenizer (SeTok), which groups visual features into semantic units via a dynamic clustering algorithm, flexibly determining the number of tokens based on image complexity. The resulting vision tokens effectively preserve semantic integrity and capture both low-frequency and high-frequency visual features. The proposed MLLM (Setokim) equipped with SeTok significantly demonstrates superior performance across various tasks, as evidenced by our experimental results. The project page is at https://chocowu.github.io/SeTok-web/.
comment: Technical Report. The project page: https://chocowu.github.io/SeTok-web/
♻ ☆ Physics-Guided Neural Networks for Intraventricular Vector Flow Mapping
Intraventricular vector flow mapping (iVFM) seeks to enhance and quantify color Doppler in cardiac imaging. In this study, we propose novel alternatives to the traditional iVFM optimization scheme by utilizing physics-informed neural networks (PINNs) and a physics-guided nnU-Net-based supervised approach. When evaluated on simulated color Doppler images derived from a patient-specific computational fluid dynamics model and in vivo Doppler acquisitions, both approaches demonstrate comparable reconstruction performance to the original iVFM algorithm. The efficiency of PINNs is boosted through dual-stage optimization and pre-optimized weights. On the other hand, the nnU-Net method excels in generalizability and real-time capabilities. Notably, nnU-Net shows superior robustness on sparse and truncated Doppler data while maintaining independence from explicit boundary conditions. Overall, our results highlight the effectiveness of these methods in reconstructing intraventricular vector blood flow. The study also suggests potential applications of PINNs in ultrafast color Doppler imaging and the incorporation of fluid dynamics equations to derive biomarkers for cardiovascular diseases based on blood flow.
comment: 12 pages, accepted for publication in IEEE TUFFC; camera ready corrections, corrected acknowledgments
♻ ☆ VDebugger: Harnessing Execution Feedback for Debugging Visual Programs
Visual programs are executable code generated by large language models to address visual reasoning problems. They decompose complex questions into multiple reasoning steps and invoke specialized models for each step to solve the problems. However, these programs are prone to logic errors, with our preliminary evaluation showing that 58% of the total errors are caused by program logic errors. Debugging complex visual programs remains a major bottleneck for visual reasoning. To address this, we introduce VDebugger, a novel critic-refiner framework trained to localize and debug visual programs by tracking execution step by step. VDebugger identifies and corrects program errors leveraging detailed execution feedback, improving interpretability and accuracy. The training data is generated through an automated pipeline that injects errors into correct visual programs using a novel mask-best decoding technique. Evaluations on six datasets demonstrate VDebugger's effectiveness, showing performance improvements of up to 3.2% in downstream task accuracy. Further studies show VDebugger's ability to generalize to unseen tasks, bringing a notable improvement of 2.3% on the unseen COVR task. Code, data and models are made publicly available at https://github.com/shirley-wu/vdebugger/
comment: update reference
♻ ☆ SpatialBot: Precise Spatial Understanding with Vision Language Models
Vision Language Models (VLMs) have achieved impressive performance in 2D image understanding, however they are still struggling with spatial understanding which is the foundation of Embodied AI. In this paper, we propose SpatialBot for better spatial understanding by feeding both RGB and depth images. Additionally, we have constructed the SpatialQA dataset, which involves multi-level depth-related questions to train VLMs for depth understanding. Finally, we present SpatialBench to comprehensively evaluate VLMs' capabilities in spatial understanding at different levels. Extensive experiments on our spatial-understanding benchmark, general VLM benchmarks and Embodied AI tasks, demonstrate the remarkable improvements of SpatialBot trained on SpatialQA. The model, code and data are available at https://github.com/BAAI-DCAI/SpatialBot.
♻ ☆ Muffin or Chihuahua? Challenging Multimodal Large Language Models with Multipanel VQA ACL 2024
Multipanel images, commonly seen as web screenshots, posters, etc., pervade our daily lives. These images, characterized by their composition of multiple subfigures in distinct layouts, effectively convey information to people. Toward building advanced multimodal AI applications, such as agents that understand complex scenes and navigate through webpages, the skill of multipanel visual reasoning is essential, and a comprehensive evaluation of models in this regard is important. Therefore, we introduce Multipanel Visual Question Answering (MultipanelVQA), a novel benchmark comprising 6,600 triplets of questions, answers, and multipanel images that specifically challenge models in comprehending multipanel images. Our evaluation shows that questions in the MultipanelVQA benchmark pose significant challenges to the state-of-the-art Multimodal Large Language Models (MLLMs) tested, even though humans can attain approximately 99% accuracy on these questions. Distinctively, the MultipanelVQA benchmark features synthetically generated multipanel images specifically crafted to isolate and assess the impact of various factors, such as the layout, on MLLMs' multipanel image comprehension abilities. As a result, in addition to benchmarking the capabilities of MLLMs in understanding multipanel images, we analyze various factors of the multipanel image that affect MLLMs' performance with synthetic data and offer insights for enhancement. Code and data are released at https://sites.google.com/view/multipanelvqa/home.
comment: ACL 2024
♻ ☆ Shortcut Learning in Medical Image Segmentation MICCAI 2024
Shortcut learning is a phenomenon where machine learning models prioritize learning simple, potentially misleading cues from data that do not generalize well beyond the training set. While existing research primarily investigates this in the realm of image classification, this study extends the exploration of shortcut learning into medical image segmentation. We demonstrate that clinical annotations such as calipers, and the combination of zero-padded convolutions and center-cropped training sets in the dataset can inadvertently serve as shortcuts, impacting segmentation accuracy. We identify and evaluate the shortcut learning on two different but common medical image segmentation tasks. In addition, we suggest strategies to mitigate the influence of shortcut learning and improve the generalizability of the segmentation models. By uncovering the presence and implications of shortcuts in medical image segmentation, we provide insights and methodologies for evaluating and overcoming this pervasive challenge and call for attention in the community for shortcuts in segmentation. Our code is public at https://github.com/nina-weng/shortcut_skinseg .
comment: 11 pages, 6 figures, accepted at MICCAI 2024
♻ ☆ S4: Self-Supervised Sensing Across the Spectrum
Satellite image time series (SITS) segmentation is crucial for many applications like environmental monitoring, land cover mapping and agricultural crop type classification. However, training models for SITS segmentation remains a challenging task due to the lack of abundant training data, which requires fine grained annotation. We propose S4 a new self-supervised pre-training approach that significantly reduces the requirement for labeled training data by utilizing two new insights: (a) Satellites capture images in different parts of the spectrum such as radio frequencies, and visible frequencies. (b) Satellite imagery is geo-registered allowing for fine-grained spatial alignment. We use these insights to formulate pre-training tasks in S4. We also curate m2s2-SITS, a large-scale dataset of unlabeled, spatially-aligned, multi-modal and geographic specific SITS that serves as representative pre-training data for S4. Finally, we evaluate S4 on multiple SITS segmentation datasets and demonstrate its efficacy against competing baselines while using limited labeled data.
♻ ☆ Automatic infant 2D pose estimation from videos: comparing seven deep neural network methods
Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There is rapid development of human pose estimation methods in computer vision thanks to advances in deep learning and machine learning. However, these methods are trained on datasets featuring adults in different contexts. This work tests and compares seven popular methods (AlphaPose, DeepLabCut/DeeperCut, Detectron2, HRNet, MediaPipe/BlazePose, OpenPose, and ViTPose) on videos of infants in supine position. Surprisingly, all methods except DeepLabCut and MediaPipe have competitive performance without additional finetuning, with ViTPose performing best. Next to standard performance metrics (object keypoint similarity, average precision and recall), we introduce errors expressed in the neck-mid-hip ratio and additionally study missed and redundant detections and the reliability of the internal confidence ratings of the different methods, which are relevant for downstream tasks. Among the networks with competitive performance, only AlphaPose could run close to real time (27 fps) on our machine. We provide documented Docker containers or instructions for all the methods we used, our analysis scripts, and processed data at https://hub.docker.com/u/humanoidsctu and https://osf.io/x465b/.
comment: 21 pages, 3 figures, 14 tables
♻ ☆ SRC-Net: Bi-Temporal Spatial Relationship Concerned Network for Change Detection
Change detection (CD) in remote sensing imagery is a crucial task with applications in environmental monitoring, urban development, and disaster management. CD involves utilizing bi-temporal images to identify changes over time. The bi-temporal spatial relationships between features at the same location at different times play a key role in this process. However, existing change detection networks often do not fully leverage these spatial relationships during bi-temporal feature extraction and fusion. In this work, we propose SRC-Net: a bi-temporal spatial relationship concerned network for CD. The proposed SRC-Net includes a Perception and Interaction Module that incorporates spatial relationships and establishes a cross-branch perception mechanism to enhance the precision and robustness of feature extraction. Additionally, a Patch-Mode joint Feature Fusion Module is introduced to address information loss in current methods. It considers different change modes and concerns about spatial relationships, resulting in more expressive fusion features. Furthermore, we construct a novel network using these two relationship concerned modules and conducted experiments on the LEVIR-CD and WHU Building datasets. The experimental results demonstrate that our network outperforms state-of-the-art (SOTA) methods while maintaining a modest parameter count. We believe our approach sets a new paradigm for change detection and will inspire further advancements in the field. The code and models are publicly available at https://github.com/Chnja/SRCNet.
comment: 13 pages, 12 figures, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2024)
♻ ☆ VLSM-Adapter: Finetuning Vision-Language Segmentation Efficiently with Lightweight Blocks MICCAI 2024
Foundation Vision-Language Models (VLMs) trained using large-scale open-domain images and text pairs have recently been adapted to develop Vision-Language Segmentation Models (VLSMs) that allow providing text prompts during inference to guide image segmentation. If robust and powerful VLSMs can be built for medical images, it could aid medical professionals in many clinical tasks where they must spend substantial time delineating the target structure of interest. VLSMs for medical images resort to fine-tuning base VLM or VLSM pretrained on open-domain natural image datasets due to fewer annotated medical image datasets; this fine-tuning is resource-consuming and expensive as it usually requires updating all or a significant fraction of the pretrained parameters. Recently, lightweight blocks called adapters have been proposed in VLMs that keep the pretrained model frozen and only train adapters during fine-tuning, substantially reducing the computing resources required. We introduce a novel adapter, VLSM-Adapter, that can fine-tune pretrained vision-language segmentation models using transformer encoders. Our experiments in widely used CLIP-based segmentation models show that with only 3 million trainable parameters, the VLSM-Adapter outperforms state-of-the-art and is comparable to the upper bound end-to-end fine-tuning. The source code is available at: https://github.com/naamiinepal/vlsm-adapter.
comment: Accepted at MICCAI 2024, the 27th International Conference on Medical Image Computing and Computer Assisted Intervention
♻ ☆ MMGPL: Multimodal Medical Data Analysis with Graph Prompt Learning
Prompt learning has demonstrated impressive efficacy in the fine-tuning of multimodal large models to a wide range of downstream tasks. Nonetheless, applying existing prompt learning methods for the diagnosis of neurological disorder still suffers from two issues: (i) existing methods typically treat all patches equally, despite the fact that only a small number of patches in neuroimaging are relevant to the disease, and (ii) they ignore the structural information inherent in the brain connection network which is crucial for understanding and diagnosing neurological disorders. To tackle these issues, we introduce a novel prompt learning model by learning graph prompts during the fine-tuning process of multimodal large models for diagnosing neurological disorders. Specifically, we first leverage GPT-4 to obtain relevant disease concepts and compute semantic similarity between these concepts and all patches. Secondly, we reduce the weight of irrelevant patches according to the semantic similarity between each patch and disease-related concepts. Moreover, we construct a graph among tokens based on these concepts and employ a graph convolutional network layer to extract the structural information of the graph, which is used to prompt the pre-trained multimodal large models for diagnosing neurological disorders. Extensive experiments demonstrate that our method achieves superior performance for neurological disorder diagnosis compared with state-of-the-art methods and validated by clinicians.
♻ ☆ Self-Supervised Detection of Perfect and Partial Input-Dependent Symmetries
Group equivariance can overly constrain models if the symmetries in the group differ from those observed in data. While common methods address this by determining the appropriate level of symmetry at the dataset level, they are limited to supervised settings and ignore scenarios in which multiple levels of symmetry co-exist in the same dataset. In this paper, we propose a method able to detect the level of symmetry of each input without the need for labels. Our framework is general enough to accommodate different families of both continuous and discrete symmetry distributions, such as arbitrary unimodal, symmetric distributions and discrete groups. We validate the effectiveness of our approach on synthetic datasets with different per-class levels of symmetries, and demonstrate practical applications such as the detection of out-of-distribution symmetries. Our code is publicly available at https://github.com/aurban0/ssl-sym.
comment: 19 pages, 8 figures, corrected typos, revised argument in Appendix B.1, results unchanged
♻ ☆ WsiCaption: Multiple Instance Generation of Pathology Reports for Gigapixel Whole-Slide Images
Whole slide images are the foundation of digital pathology for the diagnosis and treatment of carcinomas. Writing pathology reports is laborious and error-prone for inexperienced pathologists. To reduce the workload and improve clinical automation, we investigate how to generate pathology reports given whole slide images. On the data end, we curated the largest WSI-text dataset (PathText). In specific, we collected nearly 10000 high-quality WSI-text pairs for visual-language models by recognizing and cleaning pathology reports which narrate diagnostic slides in TCGA. On the model end, we propose the multiple instance generative model (MI-Gen) which can produce pathology reports for gigapixel WSIs. We benchmark our model on the largest subset of TCGA-PathoText. Experimental results show our model can generate pathology reports which contain multiple clinical clues and achieve competitive performance on certain slide-level tasks. We observe that simple semantic extraction from the pathology reports can achieve the best performance (0.838 of F1 score) on BRCA subtyping surpassing previous state-of-the-art approaches. Our collected dataset and related code are available.
♻ ☆ BT-Adapter: Video Conversation is Feasible Without Video Instruction Tuning
The recent progress in Large Language Models (LLM) has spurred various advancements in image-language conversation agents, while how to build a proficient video-based dialogue system is still under exploration. Considering the extensive scale of LLM and visual backbone, minimal GPU memory is left for facilitating effective temporal modeling, which is crucial for comprehending and providing feedback on videos. To this end, we propose Branching Temporal Adapter (BT-Adapter), a novel method for extending image-language pretrained models into the video domain. Specifically, BT-Adapter serves as a plug-and-use temporal modeling branch alongside the pretrained visual encoder, which is tuned while keeping the backbone frozen. Just pretrained once, BT-Adapter can be seamlessly integrated into all image conversation models using this version of CLIP, enabling video conversations without the need for video instructions. Besides, we develop a unique asymmetric token masking strategy inside the branch with tailor-made training tasks for BT-Adapter, facilitating faster convergence and better results. Thanks to BT-Adapter, we are able to empower existing multimodal dialogue models with strong video understanding capabilities without incurring excessive GPU costs. Without bells and whistles, BT-Adapter achieves (1) state-of-the-art zero-shot results on various video tasks using thousands of fewer GPU hours. (2) better performance than current video chatbots without any video instruction tuning. (3) state-of-the-art results of video chatting using video instruction tuning, outperforming previous SOTAs by a large margin.
♻ ☆ Examining Common Paradigms in Multi-Task Learning
While multi-task learning (MTL) has gained significant attention in recent years, its underlying mechanisms remain poorly understood. Recent methods did not yield consistent performance improvements over single task learning (STL) baselines, underscoring the importance of gaining more profound insights about challenges specific to MTL. In our study, we investigate paradigms in MTL in the context of STL: First, the impact of the choice of optimizer has only been mildly investigated in MTL. We show the pivotal role of common STL tools such as the Adam optimizer in MTL empirically in various experiments. To further investigate Adam's effectiveness, we theoretical derive a partial loss-scale invariance under mild assumptions. Second, the notion of gradient conflicts has often been phrased as a specific problem in MTL. We delve into the role of gradient conflicts in MTL and compare it to STL. For angular gradient alignment we find no evidence that this is a unique problem in MTL. We emphasize differences in gradient magnitude as the main distinguishing factor. Overall, we find surprising similarities between STL and MTL suggesting to consider methods from both fields in a broader context.
comment: -
♻ ☆ Regularized Newton Raphson Inversion for Text-to-Image Diffusion Models
Diffusion inversion is the problem of taking an image and a text prompt that describes it and finding a noise latent that would generate the image. Most current inversion techniques operate by approximately solving an implicit equation and may converge slowly or yield poor reconstructed images. Here, we formulate the problem as finding the roots of an implicit equation and design a method to solve it efficiently. Our solution is based on Newton-Raphson (NR), a well-known technique in numerical analysis. A naive application of NR may be computationally infeasible and tends to converge to incorrect solutions. We describe an efficient regularized formulation that converges quickly to a solution that provides high-quality reconstructions. We also identify a source of inconsistency stemming from prompt conditioning during the inversion process, which significantly degrades the inversion quality. To address this, we introduce a prompt-aware adjustment of the encoding, effectively correcting this issue. Our solution, Regularized Newton-Raphson Inversion, inverts an image within 0.5 sec for latent consistency models, opening the door for interactive image editing. We further demonstrate improved results in image interpolation and generation of rare objects.
♻ ☆ Stable Diffusion Segmentation for Biomedical Images with Single-step Reverse Process MICCAI 2024
Diffusion models have demonstrated their effectiveness across various generative tasks. However, when applied to medical image segmentation, these models encounter several challenges, including significant resource and time requirements. They also necessitate a multi-step reverse process and multiple samples to produce reliable predictions. To address these challenges, we introduce the first latent diffusion segmentation model, named SDSeg, built upon stable diffusion (SD). SDSeg incorporates a straightforward latent estimation strategy to facilitate a single-step reverse process and utilizes latent fusion concatenation to remove the necessity for multiple samples. Extensive experiments indicate that SDSeg surpasses existing state-of-the-art methods on five benchmark datasets featuring diverse imaging modalities. Remarkably, SDSeg is capable of generating stable predictions with a solitary reverse step and sample, epitomizing the model's stability as implied by its name. The code is available at https://github.com/lin-tianyu/Stable-Diffusion-Seg
comment: Accepted at MICCAI 2024. Code and citation info see https://github.com/lin-tianyu/Stable-Diffusion-Seg
♻ ☆ Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
Deep learning (DL)-based methods have achieved state-of-the-art performance for many medical image segmentation tasks. Nevertheless, recent studies show that deep neural networks (DNNs) can be miscalibrated and overconfident, leading to "silent failures" that are risky for clinical applications. Bayesian DL provides an intuitive approach to DL failure detection, based on posterior probability estimation. However, the posterior is intractable for large medical image segmentation DNNs. To tackle this challenge, we propose a Bayesian learning framework using Hamiltonian Monte Carlo (HMC), tempered by cold posterior (CP) to accommodate medical data augmentation, named HMC-CP. For HMC computation, we further propose a cyclical annealing strategy, capturing both local and global geometries of the posterior distribution, enabling highly efficient Bayesian DNN training with the same computational budget as training a single DNN. The resulting Bayesian DNN outputs an ensemble segmentation along with the segmentation uncertainty. We evaluate the proposed HMC-CP extensively on cardiac magnetic resonance image (MRI) segmentation, using in-domain steady-state free precession (SSFP) cine images as well as out-of-domain datasets of quantitative T1 and T2 mapping. Our results show that the proposed method improves both segmentation accuracy and uncertainty estimation for in- and out-of-domain data, compared with well-established baseline methods such as Monte Carlo Dropout and Deep Ensembles. Additionally, we establish a conceptual link between HMC and the commonly known stochastic gradient descent (SGD) and provide general insight into the uncertainty of DL. This uncertainty is implicitly encoded in the training dynamics but often overlooked. With reliable uncertainty estimation, our method provides a promising direction toward trustworthy DL in clinical applications.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2024:011
♻ ☆ Optimal Transport Aggregation for Visual Place Recognition
The task of Visual Place Recognition (VPR) aims to match a query image against references from an extensive database of images from different places, relying solely on visual cues. State-of-the-art pipelines focus on the aggregation of features extracted from a deep backbone, in order to form a global descriptor for each image. In this context, we introduce SALAD (Sinkhorn Algorithm for Locally Aggregated Descriptors), which reformulates NetVLAD's soft-assignment of local features to clusters as an optimal transport problem. In SALAD, we consider both feature-to-cluster and cluster-to-feature relations and we also introduce a 'dustbin' cluster, designed to selectively discard features deemed non-informative, enhancing the overall descriptor quality. Additionally, we leverage and fine-tune DINOv2 as a backbone, which provides enhanced description power for the local features, and dramatically reduces the required training time. As a result, our single-stage method not only surpasses single-stage baselines in public VPR datasets, but also surpasses two-stage methods that add a re-ranking with significantly higher cost. Code and models are available at https://github.com/serizba/salad.
♻ ☆ Towards AI Lesion Tracking in PET/CT Imaging: A Siamese-based CNN Pipeline applied on PSMA PET/CT Scans
Assessing tumor response to systemic therapies is one of the main applications of PET/CT. Routinely, only a small subset of index lesions out of multiple lesions is analyzed. However, this operator dependent selection may bias the results due to possible significant inter-metastatic heterogeneity of response to therapy. Automated, AI based approaches for lesion tracking hold promise in enabling the analysis of many more lesions and thus providing a better assessment of tumor response. This work introduces a Siamese CNN approach for lesion tracking between PET/CT scans. Our approach is applied on the laborious task of tracking a high number of bone lesions in full-body baseline and follow-up [68Ga]Ga- or [18F]F-PSMA PET/CT scans after two cycles of [177Lu]Lu-PSMA therapy of metastatic castration resistant prostate cancer patients. Data preparation includes lesion segmentation and affine registration. Our algorithm extracts suitable lesion patches and forwards them into a Siamese CNN trained to classify the lesion patch pairs as corresponding or non-corresponding lesions. Experiments have been performed with different input patch types and a Siamese network in 2D and 3D. The CNN model successfully learned to classify lesion assignments, reaching a lesion tracking accuracy of 83 % in its best configuration with an AUC = 0.91. For remaining lesions the pipeline accomplished a re-identification rate of 89 %. We proved that a CNN may facilitate the tracking of multiple lesions in PSMA PET/CT scans. Future clinical studies are necessary if this improves the prediction of the outcome of therapies.
comment: 25 pages, 9 figures, 3 tables
♻ ☆ Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection MICCAI 2024
Laparoscopic liver surgery poses a complex intraoperative dynamic environment for surgeons, where remains a significant challenge to distinguish critical or even hidden structures inside the liver. Liver anatomical landmarks, e.g., ridge and ligament, serve as important markers for 2D-3D alignment, which can significantly enhance the spatial perception of surgeons for precise surgery. To facilitate the detection of laparoscopic liver landmarks, we collect a novel dataset called L3D, which comprises 1,152 frames with elaborated landmark annotations from surgical videos of 39 patients across two medical sites. For benchmarking purposes, 12 mainstream detection methods are selected and comprehensively evaluated on L3D. Further, we propose a depth-driven geometric prompt learning network, namely D2GPLand. Specifically, we design a Depth-aware Prompt Embedding (DPE) module that is guided by self-supervised prompts and generates semantically relevant geometric information with the benefit of global depth cues extracted from SAM-based features. Additionally, a Semantic-specific Geometric Augmentation (SGA) scheme is introduced to efficiently merge RGB-D spatial and geometric information through reverse anatomic perception. The experimental results indicate that D2GPLand obtains state-of-the-art performance on L3D, with 63.52% DICE and 48.68% IoU scores. Together with 2D-3D fusion technology, our method can directly provide the surgeon with intuitive guidance information in laparoscopic scenarios.
comment: This paper has been accepted by MICCAI 2024
♻ ☆ Continuous 3D Myocardial Motion Tracking via Echocardiography
Myocardial motion tracking stands as an essential clinical tool in the prevention and detection of cardiovascular diseases (CVDs), the foremost cause of death globally. However, current techniques suffer from incomplete and inaccurate motion estimation of the myocardium in both spatial and temporal dimensions, hindering the early identification of myocardial dysfunction. To address these challenges, this paper introduces the Neural Cardiac Motion Field (NeuralCMF). NeuralCMF leverages implicit neural representation (INR) to model the 3D structure and the comprehensive 6D forward/backward motion of the heart. This method surpasses pixel-wise limitations by offering the capability to continuously query the precise shape and motion of the myocardium at any specific point throughout the cardiac cycle, enhancing the detailed analysis of cardiac dynamics beyond traditional speckle tracking. Notably, NeuralCMF operates without the need for paired datasets, and its optimization is self-supervised through the physics knowledge priors in both space and time dimensions, ensuring compatibility with both 2D and 3D echocardiogram video inputs. Experimental validations across three representative datasets support the robustness and innovative nature of the NeuralCMF, marking significant advantages over existing state-of-the-art methods in cardiac imaging and motion tracking.
comment: 18 pages, 11 figures
♻ ☆ DeepFake-O-Meter v2.0: An Open Platform for DeepFake Detection
Deepfakes, as AI-generated media, have increasingly threatened media integrity and personal privacy with realistic yet fake digital content. In this work, we introduce an open-source and user-friendly online platform, DeepFake-O-Meter v2.0, that integrates state-of-the-art methods for detecting Deepfake images, videos, and audio. Built upon DeepFake-O-Meter v1.0, we have made significant upgrades and improvements in platform architecture design, including user interaction, detector integration, job balancing, and security management. The platform aims to offer everyday users a convenient service for analyzing DeepFake media using multiple state-of-the-art detection algorithms. It ensures secure and private delivery of the analysis results. Furthermore, it serves as an evaluation and benchmarking platform for researchers in digital media forensics to compare the performance of multiple algorithms on the same input. We have also conducted detailed usage analysis based on the collected data to gain deeper insights into our platform's statistics. This involves analyzing two-month trends in user activity and evaluating the processing efficiency of each detector.
♻ ☆ AdaTreeFormer: Few Shot Domain Adaptation for Tree Counting from a Single High-Resolution Image
The process of estimating and counting tree density using only a single aerial or satellite image is a difficult task in the fields of photogrammetry and remote sensing. However, it plays a crucial role in the management of forests. The huge variety of trees in varied topography severely hinders tree counting models to perform well. The purpose of this paper is to propose a framework that is learnt from the source domain with sufficient labeled trees and is adapted to the target domain with only a limited number of labeled trees. Our method, termed as AdaTreeFormer, contains one shared encoder with a hierarchical feature extraction scheme to extract robust features from the source and target domains. It also consists of three subnets: two for extracting self-domain attention maps from source and target domains respectively and one for extracting cross-domain attention maps. For the latter, an attention-to-adapt mechanism is introduced to distill relevant information from different domains while generating tree density maps; a hierarchical cross-domain feature alignment scheme is proposed that progressively aligns the features from the source and target domains. We also adopt adversarial learning into the framework to further reduce the gap between source and target domains. Our AdaTreeFormer is evaluated on six designed domain adaptation tasks using three tree counting datasets, \ie Jiangsu, Yosemite, and London. Experimental results show that AdaTreeFormer significantly surpasses the state of the art, \eg in the cross domain from the Yosemite to Jiangsu dataset, it achieves a reduction of 15.9 points in terms of the absolute counting errors and an increase of 10.8\% in the accuracy of the detected trees' locations. The codes and datasets are available at https://github.com/HAAClassic/AdaTreeFormer.
♻ ☆ EgoVideo: Exploring Egocentric Foundation Model and Downstream Adaptation CVPR 2024
In this report, we present our solutions to the EgoVis Challenges in CVPR 2024, including five tracks in the Ego4D challenge and three tracks in the EPIC-Kitchens challenge. Building upon the video-language two-tower model and leveraging our meticulously organized egocentric video data, we introduce a novel foundation model called EgoVideo. This model is specifically designed to cater to the unique characteristics of egocentric videos and provides strong support for our competition submissions. In the Ego4D challenges, we tackle various tasks including Natural Language Queries, Step Grounding, Moment Queries, Short-term Object Interaction Anticipation, and Long-term Action Anticipation. In addition, we also participate in the EPIC-Kitchens challenge, where we engage in the Action Recognition, Multiple Instance Retrieval, and Domain Adaptation for Action Recognition tracks. By adapting EgoVideo to these diverse tasks, we showcase its versatility and effectiveness in different egocentric video analysis scenarios, demonstrating the powerful representation ability of EgoVideo as an egocentric foundation model. Our codebase and pretrained models are publicly available at https://github.com/OpenGVLab/EgoVideo.
comment: Champion solutions in the EgoVis CVPR 2024 workshop
♻ ☆ BSDA: Bayesian Random Semantic Data Augmentation for Medical Image Classification
Data augmentation is a crucial regularization technique for deep neural networks, particularly in medical image classification. Mainstream data augmentation (DA) methods are usually applied at the image level. Due to the specificity and diversity of medical imaging, expertise is often required to design effective DA strategies, and improper augmentation operations can degrade model performance. Although automatic augmentation methods exist, they are computationally intensive. Semantic data augmentation can implemented by translating features in feature space. However, over-translation may violate the image label. To address these issues, we propose \emph{Bayesian Random Semantic Data Augmentation} (BSDA), a computationally efficient and handcraft-free feature-level DA method. BSDA uses variational Bayesian to estimate the distribution of the augmentable magnitudes, and then a sample from this distribution is added to the original features to perform semantic data augmentation. We performed experiments on nine 2D and five 3D medical image datasets. Experimental results show that BSDA outperforms current DA methods. Additionally, BSDA can be easily assembled into CNNs or Transformers as a plug-and-play module, improving the network's performance. The code is available online at \url{https://github.com/YaoyaoZhu19/BSDA}.
♻ ☆ Inference Attacks: A Taxonomy, Survey, and Promising Directions
The prosperity of machine learning has also brought people's concerns about data privacy. Among them, inference attacks can implement privacy breaches in various MLaaS scenarios and model training/prediction phases. Specifically, inference attacks can perform privacy inference on undisclosed target training sets based on outputs of the target model, including but not limited to statistics, membership, semantics, data representation, etc. For instance, infer whether the target data has the characteristics of AIDS. In addition, the rapid development of the machine learning community in recent years, especially the surge of model types and application scenarios, has further stimulated the inference attacks' research. Thus, studying inference attacks and analyzing them in depth is urgent and significant. However, there is still a gap in the systematic discussion of inference attacks from taxonomy, global perspective, attack, and defense perspectives. This survey provides an in-depth and comprehensive inference of attacks and corresponding countermeasures in ML-as-a-service based on taxonomy and the latest researches. Without compromising researchers' intuition, we first propose the 3MP taxonomy based on the community research status, trying to normalize the confusing naming system of inference attacks. Also, we analyze the pros and cons of each type of inference attack, their workflow, countermeasure, and how they interact with other attacks. In the end, we point out several promising directions for researchers from a more comprehensive and novel perspective.
♻ ☆ AsyncDiff: Parallelizing Diffusion Models by Asynchronous Denoising
Diffusion models have garnered significant interest from the community for their great generative ability across various applications. However, their typical multi-step sequential-denoising nature gives rise to high cumulative latency, thereby precluding the possibilities of parallel computation. To address this, we introduce AsyncDiff, a universal and plug-and-play acceleration scheme that enables model parallelism across multiple devices. Our approach divides the cumbersome noise prediction model into multiple components, assigning each to a different device. To break the dependency chain between these components, it transforms the conventional sequential denoising into an asynchronous process by exploiting the high similarity between hidden states in consecutive diffusion steps. Consequently, each component is facilitated to compute in parallel on separate devices. The proposed strategy significantly reduces inference latency while minimally impacting the generative quality. Specifically, for the Stable Diffusion v2.1, AsyncDiff achieves a 2.7x speedup with negligible degradation and a 4.0x speedup with only a slight reduction of 0.38 in CLIP Score, on four NVIDIA A5000 GPUs. Our experiments also demonstrate that AsyncDiff can be readily applied to video diffusion models with encouraging performances. The code is available at https://github.com/czg1225/AsyncDiff.
comment: Work in progress. Project Page: https://czg1225.github.io/asyncdiff_page/
♻ ☆ Advancing Video Anomaly Detection: A Concise Review and a New Dataset
Video Anomaly Detection (VAD) finds widespread applications in security surveillance, traffic monitoring, industrial monitoring, and healthcare. Despite extensive research efforts, there remains a lack of concise reviews that provide insightful guidance for researchers. Such reviews would serve as quick references to grasp current challenges, research trends, and future directions. In this paper, we present such a review, examining models and datasets from various perspectives. We emphasize the critical relationship between model and dataset, where the quality and diversity of datasets profoundly influence model performance, and dataset development adapts to the evolving needs of emerging approaches. Our review identifies practical issues, including the absence of comprehensive datasets with diverse scenarios. To address this, we introduce a new dataset, Multi-Scenario Anomaly Detection (MSAD), comprising 14 distinct scenarios captured from various camera views. Our dataset has diverse motion patterns and challenging variations, such as different lighting and weather conditions, providing a robust foundation for training superior models. We conduct an in-depth analysis of recent representative models using MSAD and highlight its potential in addressing the challenges of detecting anomalies across diverse and evolving surveillance scenarios. Our dataset is available here.
comment: Research report
♻ ☆ MixerFlow: MLP-Mixer meets Normalising Flows ECML-PKDD 2024
Normalising flows are generative models that transform a complex density into a simpler density through the use of bijective transformations enabling both density estimation and data generation from a single model. %However, the requirement for bijectivity imposes the use of specialised architectures. In the context of image modelling, the predominant choice has been the Glow-based architecture, whereas alternative architectures remain largely unexplored in the research community. In this work, we propose a novel architecture called MixerFlow, based on the MLP-Mixer architecture, further unifying the generative and discriminative modelling architectures. MixerFlow offers an efficient mechanism for weight sharing for flow-based models. Our results demonstrate comparative or superior density estimation on image datasets and good scaling as the image resolution increases, making MixerFlow a simple yet powerful alternative to the Glow-based architectures. We also show that MixerFlow provides more informative embeddings than Glow-based architectures and can integrate many structured transformations such as splines or Kolmogorov-Arnold Networks.
comment: Alternative title: MixerFlow for Image Modelling; Accepted at ECML-PKDD 2024
♻ ☆ EVALALIGN: Supervised Fine-Tuning Multimodal LLMs with Human-Aligned Data for Evaluating Text-to-Image Models
The recent advancements in text-to-image generative models have been remarkable. Yet, the field suffers from a lack of evaluation metrics that accurately reflect the performance of these models, particularly lacking fine-grained metrics that can guide the optimization of the models. In this paper, we propose EvalAlign, a metric characterized by its accuracy, stability, and fine granularity. Our approach leverages the capabilities of Multimodal Large Language Models (MLLMs) pre-trained on extensive datasets. We develop evaluation protocols that focus on two key dimensions: image faithfulness and text-image alignment. Each protocol comprises a set of detailed, fine-grained instructions linked to specific scoring options, enabling precise manual scoring of the generated images. We Supervised Fine-Tune (SFT) the MLLM to align closely with human evaluative judgments, resulting in a robust evaluation model. Our comprehensive tests across 24 text-to-image generation models demonstrate that EvalAlign not only provides superior metric stability but also aligns more closely with human preferences than existing metrics, confirming its effectiveness and utility in model assessment.
comment: Github Repository: https://github.com/SAIS-FUXI/EvalAlign
♻ ☆ DiffExplainer: Unveiling Black Box Models Via Counterfactual Generation MICCAI 2024
In the field of medical imaging, particularly in tasks related to early disease detection and prognosis, understanding the reasoning behind AI model predictions is imperative for assessing their reliability. Conventional explanation methods encounter challenges in identifying decisive features in medical image classifications, especially when discriminative features are subtle or not immediately evident. To address this limitation, we propose an agent model capable of generating counterfactual images that prompt different decisions when plugged into a black box model. By employing this agent model, we can uncover influential image patterns that impact the black model's final predictions. Through our methodology, we efficiently identify features that influence decisions of the deep black box. We validated our approach in the rigorous domain of medical prognosis tasks, showcasing its efficacy and potential to enhance the reliability of deep learning models in medical image classification compared to existing interpretation methods. The code will be publicly available at https://github.com/ayanglab/DiffExplainer.
comment: MICCAI 2024
♻ ☆ Transfer Learning in ECG Diagnosis: Is It Effective?
The adoption of deep learning in ECG diagnosis is often hindered by the scarcity of large, well-labeled datasets in real-world scenarios, leading to the use of transfer learning to leverage features learned from larger datasets. Yet the prevailing assumption that transfer learning consistently outperforms training from scratch has never been systematically validated. In this study, we conduct the first extensive empirical study on the effectiveness of transfer learning in multi-label ECG classification, by investigating comparing the fine-tuning performance with that of training from scratch, covering a variety of ECG datasets and deep neural networks. We confirm that fine-tuning is the preferable choice for small downstream datasets; however, when the dataset is sufficiently large, training from scratch can achieve comparable performance, albeit requiring a longer training time to catch up. Furthermore, we find that transfer learning exhibits better compatibility with convolutional neural networks than with recurrent neural networks, which are the two most prevalent architectures for time-series ECG applications. Our results underscore the importance of transfer learning in ECG diagnosis, yet depending on the amount of available data, researchers may opt not to use it, considering the non-negligible cost associated with pre-training.
♻ ☆ Automated Evaluation of Large Vision-Language Models on Self-driving Corner Cases
Large Vision-Language Models (LVLMs) have received widespread attention in advancing the interpretable self-driving. Existing evaluations of LVLMs primarily focus on the multi-faceted capabilities in natural circumstances, lacking automated and quantifiable assessment for self-driving, let alone the severe road corner cases. In this paper, we propose CODA-LM, the very first benchmark for the automatic evaluation of LVLMs for self-driving corner cases. We adopt a hierarchical data structure to prompt powerful LVLMs to analyze complex driving scenes and generate high-quality pre-annotation for human annotators, and for LVLM evaluation, we show that using the text-only large language models (LLMs) as judges reveals even better alignment with human preferences than the LVLM judges. Moreover, with CODA-LM, we build CODA-VLM, a new driving LVLM surpassing all the open-sourced counterparts on CODA-LM. Our CODA-VLM performs comparably with GPT-4V, even surpassing GPT-4V by +21.42% on the regional perception task. We hope CODA-LM can become the catalyst to promote interpretable self-driving empowered by LVLMs.
comment: Project Page: https://coda-dataset.github.io/coda-lm/
♻ ☆ Speeding Up Image Classifiers with Little Companions
Scaling up neural networks has been a key recipe to the success of large language and vision models. However, in practice, up-scaled models can be disproportionately costly in terms of computations, providing only marginal improvements in performance; for example, EfficientViT-L3-384 achieves <2% improvement on ImageNet-1K accuracy over the base L1-224 model, while requiring $14\times$ more multiply-accumulate operations (MACs). In this paper, we investigate scaling properties of popular families of neural networks for image classification, and find that scaled-up models mostly help with "difficult" samples. Decomposing the samples by difficulty, we develop a simple model-agnostic two-pass Little-Big algorithm that first uses a light-weight "little" model to make predictions of all samples, and only passes the difficult ones for the "big" model to solve. Good little companion achieve drastic MACs reduction for a wide variety of model families and scales. Without loss of accuracy or modification of existing models, our Little-Big models achieve MACs reductions of 76% for EfficientViT-L3-384, 81% for EfficientNet-B7-600, 71% for DeiT3-L-384 on ImageNet-1K. Little-Big also speeds up the InternImage-G-512 model by 62% while achieving 90% ImageNet-1K top-1 accuracy, serving both as a strong baseline and as a simple practical method for large model compression.
♻ ☆ Adaptive Critical Subgraph Mining for Cognitive Impairment Conversion Prediction with T1-MRI-based Brain Network
Prediction the conversion to early-stage dementia is critical for mitigating its progression but remains challenging due to subtle cognitive impairments and structural brain changes. Traditional T1-weighted magnetic resonance imaging (T1-MRI) research focus on identifying brain atrophy regions but often fails to address the intricate connectivity between them. This limitation underscores the necessity of focuing on inter-regional connectivity for a comprehensive understand of the brain's complex network. Moreover, there is a pressing demand for methods that adaptively preserve and extract critical information, particularly specialized subgraph mining techniques for brain networks. These are essential for developing high-quality feature representations that reveal critical spatial impacts of structural brain changes and its topology. In this paper, we propose Brain-SubGNN, a novel graph representation network to mine and enhance critical subgraphs based on T1-MRI. This network provides a subgraph-level interpretation, enhancing interpretability and insights for graph analysis. The process begins by extracting node features and a correlation matrix between nodes to construct a task-oriented brain network. Brain-SubGNN then adaptively identifies and enhances critical subgraphs, capturing both loop and neighbor subgraphs. This method reflects the loop topology and local changes, indicative of long-range connections, and maintains local and global brain attributes. Extensive experiments validate the effectiveness and advantages of Brain-SubGNN, demonstrating its potential as a powerful tool for understanding and diagnosing early-stage dementia. Source code is available at https://github.com/Leng-10/Brain-SubGNN.
comment: 20 pages
♻ ☆ Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation
The scaling laws and extraordinary performance of large foundation models motivate the development and utilization of such models in biomedicine. However, despite early promising results on some biomedical benchmarks, there are still major challenges that need to be addressed before these models can be used in real-world clinics. Frontier general-domain models such as GPT-4V still have significant performance gaps in multimodal biomedical applications. More importantly, less-acknowledged pragmatic issues, including accessibility, model cost, and tedious manual evaluation make it hard for clinicians to use state-of-the-art large models directly on private patient data. Here, we explore training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology. To maximize data efficiency, we adopt a modular approach by incorporating state-of-the-art pre-trained models for image and text modalities, and focusing on training a lightweight adapter to ground each modality to the text embedding space, as exemplified by LLaVA-Med. For training, we assemble a large dataset of over 697 thousand radiology image-text pairs. For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation. For best practice, we conduct a systematic ablation study on various choices in data engineering and multimodal training. The resulting LlaVA-Rad (7B) model attains state-of-the-art results on standard radiology tasks such as report generation and cross-modal retrieval, even outperforming much larger models such as GPT-4V and Med-PaLM M (84B). The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
♻ ☆ Taking Training Seriously: Human Guidance and Management-Based Regulation of Artificial Intelligence
Fervent calls for more robust governance of the harms associated with artificial intelligence (AI) are leading to the adoption around the world of what regulatory scholars have called a management-based approach to regulation. Recent initiatives in the United States and Europe, as well as the adoption of major self-regulatory standards by the International Organization for Standardization, share in common a core management-based paradigm. These management-based initiatives seek to motivate an increase in human oversight of how AI tools are trained and developed. Refinements and systematization of human-guided training techniques will thus be needed to fit within this emerging era of management-based regulatory paradigm. If taken seriously, human-guided training can alleviate some of the technical and ethical pressures on AI, boosting AI performance with human intuition as well as better addressing the needs for fairness and effective explainability. In this paper, we discuss the connection between the emerging management-based regulatory frameworks governing AI and the need for human oversight during training. We broadly cover some of the technical components involved in human-guided training and then argue that the kinds of high-stakes use cases for AI that appear of most concern to regulators should lean more on human-guided training than on data-only training. We hope to foster a discussion between legal scholars and computer scientists involving how to govern a domain of technology that is vast, heterogenous, and dynamic in its applications and risks.
comment: 9 pages, 1 figure
♻ ☆ PlaNet-S: Automatic Semantic Segmentation of Placenta
[Purpose] To develop a fully automated semantic placenta segmentation model that integrates the U-Net and SegNeXt architectures through ensemble learning. [Methods] A total of 218 pregnant women with suspected placental anomalies who underwent magnetic resonance imaging (MRI) were enrolled, yielding 1090 annotated images for developing a deep learning model for placental segmentation. The images were standardized and divided into training and test sets. The performance of PlaNet-S, which integrates U-Net and SegNeXt within an ensemble framework, was assessed using Intersection over Union (IoU) and counting connected components (CCC) against the U-Net model. [Results] PlaNet-S had significantly higher IoU (0.73 +/- 0.13) than that of U-Net (0.78 +/- 0.010) (p<0.01). The CCC for PlaNet-S was significantly higher than that for U-Net (p<0.01), matching the ground truth in 86.0\% and 56.7\% of the cases, respectively. [Conclusion]PlaNet-S performed better than the traditional U-Net in placental segmentation tasks. This model addresses the challenges of time-consuming physician-assisted manual segmentation and offers the potential for diverse applications in placental imaging analyses.
comment: 11 pages, 5 figures, Shinnosuke Yamamoto and Isso Saito equally contributed to this work. In the original submission, there was a typographical error in the reported standard deviation for the Intersection over Union (IoU) values of the PlaNet-S model. The standard deviation was incorrectly listed as 0.01 instead of the correct value of 0.1. This has been corrected in the revised version
♻ ☆ Towards Open-set Camera 3D Object Detection
Traditional camera 3D object detectors are typically trained to recognize a predefined set of known object classes. In real-world scenarios, these detectors may encounter unknown objects outside the training categories and fail to identify them correctly. To address this gap, we present OS-Det3D (Open-set Camera 3D Object Detection), a two-stage training framework enhancing the ability of camera 3D detectors to identify both known and unknown objects. The framework involves our proposed 3D Object Discovery Network (ODN3D), which is specifically trained using geometric cues such as the location and scale of 3D boxes to discover general 3D objects. ODN3D is trained in a class-agnostic manner, and the provided 3D object region proposals inherently come with data noise. To boost accuracy in identifying unknown objects, we introduce a Joint Objectness Selection (JOS) module. JOS selects the pseudo ground truth for unknown objects from the 3D object region proposals of ODN3D by combining the ODN3D objectness and camera feature attention objectness. Experiments on the nuScenes and KITTI datasets demonstrate the effectiveness of our framework in enabling camera 3D detectors to successfully identify unknown objects while also improving their performance on known objects.
♻ ☆ MG-LLaVA: Towards Multi-Granularity Visual Instruction Tuning
Multi-modal large language models (MLLMs) have made significant strides in various visual understanding tasks. However, the majority of these models are constrained to process low-resolution images, which limits their effectiveness in perception tasks that necessitate detailed visual information. In our study, we present MG-LLaVA, an innovative MLLM that enhances the model's visual processing capabilities by incorporating a multi-granularity vision flow, which includes low-resolution, high-resolution, and object-centric features. We propose the integration of an additional high-resolution visual encoder to capture fine-grained details, which are then fused with base visual features through a Conv-Gate fusion network. To further refine the model's object recognition abilities, we incorporate object-level features derived from bounding boxes identified by offline detectors. Being trained solely on publicly available multimodal data through instruction tuning, MG-LLaVA demonstrates exceptional perception skills. We instantiate MG-LLaVA with a wide variety of language encoders, ranging from 3.8B to 34B, to evaluate the model's performance comprehensively. Extensive evaluations across multiple benchmarks demonstrate that MG-LLaVA outperforms existing MLLMs of comparable parameter sizes, showcasing its remarkable efficacy. The code will be available at https://github.com/PhoenixZ810/MG-LLaVA.
♻ ☆ XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis
Thoroughly testing autonomy systems is crucial in the pursuit of safe autonomous driving vehicles. It necessitates creating safety-critical scenarios that go beyond what can be safely collected from real-world data, as many of these scenarios occur infrequently on public roads. However, the evaluation of most existing NVS methods relies on sporadic sampling of image frames from the training data, comparing the rendered images with ground truth images using metrics. Unfortunately, this evaluation protocol falls short of meeting the actual requirements in closed-loop simulations. Specifically, the true application demands the capability to render novel views that extend beyond the original trajectory (such as cross-lane views), which are challenging to capture in the real world. To address this, this paper presents a novel driving view synthesis dataset and benchmark specifically designed for autonomous driving simulations. This dataset is unique as it includes testing images captured by deviating from the training trajectory by 1-4 meters. It comprises six sequences encompassing various time and weather conditions. Each sequence contains 450 training images, 150 testing images, and their corresponding camera poses and intrinsic parameters. Leveraging this novel dataset, we establish the first realistic benchmark for evaluating existing NVS approaches under front-only and multi-camera settings. The experimental findings underscore the significant gap that exists in current approaches, revealing their inadequate ability to fulfill the demanding prerequisites of cross-lane or closed-loop simulation. Our dataset is released publicly at the project page: https://3d-aigc.github.io/XLD/.
comment: project page: https://3d-aigc.github.io/XLD/
♻ ☆ FDDM: Unsupervised Medical Image Translation with a Frequency-Decoupled Diffusion Model
Diffusion models have demonstrated significant potential in producing high-quality images in medical image translation to aid disease diagnosis, localization, and treatment. Nevertheless, current diffusion models have limited success in achieving faithful image translations that can accurately preserve the anatomical structures of medical images, especially for unpaired datasets. The preservation of structural and anatomical details is essential to reliable medical diagnosis and treatment planning, as structural mismatches can lead to disease misidentification and treatment errors. In this study, we introduce the Frequency Decoupled Diffusion Model (FDDM) for MR-to-CT conversion. FDDM first obtains the anatomical information of the CT image from the MR image through an initial conversion module. This anatomical information then guides a subsequent diffusion model to generate high-quality CT images. Our diffusion model uses a dual-path reverse diffusion process for low-frequency and high-frequency information, achieving a better balance between image quality and anatomical accuracy. We extensively evaluated FDDM using public datasets for brain MR-to-CT and pelvis MR-to-CT translations, demonstrating its superior performance to other GAN-based, VAE-based, and diffusion-based models. The evaluation metrics included Frechet Inception Distance (FID), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM). FDDM achieved the best scores on all metrics for both datasets, particularly excelling in FID, with scores of 25.9 for brain data and 29.2 for pelvis data, significantly outperforming other methods. These results demonstrate that FDDM can generate high-quality target domain images while maintaining the accuracy of translated anatomical structures.
♻ ☆ Utilizing Adversarial Examples for Bias Mitigation and Accuracy Enhancement
We propose a novel approach to mitigate biases in computer vision models by utilizing counterfactual generation and fine-tuning. While counterfactuals have been used to analyze and address biases in DNN models, the counterfactuals themselves are often generated from biased generative models, which can introduce additional biases or spurious correlations. To address this issue, we propose using adversarial images, that is images that deceive a deep neural network but not humans, as counterfactuals for fair model training. Our approach leverages a curriculum learning framework combined with a fine-grained adversarial loss to fine-tune the model using adversarial examples. By incorporating adversarial images into the training data, we aim to prevent biases from propagating through the pipeline. We validate our approach through both qualitative and quantitative assessments, demonstrating improved bias mitigation and accuracy compared to existing methods. Qualitatively, our results indicate that post-training, the decisions made by the model are less dependent on the sensitive attribute and our model better disentangles the relationship between sensitive attributes and classification variables.
♻ ☆ Semi-supervised variational autoencoder for cell feature extraction in multiplexed immunofluorescence images
Advancements in digital imaging technologies have sparked increased interest in using multiplexed immunofluorescence (mIF) images to visualise and identify the interactions between specific immunophenotypes with the tumour microenvironment at the cellular level. Current state-of-the-art multiplexed immunofluorescence image analysis pipelines depend on cell feature representations characterised by morphological and stain intensity-based metrics generated using simple statistical and machine learning-based tools. However, these methods are not capable of generating complex representations of cells. We propose a deep learning-based cell feature extraction model using a variational autoencoder with supervision using a latent subspace to extract cell features in mIF images. We perform cell phenotype classification using a cohort of more than 44,000 multiplexed immunofluorescence cell image patches extracted across 1,093 tissue microarray cores of breast cancer patients, to demonstrate the success of our model against current and alternative methods.
♻ ☆ FishNet: Deep Neural Networks for Low-Cost Fish Stock Estimation
Fish stock assessment often involves manual fish counting by taxonomy specialists, which is both time-consuming and costly. We propose FishNet, an automated computer vision system for both taxonomic classification and fish size estimation from images captured with a low-cost digital camera. The system first performs object detection and segmentation using a Mask R-CNN to identify individual fish from images containing multiple fish, possibly consisting of different species. Then each fish species is classified and the length is predicted using separate machine learning models. To develop the model, we use a dataset of 300,000 hand-labeled images containing 1.2M fish of 163 different species and ranging in length from 10cm to 250cm, with additional annotations and quality control methods used to curate high-quality training data. On held-out test data sets, our system achieves a 92% intersection over union on the fish segmentation task, a 89% top-1 classification accuracy on single fish species classification, and a 2.3cm mean absolute error on the fish length estimation task.
comment: IEEE COINS 2024
♻ ☆ Step Differences in Instructional Video CVPR 2024
Comparing a user video to a reference how-to video is a key requirement for AR/VR technology delivering personalized assistance tailored to the user's progress. However, current approaches for language-based assistance can only answer questions about a single video. We propose an approach that first automatically generates large amounts of visual instruction tuning data involving pairs of videos from HowTo100M by leveraging existing step annotations and accompanying narrations, and then trains a video-conditioned language model to jointly reason across multiple raw videos. Our model achieves state-of-the-art performance at identifying differences between video pairs and ranking videos based on the severity of these differences, and shows promising ability to perform general reasoning over multiple videos. Project page: https://github.com/facebookresearch/stepdiff
comment: CVPR 2024
♻ ☆ Learning Stackable and Skippable LEGO Bricks for Efficient, Reconfigurable, and Variable-Resolution Diffusion Modeling
Diffusion models excel at generating photo-realistic images but come with significant computational costs in both training and sampling. While various techniques address these computational challenges, a less-explored issue is designing an efficient and adaptable network backbone for iterative refinement. Current options like U-Net and Vision Transformer often rely on resource-intensive deep networks and lack the flexibility needed for generating images at variable resolutions or with a smaller network than used in training. This study introduces LEGO bricks, which seamlessly integrate Local-feature Enrichment and Global-content Orchestration. These bricks can be stacked to create a test-time reconfigurable diffusion backbone, allowing selective skipping of bricks to reduce sampling costs and generate higher-resolution images than the training data. LEGO bricks enrich local regions with an MLP and transform them using a Transformer block while maintaining a consistent full-resolution image across all bricks. Experimental results demonstrate that LEGO bricks enhance training efficiency, expedite convergence, and facilitate variable-resolution image generation while maintaining strong generative performance. Moreover, LEGO significantly reduces sampling time compared to other methods, establishing it as a valuable enhancement for diffusion models. Our code and project page are available at https://jegzheng.github.io/LEGODiffusion.
Information Retrieval 18
☆ Which Neurons Matter in IR? Applying Integrated Gradients-based Methods to Understand Cross-Encoders ICTIR 2024
With the recent addition of Retrieval-Augmented Generation (RAG), the scope and importance of Information Retrieval (IR) has expanded. As a result, the importance of a deeper understanding of IR models also increases. However, interpretability in IR remains under-explored, especially when it comes to the models' inner mechanisms. In this paper, we explore the possibility of adapting Integrated Gradient-based methods in an IR context to identify the role of individual neurons within the model. In particular, we provide new insights into the role of what we call "relevance" neurons, as well as how they deal with unseen data. Finally, we carry out an in-depth pruning study to validate our findings.
comment: Accepted at ICTIR 2024
☆ Grounded and Transparent Response Generation for Conversational Information-Seeking Systems WSDM '24
While previous conversational information-seeking (CIS) research has focused on passage retrieval, reranking, and query rewriting, the challenge of synthesizing retrieved information into coherent responses remains. The proposed research delves into the intricacies of response generation in CIS systems. Open-ended information-seeking dialogues introduce multiple challenges that may lead to potential pitfalls in system responses. The study focuses on generating responses grounded in the retrieved passages and being transparent about the system's limitations. Specific research questions revolve around obtaining confidence-enriched information nuggets, automatic detection of incomplete or incorrect responses, generating responses communicating the system's limitations, and evaluating enhanced responses. By addressing these research tasks the study aspires to contribute to the advancement of conversational response generation, fostering more trustworthy interactions in CIS dialogues, and paving the way for grounded and transparent systems to meet users' needs in an information-driven world.
comment: Proceedings of the 17th ACM International Conference on Web Search and Data Mining (WSDM '24), 2024
☆ FlowVQA: Mapping Multimodal Logic in Visual Question Answering with Flowcharts
Existing benchmarks for visual question answering lack in visual grounding and complexity, particularly in evaluating spatial reasoning skills. We introduce FlowVQA, a novel benchmark aimed at assessing the capabilities of visual question-answering multimodal language models in reasoning with flowcharts as visual contexts. FlowVQA comprises 2,272 carefully generated and human-verified flowchart images from three distinct content sources, along with 22,413 diverse question-answer pairs, to test a spectrum of reasoning tasks, including information localization, decision-making, and logical progression. We conduct a thorough baseline evaluation on a suite of both open-source and proprietary multimodal language models using various strategies, followed by an analysis of directional bias. The results underscore the benchmark's potential as a vital tool for advancing the field of multimodal modeling, providing a focused and challenging environment for enhancing model performance in visual and logical reasoning tasks.
☆ RAVEN: Multitask Retrieval Augmented Vision-Language Learning
The scaling of large language models to encode all the world's knowledge in model parameters is unsustainable and has exacerbated resource barriers. Retrieval-Augmented Generation (RAG) presents a potential solution, yet its application to vision-language models (VLMs) is under explored. Existing methods focus on models designed for single tasks. Furthermore, they're limited by the need for resource intensive pre training, additional parameter requirements, unaddressed modality prioritization and lack of clear benefit over non-retrieval baselines. This paper introduces RAVEN, a multitask retrieval augmented VLM framework that enhances base VLMs through efficient, task specific fine-tuning. By integrating retrieval augmented samples without the need for additional retrieval-specific parameters, we show that the model acquires retrieval properties that are effective across multiple tasks. Our results and extensive ablations across retrieved modalities for the image captioning and VQA tasks indicate significant performance improvements compared to non retrieved baselines +1 CIDEr on MSCOCO, +4 CIDEr on NoCaps and nearly a +3\% accuracy on specific VQA question types. This underscores the efficacy of applying RAG approaches to VLMs, marking a stride toward more efficient and accessible multimodal learning.
☆ Statements: Universal Information Extraction from Tables with Large Language Models for ESG KPIs ACL 2024
Environment, Social, and Governance (ESG) KPIs assess an organization's performance on issues such as climate change, greenhouse gas emissions, water consumption, waste management, human rights, diversity, and policies. ESG reports convey this valuable quantitative information through tables. Unfortunately, extracting this information is difficult due to high variability in the table structure as well as content. We propose Statements, a novel domain agnostic data structure for extracting quantitative facts and related information. We propose translating tables to statements as a new supervised deep-learning universal information extraction task. We introduce SemTabNet - a dataset of over 100K annotated tables. Investigating a family of T5-based Statement Extraction Models, our best model generates statements which are 82% similar to the ground-truth (compared to baseline of 21%). We demonstrate the advantages of statements by applying our model to over 2700 tables from ESG reports. The homogeneous nature of statements permits exploratory data analysis on expansive information found in large collections of ESG reports.
comment: Accepted at the NLP4Climate workshop in the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024)
☆ Efficient course recommendations with T5-based ranking and summarization SIGIR 2024
In this paper, we implement and evaluate a two-stage retrieval pipeline for a course recommender system that ranks courses for skill-occupation pairs. The in-production recommender system BrightFit provides course recommendations from multiple sources. Some of the course descriptions are long and noisy, while retrieval and ranking in an online system have to be highly efficient. We developed a two-step retrieval pipeline with RankT5 finetuned on MSMARCO as re-ranker. We compare two summarizers for course descriptions: a LongT5 model that we finetuned for the task, and a generative LLM (Vicuna) with in-context learning. We experiment with quantization to reduce the size of the ranking model and increase inference speed. We evaluate our rankers on two newly labelled datasets, with an A/B test, and with a user questionnaire. On the two labelled datasets, our proposed two-stage ranking with automatic summarization achieves a substantial improvement over the in-production (BM25) ranker: nDCG@10 scores improve from 0.482 to 0.684 and from 0.447 to 0.844 on the two datasets. We also achieve a 40% speed-up by using a quantized version of RankT5. The improved quality of the ranking was confirmed by the questionnaire completed by 29 respondents, but not by the A/B test. In the A/B test, a higher clickthrough rate was observed for the BM25-ranking than for the proposed two-stage retrieval. We conclude that T5-based re-ranking and summarization for online course recommendation can obtain much better effectiveness than single-step lexical retrieval, and that quantization has a large effect on RankT5. In the online evaluation, however, other factors than relevance play a role (such as speed and interpretability of the retrieval results), as well as individual preferences.
comment: ReNeuIR 2024 (at SIGIR 2024) - 3rd Workshop on Reaching Efficiency in Neural Information Retrieval, 18 July, 2024, Washington D.C, USA
☆ Towards a Formal Characterization of User Simulation Objectives in Conversational Information Access SIGIR
User simulation is a promising approach for automatically training and evaluating conversational information access agents, enabling the generation of synthetic dialogues and facilitating reproducible experiments at scale. However, the objectives of user simulation for the different uses remain loosely defined, hindering the development of effective simulators. In this work, we formally characterize the distinct objectives for user simulators: training aims to maximize behavioral similarity to real users, while evaluation focuses on the accurate prediction of real-world conversational agent performance. Through an empirical study, we demonstrate that optimizing for one objective does not necessarily lead to improved performance on the other. This finding underscores the need for tailored design considerations depending on the intended use of the simulator. By establishing clear objectives and proposing concrete measures to evaluate user simulators against those objectives, we pave the way for the development of simulators that are specifically tailored to their intended use, ultimately leading to more effective conversational agents.
comment: Proceedings of the 2024 ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR '24), July 13, 2024, Washington DC, DC, USA
☆ Amplify Graph Learning for Recommendation via Sparsity Completion
Graph learning models have been widely deployed in collaborative filtering (CF) based recommendation systems. Due to the issue of data sparsity, the graph structure of the original input lacks potential positive preference edges, which significantly reduces the performance of recommendations. In this paper, we study how to enhance the graph structure for CF more effectively, thereby optimizing the representation of graph nodes. Previous works introduced matrix completion techniques into CF, proposing the use of either stochastic completion methods or superficial structure completion to address this issue. However, most of these approaches employ random numerical filling that lack control over noise perturbations and limit the in-depth exploration of higher-order interaction features of nodes, resulting in biased graph representations. In this paper, we propose an Amplify Graph Learning framework based on Sparsity Completion (called AGL-SC). First, we utilize graph neural network to mine direct interaction features between user and item nodes, which are used as the inputs of the encoder. Second, we design a factorization-based method to mine higher-order interaction features. These features serve as perturbation factors in the latent space of the hidden layer to facilitate generative enhancement. Finally, by employing the variational inference, the above multi-order features are integrated to implement the completion and enhancement of missing graph structures. We conducted benchmark and strategy experiments on four real-world datasets related to recommendation tasks. The experimental results demonstrate that AGL-SC significantly outperforms the state-of-the-art methods.
☆ Multi-modal Food Recommendation using Clustering and Self-supervised Learning
Food recommendation systems serve as pivotal components in the realm of digital lifestyle services, designed to assist users in discovering recipes and food items that resonate with their unique dietary predilections. Typically, multi-modal descriptions offer an exhaustive profile for each recipe, thereby ensuring recommendations that are both personalized and accurate. Our preliminary investigation of two datasets indicates that pre-trained multi-modal dense representations might precipitate a deterioration in performance compared to ID features when encapsulating interactive relationships. This observation implies that ID features possess a relative superiority in modeling interactive collaborative signals. Consequently, contemporary cutting-edge methodologies augment ID features with multi-modal information as supplementary features, overlooking the latent semantic relations between recipes. To rectify this, we present CLUSSL, a novel food recommendation framework that employs clustering and self-supervised learning. Specifically, CLUSSL formulates a modality-specific graph tailored to each modality with discrete/continuous features, thereby transforming semantic features into structural representation. Furthermore, CLUSSL procures recipe representations pertinent to different modalities via graph convolutional operations. A self-supervised learning objective is proposed to foster independence between recipe representations derived from different unimodal graphs. Comprehensive experiments on real-world datasets substantiate that CLUSSL consistently surpasses state-of-the-art recommendation benchmarks in performance.
comment: Working paper
☆ A Surprisingly Simple yet Effective Multi-Query Rewriting Method for Conversational Passage Retrieval SIGIR
Conversational passage retrieval is challenging as it often requires the resolution of references to previous utterances and needs to deal with the complexities of natural language, such as coreference and ellipsis. To address these challenges, pre-trained sequence-to-sequence neural query rewriters are commonly used to generate a single de-contextualized query based on conversation history. Previous research shows that combining multiple query rewrites for the same user utterance has a positive effect on retrieval performance. We propose the use of a neural query rewriter to generate multiple queries and show how to integrate those queries in the passage retrieval pipeline efficiently. The main strength of our approach lies in its simplicity: it leverages how the beam search algorithm works and can produce multiple query rewrites at no additional cost. Our contributions further include devising ways to utilize multi-query rewrites in both sparse and dense first-pass retrieval. We demonstrate that applying our approach on top of a standard passage retrieval pipeline delivers state-of-the-art performance without sacrificing efficiency.
comment: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval
☆ Towards Personalized Federated Multi-scenario Multi-task Recommendation
In modern recommender system applications, such as e-commerce, predicting multiple targets like click-through rate (CTR) and post-view click-through \& conversion rate (CTCVR) is common. Multi-task recommender systems are gaining traction in research and practical use. Existing multi-task recommender systems tackle diverse business scenarios, merging and modeling these scenarios unlocks shared knowledge to boost overall performance. As new and more complex real-world recommendation scenarios have emerged, data privacy issues make it difficult to train a single global multi-task recommendation model that processes multiple separate scenarios. In this paper, we propose a novel framework for personalized federated multi-scenario multi-task recommendation, called PF-MSMTrec. We assign each scenario to a dedicated client, with each client utilizing the Mixture-of-Experts (MMoE) structure. Our proposed method aims to tackle the unique challenge posed by multiple optimization conflicts in this setting. We introduce a bottom-up joint learning mechanism. Firstly, we design a parameter template to decouple the parameters of the expert network. Thus, scenario parameters are shared knowledge for federated parameter aggregation, while task-specific parameters are personalized local parameters. Secondly, we conduct personalized federated learning for the parameters of each expert network through a federated communication round, utilizing three modules: federated batch normalization, conflict coordination, and personalized aggregation. Finally, we perform another round of personalized federated parameter aggregation on the task tower network to obtain the prediction results for multiple tasks. We conduct extensive experiments on two public datasets, and the results demonstrate that our proposed method surpasses state-of-the-art methods.
☆ Zero-shot Composed Image Retrieval Considering Query-target Relationship Leveraging Masked Image-text Pairs ICIP 2024
This paper proposes a novel zero-shot composed image retrieval (CIR) method considering the query-target relationship by masked image-text pairs. The objective of CIR is to retrieve the target image using a query image and a query text. Existing methods use a textual inversion network to convert the query image into a pseudo word to compose the image and text and use a pre-trained visual-language model to realize the retrieval. However, they do not consider the query-target relationship to train the textual inversion network to acquire information for retrieval. In this paper, we propose a novel zero-shot CIR method that is trained end-to-end using masked image-text pairs. By exploiting the abundant image-text pairs that are convenient to obtain with a masking strategy for learning the query-target relationship, it is expected that accurate zero-shot CIR using a retrieval-focused textual inversion network can be realized. Experimental results show the effectiveness of the proposed method.
comment: Accepted as a conference paper in IEEE ICIP 2024
☆ ELCoRec: Enhance Language Understanding with Co-Propagation of Numerical and Categorical Features for Recommendation
Large language models have been flourishing in the natural language processing (NLP) domain, and their potential for recommendation has been paid much attention to. Despite the intelligence shown by the recommendation-oriented finetuned models, LLMs struggle to fully understand the user behavior patterns due to their innate weakness in interpreting numerical features and the overhead for long context, where the temporal relations among user behaviors, subtle quantitative signals among different ratings, and various side features of items are not well explored. Existing works only fine-tune a sole LLM on given text data without introducing that important information to it, leaving these problems unsolved. In this paper, we propose ELCoRec to Enhance Language understanding with CoPropagation of numerical and categorical features for Recommendation. Concretely, we propose to inject the preference understanding capability into LLM via a GAT expert model where the user preference is better encoded by parallelly propagating the temporal relations, and rating signals as well as various side information of historical items. The parallel propagation mechanism could stabilize heterogeneous features and offer an informative user preference encoding, which is then injected into the language models via soft prompting at the cost of a single token embedding. To further obtain the user's recent interests, we proposed a novel Recent interaction Augmented Prompt (RAP) template. Experiment results over three datasets against strong baselines validate the effectiveness of ELCoRec. The code is available at https://anonymous.4open.science/r/CIKM_Code_Repo-E6F5/README.md.
☆ TocBERT: Medical Document Structure Extraction Using Bidirectional Transformers
Text segmentation holds paramount importance in the field of Natural Language Processing (NLP). It plays an important role in several NLP downstream tasks like information retrieval and document summarization. In this work, we propose a new solution, namely TocBERT, for segmenting texts using bidirectional transformers. TocBERT represents a supervised solution trained on the detection of titles and sub-titles from their semantic representations. This task was formulated as a named entity recognition (NER) problem. The solution has been applied on a medical text segmentation use-case where the Bio-ClinicalBERT model is fine-tuned to segment discharge summaries of the MIMIC-III dataset. The performance of TocBERT has been evaluated on a human-labeled ground truth corpus of 250 notes. It achieved an F1-score of 84.6% when evaluated on a linear text segmentation problem and 72.8% on a hierarchical text segmentation problem. It outperformed a carefully designed rule-based solution, particularly in distinguishing titles from subtitles.
comment: 6 pages, 6 figures
♻ ☆ Accelerating Complex Disease Treatment through Network Medicine and GenAI: A Case Study on Drug Repurposing for Breast Cancer
The objective of this research is to introduce a network specialized in predicting drugs that can be repurposed by investigating real-world evidence sources, such as clinical trials and biomedical literature. Specifically, it aims to generate drug combination therapies for complex diseases (e.g., cancer, Alzheimer's). We present a multilayered network medicine approach, empowered by a highly configured ChatGPT prompt engineering system, which is constructed on the fly to extract drug mentions in clinical trials. Additionally, we introduce a novel algorithm that connects real-world evidence with disease-specific signaling pathways (e.g., KEGG database). This sheds light on the repurposability of drugs if they are found to bind with one or more protein constituents of a signaling pathway. To demonstrate, we instantiated the framework for breast cancer and found that, out of 46 breast cancer signaling pathways, the framework identified 38 pathways that were covered by at least two drugs. This evidence signals the potential for combining those drugs. Specifically, the most covered signaling pathway, ID hsa:2064, was covered by 108 drugs, some of which can be combined. Conversely, the signaling pathway ID hsa:1499 was covered by only two drugs, indicating a significant gap for further research. Our network medicine framework, empowered by GenAI, shows promise in identifying drug combinations with a high degree of specificity, knowing the exact signaling pathways and proteins that serve as targets. It is noteworthy that ChatGPT successfully accelerated the process of identifying drug mentions in clinical trials, though further investigations are required to determine the relationships among the drug mentions.
comment: 9 pages double columns, 5 figures, 3 algorithms, 3 tables, and 1 listing, Submitted to IEEE MedAI'24 Conference, to be held November 15-17, Chongqing, China
♻ ☆ Error Bounds of Supervised Classification from Information-Theoretic Perspective
There remains a list of unanswered research questions on deep learning (DL), including the remarkable generalization power of overparametrized neural networks, the efficient optimization performance despite the non-convexity, and the mechanisms behind flat minima in generalization. In this paper, we adopt an information-theoretic perspective to explore the theoretical foundations of supervised classification using deep neural networks (DNNs). Our analysis introduces the concepts of fitting error and model risk, which, together with generalization error, constitute an upper bound on the expected risk. We demonstrate that the generalization errors are bounded by the complexity, influenced by both the smoothness of distribution and the sample size. Consequently, task complexity serves as a reliable indicator of the dataset's quality, guiding the setting of regularization hyperparameters. Furthermore, the derived upper bound fitting error links the back-propagated gradient, Neural Tangent Kernel (NTK), and the model's parameter count with the fitting error. Utilizing the triangle inequality, we establish an upper bound on the expected risk. This bound offers valuable insights into the effects of overparameterization, non-convex optimization, and the flat minima in DNNs.Finally, empirical verification confirms a significant positive correlation between the derived theoretical bounds and the practical expected risk, confirming the practical relevance of the theoretical findings.
♻ ☆ A Hierarchical Neural Framework for Classification and its Explanation in Large Unstructured Legal Documents CIKM 2023
Automatic legal judgment prediction and its explanation suffer from the problem of long case documents exceeding tens of thousands of words, in general, and having a non-uniform structure. Predicting judgments from such documents and extracting their explanation becomes a challenging task, more so on documents with no structural annotation. We define this problem as "scarce annotated legal documents" and explore their lack of structural information and their long lengths with a deep-learning-based classification framework which we call MESc; "Multi-stage Encoder-based Supervised with-clustering"; for judgment prediction. We explore the adaptability of LLMs with multi-billion parameters (GPT-Neo, and GPT-J) to legal texts and their intra-domain(legal) transfer learning capacity. Alongside this, we compare their performance and adaptability with MESc and the impact of combining embeddings from their last layers. For such hierarchical models, we also propose an explanation extraction algorithm named ORSE; Occlusion sensitivity-based Relevant Sentence Extractor; based on the input-occlusion sensitivity of the model, to explain the predictions with the most relevant sentences from the document. We explore these methods and test their effectiveness with extensive experiments and ablation studies on legal documents from India, the European Union, and the United States with the ILDC dataset and a subset of the LexGLUE dataset. MESc achieves a minimum total performance gain of approximately 2 points over previous state-of-the-art proposed methods, while ORSE applied on MESc achieves a total average gain of 50% over the baseline explainability scores.
comment: Published as non archival paper in the The 3rd International Workshop on Mining and Learning in the Legal Domain (MLLD-2023) at CIKM 2023, Birmingham, United Kingdom. (https://sites.google.com/view/mlld2023/)
♻ ☆ Bioptic -- A Target-Agnostic Efficacy-Based Small Molecules Search Engine
Recent successes in virtual screening have been made possible by large models and extensive chemical libraries. However, combining these elements is challenging: the larger the model, the more expensive it is to run, making ultra-large libraries unfeasible. To address this, we developed a target-agnostic, efficacy-based molecule search model, which allows us to find structurally dissimilar molecules with similar biological activities. We used the best practices to design fast retrieval system, based on processor-optimized SIMD instructions, enabling us to screen the ultra-large 40B Enamine REAL library with 100\% recall rate. We extensively benchmarked our model and several state-of-the-art models for both speed performance and retrieval quality of novel molecules.
Machine Learning 157
☆ The Remarkable Robustness of LLMs: Stages of Inference?
We demonstrate and investigate the remarkable robustness of Large Language Models by deleting and swapping adjacent layers. We find that deleting and swapping interventions retain 72-95\% of the original model's prediction accuracy without fine-tuning, whereas models with more layers exhibit more robustness. Based on the results of the layer-wise intervention and further experiments, we hypothesize the existence of four universal stages of inference across eight different models: detokenization, feature engineering, prediction ensembling, and residual sharpening. The first stage integrates local information, lifting raw token representations into higher-level contextual representations. Next is the iterative refinement of task and entity-specific features. Then, the second half of the model begins with a phase transition, where hidden representations align more with the vocabulary space due to specialized model components. Finally, the last layer sharpens the following token distribution by eliminating obsolete features that add noise to the prediction.
☆ TabReD: A Benchmark of Tabular Machine Learning in-the-Wild
Benchmarks that closely reflect downstream application scenarios are essential for the streamlined adoption of new research in tabular machine learning (ML). In this work, we examine existing tabular benchmarks and find two common characteristics of industry-grade tabular data that are underrepresented in the datasets available to the academic community. First, tabular data often changes over time in real-world deployment scenarios. This impacts model performance and requires time-based train and test splits for correct model evaluation. Yet, existing academic tabular datasets often lack timestamp metadata to enable such evaluation. Second, a considerable portion of datasets in production settings stem from extensive data acquisition and feature engineering pipelines. For each specific dataset, this can have a different impact on the absolute and relative number of predictive, uninformative, and correlated features, which in turn can affect model selection. To fill the aforementioned gaps in academic benchmarks, we introduce TabReD -- a collection of eight industry-grade tabular datasets covering a wide range of domains from finance to food delivery services. We assess a large number of tabular ML models in the feature-rich, temporally-evolving data setting facilitated by TabReD. We demonstrate that evaluation on time-based data splits leads to different methods ranking, compared to evaluation on random splits more common in academic benchmarks. Furthermore, on the TabReD datasets, MLP-like architectures and GBDT show the best results, while more sophisticated DL models are yet to prove their effectiveness.
comment: Code: https://github.com/puhsu/tabred
☆ Emergence of Hidden Capabilities: Exploring Learning Dynamics in Concept Space
Modern generative models demonstrate impressive capabilities, likely stemming from an ability to identify and manipulate abstract concepts underlying their training data. However, fundamental questions remain: what determines the concepts a model learns, the order in which it learns them, and its ability to manipulate those concepts? To address these questions, we propose analyzing a model's learning dynamics via a framework we call the concept space, where each axis represents an independent concept underlying the data generating process. By characterizing learning dynamics in this space, we identify how the speed at which a concept is learned, and hence the order of concept learning, is controlled by properties of the data we term concept signal. Further, we observe moments of sudden turns in the direction of a model's learning dynamics in concept space. Surprisingly, these points precisely correspond to the emergence of hidden capabilities, i.e., where latent interventions show the model possesses the capability to manipulate a concept, but these capabilities cannot yet be elicited via naive input prompting. While our results focus on synthetically defined toy datasets, we hypothesize a general claim on emergence of hidden capabilities may hold: generative models possess latent capabilities that emerge suddenly and consistently during training, though a model might not exhibit these capabilities under naive input prompting.
comment: Preprint
☆ DiVERT: Distractor Generation with Variational Errors Represented as Text for Math Multiple-choice Questions
High-quality distractors are crucial to both the assessment and pedagogical value of multiple-choice questions (MCQs), where manually crafting ones that anticipate knowledge deficiencies or misconceptions among real students is difficult. Meanwhile, automated distractor generation, even with the help of large language models (LLMs), remains challenging for subjects like math. It is crucial to not only identify plausible distractors but also understand the error behind them. In this paper, we introduce DiVERT (Distractor Generation with Variational Errors Represented as Text), a novel variational approach that learns an interpretable representation of errors behind distractors in math MCQs. Through experiments on a real-world math MCQ dataset with 1,434 questions used by hundreds of thousands of students, we show that DiVERT, despite using a base open-source LLM with 7B parameters, outperforms state-of-the-art approaches using GPT-4o on downstream distractor generation. We also conduct a human evaluation with math educators and find that DiVERT leads to error labels that are of comparable quality to human-authored ones.
☆ Subtractive Training for Music Stem Insertion using Latent Diffusion Models
We present Subtractive Training, a simple and novel method for synthesizing individual musical instrument stems given other instruments as context. This method pairs a dataset of complete music mixes with 1) a variant of the dataset lacking a specific stem, and 2) LLM-generated instructions describing how the missing stem should be reintroduced. We then fine-tune a pretrained text-to-audio diffusion model to generate the missing instrument stem, guided by both the existing stems and the text instruction. Our results demonstrate Subtractive Training's efficacy in creating authentic drum stems that seamlessly blend with the existing tracks. We also show that we can use the text instruction to control the generation of the inserted stem in terms of rhythm, dynamics, and genre, allowing us to modify the style of a single instrument in a full song while keeping the remaining instruments the same. Lastly, we extend this technique to MIDI formats, successfully generating compatible bass, drum, and guitar parts for incomplete arrangements.
☆ Efficient World Models with Context-Aware Tokenization ICML 2024
Scaling up deep Reinforcement Learning (RL) methods presents a significant challenge. Following developments in generative modelling, model-based RL positions itself as a strong contender. Recent advances in sequence modelling have led to effective transformer-based world models, albeit at the price of heavy computations due to the long sequences of tokens required to accurately simulate environments. In this work, we propose $\Delta$-IRIS, a new agent with a world model architecture composed of a discrete autoencoder that encodes stochastic deltas between time steps and an autoregressive transformer that predicts future deltas by summarizing the current state of the world with continuous tokens. In the Crafter benchmark, $\Delta$-IRIS sets a new state of the art at multiple frame budgets, while being an order of magnitude faster to train than previous attention-based approaches. We release our code and models at https://github.com/vmicheli/delta-iris.
comment: ICML 2024
☆ Jump Starting Bandits with LLM-Generated Prior Knowledge
We present substantial evidence demonstrating the benefits of integrating Large Language Models (LLMs) with a Contextual Multi-Armed Bandit framework. Contextual bandits have been widely used in recommendation systems to generate personalized suggestions based on user-specific contexts. We show that LLMs, pre-trained on extensive corpora rich in human knowledge and preferences, can simulate human behaviours well enough to jump-start contextual multi-armed bandits to reduce online learning regret. We propose an initialization algorithm for contextual bandits by prompting LLMs to produce a pre-training dataset of approximate human preferences for the bandit. This significantly reduces online learning regret and data-gathering costs for training such models. Our approach is validated empirically through two sets of experiments with different bandit setups: one which utilizes LLMs to serve as an oracle and a real-world experiment utilizing data from a conjoint survey experiment.
LiveBench: A Challenging, Contamination-Free LLM Benchmark
Test set contamination, wherein test data from a benchmark ends up in a newer model's training set, is a well-documented obstacle for fair LLM evaluation and can quickly render benchmarks obsolete. To mitigate this, many recent benchmarks crowdsource new prompts and evaluations from human or LLM judges; however, these can introduce significant biases, and break down when scoring hard questions. In this work, we introduce a new benchmark for LLMs designed to be immune to both test set contamination and the pitfalls of LLM judging and human crowdsourcing. We release LiveBench, the first benchmark that (1) contains frequently-updated questions from recent information sources, (2) scores answers automatically according to objective ground-truth values, and (3) contains a wide variety of challenging tasks, spanning math, coding, reasoning, language, instruction following, and data analysis. To achieve this, LiveBench contains questions that are based on recently-released math competitions, arXiv papers, news articles, and datasets, and it contains harder, contamination-free versions of tasks from previous benchmarks such as Big-Bench Hard, AMPS, and IFEval. We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 110B in size. LiveBench is difficult, with top models achieving below 65% accuracy. We release all questions, code, and model answers. Questions will be added and updated on a monthly basis, and we will release new tasks and harder versions of tasks over time so that LiveBench can distinguish between the capabilities of LLMs as they improve in the future. We welcome community engagement and collaboration for expanding the benchmark tasks and models.
☆ Mapping Land Naturalness from Sentinel-2 using Deep Contextual and Geographical Priors ICLR 2024
In recent decades, the causes and consequences of climate change have accelerated, affecting our planet on an unprecedented scale. This change is closely tied to the ways in which humans alter their surroundings. As our actions continue to impact natural areas, using satellite images to observe and measure these effects has become crucial for understanding and combating climate change. Aiming to map land naturalness on the continuum of modern human pressure, we have developed a multi-modal supervised deep learning framework that addresses the unique challenges of satellite data and the task at hand. We incorporate contextual and geographical priors, represented by corresponding coordinate information and broader contextual information, including and surrounding the immediate patch to be predicted. Our framework improves the model's predictive performance in mapping land naturalness from Sentinel-2 data, a type of multi-spectral optical satellite imagery. Recognizing that our protective measures are only as effective as our understanding of the ecosystem, quantifying naturalness serves as a crucial step toward enhancing our environmental stewardship.
comment: 6 pages, 3 figures, ICLR 2024 Tackling Climate Change with Machine Learning Workshop
☆ MCNC: Manifold Constrained Network Compression
The outstanding performance of large foundational models across diverse tasks-from computer vision to speech and natural language processing-has significantly increased their demand. However, storing and transmitting these models pose significant challenges due to their massive size (e.g., 350GB for GPT-3). Recent literature has focused on compressing the original weights or reducing the number of parameters required for fine-tuning these models. These compression methods typically involve constraining the parameter space, for example, through low-rank reparametrization (e.g., LoRA) or quantization (e.g., QLoRA) during model training. In this paper, we present MCNC as a novel model compression method that constrains the parameter space to low-dimensional pre-defined and frozen nonlinear manifolds, which effectively cover this space. Given the prevalence of good solutions in over-parameterized deep neural networks, we show that by constraining the parameter space to our proposed manifold, we can identify high-quality solutions while achieving unprecedented compression rates across a wide variety of tasks. Through extensive experiments in computer vision and natural language processing tasks, we demonstrate that our method, MCNC, significantly outperforms state-of-the-art baselines in terms of compression, accuracy, and/or model reconstruction time.
☆ scTree: Discovering Cellular Hierarchies in the Presence of Batch Effects in scRNA-seq Data
We propose a novel method, scTree, for single-cell Tree Variational Autoencoders, extending a hierarchical clustering approach to single-cell RNA sequencing data. scTree corrects for batch effects while simultaneously learning a tree-structured data representation. This VAE-based method allows for a more in-depth understanding of complex cellular landscapes independently of the biasing effects of batches. We show empirically on seven datasets that scTree discovers the underlying clusters of the data and the hierarchical relations between them, as well as outperforms established baseline methods across these datasets. Additionally, we analyze the learned hierarchy to understand its biological relevance, thus underpinning the importance of integrating batch correction directly into the clustering procedure.
☆ Compositional Image Decomposition with Diffusion Models ICML 2024
Given an image of a natural scene, we are able to quickly decompose it into a set of components such as objects, lighting, shadows, and foreground. We can then envision a scene where we combine certain components with those from other images, for instance a set of objects from our bedroom and animals from a zoo under the lighting conditions of a forest, even if we have never encountered such a scene before. In this paper, we present a method to decompose an image into such compositional components. Our approach, Decomp Diffusion, is an unsupervised method which, when given a single image, infers a set of different components in the image, each represented by a diffusion model. We demonstrate how components can capture different factors of the scene, ranging from global scene descriptors like shadows or facial expression to local scene descriptors like constituent objects. We further illustrate how inferred factors can be flexibly composed, even with factors inferred from other models, to generate a variety of scenes sharply different than those seen in training time. Website and code at https://energy-based-model.github.io/decomp-diffusion.
comment: ICML 2024, Webpage: https://energy-based-model.github.io/decomp-diffusion
☆ From Artificial Needles to Real Haystacks: Improving Retrieval Capabilities in LLMs by Finetuning on Synthetic Data
Recent studies have shown that Large Language Models (LLMs) struggle to accurately retrieve information and maintain reasoning capabilities when processing long-context inputs. To address these limitations, we propose a finetuning approach utilizing a carefully designed synthetic dataset comprising numerical key-value retrieval tasks. Our experiments on models like GPT-3.5 Turbo and Mistral 7B demonstrate that finetuning LLMs on this dataset significantly improves LLMs' information retrieval and reasoning capabilities in longer-context settings. We present an analysis of the finetuned models, illustrating the transfer of skills from synthetic to real task evaluations (e.g., $10.5\%$ improvement on $20$ documents MDQA at position $10$ for GPT-3.5 Turbo). We also find that finetuned LLMs' performance on general benchmarks remains almost constant while LLMs finetuned on other baseline long-context augmentation data can encourage hallucination (e.g., on TriviaQA, Mistral 7B finetuned on our synthetic data cause no performance drop while other baseline data can cause a drop that ranges from $2.33\%$ to $6.19\%$). Our study highlights the potential of finetuning on synthetic data for improving the performance of LLMs on longer-context tasks.
☆ HuatuoGPT-Vision, Towards Injecting Medical Visual Knowledge into Multimodal LLMs at Scale
The rapid development of multimodal large language models (MLLMs), such as GPT-4V, has led to significant advancements. However, these models still face challenges in medical multimodal capabilities due to limitations in the quantity and quality of medical vision-text data, stemming from data privacy concerns and high annotation costs. While pioneering approaches utilize PubMed's large-scale, de-identified medical image-text pairs to address these limitations, they still fall short due to inherent data noise. To tackle this, we refined medical image-text pairs from PubMed and employed MLLMs (GPT-4V) in an 'unblinded' capacity to denoise and reformat the data, resulting in the creation of the PubMedVision dataset with 1.3 million medical VQA samples. Our validation demonstrates that: (1) PubMedVision can significantly enhance the medical multimodal capabilities of current MLLMs, showing significant improvement in benchmarks including the MMMU Health & Medicine track; (2) manual checks by medical experts and empirical results validate the superior data quality of our dataset compared to other data construction methods. Using PubMedVision, we train a 34B medical MLLM HuatuoGPT-Vision, which shows superior performance in medical multimodal scenarios among open-source MLLMs.
☆ Stochastic Concept Bottleneck Models
Concept Bottleneck Models (CBMs) have emerged as a promising interpretable method whose final prediction is based on intermediate, human-understandable concepts rather than the raw input. Through time-consuming manual interventions, a user can correct wrongly predicted concept values to enhance the model's downstream performance. We propose Stochastic Concept Bottleneck Models (SCBMs), a novel approach that models concept dependencies. In SCBMs, a single-concept intervention affects all correlated concepts, thereby improving intervention effectiveness. Unlike previous approaches that model the concept relations via an autoregressive structure, we introduce an explicit, distributional parameterization that allows SCBMs to retain the CBMs' efficient training and inference procedure. Additionally, we leverage the parameterization to derive an effective intervention strategy based on the confidence region. We show empirically on synthetic tabular and natural image datasets that our approach improves intervention effectiveness significantly. Notably, we showcase the versatility and usability of SCBMs by examining a setting with CLIP-inferred concepts, alleviating the need for manual concept annotations.
☆ Leveraging Contrastive Learning for Enhanced Node Representations in Tokenized Graph Transformers
While tokenized graph Transformers have demonstrated strong performance in node classification tasks, their reliance on a limited subset of nodes with high similarity scores for constructing token sequences overlooks valuable information from other nodes, hindering their ability to fully harness graph information for learning optimal node representations. To address this limitation, we propose a novel graph Transformer called GCFormer. Unlike previous approaches, GCFormer develops a hybrid token generator to create two types of token sequences, positive and negative, to capture diverse graph information. And a tailored Transformer-based backbone is adopted to learn meaningful node representations from these generated token sequences. Additionally, GCFormer introduces contrastive learning to extract valuable information from both positive and negative token sequences, enhancing the quality of learned node representations. Extensive experimental results across various datasets, including homophily and heterophily graphs, demonstrate the superiority of GCFormer in node classification, when compared to representative graph neural networks (GNNs) and graph Transformers.
☆ Advection Augmented Convolutional Neural Networks
Many problems in physical sciences are characterized by the prediction of space-time sequences. Such problems range from weather prediction to the analysis of disease propagation and video prediction. Modern techniques for the solution of these problems typically combine Convolution Neural Networks (CNN) architecture with a time prediction mechanism. However, oftentimes, such approaches underperform in the long-range propagation of information and lack explainability. In this work, we introduce a physically inspired architecture for the solution of such problems. Namely, we propose to augment CNNs with advection by designing a novel semi-Lagrangian push operator. We show that the proposed operator allows for the non-local transformation of information compared with standard convolutional kernels. We then complement it with Reaction and Diffusion neural components to form a network that mimics the Reaction-Advection-Diffusion equation, in high dimensions. We demonstrate the effectiveness of our network on a number of spatio-temporal datasets that show their merit.
☆ NTFormer: A Composite Node Tokenized Graph Transformer for Node Classification
Recently, the emerging graph Transformers have made significant advancements for node classification on graphs. In most graph Transformers, a crucial step involves transforming the input graph into token sequences as the model input, enabling Transformer to effectively learn the node representations. However, we observe that existing methods only express partial graph information of nodes through single-type token generation. Consequently, they require tailored strategies to encode additional graph-specific features into the Transformer to ensure the quality of node representation learning, limiting the model flexibility to handle diverse graphs. To this end, we propose a new graph Transformer called NTFormer to address this issue. NTFormer introduces a novel token generator called Node2Par, which constructs various token sequences using different token elements for each node. This flexibility allows Node2Par to generate valuable token sequences from different perspectives, ensuring comprehensive expression of rich graph features. Benefiting from the merits of Node2Par, NTFormer only leverages a Transformer-based backbone without graph-specific modifications to learn node representations, eliminating the need for graph-specific modifications. Extensive experiments conducted on various benchmark datasets containing homophily and heterophily graphs with different scales demonstrate the superiority of NTFormer over representative graph Transformers and graph neural networks for node classification.
☆ Improving the Expressiveness of $K$-hop Message-Passing GNNs by Injecting Contextualized Substructure Information KDD2023
Graph neural networks (GNNs) have become the \textit{de facto} standard for representational learning in graphs, and have achieved state-of-the-art performance in many graph-related tasks; however, it has been shown that the expressive power of standard GNNs are equivalent maximally to 1-dimensional Weisfeiler-Lehman (1-WL) Test. Recently, there is a line of works aiming to enhance the expressive power of graph neural networks. One line of such works aim at developing $K$-hop message-passing GNNs where node representation is updated by aggregating information from not only direct neighbors but all neighbors within $K$-hop of the node. Another line of works leverages subgraph information to enhance the expressive power which is proven to be strictly more powerful than 1-WL test. In this work, we discuss the limitation of $K$-hop message-passing GNNs and propose \textit{substructure encoding function} to uplift the expressive power of any $K$-hop message-passing GNN. We further inject contextualized substructure information to enhance the expressiveness of $K$-hop message-passing GNNs. Our method is provably more powerful than previous works on $K$-hop graph neural networks and 1-WL subgraph GNNs, which is a specific type of subgraph based GNN models, and not less powerful than 3-WL. Empirically, our proposed method set new state-of-the-art performance or achieves comparable performance for a variety of datasets. Our code is available at \url{https://github.com/tianyao-aka/Expresive_K_hop_GNNs}.
comment: 13 pages, published in Research track of KDD2023
☆ Revealing Fine-Grained Values and Opinions in Large Language Models
Uncovering latent values and opinions in large language models (LLMs) can help identify biases and mitigate potential harm. Recently, this has been approached by presenting LLMs with survey questions and quantifying their stances towards morally and politically charged statements. However, the stances generated by LLMs can vary greatly depending on how they are prompted, and there are many ways to argue for or against a given position. In this work, we propose to address this by analysing a large and robust dataset of 156k LLM responses to the 62 propositions of the Political Compass Test (PCT) generated by 6 LLMs using 420 prompt variations. We perform coarse-grained analysis of their generated stances and fine-grained analysis of the plain text justifications for those stances. For fine-grained analysis, we propose to identify tropes in the responses: semantically similar phrases that are recurrent and consistent across different prompts, revealing patterns in the text that a given LLM is prone to produce. We find that demographic features added to prompts significantly affect outcomes on the PCT, reflecting bias, as well as disparities between the results of tests when eliciting closed-form vs. open domain responses. Additionally, patterns in the plain text rationales via tropes show that similar justifications are repeatedly generated across models and prompts even with disparate stances.
comment: 28 pages, 20 figures, 7 tables
☆ FlowVQA: Mapping Multimodal Logic in Visual Question Answering with Flowcharts
Existing benchmarks for visual question answering lack in visual grounding and complexity, particularly in evaluating spatial reasoning skills. We introduce FlowVQA, a novel benchmark aimed at assessing the capabilities of visual question-answering multimodal language models in reasoning with flowcharts as visual contexts. FlowVQA comprises 2,272 carefully generated and human-verified flowchart images from three distinct content sources, along with 22,413 diverse question-answer pairs, to test a spectrum of reasoning tasks, including information localization, decision-making, and logical progression. We conduct a thorough baseline evaluation on a suite of both open-source and proprietary multimodal language models using various strategies, followed by an analysis of directional bias. The results underscore the benchmark's potential as a vital tool for advancing the field of multimodal modeling, providing a focused and challenging environment for enhancing model performance in visual and logical reasoning tasks.
☆ Tools Fail: Detecting Silent Errors in Faulty Tools
Tools have become a mainstay of LLMs, allowing them to retrieve knowledge not in their weights, to perform tasks on the web, and even to control robots. However, most ontologies and surveys of tool-use have assumed the core challenge for LLMs is choosing the tool. Instead, we introduce a framework for tools more broadly which guides us to explore a model's ability to detect "silent" tool errors, and reflect on how to plan. This more directly aligns with the increasingly popular use of models as tools. We provide an initial approach to failure recovery with promising results both on a controlled calculator setting and embodied agent planning.
comment: 18 pages, 12 figures
☆ T-FREE: Tokenizer-Free Generative LLMs via Sparse Representations for Memory-Efficient Embeddings
Tokenizers are crucial for encoding information in Large Language Models, but their development has recently stagnated, and they contain inherent weaknesses. Major limitations include computational overhead, ineffective vocabulary use, and unnecessarily large embedding and head layers. Additionally, their performance is biased towards a reference corpus, leading to reduced effectiveness for underrepresented languages. To remedy these issues, we propose T-FREE, which directly embeds words through sparse activation patterns over character triplets, and does not require a reference corpus. T-FREE inherently exploits morphological similarities and allows for strong compression of embedding layers. In our exhaustive experimental evaluation, we achieve competitive downstream performance with a parameter reduction of more than 85% on these layers. Further, T-FREE shows significant improvements in cross-lingual transfer learning.
☆ Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
Long-term causal effect estimation is a significant but challenging problem in many applications. Existing methods rely on ideal assumptions to estimate long-term average effects, e.g., no unobserved confounders or a binary treatment,while in numerous real-world applications, these assumptions could be violated and average effects are unable to provide individual-level suggestions.In this paper,we address a more general problem of estimating the long-term heterogeneous dose-response curve (HDRC) while accounting for unobserved confounders. Specifically, to remove unobserved confounding in observational data, we introduce an optimal transport weighting framework to align the observational data to the experimental data with theoretical guarantees. Furthermore,to accurately predict the heterogeneous effects of continuous treatment, we establish a generalization bound on counterfactual prediction error by leveraging the reweighted distribution induced by optimal transport. Finally, we develop an HDRC estimator building upon the above theoretical foundations. Extensive experimental studies conducted on multiple synthetic and semi-synthetic datasets demonstrate the effectiveness of our proposed method.
☆ BISeizuRe: BERT-Inspired Seizure Data Representation to Improve Epilepsy Monitoring
This study presents a novel approach for EEG-based seizure detection leveraging a BERT-based model. The model, BENDR, undergoes a two-phase training process. Initially, it is pre-trained on the extensive Temple University Hospital EEG Corpus (TUEG), a 1.5 TB dataset comprising over 10,000 subjects, to extract common EEG data patterns. Subsequently, the model is fine-tuned on the CHB-MIT Scalp EEG Database, consisting of 664 EEG recordings from 24 pediatric patients, of which 198 contain seizure events. Key contributions include optimizing fine-tuning on the CHB-MIT dataset, where the impact of model architecture, pre-processing, and post-processing techniques are thoroughly examined to enhance sensitivity and reduce false positives per hour (FP/h). We also explored custom training strategies to ascertain the most effective setup. The model undergoes a novel second pre-training phase before subject-specific fine-tuning, enhancing its generalization capabilities. The optimized model demonstrates substantial performance enhancements, achieving as low as 0.23 FP/h, 2.5$\times$ lower than the baseline model, with a lower but still acceptable sensitivity rate, showcasing the effectiveness of applying a BERT-based approach on EEG-based seizure detection.
comment: 4 pages, 2 tables, 2 figures
☆ Averaging log-likelihoods in direct alignment
To better align Large Language Models (LLMs) with human judgment, Reinforcement Learning from Human Feedback (RLHF) learns a reward model and then optimizes it using regularized RL. Recently, direct alignment methods were introduced to learn such a fine-tuned model directly from a preference dataset without computing a proxy reward function. These methods are built upon contrastive losses involving the log-likelihood of (dis)preferred completions according to the trained model. However, completions have various lengths, and the log-likelihood is not length-invariant. On the other side, the cross-entropy loss used in supervised training is length-invariant, as batches are typically averaged token-wise. To reconcile these approaches, we introduce a principled approach for making direct alignment length-invariant. Formally, we introduce a new averaging operator, to be composed with the optimality operator giving the best policy for the underlying RL problem. It translates into averaging the log-likelihood within the loss. We empirically study the effect of such averaging, observing a trade-off between the length of generations and their scores.
☆ Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion
Reinforcement Learning (RL) has been used to finetune Large Language Models (LLMs) using a reward model trained from preference data, to better align with human judgment. The recently introduced direct alignment methods, which are often simpler, more stable, and computationally lighter, can more directly achieve this. However, these approaches cannot optimize arbitrary rewards, and the preference-based ones are not the only rewards of interest for LLMs (eg., unit tests for code generation or textual entailment for summarization, among others). RL-finetuning is usually done with a variation of policy gradient, which calls for on-policy or near-on-policy samples, requiring costly generations. We introduce Contrastive Policy Gradient, or CoPG, a simple and mathematically principled new RL algorithm that can estimate the optimal policy even from off-policy data. It can be seen as an off-policy policy gradient approach that does not rely on important sampling techniques and highlights the importance of using (the right) state baseline. We show this approach to generalize the direct alignment method IPO (identity preference optimization) and classic policy gradient. We experiment with the proposed CoPG on a toy bandit problem to illustrate its properties, as well as for finetuning LLMs on a summarization task, using a learned reward function considered as ground truth for the purpose of the experiments.
☆ Towards Reducing Data Acquisition and Labeling for Defect Detection using Simulated Data
In many manufacturing settings, annotating data for machine learning and computer vision is costly, but synthetic data can be generated at significantly lower cost. Substituting the real-world data with synthetic data is therefore appealing for many machine learning applications that require large amounts of training data. However, relying solely on synthetic data is frequently inadequate for effectively training models that perform well on real-world data, primarily due to domain shifts between the synthetic and real-world data. We discuss approaches for dealing with such a domain shift when detecting defects in X-ray scans of aluminium wheels. Using both simulated and real-world X-ray images, we train an object detection model with different strategies to identify the training approach that generates the best detection results while minimising the demand for annotated real-world training samples. Our preliminary findings suggest that the sim-2-real domain adaptation approach is more cost-efficient than a fully supervised oracle - if the total number of available annotated samples is fixed. Given a certain number of labeled real-world samples, training on a mix of synthetic and unlabeled real-world data achieved comparable or even better detection results at significantly lower cost. We argue that future research into the cost-efficiency of different training strategies is important for a better understanding of how to allocate budget in applied machine learning projects.
☆ Heterogeneous Causal Metapath Graph Neural Network for Gene-Microbe-Disease Association Prediction
The recent focus on microbes in human medicine highlights their potential role in the genetic framework of diseases. To decode the complex interactions among genes, microbes, and diseases, computational predictions of gene-microbe-disease (GMD) associations are crucial. Existing methods primarily address gene-disease and microbe-disease associations, but the more intricate triple-wise GMD associations remain less explored. In this paper, we propose a Heterogeneous Causal Metapath Graph Neural Network (HCMGNN) to predict GMD associations. HCMGNN constructs a heterogeneous graph linking genes, microbes, and diseases through their pairwise associations, and utilizes six predefined causal metapaths to extract directed causal subgraphs, which facilitate the multi-view analysis of causal relations among three entity types. Within each subgraph, we employ a causal semantic sharing message passing network for node representation learning, coupled with an attentive fusion method to integrate these representations for predicting GMD associations. Our extensive experiments show that HCMGNN effectively predicts GMD associations and addresses association sparsity issue by enhancing the graph's semantics and structure.
☆ Advancing operational PM2.5 forecasting with dual deep neural networks (D-DNet)
PM2.5 forecasting is crucial for public health, air quality management, and policy development. Traditional physics-based models are computationally demanding and slow to adapt to real-time conditions. Deep learning models show potential in efficiency but still suffer from accuracy loss over time due to error accumulation. To address these challenges, we propose a dual deep neural network (D-DNet) prediction and data assimilation system that efficiently integrates real-time observations, ensuring reliable operational forecasting. D-DNet excels in global operational forecasting for PM2.5 and AOD550, maintaining consistent accuracy throughout the entire year of 2019. It demonstrates notably higher efficiency than the Copernicus Atmosphere Monitoring Service (CAMS) 4D-Var operational forecasting system while maintaining comparable accuracy. This efficiency benefits ensemble forecasting, uncertainty analysis, and large-scale tasks.
☆ Resolving Discrepancies in Compute-Optimal Scaling of Language Models
Kaplan et al. and Hoffmann et al. developed influential scaling laws for the optimal model size as a function of the compute budget, but these laws yield substantially different predictions. We explain the discrepancy by reproducing the Kaplan scaling law on two datasets (OpenWebText2 and RefinedWeb) and identifying three factors causing the difference: last layer computational cost, warmup duration, and scale-dependent optimizer tuning. With these factors corrected, we obtain excellent agreement with the Hoffmann et al. (i.e., "Chinchilla") scaling law. Counter to a hypothesis of Hoffmann et al., we find that careful learning rate decay is not essential for the validity of their scaling law. As a secondary result, we derive scaling laws for the optimal learning rate and batch size, finding that tuning the AdamW $\beta_2$ parameter is essential at lower batch sizes.
☆ YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention
The accurate prediction of drug molecule solubility is essential for determining their therapeutic effectiveness and safety, influencing the drug's ADME processes. Traditional solubility prediction techniques often fail to capture the complex nature of molecular tructures, leading to notable deviations between predictions and actual results. For example, the Discussion on Advanced Drug-Like Compound Structures. Lusci highlighted issues in capturing crucial cyclic structural information in molecules with ring structures. To overcome this issue, our research introduces a novel deep learning framework combining attention-based transformers, Long Short-Term Memory (LSTM) networks, and Graph Convolutional Networks (GCN), aimed at enhancing the precision of solubility predictions. Utilizing a training set of 9,943 compounds and testing on an anticancer compound dataset, our method achieved a correlation coefficient ($R^2$) of 0.55 and a Root Mean Square Error (RMSE) of 0.59, which outperforms the benchmark models' scores of 0.52 ($R^2$) and 0.61 (RMSE). Importantly, in an additional independent test, our model significantly outperformed the baseline with an RMSE of 1.05 compared to 1.28, a relative accuracy improvement of 45.9%. This research not only demonstrates the vast potential of deep learning for improving solubility prediction accuracy but also offers novel insights for drug design and selection in the future. Continued efforts will be directed towards optimizing the model architecture and extending its application to better support the drug development process, underscoring the pivotal role of deep learning in drug discovery.
comment: 18 pages, 12 figures, 6 tables
☆ Towards Learning Abductive Reasoning using VSA Distributed Representations
We introduce the Abductive Rule Learner with Context-awareness (ARLC), a model that solves abstract reasoning tasks based on Learn-VRF. ARLC features a novel and more broadly applicable training objective for abductive reasoning, resulting in better interpretability and higher accuracy when solving Raven's progressive matrices (RPM). ARLC allows both programming domain knowledge and learning the rules underlying a data distribution. We evaluate ARLC on the I-RAVEN dataset, showcasing state-of-the-art accuracy across both in-distribution and out-of-distribution (unseen attribute-rule pairs) tests. ARLC surpasses neuro-symbolic and connectionist baselines, including large language models, despite having orders of magnitude fewer parameters. We show ARLC's robustness to post-programming training by incrementally learning from examples on top of programmed knowledge, which only improves its performance and does not result in catastrophic forgetting of the programmed solution. We validate ARLC's seamless transfer learning from a 2x2 RPM constellation to unseen constellations. Our code is available at https://github.com/IBM/abductive-rule-learner-with-context-awareness.
comment: Accepted at the 18th International Conference on Neural-Symbolic Learning and Reasoning (NeSy) 2024
☆ CHEW: A Dataset of CHanging Events in Wikipedia
We introduce CHEW, a novel dataset of changing events in Wikipedia expressed in naturally occurring text. We use CHEW for probing LLMs for their timeline understanding of Wikipedia entities and events in generative and classification experiments. Our results suggest that LLMs, despite having temporal information available, struggle to construct accurate timelines. We further show the usefulness of CHEW-derived embeddings for identifying meaning shift.
comment: Short Paper
☆ A Teacher Is Worth A Million Instructions
Large Language Models(LLMs) have shown exceptional abilities, yet training these models can be quite challenging. There is a strong dependence on the quality of data and finding the best instruction tuning set. Further, the inherent limitations in training methods create substantial difficulties to train relatively smaller models with 7B and 13B parameters. In our research, we suggest an improved training method for these models by utilising knowledge from larger models, such as a mixture of experts (8x7B) architectures. The scale of these larger models allows them to capture a wide range of variations from data alone, making them effective teachers for smaller models. Moreover, we implement a novel post-training domain alignment phase that employs domain-specific expert models to boost domain-specific knowledge during training while preserving the model's ability to generalise. Fine-tuning Mistral 7B and 2x7B with our method surpasses the performance of state-of-the-art language models with more than 7B and 13B parameters: achieving up to $7.9$ in MT-Bench and $93.04\%$ on AlpacaEval.
comment: 7 pages, 4 figures
☆ Adaptive Stochastic Weight Averaging
Ensemble models often improve generalization performances in challenging tasks. Yet, traditional techniques based on prediction averaging incur three well-known disadvantages: the computational overhead of training multiple models, increased latency, and memory requirements at test time. To address these issues, the Stochastic Weight Averaging (SWA) technique maintains a running average of model parameters from a specific epoch onward. Despite its potential benefits, maintaining a running average of parameters can hinder generalization, as an underlying running model begins to overfit. Conversely, an inadequately chosen starting point can render SWA more susceptible to underfitting compared to an underlying running model. In this work, we propose Adaptive Stochastic Weight Averaging (ASWA) technique that updates a running average of model parameters, only when generalization performance is improved on the validation dataset. Hence, ASWA can be seen as a combination of SWA with the early stopping technique, where the former accepts all updates on a parameter ensemble model and the latter rejects any update on an underlying running model. We conducted extensive experiments ranging from image classification to multi-hop reasoning over knowledge graphs. Our experiments over 11 benchmark datasets with 7 baseline models suggest that ASWA leads to a statistically better generalization across models and datasets
☆ Dimensions underlying the representational alignment of deep neural networks with humans
Determining the similarities and differences between humans and artificial intelligence is an important goal both in machine learning and cognitive neuroscience. However, similarities in representations only inform us about the degree of alignment, not the factors that determine it. Drawing upon recent developments in cognitive science, we propose a generic framework for yielding comparable representations in humans and deep neural networks (DNN). Applying this framework to humans and a DNN model of natural images revealed a low-dimensional DNN embedding of both visual and semantic dimensions. In contrast to humans, DNNs exhibited a clear dominance of visual over semantic features, indicating divergent strategies for representing images. While in-silico experiments showed seemingly-consistent interpretability of DNN dimensions, a direct comparison between human and DNN representations revealed substantial differences in how they process images. By making representations directly comparable, our results reveal important challenges for representational alignment, offering a means for improving their comparability.
☆ Dancing in the Shadows: Harnessing Ambiguity for Fairer Classifiers
This paper introduces a novel approach to bolster algorithmic fairness in scenarios where sensitive information is only partially known. In particular, we propose to leverage instances with uncertain identity with regards to the sensitive attribute to train a conventional machine learning classifier. The enhanced fairness observed in the final predictions of this classifier highlights the promising potential of prioritizing ambiguity (i.e., non-normativity) as a means to improve fairness guarantees in real-world classification tasks.
☆ Segment Anything Model for automated image data annotation: empirical studies using text prompts from Grounding DINO
Grounding DINO and the Segment Anything Model (SAM) have achieved impressive performance in zero-shot object detection and image segmentation, respectively. Together, they have a great potential in revolutionizing zero-shot semantic segmentation or data annotation. Yet, in specialized domains like medical image segmentation, objects of interest (e.g., organs, tissues, and tumors) may not fall in existing class names. To address this problem, the referring expression comprehension (REC) ability of Grounding DINO is leveraged to detect arbitrary targets by their language descriptions. However, recent studies have highlighted severe limitation of the REC framework in this application setting owing to its tendency to make false positive predictions when the target is absent in the given image. And, while this bottleneck is central to the prospect of open-set semantic segmentation, it is still largely unknown how much improvement can be achieved by studying the prediction errors. To this end, we perform empirical studies on eight publicly available datasets and reveal that these errors consistently follow a predictable pattern and can, thus, be mitigated by a simple strategy. Specifically, we show that these false positive detections with appreciable confidence scores generally occupy large image areas and can usually be filtered by their relative sizes. More importantly, we expect these observations to inspire future research in improving REC-based detection and automated segmentation. Using this technique, we evaluate the performance of SAM on multiple datasets from various specialized domains and report significant improvement in segmentation performance and annotation time savings over manual approaches.
☆ A look under the hood of the Interactive Deep Learning Enterprise (No-IDLE)
This DFKI technical report presents the anatomy of the No-IDLE prototype system (funded by the German Federal Ministry of Education and Research) that provides not only basic and fundamental research in interactive machine learning, but also reveals deeper insights into users' behaviours, needs, and goals. Machine learning and deep learning should become accessible to millions of end users. No-IDLE's goals and scienfific challenges centre around the desire to increase the reach of interactive deep learning solutions for non-experts in machine learning. One of the key innovations described in this technical report is a methodology for interactive machine learning combined with multimodal interaction which will become central when we start interacting with semi-intelligent machines in the upcoming area of neural networks and large language models.
comment: DFKI Technical Report
☆ Stochastic Gradient Piecewise Deterministic Monte Carlo Samplers
Recent work has suggested using Monte Carlo methods based on piecewise deterministic Markov processes (PDMPs) to sample from target distributions of interest. PDMPs are non-reversible continuous-time processes endowed with momentum, and hence can mix better than standard reversible MCMC samplers. Furthermore, they can incorporate exact sub-sampling schemes which only require access to a single (randomly selected) data point at each iteration, yet without introducing bias to the algorithm's stationary distribution. However, the range of models for which PDMPs can be used, particularly with sub-sampling, is limited. We propose approximate simulation of PDMPs with sub-sampling for scalable sampling from posterior distributions. The approximation takes the form of an Euler approximation to the true PDMP dynamics, and involves using an estimate of the gradient of the log-posterior based on a data sub-sample. We thus call this class of algorithms stochastic-gradient PDMPs. Importantly, the trajectories of stochastic-gradient PDMPs are continuous and can leverage recent ideas for sampling from measures with continuous and atomic components. We show these methods are easy to implement, present results on their approximation error and demonstrate numerically that this class of algorithms has similar efficiency to, but is more robust than, stochastic gradient Langevin dynamics.
☆ FedMap: Iterative Magnitude-Based Pruning for Communication-Efficient Federated Learning
Federated Learning (FL) is a distributed machine learning approach that enables training on decentralized data while preserving privacy. However, FL systems often involve resource-constrained client devices with limited computational power, memory, storage, and bandwidth. This paper introduces FedMap, a novel method that aims to enhance the communication efficiency of FL deployments by collaboratively learning an increasingly sparse global model through iterative, unstructured pruning. Importantly, FedMap trains a global model from scratch, unlike other methods reported in the literature, making it ideal for privacy-critical use cases such as in the medical and finance domains, where suitable pre-training data is often limited. FedMap adapts iterative magnitude-based pruning to the FL setting, ensuring all clients prune and refine the same subset of the global model parameters, therefore gradually reducing the global model size and communication overhead. The iterative nature of FedMap, forming subsequent models as subsets of predecessors, avoids parameter reactivation issues seen in prior work, resulting in stable performance. In this paper we provide an extensive evaluation of FedMap across diverse settings, datasets, model architectures, and hyperparameters, assessing performance in both IID and non-IID environments. Comparative analysis against the baseline approach demonstrates FedMap's ability to achieve more stable client model performance. For IID scenarios, FedMap achieves over $90$\% pruning without significant performance degradation. In non-IID settings, it achieves at least $~80$\% pruning while maintaining accuracy. FedMap offers a promising solution to alleviate communication bottlenecks in FL systems while retaining model accuracy.
comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems
☆ Accuracy on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation
"Accuracy-on-the-line" is a widely observed phenomenon in machine learning, where a model's accuracy on in-distribution (ID) and out-of-distribution (OOD) data is positively correlated across different hyperparameters and data configurations. But when does this useful relationship break down? In this work, we explore its robustness. The key observation is that noisy data and the presence of nuisance features can be sufficient to shatter the Accuracy-on-the-line phenomenon. In these cases, ID and OOD accuracy can become negatively correlated, leading to "Accuracy-on-the-wrong-line". This phenomenon can also occur in the presence of spurious (shortcut) features, which tend to overshadow the more complex signal (core, non-spurious) features, resulting in a large nuisance feature space. Moreover, scaling to larger datasets does not mitigate this undesirable behavior and may even exacerbate it. We formally prove a lower bound on Out-of-distribution (OOD) error in a linear classification model, characterizing the conditions on the noise and nuisance features for a large OOD error. We finally demonstrate this phenomenon across both synthetic and real datasets with noisy data and nuisance features.
☆ On Convex Optimization with Semi-Sensitive Features COLT 2024
We study the differentially private (DP) empirical risk minimization (ERM) problem under the semi-sensitive DP setting where only some features are sensitive. This generalizes the Label DP setting where only the label is sensitive. We give improved upper and lower bounds on the excess risk for DP-ERM. In particular, we show that the error only scales polylogarithmically in terms of the sensitive domain size, improving upon previous results that scale polynomially in the sensitive domain size (Ghazi et al., 2021).
comment: To appear in COLT 2024
☆ Lithium-Ion Battery System Health Monitoring and Fault Analysis from Field Data Using Gaussian Processes
Health monitoring, fault analysis, and detection are critical for the safe and sustainable operation of battery systems. We apply Gaussian process resistance models on lithium iron phosphate battery field data to effectively separate the time-dependent and operating point-dependent resistance. The data set contains 29 battery systems returned to the manufacturer for warranty, each with eight cells in series, totaling 232 cells and 131 million data rows. We develop probabilistic fault detection rules using recursive spatiotemporal Gaussian processes. These processes allow the quick processing of over a million data points, enabling advanced online monitoring and furthering the understanding of battery pack failure in the field. The analysis underlines that often, only a single cell shows abnormal behavior or a knee point, consistent with weakest-link failure for cells connected in series, amplified by local resistive heating. The results further the understanding of how batteries degrade and fail in the field and demonstrate the potential of efficient online monitoring based on data. We open-source the code and publish the large data set upon completion of the review of this article.
☆ Zero-shot domain adaptation based on dual-level mix and contrast
Zero-shot domain adaptation (ZSDA) is a domain adaptation problem in the situation that labeled samples for a target task (task of interest) are only available from the source domain at training time, but for a task different from the task of interest (irrelevant task), labeled samples are available from both source and target domains. In this situation, classical domain adaptation techniques can only learn domain-invariant features in the irrelevant task. However, due to the difference in sample distribution between the two tasks, domain-invariant features learned in the irrelevant task are biased and not necessarily domain-invariant in the task of interest. To solve this problem, this paper proposes a new ZSDA method to learn domain-invariant features with low task bias. To this end, we propose (1) data augmentation with dual-level mixups in both task and domain to fill the absence of target task-of-interest data, (2) an extension of domain adversarial learning to learn domain-invariant features with less task bias, and (3) a new dual-level contrastive learning method that enhances domain-invariance and less task biasedness of features. Experimental results show that our proposal achieves good performance on several benchmarks.
comment: Accepted by IEEE conference on Artificial intelligence 2024
☆ FedMLP: Federated Multi-Label Medical Image Classification under Task Heterogeneity MICCAI 2024
Cross-silo federated learning (FL) enables decentralized organizations to collaboratively train models while preserving data privacy and has made significant progress in medical image classification. One common assumption is task homogeneity where each client has access to all classes during training. However, in clinical practice, given a multi-label classification task, constrained by the level of medical knowledge and the prevalence of diseases, each institution may diagnose only partial categories, resulting in task heterogeneity. How to pursue effective multi-label medical image classification under task heterogeneity is under-explored. In this paper, we first formulate such a realistic label missing setting in the multi-label FL domain and propose a two-stage method FedMLP to combat class missing from two aspects: pseudo label tagging and global knowledge learning. The former utilizes a warmed-up model to generate class prototypes and select samples with high confidence to supplement missing labels, while the latter uses a global model as a teacher for consistency regularization to prevent forgetting missing class knowledge. Experiments on two publicly-available medical datasets validate the superiority of FedMLP against the state-of-the-art both federated semi-supervised and noisy label learning approaches under task heterogeneity. Code is available at https://github.com/szbonaldo/FedMLP.
comment: Early accepted by MICCAI 2024
☆ Semi-supervised Concept Bottleneck Models
Concept Bottleneck Models (CBMs) have garnered increasing attention due to their ability to provide concept-based explanations for black-box deep learning models while achieving high final prediction accuracy using human-like concepts. However, the training of current CBMs heavily relies on the accuracy and richness of annotated concepts in the dataset. These concept labels are typically provided by experts, which can be costly and require significant resources and effort. Additionally, concept saliency maps frequently misalign with input saliency maps, causing concept predictions to correspond to irrelevant input features - an issue related to annotation alignment. To address these limitations, we propose a new framework called SSCBM (Semi-supervised Concept Bottleneck Model). Our SSCBM is suitable for practical situations where annotated data is scarce. By leveraging joint training on both labeled and unlabeled data and aligning the unlabeled data at the concept level, we effectively solve these issues. We proposed a strategy to generate pseudo labels and an alignment loss. Experiments demonstrate that our SSCBM is both effective and efficient. With only 20% labeled data, we achieved 93.19% (96.39% in a fully supervised setting) concept accuracy and 75.51% (79.82% in a fully supervised setting) prediction accuracy.
comment: 17 pages
☆ A Fast Learning-Based Surrogate of Electrical Machines using a Reduced Basis
A surrogate model approximates the outputs of a solver of Partial Differential Equations (PDEs) with a low computational cost. In this article, we propose a method to build learning-based surrogates in the context of parameterized PDEs, which are PDEs that depend on a set of parameters but are also temporal and spatial processes. Our contribution is a method hybridizing the Proper Orthogonal Decomposition and several Support Vector Regression machines. This method is conceived to work in real-time, thus aimed for being used in the context of digital twins, where a user can perform an interactive analysis of results based on the proposed surrogate. We present promising results on two use cases concerning electrical machines. These use cases are not toy examples but are produced an industrial computational code, they use meshes representing non-trivial geometries and contain non-linearities.
☆ Alignment For Performance Improvement in Conversation Bots
This paper shows that alignment methods can achieve superior adherence to guardrails compared to instruction fine-tuning alone in conversational agents, also known as bots, within predefined guidelines or 'guardrails'. It examines traditional training approaches such as instruction fine-tuning and the recent advancements in direct alignment methods like Identity Preference Optimization (IPO), and Kahneman-Tversky Optimization (KTO). The effectiveness of alignment techniques both pre and post-instruction tuning is highlighted, illustrating their potential to optimize conversational bots in domains that require strict adherence to specified rules, such as customer care.
☆ Evaluating AI Group Fairness: a Fuzzy Logic Perspective
Artificial intelligence systems often address fairness concerns by evaluating and mitigating measures of group discrimination, for example that indicate biases against certain genders or races. However, what constitutes group fairness depends on who is asked and the social context, whereas definitions are often relaxed to accept small deviations from the statistical constraints they set out to impose. Here we decouple definitions of group fairness both from the context and from relaxation-related uncertainty by expressing them in the axiomatic system of Basic fuzzy Logic (BL) with loosely understood predicates, like encountering group members. We then evaluate the definitions in subclasses of BL, such as Product or Lukasiewicz logics. Evaluation produces continuous instead of binary truth values by choosing the logic subclass and truth values for predicates that reflect uncertain context-specific beliefs, such as stakeholder opinions gathered through questionnaires. Internally, it follows logic-specific rules to compute the truth values of definitions. We show that commonly held propositions standardize the resulting mathematical formulas and we transcribe logic and truth value choices to layperson terms, so that anyone can answer them. We also use our framework to study several literature definitions of algorithmic fairness, for which we rationalize previous expedient practices that are non-probabilistic and show how to re-interpret their formulas and parameters in new contexts.
comment: preprint, 32 pages, 7 figures, 2 theorems, 6 appendices
☆ Federated Graph Semantic and Structural Learning
Federated graph learning collaboratively learns a global graph neural network with distributed graphs, where the non-independent and identically distributed property is one of the major challenges. Most relative arts focus on traditional distributed tasks like images and voices, incapable of graph structures. This paper firstly reveals that local client distortion is brought by both node-level semantics and graph-level structure. First, for node-level semantics, we find that contrasting nodes from distinct classes is beneficial to provide a well-performing discrimination. We pull the local node towards the global node of the same class and push it away from the global node of different classes. Second, we postulate that a well-structural graph neural network possesses similarity for neighbors due to the inherent adjacency relationships. However, aligning each node with adjacent nodes hinders discrimination due to the potential class inconsistency. We transform the adjacency relationships into the similarity distribution and leverage the global model to distill the relation knowledge into the local model, which preserves the structural information and discriminability of the local model. Empirical results on three graph datasets manifest the superiority of the proposed method over its counterparts.
☆ Semi-adaptive Synergetic Two-way Pseudoinverse Learning System
Deep learning has become a crucial technology for making breakthroughs in many fields. Nevertheless, it still faces two important challenges in theoretical and applied aspects. The first lies in the shortcomings of gradient descent based learning schemes which are time-consuming and difficult to determine the learning control hyperparameters. Next, the architectural design of the model is usually tricky. In this paper, we propose a semi-adaptive synergetic two-way pseudoinverse learning system, wherein each subsystem encompasses forward learning, backward learning, and feature concatenation modules. The whole system is trained using a non-gradient descent learning algorithm. It simplifies the hyperparameter tuning while improving the training efficiency. The architecture of the subsystems is designed using a data-driven approach that enables automated determination of the depth of the subsystems. We compare our method with the baselines of mainstream non-gradient descent based methods and the results demonstrate the effectiveness of our proposed method. The source code for this paper is available at http://github.com/B-berrypie/Semi-adaptive-Synergetic-Two-way-Pseudoinverse-Learning-System}{http://github.com/B-berrypie/Semi-adaptive-Synergetic-Two-way-Pseudoinverse-Learning-System.
☆ Enhanced ASR Robustness to Packet Loss with a Front-End Adaptation Network INTERSPEECH 2024
In the realm of automatic speech recognition (ASR), robustness in noisy environments remains a significant challenge. Recent ASR models, such as Whisper, have shown promise, but their efficacy in noisy conditions can be further enhanced. This study is focused on recovering from packet loss to improve the word error rate (WER) of ASR models. We propose using a front-end adaptation network connected to a frozen ASR model. The adaptation network is trained to modify the corrupted input spectrum by minimizing the criteria of the ASR model in addition to an enhancement loss function. Our experiments demonstrate that the adaptation network, trained on Whisper's criteria, notably reduces word error rates across domains and languages in packet-loss scenarios. This improvement is achieved with minimal affect to Whisper model's foundational performance, underscoring our method's practicality and potential in enhancing ASR models in challenging acoustic environments.
comment: Accepted for publication at INTERSPEECH 2024
☆ Fine-tuned network relies on generic representation to solve unseen cognitive task
Fine-tuning pretrained language models has shown promising results on a wide range of tasks, but when encountering a novel task, do they rely more on generic pretrained representation, or develop brand new task-specific solutions? Here, we fine-tuned GPT-2 on a context-dependent decision-making task, novel to the model but adapted from neuroscience literature. We compared its performance and internal mechanisms to a version of GPT-2 trained from scratch on the same task. Our results show that fine-tuned models depend heavily on pretrained representations, particularly in later layers, while models trained from scratch develop different, more task-specific mechanisms. These findings highlight the advantages and limitations of pretraining for task generalization and underscore the need for further investigation into the mechanisms underpinning task-specific fine-tuning in LLMs.
☆ Learning Pareto Set for Multi-Objective Continuous Robot Control
For a control problem with multiple conflicting objectives, there exists a set of Pareto-optimal policies called the Pareto set instead of a single optimal policy. When a multi-objective control problem is continuous and complex, traditional multi-objective reinforcement learning (MORL) algorithms search for many Pareto-optimal deep policies to approximate the Pareto set, which is quite resource-consuming. In this paper, we propose a simple and resource-efficient MORL algorithm that learns a continuous representation of the Pareto set in a high-dimensional policy parameter space using a single hypernet. The learned hypernet can directly generate various well-trained policy networks for different user preferences. We compare our method with two state-of-the-art MORL algorithms on seven multi-objective continuous robot control problems. Experimental results show that our method achieves the best overall performance with the least training parameters. An interesting observation is that the Pareto set is well approximated by a curved line or surface in a high-dimensional parameter space. This observation will provide insight for researchers to design new MORL algorithms.
☆ Time Matters: Scaling Laws for Any Budget
A primary cost driver for training large models is wall-clock training time. We show that popular time estimates based on FLOPs are poor estimates, and construct a more accurate proxy based on memory copies. We show that with some simple accounting, we can estimate the training speed of a transformer model from its hyperparameters. Combined with a scaling law curve like Chinchilla, this lets us estimate the final loss of the model. We fit our estimate to real data with a linear regression, and apply the result to rewrite Chinchilla in terms of a model's estimated training time as opposed to the amount of training data. This gives an expression for the loss in terms of the model's hyperparameters alone. We show that this expression is accurate across a wide range of model hyperparameter values, enabling us to analytically make architectural decisions and train models more efficiently.
☆ Statistical Test for Data Analysis Pipeline by Selective Inference
A data analysis pipeline is a structured sequence of processing steps that transforms raw data into meaningful insights by effectively integrating various analysis algorithms. In this paper, we propose a novel statistical test designed to assess the statistical significance of data analysis pipelines. Our approach allows for the systematic development of valid statistical tests applicable to any data analysis pipeline configuration composed of a set of data analysis components. We have developed this framework by adapting selective inference, which has gained recent attention as a new statistical inference technique for data-driven hypotheses. The proposed statistical test is theoretically designed to control the type I error at the desired significance level in finite samples. As examples, we consider a class of pipelines composed of three missing value imputation algorithms, three outlier detection algorithms, and three feature selection algorithms. We confirm the validity of our statistical test through experiments with both synthetic and real data for this class of data analysis pipelines. Additionally, we present an implementation framework that facilitates testing across any configuration of data analysis pipelines in this class without extra implementation costs.
☆ LearnedKV: Integrating LSM and Learned Index for Superior Performance on SSD
In this paper, we introduce LearnedKV, a novel tiered key-value (KV) store that seamlessly integrates a Log-Structured Merge (LSM) tree with a Learned Index. This integration yields superior read and write performance compared to standalone indexing structures on SSDs. Our design capitalizes on the LSM tree's high write/update throughput and the Learned Index's fast read capabilities, enabling each component to leverage its strengths. We analyze the impact of size on LSM tree performance and demonstrate how the tiered Learned Index significantly mitigates the LSM tree's size-related performance degradation, particularly by reducing the intensive I/O operations resulting from re-insertions after Garbage Collection (GC). To maintain rapid read performance for newly inserted keys, we introduce a non-blocking conversion mechanism that efficiently transforms the existing LSM tree into a new Learned Index with minimal overhead during GC. Our experimental results, conducted across diverse workloads, show that LearnedKV outperforms state-of-the-art solutions by up to 1.32x in read requests and 1.31x in write performance.
comment: 17 pages, 13 figures
☆ From Biased Selective Labels to Pseudo-Labels: An Expectation-Maximization Framework for Learning from Biased Decisions ICML 2024
Selective labels occur when label observations are subject to a decision-making process; e.g., diagnoses that depend on the administration of laboratory tests. We study a clinically-inspired selective label problem called disparate censorship, where labeling biases vary across subgroups and unlabeled individuals are imputed as "negative" (i.e., no diagnostic test = no illness). Machine learning models naively trained on such labels could amplify labeling bias. Inspired by causal models of selective labels, we propose Disparate Censorship Expectation-Maximization (DCEM), an algorithm for learning in the presence of disparate censorship. We theoretically analyze how DCEM mitigates the effects of disparate censorship on model performance. We validate DCEM on synthetic data, showing that it improves bias mitigation (area between ROC curves) without sacrificing discriminative performance (AUC) compared to baselines. We achieve similar results in a sepsis classification task using clinical data.
comment: 39 pages, 33 figures. ICML 2024 conference paper
☆ Predicting the duration of traffic incidents for Sydney greater metropolitan area using machine learning methods
This research presents a comprehensive approach to predicting the duration of traffic incidents and classifying them as short-term or long-term across the Sydney Metropolitan Area. Leveraging a dataset that encompasses detailed records of traffic incidents, road network characteristics, and socio-economic indicators, we train and evaluate a variety of advanced machine learning models including Gradient Boosted Decision Trees (GBDT), Random Forest, LightGBM, and XGBoost. The models are assessed using Root Mean Square Error (RMSE) for regression tasks and F1 score for classification tasks. Our experimental results demonstrate that XGBoost and LightGBM outperform conventional models with XGBoost achieving the lowest RMSE of 33.7 for predicting incident duration and highest classification F1 score of 0.62 for a 30-minute duration threshold. For classification, the 30-minute threshold balances performance with 70.84\% short-term duration classification accuracy and 62.72\% long-term duration classification accuracy. Feature importance analysis, employing both tree split counts and SHAP values, identifies the number of affected lanes, traffic volume, and types of primary and secondary vehicles as the most influential features. The proposed methodology not only achieves high predictive accuracy but also provides stakeholders with vital insights into factors contributing to incident durations. These insights enable more informed decision-making for traffic management and response strategies. The code is available by the link: https://github.com/Future-Mobility-Lab/SydneyIncidents
☆ What Is Missing In Homophily? Disentangling Graph Homophily For Graph Neural Networks
Graph homophily refers to the phenomenon that connected nodes tend to share similar characteristics. Understanding this concept and its related metrics is crucial for designing effective Graph Neural Networks (GNNs). The most widely used homophily metrics, such as edge or node homophily, quantify such "similarity" as label consistency across the graph topology. These metrics are believed to be able to reflect the performance of GNNs, especially on node-level tasks. However, many recent studies have empirically demonstrated that the performance of GNNs does not always align with homophily metrics, and how homophily influences GNNs still remains unclear and controversial. Then, a crucial question arises: What is missing in our current understanding of homophily? To figure out the missing part, in this paper, we disentangle the graph homophily into $3$ aspects: label, structural, and feature homophily, providing a more comprehensive understanding of GNN performance. To investigate their synergy, we propose a Contextual Stochastic Block Model with $3$ types of Homophily (CSBM-3H), where the topology and feature generation are controlled by the $3$ metrics. Based on the theoretical analysis of CSBM-3H, we derive a new composite metric, named Tri-Hom, that considers all $3$ aspects and overcomes the limitations of conventional homophily metrics. The theoretical conclusions and the effectiveness of Tri-Hom have been verified through synthetic experiments on CSBM-3H. In addition, we conduct experiments on $31$ real-world benchmark datasets and calculate the correlations between homophily metrics and model performance. Tri-Hom has significantly higher correlation values than $17$ existing metrics that only focus on a single homophily aspect, demonstrating its superiority and the importance of homophily synergy. Our code is available at \url{https://github.com/zylMozart/Disentangle_GraphHom}.
☆ Decoding-Time Language Model Alignment with Multiple Objectives
Aligning language models (LMs) to human preferences has emerged as a critical pursuit, enabling these models to better serve diverse user needs. Existing methods primarily focus on optimizing LMs for a single reward function, limiting their adaptability to varied objectives. Here, we propose $\textbf{multi-objective decoding (MOD)}$, a decoding-time algorithm that outputs the next token from a linear combination of predictions of all base models, for any given weightings over different objectives. We exploit a common form among a family of $f$-divergence regularized alignment approaches (such as PPO, DPO, and their variants) to identify a closed-form solution by Legendre transform, and derive an efficient decoding strategy. Theoretically, we show why existing approaches can be sub-optimal even in natural settings and obtain optimality guarantees for our method. Empirical results demonstrate the effectiveness of the algorithm. For example, compared to a parameter-merging baseline, MOD achieves 12.8% overall reward improvement when equally optimizing towards $3$ objectives. Moreover, we experiment with MOD on combining three fully-finetuned LLMs of different model sizes, each aimed at different objectives such as safety, coding, and general user preference. Unlike traditional methods that require careful curation of a mixture of datasets to achieve comprehensive improvement, we can quickly experiment with preference weightings using MOD to find the best combination of models. Our best combination reduces toxicity on Toxigen to nearly 0% and achieves 7.9--33.3% improvement across other three metrics ($\textit{i.e.}$, Codex@1, GSM-COT, BBH-COT).
☆ LICO: Large Language Models for In-Context Molecular Optimization
Optimizing black-box functions is a fundamental problem in science and engineering. To solve this problem, many approaches learn a surrogate function that estimates the underlying objective from limited historical evaluations. Large Language Models (LLMs), with their strong pattern-matching capabilities via pretraining on vast amounts of data, stand out as a potential candidate for surrogate modeling. However, directly prompting a pretrained language model to produce predictions is not feasible in many scientific domains due to the scarcity of domain-specific data in the pretraining corpora and the challenges of articulating complex problems in natural language. In this work, we introduce LICO, a general-purpose model that extends arbitrary base LLMs for black-box optimization, with a particular application to the molecular domain. To achieve this, we equip the language model with a separate embedding layer and prediction layer, and train the model to perform in-context predictions on a diverse set of functions defined over the domain. Once trained, LICO can generalize to unseen molecule properties simply via in-context prompting. LICO achieves state-of-the-art performance on PMO, a challenging molecular optimization benchmark comprising over 20 objective functions.
☆ Temporally Multi-Scale Sparse Self-Attention for Physical Activity Data Imputation
Wearable sensors enable health researchers to continuously collect data pertaining to the physiological state of individuals in real-world settings. However, such data can be subject to extensive missingness due to a complex combination of factors. In this work, we study the problem of imputation of missing step count data, one of the most ubiquitous forms of wearable sensor data. We construct a novel and large scale data set consisting of a training set with over 3 million hourly step count observations and a test set with over 2.5 million hourly step count observations. We propose a domain knowledge-informed sparse self-attention model for this task that captures the temporal multi-scale nature of step-count data. We assess the performance of the model relative to baselines and conduct ablation studies to verify our specific model designs.
comment: Accepted by Conference on Health, Inference, and Learning (CHIL) 2024
☆ Learning Retrieval Augmentation for Personalized Dialogue Generation EMNLP-2023
Personalized dialogue generation, focusing on generating highly tailored responses by leveraging persona profiles and dialogue context, has gained significant attention in conversational AI applications. However, persona profiles, a prevalent setting in current personalized dialogue datasets, typically composed of merely four to five sentences, may not offer comprehensive descriptions of the persona about the agent, posing a challenge to generate truly personalized dialogues. To handle this problem, we propose $\textbf{L}$earning Retrieval $\textbf{A}$ugmentation for $\textbf{P}$ersonalized $\textbf{D}$ial$\textbf{O}$gue $\textbf{G}$eneration ($\textbf{LAPDOG}$), which studies the potential of leveraging external knowledge for persona dialogue generation. Specifically, the proposed LAPDOG model consists of a story retriever and a dialogue generator. The story retriever uses a given persona profile as queries to retrieve relevant information from the story document, which serves as a supplementary context to augment the persona profile. The dialogue generator utilizes both the dialogue history and the augmented persona profile to generate personalized responses. For optimization, we adopt a joint training framework that collaboratively learns the story retriever and dialogue generator, where the story retriever is optimized towards desired ultimate metrics (e.g., BLEU) to retrieve content for the dialogue generator to generate personalized responses. Experiments conducted on the CONVAI2 dataset with ROCStory as a supplementary data source show that the proposed LAPDOG method substantially outperforms the baselines, indicating the effectiveness of the proposed method. The LAPDOG model code is publicly available for further exploration. https://github.com/hqsiswiliam/LAPDOG
comment: Accepted to EMNLP-2023
☆ Universal Checkpointing: Efficient and Flexible Checkpointing for Large Scale Distributed Training
Existing checkpointing approaches seem ill-suited for distributed training even though hardware limitations make model parallelism, i.e., sharding model state across multiple accelerators, a requirement for model scaling. Consolidating distributed model state into a single checkpoint unacceptably slows down training, and is impractical at extreme scales. Distributed checkpoints, in contrast, are tightly coupled to the model parallelism and hardware configurations of the training run, and thus unusable on different configurations. To address this problem, we propose Universal Checkpointing, a technique that enables efficient checkpoint creation while providing the flexibility of resuming on arbitrary parallelism strategy and hardware configurations. Universal Checkpointing unlocks unprecedented capabilities for large-scale training such as improved resilience to hardware failures through continued training on remaining healthy hardware, and reduced training time through opportunistic exploitation of elastic capacity. The key insight of Universal Checkpointing is the selection of the optimal representation in each phase of the checkpointing life cycle: distributed representation for saving, and consolidated representation for loading. This is achieved using two key mechanisms. First, the universal checkpoint format, which consists of a consolidated representation of each model parameter and metadata for mapping parameter fragments into training ranks of arbitrary model-parallelism configuration. Second, the universal checkpoint language, a simple but powerful specification language for converting distributed checkpoints into the universal checkpoint format. Our evaluation demonstrates the effectiveness and generality of Universal Checkpointing on state-of-the-art model architectures and a wide range of parallelism techniques.
☆ MissionGNN: Hierarchical Multimodal GNN-based Weakly Supervised Video Anomaly Recognition with Mission-Specific Knowledge Graph Generation
In the context of escalating safety concerns across various domains, the tasks of Video Anomaly Detection (VAD) and Video Anomaly Recognition (VAR) have emerged as critically important for applications in intelligent surveillance, evidence investigation, violence alerting, etc. These tasks, aimed at identifying and classifying deviations from normal behavior in video data, face significant challenges due to the rarity of anomalies which leads to extremely imbalanced data and the impracticality of extensive frame-level data annotation for supervised learning. This paper introduces a novel hierarchical graph neural network (GNN) based model MissionGNN that addresses these challenges by leveraging a state-of-the-art large language model and a comprehensive knowledge graph for efficient weakly supervised learning in VAR. Our approach circumvents the limitations of previous methods by avoiding heavy gradient computations on large multimodal models and enabling fully frame-level training without fixed video segmentation. Utilizing automated, mission-specific knowledge graph generation, our model provides a practical and efficient solution for real-time video analysis without the constraints of previous segmentation-based or multimodal approaches. Experimental validation on benchmark datasets demonstrates our model's performance in VAD and VAR, highlighting its potential to redefine the landscape of anomaly detection and recognition in video surveillance systems.
☆ Length Optimization in Conformal Prediction
Conditional validity and length efficiency are two crucial aspects of conformal prediction (CP). Achieving conditional validity ensures accurate uncertainty quantification for data subpopulations, while proper length efficiency ensures that the prediction sets remain informative and non-trivial. Despite significant efforts to address each of these issues individually, a principled framework that reconciles these two objectives has been missing in the CP literature. In this paper, we develop Conformal Prediction with Length-Optimization (CPL) - a novel framework that constructs prediction sets with (near-) optimal length while ensuring conditional validity under various classes of covariate shifts, including the key cases of marginal and group-conditional coverage. In the infinite sample regime, we provide strong duality results which indicate that CPL achieves conditional validity and length optimality. In the finite sample regime, we show that CPL constructs conditionally valid prediction sets. Our extensive empirical evaluations demonstrate the superior prediction set size performance of CPL compared to state-of-the-art methods across diverse real-world and synthetic datasets in classification, regression, and text-related settings.
☆ Density Ratio Estimation via Sampling along Generalized Geodesics on Statistical Manifolds
The density ratio of two probability distributions is one of the fundamental tools in mathematical and computational statistics and machine learning, and it has a variety of known applications. Therefore, density ratio estimation from finite samples is a very important task, but it is known to be unstable when the distributions are distant from each other. One approach to address this problem is density ratio estimation using incremental mixtures of the two distributions. We geometrically reinterpret existing methods for density ratio estimation based on incremental mixtures. We show that these methods can be regarded as iterating on the Riemannian manifold along a particular curve between the two probability distributions. Making use of the geometry of the manifold, we propose to consider incremental density ratio estimation along generalized geodesics on this manifold. To achieve such a method requires Monte Carlo sampling along geodesics via transformations of the two distributions. We show how to implement an iterative algorithm to sample along these geodesics and show how changing the distances along the geodesic affect the variance and accuracy of the estimation of the density ratio. Our experiments demonstrate that the proposed approach outperforms the existing approaches using incremental mixtures that do not take the geometry of the
☆ Online Stackelberg Optimization via Nonlinear Control COLT 2024
In repeated interaction problems with adaptive agents, our objective often requires anticipating and optimizing over the space of possible agent responses. We show that many problems of this form can be cast as instances of online (nonlinear) control which satisfy \textit{local controllability}, with convex losses over a bounded state space which encodes agent behavior, and we introduce a unified algorithmic framework for tractable regret minimization in such cases. When the instance dynamics are known but otherwise arbitrary, we obtain oracle-efficient $O(\sqrt{T})$ regret by reduction to online convex optimization, which can be made computationally efficient if dynamics are locally \textit{action-linear}. In the presence of adversarial disturbances to the state, we give tight bounds in terms of either the cumulative or per-round disturbance magnitude (for \textit{strongly} or \textit{weakly} locally controllable dynamics, respectively). Additionally, we give sublinear regret results for the cases of unknown locally action-linear dynamics as well as for the bandit feedback setting. Finally, we demonstrate applications of our framework to well-studied problems including performative prediction, recommendations for adaptive agents, adaptive pricing of real-valued goods, and repeated gameplay against no-regret learners, directly yielding extensions beyond prior results in each case.
comment: COLT 2024
☆ All Random Features Representations are Equivalent
Random features are an important technique that make it possible to rewrite positive-definite kernels as infinite-dimensional dot products. Over time, increasingly elaborate random feature representations have been developed in pursuit of finite approximations with ever lower error. We resolve this arms race by deriving an optimal sampling policy, and show that under this policy all random features representations have the same approximation error. This establishes a lower bound that holds across all random feature representations, and shows that we are free to choose whatever representation we please, provided we sample optimally.
☆ Infinite Width Models That Work: Why Feature Learning Doesn't Matter as Much as You Think
Common infinite-width architectures such as Neural Tangent Kernels (NTKs) have historically shown weak performance compared to finite models. This has been attributed to the absence of feature learning. We show that this is not the case. In fact, we show that infinite width NTK models are able to access richer features than finite models by selecting relevant subfeatures from their (infinite) feature vector. In fact, we show experimentally that NTKs under-perform traditional finite models even when feature learning is artificially disabled. Instead, weak performance is due to the fact that existing constructions depend on weak optimizers like SGD. We provide an infinite width limit based on ADAM-like learning dynamics and demonstrate empirically that the resulting models erase this performance gap.
☆ Private Zeroth-Order Nonsmooth Nonconvex Optimization
We introduce a new zeroth-order algorithm for private stochastic optimization on nonconvex and nonsmooth objectives. Given a dataset of size $M$, our algorithm ensures $(\alpha,\alpha\rho^2/2)$-R\'enyi differential privacy and finds a $(\delta,\epsilon)$-stationary point so long as $M=\tilde\Omega\left(\frac{d}{\delta\epsilon^3} + \frac{d^{3/2}}{\rho\delta\epsilon^2}\right)$. This matches the optimal complexity of its non-private zeroth-order analog. Notably, although the objective is not smooth, we have privacy ``for free'' whenever $\rho \ge \sqrt{d}\epsilon$.
☆ PathAlign: A vision-language model for whole slide images in histopathology
Microscopic interpretation of histopathology images underlies many important diagnostic and treatment decisions. While advances in vision-language modeling raise new opportunities for analysis of such images, the gigapixel-scale size of whole slide images (WSIs) introduces unique challenges. Additionally, pathology reports simultaneously highlight key findings from small regions while also aggregating interpretation across multiple slides, often making it difficult to create robust image-text pairs. As such, pathology reports remain a largely untapped source of supervision in computational pathology, with most efforts relying on region-of-interest annotations or self-supervision at the patch-level. In this work, we develop a vision-language model based on the BLIP-2 framework using WSIs paired with curated text from pathology reports. This enables applications utilizing a shared image-text embedding space, such as text or image retrieval for finding cases of interest, as well as integration of the WSI encoder with a frozen large language model (LLM) for WSI-based generative text capabilities such as report generation or AI-in-the-loop interactions. We utilize a de-identified dataset of over 350,000 WSIs and diagnostic text pairs, spanning a wide range of diagnoses, procedure types, and tissue types. We present pathologist evaluation of text generation and text retrieval using WSI embeddings, as well as results for WSI classification and workflow prioritization (slide-level triaging). Model-generated text for WSIs was rated by pathologists as accurate, without clinically significant error or omission, for 78% of WSIs on average. This work demonstrates exciting potential capabilities for language-aligned WSI embeddings.
comment: 9 main pages and 19 pages of supplemental material; 3 main tables, 3 main figures and 11 supplemental tables, 7 supplemental figures
☆ Deep Temporal Sequence Classification and Mathematical Modeling for Cell Tracking in Dense 3D Microscopy Videos of Bacterial Biofilms
Automatic cell tracking in dense environments is plagued by inaccurate correspondences and misidentification of parent-offspring relationships. In this paper, we introduce a novel cell tracking algorithm named DenseTrack, which integrates deep learning with mathematical model-based strategies to effectively establish correspondences between consecutive frames and detect cell division events in crowded scenarios. We formulate the cell tracking problem as a deep learning-based temporal sequence classification task followed by solving a constrained one-to-one matching optimization problem exploiting the classifier's confidence scores. Additionally, we present an eigendecomposition-based cell division detection strategy that leverages knowledge of cellular geometry. The performance of the proposed approach has been evaluated by tracking densely packed cells in 3D time-lapse image sequences of bacterial biofilm development. The experimental results on simulated as well as experimental fluorescence image sequences suggest that the proposed tracking method achieves superior performance in terms of both qualitative and quantitative evaluation measures compared to recent state-of-the-art cell tracking approaches.
☆ On Counterfactual Interventions in Vector Autoregressive Models
Counterfactual reasoning allows us to explore hypothetical scenarios in order to explain the impacts of our decisions. However, addressing such inquires is impossible without establishing the appropriate mathematical framework. In this work, we introduce the problem of counterfactual reasoning in the context of vector autoregressive (VAR) processes. We also formulate the inference of a causal model as a joint regression task where for inference we use both data with and without interventions. After learning the model, we exploit linearity of the VAR model to make exact predictions about the effects of counterfactual interventions. Furthermore, we quantify the total causal effects of past counterfactual interventions. The source code for this project is freely available at https://github.com/KurtButler/counterfactual_interventions.
☆ Instance-Optimal Private Density Estimation in the Wasserstein Distance
Estimating the density of a distribution from samples is a fundamental problem in statistics. In many practical settings, the Wasserstein distance is an appropriate error metric for density estimation. For example, when estimating population densities in a geographic region, a small Wasserstein distance means that the estimate is able to capture roughly where the population mass is. In this work we study differentially private density estimation in the Wasserstein distance. We design and analyze instance-optimal algorithms for this problem that can adapt to easy instances. For distributions $P$ over $\mathbb{R}$, we consider a strong notion of instance-optimality: an algorithm that uniformly achieves the instance-optimal estimation rate is competitive with an algorithm that is told that the distribution is either $P$ or $Q_P$ for some distribution $Q_P$ whose probability density function (pdf) is within a factor of 2 of the pdf of $P$. For distributions over $\mathbb{R}^2$, we use a different notion of instance optimality. We say that an algorithm is instance-optimal if it is competitive with an algorithm that is given a constant-factor multiplicative approximation of the density of the distribution. We characterize the instance-optimal estimation rates in both these settings and show that they are uniformly achievable (up to polylogarithmic factors). Our approach for $\mathbb{R}^2$ extends to arbitrary metric spaces as it goes via hierarchically separated trees. As a special case our results lead to instance-optimal private learning in TV distance for discrete distributions.
☆ Meta-Gradient Search Control: A Method for Improving the Efficiency of Dyna-style Planning
We study how a Reinforcement Learning (RL) system can remain sample-efficient when learning from an imperfect model of the environment. This is particularly challenging when the learning system is resource-constrained and in continual settings, where the environment dynamics change. To address these challenges, our paper introduces an online, meta-gradient algorithm that tunes a probability with which states are queried during Dyna-style planning. Our study compares the aggregate, empirical performance of this meta-gradient method to baselines that employ conventional sampling strategies. Results indicate that our method improves efficiency of the planning process, which, as a consequence, improves the sample-efficiency of the overall learning process. On the whole, we observe that our meta-learned solutions avoid several pathologies of conventional planning approaches, such as sampling inaccurate transitions and those that stall credit assignment. We believe these findings could prove useful, in future work, for designing model-based RL systems at scale.
☆ Cost-efficient Active Illumination Camera For Hyper-spectral Reconstruction
Hyper-spectral imaging has recently gained increasing attention for use in different applications, including agricultural investigation, ground tracking, remote sensing and many other. However, the high cost, large physical size and complicated operation process stop hyperspectral cameras from being employed for various applications and research fields. In this paper, we introduce a cost-efficient, compact and easy to use active illumination camera that may benefit many applications. We developed a fully functional prototype of such camera. With the hope of helping with agricultural research, we tested our camera for plant root imaging. In addition, a U-Net model for spectral reconstruction was trained by using a reference hyperspectral camera's data as ground truth and our camera's data as input. We demonstrated our camera's ability to obtain additional information over a typical RGB camera. In addition, the ability to reconstruct hyperspectral data from multi-spectral input makes our device compatible to models and algorithms developed for hyperspectral applications with no modifications required.
☆ BOrg: A Brain Organoid-Based Mitosis Dataset for Automatic Analysis of Brain Diseases
Recent advances have enabled the study of human brain development using brain organoids derived from stem cells. Quantifying cellular processes like mitosis in these organoids offers insights into neurodevelopmental disorders, but the manual analysis is time-consuming, and existing datasets lack specific details for brain organoid studies. We introduce BOrg, a dataset designed to study mitotic events in the embryonic development of the brain using confocal microscopy images of brain organoids. BOrg utilizes an efficient annotation pipeline with sparse point annotations and techniques that minimize expert effort, overcoming limitations of standard deep learning approaches on sparse data. We adapt and benchmark state-of-the-art object detection and cell counting models on BOrg for detecting and analyzing mitotic cells across prophase, metaphase, anaphase, and telophase stages. Our results demonstrate these adapted models significantly improve mitosis analysis efficiency and accuracy for brain organoid research compared to existing methods. BOrg facilitates the development of automated tools to quantify statistics like mitosis rates, aiding mechanistic studies of neurodevelopmental processes and disorders. Data and code are available at https://github.com/awaisrauf/borg.
☆ Rethinking harmless refusals when fine-tuning foundation models ICLR 2024
In this paper, we investigate the degree to which fine-tuning in Large Language Models (LLMs) effectively mitigates versus merely conceals undesirable behavior. Through the lens of semi-realistic role-playing exercises designed to elicit such behaviors, we explore the response dynamics of LLMs post fine-tuning interventions. Our methodology involves prompting models for Chain-of-Thought (CoT) reasoning and analyzing the coherence between the reasoning traces and the resultant outputs. Notably, we identify a pervasive phenomenon we term \emph{reason-based deception}, where models either stop producing reasoning traces or produce seemingly ethical reasoning traces that belie the unethical nature of their final outputs. We further examine the efficacy of response strategies (polite refusal versus explicit rebuttal) in curbing the occurrence of undesired behavior in subsequent outputs of multi-turn interactions. Our findings reveal that explicit rebuttals significantly outperform polite refusals in preventing the continuation of undesired outputs and nearly eliminate reason-based deception, challenging current practices in model fine-tuning. Accordingly, the two key contributions of this paper are (1) defining and studying reason-based deception, a new type of hidden behavior, and (2) demonstrating that rebuttals provide a more robust response model to harmful requests than refusals, thereby highlighting the need to reconsider the response strategies in fine-tuning approaches.
comment: ICLR 2024 AGI Workshop Poster
☆ ASCENT: Amplifying Power Side-Channel Resilience via Learning & Monte-Carlo Tree Search
Power side-channel (PSC) analysis is pivotal for securing cryptographic hardware. Prior art focused on securing gate-level netlists obtained as-is from chip design automation, neglecting all the complexities and potential side-effects for security arising from the design automation process. That is, automation traditionally prioritizes power, performance, and area (PPA), sidelining security. We propose a "security-first" approach, refining the logic synthesis stage to enhance the overall resilience of PSC countermeasures. We introduce ASCENT, a learning-and-search-based framework that (i) drastically reduces the time for post-design PSC evaluation and (ii) explores the security-vs-PPA design space. Thus, ASCENT enables an efficient exploration of a large number of candidate netlists, leading to an improvement in PSC resilience compared to regular PPA-optimized netlists. ASCENT is up to 120x faster than traditional PSC analysis and yields a 3.11x improvement for PSC resilience of state-of-the-art PSC countermeasures
comment: Accepted at 2024 ACM/IEEE International Conference on Computer-Aided Design
☆ Dataless Quadratic Neural Networks for the Maximum Independent Set Problem
Combinatorial Optimization (CO) plays a crucial role in addressing various significant problems, among them the challenging Maximum Independent Set (MIS) problem. In light of recent advancements in deep learning methods, efforts have been directed towards leveraging data-driven learning approaches, typically rooted in supervised learning and reinforcement learning, to tackle the NP-hard MIS problem. However, these approaches rely on labeled datasets, exhibit weak generalization, and often depend on problem-specific heuristics. Recently, ReLU-based dataless neural networks were introduced to address combinatorial optimization problems. This paper introduces a novel dataless quadratic neural network formulation, featuring a continuous quadratic relaxation for the MIS problem. Notably, our method eliminates the need for training data by treating the given MIS instance as a trainable entity. More specifically, the graph structure and constraints of the MIS instance are used to define the structure and parameters of the neural network such that training it on a fixed input provides a solution to the problem, thereby setting it apart from traditional supervised or reinforcement learning approaches. By employing a gradient-based optimization algorithm like ADAM and leveraging an efficient off-the-shelf GPU parallel implementation, our straightforward yet effective approach demonstrates competitive or superior performance compared to state-of-the-art learning-based methods. Another significant advantage of our approach is that, unlike exact and heuristic solvers, the running time of our method scales only with the number of nodes in the graph, not the number of edges.
☆ Forward and Backward State Abstractions for Off-policy Evaluation
Off-policy evaluation (OPE) is crucial for evaluating a target policy's impact offline before its deployment. However, achieving accurate OPE in large state spaces remains challenging.This paper studies state abstractions-originally designed for policy learning-in the context of OPE. Our contributions are three-fold: (i) We define a set of irrelevance conditions central to learning state abstractions for OPE. (ii) We derive sufficient conditions for achieving irrelevance in Q-functions and marginalized importance sampling ratios, the latter obtained by constructing a time-reversed Markov decision process (MDP) based on the observed MDP. (iii) We propose a novel two-step procedure that sequentially projects the original state space into a smaller space, which substantially simplify the sample complexity of OPE arising from high cardinality.
comment: 42 pages, 5 figures
☆ TocBERT: Medical Document Structure Extraction Using Bidirectional Transformers
Text segmentation holds paramount importance in the field of Natural Language Processing (NLP). It plays an important role in several NLP downstream tasks like information retrieval and document summarization. In this work, we propose a new solution, namely TocBERT, for segmenting texts using bidirectional transformers. TocBERT represents a supervised solution trained on the detection of titles and sub-titles from their semantic representations. This task was formulated as a named entity recognition (NER) problem. The solution has been applied on a medical text segmentation use-case where the Bio-ClinicalBERT model is fine-tuned to segment discharge summaries of the MIMIC-III dataset. The performance of TocBERT has been evaluated on a human-labeled ground truth corpus of 250 notes. It achieved an F1-score of 84.6% when evaluated on a linear text segmentation problem and 72.8% on a hierarchical text segmentation problem. It outperformed a carefully designed rule-based solution, particularly in distinguishing titles from subtitles.
comment: 6 pages, 6 figures
♻ ☆ Submodular Information Selection for Hypothesis Testing with Misclassification Penalties
We consider the problem of selecting an optimal subset of information sources for a hypothesis testing/classification task where the goal is to identify the true state of the world from a finite set of hypotheses, based on finite observation samples from the sources. In order to characterize the learning performance, we propose a misclassification penalty framework, which enables non-uniform treatment of different misclassification errors. In a centralized Bayesian learning setting, we study two variants of the subset selection problem: (i) selecting a minimum cost information set to ensure that the maximum penalty of misclassifying the true hypothesis remains bounded and (ii) selecting an optimal information set under a limited budget to minimize the maximum penalty of misclassifying the true hypothesis. Under certain assumptions, we prove that the objective (or constraints) of these combinatorial optimization problems are weak (or approximate) submodular, and establish high-probability performance guarantees for greedy algorithms. Further, we propose an alternate metric for information set selection which is based on the total penalty of misclassification. We prove that this metric is submodular and establish near-optimal guarantees for the greedy algorithms for both the information set selection problems. Finally, we present numerical simulations to validate our theoretical results over several randomly generated instances.
comment: 21 pages, 4 figures
♻ ☆ Physics-Guided Neural Networks for Intraventricular Vector Flow Mapping
Intraventricular vector flow mapping (iVFM) seeks to enhance and quantify color Doppler in cardiac imaging. In this study, we propose novel alternatives to the traditional iVFM optimization scheme by utilizing physics-informed neural networks (PINNs) and a physics-guided nnU-Net-based supervised approach. When evaluated on simulated color Doppler images derived from a patient-specific computational fluid dynamics model and in vivo Doppler acquisitions, both approaches demonstrate comparable reconstruction performance to the original iVFM algorithm. The efficiency of PINNs is boosted through dual-stage optimization and pre-optimized weights. On the other hand, the nnU-Net method excels in generalizability and real-time capabilities. Notably, nnU-Net shows superior robustness on sparse and truncated Doppler data while maintaining independence from explicit boundary conditions. Overall, our results highlight the effectiveness of these methods in reconstructing intraventricular vector blood flow. The study also suggests potential applications of PINNs in ultrafast color Doppler imaging and the incorporation of fluid dynamics equations to derive biomarkers for cardiovascular diseases based on blood flow.
comment: 12 pages, accepted for publication in IEEE TUFFC; camera ready corrections, corrected acknowledgments
♻ ☆ Assessing the Brittleness of Safety Alignment via Pruning and Low-Rank Modifications
Large language models (LLMs) show inherent brittleness in their safety mechanisms, as evidenced by their susceptibility to jailbreaking and even non-malicious fine-tuning. This study explores this brittleness of safety alignment by leveraging pruning and low-rank modifications. We develop methods to identify critical regions that are vital for safety guardrails, and that are disentangled from utility-relevant regions at both the neuron and rank levels. Surprisingly, the isolated regions we find are sparse, comprising about $3\%$ at the parameter level and $2.5\%$ at the rank level. Removing these regions compromises safety without significantly impacting utility, corroborating the inherent brittleness of the model's safety mechanisms. Moreover, we show that LLMs remain vulnerable to low-cost fine-tuning attacks even when modifications to the safety-critical regions are restricted. These findings underscore the urgent need for more robust safety strategies in LLMs.
comment: 22 pages, 9 figures. Project page is available at https://boyiwei.com/alignment-attribution/
♻ ☆ CHESS: Contextual Harnessing for Efficient SQL Synthesis
Utilizing large language models (LLMs) for transforming natural language questions into SQL queries (text-to-SQL) is a promising yet challenging approach, particularly when applied to real-world databases with complex and extensive schemas. In particular, effectively incorporating data catalogs and database values for SQL generation remains an obstacle, leading to suboptimal solutions. We address this problem by proposing a new pipeline that effectively retrieves relevant data and context, selects an efficient schema, and synthesizes correct and efficient SQL queries. To increase retrieval precision, our pipeline introduces a hierarchical retrieval method leveraging model-generated keywords, locality-sensitive hashing indexing, and vector databases. Additionally, we have developed an adaptive schema pruning technique that adjusts based on the complexity of the problem and the model's context size. Our approach generalizes to both frontier proprietary models like GPT-4 and open-source models such as Llama-3-70B. Through a series of ablation studies, we demonstrate the effectiveness of each component of our pipeline and its impact on the end-to-end performance. Our method achieves new state-of-the-art performance on the cross-domain challenging BIRD dataset.
♻ ☆ WebCanvas: Benchmarking Web Agents in Online Environments
For web agents to be practically useful, they must adapt to the continuously evolving web environment characterized by frequent updates to user interfaces and content. However, most existing benchmarks only capture the static aspects of the web. To bridge this gap, we introduce WebCanvas, an innovative online evaluation framework for web agents that effectively addresses the dynamic nature of web interactions. WebCanvas contains three main components to facilitate realistic assessments: (1) A novel evaluation metric which reliably capture critical intermediate actions or states necessary for task completions while disregarding noise caused by insignificant events or changed web-elements. (2) A benchmark dataset called Mind2Web-Live, a refined version of original Mind2Web static dataset containing 542 tasks with 2439 intermediate evaluation states; (3) Lightweight and generalizable annotation tools and testing pipelines that enables the community to collect and maintain the high-quality, up-to-date dataset. Building on WebCanvas, we open-source an agent framework with extensible modules for reasoning, providing a foundation for the community to conduct online inference and evaluations. Our best-performing agent achieves a task success rate of 23.1% and a task completion rate of 48.8% on the Mind2Web-Live test set. Additionally, we analyze the performance discrepancies across various websites, domains, and experimental environments. We encourage the community to contribute further insights on online agent evaluation, thereby advancing this field of research.
comment: Our platform, tool and dataset are publically available at https://www.imean.ai/web-canvas/ and https://huggingface.co/datasets/iMeanAI/Mind2Web-Live/
♻ ☆ GSplit: Scaling Graph Neural Network Training on Large Graphs via Split-Parallelism
Graph neural networks (GNNs), an emerging class of machine learning models for graphs, have gained popularity for their superior performance in various graph analytical tasks. Mini-batch training is commonly used to train GNNs on large graphs, and data parallelism is the standard approach to scale mini-batch training across multiple GPUs. One of the major performance costs in GNN training is the loading of input features, which prevents GPUs from being fully utilized. In this paper, we argue that this problem is exacerbated by redundancies that are inherent to the data parallel approach. To address this issue, we introduce a hybrid parallel mini-batch training paradigm called split parallelism. Split parallelism avoids redundant data loads and splits the sampling and training of each mini-batch across multiple GPUs online, at each iteration, using a lightweight splitting algorithm. We implement split parallelism in GSplit and show that it outperforms state-of-the-art mini-batch training systems like DGL, Quiver, and $P^3$.
♻ ☆ $μ$GUIDE: a framework for quantitative imaging via generalized uncertainty-driven inference using deep learning
This work proposes $\mu$GUIDE: a general Bayesian framework to estimate posterior distributions of tissue microstructure parameters from any given biophysical model or MRI signal representation, with exemplar demonstration in diffusion-weighted MRI. Harnessing a new deep learning architecture for automatic signal feature selection combined with simulation-based inference and efficient sampling of the posterior distributions, $\mu$GUIDE bypasses the high computational and time cost of conventional Bayesian approaches and does not rely on acquisition constraints to define model-specific summary statistics. The obtained posterior distributions allow to highlight degeneracies present in the model definition and quantify the uncertainty and ambiguity of the estimated parameters.
♻ ☆ Thermometer: Towards Universal Calibration for Large Language Models ICML 2024
We consider the issue of calibration in large language models (LLM). Recent studies have found that common interventions such as instruction tuning often result in poorly calibrated LLMs. Although calibration is well-explored in traditional applications, calibrating LLMs is uniquely challenging. These challenges stem as much from the severe computational requirements of LLMs as from their versatility, which allows them to be applied to diverse tasks. Addressing these challenges, we propose THERMOMETER, a calibration approach tailored to LLMs. THERMOMETER learns an auxiliary model, given data from multiple tasks, for calibrating a LLM. It is computationally efficient, preserves the accuracy of the LLM, and produces better-calibrated responses for new tasks. Extensive empirical evaluations across various benchmarks demonstrate the effectiveness of the proposed method.
comment: Camera ready version for ICML 2024
♻ ☆ Optimistic Information Directed Sampling
We study the problem of online learning in contextual bandit problems where the loss function is assumed to belong to a known parametric function class. We propose a new analytic framework for this setting that bridges the Bayesian theory of information-directed sampling due to Russo and Van Roy (2018) and the worst-case theory of Foster, Kakade, Qian, and Rakhlin (2021) based on the decision-estimation coefficient. Drawing from both lines of work, we propose a algorithmic template called Optimistic Information-Directed Sampling and show that it can achieve instance-dependent regret guarantees similar to the ones achievable by the classic Bayesian IDS method, but with the major advantage of not requiring any Bayesian assumptions. The key technical innovation of our analysis is introducing an optimistic surrogate model for the regret and using it to define a frequentist version of the Information Ratio of Russo and Van Roy (2018), and a less conservative version of the Decision Estimation Coefficient of Foster et al. (2021). Keywords: Contextual bandits, information-directed sampling, decision estimation coefficient, first-order regret bounds.
♻ ☆ Efficient Interaction-Aware Interval Analysis of Neural Network Feedback Loops
In this paper, we propose a computationally efficient framework for interval reachability of systems with neural network controllers. Our approach leverages inclusion functions for the open-loop system and the neural network controller to embed the closed-loop system into a larger-dimensional embedding system, where a single trajectory over-approximates the original system's behavior under uncertainty. We propose two methods for constructing closed-loop embedding systems, which account for the interactions between the system and the controller in different ways. The interconnection-based approach considers the worst-case evolution of each coordinate separately by substituting the neural network inclusion function into the open-loop inclusion function. The interaction-based approach uses novel Jacobian-based inclusion functions to capture the first-order interactions between the open-loop system and the controller by leveraging state-of-the-art neural network verifiers. Finally, we implement our approach in a Python framework called ReachMM to demonstrate its efficiency and scalability on benchmarks and examples ranging to $200$ state dimensions.
♻ ☆ Coarse-to-Fine Concept Bottleneck Models
Deep learning algorithms have recently gained significant attention due to their impressive performance. However, their high complexity and un-interpretable mode of operation hinders their confident deployment in real-world safety-critical tasks. This work targets ante hoc interpretability, and specifically Concept Bottleneck Models (CBMs). Our goal is to design a framework that admits a highly interpretable decision making process with respect to human understandable concepts, on two levels of granularity. To this end, we propose a novel two-level concept discovery formulation leveraging: (i) recent advances in vision-language models, and (ii) an innovative formulation for coarse-to-fine concept selection via data-driven and sparsity-inducing Bayesian arguments. Within this framework, concept information does not solely rely on the similarity between the whole image and general unstructured concepts; instead, we introduce the notion of concept hierarchy to uncover and exploit more granular concept information residing in patch-specific regions of the image scene. As we experimentally show, the proposed construction not only outperforms recent CBM approaches, but also yields a principled framework towards interpetability.
♻ ☆ Refining Myocardial Infarction Detection: A Novel Multi-Modal Composite Kernel Strategy in One-Class Classification
Early detection of myocardial infarction (MI), a critical condition arising from coronary artery disease (CAD), is vital to prevent further myocardial damage. This study introduces a novel method for early MI detection using a one-class classification (OCC) algorithm in echocardiography. Our study overcomes the challenge of limited echocardiography data availability by adopting a novel approach based on Multi-modal Subspace Support Vector Data Description. The proposed technique involves a specialized MI detection framework employing multi-view echocardiography incorporating a composite kernel in the non-linear projection trick, fusing Gaussian and Laplacian sigmoid functions. Additionally, we enhance the update strategy of the projection matrices by adapting maximization for both or one of the modalities in the optimization process. Our method boosts MI detection capability by efficiently transforming features extracted from echocardiography data into an optimized lower-dimensional subspace. The OCC model trained specifically on target class instances from the comprehensive HMC-QU dataset that includes multiple echocardiography views indicates a marked improvement in MI detection accuracy. Our findings reveal that our proposed multi-view approach achieves a geometric mean of 71.24%, signifying a substantial advancement in echocardiography-based MI diagnosis and offering more precise and efficient diagnostic tools.
♻ ☆ Shortcut Learning in Medical Image Segmentation MICCAI 2024
Shortcut learning is a phenomenon where machine learning models prioritize learning simple, potentially misleading cues from data that do not generalize well beyond the training set. While existing research primarily investigates this in the realm of image classification, this study extends the exploration of shortcut learning into medical image segmentation. We demonstrate that clinical annotations such as calipers, and the combination of zero-padded convolutions and center-cropped training sets in the dataset can inadvertently serve as shortcuts, impacting segmentation accuracy. We identify and evaluate the shortcut learning on two different but common medical image segmentation tasks. In addition, we suggest strategies to mitigate the influence of shortcut learning and improve the generalizability of the segmentation models. By uncovering the presence and implications of shortcuts in medical image segmentation, we provide insights and methodologies for evaluating and overcoming this pervasive challenge and call for attention in the community for shortcuts in segmentation. Our code is public at https://github.com/nina-weng/shortcut_skinseg .
comment: 11 pages, 6 figures, accepted at MICCAI 2024
♻ ☆ Stable Differentiable Causal Discovery
Inferring causal relationships as directed acyclic graphs (DAGs) is an important but challenging problem. Differentiable Causal Discovery (DCD) is a promising approach to this problem, framing the search as a continuous optimization. But existing DCD methods are numerically unstable, with poor performance beyond tens of variables. In this paper, we propose Stable Differentiable Causal Discovery (SDCD), a new method that improves previous DCD methods in two ways: (1) It employs an alternative constraint for acyclicity; this constraint is more stable, both theoretically and empirically, and fast to compute. (2) It uses a training procedure tailored for sparse causal graphs, which are common in real-world scenarios. We first derive SDCD and prove its stability and correctness. We then evaluate it with both observational and interventional data and on both small-scale and large-scale settings. We find that SDCD outperforms existing methods in both convergence speed and accuracy and can scale to thousands of variables. We provide code at https://github.com/azizilab/sdcd.
♻ ☆ S4: Self-Supervised Sensing Across the Spectrum
Satellite image time series (SITS) segmentation is crucial for many applications like environmental monitoring, land cover mapping and agricultural crop type classification. However, training models for SITS segmentation remains a challenging task due to the lack of abundant training data, which requires fine grained annotation. We propose S4 a new self-supervised pre-training approach that significantly reduces the requirement for labeled training data by utilizing two new insights: (a) Satellites capture images in different parts of the spectrum such as radio frequencies, and visible frequencies. (b) Satellite imagery is geo-registered allowing for fine-grained spatial alignment. We use these insights to formulate pre-training tasks in S4. We also curate m2s2-SITS, a large-scale dataset of unlabeled, spatially-aligned, multi-modal and geographic specific SITS that serves as representative pre-training data for S4. Finally, we evaluate S4 on multiple SITS segmentation datasets and demonstrate its efficacy against competing baselines while using limited labeled data.
♻ ☆ Local to Global: Learning Dynamics and Effect of Initialization for Transformers
In recent years, transformer-based models have revolutionized deep learning, particularly in sequence modeling. To better understand this phenomenon, there is a growing interest in using Markov input processes to study transformers. However, our current understanding in this regard remains limited with many fundamental questions about how transformers learn Markov chains still unanswered. In this paper, we address this by focusing on first-order Markov chains and single-layer transformers, providing a comprehensive characterization of the learning dynamics in this context. Specifically, we prove that transformer parameters trained on next-token prediction loss can either converge to global or local minima, contingent on the initialization and the Markovian data properties, and we characterize the precise conditions under which this occurs. To the best of our knowledge, this is the first result of its kind highlighting the role of initialization. We further demonstrate that our theoretical findings are corroborated by empirical evidence. Based on these insights, we provide guidelines for the initialization of transformer parameters and demonstrate their effectiveness. Finally, we outline several open problems in this arena. Code is available at: https://github.com/Bond1995/Markov.
♻ ☆ Heterophily-Aware Graph Attention Network
Graph Neural Networks (GNNs) have shown remarkable success in graph representation learning. Unfortunately, current weight assignment schemes in standard GNNs, such as the calculation based on node degrees or pair-wise representations, can hardly be effective in processing the networks with heterophily, in which the connected nodes usually possess different labels or features. Existing heterophilic GNNs tend to ignore the modeling of heterophily of each edge, which is also a vital part in tackling the heterophily problem. In this paper, we firstly propose a heterophily-aware attention scheme and reveal the benefits of modeling the edge heterophily, i.e., if a GNN assigns different weights to edges according to different heterophilic types, it can learn effective local attention patterns, which enable nodes to acquire appropriate information from distinct neighbors. Then, we propose a novel Heterophily-Aware Graph Attention Network (HA-GAT) by fully exploring and utilizing the local distribution as the underlying heterophily, to handle the networks with different homophily ratios. To demonstrate the effectiveness of the proposed HA-GAT, we analyze the proposed heterophily-aware attention scheme and local distribution exploration, by seeking for an interpretation from their mechanism. Extensive results demonstrate that our HA-GAT achieves state-of-the-art performances on eight datasets with different homophily ratios in both the supervised and semi-supervised node classification tasks.
♻ ☆ VLSM-Adapter: Finetuning Vision-Language Segmentation Efficiently with Lightweight Blocks MICCAI 2024
Foundation Vision-Language Models (VLMs) trained using large-scale open-domain images and text pairs have recently been adapted to develop Vision-Language Segmentation Models (VLSMs) that allow providing text prompts during inference to guide image segmentation. If robust and powerful VLSMs can be built for medical images, it could aid medical professionals in many clinical tasks where they must spend substantial time delineating the target structure of interest. VLSMs for medical images resort to fine-tuning base VLM or VLSM pretrained on open-domain natural image datasets due to fewer annotated medical image datasets; this fine-tuning is resource-consuming and expensive as it usually requires updating all or a significant fraction of the pretrained parameters. Recently, lightweight blocks called adapters have been proposed in VLMs that keep the pretrained model frozen and only train adapters during fine-tuning, substantially reducing the computing resources required. We introduce a novel adapter, VLSM-Adapter, that can fine-tune pretrained vision-language segmentation models using transformer encoders. Our experiments in widely used CLIP-based segmentation models show that with only 3 million trainable parameters, the VLSM-Adapter outperforms state-of-the-art and is comparable to the upper bound end-to-end fine-tuning. The source code is available at: https://github.com/naamiinepal/vlsm-adapter.
comment: Accepted at MICCAI 2024, the 27th International Conference on Medical Image Computing and Computer Assisted Intervention
♻ ☆ The Price of Adaptivity in Stochastic Convex Optimization COLT
We prove impossibility results for adaptivity in non-smooth stochastic convex optimization. Given a set of problem parameters we wish to adapt to, we define a "price of adaptivity" (PoA) that, roughly speaking, measures the multiplicative increase in suboptimality due to uncertainty in these parameters. When the initial distance to the optimum is unknown but a gradient norm bound is known, we show that the PoA is at least logarithmic for expected suboptimality, and double-logarithmic for median suboptimality. When there is uncertainty in both distance and gradient norm, we show that the PoA must be polynomial in the level of uncertainty. Our lower bounds nearly match existing upper bounds, and establish that there is no parameter-free lunch. En route, we also establish tight upper and lower bounds for (known-parameter) high-probability stochastic convex optimization with heavy-tailed and bounded noise, respectively.
comment: Accepted for presentation at the Conference on Learning Theory (COLT) 2024; to appear in proceedings as an extended abstract
♻ ☆ MMGPL: Multimodal Medical Data Analysis with Graph Prompt Learning
Prompt learning has demonstrated impressive efficacy in the fine-tuning of multimodal large models to a wide range of downstream tasks. Nonetheless, applying existing prompt learning methods for the diagnosis of neurological disorder still suffers from two issues: (i) existing methods typically treat all patches equally, despite the fact that only a small number of patches in neuroimaging are relevant to the disease, and (ii) they ignore the structural information inherent in the brain connection network which is crucial for understanding and diagnosing neurological disorders. To tackle these issues, we introduce a novel prompt learning model by learning graph prompts during the fine-tuning process of multimodal large models for diagnosing neurological disorders. Specifically, we first leverage GPT-4 to obtain relevant disease concepts and compute semantic similarity between these concepts and all patches. Secondly, we reduce the weight of irrelevant patches according to the semantic similarity between each patch and disease-related concepts. Moreover, we construct a graph among tokens based on these concepts and employ a graph convolutional network layer to extract the structural information of the graph, which is used to prompt the pre-trained multimodal large models for diagnosing neurological disorders. Extensive experiments demonstrate that our method achieves superior performance for neurological disorder diagnosis compared with state-of-the-art methods and validated by clinicians.
♻ ☆ Self-Supervised Detection of Perfect and Partial Input-Dependent Symmetries
Group equivariance can overly constrain models if the symmetries in the group differ from those observed in data. While common methods address this by determining the appropriate level of symmetry at the dataset level, they are limited to supervised settings and ignore scenarios in which multiple levels of symmetry co-exist in the same dataset. In this paper, we propose a method able to detect the level of symmetry of each input without the need for labels. Our framework is general enough to accommodate different families of both continuous and discrete symmetry distributions, such as arbitrary unimodal, symmetric distributions and discrete groups. We validate the effectiveness of our approach on synthetic datasets with different per-class levels of symmetries, and demonstrate practical applications such as the detection of out-of-distribution symmetries. Our code is publicly available at https://github.com/aurban0/ssl-sym.
comment: 19 pages, 8 figures, corrected typos, revised argument in Appendix B.1, results unchanged
♻ ☆ D-GRIL: End-to-End Topological Learning with 2-parameter Persistence
End-to-end topological learning using 1-parameter persistence is well-known. We show that the framework can be enhanced using 2-parameter persistence by adopting a recently introduced 2-parameter persistence based vectorization technique called GRIL. We establish a theoretical foundation of differentiating GRIL producing D-GRIL. We show that D-GRIL can be used to learn a bifiltration function on standard benchmark graph datasets. Further, we exhibit that this framework can be applied in the context of bio-activity prediction in drug discovery.
♻ ☆ Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families
We consider the task of estimating variational autoencoders (VAEs) when the training data is incomplete. We show that missing data increases the complexity of the model's posterior distribution over the latent variables compared to the fully-observed case. The increased complexity may adversely affect the fit of the model due to a mismatch between the variational and model posterior distributions. We introduce two strategies based on (i) finite variational-mixture and (ii) imputation-based variational-mixture distributions to address the increased posterior complexity. Through a comprehensive evaluation of the proposed approaches, we show that variational mixtures are effective at improving the accuracy of VAE estimation from incomplete data.
comment: Published in Transactions on Machine Learning Research (TMLR), 2024
♻ ☆ Optimizing Large Model Training through Overlapped Activation Recomputation
Large model training has been using recomputation to alleviate the memory pressure and pipelining to exploit the parallelism of data, tensor, and devices. The existing recomputation approaches may incur up to 40% overhead when training real-world models, e.g., the GPT model with 22B parameters. This is because they are executed on demand in the critical training path. In this paper, we design a new recomputation framework, Lynx, to reduce the overhead by overlapping the recomputation with communication occurring in training pipelines. It consists of an optimal scheduling algorithm (OPT) and a heuristic-based scheduling algorithm (HEU). OPT achieves a global optimum but suffers from a long search time. HEU was designed based on our observation that there are identical structures in large DNN models so that we can apply the same scheduling policy to all identical structures. HEU achieves a local optimum but reduces the search time by 99% compared to OPT. Our comprehensive evaluation using GPT models with 1.3B-20B parameters shows that both OPT and HEU outperform the state-of-the-art recomputation approaches (e.g., Megatron-LM and Checkmake) by 1.02-1.53x. HEU achieves a similar performance as OPT with a search time of 0.16s on average.
comment: 13 pages
♻ ☆ Long-term drought prediction using deep neural networks based on geospatial weather data
The problem of high-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance. Yet, it is still unsolved with reasonable accuracy due to data complexity and aridity stochasticity. We tackle drought data by introducing an end-to-end approach that adopts a spatio-temporal neural network model with accessible open monthly climate data as the input. Our systematic research employs diverse proposed models and five distinct environmental regions as a testbed to evaluate the efficacy of the Palmer Drought Severity Index (PDSI) prediction. Key aggregated findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts. At the same time, the Convolutional LSTM excels in longer-term forecasting. Both models achieved high ROC AUC scores: 0.948 for one month ahead and 0.617 for twelve months ahead forecasts, becoming closer to perfect ROC-AUC by $54\%$ and $16\%$, respectively, c.t. classic approaches.
♻ ☆ Mapping the Potential of Explainable AI for Fairness Along the AI Lifecycle
The widespread use of artificial intelligence (AI) systems across various domains is increasingly surfacing issues related to algorithmic fairness, especially in high-stakes scenarios. Thus, critical considerations of how fairness in AI systems might be improved -- and what measures are available to aid this process -- are overdue. Many researchers and policymakers see explainable AI (XAI) as a promising way to increase fairness in AI systems. However, there is a wide variety of XAI methods and fairness conceptions expressing different desiderata, and the precise connections between XAI and fairness remain largely nebulous. Besides, different measures to increase algorithmic fairness might be applicable at different points throughout an AI system's lifecycle. Yet, there currently is no coherent mapping of fairness desiderata along the AI lifecycle. In this paper, we we distill eight fairness desiderata, map them along the AI lifecycle, and discuss how XAI could help address each of them. We hope to provide orientation for practical applications and to inspire XAI research specifically focused on these fairness desiderata.
♻ ☆ Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets
Combining electroencephalogram (EEG) datasets for supervised machine learning (ML) is challenging due to session, subject, and device variability. ML algorithms typically require identical features at train and test time, complicating analysis due to varying sensor numbers and positions across datasets. Simple channel selection discards valuable data, leading to poorer performance, especially with datasets sharing few channels. To address this, we propose an unsupervised approach leveraging EEG signal physics. We map EEG channels to fixed positions using field interpolation, facilitating source-free domain adaptation. Leveraging Riemannian geometry classification pipelines and transfer learning steps, our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications. Comparative analysis against a statistical-based approach known as Dimensionality Transcending, a signal-based imputation called ComImp, source-dependent methods, as well as common channel selection and spherical spline interpolation, was conducted with leave-one-dataset-out validation on six public BCI datasets for a right-hand/left-hand classification task. Numerical experiments show that in the presence of few shared channels in train and test, the field interpolation consistently outperforms other methods, demonstrating enhanced classification performance across all datasets. When more channels are shared, field interpolation was found to be competitive with other methods and faster to compute than source-dependent methods.
♻ ☆ SoK: Can Trajectory Generation Combine Privacy and Utility?
While location trajectories represent a valuable data source for analyses and location-based services, they can reveal sensitive information, such as political and religious preferences. Differentially private publication mechanisms have been proposed to allow for analyses under rigorous privacy guarantees. However, the traditional protection schemes suffer from a limiting privacy-utility trade-off and are vulnerable to correlation and reconstruction attacks. Synthetic trajectory data generation and release represent a promising alternative to protection algorithms. While initial proposals achieve remarkable utility, they fail to provide rigorous privacy guarantees. This paper proposes a framework for designing a privacy-preserving trajectory publication approach by defining five design goals, particularly stressing the importance of choosing an appropriate Unit of Privacy. Based on this framework, we briefly discuss the existing trajectory protection approaches, emphasising their shortcomings. This work focuses on the systematisation of the state-of-the-art generative models for trajectories in the context of the proposed framework. We find that no existing solution satisfies all requirements. Thus, we perform an experimental study evaluating the applicability of six sequential generative models to the trajectory domain. Finally, we conclude that a generative trajectory model providing semantic guarantees remains an open research question and propose concrete next steps for future research.
comment: Added DOI: 10.56553/popets-2024-0068
♻ ☆ Examining Common Paradigms in Multi-Task Learning
While multi-task learning (MTL) has gained significant attention in recent years, its underlying mechanisms remain poorly understood. Recent methods did not yield consistent performance improvements over single task learning (STL) baselines, underscoring the importance of gaining more profound insights about challenges specific to MTL. In our study, we investigate paradigms in MTL in the context of STL: First, the impact of the choice of optimizer has only been mildly investigated in MTL. We show the pivotal role of common STL tools such as the Adam optimizer in MTL empirically in various experiments. To further investigate Adam's effectiveness, we theoretical derive a partial loss-scale invariance under mild assumptions. Second, the notion of gradient conflicts has often been phrased as a specific problem in MTL. We delve into the role of gradient conflicts in MTL and compare it to STL. For angular gradient alignment we find no evidence that this is a unique problem in MTL. We emphasize differences in gradient magnitude as the main distinguishing factor. Overall, we find surprising similarities between STL and MTL suggesting to consider methods from both fields in a broader context.
comment: -
♻ ☆ Decentralized Stochastic Subgradient Methods for Nonsmooth Nonconvex Optimization
In this paper, we concentrate on decentralized optimization problems with nonconvex and nonsmooth objective functions, especially on the decentralized training of nonsmooth neural networks. We introduce a unified framework to analyze the global convergence of decentralized stochastic subgradient-based methods. We prove the global convergence of our proposed framework under mild conditions, by establishing that the generated sequence asymptotically approximates the trajectories of its associated differential inclusion. Furthermore, we establish that our proposed framework covers a wide range of existing efficient decentralized subgradient-based methods, including decentralized stochastic subgradient descent (DSGD), DSGD with gradient-tracking technique (DSGD-T), and DSGD with momentum (DSGD-M). In addition, we introduce the sign map to regularize the update directions in DSGD-M, and show it is enclosed in our proposed framework. Consequently, our convergence results establish, for the first time, global convergence of these methods when applied to nonsmooth nonconvex objectives. Preliminary numerical experiments demonstrate that our proposed framework yields highly efficient decentralized subgradient-based methods with convergence guarantees in the training of nonsmooth neural networks.
comment: 22 pages
♻ ☆ FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting
Time Series Forecasting plays a crucial role in various fields such as industrial equipment maintenance, meteorology, energy consumption, traffic flow and financial investment. However, despite their considerable advantages over traditional statistical approaches, current deep learning-based predictive models often exhibit a significant deviation between their forecasting outcomes and the ground truth. This discrepancy is largely due to an insufficient emphasis on extracting the sequence's latent information, particularly its global information within the frequency domain and the relationship between different variables. To address this issue, we propose a novel model Frequency-domain Attention In Two Horizons, which decomposes time series into trend and seasonal components using a multi-scale sequence adaptive decomposition and fusion architecture, and processes them separately. FAITH utilizes Frequency Channel feature Extraction Module and Frequency Temporal feature Extraction Module to capture inter-channel relationships and temporal global information in the sequence, significantly improving its ability to handle long-term dependencies and complex patterns. Furthermore, FAITH achieves theoretically linear complexity by modifying the time-frequency domain transformation method, effectively reducing computational costs. Extensive experiments on 6 benchmarks for long-term forecasting and 3 benchmarks for short-term forecasting demonstrate that FAITH outperforms existing models in many fields, such as electricity, weather and traffic, proving its effectiveness and superiority both in long-term and short-term time series forecasting tasks. Our codes and data are available at https://github.com/LRQ577/FAITH.
♻ ☆ LExCI: A Framework for Reinforcement Learning with Embedded Systems
Advances in artificial intelligence (AI) have led to its application in many areas of everyday life. In the context of control engineering, reinforcement learning (RL) represents a particularly promising approach as it is centred around the idea of allowing an agent to freely interact with its environment to find an optimal strategy. One of the challenges professionals face when training and deploying RL agents is that the latter often have to run on dedicated embedded devices. This could be to integrate them into an existing toolchain or to satisfy certain performance criteria like real-time constraints. Conventional RL libraries, however, cannot be easily utilised in conjunction with that kind of hardware. In this paper, we present a framework named LExCI, the Learning and Experiencing Cycle Interface, which bridges this gap and provides end-users with a free and open-source tool for training agents on embedded systems using the open-source library RLlib. Its operability is demonstrated with two state-of-the-art RL-algorithms and a rapid control prototyping system.
comment: The code, models, and data used for this work are available in a separate branch of LExCI's GitHub repository (https://github.com/mechatronics-RWTH/lexci-2/tree/lexci_paper). This paper has been submitted to Applied Intelligence (https://link.springer.com/journal/10489). 2024-06-27: Updated the footnote on the title page so that it provides information about the paper's Version of Record
♻ ☆ G-Transformer: Counterfactual Outcome Prediction under Dynamic and Time-varying Treatment Regimes
In the context of medical decision making, counterfactual prediction enables clinicians to predict treatment outcomes of interest under alternative courses of therapeutic actions given observed patient history. Prior machine learning approaches for counterfactual predictions under time-varying treatments focus on static time-varying treatment regimes where treatments do not depend on previous covariate history. In this work, we present G-Transformer, a Transformer-based framework supporting g-computation for counterfactual prediction under dynamic and time-varying treatment strategies. G-Transfomer captures complex, long-range dependencies in time-varying covariates using a Transformer architecture. G-Transformer estimates the conditional distribution of relevant covariates given covariate and treatment history at each time point using an encoder architecture, then produces Monte Carlo estimates of counterfactual outcomes by simulating forward patient trajectories under treatment strategies of interest. We evaluate G-Transformer extensively using two simulated longitudinal datasets from mechanistic models, and a real-world sepsis ICU dataset from MIMIC-IV. G-Transformer outperforms both classical and state-of-the-art counterfactual prediction models in these settings. To the best of our knowledge, this is the first Transformer-based architecture for counterfactual outcome prediction under dynamic and time-varying treatment strategies.
♻ ☆ Continual Learning Under Language Shift
The recent increase in data and model scale for language model pre-training has led to huge training costs. In scenarios where new data become available over time, updating a model instead of fully retraining it would therefore provide significant gains. We study the pros and cons of updating a language model when new data comes from new languages -- the case of continual learning under language shift. Starting from a monolingual English language model, we incrementally add data from Danish, Icelandic, and Norwegian to investigate how forward and backward transfer effects depend on pre-training order and characteristics of languages, for three different model sizes. Our results show that, while forward transfer is largely positive and independent of language order, backward transfer can be positive or negative depending on the order and characteristics of new languages. We explore a number of potentially explanatory factors and find that a combination of language contamination and syntactic similarity best fits our results.
comment: Accepted to TSD 2024
♻ ☆ InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models
Large Language Models for code (code LLMs) have witnessed tremendous progress in recent years. With the rapid development of code LLMs, many popular evaluation benchmarks, such as HumanEval, DS-1000, and MBPP, have emerged to measure the performance of code LLMs with a particular focus on code generation tasks. However, they are insufficient to cover the full range of expected capabilities of code LLMs, which span beyond code generation to answering diverse coding-related questions. To fill this gap, we propose InfiBench, the first large-scale freeform question-answering (QA) benchmark for code to our knowledge, comprising 234 carefully selected high-quality Stack Overflow questions that span across 15 programming languages. InfiBench uses four types of model-free automatic metrics to evaluate response correctness where domain experts carefully concretize the criterion for each question. We conduct a systematic evaluation for over 100 latest code LLMs on InfiBench, leading to a series of novel and insightful findings. Our detailed analyses showcase potential directions for further advancement of code LLMs. InfiBench is fully open source and continuously expanding to foster more scientific and systematic practices for code LLM evaluation.
comment: 30 pages, 10 pages for main content, work in progress
♻ ☆ Spectral complexity of deep neural networks
It is well-known that randomly initialized, push-forward, fully-connected neural networks weakly converge to isotropic Gaussian processes, in the limit where the width of all layers goes to infinity. In this paper, we propose to use the angular power spectrum of the limiting field to characterize the complexity of the network architecture. In particular, we define sequences of random variables associated with the angular power spectrum, and provide a full characterization of the network complexity in terms of the asymptotic distribution of these sequences as the depth diverges. On this basis, we classify neural networks as low-disorder, sparse, or high-disorder; we show how this classification highlights a number of distinct features for standard activation functions, and in particular, sparsity properties of ReLU networks. Our theoretical results are also validated by numerical simulations.
♻ ☆ JAXbind: Bind any function to JAX
JAX is widely used in machine learning and scientific computing, the latter of which often relies on existing high-performance code that we would ideally like to incorporate into JAX. Reimplementing the existing code in JAX is often impractical and the existing interface in JAX for binding custom code either limits the user to a single Jacobian product or requires deep knowledge of JAX and its C++ backend for general Jacobian products. With JAXbind we drastically reduce the effort required to bind custom functions implemented in other programming languages with full support for Jacobian-vector products and vector-Jacobian products to JAX. Specifically, JAXbind provides an easy-to-use Python interface for defining custom, so-called JAX primitives. Via JAXbind, any function callable from Python can be exposed as a JAX primitive. JAXbind allows a user to interface the JAX function transformation engine with custom derivatives and batching rules, enabling all JAX transformations for the custom primitive.
comment: 4 pages, Github: https://github.com/NIFTy-PPL/JAXbind
♻ ☆ LayerMatch: Do Pseudo-labels Benefit All Layers?
Deep neural networks have achieved remarkable performance across various tasks when supplied with large-scale labeled data. However, the collection of labeled data can be time-consuming and labor-intensive. Semi-supervised learning (SSL), particularly through pseudo-labeling algorithms that iteratively assign pseudo-labels for self-training, offers a promising solution to mitigate the dependency of labeled data. Previous research generally applies a uniform pseudo-labeling strategy across all model layers, assuming that pseudo-labels exert uniform influence throughout. Contrasting this, our theoretical analysis and empirical experiment demonstrate feature extraction layer and linear classification layer have distinct learning behaviors in response to pseudo-labels. Based on these insights, we develop two layer-specific pseudo-label strategies, termed Grad-ReLU and Avg-Clustering. Grad-ReLU mitigates the impact of noisy pseudo-labels by removing the gradient detrimental effects of pseudo-labels in the linear classification layer. Avg-Clustering accelerates the convergence of feature extraction layer towards stable clustering centers by integrating consistent outputs. Our approach, LayerMatch, which integrates these two strategies, can avoid the severe interference of noisy pseudo-labels in the linear classification layer while accelerating the clustering capability of the feature extraction layer. Through extensive experimentation, our approach consistently demonstrates exceptional performance on standard semi-supervised learning benchmarks, achieving a significant improvement of 10.38% over baseline method and a 2.44% increase compared to state-of-the-art methods.
♻ ☆ Lifting Architectural Constraints of Injective Flows ICLR 2024
Normalizing Flows explicitly maximize a full-dimensional likelihood on the training data. However, real data is typically only supported on a lower-dimensional manifold leading the model to expend significant compute on modeling noise. Injective Flows fix this by jointly learning a manifold and the distribution on it. So far, they have been limited by restrictive architectures and/or high computational cost. We lift both constraints by a new efficient estimator for the maximum likelihood loss, compatible with free-form bottleneck architectures. We further show that naively learning both the data manifold and the distribution on it can lead to divergent solutions, and use this insight to motivate a stable maximum likelihood training objective. We perform extensive experiments on toy, tabular and image data, demonstrating the competitive performance of the resulting model.
comment: Camera-ready version: accepted to ICLR 2024
♻ ☆ Can Low-Rank Knowledge Distillation in LLMs be Useful for Microelectronic Reasoning?
In this work, we present empirical results regarding the feasibility of using offline large language models (LLMs) in the context of electronic design automation (EDA). The goal is to investigate and evaluate a contemporary language model's (Llama-2-7B) ability to function as a microelectronic Q & A expert as well as its reasoning, and generation capabilities in solving microelectronic-related problems. Llama-2-7B was tested across a variety of adaptation methods, including introducing a novel low-rank knowledge distillation (LoRA-KD) scheme. Our experiments produce both qualitative and quantitative results.
comment: 4 pages, 2 figures, 2 tables, The First IEEE International Workshop on LLM-Aided Design (LAD'24)
♻ ☆ AdaTreeFormer: Few Shot Domain Adaptation for Tree Counting from a Single High-Resolution Image
The process of estimating and counting tree density using only a single aerial or satellite image is a difficult task in the fields of photogrammetry and remote sensing. However, it plays a crucial role in the management of forests. The huge variety of trees in varied topography severely hinders tree counting models to perform well. The purpose of this paper is to propose a framework that is learnt from the source domain with sufficient labeled trees and is adapted to the target domain with only a limited number of labeled trees. Our method, termed as AdaTreeFormer, contains one shared encoder with a hierarchical feature extraction scheme to extract robust features from the source and target domains. It also consists of three subnets: two for extracting self-domain attention maps from source and target domains respectively and one for extracting cross-domain attention maps. For the latter, an attention-to-adapt mechanism is introduced to distill relevant information from different domains while generating tree density maps; a hierarchical cross-domain feature alignment scheme is proposed that progressively aligns the features from the source and target domains. We also adopt adversarial learning into the framework to further reduce the gap between source and target domains. Our AdaTreeFormer is evaluated on six designed domain adaptation tasks using three tree counting datasets, \ie Jiangsu, Yosemite, and London. Experimental results show that AdaTreeFormer significantly surpasses the state of the art, \eg in the cross domain from the Yosemite to Jiangsu dataset, it achieves a reduction of 15.9 points in terms of the absolute counting errors and an increase of 10.8\% in the accuracy of the detected trees' locations. The codes and datasets are available at https://github.com/HAAClassic/AdaTreeFormer.
♻ ☆ Deep Support Vectors
Deep learning has achieved tremendous success. \nj{However,} unlike SVMs, which provide direct decision criteria and can be trained with a small dataset, it still has significant weaknesses due to its requirement for massive datasets during training and the black-box characteristics on decision criteria. \nj{This paper addresses} these issues by identifying support vectors in deep learning models. To this end, we propose the DeepKKT condition, an adaptation of the traditional Karush-Kuhn-Tucker (KKT) condition for deep learning models, and confirm that generated Deep Support Vectors (DSVs) using this condition exhibit properties similar to traditional support vectors. This allows us to apply our method to few-shot dataset distillation problems and alleviate the black-box characteristics of deep learning models. Additionally, we demonstrate that the DeepKKT condition can transform conventional classification models into generative models with high fidelity, particularly as latent \jh{generative} models using class labels as latent variables. We validate the effectiveness of DSVs \nj{using common datasets (ImageNet, CIFAR10 \nj{and} CIFAR100) on the general architectures (ResNet and ConvNet)}, proving their practical applicability. (See Fig.~\ref{fig:generated})
♻ ☆ LPFormer: An Adaptive Graph Transformer for Link Prediction KDD'24
Link prediction is a common task on graph-structured data that has seen applications in a variety of domains. Classically, hand-crafted heuristics were used for this task. Heuristic measures are chosen such that they correlate well with the underlying factors related to link formation. In recent years, a new class of methods has emerged that combines the advantages of message-passing neural networks (MPNN) and heuristics methods. These methods perform predictions by using the output of an MPNN in conjunction with a "pairwise encoding" that captures the relationship between nodes in the candidate link. They have been shown to achieve strong performance on numerous datasets. However, current pairwise encodings often contain a strong inductive bias, using the same underlying factors to classify all links. This limits the ability of existing methods to learn how to properly classify a variety of different links that may form from different factors. To address this limitation, we propose a new method, LPFormer, which attempts to adaptively learn the pairwise encodings for each link. LPFormer models the link factors via an attention module that learns the pairwise encoding that exists between nodes by modeling multiple factors integral to link prediction. Extensive experiments demonstrate that LPFormer can achieve SOTA performance on numerous datasets while maintaining efficiency. The code is available at The code is available at https://github.com/HarryShomer/LPFormer.
comment: KDD'24
♻ ☆ Inference Attacks: A Taxonomy, Survey, and Promising Directions
The prosperity of machine learning has also brought people's concerns about data privacy. Among them, inference attacks can implement privacy breaches in various MLaaS scenarios and model training/prediction phases. Specifically, inference attacks can perform privacy inference on undisclosed target training sets based on outputs of the target model, including but not limited to statistics, membership, semantics, data representation, etc. For instance, infer whether the target data has the characteristics of AIDS. In addition, the rapid development of the machine learning community in recent years, especially the surge of model types and application scenarios, has further stimulated the inference attacks' research. Thus, studying inference attacks and analyzing them in depth is urgent and significant. However, there is still a gap in the systematic discussion of inference attacks from taxonomy, global perspective, attack, and defense perspectives. This survey provides an in-depth and comprehensive inference of attacks and corresponding countermeasures in ML-as-a-service based on taxonomy and the latest researches. Without compromising researchers' intuition, we first propose the 3MP taxonomy based on the community research status, trying to normalize the confusing naming system of inference attacks. Also, we analyze the pros and cons of each type of inference attack, their workflow, countermeasure, and how they interact with other attacks. In the end, we point out several promising directions for researchers from a more comprehensive and novel perspective.
♻ ☆ Time Series Modeling for Heart Rate Prediction: From ARIMA to Transformers
Cardiovascular disease (CVD) is a leading cause of death globally, necessitating precise forecasting models for monitoring vital signs like heart rate, blood pressure, and ECG. Traditional models, such as ARIMA and Prophet, are limited by their need for manual parameter tuning and challenges in handling noisy, sparse, and highly variable medical data. This study investigates advanced deep learning models, including LSTM, and transformer-based architectures, for predicting heart rate time series from the MIT-BIH Database. Results demonstrate that deep learning models, particularly PatchTST, significantly outperform traditional models across multiple metrics, capturing complex patterns and dependencies more effectively. This research underscores the potential of deep learning to enhance patient monitoring and CVD management, suggesting substantial clinical benefits. Future work should extend these findings to larger, more diverse datasets and real-world clinical applications to further validate and optimize model performance.
comment: Accepted by 2024 6th International Conference on Electronic Engineering and Informatics
♻ ☆ Glauber Generative Model: Discrete Diffusion Models via Binary Classification
We introduce the Glauber Generative Model (GGM), a new class of discrete diffusion models, to obtain new samples from a distribution given samples from a discrete space. GGM deploys a discrete Markov chain called the heat bath dynamics (or the Glauber dynamics) to denoise a sequence of noisy tokens to a sample from a joint distribution of discrete tokens. Our novel conceptual framework provides an exact reduction of the task of learning the denoising Markov chain to solving a class of binary classification tasks. More specifically, the model learns to classify a given token in a noisy sequence as signal or noise. In contrast, prior works on discrete diffusion models either solve regression problems to learn importance ratios, or minimize loss functions given by variational approximations. We apply GGM to language modeling and image generation, where images are discretized using image tokenizers like VQGANs. We show that it outperforms existing discrete diffusion models in language generation, and demonstrates strong performance for image generation without using dataset-specific image tokenizers. We also show that our model is capable of performing well in zero-shot control settings like text and image infilling.
♻ ☆ Kernelised Normalising Flows ICLR 2024
Normalising Flows are non-parametric statistical models characterised by their dual capabilities of density estimation and generation. This duality requires an inherently invertible architecture. However, the requirement of invertibility imposes constraints on their expressiveness, necessitating a large number of parameters and innovative architectural designs to achieve good results. Whilst flow-based models predominantly rely on neural-network-based transformations for expressive designs, alternative transformation methods have received limited attention. In this work, we present Ferumal flow, a novel kernelised normalising flow paradigm that integrates kernels into the framework. Our results demonstrate that a kernelised flow can yield competitive or superior results compared to neural network-based flows whilst maintaining parameter efficiency. Kernelised flows excel especially in the low-data regime, enabling flexible non-parametric density estimation in applications with sparse data availability.
comment: Alternate title: Kernelized Normalizing Flows; Accepted at ICLR 2024
♻ ☆ Error Bounds of Supervised Classification from Information-Theoretic Perspective
There remains a list of unanswered research questions on deep learning (DL), including the remarkable generalization power of overparametrized neural networks, the efficient optimization performance despite the non-convexity, and the mechanisms behind flat minima in generalization. In this paper, we adopt an information-theoretic perspective to explore the theoretical foundations of supervised classification using deep neural networks (DNNs). Our analysis introduces the concepts of fitting error and model risk, which, together with generalization error, constitute an upper bound on the expected risk. We demonstrate that the generalization errors are bounded by the complexity, influenced by both the smoothness of distribution and the sample size. Consequently, task complexity serves as a reliable indicator of the dataset's quality, guiding the setting of regularization hyperparameters. Furthermore, the derived upper bound fitting error links the back-propagated gradient, Neural Tangent Kernel (NTK), and the model's parameter count with the fitting error. Utilizing the triangle inequality, we establish an upper bound on the expected risk. This bound offers valuable insights into the effects of overparameterization, non-convex optimization, and the flat minima in DNNs.Finally, empirical verification confirms a significant positive correlation between the derived theoretical bounds and the practical expected risk, confirming the practical relevance of the theoretical findings.
♻ ☆ Data Reconstruction Attacks and Defenses: A Systematic Evaluation
Reconstruction attacks and defenses are essential in understanding the data leakage problem in machine learning. However, prior work has centered around empirical observations of gradient inversion attacks, lacks theoretical justifications, and cannot disentangle the usefulness of defending methods from the computational limitation of attacking methods. In this work, we propose to view the problem as an inverse problem, enabling us to theoretically, quantitatively, and systematically evaluate the data reconstruction problem. On various defense methods, we derived the algorithmic upper bound and the matching (in feature dimension and model width) information-theoretical lower bound on the reconstruction error for two-layer neural networks. To complement the theoretical results and investigate the utility-privacy trade-off, we defined a natural evaluation metric of the defense methods with similar utility loss among the strongest attacks. We further propose a strong reconstruction attack that helps update some previous understanding of the strength of defense methods under our proposed evaluation metric.
♻ ☆ MixerFlow: MLP-Mixer meets Normalising Flows ECML-PKDD 2024
Normalising flows are generative models that transform a complex density into a simpler density through the use of bijective transformations enabling both density estimation and data generation from a single model. %However, the requirement for bijectivity imposes the use of specialised architectures. In the context of image modelling, the predominant choice has been the Glow-based architecture, whereas alternative architectures remain largely unexplored in the research community. In this work, we propose a novel architecture called MixerFlow, based on the MLP-Mixer architecture, further unifying the generative and discriminative modelling architectures. MixerFlow offers an efficient mechanism for weight sharing for flow-based models. Our results demonstrate comparative or superior density estimation on image datasets and good scaling as the image resolution increases, making MixerFlow a simple yet powerful alternative to the Glow-based architectures. We also show that MixerFlow provides more informative embeddings than Glow-based architectures and can integrate many structured transformations such as splines or Kolmogorov-Arnold Networks.
comment: Alternative title: MixerFlow for Image Modelling; Accepted at ECML-PKDD 2024
♻ ☆ Fast Sampling via Discrete Non-Markov Diffusion Models
Discrete diffusion models have emerged as powerful tools for high-quality data generation. Despite their success in discrete spaces, such as text generation tasks, the acceleration of discrete diffusion models remains under explored. In this paper, we propose a discrete non-Markov diffusion model, which admits an accelerated reverse sampling for discrete data generation. Our method significantly reduces the number of function evaluations (i.e., calls to the neural network), making the sampling process much faster. Furthermore, we study the transition from finite to infinite step sampling, offering new insights into bridging the gap between discrete and continuous-time processes for discrete diffusion models. Extensive experiments on natural language generation and machine translation tasks demonstrate the superior performance of our method in terms of both generation speed and sample quality compared to existing methods for discrete diffusion models.
comment: 33 pages, 5 figures, 12 tables
♻ ☆ MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases ICML 2024
This paper addresses the growing need for efficient large language models (LLMs) on mobile devices, driven by increasing cloud costs and latency concerns. We focus on designing top-quality LLMs with fewer than a billion parameters, a practical choice for mobile deployment. Contrary to prevailing belief emphasizing the pivotal role of data and parameter quantity in determining model quality, our investigation underscores the significance of model architecture for sub-billion scale LLMs. Leveraging deep and thin architectures, coupled with embedding sharing and grouped-query attention mechanisms, we establish a strong baseline network denoted as MobileLLM, which attains a remarkable 2.7%/4.3% accuracy boost over preceding 125M/350M state-of-the-art models. Additionally, we propose an immediate block-wise weight-sharing approach with no increase in model size and only marginal latency overhead. The resultant models, denoted as MobileLLM-LS, demonstrate a further accuracy enhancement of 0.7%/0.8% than MobileLLM 125M/350M. Moreover, MobileLLM model family shows significant improvements compared to previous sub-billion models on chat benchmarks, and demonstrates close correctness to LLaMA-v2 7B in API calling tasks, highlighting the capability of small models for common on-device use cases.
comment: ICML 2024. Code is available at https://github.com/facebookresearch/MobileLLM
♻ ☆ Transfer Learning in ECG Diagnosis: Is It Effective?
The adoption of deep learning in ECG diagnosis is often hindered by the scarcity of large, well-labeled datasets in real-world scenarios, leading to the use of transfer learning to leverage features learned from larger datasets. Yet the prevailing assumption that transfer learning consistently outperforms training from scratch has never been systematically validated. In this study, we conduct the first extensive empirical study on the effectiveness of transfer learning in multi-label ECG classification, by investigating comparing the fine-tuning performance with that of training from scratch, covering a variety of ECG datasets and deep neural networks. We confirm that fine-tuning is the preferable choice for small downstream datasets; however, when the dataset is sufficiently large, training from scratch can achieve comparable performance, albeit requiring a longer training time to catch up. Furthermore, we find that transfer learning exhibits better compatibility with convolutional neural networks than with recurrent neural networks, which are the two most prevalent architectures for time-series ECG applications. Our results underscore the importance of transfer learning in ECG diagnosis, yet depending on the amount of available data, researchers may opt not to use it, considering the non-negligible cost associated with pre-training.
♻ ☆ Real-Time Machine-Learning-Based Optimization Using Input Convex LSTM
Neural network-based optimization and control have gradually supplanted first-principles model-based approaches in energy and manufacturing systems due to their efficient, data-driven process modeling that requires fewer resources. However, their non-convex nature significantly slows down the optimization and control processes, limiting their application in real-time decision-making processes. To address this challenge, we propose a novel Input Convex Long Short-Term Memory (ICLSTM) network to enhance the computational efficiency of neural network-based optimization. Through two case studies employing real-time neural network-based optimization for optimizing energy and chemical systems, we demonstrate the superior performance of ICLSTM-based optimization in terms of runtime. Specifically, in a real-time optimization problem of a real-world solar photovoltaic (PV) energy system at LHT Holdings in Singapore, ICLSTM-based optimization achieved an 8-fold speedup compared to conventional LSTM-based optimization. These results highlight the potential of ICLSTM networks to significantly enhance the efficiency of neural network-based optimization and control in practical applications. Source code is available at https://github.com/killingbear999/ICLSTM.
♻ ☆ Bi-Mamba+: Bidirectional Mamba for Time Series Forecasting
Long-term time series forecasting (LTSF) provides longer insights into future trends and patterns. Over the past few years, deep learning models especially Transformers have achieved advanced performance in LTSF tasks. However, LTSF faces inherent challenges such as long-term dependencies capturing and sparse semantic characteristics. Recently, a new state space model (SSM) named Mamba is proposed. With the selective capability on input data and the hardware-aware parallel computing algorithm, Mamba has shown great potential in balancing predicting performance and computational efficiency compared to Transformers. To enhance Mamba's ability to preserve historical information in a longer range, we design a novel Mamba+ block by adding a forget gate inside Mamba to selectively combine the new features with the historical features in a complementary manner. Furthermore, we apply Mamba+ both forward and backward and propose Bi-Mamba+, aiming to promote the model's ability to capture interactions among time series elements. Additionally, multivariate time series data in different scenarios may exhibit varying emphasis on intra- or inter-series dependencies. Therefore, we propose a series-relation-aware decider that controls the utilization of channel-independent or channel-mixing tokenization strategy for specific datasets. Extensive experiments on 8 real-world datasets show that our model achieves more accurate predictions compared with state-of-the-art methods.
comment: New Mamba-based architecture. All experiments rerun
♻ ☆ Sample Complexity of Offline Distributionally Robust Linear Markov Decision Processes
In offline reinforcement learning (RL), the absence of active exploration calls for attention on the model robustness to tackle the sim-to-real gap, where the discrepancy between the simulated and deployed environments can significantly undermine the performance of the learned policy. To endow the learned policy with robustness in a sample-efficient manner in the presence of high-dimensional state-action space, this paper considers the sample complexity of distributionally robust linear Markov decision processes (MDPs) with an uncertainty set characterized by the total variation distance using offline data. We develop a pessimistic model-based algorithm and establish its sample complexity bound under minimal data coverage assumptions, which outperforms prior art by at least $\widetilde{O}(d)$, where $d$ is the feature dimension. We further improve the performance guarantee of the proposed algorithm by incorporating a carefully-designed variance estimator.
comment: accepted by Reinforcement Learning Conference (RLC)
♻ ☆ CAT: Interpretable Concept-based Taylor Additive Models
As an emerging interpretable technique, Generalized Additive Models (GAMs) adopt neural networks to individually learn non-linear functions for each feature, which are then combined through a linear model for final predictions. Although GAMs can explain deep neural networks (DNNs) at the feature level, they require large numbers of model parameters and are prone to overfitting, making them hard to train and scale. Additionally, in real-world datasets with many features, the interpretability of feature-based explanations diminishes for humans. To tackle these issues, recent research has shifted towards concept-based interpretable methods. These approaches try to integrate concept learning as an intermediate step before making predictions, explaining the predictions in terms of human-understandable concepts. However, these methods require domain experts to extensively label concepts with relevant names and their ground-truth values. In response, we propose CAT, a novel interpretable Concept-bAsed Taylor additive model to simply this process. CAT does not have to require domain experts to annotate concepts and their ground-truth values. Instead, it only requires users to simply categorize input features into broad groups, which can be easily accomplished through a quick metadata review. Specifically, CAT first embeds each group of input features into one-dimensional high-level concept representation, and then feeds the concept representations into a new white-box Taylor Neural Network (TaylorNet). The TaylorNet aims to learn the non-linear relationship between the inputs and outputs using polynomials. Evaluation results across multiple benchmarks demonstrate that CAT can outperform or compete with the baselines while reducing the need of extensive model parameters. Importantly, it can explain model predictions through high-level concepts that human can understand.
♻ ☆ Some Primal-Dual Theory for Subgradient Methods for Strongly Convex Optimization
We consider (stochastic) subgradient methods for strongly convex but potentially nonsmooth non-Lipschitz optimization. We provide new equivalent dual descriptions (in the style of dual averaging) for the classic subgradient method, the proximal subgradient method, and the switching subgradient method. These equivalences enable $O(1/T)$ convergence guarantees in terms of both their classic primal gap and a not previously analyzed dual gap for strongly convex optimization. Consequently, our theory provides these classic methods with simple, optimal stopping criteria and optimality certificates at no added computational cost. Our results apply to a wide range of stepsize selections and of non-Lipschitz ill-conditioned problems where the early iterations of the subgradient method may diverge exponentially quickly (a phenomenon which, to the best of our knowledge, no prior works address). Even in the presence of such undesirable behaviors, our theory still ensures and bounds eventual convergence.
comment: 24 pages, major revision shortened the write-up and unified the analysis to be done just once in a single "super" setting
♻ ☆ Beyond Anti-Forgetting: Multimodal Continual Instruction Tuning with Positive Forward Transfer
Multimodal Continual Instruction Tuning (MCIT) enables Multimodal Large Language Models (MLLMs) to meet continuously emerging requirements without expensive retraining. MCIT faces two major obstacles: catastrophic forgetting (where old knowledge is forgotten) and negative forward transfer (where the performance of future tasks is degraded). Although existing methods have greatly alleviated catastrophic forgetting, they still suffer from negative forward transfer. We discover a large discrepancy in different input embeddings by performing singular value decomposition (SVD) on input embeddings. This discrepancy results in the model learning irrelevant information for old and pre-trained tasks, leading to catastrophic forgetting and negative forward transfer. To address these issues, we propose Prompt Tuning with Positive Forward Transfer (Fwd-Prompt), a prompt-based method that projects the prompt gradient to the residual space to minimize interference between tasks and to the pre-trained subspace for reusing pre-trained knowledge. Our experiments demonstrate that Fwd-Prompt achieves state-of-the-art performance while updating fewer parameters and requiring no old samples. Our research illuminates the potential of continuously adapting MLLMs to new tasks under the instruction tuning paradigm and encourages future studies to explore MCIT.
♻ ☆ Reinforcement Learning in Credit Scoring and Underwriting
This paper proposes a novel reinforcement learning (RL) framework for credit underwriting that tackles ungeneralizable contextual challenges. We adapt RL principles for credit scoring, incorporating action space renewal and multi-choice actions. Our work demonstrates that the traditional underwriting approach aligns with the RL greedy strategy. We introduce two new RL-based credit underwriting algorithms to enable more informed decision-making. Simulations show these new approaches outperform the traditional method in scenarios where the data aligns with the model. However, complex situations highlight model limitations, emphasizing the importance of powerful machine learning models for optimal performance. Future research directions include exploring more sophisticated models alongside efficient exploration mechanisms.
♻ ☆ Neural Operator for Accelerating Coronal Magnetic Field Model
Studying the sun's outer atmosphere is challenging due to its complex magnetic fields impacting solar activities. Magnetohydrodynamics (MHD) simulations help model these interactions but are extremely time-consuming (usually on a scale of days). Our research applies the Fourier Neural Operator (FNO) to accelerate the coronal magnetic field modeling, specifically, the Bifrost MHD model. We apply Tensorized FNO (TFNO) to generate solutions from partial differential equations (PDEs) over a 3D domain efficiently. TFNO's performance is compared with other deep learning methods, highlighting its accuracy and scalability. Physics analysis confirms that TFNO is reliable and capable of accelerating MHD simulations with high precision. This advancement improves efficiency in data handling, enhances predictive capabilities, and provides a better understanding of magnetic topologies.
♻ ☆ Extraction of nonlinearity in neural networks with Koopman operator
Nonlinearity plays a crucial role in deep neural networks. In this paper, we investigate the degree to which the nonlinearity of the neural network is essential. For this purpose, we employ the Koopman operator, extended dynamic mode decomposition, and the tensor-train format. The Koopman operator approach has been recently developed in physics and nonlinear sciences; the Koopman operator deals with the time evolution in the observable space instead of the state space. Since we can replace the nonlinearity in the state space with the linearity in the observable space, it is a hopeful candidate for understanding complex behavior in nonlinear systems. Here, we analyze learned neural networks for the classification problems. As a result, the replacement of the nonlinear middle layers with the Koopman matrix yields enough accuracy in numerical experiments. In addition, we confirm that the pruning of the Koopman matrix gives sufficient accuracy even at high compression ratios. These results indicate the possibility of extracting some features in the neural networks with the Koopman operator approach.
comment: 22 pages, 14 figures
♻ ☆ ASID: Active Exploration for System Identification in Robotic Manipulation
Model-free control strategies such as reinforcement learning have shown the ability to learn control strategies without requiring an accurate model or simulator of the world. While this is appealing due to the lack of modeling requirements, such methods can be sample inefficient, making them impractical in many real-world domains. On the other hand, model-based control techniques leveraging accurate simulators can circumvent these challenges and use a large amount of cheap simulation data to learn controllers that can effectively transfer to the real world. The challenge with such model-based techniques is the requirement for an extremely accurate simulation, requiring both the specification of appropriate simulation assets and physical parameters. This requires considerable human effort to design for every environment being considered. In this work, we propose a learning system that can leverage a small amount of real-world data to autonomously refine a simulation model and then plan an accurate control strategy that can be deployed in the real world. Our approach critically relies on utilizing an initial (possibly inaccurate) simulator to design effective exploration policies that, when deployed in the real world, collect high-quality data. We demonstrate the efficacy of this paradigm in identifying articulation, mass, and other physical parameters in several challenging robotic manipulation tasks, and illustrate that only a small amount of real-world data can allow for effective sim-to-real transfer. Project website at https://weirdlabuw.github.io/asid
comment: Project website at https://weirdlabuw.github.io/asid
♻ ☆ System Identification for Continuous-time Linear Dynamical Systems
The problem of system identification for the Kalman filter, relying on the expectation-maximization (EM) procedure to learn the underlying parameters of a dynamical system, has largely been studied assuming that observations are sampled at equally-spaced time points. However, in many applications this is a restrictive and unrealistic assumption. This paper addresses system identification for the continuous-discrete filter, with the aim of generalizing learning for the Kalman filter by relying on a solution to a continuous-time It\^o stochastic differential equation (SDE) for the latent state and covariance dynamics. We introduce a novel two-filter, analytical form for the posterior with a Bayesian derivation, which yields analytical updates which do not require the forward-pass to be pre-computed. Using this analytical and efficient computation of the posterior, we provide an EM procedure which estimates the parameters of the SDE, naturally incorporating irregularly sampled measurements. Generalizing the learning of latent linear dynamical systems (LDS) to continuous-time may extend the use of the hybrid Kalman filter to data which is not regularly sampled or has intermittent missing values, and can extend the power of non-linear system identification methods such as switching LDS (SLDS), which rely on EM for the linear discrete-time Kalman filter as a sub-unit for learning locally linearized behavior of a non-linear system. We apply the method by learning the parameters of a latent, multivariate Fokker-Planck SDE representing a toggle-switch genetic circuit using biologically realistic parameters, and compare the efficacy of learning relative to the discrete-time Kalman filter as the step-size irregularity and spectral-radius of the dynamics-matrix increases.
comment: 31 pages, 3 figures. Only light changes and restructuring to previous version made
♻ ☆ Cross-conformal e-prediction
This note discusses a simple modification of cross-conformal prediction inspired by recent work on e-values. The precursor of conformal prediction developed in the 1990s by Gammerman, Vapnik, and Vovk was also based on e-values and is called conformal e-prediction in this note. Replacing e-values by p-values led to conformal prediction, which has important advantages over conformal e-prediction without obvious disadvantages. The situation with cross-conformal prediction is, however, different: whereas for cross-conformal prediction validity is only an empirical fact (and can be broken with excessive randomization), this note draws the reader's attention to the obvious fact that cross-conformal e-prediction enjoys a guaranteed property of validity.
comment: 8 pages. This version: exposition improved; proof of Proposition 4 added
♻ ☆ Intriguing Properties of Adversarial ML Attacks in the Problem Space [Extended Version]
Recent research efforts on adversarial machine learning (ML) have investigated problem-space attacks, focusing on the generation of real evasive objects in domains where, unlike images, there is no clear inverse mapping to the feature space (e.g., software). However, the design, comparison, and real-world implications of problem-space attacks remain underexplored. This article makes three major contributions. Firstly, we propose a general formalization for adversarial ML evasion attacks in the problem-space, which includes the definition of a comprehensive set of constraints on available transformations, preserved semantics, absent artifacts, and plausibility. We shed light on the relationship between feature space and problem space, and we introduce the concept of side-effect features as the by-product of the inverse feature-mapping problem. This enables us to define and prove necessary and sufficient conditions for the existence of problem-space attacks. Secondly, building on our general formalization, we propose a novel problem-space attack on Android malware that overcomes past limitations in terms of semantics and artifacts. We have tested our approach on a dataset with 150K Android apps from 2016 and 2018 which show the practical feasibility of evading a state-of-the-art malware classifier along with its hardened version. Thirdly, we explore the effectiveness of adversarial training as a possible approach to enforce robustness against adversarial samples, evaluating its effectiveness on the considered machine learning models under different scenarios. Our results demonstrate that "adversarial-malware as a service" is a realistic threat, as we automatically generate thousands of realistic and inconspicuous adversarial applications at scale, where on average it takes only a few minutes to generate an adversarial instance.
comment: This arXiv version (v3) corresponds to an extended version
♻ ☆ Symbolic Prompt Program Search: A Structure-Aware Approach to Efficient Compile-Time Prompt Optimization
In many modern LLM applications, such as retrieval augmented generation, prompts have become programs themselves. In these settings, prompt programs are repeatedly called with different user queries or data instances. A big practical challenge is optimizing such prompt programs. Recent work has mostly focused on either simple prompt programs or assumed that the general structure of a prompt program is fixed. We introduce SAMMO, a framework to perform symbolic prompt program search for compile-time optimizations of prompt programs. SAMMO represents prompt programs on a symbolic level which allows for a rich set of transformations that can be searched over during optimization. We show that SAMMO generalizes previous methods and improves the performance of complex prompts on (1) instruction tuning, (2) RAG pipeline tuning, and (3) prompt compression, across several different LLMs. We make all code available open-source at https://github.com/microsoft/sammo .
♻ ☆ A Hierarchical Neural Framework for Classification and its Explanation in Large Unstructured Legal Documents CIKM 2023
Automatic legal judgment prediction and its explanation suffer from the problem of long case documents exceeding tens of thousands of words, in general, and having a non-uniform structure. Predicting judgments from such documents and extracting their explanation becomes a challenging task, more so on documents with no structural annotation. We define this problem as "scarce annotated legal documents" and explore their lack of structural information and their long lengths with a deep-learning-based classification framework which we call MESc; "Multi-stage Encoder-based Supervised with-clustering"; for judgment prediction. We explore the adaptability of LLMs with multi-billion parameters (GPT-Neo, and GPT-J) to legal texts and their intra-domain(legal) transfer learning capacity. Alongside this, we compare their performance and adaptability with MESc and the impact of combining embeddings from their last layers. For such hierarchical models, we also propose an explanation extraction algorithm named ORSE; Occlusion sensitivity-based Relevant Sentence Extractor; based on the input-occlusion sensitivity of the model, to explain the predictions with the most relevant sentences from the document. We explore these methods and test their effectiveness with extensive experiments and ablation studies on legal documents from India, the European Union, and the United States with the ILDC dataset and a subset of the LexGLUE dataset. MESc achieves a minimum total performance gain of approximately 2 points over previous state-of-the-art proposed methods, while ORSE applied on MESc achieves a total average gain of 50% over the baseline explainability scores.
comment: Published as non archival paper in the The 3rd International Workshop on Mining and Learning in the Legal Domain (MLLD-2023) at CIKM 2023, Birmingham, United Kingdom. (https://sites.google.com/view/mlld2023/)
♻ ☆ Cross-Modality Program Representation Learning for Electronic Design Automation with High-Level Synthesis
In recent years, domain-specific accelerators (DSAs) have gained popularity for applications such as deep learning and autonomous driving. To facilitate DSA designs, programmers use high-level synthesis (HLS) to compile a high-level description written in C/C++ into a design with low-level hardware description languages that eventually synthesize DSAs on circuits. However, creating a high-quality HLS design still demands significant domain knowledge, particularly in microarchitecture decisions expressed as \textit{pragmas}. Thus, it is desirable to automate such decisions with the help of machine learning for predicting the quality of HLS designs, requiring a deeper understanding of the program that consists of original code and pragmas. Naturally, these programs can be considered as sequence data. In addition, these programs can be compiled and converted into a control data flow graph (CDFG). But existing works either fail to leverage both modalities or combine the two in shallow or coarse ways. We propose ProgSG, a model that allows interaction between the source code sequence modality and the graph modality in a deep and fine-grained way. To alleviate the scarcity of labeled designs, a pre-training method is proposed based on a suite of compiler's data flow analysis tasks. Experimental results show that ProgSG reduces the RMSE of design performance predictions by up to $22\%$, and identifies designs with an average of $1.10\times$ and $1.26\times$ (up to $8.17\times$ and $13.31\times$) performance improvement in design space exploration (DSE) task compared to HARP and AutoDSE, respectively.
comment: 14 pages, 8 figures. arXiv admin note: text overlap with arXiv:2305.10838
♻ ☆ Condition Monitoring with Incomplete Data: An Integrated Variational Autoencoder and Distance Metric Framework
Condition monitoring of industrial systems is crucial for ensuring safety and maintenance planning, yet notable challenges arise in real-world settings due to the limited or non-existent availability of fault samples. This paper introduces an innovative solution to this problem by proposing a new method for fault detection and condition monitoring for unseen data. Adopting an approach inspired by zero-shot learning, our method can identify faults and assign a relative health index to various operational conditions. Typically, we have plenty of data on normal operations, some data on compromised conditions, and very few (if any) samples of severe faults. We use a variational autoencoder to capture the probabilistic distribution of previously seen and new unseen conditions. The health status is determined by comparing each sample's deviation from a normal operation reference distribution in the latent space. Faults are detected by establishing a threshold for the health indexes, allowing the model to identify severe, unseen faults with high accuracy, even amidst noise. We validate our approach using the run-to-failure IMS-bearing dataset and compare it with other methods. The health indexes generated by our model closely match the established descriptive model of bearing wear, attesting to the robustness and reliability of our method. These findings highlight the potential of our methodology in augmenting fault detection capabilities within industrial domains, thereby contributing to heightened safety protocols and optimized maintenance practices.
comment: Accepted in the 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE 2024)
♻ ☆ Directions of Curvature as an Explanation for Loss of Plasticity
Loss of plasticity is a phenomenon in which neural networks lose their ability to learn from new experience. Despite being empirically observed in several problem settings, little is understood about the mechanisms that lead to loss of plasticity. In this paper, we offer a consistent explanation for loss of plasticity: Neural networks lose directions of curvature during training and that loss of plasticity can be attributed to this reduction in curvature. To support such a claim, we provide a systematic investigation of loss of plasticity across continual learning tasks using MNIST, CIFAR-10 and ImageNet. Our findings illustrate that loss of curvature directions coincides with loss of plasticity, while also showing that previous explanations are insufficient to explain loss of plasticity in all settings. Lastly, we show that regularizers which mitigate loss of plasticity also preserve curvature, motivating a simple distributional regularizer that proves to be effective across the problem settings we considered.
Multimedia 2
☆ Taming Data and Transformers for Audio Generation
Generating ambient sounds and effects is a challenging problem due to data scarcity and often insufficient caption quality, making it difficult to employ large-scale generative models for the task. In this work, we tackle the problem by introducing two new models. First, we propose AutoCap, a high-quality and efficient automatic audio captioning model. We show that by leveraging metadata available with the audio modality, we can substantially improve the quality of captions. AutoCap reaches CIDEr score of 83.2, marking a 3.2% improvement from the best available captioning model at four times faster inference speed. We then use AutoCap to caption clips from existing datasets, obtaining 761,000 audio clips with high-quality captions, forming the largest available audio-text dataset. Second, we propose GenAu, a scalable transformer-based audio generation architecture that we scale up to 1.25B parameters and train with our new dataset. When compared to state-of-the-art audio generators, GenAu obtains significant improvements of 15.7% in FAD score, 22.7% in IS, and 13.5% in CLAP score, indicating significantly improved quality of generated audio compared to previous works. This shows that the quality of data is often as important as its quantity. Besides, since AutoCap is fully automatic, new audio samples can be added to the training dataset, unlocking the training of even larger generative models for audio synthesis.
comment: Project Webpage: https://snap-research.github.io/GenAU/
♻ ☆ Towards Alleviating Text-to-Image Retrieval Hallucination for CLIP in Zero-shot Learning
Pretrained cross-modal models, for instance, the most representative CLIP, have recently led to a boom in using pre-trained models for cross-modal zero-shot tasks, considering the generalization properties. However, we analytically discover that CLIP suffers from the text-to-image retrieval hallucination, adversely limiting its capabilities under zero-shot learning: CLIP would select the image with the highest score when asked to figure out which image perfectly matches one given query text among several candidate images even though CLIP knows contents in the image. Accordingly, we propose a Balanced Score with Auxiliary Prompts (BSAP) to mitigate the CLIP's text-to-image retrieval hallucination under zero-shot learning. Specifically, we first design auxiliary prompts to provide multiple reference outcomes for every single image retrieval, then the outcomes derived from each retrieved image in conjunction with the target text are normalized to obtain the final similarity, which alleviates hallucinations in the model. Additionally, we can merge CLIP's original results and BSAP to obtain a more robust hybrid outcome (BSAP-H). Extensive experiments on two typical zero-shot learning tasks, i.e., Referring Expression Comprehension (REC) and Referring Image Segmentation (RIS), are conducted to demonstrate the effectiveness of our BSAP. Specifically, when evaluated on the validation dataset of RefCOCO in REC, BSAP increases CLIP's performance by 20.6%. Further, we validate that our strategy could be applied in other types of pretrained cross-modal models, such as ALBEF and BLIP.
comment: This work has been submitted to the lEEE for possible publication. Copyright may betransferred without notice, after which this version may no longer be accessible
Performance 4
☆ Understanding the Impact of openPMD on BIT1, a Particle-in-Cell Monte Carlo Code, through Instrumentation, Monitoring, and In-Situ Analysis
Particle-in-Cell Monte Carlo simulations on large-scale systems play a fundamental role in understanding the complexities of plasma dynamics in fusion devices. Efficient handling and analysis of vast datasets are essential for advancing these simulations. Previously, we addressed this challenge by integrating openPMD with BIT1, a Particle-in-Cell Monte Carlo code, streamlining data streaming and storage. This integration not only enhanced data management but also improved write throughput and storage efficiency. In this work, we delve deeper into the impact of BIT1 openPMD BP4 instrumentation, monitoring, and in-situ analysis. Utilizing cutting-edge profiling and monitoring tools such as gprof, CrayPat, Cray Apprentice2, IPM, and Darshan, we dissect BIT1's performance post-integration, shedding light on computation, communication, and I/O operations. Fine-grained instrumentation offers insights into BIT1's runtime behavior, while immediate monitoring aids in understanding system dynamics and resource utilization patterns, facilitating proactive performance optimization. Advanced visualization techniques further enrich our understanding, enabling the optimization of BIT1 simulation workflows aimed at controlling plasma-material interfaces with improved data analysis and visualization at every checkpoint without causing any interruption to the simulation.
comment: Accepted by the Euro-Par 2024 workshops (PHYSHPC 2024), prepared in the standardized Springer LNCS format and consists of 12 pages, which includes the main text, references, and figures
☆ AR-PPF: Advanced Resolution-Based Pixel Preemption Data Filtering for Efficient Time-Series Data Analysis
With the advent of automation, many manufacturing industries have transitioned to data-centric methodologies, giving rise to an unprecedented influx of data during the manufacturing process. This data has become instrumental in analyzing the quality of manufacturing process and equipment. Engineers and data analysts, in particular, require extensive time-series data for seasonal cycle analysis. However, due to computational resource constraints, they are often limited to querying short-term data multiple times or resorting to the use of summarized data in which key patterns may be overlooked. This study proposes a novel solution to overcome these limitations; the advanced resolution-based pixel preemption data filtering (AR-PPF) algorithm. This technology allows for efficient visualization of time-series charts over long periods while significantly reducing the time required to retrieve data. We also demonstrates how this approach not only enhances the efficiency of data analysis but also ensures that key feature is not lost, thereby providing a more accurate and comprehensive understanding of the data.
comment: 7pages, preprint, '24 Samsung Best Paper Awards
♻ ☆ Efficient Hardware Accelerator Based on Medium Granularity Dataflow for SpTRSV
Sparse triangular solve (SpTRSV) is widely used in various domains. Numerous studies have been conducted using CPUs, GPUs, and specific hardware accelerators, where dataflow can be categorized into coarse and fine granularity. Coarse dataflow offers good spatial locality but suffers from low parallelism, while fine dataflow provides high parallelism but disrupts the spatial structure, leading to increased nodes and poor data reuse. This paper proposes a novel hardware accelerator for SpTRSV or SpTRSV-like DAGs. The accelerator implements a medium granularity dataflow through hardware-software codesign and achieves both excellent spatial locality and high parallelism. Additionally, a partial sum caching mechanism is introduced to reduce the blocking frequency of processing elements (PEs), and a reordering algorithm of intra-node edges computation is developed to enhance data reuse. Experimental results on 264 benchmarks with node counts reaching up to 85,392 demonstrate that this work achieves average performance improvements of 12.2$\times$ (up to 874.5$\times$) over CPUs and 10.1$\times$ (up to 740.4$\times$) over GPUs. Compared to the state-of-the-art technique (DPU-v2), this work shows a 2.5$\times$ (up to 5.9$\times$) average performance improvement and 1.8$\times$ (up to 4.1$\times$) average energy efficiency enhancement.
♻ ☆ Towards A Flexible Accuracy-Oriented Deep Learning Module Inference Latency Prediction Framework for Adaptive Optimization Algorithms
With the rapid development of Deep Learning, more and more applications on the cloud and edge tend to utilize large DNN (Deep Neural Network) models for improved task execution efficiency as well as decision-making quality. Due to memory constraints, models are commonly optimized using compression, pruning, and partitioning algorithms to become deployable onto resource-constrained devices. As the conditions in the computational platform change dynamically, the deployed optimization algorithms should accordingly adapt their solutions. To perform frequent evaluations of these solutions in a timely fashion, RMs (Regression Models) are commonly trained to predict the relevant solution quality metrics, such as the resulted DNN module inference latency, which is the focus of this paper. Existing prediction frameworks specify different RM training workflows, but none of them allow flexible configurations of the input parameters (e.g., batch size, device utilization rate) and of the selected RMs for different modules. In this paper, a deep learning module inference latency prediction framework is proposed, which i) hosts a set of customizable input parameters to train multiple different RMs per DNN module (e.g., convolutional layer) with self-generated datasets, and ii) automatically selects a set of trained RMs leading to the highest possible overall prediction accuracy, while keeping the prediction time / space consumption as low as possible. Furthermore, a new RM, namely MEDN (Multi-task Encoder-Decoder Network), is proposed as an alternative solution. Comprehensive experiment results show that MEDN is fast and lightweight, and capable of achieving the highest overall prediction accuracy and R-squared value. The Time/Space-efficient Auto-selection algorithm also manages to improve the overall accuracy by 2.5% and R-squared by 0.39%, compared to the MEDN single-selection scheme.
comment: 14 pages, 4 figures, accepted by IIP 2024
Database 12
☆ QSketch: An Efficient Sketch for Weighted Cardinality Estimation in Streams KDD 2024
Estimating cardinality, i.e., the number of distinct elements, of a data stream is a fundamental problem in areas like databases, computer networks, and information retrieval. This study delves into a broader scenario where each element carries a positive weight. Unlike traditional cardinality estimation, limited research exists on weighted cardinality, with current methods requiring substantial memory and computational resources, challenging for devices with limited capabilities and real-time applications like anomaly detection. To address these issues, we propose QSketch, a memory-efficient sketch method for estimating weighted cardinality in streams. QSketch uses a quantization technique to condense continuous variables into a compact set of integer variables, with each variable requiring only 8 bits, making it 8 times smaller than previous methods. Furthermore, we leverage dynamic properties during QSketch generation to significantly enhance estimation accuracy and achieve a lower time complexity of $O(1)$ for updating estimations upon encountering a new element. Experimental results on synthetic and real-world datasets show that QSketch is approximately 30\% more accurate and two orders of magnitude faster than the state-of-the-art, using only $1/8$ of the memory.
comment: 12 pages, 10 figures, accepted by KDD 2024
☆ MINE GRAPH RULE: A New Cypher-like Operator for Mining Association Rules on Property Graphs
Mining information from graph databases is becoming overly important. To approach this problem, current methods focus on identifying subgraphs with specific topologies; as of today, no work has been focused on expressing jointly the syntax and semantics of mining operations over rich property graphs. We define MINE GRAPH RULE, a new operator for mining association rules from graph databases, by extending classical approaches used in relational databases and exploited by recommending systems. We describe the syntax and semantics of the operator, which is based on measuring the support and confidence of each rule, and then we provide several examples of increasing complexity on top of a realistic example; our operator embeds Cypher for expressing the mining conditions. MINE GRAPH RULE is implemented on top of Neo4j, the most successful graph database system; it takes advantage of built-in optimizations of the Neo4j engine, as well as optimizations that are defined in the context of relational association rules. Our implementation is available as a portable Neo4j plugin. At the end of our paper, we show the execution performance in a variety of settings, by varying the operators, the size of the graph, the ratio between node types, the method for creating relationships, and maximum support and confidence.
☆ CMRxRecon2024: A Multi-Modality, Multi-View K-Space Dataset Boosting Universal Machine Learning for Accelerated Cardiac MRI
Cardiac magnetic resonance imaging (MRI) has emerged as a clinically gold-standard technique for diagnosing cardiac diseases, thanks to its ability to provide diverse information with multiple modalities and anatomical views. Accelerated cardiac MRI is highly expected to achieve time-efficient and patient-friendly imaging, and then advanced image reconstruction approaches are required to recover high-quality, clinically interpretable images from undersampled measurements. However, the lack of publicly available cardiac MRI k-space dataset in terms of both quantity and diversity has severely hindered substantial technological progress, particularly for data-driven artificial intelligence. Here, we provide a standardized, diverse, and high-quality CMRxRecon2024 dataset to facilitate the technical development, fair evaluation, and clinical transfer of cardiac MRI reconstruction approaches, towards promoting the universal frameworks that enable fast and robust reconstructions across different cardiac MRI protocols in clinical practice. To the best of our knowledge, the CMRxRecon2024 dataset is the largest and most diverse publicly available cardiac k-space dataset. It is acquired from 330 healthy volunteers, covering commonly used modalities, anatomical views, and acquisition trajectories in clinical cardiac MRI workflows. Besides, an open platform with tutorials, benchmarks, and data processing tools is provided to facilitate data usage, advanced method development, and fair performance evaluation.
comment: 19 pages, 3 figures, 2 tables
☆ Constructing and Analyzing Different Density Graphs for Path Extrapolation in Wikipedia
Graph-based models have become pivotal in understanding and predicting navigational patterns within complex networks. Building on graph-based models, the paper advances path extrapolation methods to efficiently predict Wikipedia navigation paths. The Wikipedia Central Macedonia (WCM) dataset is sourced from Wikipedia, with a spotlight on the Central Macedonia region, Greece, to initiate path generation. To build WCM, a crawling process is used that simulates human navigation through Wikipedia. Experimentation shows that an extension of the graph neural network GRETEL, which resorts to dual hypergraph transformation, performs better on a dense graph of WCM than on a sparse graph of WCM. Moreover, combining hypergraph features with features extracted from graph edges has proven to enhance the model's effectiveness. A superior model's performance is reported on the WCM dense graph than on the larger Wikispeedia dataset, suggesting that size may not be as influential in predictive accuracy as the quality of connections and feature extraction. The paper fits the track Knowledge Discovery and Machine Learning of the 16th International Conference on Advances in Databases, Knowledge, and Data Applications.
comment: The Sixteenth International Conference on Advances in Databases, Knowledge, and Data Applications (DBKDA 2024)
☆ LearnedKV: Integrating LSM and Learned Index for Superior Performance on SSD
In this paper, we introduce LearnedKV, a novel tiered key-value (KV) store that seamlessly integrates a Log-Structured Merge (LSM) tree with a Learned Index. This integration yields superior read and write performance compared to standalone indexing structures on SSDs. Our design capitalizes on the LSM tree's high write/update throughput and the Learned Index's fast read capabilities, enabling each component to leverage its strengths. We analyze the impact of size on LSM tree performance and demonstrate how the tiered Learned Index significantly mitigates the LSM tree's size-related performance degradation, particularly by reducing the intensive I/O operations resulting from re-insertions after Garbage Collection (GC). To maintain rapid read performance for newly inserted keys, we introduce a non-blocking conversion mechanism that efficiently transforms the existing LSM tree into a new Learned Index with minimal overhead during GC. Our experimental results, conducted across diverse workloads, show that LearnedKV outperforms state-of-the-art solutions by up to 1.32x in read requests and 1.31x in write performance.
comment: 17 pages, 13 figures
☆ AR-PPF: Advanced Resolution-Based Pixel Preemption Data Filtering for Efficient Time-Series Data Analysis
With the advent of automation, many manufacturing industries have transitioned to data-centric methodologies, giving rise to an unprecedented influx of data during the manufacturing process. This data has become instrumental in analyzing the quality of manufacturing process and equipment. Engineers and data analysts, in particular, require extensive time-series data for seasonal cycle analysis. However, due to computational resource constraints, they are often limited to querying short-term data multiple times or resorting to the use of summarized data in which key patterns may be overlooked. This study proposes a novel solution to overcome these limitations; the advanced resolution-based pixel preemption data filtering (AR-PPF) algorithm. This technology allows for efficient visualization of time-series charts over long periods while significantly reducing the time required to retrieve data. We also demonstrates how this approach not only enhances the efficiency of data analysis but also ensures that key feature is not lost, thereby providing a more accurate and comprehensive understanding of the data.
comment: 7pages, preprint, '24 Samsung Best Paper Awards
☆ Semantic orchestration and exploitation of material data: A dataspace solution demonstrated on steel and cooper applications
In the field of materials science and manufacturing, a vast amount of heterogeneous data exists, encompassing measurement and simulation data, machine data, publications, and more. This data serves as the bedrock of valuable knowledge that can be leveraged for various engineering applications. However, efficiently storing and handling such diverse data remain significantly challenging, often due to the lack of standardization and integration across different organizational units. Addressing these issues is crucial for fully utilizing the potential of data-driven approaches in these fields. In this paper, we present a novel technology stack named Dataspace Management System (DSMS) for powering dataspace solutions. The core of DSMS lies on its distinctive knowledge management approach tuned to meet the specific demands of the materials science and manufacturing domain, all while adhering to the FAIR principles. This includes data integration, linkage, exploration, visualization, processing, and enrichment, in order to support engineers in decision-making and in solving design and optimization problems. We provide an architectural overview and describe the core components of DSMS. Additionally, we demonstrate the applicability of DSMS to typical data processing tasks in materials science through use cases from two research projects, namely StahlDigital and KupferDigital, both part of the German MaterialDigital initiative.
♻ ☆ CHESS: Contextual Harnessing for Efficient SQL Synthesis
Utilizing large language models (LLMs) for transforming natural language questions into SQL queries (text-to-SQL) is a promising yet challenging approach, particularly when applied to real-world databases with complex and extensive schemas. In particular, effectively incorporating data catalogs and database values for SQL generation remains an obstacle, leading to suboptimal solutions. We address this problem by proposing a new pipeline that effectively retrieves relevant data and context, selects an efficient schema, and synthesizes correct and efficient SQL queries. To increase retrieval precision, our pipeline introduces a hierarchical retrieval method leveraging model-generated keywords, locality-sensitive hashing indexing, and vector databases. Additionally, we have developed an adaptive schema pruning technique that adjusts based on the complexity of the problem and the model's context size. Our approach generalizes to both frontier proprietary models like GPT-4 and open-source models such as Llama-3-70B. Through a series of ablation studies, we demonstrate the effectiveness of each component of our pipeline and its impact on the end-to-end performance. Our method achieves new state-of-the-art performance on the cross-domain challenging BIRD dataset.
♻ ☆ Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL
Generating accurate SQL according to natural language questions (text-to-SQL) is a long-standing challenge due to the complexities involved in user question understanding, database schema comprehension, and SQL generation. Conventional text-to-SQL systems, comprising human engineering and deep neural networks, have made substantial progress. Subsequently, pre-trained language models (PLMs) have been developed and utilized for text-to-SQL tasks, achieving promising performance. As modern databases become more complex, the corresponding user questions also grow more challenging, leading PLMs with limited comprehension capabilities to produce incorrect SQL. This necessitates more sophisticated and tailored optimization methods for PLMs, which, in turn, restricts the applications of PLM-based systems. Most recently, large language models (LLMs) have demonstrated significant capabilities in natural language understanding as the model scale remains increasing. Therefore, integrating the LLM-based implementation can bring unique opportunities, improvements, and solutions to text-to-SQL research. In this survey, we present a comprehensive review of LLM-based text-to-SQL. Specifically, we propose a brief overview of the technical challenges and the evolutionary process of text-to-SQL. Then, we provide a detailed introduction to the datasets and metrics designed to evaluate text-to-SQL systems. After that, we present a systematic analysis of recent advances in LLM-based text-to-SQL. Finally, we discuss the remaining challenges in this field and propose expectations for future research directions.
♻ ☆ RDF Stream Taxonomy: Systematizing RDF Stream Types in Research and Practice
Over the years, RDF streaming was explored in research and practice from many angles, resulting in a wide range of RDF stream definitions. This variety presents a major challenge in discussing and integrating streaming systems, due to the lack of a common language. This work attempts to address this critical research gap, by systematizing RDF stream types present in the literature in a novel taxonomy. The proposed RDF Stream Taxonomy (RDF-STaX) is embodied in an OWL 2 DL ontology that follows the FAIR principles, making it readily applicable in practice. Extensive documentation and additional resources are provided, to foster the adoption of the ontology. Three use cases for the ontology are presented with accompanying competency questions, demonstrating the usefulness of the resource. Additionally, this work introduces a novel nanopublications dataset, which serves as a collaborative, living state-of-the-art review of RDF streaming. The results of a multifaceted evaluation of the resource are presented, testing its logical validity, use case coverage, and adherence to the community's best practices, while also comparing it to other works. RDF-STaX is expected to help drive innovation in RDF streaming, by fostering scientific discussion, cooperation, and tool interoperability.
♻ ☆ Global Benchmark Database
This paper presents Global Benchmark Database (GBD), a comprehensive suite of tools for provisioning and sustainably maintaining benchmark instances and their metadata. The availability of benchmark metadata is essential for many tasks in empirical research, e.g., for the data-driven compilation of benchmarks, the domain-specific analysis of runtime experiments, or the instance-specific selection of solvers. In this paper, we introduce the data model of GBD as well as its interfaces and provide examples of how to interact with them. We also demonstrate the integration of custom data sources and explain how to extend GBD with additional problem domains, instance formats and feature extractors.
♻ ☆ Output-Optimal Algorithms for Join-Aggregate Queries
The classic Yannakakis framework proposed in 1981 is still the state-of-the-art approach for tackling acyclic join-aggregate queries defined over commutative semi-rings. It has been shown that the time complexity of the Yannakakis framework is $O(N + \OUT)$ for any free-connex join-aggregate query, where $N$ is the input size of database and $\OUT$ is the output size of the query result. This is already output-optimal. However, only a general upper bound $O(N \cdot \OUT)$ on the time complexity of the Yannakakis framework is known for the remaining class of acyclic but non-free-connex queries. We first show a lower bound $\Omega\left(N \cdot \OUT^{1- \frac{1}{\outw}} + \OUT\right)$ for computing an acyclic join-aggregate query by {\em semi-ring algorithms}, where $\outw$ is identified as the {\em out-width} of the input query, $N$ is the input size of the database, and $\OUT$ is the output size of the query result. For example, $\outw =2$ for the chain matrix multiplication query, and $\outw=k$ for the star matrix multiplication query with $k$ relations. We give a tighter analysis of the Yannakakis framework and show that Yannakakis framework is already output-optimal on the class of {\em aggregate-hierarchical} queries. However, for the large remaining class of non-aggregate-hierarchical queries, such as chain matrix multiplication query, Yannakakis framework indeed requires $\Theta(N \cdot \OUT)$ time. We next explore a hybrid version of the Yannakakis framework and present an output-optimal algorithm for computing any general acyclic join-aggregate query within $\O\left(N\cdot \OUT^{1-\frac{1}{\outw}} + \OUT\right)$ time, matching the out-width-dependent lower bound up to a poly-logarithmic factor. To the best of our knowledge, this is the first polynomial improvement for computing acyclic join-aggregate queries since 1981.
Computation and Language 150
☆ Towards Compositionality in Concept Learning ICML 2024
Concept-based interpretability methods offer a lens into the internals of foundation models by decomposing their embeddings into high-level concepts. These concept representations are most useful when they are compositional, meaning that the individual concepts compose to explain the full sample. We show that existing unsupervised concept extraction methods find concepts which are not compositional. To automatically discover compositional concept representations, we identify two salient properties of such representations, and propose Compositional Concept Extraction (CCE) for finding concepts which obey these properties. We evaluate CCE on five different datasets over image and text data. Our evaluation shows that CCE finds more compositional concept representations than baselines and yields better accuracy on four downstream classification tasks. Code and data are available at https://github.com/adaminsky/compositional_concepts .
comment: Accepted at ICML 2024. 26 pages, 10 figures
☆ Symbolic Learning Enables Self-Evolving Agents
The AI community has been exploring a pathway to artificial general intelligence (AGI) by developing "language agents", which are complex large language models (LLMs) pipelines involving both prompting techniques and tool usage methods. While language agents have demonstrated impressive capabilities for many real-world tasks, a fundamental limitation of current language agents research is that they are model-centric, or engineering-centric. That's to say, the progress on prompts, tools, and pipelines of language agents requires substantial manual engineering efforts from human experts rather than automatically learning from data. We believe the transition from model-centric, or engineering-centric, to data-centric, i.e., the ability of language agents to autonomously learn and evolve in environments, is the key for them to possibly achieve AGI. In this work, we introduce agent symbolic learning, a systematic framework that enables language agents to optimize themselves on their own in a data-centric way using symbolic optimizers. Specifically, we consider agents as symbolic networks where learnable weights are defined by prompts, tools, and the way they are stacked together. Agent symbolic learning is designed to optimize the symbolic network within language agents by mimicking two fundamental algorithms in connectionist learning: back-propagation and gradient descent. Instead of dealing with numeric weights, agent symbolic learning works with natural language simulacrums of weights, loss, and gradients. We conduct proof-of-concept experiments on both standard benchmarks and complex real-world tasks and show that agent symbolic learning enables language agents to update themselves after being created and deployed in the wild, resulting in "self-evolving agents".
comment: Code available at https://github.com/aiwaves-cn/agents
☆ PrExMe! Large Scale Prompt Exploration of Open Source LLMs for Machine Translation and Summarization Evaluation
Large language models (LLMs) have revolutionized the field of NLP. Notably, their in-context learning capabilities also enable their use as evaluation metrics for natural language generation, making them particularly advantageous in low-resource scenarios and time-restricted applications. In this work, we introduce PrExMe, a large-scale prompt exploration for metrics, where we evaluate more than 720 prompt templates for open-source LLM-based metrics on machine translation (MT) and summarization datasets, totalling over 6.6M evaluations. This extensive comparison (1) serves as a benchmark of the performance of recent open-source LLMs as metrics and (2) explores the stability and variability of different prompting strategies. We discover that, on the one hand, there are scenarios for which prompts are stable. For instance, some LLMs show idiosyncratic preferences and favor to grade generated texts with textual labels while others prefer to return numeric scores. On the other hand, the stability of prompts and model rankings can be susceptible to seemingly innocuous changes. For example, changing the requested output format from "0 to 100" to "-1 to +1" can strongly affect the rankings in our evaluation. Our study contributes to understanding the impact of different prompting approaches on LLM-based metrics for MT and summarization evaluation, highlighting the most stable prompting patterns and potential limitations.
comment: Preprint
☆ ChronoMagic-Bench: A Benchmark for Metamorphic Evaluation of Text-to-Time-lapse Video Generation
We propose a novel text-to-video (T2V) generation benchmark, ChronoMagic-Bench, to evaluate the temporal and metamorphic capabilities of the T2V models (e.g. Sora and Lumiere) in time-lapse video generation. In contrast to existing benchmarks that focus on the visual quality and textual relevance of generated videos, ChronoMagic-Bench focuses on the model's ability to generate time-lapse videos with significant metamorphic amplitude and temporal coherence. The benchmark probes T2V models for their physics, biology, and chemistry capabilities, in a free-form text query. For these purposes, ChronoMagic-Bench introduces 1,649 prompts and real-world videos as references, categorized into four major types of time-lapse videos: biological, human-created, meteorological, and physical phenomena, which are further divided into 75 subcategories. This categorization comprehensively evaluates the model's capacity to handle diverse and complex transformations. To accurately align human preference with the benchmark, we introduce two new automatic metrics, MTScore and CHScore, to evaluate the videos' metamorphic attributes and temporal coherence. MTScore measures the metamorphic amplitude, reflecting the degree of change over time, while CHScore assesses the temporal coherence, ensuring the generated videos maintain logical progression and continuity. Based on the ChronoMagic-Bench, we conduct comprehensive manual evaluations of ten representative T2V models, revealing their strengths and weaknesses across different categories of prompts, and providing a thorough evaluation framework that addresses current gaps in video generation research. Moreover, we create a large-scale ChronoMagic-Pro dataset, containing 460k high-quality pairs of 720p time-lapse videos and detailed captions ensuring high physical pertinence and large metamorphic amplitude.
comment: 31 pages, 15 figures
☆ CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMs
Chart understanding plays a pivotal role when applying Multimodal Large Language Models (MLLMs) to real-world tasks such as analyzing scientific papers or financial reports. However, existing datasets often focus on oversimplified and homogeneous charts with template-based questions, leading to an over-optimistic measure of progress. We demonstrate that although open-source models can appear to outperform strong proprietary models on these benchmarks, a simple stress test with slightly different charts or questions can deteriorate performance by up to 34.5%. In this work, we propose CharXiv, a comprehensive evaluation suite involving 2,323 natural, challenging, and diverse charts from arXiv papers. CharXiv includes two types of questions: 1) descriptive questions about examining basic chart elements and 2) reasoning questions that require synthesizing information across complex visual elements in the chart. To ensure quality, all charts and questions are handpicked, curated, and verified by human experts. Our results reveal a substantial, previously underestimated gap between the reasoning skills of the strongest proprietary model (i.e., GPT-4o), which achieves 47.1% accuracy, and the strongest open-source model (i.e., InternVL Chat V1.5), which achieves 29.2%. All models lag far behind human performance of 80.5%, underscoring weaknesses in the chart understanding capabilities of existing MLLMs. We hope CharXiv facilitates future research on MLLM chart understanding by providing a more realistic and faithful measure of progress. Project page and leaderboard: https://charxiv.github.io/
comment: 121 pages, 90 figures
☆ APIGen: Automated Pipeline for Generating Verifiable and Diverse Function-Calling Datasets
The advancement of function-calling agent models requires diverse, reliable, and high-quality datasets. This paper presents APIGen, an automated data generation pipeline designed to synthesize verifiable high-quality datasets for function-calling applications. We leverage APIGen and collect 3,673 executable APIs across 21 different categories to generate diverse function-calling datasets in a scalable and structured manner. Each data in our dataset is verified through three hierarchical stages: format checking, actual function executions, and semantic verification, ensuring its reliability and correctness. We demonstrate that models trained with our curated datasets, even with only 7B parameters, can achieve state-of-the-art performance on the Berkeley Function-Calling Benchmark, outperforming multiple GPT-4 models. Moreover, our 1B model achieves exceptional performance, surpassing GPT-3.5-Turbo and Claude-3 Haiku. We release a dataset containing 60,000 high-quality entries, aiming to advance the field of function-calling agent domains. The dataset is available on Huggingface: https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k and the project homepage: https://apigen-pipeline.github.io/
☆ "Is ChatGPT a Better Explainer than My Professor?": Evaluating the Explanation Capabilities of LLMs in Conversation Compared to a Human Baseline
Explanations form the foundation of knowledge sharing and build upon communication principles, social dynamics, and learning theories. We focus specifically on conversational approaches for explanations because the context is highly adaptive and interactive. Our research leverages previous work on explanatory acts, a framework for understanding the different strategies that explainers and explainees employ in a conversation to both explain, understand, and engage with the other party. We use the 5-Levels dataset was constructed from the WIRED YouTube series by Wachsmuth et al., and later annotated by Booshehri et al. with explanatory acts. These annotations provide a framework for understanding how explainers and explainees structure their response when crafting a response. With the rise of generative AI in the past year, we hope to better understand the capabilities of Large Language Models (LLMs) and how they can augment expert explainer's capabilities in conversational settings. To achieve this goal, the 5-Levels dataset (We use Booshehri et al.'s 2023 annotated dataset with explanatory acts.) allows us to audit the ability of LLMs in engaging in explanation dialogues. To evaluate the effectiveness of LLMs in generating explainer responses, we compared 3 different strategies, we asked human annotators to evaluate 3 different strategies: human explainer response, GPT4 standard response, GPT4 response with Explanation Moves.
comment: 6 figures, 5 pages
☆ WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models
We introduce WildTeaming, an automatic LLM safety red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics, and then composes multiple tactics for systematic exploration of novel jailbreaks. Compared to prior work that performed red-teaming via recruited human workers, gradient-based optimization, or iterative revision with LLMs, our work investigates jailbreaks from chatbot users who were not specifically instructed to break the system. WildTeaming reveals previously unidentified vulnerabilities of frontier LLMs, resulting in up to 4.6x more diverse and successful adversarial attacks compared to state-of-the-art jailbreak methods. While many datasets exist for jailbreak evaluation, very few open-source datasets exist for jailbreak training, as safety training data has been closed even when model weights are open. With WildTeaming we create WildJailbreak, a large-scale open-source synthetic safety dataset with 262K vanilla (direct request) and adversarial (complex jailbreak) prompt-response pairs. To mitigate exaggerated safety behaviors, WildJailbreak provides two contrastive types of queries: 1) harmful queries (vanilla & adversarial) and 2) benign queries that resemble harmful queries in form but contain no harm. As WildJailbreak considerably upgrades the quality and scale of existing safety resources, it uniquely enables us to examine the scaling effects of data and the interplay of data properties and model capabilities during safety training. Through extensive experiments, we identify the training properties that enable an ideal balance of safety behaviors: appropriate safeguarding without over-refusal, effective handling of vanilla and adversarial queries, and minimal, if any, decrease in general capabilities. All components of WildJailbeak contribute to achieving balanced safety behaviors of models.
☆ Mental Modeling of Reinforcement Learning Agents by Language Models
Can emergent language models faithfully model the intelligence of decision-making agents? Though modern language models exhibit already some reasoning ability, and theoretically can potentially express any probable distribution over tokens, it remains underexplored how the world knowledge these pretrained models have memorized can be utilized to comprehend an agent's behaviour in the physical world. This study empirically examines, for the first time, how well large language models (LLMs) can build a mental model of agents, termed agent mental modelling, by reasoning about an agent's behaviour and its effect on states from agent interaction history. This research may unveil the potential of leveraging LLMs for elucidating RL agent behaviour, addressing a key challenge in eXplainable reinforcement learning (XRL). To this end, we propose specific evaluation metrics and test them on selected RL task datasets of varying complexity, reporting findings on agent mental model establishment. Our results disclose that LLMs are not yet capable of fully mental modelling agents through inference alone without further innovations. This work thus provides new insights into the capabilities and limitations of modern LLMs.
comment: https://lukaswill.github.io/
☆ Is In-Context Learning a Type of Gradient-Based Learning? Evidence from the Inverse Frequency Effect in Structural Priming
Large language models (LLMs) have shown the emergent capability of in-context learning (ICL). One line of research has explained ICL as functionally performing gradient descent. In this paper, we introduce a new way of diagnosing whether ICL is functionally equivalent to gradient-based learning. Our approach is based on the inverse frequency effect (IFE) -- a phenomenon in which an error-driven learner is expected to show larger updates when trained on infrequent examples than frequent ones. The IFE has previously been studied in psycholinguistics because humans show this effect in the context of structural priming (the tendency for people to produce sentence structures they have encountered recently); the IFE has been used as evidence that human structural priming must involve error-driven learning mechanisms. In our experiments, we simulated structural priming within ICL and found that LLMs display the IFE, with the effect being stronger in larger models. We conclude that ICL is indeed a type of gradient-based learning, supporting the hypothesis that a gradient component is implicitly computed in the forward pass during ICL. Our results suggest that both humans and LLMs make use of gradient-based, error-driven processing mechanisms.
☆ WildGuard: Open One-Stop Moderation Tools for Safety Risks, Jailbreaks, and Refusals of LLMs
We introduce WildGuard -- an open, light-weight moderation tool for LLM safety that achieves three goals: (1) identifying malicious intent in user prompts, (2) detecting safety risks of model responses, and (3) determining model refusal rate. Together, WildGuard serves the increasing needs for automatic safety moderation and evaluation of LLM interactions, providing a one-stop tool with enhanced accuracy and broad coverage across 13 risk categories. While existing open moderation tools such as Llama-Guard2 score reasonably well in classifying straightforward model interactions, they lag far behind a prompted GPT-4, especially in identifying adversarial jailbreaks and in evaluating models' refusals, a key measure for evaluating safety behaviors in model responses. To address these challenges, we construct WildGuardMix, a large-scale and carefully balanced multi-task safety moderation dataset with 92K labeled examples that cover vanilla (direct) prompts and adversarial jailbreaks, paired with various refusal and compliance responses. WildGuardMix is a combination of WildGuardTrain, the training data of WildGuard, and WildGuardTest, a high-quality human-annotated moderation test set with 5K labeled items covering broad risk scenarios. Through extensive evaluations on WildGuardTest and ten existing public benchmarks, we show that WildGuard establishes state-of-the-art performance in open-source safety moderation across all the three tasks compared to ten strong existing open-source moderation models (e.g., up to 26.4% improvement on refusal detection). Importantly, WildGuard matches and sometimes exceeds GPT-4 performance (e.g., up to 3.9% improvement on prompt harmfulness identification). WildGuard serves as a highly effective safety moderator in an LLM interface, reducing the success rate of jailbreak attacks from 79.8% to 2.4%.
comment: First two authors contributed equally. Third and fourth authors contributed equally
☆ Role-Play Zero-Shot Prompting with Large Language Models for Open-Domain Human-Machine Conversation SIGDIAL 2023
Recently, various methods have been proposed to create open-domain conversational agents with Large Language Models (LLMs). These models are able to answer user queries, but in a one-way Q&A format rather than a true conversation. Fine-tuning on particular datasets is the usual way to modify their style to increase conversational ability, but this is expensive and usually only available in a few languages. In this study, we explore role-play zero-shot prompting as an efficient and cost-effective solution for open-domain conversation, using capable multilingual LLMs (Beeching et al., 2023) trained to obey instructions. We design a prompting system that, when combined with an instruction-following model - here Vicuna (Chiang et al., 2023) - produces conversational agents that match and even surpass fine-tuned models in human evaluation in French in two different tasks.
comment: Updated version of a paper originally submitted at SIGDIAL 2023
☆ Cascading Large Language Models for Salient Event Graph Generation
Generating event graphs from long documents is challenging due to the inherent complexity of multiple tasks involved such as detecting events, identifying their relationships, and reconciling unstructured input with structured graphs. Recent studies typically consider all events with equal importance, failing to distinguish salient events crucial for understanding narratives. This paper presents CALLMSAE, a CAscading Large Language Model framework for SAlient Event graph generation, which leverages the capabilities of LLMs and eliminates the need for costly human annotations. We first identify salient events by prompting LLMs to generate summaries, from which salient events are identified. Next, we develop an iterative code refinement prompting strategy to generate event relation graphs, removing hallucinated relations and recovering missing edges. Fine-tuning contextualised graph generation models on the LLM-generated graphs outperforms the models trained on CAEVO-generated data. Experimental results on a human-annotated test set show that the proposed method generates salient and more accurate graphs, outperforming competitive baselines.
comment: 9 + 12 pages
☆ IRCAN: Mitigating Knowledge Conflicts in LLM Generation via Identifying and Reweighting Context-Aware Neurons
It is widely acknowledged that large language models (LLMs) encode a vast reservoir of knowledge after being trained on mass data. Recent studies disclose knowledge conflicts in LLM generation, wherein outdated or incorrect parametric knowledge (i.e., encoded knowledge) contradicts new knowledge provided in the context. To mitigate such knowledge conflicts, we propose a novel framework, IRCAN (Identifying and Reweighting Context-Aware Neurons) to capitalize on neurons that are crucial in processing contextual cues. Specifically, IRCAN first identifies neurons that significantly contribute to context processing, utilizing a context-aware attribution score derived from integrated gradients. Subsequently, the identified context-aware neurons are strengthened via reweighting. In doing so, we steer LLMs to generate context-sensitive outputs with respect to the new knowledge provided in the context. Extensive experiments conducted across a variety of models and tasks demonstrate that IRCAN not only achieves remarkable improvements in handling knowledge conflicts but also offers a scalable, plug-andplay solution that can be integrated seamlessly with existing models.
comment: 19 pages, 13 figures, 5 tables
LLMs instead of Human Judges? A Large Scale Empirical Study across 20 NLP Evaluation Tasks
There is an increasing trend towards evaluating NLP models with LLM-generated judgments instead of human judgments. In the absence of a comparison against human data, this raises concerns about the validity of these evaluations; in case they are conducted with proprietary models, this also raises concerns over reproducibility. We provide JUDGE-BENCH, a collection of 20 NLP datasets with human annotations, and comprehensively evaluate 11 current LLMs, covering both open-weight and proprietary models, for their ability to replicate the annotations. Our evaluations show that each LLM exhibits a large variance across datasets in its correlation to human judgments. We conclude that LLMs are not yet ready to systematically replace human judges in NLP.
☆ Do LLMs dream of elephants (when told not to)? Latent concept association and associative memory in transformers
Large Language Models (LLMs) have the capacity to store and recall facts. Through experimentation with open-source models, we observe that this ability to retrieve facts can be easily manipulated by changing contexts, even without altering their factual meanings. These findings highlight that LLMs might behave like an associative memory model where certain tokens in the contexts serve as clues to retrieving facts. We mathematically explore this property by studying how transformers, the building blocks of LLMs, can complete such memory tasks. We study a simple latent concept association problem with a one-layer transformer and we show theoretically and empirically that the transformer gathers information using self-attention and uses the value matrix for associative memory.
☆ Dynamic Data Pruning for Automatic Speech Recognition
The recent success of Automatic Speech Recognition (ASR) is largely attributed to the ever-growing amount of training data. However, this trend has made model training prohibitively costly and imposed computational demands. While data pruning has been proposed to mitigate this issue by identifying a small subset of relevant data, its application in ASR has been barely explored, and existing works often entail significant overhead to achieve meaningful results. To fill this gap, this paper presents the first investigation of dynamic data pruning for ASR, finding that we can reach the full-data performance by dynamically selecting 70% of data. Furthermore, we introduce Dynamic Data Pruning for ASR (DDP-ASR), which offers several fine-grained pruning granularities specifically tailored for speech-related datasets, going beyond the conventional pruning of entire time sequences. Our intensive experiments show that DDP-ASR can save up to 1.6x training time with negligible performance loss.
comment: Accepted to Interspeech 2024
☆ Themis: Towards Flexible and Interpretable NLG Evaluation
The evaluation of natural language generation (NLG) tasks is a significant and longstanding research issue. With the recent emergence of powerful large language models (LLMs), some studies have turned to LLM-based automatic evaluation methods, which demonstrate great potential to become a new evaluation paradigm following traditional string-based and model-based metrics. However, despite the improved performance of existing methods, they still possess some deficiencies, such as dependency on references and limited evaluation flexibility. Therefore, in this paper, we meticulously construct a large-scale NLG evaluation corpus NLG-Eval with human and GPT-4 annotations to alleviate the lack of relevant data in this field. Furthermore, we propose Themis, an LLM dedicated to NLG evaluation, which has been trained with our designed multi-perspective consistency and rating-oriented preference alignment methods. Themis can conduct flexible and interpretable evaluations without references, and it exhibits superior evaluation performance on various NLG tasks, simultaneously generalizing well to unseen tasks and surpassing other evaluation models, including GPT-4.
☆ Research on Information Extraction of LCSTS Dataset Based on an Improved BERTSum-LSTM Model
With the continuous advancement of artificial intelligence, natural language processing technology has become widely utilized in various fields. At the same time, there are many challenges in creating Chinese news summaries. First of all, the semantics of Chinese news is complex, and the amount of information is enormous. Extracting critical information from Chinese news presents a significant challenge. Second, the news summary should be concise and clear, focusing on the main content and avoiding redundancy. In addition, the particularity of the Chinese language, such as polysemy, word segmentation, etc., makes it challenging to generate Chinese news summaries. Based on the above, this paper studies the information extraction method of the LCSTS dataset based on an improved BERTSum-LSTM model. We improve the BERTSum-LSTM model to make it perform better in generating Chinese news summaries. The experimental results show that the proposed method has a good effect on creating news summaries, which is of great importance to the construction of news summaries.
comment: submitted to ICMIII 2024
☆ Grammar Assistance Using Syntactic Structures (GAUSS)
Automatic grammar coaching serves an important purpose of advising on standard grammar varieties while not imposing social pressures or reinforcing established social roles. Such systems already exist but most of them are for English and few of them offer meaningful feedback. Furthermore, they typically rely completely on neural methods and require huge computational resources which most of the world cannot afford. We propose a grammar coaching system for Spanish that relies on (i) a rich linguistic formalism capable of giving informative feedback; and (ii) a faster parsing algorithm which makes using this formalism practical in a real-world application. The approach is feasible for any language for which there is a computerized grammar and is less reliant on expensive and environmentally costly neural methods. We seek to contribute to Greener AI and to address global education challenges by raising the standards of inclusivity and engagement in grammar coaching.
comment: 5 pages, 4 figures, project summary for CEDI-SEPLN Seminar of the Spanish Society for Natural Language Processing at the 7th Spanish Conference on Informatics, June 19-20, 2024, A Coru\~na, Spain
☆ PaCoST: Paired Confidence Significance Testing for Benchmark Contamination Detection in Large Language Models
Large language models (LLMs) are known to be trained on vast amounts of data, which may unintentionally or intentionally include data from commonly used benchmarks. This inclusion can lead to cheatingly high scores on model leaderboards, yet result in disappointing performance in real-world applications. To address this benchmark contamination problem, we first propose a set of requirements that practical contamination detection methods should follow. Following these proposed requirements, we introduce PaCoST, a Paired Confidence Significance Testing to effectively detect benchmark contamination in LLMs. Our method constructs a counterpart for each piece of data with the same distribution, and performs statistical analysis of the corresponding confidence to test whether the model is significantly more confident under the original benchmark. We validate the effectiveness of PaCoST and apply it on popular open-source models and benchmarks. We find that almost all models and benchmarks we tested are suspected contaminated more or less. We finally call for new LLM evaluation methods.
☆ MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data
Large language models (LLMs) have significantly advanced natural language understanding and demonstrated strong problem-solving abilities. Despite these successes, most LLMs still struggle with solving mathematical problems due to the intricate reasoning required. This paper investigates the mathematical problem-solving capabilities of LLMs using the newly developed "MathOdyssey" dataset. The dataset includes diverse mathematical problems at high school and university levels, created by experts from notable institutions to rigorously test LLMs in advanced problem-solving scenarios and cover a wider range of subject areas. By providing the MathOdyssey dataset as a resource to the AI community, we aim to contribute to the understanding and improvement of AI capabilities in complex mathematical problem-solving. We conduct benchmarking on open-source models, such as Llama-3 and DBRX-Instruct, and closed-source models from the GPT series and Gemini models. Our results indicate that while LLMs perform well on routine and moderately difficult tasks, they face significant challenges with Olympiad-level problems and complex university-level questions. Our analysis shows a narrowing performance gap between open-source and closed-source models, yet substantial challenges remain, particularly with the most demanding problems. This study highlights the ongoing need for research to enhance the mathematical reasoning of LLMs. The dataset, results, and code are publicly available.
☆ Advancing Airport Tower Command Recognition: Integrating Squeeze-and-Excitation and Broadcasted Residual Learning
Accurate recognition of aviation commands is vital for flight safety and efficiency, as pilots must follow air traffic control instructions precisely. This paper addresses challenges in speech command recognition, such as noisy environments and limited computational resources, by advancing keyword spotting technology. We create a dataset of standardized airport tower commands, including routine and emergency instructions. We enhance broadcasted residual learning with squeeze-and-excitation and time-frame frequency-wise squeeze-and-excitation techniques, resulting in our BC-SENet model. This model focuses on crucial information with fewer parameters. Our tests on five keyword spotting models, including BC-SENet, demonstrate superior accuracy and efficiency. These findings highlight the effectiveness of our model advancements in improving speech command recognition for aviation safety and efficiency in noisy, high-stakes environments. Additionally, BC-SENet shows comparable performance on the common Google Speech Command dataset.
comment: Accepted by IALP 2024
☆ AI-native Memory: A Pathway from LLMs Towards AGI
Large language models (LLMs) have demonstrated the world with the sparks of artificial general intelligence (AGI). One opinion, especially from some startups working on LLMs, argues that an LLM with nearly unlimited context length can realize AGI. However, they might be too optimistic about the long-context capability of (existing) LLMs -- (1) Recent literature has shown that their effective context length is significantly smaller than their claimed context length; and (2) Our reasoning-in-a-haystack experiments further demonstrate that simultaneously finding the relevant information from a long context and conducting (simple) reasoning is nearly impossible. In this paper, we envision a pathway from LLMs to AGI through the integration of \emph{memory}. We believe that AGI should be a system where LLMs serve as core processors. In addition to raw data, the memory in this system would store a large number of important conclusions derived from reasoning processes. Compared with retrieval-augmented generation (RAG) that merely processing raw data, this approach not only connects semantically related information closer, but also simplifies complex inferences at the time of querying. As an intermediate stage, the memory will likely be in the form of natural language descriptions, which can be directly consumed by users too. Ultimately, every agent/person should have its own large personal model, a deep neural network model (thus \emph{AI-native}) that parameterizes and compresses all types of memory, even the ones cannot be described by natural languages. Finally, we discuss the significant potential of AI-native memory as the transformative infrastructure for (proactive) engagement, personalization, distribution, and social in the AGI era, as well as the incurred privacy and security challenges with preliminary solutions.
☆ S3: A Simple Strong Sample-effective Multimodal Dialog System
In this work, we present a conceptually simple yet powerful baseline for the multimodal dialog task, an S3 model, that achieves near state-of-the-art results on two compelling leaderboards: MMMU and AI Journey Contest 2023. The system is based on a pre-trained large language model, pre-trained modality encoders for image and audio, and a trainable modality projector. The proposed effective data mixture for training such an architecture demonstrates that a multimodal model based on a strong language model and trained on a small amount of multimodal data can perform efficiently in the task of multimodal dialog.
☆ MSR-86K: An Evolving, Multilingual Corpus with 86,300 Hours of Transcribed Audio for Speech Recognition Research
Recently, multilingual artificial intelligence assistants, exemplified by ChatGPT, have gained immense popularity. As a crucial gateway to human-computer interaction, multilingual automatic speech recognition (ASR) has also garnered significant attention, as evidenced by systems like Whisper. However, the proprietary nature of the training data has impeded researchers' efforts to study multilingual ASR. This paper introduces MSR-86K, an evolving, large-scale multilingual corpus for speech recognition research. The corpus is derived from publicly accessible videos on YouTube, comprising 15 languages and a total of 86,300 hours of transcribed ASR data. We also introduce how to use the MSR-86K corpus and other open-source corpora to train a robust multilingual ASR model that is competitive with Whisper. MSR-86K will be publicly released on HuggingFace, and we believe that such a large corpus will pave new avenues for research in multilingual ASR.
comment: Accepted by InterSpeech 2024
☆ FactFinders at CheckThat! 2024: Refining Check-worthy Statement Detection with LLMs through Data Pruning
The rapid dissemination of information through social media and the Internet has posed a significant challenge for fact-checking, among others in identifying check-worthy claims that fact-checkers should pay attention to, i.e. filtering claims needing fact-checking from a large pool of sentences. This challenge has stressed the need to focus on determining the priority of claims, specifically which claims are worth to be fact-checked. Despite advancements in this area in recent years, the application of large language models (LLMs), such as GPT, has only recently drawn attention in studies. However, many open-source LLMs remain underexplored. Therefore, this study investigates the application of eight prominent open-source LLMs with fine-tuning and prompt engineering to identify check-worthy statements from political transcriptions. Further, we propose a two-step data pruning approach to automatically identify high-quality training data instances for effective learning. The efficiency of our approach is demonstrated through evaluations on the English language dataset as part of the check-worthiness estimation task of CheckThat! 2024. Further, the experiments conducted with data pruning demonstrate that competitive performance can be achieved with only about 44\% of the training data. Our team ranked first in the check-worthiness estimation task in the English language.
☆ Hierarchical Context Pruning: Optimizing Real-World Code Completion with Repository-Level Pretrained Code LLMs
Some recently developed code large language models (Code LLMs) have been pre-trained on repository-level code data (Repo-Code LLMs), enabling these models to recognize repository structures and utilize cross-file information for code completion. However, in real-world development scenarios, simply concatenating the entire code repository often exceeds the context window limits of these Repo-Code LLMs, leading to significant performance degradation. In this study, we conducted extensive preliminary experiments and analyses on six Repo-Code LLMs. The results indicate that maintaining the topological dependencies of files and increasing the code file content in the completion prompts can improve completion accuracy; pruning the specific implementations of functions in all dependent files does not significantly reduce the accuracy of completions. Based on these findings, we proposed a strategy named Hierarchical Context Pruning (HCP) to construct completion prompts with high informational code content. The HCP models the code repository at the function level, maintaining the topological dependencies between code files while removing a large amount of irrelevant code content, significantly reduces the input length for repository-level code completion. We applied the HCP strategy in experiments with six Repo-Code LLMs, and the results demonstrate that our proposed method can significantly enhance completion accuracy while substantially reducing the length of input. Our code and data are available at https://github.com/Hambaobao/HCP-Coder.
☆ Sanskrit Knowledge-based Systems: Annotation and Computational Tools
We address the challenges and opportunities in the development of knowledge systems for Sanskrit, with a focus on question answering. By proposing a framework for the automated construction of knowledge graphs, introducing annotation tools for ontology-driven and general-purpose tasks, and offering a diverse collection of web-interfaces, tools, and software libraries, we have made significant contributions to the field of computational Sanskrit. These contributions not only enhance the accessibility and accuracy of Sanskrit text analysis but also pave the way for further advancements in knowledge representation and language processing. Ultimately, this research contributes to the preservation, understanding, and utilization of the rich linguistic information embodied in Sanskrit texts.
comment: PhD Thesis. 204 pages, 6 publications
☆ "Vorbeşti Româneşte?" A Recipe to Train Powerful Romanian LLMs with English Instructions
In recent years, Large Language Models (LLMs) have achieved almost human-like performance on various tasks. While some LLMs have been trained on multilingual data, most of the training data is in English; hence, their performance in English greatly exceeds other languages. To our knowledge, we are the first to collect and translate a large collection of texts, instructions, and benchmarks and train, evaluate, and release open-source LLMs tailored for Romanian. We evaluate our methods on four different categories, including academic benchmarks, MT-Bench (manually translated), and a professionally built historical, cultural, and social benchmark adapted to Romanian. We argue for the usefulness and high performance of RoLLMs by obtaining state-of-the-art results across the board. We publicly release all resources (i.e., data, training and evaluation code, models) to support and encourage research on Romanian LLMs while concurrently creating a generalizable recipe, adequate for other low or less-resourced languages.
comment: arXiv admin note: text overlap with arXiv:2405.07703
☆ Detecting Machine-Generated Texts: Not Just "AI vs Humans" and Explainability is Complicated
As LLMs rapidly advance, increasing concerns arise regarding risks about actual authorship of texts we see online and in real world. The task of distinguishing LLM-authored texts is complicated by the nuanced and overlapping behaviors of both machines and humans. In this paper, we challenge the current practice of considering LLM-generated text detection a binary classification task of differentiating human from AI. Instead, we introduce a novel ternary text classification scheme, adding an "undecided" category for texts that could be attributed to either source, and we show that this new category is crucial to understand how to make the detection result more explainable to lay users. This research shifts the paradigm from merely classifying to explaining machine-generated texts, emphasizing need for detectors to provide clear and understandable explanations to users. Our study involves creating four new datasets comprised of texts from various LLMs and human authors. Based on new datasets, we performed binary classification tests to ascertain the most effective SOTA detection methods and identified SOTA LLMs capable of producing harder-to-detect texts. We constructed a new dataset of texts generated by two top-performing LLMs and human authors, and asked three human annotators to produce ternary labels with explanation notes. This dataset was used to investigate how three top-performing SOTA detectors behave in new ternary classification context. Our results highlight why "undecided" category is much needed from the viewpoint of explainability. Additionally, we conducted an analysis of explainability of the three best-performing detectors and the explanation notes of the human annotators, revealing insights about the complexity of explainable detection of machine-generated texts. Finally, we propose guidelines for developing future detection systems with improved explanatory power.
comment: 19 pages, 2 figures
☆ LLaMIPa: An Incremental Discourse Parser
This paper provides the first discourse parsing experiments with a large language model (LLM) finetuned on corpora annotated in the style of SDRT (Asher, 1993; Asher and Lascarides, 2003). The result is a discourse parser, LLaMIPa (LLaMA Incremental Parser), which is able to more fully exploit discourse context, leading to substantial performance gains over approaches that use encoder-only models to provide local, context-sensitive representations of discourse units. Furthermore, it is able to process discourse data incrementally, which is essential for the eventual use of discourse information in downstream tasks.
comment: 12 pages, 2 figures
☆ Weak Reward Model Transforms Generative Models into Robust Causal Event Extraction Systems
The inherent ambiguity of cause and effect boundaries poses a challenge in evaluating causal event extraction tasks. Traditional metrics like Exact Match and BertScore poorly reflect model performance, so we trained evaluation models to approximate human evaluation, achieving high agreement. We used them to perform Reinforcement Learning with extraction models to align them with human preference, prioritising semantic understanding. We successfully explored our approach through multiple datasets, including transferring an evaluator trained on one dataset to another as a way to decrease the reliance on human-annotated data. In that vein, we also propose a weak-to-strong supervision method that uses a fraction of the annotated data to train an evaluation model while still achieving high performance in training an RL model. Our code is available at \url{https://github.com/oyarsa/event_extraction/tree/causal-event-extraction}.
comment: 13 pages, 6 figures, 6 tables
☆ Zero-shot prompt-based classification: topic labeling in times of foundation models in German Tweets
Filtering and annotating textual data are routine tasks in many areas, like social media or news analytics. Automating these tasks allows to scale the analyses wrt. speed and breadth of content covered and decreases the manual effort required. Due to technical advancements in Natural Language Processing, specifically the success of large foundation models, a new tool for automating such annotation processes by using a text-to-text interface given written guidelines without providing training samples has become available. In this work, we assess these advancements in-the-wild by empirically testing them in an annotation task on German Twitter data about social and political European crises. We compare the prompt-based results with our human annotation and preceding classification approaches, including Naive Bayes and a BERT-based fine-tuning/domain adaptation pipeline. Our results show that the prompt-based approach - despite being limited by local computation resources during the model selection - is comparable with the fine-tuned BERT but without any annotated training data. Our findings emphasize the ongoing paradigm shift in the NLP landscape, i.e., the unification of downstream tasks and elimination of the need for pre-labeled training data.
comment: 10 pages, 2 tables, 1 figure
☆ GUIDE: A Guideline-Guided Dataset for Instructional Video Comprehension IJCAI 2024
There are substantial instructional videos on the Internet, which provide us tutorials for completing various tasks. Existing instructional video datasets only focus on specific steps at the video level, lacking experiential guidelines at the task level, which can lead to beginners struggling to learn new tasks due to the lack of relevant experience. Moreover, the specific steps without guidelines are trivial and unsystematic, making it difficult to provide a clear tutorial. To address these problems, we present the GUIDE (Guideline-Guided) dataset, which contains 3.5K videos of 560 instructional tasks in 8 domains related to our daily life. Specifically, we annotate each instructional task with a guideline, representing a common pattern shared by all task-related videos. On this basis, we annotate systematic specific steps, including their associated guideline steps, specific step descriptions and timestamps. Our proposed benchmark consists of three sub-tasks to evaluate comprehension ability of models: (1) Step Captioning: models have to generate captions for specific steps from videos. (2) Guideline Summarization: models have to mine the common pattern in task-related videos and summarize a guideline from them. (3) Guideline-Guided Captioning: models have to generate captions for specific steps under the guide of guideline. We evaluate plenty of foundation models with GUIDE and perform in-depth analysis. Given the diversity and practicality of GUIDE, we believe that it can be used as a better benchmark for instructional video comprehension.
comment: IJCAI 2024
☆ Enhancing Data Privacy in Large Language Models through Private Association Editing
Large Language Models (LLMs) are powerful tools with extensive applications, but their tendency to memorize private information raises significant concerns as private data leakage can easily happen. In this paper, we introduce Private Association Editing (PAE), a novel defense approach for private data leakage. PAE is designed to effectively remove Personally Identifiable Information (PII) without retraining the model. Our approach consists of a four-step procedure: detecting memorized PII, applying PAE cards to mitigate memorization of private data, verifying resilience to targeted data extraction (TDE) attacks, and ensuring consistency in the post-edit LLMs. The versatility and efficiency of PAE, which allows for batch modifications, significantly enhance data privacy in LLMs. Experimental results demonstrate the effectiveness of PAE in mitigating private data leakage. We believe PAE will serve as a critical tool in the ongoing effort to protect data privacy in LLMs, encouraging the development of safer models for real-world applications.
☆ A Closer Look into Mixture-of-Experts in Large Language Models
Mixture-of-experts (MoE) is gaining increasing attention due to its unique properties and remarkable performance, especially for language tasks. By sparsely activating a subset of parameters for each token, MoE architecture could increase the model size without sacrificing computational efficiency, achieving a better trade-off between performance and training costs. However, the underlying mechanism of MoE still lacks further exploration, and its modularization degree remains questionable. In this paper, we make an initial attempt to understand the inner workings of MoE-based large language models. Concretely, we comprehensively study the parametric and behavioral features of three recent MoE-based models and reveal some intriguing observations, including (1) Neurons act like fine-grained experts. (2) The router of MoE usually selects experts with larger output norms. (3) The expert diversity increases as the layer increases, while the last layer is an outlier. Based on the observations, we also provide suggestions for a broad spectrum of MoE practitioners, such as router design and expert allocation. We hope this work could shed light on future research on the MoE framework and other modular architectures. Code is available at https://github.com/kamanphoebe/Look-into-MoEs.
☆ SEED: Accelerating Reasoning Tree Construction via Scheduled Speculative Decoding
Large Language Models (LLMs) demonstrate remarkable emergent abilities across various tasks, yet fall short of complex reasoning and planning tasks. The tree-search-based reasoning methods address this by surpassing the capabilities of chain-of-thought prompting, encouraging exploration of intermediate steps. However, such methods introduce significant inference latency due to the systematic exploration and evaluation of multiple thought paths. This paper introduces SeeD, a novel and efficient inference framework to optimize runtime speed and GPU memory management concurrently. By employing a scheduled speculative execution, SeeD efficiently handles multiple iterations for the thought generation and the state evaluation, leveraging a rounds-scheduled strategy to manage draft model dispatching. Extensive experimental evaluations on three reasoning datasets demonstrate superior speedup performance of SeeD, providing a viable path for batched inference in training-free speculative decoding.
☆ Methodology of Adapting Large English Language Models for Specific Cultural Contexts
The rapid growth of large language models(LLMs) has emerged as a prominent trend in the field of artificial intelligence. However, current state-of-the-art LLMs are predominantly based on English. They encounter limitations when directly applied to tasks in specific cultural domains, due to deficiencies in domain-specific knowledge and misunderstandings caused by differences in cultural values. To address this challenge, our paper proposes a rapid adaptation method for large models in specific cultural contexts, which leverages instruction-tuning based on specific cultural knowledge and safety values data. Taking Chinese as the specific cultural context and utilizing the LLaMA3-8B as the experimental English LLM, the evaluation results demonstrate that the adapted LLM significantly enhances its capabilities in domain-specific knowledge and adaptability to safety values, while maintaining its original expertise advantages.
comment: 11 pages, 2 figures
☆ Selective Prompting Tuning for Personalized Conversations with LLMs ACL 2024
In conversational AI, personalizing dialogues with persona profiles and contextual understanding is essential. Despite large language models' (LLMs) improved response coherence, effective persona integration remains a challenge. In this work, we first study two common approaches for personalizing LLMs: textual prompting and direct fine-tuning. We observed that textual prompting often struggles to yield responses that are similar to the ground truths in datasets, while direct fine-tuning tends to produce repetitive or overly generic replies. To alleviate those issues, we propose \textbf{S}elective \textbf{P}rompt \textbf{T}uning (SPT), which softly prompts LLMs for personalized conversations in a selective way. Concretely, SPT initializes a set of soft prompts and uses a trainable dense retriever to adaptively select suitable soft prompts for LLMs according to different input contexts, where the prompt retriever is dynamically updated through feedback from the LLMs. Additionally, we propose context-prompt contrastive learning and prompt fusion learning to encourage the SPT to enhance the diversity of personalized conversations. Experiments on the CONVAI2 dataset demonstrate that SPT significantly enhances response diversity by up to 90\%, along with improvements in other critical performance indicators. Those results highlight the efficacy of SPT in fostering engaging and personalized dialogue generation. The SPT model code (https://github.com/hqsiswiliam/SPT) is publicly available for further exploration.
comment: Accepted to ACL 2024 findings
☆ UIO-LLMs: Unbiased Incremental Optimization for Long-Context LLMs
Managing long texts is challenging for large language models (LLMs) due to limited context window sizes. This study introduces UIO-LLMs, an unbiased incremental optimization approach for memory-enhanced transformers under long-context settings. We initially conceptualize the process as a streamlined encoder-decoder framework where the weights-shared encoder and decoder respectively encapsulate a context segment into memories and leverage these memories to predict outputs of the subsequent segment. Subsequently, by treating our memory-enhanced transformers as fully-connected recurrent neural networks (RNNs), we refine the training process using the Truncated Backpropagation Through Time (TBPTT) algorithm, which incorporates innovative incremental optimization techniques. These techniques not only diminish time complexity but also address the bias in gradient computation through an unbiased optimization process. UIO-LLMs successfully handle long context, such as extending the context window of Llama2-7b-chat from 4K to 100K tokens with minimal 2% additional parameters, while keeping the inference cost nearly linear as context length increases.
☆ NeBuLa: A discourse aware Minecraft Builder
When engaging in collaborative tasks, humans efficiently exploit the semantic structure of a conversation to optimize verbal and nonverbal interactions. But in recent "language to code" or "language to action" models, this information is lacking. We show how incorporating the prior discourse and nonlinguistic context of a conversation situated in a nonlinguistic environment can improve the "language to action" component of such interactions. We fine tune an LLM to predict actions based on prior context; our model, NeBuLa, doubles the net-action F1 score over the baseline on this task of Jayannavar et al.(2020). We also investigate our model's ability to construct shapes and understand location descriptions using a synthetic dataset.
comment: 10 pages, 3 figures
☆ LOOK-M: Look-Once Optimization in KV Cache for Efficient Multimodal Long-Context Inference
Long-context Multimodal Large Language Models (MLLMs) demand substantial computational resources for inference as the growth of their multimodal Key-Value (KV) cache, in response to increasing input lengths, challenges memory and time efficiency. Unlike single-modality LLMs that manage only textual contexts, the KV cache of long-context MLLMs includes representations from multiple images with temporal and spatial relationships and related textual contexts. The predominance of image tokens means traditional optimizations for LLMs' KV caches are unsuitable for multimodal long-context settings, and no prior works have addressed this challenge. In this work, we introduce LOOK-M, a pioneering, fine-tuning-free approach that efficiently reduces the multimodal KV cache size while maintaining performance comparable to a full cache. We observe that during prompt prefill, the model prioritizes more textual attention over image features, and based on the multimodal interaction observation, a new proposed text-prior method is explored to compress the KV cache. Furthermore, to mitigate the degradation of image contextual information, we propose several compensatory strategies using KV pairs merging. LOOK-M demonstrates that with a significant reduction in KV Cache memory usage, such as reducing it by 80% in some cases, it not only achieves up to 1.5x faster decoding but also maintains or even enhances performance across a variety of long context multimodal tasks.
☆ Automatic Speech Recognition for Hindi
Automatic speech recognition (ASR) is a key area in computational linguistics, focusing on developing technologies that enable computers to convert spoken language into text. This field combines linguistics and machine learning. ASR models, which map speech audio to transcripts through supervised learning, require handling real and unrestricted text. Text-to-speech systems directly work with real text, while ASR systems rely on language models trained on large text corpora. High-quality transcribed data is essential for training predictive models. The research involved two main components: developing a web application and designing a web interface for speech recognition. The web application, created with JavaScript and Node.js, manages large volumes of audio files and their transcriptions, facilitating collaborative human correction of ASR transcripts. It operates in real-time using a client-server architecture. The web interface for speech recognition records 16 kHz mono audio from any device running the web app, performs voice activity detection (VAD), and sends the audio to the recognition engine. VAD detects human speech presence, aiding efficient speech processing and reducing unnecessary processing during non-speech intervals, thus saving computation and network bandwidth in VoIP applications. The final phase of the research tested a neural network for accurately aligning the speech signal to hidden Markov model (HMM) states. This included implementing a novel backpropagation method that utilizes prior statistics of node co-activations.
☆ Assessing "Implicit" Retrieval Robustness of Large Language Models
Retrieval-augmented generation has gained popularity as a framework to enhance large language models with external knowledge. However, its effectiveness hinges on the retrieval robustness of the model. If the model lacks retrieval robustness, its performance is constrained by the accuracy of the retriever, resulting in significant compromises when the retrieved context is irrelevant. In this paper, we evaluate the "implicit" retrieval robustness of various large language models, instructing them to directly output the final answer without explicitly judging the relevance of the retrieved context. Our findings reveal that fine-tuning on a mix of gold and distracting context significantly enhances the model's robustness to retrieval inaccuracies, while still maintaining its ability to extract correct answers when retrieval is accurate. This suggests that large language models can implicitly handle relevant or irrelevant retrieved context by learning solely from the supervision of the final answer in an end-to-end manner. Introducing an additional process for explicit relevance judgment can be unnecessary and disrupts the end-to-end approach.
☆ ConvoCache: Smart Re-Use of Chatbot Responses
We present ConvoCache, a conversational caching system that solves the problem of slow and expensive generative AI models in spoken chatbots. ConvoCache finds a semantically similar prompt in the past and reuses the response. In this paper we evaluate ConvoCache on the DailyDialog dataset. We find that ConvoCache can apply a UniEval coherence threshold of 90% and respond to 89% of prompts using the cache with an average latency of 214ms, replacing LLM and voice synthesis that can take over 1s. To further reduce latency we test prefetching and find limited usefulness. Prefetching with 80% of a request leads to a 63% hit rate, and a drop in overall coherence. ConvoCache can be used with any chatbot to reduce costs by reducing usage of generative AI by up to 89%.
comment: Accepted to appear at Interspeech 2024
☆ ResumeAtlas: Revisiting Resume Classification with Large-Scale Datasets and Large Language Models
The increasing reliance on online recruitment platforms coupled with the adoption of AI technologies has highlighted the critical need for efficient resume classification methods. However, challenges such as small datasets, lack of standardized resume templates, and privacy concerns hinder the accuracy and effectiveness of existing classification models. In this work, we address these challenges by presenting a comprehensive approach to resume classification. We curated a large-scale dataset of 13,389 resumes from diverse sources and employed Large Language Models (LLMs) such as BERT and Gemma1.1 2B for classification. Our results demonstrate significant improvements over traditional machine learning approaches, with our best model achieving a top-1 accuracy of 92\% and a top-5 accuracy of 97.5\%. These findings underscore the importance of dataset quality and advanced model architectures in enhancing the accuracy and robustness of resume classification systems, thus advancing the field of online recruitment practices.
comment: 8 pages, 6 figures, 1 table, 6th International Conference on AI in Computational Linguistics
☆ Poisoned LangChain: Jailbreak LLMs by LangChain
With the development of natural language processing (NLP), large language models (LLMs) are becoming increasingly popular. LLMs are integrating more into everyday life, raising public concerns about their security vulnerabilities. Consequently, the security of large language models is becoming critically important. Currently, the techniques for attacking and defending against LLMs are continuously evolving. One significant method type of attack is the jailbreak attack, which designed to evade model safety mechanisms and induce the generation of inappropriate content. Existing jailbreak attacks primarily rely on crafting inducement prompts for direct jailbreaks, which are less effective against large models with robust filtering and high comprehension abilities. Given the increasing demand for real-time capabilities in large language models, real-time updates and iterations of new knowledge have become essential. Retrieval-Augmented Generation (RAG), an advanced technique to compensate for the model's lack of new knowledge, is gradually becoming mainstream. As RAG enables the model to utilize external knowledge bases, it provides a new avenue for jailbreak attacks. In this paper, we conduct the first work to propose the concept of indirect jailbreak and achieve Retrieval-Augmented Generation via LangChain. Building on this, we further design a novel method of indirect jailbreak attack, termed Poisoned-LangChain (PLC), which leverages a poisoned external knowledge base to interact with large language models, thereby causing the large models to generate malicious non-compliant dialogues.We tested this method on six different large language models across three major categories of jailbreak issues. The experiments demonstrate that PLC successfully implemented indirect jailbreak attacks under three different scenarios, achieving success rates of 88.56%, 79.04%, and 82.69% respectively.
comment: 6 pages,2 figures,This paper is a submission to ACM TURC. It has been accepted by the editor of the organizer
☆ ArzEn-LLM: Code-Switched Egyptian Arabic-English Translation and Speech Recognition Using LLMs
Motivated by the widespread increase in the phenomenon of code-switching between Egyptian Arabic and English in recent times, this paper explores the intricacies of machine translation (MT) and automatic speech recognition (ASR) systems, focusing on translating code-switched Egyptian Arabic-English to either English or Egyptian Arabic. Our goal is to present the methodologies employed in developing these systems, utilizing large language models such as LLama and Gemma. In the field of ASR, we explore the utilization of the Whisper model for code-switched Egyptian Arabic recognition, detailing our experimental procedures including data preprocessing and training techniques. Through the implementation of a consecutive speech-to-text translation system that integrates ASR with MT, we aim to overcome challenges posed by limited resources and the unique characteristics of the Egyptian Arabic dialect. Evaluation against established metrics showcases promising results, with our methodologies yielding a significant improvement of $56\%$ in English translation over the state-of-the-art and $9.3\%$ in Arabic translation. Since code-switching is deeply inherent in spoken languages, it is crucial that ASR systems can effectively handle this phenomenon. This capability is crucial for enabling seamless interaction in various domains, including business negotiations, cultural exchanges, and academic discourse. Our models and code are available as open-source resources. Code: \url{http://github.com/ahmedheakl/arazn-llm}}, Models: \url{http://huggingface.co/collections/ahmedheakl/arazn-llm-662ceaf12777656607b9524e}.
comment: 9 pages, 4 figures, 5 tables, 6th International Conference on AI in Computational Linguistics
☆ SafeAligner: Safety Alignment against Jailbreak Attacks via Response Disparity Guidance
As the development of large language models (LLMs) rapidly advances, securing these models effectively without compromising their utility has become a pivotal area of research. However, current defense strategies against jailbreak attacks (i.e., efforts to bypass security protocols) often suffer from limited adaptability, restricted general capability, and high cost. To address these challenges, we introduce SafeAligner, a methodology implemented at the decoding stage to fortify defenses against jailbreak attacks. We begin by developing two specialized models: the Sentinel Model, which is trained to foster safety, and the Intruder Model, designed to generate riskier responses. SafeAligner leverages the disparity in security levels between the responses from these models to differentiate between harmful and beneficial tokens, effectively guiding the safety alignment by altering the output token distribution of the target model. Extensive experiments show that SafeAligner can increase the likelihood of beneficial tokens, while reducing the occurrence of harmful ones, thereby ensuring secure alignment with minimal loss to generality.
☆ BADGE: BADminton report Generation and Evaluation with LLM IJCAI 2024
Badminton enjoys widespread popularity, and reports on matches generally include details such as player names, game scores, and ball types, providing audiences with a comprehensive view of the games. However, writing these reports can be a time-consuming task. This challenge led us to explore whether a Large Language Model (LLM) could automate the generation and evaluation of badminton reports. We introduce a novel framework named BADGE, designed for this purpose using LLM. Our method consists of two main phases: Report Generation and Report Evaluation. Initially, badminton-related data is processed by the LLM, which then generates a detailed report of the match. We tested different Input Data Types, In-Context Learning (ICL), and LLM, finding that GPT-4 performs best when using CSV data type and the Chain of Thought prompting. Following report generation, the LLM evaluates and scores the reports to assess their quality. Our comparisons between the scores evaluated by GPT-4 and human judges show a tendency to prefer GPT-4 generated reports. Since the application of LLM in badminton reporting remains largely unexplored, our research serves as a foundational step for future advancements in this area. Moreover, our method can be extended to other sports games, thereby enhancing sports promotion. For more details, please refer to https://github.com/AndyChiangSH/BADGE.
comment: Accepted by IJCAI 2024 Workshop: The 2nd International Workshop on Intelligent Technologies for Precision Sports Science (IT4PSS)
☆ Token-Weighted RNN-T for Learning from Flawed Data
ASR models are commonly trained with the cross-entropy criterion to increase the probability of a target token sequence. While optimizing the probability of all tokens in the target sequence is sensible, one may want to de-emphasize tokens that reflect transcription errors. In this work, we propose a novel token-weighted RNN-T criterion that augments the RNN-T objective with token-specific weights. The new objective is used for mitigating accuracy loss from transcriptions errors in the training data, which naturally appear in two settings: pseudo-labeling and human annotation errors. Experiments results show that using our method for semi-supervised learning with pseudo-labels leads to a consistent accuracy improvement, up to 38% relative. We also analyze the accuracy degradation resulting from different levels of WER in the reference transcription, and show that token-weighted RNN-T is suitable for overcoming this degradation, recovering 64%-99% of the accuracy loss.
☆ Shimo Lab at "Discharge Me!": Discharge Summarization by Prompt-Driven Concatenation of Electronic Health Record Sections ACL2024
In this paper, we present our approach to the shared task "Discharge Me!" at the BioNLP Workshop 2024. The primary goal of this task is to reduce the time and effort clinicians spend on writing detailed notes in the electronic health record (EHR). Participants develop a pipeline to generate the "Brief Hospital Course" and "Discharge Instructions" sections from the EHR. Our approach involves a first step of extracting the relevant sections from the EHR. We then add explanatory prompts to these sections and concatenate them with separate tokens to create the input text. To train a text generation model, we perform LoRA fine-tuning on the ClinicalT5-large model. On the final test data, our approach achieved a ROUGE-1 score of $0.394$, which is comparable to the top solutions.
comment: BioNLP @ ACL2024
LLM-Driven Multimodal Opinion Expression Identification
Opinion Expression Identification (OEI) is essential in NLP for applications ranging from voice assistants to depression diagnosis. This study extends OEI to encompass multimodal inputs, underlining the significance of auditory cues in delivering emotional subtleties beyond the capabilities of text. We introduce a novel multimodal OEI (MOEI) task, integrating text and speech to mirror real-world scenarios. Utilizing CMU MOSEI and IEMOCAP datasets, we construct the CI-MOEI dataset. Additionally, Text-to-Speech (TTS) technology is applied to the MPQA dataset to obtain the CIM-OEI dataset. We design a template for the OEI task to take full advantage of the generative power of large language models (LLMs). Advancing further, we propose an LLM-driven method STOEI, which combines speech and text modal to identify opinion expressions. Our experiments demonstrate that MOEI significantly improves the performance while our method outperforms existing methods by 9.20\% and obtains SOTA results.
comment: 6 pages, 3 Figures
☆ EHR-Based Mobile and Web Platform for Chronic Disease Risk Prediction Using Large Language Multimodal Models
Traditional diagnosis of chronic diseases involves in-person consultations with physicians to identify the disease. However, there is a lack of research focused on predicting and developing application systems using clinical notes and blood test values. We collected five years of Electronic Health Records (EHRs) from Taiwan's hospital database between 2017 and 2021 as an AI database. Furthermore, we developed an EHR-based chronic disease prediction platform utilizing Large Language Multimodal Models (LLMMs), successfully integrating with frontend web and mobile applications for prediction. This prediction platform can also connect to the hospital's backend database, providing physicians with real-time risk assessment diagnostics. The demonstration link can be found at https://www.youtube.com/watch?v=oqmL9DEDFgA.
☆ Multilingual Knowledge Graph Completion from Pretrained Language Models with Knowledge Constraints ACL 2023
Multilingual Knowledge Graph Completion (mKGC) aim at solving queries like (h, r, ?) in different languages by reasoning a tail entity t thus improving multilingual knowledge graphs. Previous studies leverage multilingual pretrained language models (PLMs) and the generative paradigm to achieve mKGC. Although multilingual pretrained language models contain extensive knowledge of different languages, its pretraining tasks cannot be directly aligned with the mKGC tasks. Moreover, the majority of KGs and PLMs currently available exhibit a pronounced English-centric bias. This makes it difficult for mKGC to achieve good results, particularly in the context of low-resource languages. To overcome previous problems, this paper introduces global and local knowledge constraints for mKGC. The former is used to constrain the reasoning of answer entities, while the latter is used to enhance the representation of query contexts. The proposed method makes the pretrained model better adapt to the mKGC task. Experimental results on public datasets demonstrate that our method outperforms the previous SOTA on Hits@1 and Hits@10 by an average of 12.32% and 16.03%, which indicates that our proposed method has significant enhancement on mKGC.
comment: 11 pages, ACL 2023
☆ Octo-planner: On-device Language Model for Planner-Action Agents
AI agents have become increasingly significant in various domains, enabling autonomous decision-making and problem-solving. To function effectively, these agents require a planning process that determines the best course of action and then executes the planned actions. In this paper, we present an efficient on-device Planner-Action framework that separates planning and action execution into two distinct components: a planner agent based on Phi-3 Mini, a 3.8 billion parameter LLM optimized for edge devices, and an action agent using the Octopus model for function execution. The planner agent first responds to user queries by decomposing tasks into a sequence of sub-steps, which are then executed by the action agent. To optimize performance on resource-constrained devices, we employ model fine-tuning instead of in-context learning, reducing computational costs and energy consumption while improving response times. Our approach involves using GPT-4 to generate diverse planning queries and responses based on available functions, with subsequent validations to ensure data quality. We fine-tune the Phi-3 Mini model on this curated dataset, achieving a 97\% success rate in our in-domain test environment. To address multi-domain planning challenges, we developed a multi-LoRA training method that merges weights from LoRAs trained on distinct function subsets. This approach enables flexible handling of complex, multi-domain queries while maintaining computational efficiency on resource-constrained devices. To support further research, we have open-sourced our model weights at \url{https://huggingface.co/NexaAIDev/octopus-planning}. For the demo, please refer to \url{https://www.nexa4ai.com/octo-planner}.
☆ Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction ACL 2024
Aspect Sentiment Quad Prediction (ASQP) aims to predict all quads (aspect term, aspect category, opinion term, sentiment polarity) for a given review, which is the most representative and challenging task in aspect-based sentiment analysis. A key challenge in the ASQP task is the scarcity of labeled data, which limits the performance of existing methods. To tackle this issue, we propose a self-training framework with a pseudo-label scorer, wherein a scorer assesses the match between reviews and their pseudo-labels, aiming to filter out mismatches and thereby enhance the effectiveness of self-training. We highlight two critical aspects to ensure the scorer's effectiveness and reliability: the quality of the training dataset and its model architecture. To this end, we create a human-annotated comparison dataset and train a generative model on it using ranking-based objectives. Extensive experiments on public ASQP datasets reveal that using our scorer can greatly and consistently improve the effectiveness of self-training. Moreover, we explore the possibility of replacing humans with large language models for comparison dataset annotation, and experiments demonstrate its feasibility. We release our code and data at https://github.com/HITSZ-HLT/ST-w-Scorer-ABSA .
comment: Accepted to ACL 2024 Main Conference
Large Language Models for Cuffless Blood Pressure Measurement From Wearable Biosignals
Large language models (LLMs) have captured significant interest from both academia and industry due to their impressive performance across various textual tasks. However, the potential of LLMs to analyze physiological time-series data remains an emerging research field. Particularly, there is a notable gap in the utilization of LLMs for analyzing wearable biosignals to achieve cuffless blood pressure (BP) measurement, which is critical for the management of cardiovascular diseases. This paper presents the first work to explore the capacity of LLMs to perform cuffless BP estimation based on wearable biosignals. We extracted physiological features from electrocardiogram (ECG) and photoplethysmogram (PPG) signals and designed context-enhanced prompts by combining these features with BP domain knowledge and user information. Subsequently, we adapted LLMs to BP estimation tasks through instruction tuning. To evaluate the proposed approach, we conducted assessments of ten advanced LLMs using a comprehensive public dataset of wearable biosignals from 1,272 participants. The experimental results demonstrate that the optimally fine-tuned LLM significantly surpasses conventional task-specific baselines, achieving an estimation error of 0.00 $\pm$ 9.25 mmHg for systolic BP and 1.29 $\pm$ 6.37 mmHg for diastolic BP. Notably, the ablation studies highlight the benefits of our context enhancement strategy, leading to an 8.9% reduction in mean absolute error for systolic BP estimation. This paper pioneers the exploration of LLMs for cuffless BP measurement, providing a potential solution to enhance the accuracy of cuffless BP measurement.
☆ Exploring Energy-Based Models for Out-of-Distribution Detection in Dialect Identification
The diverse nature of dialects presents challenges for models trained on specific linguistic patterns, rendering them susceptible to errors when confronted with unseen or out-of-distribution (OOD) data. This study introduces a novel margin-enhanced joint energy model (MEJEM) tailored specifically for OOD detection in dialects. By integrating a generative model and the energy margin loss, our approach aims to enhance the robustness of dialect identification systems. Furthermore, we explore two OOD scores for OOD dialect detection, and our findings conclusively demonstrate that the energy score outperforms the softmax score. Leveraging Sharpness-Aware Minimization to optimize the training process of the joint model, we enhance model generalization by minimizing both loss and sharpness. Experiments conducted on dialect identification tasks validate the efficacy of Energy-Based Models and provide valuable insights into their performance.
☆ Evaluating Quality of Answers for Retrieval-Augmented Generation: A Strong LLM Is All You Need
We present a comprehensive evaluation of answer quality in Retrieval-Augmented Generation (RAG) applications using vRAG-Eval, a novel grading system that is designed to assess correctness, completeness, and honesty. We further map the grading of quality aspects aforementioned into a binary score, indicating an accept or reject decision, mirroring the intuitive "thumbs-up" or "thumbs-down" gesture commonly used in chat applications. This approach suits factual business settings where a clear decision opinion is essential. Our assessment applies vRAG-Eval to two Large Language Models (LLMs), evaluating the quality of answers generated by a vanilla RAG application. We compare these evaluations with human expert judgments and find a substantial alignment between GPT-4's assessments and those of human experts, reaching 83% agreement on accept or reject decisions. This study highlights the potential of LLMs as reliable evaluators in closed-domain, closed-ended settings, particularly when human evaluations require significant resources.
comment: 12 pages, 6 figures, 12 tables
☆ AdaZeta: Adaptive Zeroth-Order Tensor-Train Adaption for Memory-Efficient Large Language Models Fine-Tuning
Fine-tuning large language models (LLMs) has achieved remarkable performance across various natural language processing tasks, yet it demands more and more memory as model sizes keep growing. To address this issue, the recently proposed Memory-efficient Zeroth-order (MeZO) methods attempt to fine-tune LLMs using only forward passes, thereby avoiding the need for a backpropagation graph. However, significant performance drops and a high risk of divergence have limited their widespread adoption. In this paper, we propose the Adaptive Zeroth-order Tensor-Train Adaption (AdaZeta) framework, specifically designed to improve the performance and convergence of the ZO methods. To enhance dimension-dependent ZO estimation accuracy, we introduce a fast-forward, low-parameter tensorized adapter. To tackle the frequently observed divergence issue in large-scale ZO fine-tuning tasks, we propose an adaptive query number schedule that guarantees convergence. Detailed theoretical analysis and extensive experimental results on Roberta-Large and Llama-2-7B models substantiate the efficacy of our AdaZeta framework in terms of accuracy, memory efficiency, and convergence speed.
☆ Improving Entity Recognition Using Ensembles of Deep Learning and Fine-tuned Large Language Models: A Case Study on Adverse Event Extraction from Multiple Sources
Adverse event (AE) extraction following COVID-19 vaccines from text data is crucial for monitoring and analyzing the safety profiles of immunizations. Traditional deep learning models are adept at learning intricate feature representations and dependencies in sequential data, but often require extensive labeled data. In contrast, large language models (LLMs) excel in understanding contextual information, but exhibit unstable performance on named entity recognition tasks, possibly due to their broad but unspecific training. This study aims to evaluate the effectiveness of LLMs and traditional deep learning models in AE extraction, and to assess the impact of ensembling these models on performance. In this study, we utilized reports and posts from the VAERS (n=621), Twitter (n=9,133), and Reddit (n=131) as our corpora. Our goal was to extract three types of entities: "vaccine", "shot", and "ae". We explored and fine-tuned (except GPT-4) multiple LLMs, including GPT-2, GPT-3.5, GPT-4, and Llama-2, as well as traditional deep learning models like RNN and BioBERT. To enhance performance, we created ensembles of the three models with the best performance. For evaluation, we used strict and relaxed F1 scores to evaluate the performance for each entity type, and micro-average F1 was used to assess the overall performance. The ensemble model achieved the highest performance in "vaccine", "shot", and "ae" with strict F1-scores of 0.878, 0.930, and 0.925, respectively, along with a micro-average score of 0.903. In conclusion, this study demonstrates the effectiveness and robustness of ensembling fine-tuned traditional deep learning models and LLMs, for extracting AE-related information. This study contributes to the advancement of biomedical natural language processing, providing valuable insights into improving AE extraction from text data for pharmacovigilance and public health surveillance.
☆ PharmGPT: Domain-Specific Large Language Models for Bio-Pharmaceutical and Chemistry
Large language models (LLMs) have revolutionized Natural Language Processing (NLP) by by minimizing the need for complex feature engineering. However, the application of LLMs in specialized domains like biopharmaceuticals and chemistry remains largely unexplored. These fields are characterized by intricate terminologies, specialized knowledge, and a high demand for precision areas where general purpose LLMs often fall short. In this study, we introduce PharmGPT, a suite of multilingual LLMs with 13 billion and 70 billion parameters, specifically trained on a comprehensive corpus of hundreds of billions of tokens tailored to the Bio-Pharmaceutical and Chemical sectors. Our evaluation shows that PharmGPT matches or surpasses existing general models on key benchmarks, such as NAPLEX, demonstrating its exceptional capability in domain-specific tasks. This advancement establishes a new benchmark for LLMs in the Bio-Pharmaceutical and Chemical fields, addressing the existing gap in specialized language modeling. Furthermore, this suggests a promising path for enhanced research and development in these specialized areas, paving the way for more precise and effective applications of NLP in specialized domains.
LLMs for Doctors: Leveraging Medical LLMs to Assist Doctors, Not Replace Them
The recent success of Large Language Models (LLMs) has had a significant impact on the healthcare field, providing patients with medical advice, diagnostic information, and more. However, due to a lack of professional medical knowledge, patients are easily misled by generated erroneous information from LLMs, which may result in serious medical problems. To address this issue, we focus on tuning the LLMs to be medical assistants who collaborate with more experienced doctors. We first conduct a two-stage survey by inspiration-feedback to gain a broad understanding of the real needs of doctors for medical assistants. Based on this, we construct a Chinese medical dataset called DoctorFLAN to support the entire workflow of doctors, which includes 92K Q\&A samples from 22 tasks and 27 specialists. Moreover, we evaluate LLMs in doctor-oriented scenarios by constructing the DoctorFLAN-\textit{test} containing 550 single-turn Q\&A and DotaBench containing 74 multi-turn conversations. The evaluation results indicate that being a medical assistant still poses challenges for existing open-source models, but DoctorFLAN can help them significantly. It demonstrates that the doctor-oriented dataset and benchmarks we construct can complement existing patient-oriented work and better promote medical LLMs research.
☆ Automated Clinical Data Extraction with Knowledge Conditioned LLMs
The extraction of lung lesion information from clinical and medical imaging reports is crucial for research on and clinical care of lung-related diseases. Large language models (LLMs) can be effective at interpreting unstructured text in reports, but they often hallucinate due to a lack of domain-specific knowledge, leading to reduced accuracy and posing challenges for use in clinical settings. To address this, we propose a novel framework that aligns generated internal knowledge with external knowledge through in-context learning (ICL). Our framework employs a retriever to identify relevant units of internal or external knowledge and a grader to evaluate the truthfulness and helpfulness of the retrieved internal-knowledge rules, to align and update the knowledge bases. Our knowledge-conditioned approach also improves the accuracy and reliability of LLM outputs by addressing the extraction task in two stages: (i) lung lesion finding detection and primary structured field parsing, followed by (ii) further parsing of lesion description text into additional structured fields. Experiments with expert-curated test datasets demonstrate that this ICL approach can increase the F1 score for key fields (lesion size, margin and solidity) by an average of 12.9% over existing ICL methods.
☆ Decoding with Limited Teacher Supervision Requires Understanding When to Trust the Teacher
How can sLLMs efficiently utilize the supervision of LLMs to improve their generative quality? This question has been well studied in scenarios where there is no restriction on the number of LLM supervisions one can use, giving birth to many decoding algorithms that utilize supervision without further training. However, it is still unclear what is an effective strategy under the limited supervision scenario, where we assume that no more than a few tokens can be generated by LLMs. To this end, we develop an algorithm to effectively aggregate the sLLM and LLM predictions on initial tokens so that the generated tokens can more accurately condition the subsequent token generation by sLLM only. Critically, we find that it is essential to adaptively overtrust or disregard the LLM prediction based on the confidence of the sLLM. Through our experiments on a wide range of models and datasets, we demonstrate that our method provides a consistent improvement over conventional decoding strategies.
comment: preprint
☆ Catching Chameleons: Detecting Evolving Disinformation Generated using Large Language Models
Despite recent advancements in detecting disinformation generated by large language models (LLMs), current efforts overlook the ever-evolving nature of this disinformation. In this work, we investigate a challenging yet practical research problem of detecting evolving LLM-generated disinformation. Disinformation evolves constantly through the rapid development of LLMs and their variants. As a consequence, the detection model faces significant challenges. First, it is inefficient to train separate models for each disinformation generator. Second, the performance decreases in scenarios when evolving LLM-generated disinformation is encountered in sequential order. To address this problem, we propose DELD (Detecting Evolving LLM-generated Disinformation), a parameter-efficient approach that jointly leverages the general fact-checking capabilities of pre-trained language models (PLM) and the independent disinformation generation characteristics of various LLMs. In particular, the learned characteristics are concatenated sequentially to facilitate knowledge accumulation and transformation. DELD addresses the issue of label scarcity by integrating the semantic embeddings of disinformation with trainable soft prompts to elicit model-specific knowledge. Our experiments show that \textit{DELD} significantly outperforms state-of-the-art methods. Moreover, our method provides critical insights into the unique patterns of disinformation generation across different LLMs, offering valuable perspectives in this line of research.
comment: 10 pages, 5 figures
☆ Explicit Diversity Conditions for Effective Question Answer Generation with Large Language Models COLING 2024
Question Answer Generation (QAG) is an effective data augmentation technique to improve the accuracy of question answering systems, especially in low-resource domains. While recent pretrained and large language model-based QAG methods have made substantial progress, they face the critical issue of redundant QA pair generation, affecting downstream QA systems. Implicit diversity techniques such as sampling and diverse beam search are proven effective solutions but often yield smaller diversity. We present explicit diversity conditions for QAG, focusing on spatial aspects, question types, and entities, substantially increasing diversity in QA generation. Our work emphasizes the need of explicit diversity conditions for generating diverse question-answer synthetic data by showing significant improvements in downstream QA task over existing widely adopted implicit diversity techniques. In particular, generated QA pairs from explicit diversity conditions when used to train the downstream QA model results in an average 4.1% exact match and 4.5% F1 improvement over QAG from implicit sampling techniques on SQuADDU. Our work emphasizes the need for explicit diversity conditions even more in low-resource datasets (SubjQA), where average downstream QA performance improvements are around 12% EM.
comment: Published at COLING 2024
☆ Multi-step Knowledge Retrieval and Inference over Unstructured Data
The advent of Large Language Models (LLMs) and Generative AI has revolutionized natural language applications across various domains. However, high-stakes decision-making tasks in fields such as medical, legal and finance require a level of precision, comprehensiveness, and logical consistency that pure LLM or Retrieval-Augmented-Generation (RAG) approaches often fail to deliver. At Elemental Cognition (EC), we have developed a neuro-symbolic AI platform to tackle these problems. The platform integrates fine-tuned LLMs for knowledge extraction and alignment with a robust symbolic reasoning engine for logical inference, planning and interactive constraint solving. We describe Cora, a Collaborative Research Assistant built on this platform, that is designed to perform complex research and discovery tasks in high-stakes domains. This paper discusses the multi-step inference challenges inherent in such domains, critiques the limitations of existing LLM-based methods, and demonstrates how Cora's neuro-symbolic approach effectively addresses these issues. We provide an overview of the system architecture, key algorithms for knowledge extraction and formal reasoning, and present preliminary evaluation results that highlight Cora's superior performance compared to well-known LLM and RAG baselines.
☆ Psychological Profiling in Cybersecurity: A Look at LLMs and Psycholinguistic Features
The increasing sophistication of cyber threats necessitates innovative approaches to cybersecurity. In this paper, we explore the potential of psychological profiling techniques, particularly focusing on the utilization of Large Language Models (LLMs) and psycholinguistic features. We investigate the intersection of psychology and cybersecurity, discussing how LLMs can be employed to analyze textual data for identifying psychological traits of threat actors. We explore the incorporation of psycholinguistic features, such as linguistic patterns and emotional cues, into cybersecurity frameworks. \iffalse Through case studies and experiments, we discuss the effectiveness of these methods in enhancing threat detection and mitigation strategies.\fi Our research underscores the importance of integrating psychological perspectives into cybersecurity practices to bolster defense mechanisms against evolving threats.
☆ Implicit Discourse Relation Classification For Nigerian Pidgin
Despite attempts to make Large Language Models multi-lingual, many of the world's languages are still severely under-resourced. This widens the performance gap between NLP and AI applications aimed at well-financed, and those aimed at less-resourced languages. In this paper, we focus on Nigerian Pidgin (NP), which is spoken by nearly 100 million people, but has comparatively very few NLP resources and corpora. We address the task of Implicit Discourse Relation Classification (IDRC) and systematically compare an approach translating NP data to English and then using a well-resourced IDRC tool and back-projecting the labels versus creating a synthetic discourse corpus for NP, in which we translate PDTB and project PDTB labels, and then train an NP IDR classifier. The latter approach of learning a "native" NP classifier outperforms our baseline by 13.27\% and 33.98\% in f$_{1}$ score for 4-way and 11-way classification, respectively.
☆ Categorical Syllogisms Revisited: A Review of the Logical Reasoning Abilities of LLMs for Analyzing Categorical Syllogism
There have been a huge number of benchmarks proposed to evaluate how large language models (LLMs) behave for logic inference tasks. However, it remains an open question how to properly evaluate this ability. In this paper, we provide a systematic overview of prior works on the logical reasoning ability of LLMs for analyzing categorical syllogisms. We first investigate all the possible variations for the categorical syllogisms from a purely logical perspective and then examine the underlying configurations (i.e., mood and figure) tested by the existing datasets. Our results indicate that compared to template-based synthetic datasets, crowdsourcing approaches normally sacrifice the coverage of configurations (i.e., mood and figure) of categorical syllogisms for more language variations, thus bringing challenges to fully testing LLMs under different situations. We then proceed to summarize the findings and observations for the performances of LLMs to infer the validity of syllogisms from the current literature. The error rate breakdown analyses suggest that the interpretation of the quantifiers seems to be the current bottleneck that limits the performances of the LLMs and is thus worth more attention. Finally, we discuss several points that might be worth considering when researchers plan on the future release of categorical syllogism datasets. We hope our work will not only provide a timely review of the current literature regarding categorical syllogisms, but also motivate more interdisciplinary research between communities, specifically computational linguists and logicians.
☆ Re-Ranking Step by Step: Investigating Pre-Filtering for Re-Ranking with Large Language Models
Large Language Models (LLMs) have been revolutionizing a myriad of natural language processing tasks with their diverse zero-shot capabilities. Indeed, existing work has shown that LLMs can be used to great effect for many tasks, such as information retrieval (IR), and passage ranking. However, current state-of-the-art results heavily lean on the capabilities of the LLM being used. Currently, proprietary, and very large LLMs such as GPT-4 are the highest performing passage re-rankers. Hence, users without the resources to leverage top of the line LLMs, or ones that are closed source, are at a disadvantage. In this paper, we investigate the use of a pre-filtering step before passage re-ranking in IR. Our experiments show that by using a small number of human generated relevance scores, coupled with LLM relevance scoring, it is effectively possible to filter out irrelevant passages before re-ranking. Our experiments also show that this pre-filtering then allows the LLM to perform significantly better at the re-ranking task. Indeed, our results show that smaller models such as Mixtral can become competitive with much larger proprietary models (e.g., ChatGPT and GPT-4).
☆ WavRx: a Disease-Agnostic, Generalizable, and Privacy-Preserving Speech Health Diagnostic Model
Speech is known to carry health-related attributes, which has emerged as a novel venue for remote and long-term health monitoring. However, existing models are usually tailored for a specific type of disease, and have been shown to lack generalizability across datasets. Furthermore, concerns have been raised recently towards the leakage of speaker identity from health embeddings. To mitigate these limitations, we propose WavRx, a speech health diagnostics model that captures the respiration and articulation related dynamics from a universal speech representation. Our in-domain and cross-domain experiments on six pathological speech datasets demonstrate WavRx as a new state-of-the-art health diagnostic model. Furthermore, we show that the amount of speaker identity entailed in the WavRx health embeddings is significantly reduced without extra guidance during training. An in-depth analysis of the model was performed, thus providing physiological interpretation of its improved generalizability and privacy-preserving ability.
comment: Under review; Model script available at https://github.com/zhu00121/WavRx
☆ Jailbreaking LLMs with Arabic Transliteration and Arabizi
This study identifies the potential vulnerabilities of Large Language Models (LLMs) to 'jailbreak' attacks, specifically focusing on the Arabic language and its various forms. While most research has concentrated on English-based prompt manipulation, our investigation broadens the scope to investigate the Arabic language. We initially tested the AdvBench benchmark in Standardized Arabic, finding that even with prompt manipulation techniques like prefix injection, it was insufficient to provoke LLMs into generating unsafe content. However, when using Arabic transliteration and chatspeak (or arabizi), we found that unsafe content could be produced on platforms like OpenAI GPT-4 and Anthropic Claude 3 Sonnet. Our findings suggest that using Arabic and its various forms could expose information that might remain hidden, potentially increasing the risk of jailbreak attacks. We hypothesize that this exposure could be due to the model's learned connection to specific words, highlighting the need for more comprehensive safety training across all language forms.
comment: 14 pages, 4 figures
☆ Learn it or Leave it: Module Composition and Pruning for Continual Learning
In real-world environments, continual learning is essential for machine learning models, as they need to acquire new knowledge incrementally without forgetting what they have already learned. While pretrained language models have shown impressive capabilities on various static tasks, applying them to continual learning poses significant challenges, including avoiding catastrophic forgetting, facilitating knowledge transfer, and maintaining parameter efficiency. In this paper, we introduce MoCL-P, a novel lightweight continual learning method that addresses these challenges simultaneously. Unlike traditional approaches that continuously expand parameters for newly arriving tasks, MoCL-P integrates task representation-guided module composition with adaptive pruning, effectively balancing knowledge integration and computational overhead. Our evaluation across three continual learning benchmarks with up to 176 tasks shows that MoCL-P achieves state-of-the-art performance and improves parameter efficiency by up to three times, demonstrating its potential for practical applications where resource requirements are constrained.
☆ Simulating The U.S. Senate: An LLM-Driven Agent Approach to Modeling Legislative Behavior and Bipartisanship
This study introduces a novel approach to simulating legislative processes using LLM-driven virtual agents, focusing on the U.S. Senate Intelligence Committee. We developed agents representing individual senators and placed them in simulated committee discussions. The agents demonstrated the ability to engage in realistic debate, provide thoughtful reflections, and find bipartisan solutions under certain conditions. Notably, the simulation also showed promise in modeling shifts towards bipartisanship in response to external perturbations. Our results indicate that this LLM-driven approach could become a valuable tool for understanding and potentially improving legislative processes, supporting a broader pattern of findings highlighting how LLM-based agents can usefully model real-world phenomena. Future works will focus on enhancing agent complexity, expanding the simulation scope, and exploring applications in policy testing and negotiation.
☆ Sequence Graph Network for Online Debate Analysis
Online debates involve a dynamic exchange of ideas over time, where participants need to actively consider their opponents' arguments, respond with counterarguments, reinforce their own points, and introduce more compelling arguments as the discussion unfolds. Modeling such a complex process is not a simple task, as it necessitates the incorporation of both sequential characteristics and the capability to capture interactions effectively. To address this challenge, we employ a sequence-graph approach. Building the conversation as a graph allows us to effectively model interactions between participants through directed edges. Simultaneously, the propagation of information along these edges in a sequential manner enables us to capture a more comprehensive representation of context. We also introduce a Sequence Graph Attention layer to illustrate the proposed information update scheme. The experimental results show that sequence graph networks achieve superior results to existing methods in online debates.
comment: 8 pages, 4 figures
☆ Learning to Correct for QA Reasoning with Black-box LLMs
An open challenge in recent machine learning is about how to improve the reasoning capability of large language models (LLMs) in a black-box setting, i.e., without access to detailed information such as output token probabilities. Existing approaches either rely on accessibility (which is often unrealistic) or involve significantly increased train- and inference-time costs. This paper addresses those limitations or shortcomings by proposing a novel approach, namely CoBB (Correct for improving QA reasoning of Black-Box LLMs). It uses a trained adaptation model to perform a seq2seq mapping from the often-imperfect reasonings of the original black-box LLM to the correct or improved reasonings. Specifically, the adaptation model is initialized with a relatively small open-source LLM and adapted over a collection of sub-sampled training pairs. To select the representative pairs of correct and incorrect reasonings, we formulated the dataset construction as an optimization problem that minimizes the statistical divergence between the sampled subset and the entire collection, and solved it via a genetic algorithm. We then train the adaptation model over the sampled pairs by contrasting the likelihoods of correct and incorrect reasonings. Our experimental results demonstrate that CoBB significantly improves reasoning accuracy across various QA benchmarks, compared to the best-performing adaptation baselines.
comment: preprint, 18 pages
☆ The Multilingual Alignment Prism: Aligning Global and Local Preferences to Reduce Harm
A key concern with the concept of "alignment" is the implicit question of "alignment to what?". AI systems are increasingly used across the world, yet safety alignment is often focused on homogeneous monolingual settings. Additionally, preference training and safety measures often overfit to harms common in Western-centric datasets. Here, we explore the viability of different alignment approaches when balancing dual objectives: addressing and optimizing for a non-homogeneous set of languages and cultural preferences while minimizing both global and local harms. We collect the first set of human annotated red-teaming prompts in different languages distinguishing between global and local harm, which serve as a laboratory for understanding the reliability of alignment techniques when faced with preference distributions that are non-stationary across geographies and languages. While this setting is seldom covered by the literature to date, which primarily centers on English harm mitigation, it captures real-world interactions with AI systems around the world. We establish a new precedent for state-of-the-art alignment techniques across 6 languages with minimal degradation in general performance. Our work provides important insights into cross-lingual transfer and novel optimization approaches to safeguard AI systems designed to serve global populations.
☆ Speakers Unembedded: Embedding-free Approach to Long-form Neural Diarization INTERSPEECH 2024
End-to-end neural diarization (EEND) models offer significant improvements over traditional embedding-based Speaker Diarization (SD) approaches but falls short on generalizing to long-form audio with large number of speakers. EEND-vector-clustering method mitigates this by combining local EEND with global clustering of speaker embeddings from local windows, but this requires an additional speaker embedding framework alongside the EEND module. In this paper, we propose a novel framework applying EEND both locally and globally for long-form audio without separate speaker embeddings. This approach achieves significant relative DER reduction of 13% and 10% over the conventional 1-pass EEND on Callhome American English and RT03-CTS datasets respectively and marginal improvements over EEND-vector-clustering without the need for additional speaker embeddings. Furthermore, we discuss the computational complexity of our proposed framework and explore strategies for reducing processing times.
comment: Accepted at INTERSPEECH 2024
☆ Few-shot Personalization of LLMs with Mis-aligned Responses
As the diversity of users increases, the capability of providing personalized responses by large language models (LLMs) has become increasingly important. Existing approaches have only limited successes in LLM personalization, due to the absence of personalized learning or the reliance on shared personal data. This paper proposes a new approach for a few-shot personalization of LLMs with their mis-aligned responses (Fermi). Our key idea is to learn a set of personalized prompts for each user by progressively improving the prompts using LLMs, based on user profile (e.g., demographic information) and a few examples of previous opinions. During an iterative process of prompt improvement, we incorporate the contexts of mis-aligned responses by LLMs, which are especially crucial for the effective personalization of LLMs. In addition, we develop an effective inference method to further leverage the context of the test query and the personalized prompts. Our experimental results demonstrate that Fermi significantly improves performance across various benchmarks, compared to the best-performing baselines.
comment: preprint, 30 pages
☆ Understand What LLM Needs: Dual Preference Alignment for Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) has demonstrated effectiveness in mitigating the hallucination problem of large language models (LLMs). However, the difficulty of aligning the retriever with the diverse LLMs' knowledge preferences inevitably poses an inevitable challenge in developing a reliable RAG system. To address this issue, we propose DPA-RAG, a universal framework designed to align diverse knowledge preferences within RAG systems. Specifically, we initially introduce a preference knowledge construction pipline and incorporate five novel query augmentation strategies to alleviate preference data scarcity. Based on preference data, DPA-RAG accomplishes both external and internal preference alignment: 1) It jointly integrate pair-wise, point-wise, and contrastive preference alignment abilities into the reranker, achieving external preference alignment among RAG components. 2) It further introduces a pre-aligned stage before vanilla Supervised Fine-tuning (SFT), enabling LLMs to implicitly capture knowledge aligned with their reasoning preferences, achieving LLMs' internal alignment. Experimental results across four knowledge-intensive QA datasets demonstrate that DPA-RAG outperforms all baselines and seamlessly integrates both black-box and open-sourced LLM readers. Further qualitative analysis and discussions also provide empirical guidance for achieving reliable RAG systems. Our code is publicly available at https://github.com/dongguanting/DPA-RAG.
comment: Work in progress
☆ Human-AI Collaborative Taxonomy Construction: A Case Study in Profession-Specific Writing Assistants
Large Language Models (LLMs) have assisted humans in several writing tasks, including text revision and story generation. However, their effectiveness in supporting domain-specific writing, particularly in business contexts, is relatively less explored. Our formative study with industry professionals revealed the limitations in current LLMs' understanding of the nuances in such domain-specific writing. To address this gap, we propose an approach of human-AI collaborative taxonomy development to perform as a guideline for domain-specific writing assistants. This method integrates iterative feedback from domain experts and multiple interactions between these experts and LLMs to refine the taxonomy. Through larger-scale experiments, we aim to validate this methodology and thus improve LLM-powered writing assistance, tailoring it to meet the unique requirements of different stakeholder needs.
comment: Accepted to CHI 2024 In2Writing Workshop
☆ RouteLLM: Learning to Route LLMs with Preference Data
Large language models (LLMs) exhibit impressive capabilities across a wide range of tasks, yet the choice of which model to use often involves a trade-off between performance and cost. More powerful models, though effective, come with higher expenses, while less capable models are more cost-effective. To address this dilemma, we propose several efficient router models that dynamically select between a stronger and a weaker LLM during inference, aiming to optimize the balance between cost and response quality. We develop a training framework for these routers leveraging human preference data and data augmentation techniques to enhance performance. Our evaluation on widely-recognized benchmarks shows that our approach significantly reduces costs-by over 2 times in certain cases-without compromising the quality of responses. Interestingly, our router models also demonstrate significant transfer learning capabilities, maintaining their performance even when the strong and weak models are changed at test time. This highlights the potential of these routers to provide a cost-effective yet high-performance solution for deploying LLMs.
☆ Evaluating Copyright Takedown Methods for Language Models
Language models (LMs) derive their capabilities from extensive training on diverse data, including potentially copyrighted material. These models can memorize and generate content similar to their training data, posing potential concerns. Therefore, model creators are motivated to develop mitigation methods that prevent generating protected content. We term this procedure as copyright takedowns for LMs, noting the conceptual similarity to (but legal distinction from) the DMCA takedown This paper introduces the first evaluation of the feasibility and side effects of copyright takedowns for LMs. We propose CoTaEval, an evaluation framework to assess the effectiveness of copyright takedown methods, the impact on the model's ability to retain uncopyrightable factual knowledge from the training data whose recitation is embargoed, and how well the model maintains its general utility and efficiency. We examine several strategies, including adding system prompts, decoding-time filtering interventions, and unlearning approaches. Our findings indicate that no tested method excels across all metrics, showing significant room for research in this unique problem setting and indicating potential unresolved challenges for live policy proposals.
comment: 31 pages, 9 figures, 14 tables
☆ Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs
Mathematical reasoning presents a significant challenge for Large Language Models (LLMs) due to the extensive and precise chain of reasoning required for accuracy. Ensuring the correctness of each reasoning step is critical. To address this, we aim to enhance the robustness and factuality of LLMs by learning from human feedback. However, Direct Preference Optimization (DPO) has shown limited benefits for long-chain mathematical reasoning, as models employing DPO struggle to identify detailed errors in incorrect answers. This limitation stems from a lack of fine-grained process supervision. We propose a simple, effective, and data-efficient method called Step-DPO, which treats individual reasoning steps as units for preference optimization rather than evaluating answers holistically. Additionally, we have developed a data construction pipeline for Step-DPO, enabling the creation of a high-quality dataset containing 10K step-wise preference pairs. We also observe that in DPO, self-generated data is more effective than data generated by humans or GPT-4, due to the latter's out-of-distribution nature. Our findings demonstrate that as few as 10K preference data pairs and fewer than 500 Step-DPO training steps can yield a nearly 3% gain in accuracy on MATH for models with over 70B parameters. Notably, Step-DPO, when applied to Qwen2-72B-Instruct, achieves scores of 70.8% and 94.0% on the test sets of MATH and GSM8K, respectively, surpassing a series of closed-source models, including GPT-4-1106, Claude-3-Opus, and Gemini-1.5-Pro. Our code, data, and models are available at https://github.com/dvlab-research/Step-DPO.
comment: Code, data, and models are available at https://github.com/dvlab-research/Step-DPO
♻ ☆ Situational Awareness Matters in 3D Vision Language Reasoning CVPR 2024
Being able to carry out complicated vision language reasoning tasks in 3D space represents a significant milestone in developing household robots and human-centered embodied AI. In this work, we demonstrate that a critical and distinct challenge in 3D vision language reasoning is situational awareness, which incorporates two key components: (1) The autonomous agent grounds its self-location based on a language prompt. (2) The agent answers open-ended questions from the perspective of its calculated position. To address this challenge, we introduce SIG3D, an end-to-end Situation-Grounded model for 3D vision language reasoning. We tokenize the 3D scene into sparse voxel representation and propose a language-grounded situation estimator, followed by a situated question answering module. Experiments on the SQA3D and ScanQA datasets show that SIG3D outperforms state-of-the-art models in situation estimation and question answering by a large margin (e.g., an enhancement of over 30% on situation estimation accuracy). Subsequent analysis corroborates our architectural design choices, explores the distinct functions of visual and textual tokens, and highlights the importance of situational awareness in the domain of 3D question answering.
comment: CVPR 2024. Project Page: https://yunzeman.github.io/situation3d
♻ ☆ On the Impact of Voice Anonymization on Speech Diagnostic Applications: a Case Study on COVID-19 Detection
With advances seen in deep learning, voice-based applications are burgeoning, ranging from personal assistants, affective computing, to remote disease diagnostics. As the voice contains both linguistic and para-linguistic information (e.g., vocal pitch, intonation, speech rate, loudness), there is growing interest in voice anonymization to preserve speaker privacy and identity. Voice privacy challenges have emerged over the last few years and focus has been placed on removing speaker identity while keeping linguistic content intact. For affective computing and disease monitoring applications, however, the para-linguistic content may be more critical. Unfortunately, the effects that anonymization may have on these systems are still largely unknown. In this paper, we fill this gap and focus on one particular health monitoring application: speech-based COVID-19 diagnosis. We test three anonymization methods and their impact on five different state-of-the-art COVID-19 diagnostic systems using three public datasets. We validate the effectiveness of the anonymization methods, compare their computational complexity, and quantify the impact across different testing scenarios for both within- and across-dataset conditions. Additionally, we provided a comprehensive evaluation of the importance of different speech aspects for diagnostics and showed how they are affected by different types of anonymizers. Lastly, we show the benefits of using anonymized external data as a data augmentation tool to help recover some of the COVID-19 diagnostic accuracy loss seen with anonymization.
comment: Updated version; Published at IEEE Transactions on Information Forensics and Security
♻ ☆ Large Language Models in the Clinic: A Comprehensive Benchmark
The adoption of large language models (LLMs) to assist clinicians has attracted remarkable attention. Existing works mainly adopt the close-ended question-answering (QA) task with answer options for evaluation. However, many clinical decisions involve answering open-ended questions without pre-set options. To better understand LLMs in the clinic, we construct a benchmark ClinicBench. We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks. Furthermore, we construct six novel datasets and complex clinical tasks that are close to real-world practice, i.e., referral QA, treatment recommendation, hospitalization (long document) summarization, patient education, pharmacology QA and drug interaction for emerging drugs. We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings. Finally, we invite medical experts to evaluate the clinical usefulness of LLMs.
♻ ☆ Large Language Model Enhanced Clustering for News Event Detection
The news landscape is continuously evolving, with an ever-increasing volume of information from around the world. Automated event detection within this vast data repository is essential for monitoring, identifying, and categorizing significant news occurrences across diverse platforms. This paper presents an event detection framework that leverages Large Language Models (LLMs) combined with clustering analysis to detect news events from the Global Database of Events, Language, and Tone (GDELT). The framework enhances event clustering through both pre-event detection tasks (keyword extraction and text embedding) and post-event detection tasks (event summarization and topic labeling). We also evaluate the impact of various textual embeddings on the quality of clustering outcomes, ensuring robust news categorization. Additionally, we introduce a novel Cluster Stability Assessment Index (CSAI) to assess the validity and robustness of clustering results. CSAI utilizes latent feature vectors to provide a new way of measuring clustering quality. Our experiments indicate that combining LLM embeddings with clustering algorithms yields the best results, demonstrating greater robustness in terms of CSAI scores. Moreover, post-event detection tasks generate meaningful insights, facilitating effective interpretation of event clustering results. Overall, our experimental results indicate that the proposed framework offers valuable insights and could enhance the accuracy and depth of news reporting.
♻ ☆ BASS: Batched Attention-optimized Speculative Sampling
Speculative decoding has emerged as a powerful method to improve latency and throughput in hosting large language models. However, most existing implementations focus on generating a single sequence. Real-world generative AI applications often require multiple responses and how to perform speculative decoding in a batched setting while preserving its latency benefits poses non-trivial challenges. This paper describes a system of batched speculative decoding that sets a new state of the art in multi-sequence generation latency and that demonstrates superior GPU utilization as well as quality of generations within a time budget. For example, for a 7.8B-size model on a single A100 GPU and with a batch size of 8, each sequence is generated at an average speed of 5.8ms per token, the overall throughput being 1.1K tokens per second. These results represent state-of-the-art latency and a 2.15X speed-up over optimized regular decoding. Within a time budget that regular decoding does not finish, our system is able to generate sequences with HumanEval Pass@First of 43% and Pass@All of 61%, far exceeding what's feasible with single-sequence speculative decoding. Our peak GPU utilization during decoding reaches as high as 15.8%, more than 3X the highest of that of regular decoding and around 10X of single-sequence speculative decoding.
♻ ☆ BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions
Automated software engineering has been greatly empowered by the recent advances in Large Language Models (LLMs) for programming. While current benchmarks have shown that LLMs can perform various software engineering tasks like human developers, the majority of their evaluations are limited to short and self-contained algorithmic tasks. Solving challenging and practical programming tasks requires the capability of utilizing diverse function calls as tools to efficiently implement functionalities like data analysis and web development. In addition, using multiple tools to solve a task needs compositional reasoning by accurately understanding complex instructions. Fulfilling both of these characteristics can pose a great challenge for LLMs. To assess how well LLMs can solve challenging and practical programming tasks, we introduce Bench, a benchmark that challenges LLMs to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained programming tasks. To evaluate LLMs rigorously, each programming task encompasses 5.6 test cases with an average branch coverage of 99%. In addition, we propose a natural-language-oriented variant of Bench, Benchi, that automatically transforms the original docstrings into short instructions only with essential information. Our extensive evaluation of 60 LLMs shows that LLMs are not yet capable of following complex instructions to use function calls precisely, with scores up to 60%, significantly lower than the human performance of 97%. The results underscore the need for further advancements in this area.
comment: 44 pages, 14 figures, 7 tables, built with love by the BigCode community :)
♻ ☆ Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models
Large language models (LLMs) have demonstrated impressive reasoning capabilities, particularly in textual mathematical problem-solving. However, existing open-source image instruction fine-tuning datasets, containing limited question-answer pairs per image, do not fully exploit visual information to enhance the multimodal mathematical reasoning capabilities of Multimodal LLMs (MLLMs). To bridge this gap, we address the lack of high-quality, diverse multimodal mathematical datasets by collecting 40K high-quality images with question-answer pairs from 24 existing datasets and synthesizing 320K new pairs, creating the MathV360K dataset, which enhances both the breadth and depth of multimodal mathematical questions. We introduce Math-LLaVA, a LLaVA-1.5-based model fine-tuned with MathV360K. This novel approach significantly improves the multimodal mathematical reasoning capabilities of LLaVA-1.5, achieving a 19-point increase and comparable performance to GPT-4V on MathVista's minitest split. Furthermore, Math-LLaVA demonstrates enhanced generalizability, showing substantial improvements on the MMMU benchmark. Our research highlights the importance of dataset diversity and synthesis in advancing MLLMs' mathematical reasoning abilities. The code and data are available at: \url{https://github.com/HZQ950419/Math-LLaVA}.
comment: 8 pages
♻ ☆ Large Knowledge Model: Perspectives and Challenges
Humankind's understanding of the world is fundamentally linked to our perception and cognition, with \emph{human languages} serving as one of the major carriers of \emph{world knowledge}. In this vein, \emph{Large Language Models} (LLMs) like ChatGPT epitomize the pre-training of extensive, sequence-based world knowledge into neural networks, facilitating the processing and manipulation of this knowledge in a parametric space. This article explores large models through the lens of "knowledge". We initially investigate the role of symbolic knowledge such as Knowledge Graphs (KGs) in enhancing LLMs, covering aspects like knowledge-augmented language model, structure-inducing pre-training, knowledgeable prompts, structured CoT, knowledge editing, semantic tools for LLM and knowledgeable AI agents. Subsequently, we examine how LLMs can boost traditional symbolic knowledge bases, encompassing aspects like using LLM as KG builder and controller, structured knowledge pretraining, and LLM-enhanced symbolic reasoning. Considering the intricate nature of human knowledge, we advocate for the creation of \emph{Large Knowledge Models} (LKM), specifically engineered to manage diversified spectrum of knowledge structures. This promising undertaking would entail several key challenges, such as disentangling knowledge base from language models, cognitive alignment with human knowledge, integration of perception and cognition, and building large commonsense models for interacting with physical world, among others. We finally propose a five-"A" principle to distinguish the concept of LKM.
comment: Data Intelligence, Published: Jun 18, 2024
♻ ☆ MultiAgent Collaboration Attack: Investigating Adversarial Attacks in Large Language Model Collaborations via Debate
Large Language Models (LLMs) have shown exceptional results on current benchmarks when working individually. The advancement in their capabilities, along with a reduction in parameter size and inference times, has facilitated the use of these models as agents, enabling interactions among multiple models to execute complex tasks. Such collaborations offer several advantages, including the use of specialized models (e.g. coding), improved confidence through multiple computations, and enhanced divergent thinking, leading to more diverse outputs. Thus, the collaborative use of language models is expected to grow significantly in the coming years. In this work, we evaluate the behavior of a network of models collaborating through debate under the influence of an adversary. We introduce pertinent metrics to assess the adversary's effectiveness, focusing on system accuracy and model agreement. Our findings highlight the importance of a model's persuasive ability in influencing others. Additionally, we explore inference-time methods to generate more compelling arguments and evaluate the potential of prompt-based mitigation as a defensive strategy.
♻ ☆ ToM-LM: Delegating Theory of Mind Reasoning to External Symbolic Executors in Large Language Models
Theory of Mind (ToM) refers to the ability of individuals to attribute mental states to others. While Large Language Models (LLMs) have shown some promise with ToM ability, they still struggle with complex ToM reasoning. Our approach leverages an external symbolic executor, specifically the SMCDEL model checker, and fine-tuning to improve the ToM reasoning ability of LLMs. In our approach, an LLM is first fine-tuned through pairs of natural language and symbolic formulation representation of ToM problems and is then instructed to generate the symbolic formulation with a one-shot in-context example. The generated symbolic formulation is then executed by the SMCDEL model checker to perform transparent and verifiable ToM reasoning and give the final result. We demonstrate that our approach, ToM-LM, shows a significant improvement over all the constructed baselines. Our study proposes a novel view about externalizing a particular component of ToM reasoning, mainly reasoning about beliefs, and suggests generalizing it to other aspects of ToM reasoning.
comment: Accepted at NeSy 2024
♻ ☆ Cultural Bias and Cultural Alignment of Large Language Models
Culture fundamentally shapes people's reasoning, behavior, and communication. As people increasingly use generative artificial intelligence (AI) to expedite and automate personal and professional tasks, cultural values embedded in AI models may bias people's authentic expression and contribute to the dominance of certain cultures. We conduct a disaggregated evaluation of cultural bias for five widely used large language models (OpenAI's GPT-4o/4-turbo/4/3.5-turbo/3) by comparing the models' responses to nationally representative survey data. All models exhibit cultural values resembling English-speaking and Protestant European countries. We test cultural prompting as a control strategy to increase cultural alignment for each country/territory. For recent models (GPT-4, 4-turbo, 4o), this improves the cultural alignment of the models' output for 71-81% of countries and territories. We suggest using cultural prompting and ongoing evaluation to reduce cultural bias in the output of generative AI.
♻ ☆ VarBench: Robust Language Model Benchmarking Through Dynamic Variable Perturbation
As large language models achieve impressive scores on traditional benchmarks, an increasing number of researchers are becoming concerned about benchmark data leakage during pre-training, commonly known as the data contamination problem. To ensure fair evaluation, recent benchmarks release only the training and validation sets, keeping the test set labels closed-source. They require anyone wishing to evaluate his language model to submit the model's predictions for centralized processing and then publish the model's result on their leaderboard. However, this submission process is inefficient and prevents effective error analysis. To address this issue, we propose to variabilize benchmarks and evaluate language models dynamically. Specifically, we extract variables from each test case and define a value range for each variable. For each evaluation, we sample new values from these value ranges to create unique test cases, thus ensuring a fresh evaluation each time. We applied this variable perturbation method to four datasets: GSM8K, ARC, CommonsenseQA, and TruthfulQA, which cover mathematical generation and multiple-choice tasks. Our experimental results demonstrate that this approach provides a more accurate assessment of the true capabilities of language models, effectively mitigating the contamination problem.
♻ ☆ Active Preference Inference using Language Models and Probabilistic Reasoning
Actively inferring user preferences, for example by asking good questions, is important for any human-facing decision-making system. Active inference allows such systems to adapt and personalize themselves to nuanced individual preferences. To enable this ability for instruction-tuned large language models (LLMs), one may prompt them to ask users questions to infer their preferences, transforming the language models into more robust, interactive systems. However, out of the box, these models are not efficient at extracting preferences: the questions they generate are not informative, requiring a high number of user interactions and impeding the usability of the downstream system. In this work, we introduce an inference-time algorithm that helps LLMs quickly infer preferences by using more informative questions. Our algorithm uses a probabilistic model whose conditional distributions are defined by prompting an LLM, and returns questions that optimize expected entropy and expected model change. Results in a simplified interactive web shopping setting with real product items show that an LLM equipped with our entropy reduction algorithm outperforms baselines with the same underlying LLM on task performance while using fewer user interactions.
♻ ☆ OlympicArena Medal Ranks: Who Is the Most Intelligent AI So Far?
In this report, we pose the following question: Who is the most intelligent AI model to date, as measured by the OlympicArena (an Olympic-level, multi-discipline, multi-modal benchmark for superintelligent AI)? We specifically focus on the most recently released models: Claude-3.5-Sonnet, Gemini-1.5-Pro, and GPT-4o. For the first time, we propose using an Olympic medal Table approach to rank AI models based on their comprehensive performance across various disciplines. Empirical results reveal: (1) Claude-3.5-Sonnet shows highly competitive overall performance over GPT-4o, even surpassing GPT-4o on a few subjects (i.e., Physics, Chemistry, and Biology). (2) Gemini-1.5-Pro and GPT-4V are ranked consecutively just behind GPT-4o and Claude-3.5-Sonnet, but with a clear performance gap between them. (3) The performance of AI models from the open-source community significantly lags behind these proprietary models. (4) The performance of these models on this benchmark has been less than satisfactory, indicating that we still have a long way to go before achieving superintelligence. We remain committed to continuously tracking and evaluating the performance of the latest powerful models on this benchmark (available at https://github.com/GAIR-NLP/OlympicArena).
comment: 10 pages
♻ ☆ MM-MATH: Advancing Multimodal Math Evaluation with Process Evaluation and Fine-grained Classification
To advance the evaluation of multimodal math reasoning in large multimodal models (LMMs), this paper introduces a novel benchmark, MM-MATH. MM-MATH consists of 5,929 open-ended middle school math problems with visual contexts, with fine-grained classification across difficulty, grade level, and knowledge points. Unlike existing benchmarks relying on binary answer comparison, MM-MATH incorporates both outcome and process evaluations. Process evaluation employs LMM-as-a-judge to automatically analyze solution steps, identifying and categorizing errors into specific error types. Extensive evaluation of ten models on MM-MATH reveals significant challenges for existing LMMs, highlighting their limited utilization of visual information and struggles with higher-difficulty problems. The best-performing model achieves only 31% accuracy on MM-MATH, compared to 82% for humans. This highlights the challenging nature of our benchmark for existing models and the significant gap between the multimodal reasoning capabilities of current models and humans. Our process evaluation reveals that diagram misinterpretation is the most common error, accounting for more than half of the total error cases, underscoring the need for improved image comprehension in multimodal reasoning.
♻ ☆ DoRA: Enhancing Parameter-Efficient Fine-Tuning with Dynamic Rank Distribution ACL 2024
Fine-tuning large-scale pre-trained models is inherently a resource-intensive task. While it can enhance the capabilities of the model, it also incurs substantial computational costs, posing challenges to the practical application of downstream tasks. Existing parameter-efficient fine-tuning (PEFT) methods such as Low-Rank Adaptation (LoRA) rely on a bypass framework that ignores the differential parameter budget requirements across weight matrices, which may lead to suboptimal fine-tuning outcomes. To address this issue, we introduce the Dynamic Low-Rank Adaptation (DoRA) method. DoRA decomposes high-rank LoRA layers into structured single-rank components, allowing for dynamic pruning of parameter budget based on their importance to specific tasks during training, which makes the most of the limited parameter budget. Experimental results demonstrate that DoRA can achieve competitive performance compared with LoRA and full model fine-tuning, and outperform various strong baselines with the same storage parameter budget. Our code is available at https://github.com/MIkumikumi0116/DoRA
comment: Accepted by the main conference of ACL 2024
♻ ☆ SetBERT: Enhancing Retrieval Performance for Boolean Logic and Set Operation Queries
We introduce SetBERT, a fine-tuned BERT-based model designed to enhance query embeddings for set operations and Boolean logic queries, such as Intersection (AND), Difference (NOT), and Union (OR). SetBERT significantly improves retrieval performance for logic-structured queries, an area where both traditional and neural retrieval methods typically underperform. We propose an innovative use of inversed-contrastive loss, focusing on identifying the negative sentence, and fine-tuning BERT with a dataset generated via prompt GPT. Furthermore, we demonstrate that, unlike other BERT-based models, fine-tuning with triplet loss actually degrades performance for this specific task. Our experiments reveal that SetBERT-base not only significantly outperforms BERT-base (up to a 63% improvement in Recall) but also achieves performance comparable to the much larger BERT-large model, despite being only one-third the size.
comment: 10 pages, 1 figure
♻ ☆ Emergent World Representations: Exploring a Sequence Model Trained on a Synthetic Task ICLR 2023
Language models show a surprising range of capabilities, but the source of their apparent competence is unclear. Do these networks just memorize a collection of surface statistics, or do they rely on internal representations of the process that generates the sequences they see? We investigate this question by applying a variant of the GPT model to the task of predicting legal moves in a simple board game, Othello. Although the network has no a priori knowledge of the game or its rules, we uncover evidence of an emergent nonlinear internal representation of the board state. Interventional experiments indicate this representation can be used to control the output of the network and create "latent saliency maps" that can help explain predictions in human terms.
comment: ICLR 2023 oral (notable-top-5%): https://openreview.net/forum?id=DeG07_TcZvT ; code: https://github.com/likenneth/othello_world
♻ ☆ CHIRON: Rich Character Representations in Long-Form Narratives
Characters are integral to long-form narratives, but are poorly understood by existing story analysis and generation systems. While prior work has simplified characters via graph-based methods and brief character descriptions, we aim to better tackle the problem of representing complex characters by taking inspiration from advice given to professional writers. We propose CHIRON, a new `character sheet' based representation that organizes and filters textual information about characters. We construct CHIRON sheets in two steps: a Generation Module that prompts an LLM for character information via question-answering and a Validation Module that uses automated reasoning and a domain-specific entailment model to eliminate false facts about a character. We validate CHIRON via the downstream task of masked-character prediction, where our experiments show CHIRON is better and more flexible than comparable summary-based baselines. We also show that metrics derived from CHIRON can be used to automatically infer character-centricity in stories, and that these metrics align with human judgments.
♻ ☆ Inference-Time Intervention: Eliciting Truthful Answers from a Language Model NeurIPS 2023
We introduce Inference-Time Intervention (ITI), a technique designed to enhance the "truthfulness" of large language models (LLMs). ITI operates by shifting model activations during inference, following a set of directions across a limited number of attention heads. This intervention significantly improves the performance of LLaMA models on the TruthfulQA benchmark. On an instruction-finetuned LLaMA called Alpaca, ITI improves its truthfulness from 32.5% to 65.1%. We identify a tradeoff between truthfulness and helpfulness and demonstrate how to balance it by tuning the intervention strength. ITI is minimally invasive and computationally inexpensive. Moreover, the technique is data efficient: while approaches like RLHF require extensive annotations, ITI locates truthful directions using only few hundred examples. Our findings suggest that LLMs may have an internal representation of the likelihood of something being true, even as they produce falsehoods on the surface.
comment: NeurIPS 2023 spotlight; code: https://github.com/likenneth/honest_llama
♻ ☆ Towards Understanding Jailbreak Attacks in LLMs: A Representation Space Analysis
Large language models (LLMs) are susceptible to a type of attack known as jailbreaking, which misleads LLMs to output harmful contents. Although there are diverse jailbreak attack strategies, there is no unified understanding on why some methods succeed and others fail. This paper explores the behavior of harmful and harmless prompts in the LLM's representation space to investigate the intrinsic properties of successful jailbreak attacks. We hypothesize that successful attacks share some similar properties: They are effective in moving the representation of the harmful prompt towards the direction to the harmless prompts. We leverage hidden representations into the objective of existing jailbreak attacks to move the attacks along the acceptance direction, and conduct experiments to validate the above hypothesis using the proposed objective. We hope this study provides new insights into understanding how LLMs understand harmfulness information.
♻ ☆ LongIns: A Challenging Long-context Instruction-based Exam for LLMs
The long-context capabilities of large language models (LLMs) have been a hot topic in recent years. To evaluate the performance of LLMs in different scenarios, various assessment benchmarks have emerged. However, as most of these benchmarks focus on identifying key information to answer questions, which mainly requires the retrieval ability of LLMs, these benchmarks can partially represent the reasoning performance of LLMs from large amounts of information. Meanwhile, although LLMs often claim to have context windows of 32k, 128k, 200k, or even longer, these benchmarks fail to reveal the actual supported length of these LLMs. To address these issues, we propose the LongIns benchmark dataset, a challenging long-context instruction-based exam for LLMs, which is built based on the existing instruction datasets. Specifically, in our LongIns, we introduce three evaluation settings: Global Instruction & Single Task (GIST), Local Instruction & Single Task (LIST), and Local Instruction & Multiple Tasks (LIMT). Based on LongIns, we perform comprehensive evaluations on existing LLMs and have the following important findings: (1). The top-performing GPT-4 with 128k context length performs poorly on the evaluation context window of 16k in our LongIns. (2). For the multi-hop reasoning ability of many existing LLMs, significant efforts are still needed under short context windows (less than 4k).
♻ ☆ Are AI-Generated Text Detectors Robust to Adversarial Perturbations? ACL 2024
The widespread use of large language models (LLMs) has sparked concerns about the potential misuse of AI-generated text, as these models can produce content that closely resembles human-generated text. Current detectors for AI-generated text (AIGT) lack robustness against adversarial perturbations, with even minor changes in characters or words causing a reversal in distinguishing between human-created and AI-generated text. This paper investigates the robustness of existing AIGT detection methods and introduces a novel detector, the Siamese Calibrated Reconstruction Network (SCRN). The SCRN employs a reconstruction network to add and remove noise from text, extracting a semantic representation that is robust to local perturbations. We also propose a siamese calibration technique to train the model to make equally confidence predictions under different noise, which improves the model's robustness against adversarial perturbations. Experiments on four publicly available datasets show that the SCRN outperforms all baseline methods, achieving 6.5\%-18.25\% absolute accuracy improvement over the best baseline method under adversarial attacks. Moreover, it exhibits superior generalizability in cross-domain, cross-genre, and mixed-source scenarios. The code is available at \url{https://github.com/CarlanLark/Robust-AIGC-Detector}.
comment: Accepted to ACL 2024 main conference
♻ ☆ Jina CLIP: Your CLIP Model Is Also Your Text Retriever ICML2024
Contrastive Language-Image Pretraining (CLIP) is widely used to train models to align images and texts in a common embedding space by mapping them to fixed-sized vectors. These models are key to multimodal information retrieval and related tasks. However, CLIP models generally underperform in text-only tasks compared to specialized text models. This creates inefficiencies for information retrieval systems that keep separate embeddings and models for text-only and multimodal tasks. We propose a novel, multi-task contrastive training method to address this issue, which we use to train the jina-clip-v1 model to achieve the state-of-the-art performance on both text-image and text-text retrieval tasks.
comment: 4 pages, MFM-EAI@ICML2024
♻ ☆ Caught in the Quicksand of Reasoning, Far from AGI Summit: Evaluating LLMs' Mathematical and Coding Competency through Ontology-guided Interventions
Recent advancements in Large Language Models (LLMs) have showcased striking results on existing logical reasoning benchmarks, with some models even surpassing human performance. However, the true depth of their competencies and robustness in reasoning tasks remains an open question. To this end, in this paper, we focus on two popular reasoning tasks: arithmetic reasoning and code generation. Particularly, we introduce: (i) a general ontology of perturbations for maths and coding questions, (ii) a semi-automatic method to apply these perturbations, and (iii) two datasets, MORE and CORE, respectively, of perturbed maths and coding problems to probe the limits of LLM capabilities in numeric reasoning and coding tasks. Through comprehensive evaluations of both closed-source and open-source LLMs, we show a significant performance drop across all the models against the perturbed questions, suggesting that the current LLMs lack robust problem solving skills and structured reasoning abilities in many areas, as defined by our ontology. We open source the datasets and source codes at: https://github.com/declare-lab/llm_robustness.
♻ ☆ 360$^\circ$REA: Towards A Reusable Experience Accumulation with 360° Assessment for Multi-Agent System
Large language model agents have demonstrated remarkable advancements across various complex tasks. Recent works focus on optimizing the agent team or employing self-reflection to iteratively solve complex tasks. Since these agents are all based on the same LLM, only conducting self-evaluation or removing underperforming agents does not substantively enhance the capability of the agents. We argue that a comprehensive evaluation and accumulating experience from evaluation feedback is an effective approach to improving system performance. In this paper, we propose Reusable Experience Accumulation with 360$^\circ$ Assessment (360$^\circ$REA), a hierarchical multi-agent framework inspired by corporate organizational practices. The framework employs a novel 360$^\circ$ performance assessment method for multi-perspective performance evaluation with fine-grained assessment. To enhance the capability of agents in addressing complex tasks, we introduce dual-level experience pool for agents to accumulate experience through fine-grained assessment. Extensive experiments on complex task datasets demonstrate the effectiveness of 360$^\circ$REA.
♻ ☆ Mitigate the Gap: Investigating Approaches for Improving Cross-Modal Alignment in CLIP
Contrastive Language--Image Pre-training (CLIP) has manifested remarkable improvements in zero-shot classification and cross-modal vision-language tasks. Yet, from a geometrical point of view, the CLIP embedding space has been found to have a pronounced modality gap. This gap renders the embedding space overly sparse and disconnected, with different modalities being densely distributed in distinct subregions of the hypersphere. In this work, we aim at answering two main questions: 1. Does sharing the parameter space between the multi-modal encoders reduce the modality gap? 2. Can the gap be mitigated by pushing apart the uni-modal embeddings via intra-modality separation? We design AlignCLIP, in order to answer these questions and show that answers to both questions are positive. Through extensive experiments, we show that AlignCLIP achieves noticeable enhancements in the cross-modal alignment of the embeddings, and thereby, reduces the modality gap, while maintaining the performance across several downstream evaluations, such as zero-shot image classification, zero-shot multi-modal retrieval and zero-shot semantic text similarity.
♻ ☆ Compact Speech Translation Models via Discrete Speech Units Pretraining
We propose a pretraining method to use Self-Supervised Speech (SSS) model to creating more compact Speech-to-text Translation. In contrast to using the SSS model for initialization, our method is more suitable to memory constrained scenario such as on-device deployment. Our method is based on Discrete Speech Units (DSU) extracted from the SSS model. In the first step, our method pretrains two smaller encoder-decoder models on 1) Filterbank-to-DSU (Fbk-to-DSU) and 2) DSU-to-Translation (DSU-to-Trl) data respectively. The DSU thus become the distillation inputs of the smaller models. Subsequently, the encoder from the Fbk-to-DSU model and the decoder from the DSU-to-Trl model are taken to initialise the compact model. Finally, the compact model is finetuned on the paired Fbk-Trl data. In addition to being compact, our method requires no transcripts, making it applicable to low-resource settings. It also avoids speech discretization in inference and is more robust to the DSU tokenization. Evaluation on CoVoST-2 (X-En) shows that our method has consistent improvement over the baseline in three metrics while being compact i.e., only half the SSS model size.
comment: 11 pages, accepted at IWSLT 2024
♻ ☆ Two Tales of Persona in LLMs: A Survey of Role-Playing and Personalization
The concept of persona, originally adopted in dialogue literature, has re-surged as a promising framework for tailoring large language models (LLMs) to specific context (e.g., personalized search, LLM-as-a-judge). However, the growing research on leveraging persona in LLMs is relatively disorganized and lacks a systematic taxonomy. To close the gap, we present a comprehensive survey to categorize the current state of the field. We identify two lines of research, namely (1) LLM Role-Playing, where personas are assigned to LLMs, and (2) LLM Personalization, where LLMs take care of user personas. Additionally, we introduce existing methods for LLM personality evaluation. To the best of our knowledge, we present the first survey for role-playing and personalization in LLMs under the unified view of persona. We continuously maintain a paper collection to foster future endeavors: https://github.com/MiuLab/PersonaLLM-Survey
comment: 8-page version
♻ ☆ Case-Based or Rule-Based: How Do Transformers Do the Math?
Despite the impressive performance in a variety of complex tasks, modern large language models (LLMs) still have trouble dealing with some math problems that are simple and intuitive for humans, such as addition. While we can easily learn basic rules of addition and apply them to new problems of any length, LLMs struggle to do the same. Instead, they may rely on similar cases seen in the training corpus for help. We define these two different reasoning mechanisms as "rule-based reasoning" and "case-based reasoning". Since rule-based reasoning is essential for acquiring systematic generalization ability, we aim to explore exactly whether transformers use rule-based or case-based reasoning for math problems. Through carefully designed intervention experiments on five math tasks, we confirm that transformers are performing case-based reasoning, no matter whether scratchpad is used, which aligns with the previous observations that transformers use subgraph matching/shortcut learning to reason. To mitigate such problems, we propose a Rule-Following Fine-Tuning (RFFT) technique to teach transformers to perform rule-based reasoning. Specifically, we provide explicit rules in the input and then instruct transformers to recite and follow the rules step by step. Through RFFT, we successfully enable LLMs fine-tuned on 1-5 digit addition to generalize to up to 12-digit addition with over 95% accuracy, which is over 40% higher than scratchpad. The significant improvement demonstrates that teaching LLMs to use rules explicitly helps them learn rule-based reasoning and generalize better in length.
♻ ☆ Super Tiny Language Models
The rapid advancement of large language models (LLMs) has led to significant improvements in natural language processing but also poses challenges due to their high computational and energy demands. This paper introduces a series of research efforts focused on Super Tiny Language Models (STLMs), which aim to deliver high performance with significantly reduced parameter counts. We explore innovative techniques such as byte-level tokenization with a pooling mechanism, weight tying, and efficient training strategies. These methods aim to significantly reduce reduce the parameter count compared to traditional models -- in future works, we aim to build on these in a way that maintains and improves upon the performance of base transformer models. This series of papers will explore into various subproblems, including tokenizer-free models, self-play based training, and alternative training objectives. We will target models with 10M, 50M, and 100M parameters. Our ultimate goal is to make high-performance language models more accessible and practical for a wide range of applications.
comment: 11 pages, 4 figures
♻ ☆ Efficient Data Learning for Open Information Extraction with Pre-trained Language Models
Open Information Extraction (OpenIE) is a fundamental yet challenging task in Natural Language Processing, which involves extracting all triples (subject, predicate, object) from a given sentence. While labeling-based methods have their merits, generation-based techniques offer unique advantages, such as the ability to generate tokens not present in the original sentence. However, these generation-based methods often require a significant amount of training data to learn the task form of OpenIE and substantial training time to overcome slow model convergence due to the order penalty. In this paper, we introduce a novel framework, OK-IE, that ingeniously transforms the task form of OpenIE into the pre-training task form of the T5 model, thereby reducing the need for extensive training data. Furthermore, we introduce an innovative concept of Anchor to control the sequence of model outputs, effectively eliminating the impact of order penalty on model convergence and significantly reducing training time. Experimental results indicate that, compared to previous SOTA methods, OK-IE requires only 1/100 of the training data (900 instances) and 1/120 of the training time (3 minutes) to achieve comparable results.
♻ ☆ Layer-Wise Quantization: A Pragmatic and Effective Method for Quantizing LLMs Beyond Integer Bit-Levels EMNLP
We present a simple variable quantization approach that quantizes different layers of a large language model (LLM) at different bit levels. Specifically, we quantize the most important layers to higher bit precision and less important layers to lower bits to achieve floating point quantization levels. We propose two effective strategies to measure the importance of layers within LLMs: the first measures the importance of a layer based on how different its output embeddings are from the input embeddings (the higher the better); the second estimates the importance of a layer using the number of layer weights that are much larger than average (the smaller the better). We show that quantizing different layers at varying bits according to our importance scores results in minimal performance drop with a far more compressed model size. Finally, we present several practical key takeaways from our variable layer-wise quantization experiments: (a) LLM performance under variable quantization remains close to the original model until 25-50% of layers are moved in lower quantization using our proposed ordering but only until 5-10% if moved using no specific ordering; (b) Quantizing LLMs to lower bits performs substantially better than pruning unless extreme quantization (2-bit) is used; and (c) Layer-wise quantization to lower bits works better in the case of larger LLMs with more layers compared to smaller LLMs with fewer layers. The code used to run the experiments is available at: https://github.com/RazvanDu/LayerwiseQuant.
comment: submitted to EMNLP, 15 pages, 10 figures, 4 tables
♻ ☆ SPHINX-X: Scaling Data and Parameters for a Family of Multi-modal Large Language Models ICML 2024
We propose SPHINX-X, an extensive Multimodality Large Language Model (MLLM) series developed upon SPHINX. To improve the architecture and training efficiency, we modify the SPHINX framework by removing redundant visual encoders, bypassing fully-padded sub-images with skip tokens, and simplifying multi-stage training into a one-stage all-in-one paradigm. To fully unleash the potential of MLLMs, we assemble a comprehensive multi-domain and multimodal dataset covering publicly available resources in language, vision, and vision-language tasks. We further enrich this collection with our curated OCR intensive and Set-of-Mark datasets, extending the diversity and generality. By training over different base LLMs including TinyLlama1.1B, InternLM2-7B, LLaMA2-13B, and Mixtral8x7B, we obtain a spectrum of MLLMs that vary in parameter size and multilingual capabilities. Comprehensive benchmarking reveals a strong correlation between the multi-modal performance with the data and parameter scales. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
comment: Accepted by ICML 2024. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
♻ ☆ CDQuant: Accurate Post-training Weight Quantization of Large Pre-trained Models using Greedy Coordinate Descent
Large language models (LLMs) have recently demonstrated remarkable performance across diverse language tasks. But their deployment is often constrained by their substantial computational and storage requirements. Quantization has emerged as a key technique for addressing this challenge, enabling the compression of large models with minimal impact on performance. The recent GPTQ algorithm, a post-training quantization (PTQ) method, has proven highly effective for compressing LLMs, sparking a wave of research that leverages GPTQ as a core component. Recognizing the pivotal role of GPTQ in the PTQ landscape, we introduce CDQuant, a simple and scalable alternative to GPTQ with improved performance. CDQuant uses coordinate descent to minimize the layer-wise reconstruction loss to achieve high-quality quantized weights. Our algorithm is easy to implement and scales efficiently to models with hundreds of billions of parameters. Through extensive evaluation on the PaLM2 model family, we demonstrate that CDQuant consistently outperforms GPTQ across diverse model sizes and quantization levels. In particular, for INT2 quantization of PaLM2-Otter, CDQuant achieves a 10% reduction in perplexity compared to GPTQ.
♻ ☆ CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation ACL 2024
Since the natural language processing (NLP) community started to make large language models (LLMs) act as a critic to evaluate the quality of generated texts, most of the existing works train a critique generation model on the evaluation data labeled by GPT-4's direct prompting. We observe that these models lack the ability to generate informative critiques in both pointwise grading and pairwise comparison especially without references. As a result, their generated critiques cannot provide fine-grained distinguishability on generated texts, causing unsatisfactory evaluation performance. In this paper, we propose a simple yet effective method called Eval-Instruct, which can first acquire pointwise grading critiques with pseudo references and then revise these critiques via multi-path prompting to obtain informative evaluation data in different tasks and settings, including pointwise grading and pairwise comparison with / without references. After fine-tuning on these data, the resulting model CritiqueLLM is empirically shown to outperform ChatGPT and all the open-source baselines and even achieve comparable evaluation performance to GPT-4 in system-level correlations of pointwise grading. We also demonstrate that our generated critiques can act as scalable feedback to further improve the generation quality of strong LLMs like ChatGPT.
comment: Accepted by ACL 2024 (Main Conference)
♻ ☆ FaithLM: Towards Faithful Explanations for Large Language Models
Large Language Models (LLMs) have become proficient in addressing complex tasks by leveraging their extensive internal knowledge and reasoning capabilities. However, the black-box nature of these models complicates the task of explaining their decision-making processes. While recent advancements demonstrate the potential of leveraging LLMs to self-explain their predictions through natural language (NL) explanations, their explanations may not accurately reflect the LLMs' decision-making process due to a lack of fidelity optimization on the derived explanations. Measuring the fidelity of NL explanations is a challenging issue, as it is difficult to manipulate the input context to mask the semantics of these explanations. To this end, we introduce FaithLM to explain the decision of LLMs with NL explanations. Specifically, FaithLM designs a method for evaluating the fidelity of NL explanations by incorporating the contrary explanations to the query process. Moreover, FaithLM conducts an iterative process to improve the fidelity of derived explanations. Experiment results on three datasets from multiple domains demonstrate that FaithLM can significantly improve the fidelity of derived explanations, which also provides a better alignment with the ground-truth explanations.
♻ ☆ Multiple-Choice Questions are Efficient and Robust LLM Evaluators
We present GSM-MC, a multiple-choice (MC) dataset constructed by collecting answers and incorrect predictions on GSM8K from 60 open-source models. Through extensive experiments, we show that LLMs' performance on the MC version of this popular benchmark is strongly correlated with their performance on the original version and is quite robust to distractor choices and option orders, while the evaluation time is reduced by a factor of up to 30. Following similar procedures, we introduce MATH-MC, constructed from MATH, and PythonIO, a new program reasoning MC dataset constructed from HumanEval and MBPP. Experimental results indicate that LLMs' performance on these MC benchmarks leaves much room for improvement. Our data and code are available at https://github.com/Geralt-Targaryen/MC-Evaluation.
comment: data at https://github.com/Geralt-Targaryen/MC-Evaluation
♻ ☆ Unifying the Perspectives of NLP and Software Engineering: A Survey on Language Models for Code
In this work we systematically review the recent advancements in software engineering with language models, covering 70+ models, 40+ evaluation tasks, 180+ datasets, and 900 related works. Unlike previous works, we integrate software engineering (SE) with natural language processing (NLP) by discussing the perspectives of both sides: SE applies language models for development automation, while NLP adopts SE tasks for language model evaluation. We break down code processing models into general language models represented by the GPT family and specialized models that are specifically pretrained on code, often with tailored objectives. We discuss the relations and differences between these models, and highlight the historical transition of code modeling from statistical models and RNNs to pretrained Transformers and LLMs, which is exactly the same course that had been taken by NLP. We also go beyond programming and review LLMs' application in other software engineering activities including requirement engineering, testing, deployment, and operations in an endeavor to provide a global view of NLP in SE, and identify key challenges and potential future directions in this domain. We keep the survey open and updated on GitHub at https://github.com/codefuse-ai/Awesome-Code-LLM.
comment: Repo: https://github.com/codefuse-ai/Awesome-Code-LLM. 9 figures, 18 tables, and 902 references. Under review
♻ ☆ Cognitive Visual-Language Mapper: Advancing Multimodal Comprehension with Enhanced Visual Knowledge Alignment ACL 2024
Evaluating and Rethinking the current landscape of Large Multimodal Models (LMMs), we observe that widely-used visual-language projection approaches (e.g., Q-former or MLP) focus on the alignment of image-text descriptions yet ignore the visual knowledge-dimension alignment, i.e., connecting visuals to their relevant knowledge. Visual knowledge plays a significant role in analyzing, inferring, and interpreting information from visuals, helping improve the accuracy of answers to knowledge-based visual questions. In this paper, we mainly explore improving LMMs with visual-language knowledge alignment, especially aimed at challenging knowledge-based visual question answering (VQA). To this end, we present a Cognitive Visual-Language Mapper (CVLM), which contains a pretrained Visual Knowledge Aligner (VKA) and a Fine-grained Knowledge Adapter (FKA) used in the multimodal instruction tuning stage. Specifically, we design the VKA based on the interaction between a small language model and a visual encoder, training it on collected image-knowledge pairs to achieve visual knowledge acquisition and projection. FKA is employed to distill the fine-grained visual knowledge of an image and inject it into Large Language Models (LLMs). We conduct extensive experiments on knowledge-based VQA benchmarks and experimental results show that CVLM significantly improves the performance of LMMs on knowledge-based VQA (average gain by 5.0%). Ablation studies also verify the effectiveness of VKA and FKA, respectively. The codes are available at https://github.com/HITsz-TMG/Cognitive-Visual-Language-Mapper
comment: 12 pages,4 figures; Accepted by ACL 2024 Main Conference
♻ ☆ Improving Demonstration Diversity by Human-Free Fusing for Text-to-SQL
Currently, the in-context learning method based on large language models (LLMs) has become the mainstream of text-to-SQL research. Previous works have discussed how to select demonstrations related to the user question from a human-labeled demonstration pool. However, human labeling suffers from the limitations of insufficient diversity and high labeling overhead. Therefore, in this paper, we discuss how to measure and improve the diversity of the demonstrations for text-to-SQL. We present a metric to measure the diversity of the demonstrations and analyze the insufficient of the existing labeled data by experiments. Based on the above discovery, we propose fusing iteratively for demonstrations (Fused) to build a high-diversity demonstration pool through human-free multiple-iteration synthesis, improving diversity and lowering label cost. Our method achieves an average improvement of 3.2% and 5.0% with and without human labeling on several mainstream datasets, which proves the effectiveness of Fused.
♻ ☆ Xmodel-LM Technical Report
We introduce Xmodel-LM, a compact and efficient 1.1B language model pre-trained on around 2 trillion tokens. Trained on our self-built dataset (Xdata), which balances Chinese and English corpora based on downstream task optimization, Xmodel-LM exhibits remarkable performance despite its smaller size. It notably surpasses existing open-source language models of similar scale. Our model checkpoints and code are publicly accessible on GitHub at https://github.com/XiaoduoAILab/XmodelLM.
♻ ☆ Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models
Recent advancements in general-purpose or domain-specific multimodal large language models (LLMs) have witnessed remarkable progress for medical decision-making. However, they are designated for specific classification or generative tasks, and require model training or finetuning on large-scale datasets with sizeable parameters and tremendous computing, hindering their clinical utility across diverse resource-constrained scenarios in practice. In this paper, we propose a novel and lightweight framework Med-MoE (Mixture-of-Experts) that tackles both discriminative and generative multimodal medical tasks. The learning of Med-MoE consists of three steps: multimodal medical alignment, instruction tuning and routing, and domain-specific MoE tuning. After aligning multimodal medical images with LLM tokens, we then enable the model for different multimodal medical tasks with instruction tuning, together with a trainable router tailored for expert selection across input modalities. Finally, the model is tuned by integrating the router with multiple domain-specific experts, which are selectively activated and further empowered by meta expert. Comprehensive experiments on both open- and close-end medical question answering (Med-VQA) and image classification tasks across datasets such as VQA-RAD, SLAKE and Path-VQA demonstrate that our model can achieve performance superior to or on par with state-of-the-art baselines, while only requiring approximately 30\%-50\% of activated model parameters. Extensive analysis and ablations corroborate the effectiveness and practical utility of our method.
♻ ☆ Generating Chain-of-Thoughts with a Pairwise-Comparison Approach to Searching for the Most Promising Intermediate Thought ICML 2024
To improve the ability of the large language model (LLMs) to tackle complex reasoning problems, chain-of-thoughts (CoT) methods were proposed to guide LLMs to reason step-by-step, enabling problem solving from simple to complex. State-of-the-art methods for generating such a chain involve interactive collaboration, where the learner generates candidate intermediate thoughts, evaluated by the LLM, guiding the generation of subsequent thoughts. However, a widespread yet understudied problem is that the evaluation from the LLM is typically noisy and unreliable, potentially misleading the generation process in selecting promising intermediate thoughts. In this paper, motivated by Vapnik's principle, we use pairwise-comparison evaluation instead of point-wise scoring to search for promising intermediate thoughts with the noisy feedback from the LLM. In each round, we randomly pair intermediate thoughts and directly prompt the LLM to select the more promising one from each pair, allowing us to identify the most promising thoughts through an iterative process. To further alleviate the noise in the comparison, we incorporate techniques from ensemble learning and dueling bandits, proposing two variants of the algorithm. Experiments on three real-world tasks demonstrate the effectiveness of our proposed algorithm and verify the rationale of the pairwise comparison mechanism.
comment: ICML 2024
♻ ☆ InterCLIP-MEP: Interactive CLIP and Memory-Enhanced Predictor for Multi-modal Sarcasm Detection
The prevalence of sarcasm in social media, conveyed through text-image combinations, presents significant challenges for sentiment analysis and intention mining. Current multi-modal sarcasm detection methods have been proven to struggle with biases from spurious cues, leading to a superficial understanding of the complex interactions between text and image. To address these issues, we propose InterCLIP-MEP, a robust framework for multi-modal sarcasm detection. InterCLIP-MEP introduces a refined variant of CLIP, Interactive CLIP (InterCLIP), as the backbone, enhancing sample representations by embedding cross-modality information in each encoder. Furthermore, a novel training strategy is designed to adapt InterCLIP for a Memory-Enhanced Predictor (MEP). MEP uses dynamic dual-channel memory to store valuable historical knowledge of test samples and then leverages this memory as a non-parametric classifier to derive the final prediction. By using InterCLIP to encode text-image interactions more effectively and incorporating MEP, InterCLIP-MEP offers a more robust recognition of multi-modal sarcasm. Experiments demonstrate that InterCLIP-MEP achieves state-of-the-art performance on the MMSD2.0 benchmark. Code and data are available at https://github.com/CoderChen01/InterCLIP-MEP.
comment: 8 pages, 6 figures, 6 tables
♻ ☆ MFSN: Multi-perspective Fusion Search Network For Pre-training Knowledge in Speech Emotion Recognition
Speech Emotion Recognition (SER) is an important research topic in human-computer interaction. Many recent works focus on directly extracting emotional cues through pre-trained knowledge, frequently overlooking considerations of appropriateness and comprehensiveness. Therefore, we propose a novel framework for pre-training knowledge in SER, called Multi-perspective Fusion Search Network (MFSN). Considering comprehensiveness, we partition speech knowledge into Textual-related Emotional Content (TEC) and Speech-related Emotional Content (SEC), capturing cues from both semantic and acoustic perspectives, and we design a new architecture search space to fully leverage them. Considering appropriateness, we verify the efficacy of different modeling approaches in capturing SEC and fills the gap in current research. Experimental results on multiple datasets demonstrate the superiority of MFSN.
♻ ☆ Ouroboros: Generating Longer Drafts Phrase by Phrase for Faster Speculative Decoding
Speculative decoding is a widely used method that accelerates the generation process of large language models (LLMs) with no compromise in model performance. It achieves this goal by using an existing smaller model for drafting and then employing the target LLM to verify the draft in a low-cost parallel manner. Under such a drafting-verification framework, drafting efficiency has become a bottleneck in the final speedup of speculative decoding. Therefore, generating longer drafts at less cost can lead to better decoding speedup. To achieve this, we introduce Ouroboros, which can generate draft phrases to parallelize the drafting process and meanwhile lengthen drafts in a training-free manner. The experimental results on various typical text generation tasks show that Ouroboros can achieve speedups of up to $2.4\times$ over speculative decoding and $3.9\times$ over vanilla decoding, without fine-tuning draft and target models.
♻ ☆ Marathon: A Race Through the Realm of Long Context with Large Language Models
With the advancement of large language models (LLMs) and the expansion of their context windows, existing long-context benchmarks fall short in effectively evaluating the models' comprehension and reasoning abilities in extended texts. Moreover, conventional benchmarks relying on F1 metrics often inaccurately score responses: they may undervalue correct answers that differ from the reference responses and overvalue incorrect ones that resemble the reference texts. In response to these limitations, we introduce Marathon, a novel evaluation benchmark that adopts a multiple-choice question format. It is specifically designed to overcome the constraints of previous benchmarks and provide a rapid, precise, and unbiased appraisal of the long-context comprehension skills of large language models. We conducted comprehensive evaluations on the Marathon benchmark with a range of state-of-the-art LLMs and assessed the effectiveness of various optimization strategies tailored for long-context generation. We anticipate that the Marathon benchmark and its associated leaderboard will enable a more precise and equitable evaluation of LLMs' capabilities in understanding and reasoning over extended contexts. Marathon is available at https://github.com/Hambaobao/Marathon.
♻ ☆ Safely Learning with Private Data: A Federated Learning Framework for Large Language Model
Private data, being larger and quality-higher than public data, can greatly improve large language models (LLM). However, due to privacy concerns, this data is often dispersed in multiple silos, making its secure utilization for LLM training a challenge. Federated learning (FL) is an ideal solution for training models with distributed private data, but traditional frameworks like FedAvg are unsuitable for LLM due to their high computational demands on clients. An alternative, split learning, offloads most training parameters to the server while training embedding and output layers locally, making it more suitable for LLM. Nonetheless, it faces significant challenges in security and efficiency. Firstly, the gradients of embeddings are prone to attacks, leading to potential reverse engineering of private data. Furthermore, the server's limitation of handle only one client's training request at a time hinders parallel training, severely impacting training efficiency. In this paper, we propose a Federated Learning framework for LLM, named FL-GLM, which prevents data leakage caused by both server-side and peer-client attacks while improving training efficiency. Specifically, we first place the input block and output block on local client to prevent embedding gradient attacks from server. Secondly, we employ key-encryption during client-server communication to prevent reverse engineering attacks from peer-clients. Lastly, we employ optimization methods like client-batching or server-hierarchical, adopting different acceleration methods based on the actual computational capabilities of the server. Experimental results on NLU and generation tasks demonstrate that FL-GLM achieves comparable metrics to centralized chatGLM model, validating the effectiveness of our federated learning framework.
♻ ☆ Pre-Calc: Learning to Use the Calculator Improves Numeracy in Language Models ICML 2024
Quantitative and numerical comprehension in language is an important task in many fields like education and finance, but still remains a challenging task for language models. While tool and calculator usage has shown to be helpful to improve mathematical reasoning in large pretrained decoder-only language models, this remains unexplored for smaller language models with encoders. In this paper, we propose Pre-Calc, a simple pre-finetuning objective of learning to use the calculator for both encoder-only and encoder-decoder architectures, formulated as a discriminative and generative task respectively. We pre-train BERT and RoBERTa for discriminative calculator use and Flan-T5 for generative calculator use on the MAWPS, SVAMP, and AsDiv-A datasets, which improves performance on downstream tasks that require numerical understanding. Our code and data are available at https://github.com/calc-cmu/pre-calc.
comment: AI4Math workshop, ICML 2024
♻ ☆ Key-Element-Informed sLLM Tuning for Document Summarization
Remarkable advances in large language models (LLMs) have enabled high-quality text summarization. However, this capability is currently accessible only through LLMs of substantial size or proprietary LLMs with usage fees. In response, smaller-scale LLMs (sLLMs) of easy accessibility and low costs have been extensively studied, yet they often suffer from missing key information and entities, i.e., low relevance, in particular, when input documents are long. We hence propose a key-element-informed instruction tuning for summarization, so-called KEITSum, which identifies key elements in documents and instructs sLLM to generate summaries capturing these key elements. Experimental results on dialogue and news datasets demonstrate that sLLM with KEITSum indeed provides high-quality summarization with higher relevance and less hallucinations, competitive to proprietary LLM.
comment: Interspeech 2024
♻ ☆ The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources
Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications. To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet: a growing collection of 250+ tools and resources spanning text, vision, and speech modalities. We draw on a large body of prior work to survey resources (e.g. software, documentation, frameworks, guides, and practical tools) that support informed data selection, processing, and understanding, precise and limitation-aware artifact documentation, efficient model training, advance awareness of the environmental impact from training, careful model evaluation of capabilities, risks, and claims, as well as responsible model release, licensing and deployment practices. We hope this curated collection of resources helps guide more responsible development. The process of curating this list, enabled us to review the AI development ecosystem, revealing what tools are critically missing, misused, or over-used in existing practices. We find that (i) tools for data sourcing, model evaluation, and monitoring are critically under-serving ethical and real-world needs, (ii) evaluations for model safety, capabilities, and environmental impact all lack reproducibility and transparency, (iii) text and particularly English-centric analyses continue to dominate over multilingual and multi-modal analyses, and (iv) evaluation of systems, rather than just models, is needed so that capabilities and impact are assessed in context.
♻ ☆ How Good are LLMs at Relation Extraction under Low-Resource Scenario? Comprehensive Evaluation
Relation Extraction (RE) serves as a crucial technology for transforming unstructured text into structured information, especially within the framework of Knowledge Graph development. Its importance is emphasized by its essential role in various downstream tasks. Besides the conventional RE methods which are based on neural networks and pre-trained language models, large language models (LLMs) are also utilized in the research field of RE. However, on low-resource languages (LRLs), both conventional RE methods and LLM-based methods perform poorly on RE due to the data scarcity issues. To this end, this paper constructs low-resource relation extraction datasets in 10 LRLs in three regions (Central Asia, Southeast Asia and Middle East). The corpora are constructed by translating the original publicly available English RE datasets (NYT10, FewRel and CrossRE) using an effective multilingual machine translation. Then, we use the language perplexity (PPL) to filter out the low-quality data from the translated datasets. Finally, we conduct an empirical study and validate the performance of several open-source LLMs on these generated LRL RE datasets.
♻ ☆ Iterative Reasoning Preference Optimization
Iterative preference optimization methods have recently been shown to perform well for general instruction tuning tasks, but typically make little improvement on reasoning tasks (Yuan et al., 2024, Chen et al., 2024). In this work we develop an iterative approach that optimizes the preference between competing generated Chain-of-Thought (CoT) candidates by optimizing for winning vs. losing reasoning steps that lead to the correct answer. We train using a modified DPO loss (Rafailov et al., 2023) with an additional negative log-likelihood term, which we find to be crucial. We show reasoning improves across repeated iterations of this scheme. While only relying on examples in the training set, our approach results in increasing accuracy on GSM8K, MATH, and ARC-Challenge for Llama-2-70B-Chat, outperforming other Llama-2-based models not relying on additionally sourced datasets. For example, we see a large improvement from 55.6% to 81.6% on GSM8K and an accuracy of 88.7% with majority voting out of 32 samples.
♻ ☆ Can Public LLMs be used for Self-Diagnosis of Medical Conditions ?
Advancements in deep learning have generated a large-scale interest in the development of foundational deep learning models. The development of Large Language Models (LLM) has evolved as a transformative paradigm in conversational tasks, which has led to its integration and extension even in the critical domain of healthcare. With LLMs becoming widely popular and their public access through open-source models and integration with other applications, there is a need to investigate their potential and limitations. One such crucial task where LLMs are applied but require a deeper understanding is that of self-diagnosis of medical conditions based on bias-validating symptoms in the interest of public health. The widespread integration of Gemini with Google search and GPT-4.0 with Bing search has led to a shift in the trend of self-diagnosis using search engines to conversational LLM models. Owing to the critical nature of the task, it is prudent to investigate and understand the potential and limitations of public LLMs in the task of self-diagnosis. In this study, we prepare a prompt engineered dataset of 10000 samples and test the performance on the general task of self-diagnosis. We compared the performance of both the state-of-the-art GPT-4.0 and the fee Gemini model on the task of self-diagnosis and recorded contrasting accuracies of 63.07% and 6.01%, respectively. We also discuss the challenges, limitations, and potential of both Gemini and GPT-4.0 for the task of self-diagnosis to facilitate future research and towards the broader impact of general public knowledge. Furthermore, we demonstrate the potential and improvement in performance for the task of self-diagnosis using Retrieval Augmented Generation.
comment: 11 Pages, 4 figures, Submitted to ACM Transactions on Computing for Healthcare
♻ ☆ A Survey on Human-AI Teaming with Large Pre-Trained Models
In the rapidly evolving landscape of artificial intelligence (AI), the collaboration between human intelligence and AI systems, known as Human-AI (HAI) Teaming, has emerged as a cornerstone for advancing problem-solving and decision-making processes. The advent of Large Pre-trained Models (LPtM) has significantly transformed this landscape, offering unprecedented capabilities by leveraging vast amounts of data to understand and predict complex patterns. This paper surveys the pivotal integration of LPtMs with HAI, emphasizing how these models enhance collaborative intelligence beyond traditional approaches. It examines the potential of LPtMs in augmenting human capabilities, discussing this collaboration for AI model improvements, effective teaming, ethical considerations, and their broad applied implications in various sectors. Through this exploration, the study sheds light on the transformative impact of LPtM-enhanced HAI Teaming, providing insights for future research, policy development, and strategic implementations aimed at harnessing the full potential of this collaboration for research and societal benefit.
♻ ☆ Deception Detection from Linguistic and Physiological Data Streams Using Bimodal Convolutional Neural Networks
Deception detection is gaining increasing interest due to ethical and security concerns. This paper explores the application of convolutional neural networks for the purpose of multimodal deception detection. We use a dataset built by interviewing 104 subjects about two topics, with one truthful and one falsified response from each subject about each topic. In particular, we make three main contributions. First, we extract linguistic and physiological features from this data to train and construct the neural network models. Second, we propose a fused convolutional neural network model using both modalities in order to achieve an improved overall performance. Third, we compare our new approach with earlier methods designed for multimodal deception detection. We find that our system outperforms regular classification methods; our results indicate the feasibility of using neural networks for deception detection even in the presence of limited amounts of data.
comment: Accepted by 2024 5th International Conference on Information Science, Parallel and Distributed Systems
♻ ☆ Decoding the AI Pen: Techniques and Challenges in Detecting AI-Generated Text
Large Language Models (LLMs) have revolutionized the field of Natural Language Generation (NLG) by demonstrating an impressive ability to generate human-like text. However, their widespread usage introduces challenges that necessitate thoughtful examination, ethical scrutiny, and responsible practices. In this study, we delve into these challenges, explore existing strategies for mitigating them, with a particular emphasis on identifying AI-generated text as the ultimate solution. Additionally, we assess the feasibility of detection from a theoretical perspective and propose novel research directions to address the current limitations in this domain.
♻ ☆ CodeHalu: Code Hallucinations in LLMs Driven by Execution-based Verification
Large Language Models (LLMs) have made significant progress in code generation, providing developers with unprecedented automated programming support. However, LLMs often generate code that is syntactically correct and even semantically plausible but may not execute as expected or meet specified requirements. This phenomenon of hallucinations in the code domain has not been systematically explored. To enhance the community's understanding and research on this issue, we introduce the concept of code hallucinations and propose a classification method for code hallucination based on execution verification. We classify code hallucinations into four main types: mapping, naming, resource, and logic hallucinations, with each category further divided into different subcategories to understand and address the unique challenges faced by LLMs in code generation with finer granularity. Additionally, we develop a dynamic detection algorithm named CodeHalu to quantify code hallucinations and establish the CodeHaluEval benchmark, which includes 8,883 samples from 699 tasks to systematically and quantitatively evaluate code hallucinations. By evaluating 17 popular LLMs on this benchmark, we reveal significant differences in their accuracy and reliability in code generation and provide detailed insights for further improving the code generation capabilities of LLMs. The CodeHalu benchmark and code are publicly available at https://github.com/yuchen814/CodeHalu.
♻ ☆ Simultaneous Masking, Not Prompting Optimization: A Paradigm Shift in Fine-tuning LLMs for Simultaneous Translation
Large language models (LLMs) have achieved state-of-the-art performance in various language processing tasks, motivating their adoption in simultaneous translation. Current fine-tuning methods to adapt LLMs for simultaneous translation focus on prompting optimization strategies using either data augmentation or prompt structure modifications. However, these methods suffer from several issues, such as unnecessarily expanded training sets, computational inefficiency from dumping the key and value cache, increased prompt sizes, or restriction to a single decision policy. To eliminate these issues, in this work, we propose SimulMask, a new paradigm for fine-tuning LLMs for simultaneous translation. It utilizes a novel attention mask approach that models simultaneous translation during fine-tuning by masking attention for a desired decision policy. Applying the proposed SimulMask on a Falcon LLM for the IWSLT 2017 dataset, we have observed a significant translation quality improvement compared to state-of-the-art prompting optimization strategies on five language pairs while reducing the computational cost.
♻ ☆ Theory of Mind for Multi-Agent Collaboration via Large Language Models EMNLP 2023
While Large Language Models (LLMs) have demonstrated impressive accomplishments in both reasoning and planning, their abilities in multi-agent collaborations remains largely unexplored. This study evaluates LLM-based agents in a multi-agent cooperative text game with Theory of Mind (ToM) inference tasks, comparing their performance with Multi-Agent Reinforcement Learning (MARL) and planning-based baselines. We observed evidence of emergent collaborative behaviors and high-order Theory of Mind capabilities among LLM-based agents. Our results reveal limitations in LLM-based agents' planning optimization due to systematic failures in managing long-horizon contexts and hallucination about the task state. We explore the use of explicit belief state representations to mitigate these issues, finding that it enhances task performance and the accuracy of ToM inferences for LLM-based agents.
comment: Accepted to EMNLP 2023 (Main Conference). Code available at https://github.com/romanlee6/multi_LLM_comm
♻ ☆ Deductive Closure Training of Language Models for Coherence, Accuracy, and Updatability ACL
While language models (LMs) can sometimes generate factually correct text and estimate truth values of individual claims, these generally do not reflect a globally coherent, manipulable model of the world. As a consequence, current LMs also generate incorrect or nonsensical content, and are difficult to edit and bring up to date. We present a method called Deductive Closure Training (DCT) that uses LMs themselves to identify implications of (and contradictions within) the text that they generate, yielding an efficient self-supervised procedure for improving LM factuality. Given a collection of seed documents, DCT prompts LMs to generate additional text implied by these documents, reason globally about the correctness of this generated text, and finally fine-tune on text inferred to be correct. Given seed documents from a trusted source, DCT provides a tool for supervised model updating; if seed documents are sampled from the LM itself, DCT enables fully unsupervised fine-tuning for improved coherence and accuracy. Across the CREAK, MQUaKE, and Reversal Curse datasets, supervised DCT improves LM fact verification and text generation accuracy by 3-26%; on CREAK fully unsupervised DCT improves verification accuracy by 12%. These results show that LMs' reasoning capabilities during inference can be leveraged during training to improve their reliability.
comment: ACL Findings
Computer Vision and Pattern Recognition 128
☆ On Scaling Up 3D Gaussian Splatting Training
3D Gaussian Splatting (3DGS) is increasingly popular for 3D reconstruction due to its superior visual quality and rendering speed. However, 3DGS training currently occurs on a single GPU, limiting its ability to handle high-resolution and large-scale 3D reconstruction tasks due to memory constraints. We introduce Grendel, a distributed system designed to partition 3DGS parameters and parallelize computation across multiple GPUs. As each Gaussian affects a small, dynamic subset of rendered pixels, Grendel employs sparse all-to-all communication to transfer the necessary Gaussians to pixel partitions and performs dynamic load balancing. Unlike existing 3DGS systems that train using one camera view image at a time, Grendel supports batched training with multiple views. We explore various optimization hyperparameter scaling strategies and find that a simple sqrt(batch size) scaling rule is highly effective. Evaluations using large-scale, high-resolution scenes show that Grendel enhances rendering quality by scaling up 3DGS parameters across multiple GPUs. On the Rubble dataset, we achieve a test PSNR of 27.28 by distributing 40.4 million Gaussians across 16 GPUs, compared to a PSNR of 26.28 using 11.2 million Gaussians on a single GPU. Grendel is an open-source project available at: https://github.com/nyu-systems/Grendel-GS
comment: Code: https://github.com/nyu-systems/Grendel-GS ; Project page: https://daohanlu.github.io/scaling-up-3dgs
☆ MatchTime: Towards Automatic Soccer Game Commentary Generation
Soccer is a globally popular sport with a vast audience, in this paper, we consider constructing an automatic soccer game commentary model to improve the audiences' viewing experience. In general, we make the following contributions: First, observing the prevalent video-text misalignment in existing datasets, we manually annotate timestamps for 49 matches, establishing a more robust benchmark for soccer game commentary generation, termed as SN-Caption-test-align; Second, we propose a multi-modal temporal alignment pipeline to automatically correct and filter the existing dataset at scale, creating a higher-quality soccer game commentary dataset for training, denoted as MatchTime; Third, based on our curated dataset, we train an automatic commentary generation model, named MatchVoice. Extensive experiments and ablation studies have demonstrated the effectiveness of our alignment pipeline, and training model on the curated datasets achieves state-of-the-art performance for commentary generation, showcasing that better alignment can lead to significant performance improvements in downstream tasks.
comment: Technical Report; Project Page: https://haoningwu3639.github.io/MatchTime/
☆ MultiDiff: Consistent Novel View Synthesis from a Single Image CVPR 2024
We introduce MultiDiff, a novel approach for consistent novel view synthesis of scenes from a single RGB image. The task of synthesizing novel views from a single reference image is highly ill-posed by nature, as there exist multiple, plausible explanations for unobserved areas. To address this issue, we incorporate strong priors in form of monocular depth predictors and video-diffusion models. Monocular depth enables us to condition our model on warped reference images for the target views, increasing geometric stability. The video-diffusion prior provides a strong proxy for 3D scenes, allowing the model to learn continuous and pixel-accurate correspondences across generated images. In contrast to approaches relying on autoregressive image generation that are prone to drifts and error accumulation, MultiDiff jointly synthesizes a sequence of frames yielding high-quality and multi-view consistent results -- even for long-term scene generation with large camera movements, while reducing inference time by an order of magnitude. For additional consistency and image quality improvements, we introduce a novel, structured noise distribution. Our experimental results demonstrate that MultiDiff outperforms state-of-the-art methods on the challenging, real-world datasets RealEstate10K and ScanNet. Finally, our model naturally supports multi-view consistent editing without the need for further tuning.
comment: Project page: https://sirwyver.github.io/MultiDiff Video: https://youtu.be/zBC4z4qXW_4 - CVPR 2024
☆ ChronoMagic-Bench: A Benchmark for Metamorphic Evaluation of Text-to-Time-lapse Video Generation
We propose a novel text-to-video (T2V) generation benchmark, ChronoMagic-Bench, to evaluate the temporal and metamorphic capabilities of the T2V models (e.g. Sora and Lumiere) in time-lapse video generation. In contrast to existing benchmarks that focus on the visual quality and textual relevance of generated videos, ChronoMagic-Bench focuses on the model's ability to generate time-lapse videos with significant metamorphic amplitude and temporal coherence. The benchmark probes T2V models for their physics, biology, and chemistry capabilities, in a free-form text query. For these purposes, ChronoMagic-Bench introduces 1,649 prompts and real-world videos as references, categorized into four major types of time-lapse videos: biological, human-created, meteorological, and physical phenomena, which are further divided into 75 subcategories. This categorization comprehensively evaluates the model's capacity to handle diverse and complex transformations. To accurately align human preference with the benchmark, we introduce two new automatic metrics, MTScore and CHScore, to evaluate the videos' metamorphic attributes and temporal coherence. MTScore measures the metamorphic amplitude, reflecting the degree of change over time, while CHScore assesses the temporal coherence, ensuring the generated videos maintain logical progression and continuity. Based on the ChronoMagic-Bench, we conduct comprehensive manual evaluations of ten representative T2V models, revealing their strengths and weaknesses across different categories of prompts, and providing a thorough evaluation framework that addresses current gaps in video generation research. Moreover, we create a large-scale ChronoMagic-Pro dataset, containing 460k high-quality pairs of 720p time-lapse videos and detailed captions ensuring high physical pertinence and large metamorphic amplitude.
comment: 31 pages, 15 figures
☆ CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMs
Chart understanding plays a pivotal role when applying Multimodal Large Language Models (MLLMs) to real-world tasks such as analyzing scientific papers or financial reports. However, existing datasets often focus on oversimplified and homogeneous charts with template-based questions, leading to an over-optimistic measure of progress. We demonstrate that although open-source models can appear to outperform strong proprietary models on these benchmarks, a simple stress test with slightly different charts or questions can deteriorate performance by up to 34.5%. In this work, we propose CharXiv, a comprehensive evaluation suite involving 2,323 natural, challenging, and diverse charts from arXiv papers. CharXiv includes two types of questions: 1) descriptive questions about examining basic chart elements and 2) reasoning questions that require synthesizing information across complex visual elements in the chart. To ensure quality, all charts and questions are handpicked, curated, and verified by human experts. Our results reveal a substantial, previously underestimated gap between the reasoning skills of the strongest proprietary model (i.e., GPT-4o), which achieves 47.1% accuracy, and the strongest open-source model (i.e., InternVL Chat V1.5), which achieves 29.2%. All models lag far behind human performance of 80.5%, underscoring weaknesses in the chart understanding capabilities of existing MLLMs. We hope CharXiv facilitates future research on MLLM chart understanding by providing a more realistic and faithful measure of progress. Project page and leaderboard: https://charxiv.github.io/
comment: 121 pages, 90 figures
☆ Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration
Although deep learning-based image restoration methods have made significant progress, they still struggle with limited generalization to real-world scenarios due to the substantial domain gap caused by training on synthetic data. Existing methods address this issue by improving data synthesis pipelines, estimating degradation kernels, employing deep internal learning, and performing domain adaptation and regularization. Previous domain adaptation methods have sought to bridge the domain gap by learning domain-invariant knowledge in either feature or pixel space. However, these techniques often struggle to extend to low-level vision tasks within a stable and compact framework. In this paper, we show that it is possible to perform domain adaptation via the noise-space using diffusion models. In particular, by leveraging the unique property of how the multi-step denoising process is influenced by auxiliary conditional inputs, we obtain meaningful gradients from noise prediction to gradually align the restored results of both synthetic and real-world data to a common clean distribution. We refer to this method as denoising as adaptation. To prevent shortcuts during training, we present useful techniques such as channel shuffling and residual-swapping contrastive learning. Experimental results on three classical image restoration tasks, namely denoising, deblurring, and deraining, demonstrate the effectiveness of the proposed method. Code will be released at: https://github.com/KangLiao929/Noise-DA/.
comment: Github Repository: https://github.com/KangLiao929/Noise-DA/
☆ Robust Surgical Phase Recognition From Annotation Efficient Supervision
Surgical phase recognition is a key task in computer-assisted surgery, aiming to automatically identify and categorize the different phases within a surgical procedure. Despite substantial advancements, most current approaches rely on fully supervised training, requiring expensive and time-consuming frame-level annotations. Timestamp supervision has recently emerged as a promising alternative, significantly reducing annotation costs while maintaining competitive performance. However, models trained on timestamp annotations can be negatively impacted by missing phase annotations, leading to a potential drawback in real-world scenarios. In this work, we address this issue by proposing a robust method for surgical phase recognition that can handle missing phase annotations effectively. Furthermore, we introduce the SkipTag@K annotation approach to the surgical domain, enabling a flexible balance between annotation effort and model performance. Our method achieves competitive results on two challenging datasets, demonstrating its efficacy in handling missing phase annotations and its potential for reducing annotation costs. Specifically, we achieve an accuracy of 85.1\% on the MultiBypass140 dataset using only 3 annotated frames per video, showcasing the effectiveness of our method and the potential of the SkipTag@K setup. We perform extensive experiments to validate the robustness of our method and provide valuable insights to guide future research in surgical phase recognition. Our work contributes to the advancement of surgical workflow recognition and paves the way for more efficient and reliable surgical phase recognition systems.
☆ GaussianDreamerPro: Text to Manipulable 3D Gaussians with Highly Enhanced Quality
Recently, 3D Gaussian splatting (3D-GS) has achieved great success in reconstructing and rendering real-world scenes. To transfer the high rendering quality to generation tasks, a series of research works attempt to generate 3D-Gaussian assets from text. However, the generated assets have not achieved the same quality as those in reconstruction tasks. We observe that Gaussians tend to grow without control as the generation process may cause indeterminacy. Aiming at highly enhancing the generation quality, we propose a novel framework named GaussianDreamerPro. The main idea is to bind Gaussians to reasonable geometry, which evolves over the whole generation process. Along different stages of our framework, both the geometry and appearance can be enriched progressively. The final output asset is constructed with 3D Gaussians bound to mesh, which shows significantly enhanced details and quality compared with previous methods. Notably, the generated asset can also be seamlessly integrated into downstream manipulation pipelines, e.g. animation, composition, and simulation etc., greatly promoting its potential in wide applications. Demos are available at https://taoranyi.com/gaussiandreamerpro/.
comment: Project page: https://taoranyi.com/gaussiandreamerpro/
☆ DiffuseHigh: Training-free Progressive High-Resolution Image Synthesis through Structure Guidance
Recent surge in large-scale generative models has spurred the development of vast fields in computer vision. In particular, text-to-image diffusion models have garnered widespread adoption across diverse domain due to their potential for high-fidelity image generation. Nonetheless, existing large-scale diffusion models are confined to generate images of up to 1K resolution, which is far from meeting the demands of contemporary commercial applications. Directly sampling higher-resolution images often yields results marred by artifacts such as object repetition and distorted shapes. Addressing the aforementioned issues typically necessitates training or fine-tuning models on higher resolution datasets. However, this undertaking poses a formidable challenge due to the difficulty in collecting large-scale high-resolution contents and substantial computational resources. While several preceding works have proposed alternatives, they often fail to produce convincing results. In this work, we probe the generative ability of diffusion models at higher resolution beyond its original capability and propose a novel progressive approach that fully utilizes generated low-resolution image to guide the generation of higher resolution image. Our method obviates the need for additional training or fine-tuning which significantly lowers the burden of computational costs. Extensive experiments and results validate the efficiency and efficacy of our method.
☆ Towards Human-Level 3D Relative Pose Estimation: Generalizable, Training-Free, with Single Reference
Humans can easily deduce the relative pose of an unseen object, without label/training, given only a single query-reference image pair. This is arguably achieved by incorporating (i) 3D/2.5D shape perception from a single image, (ii) render-and-compare simulation, and (iii) rich semantic cue awareness to furnish (coarse) reference-query correspondence. Existing methods implement (i) by a 3D CAD model or well-calibrated multiple images and (ii) by training a network on specific objects, which necessitate laborious ground-truth labeling and tedious training, potentially leading to challenges in generalization. Moreover, (iii) was less exploited in the paradigm of (ii), despite that the coarse correspondence from (iii) enhances the compare process by filtering out non-overlapped parts under substantial pose differences/occlusions. Motivated by this, we propose a novel 3D generalizable relative pose estimation method by elaborating (i) with a 2.5D shape from an RGB-D reference, (ii) with an off-the-shelf differentiable renderer, and (iii) with semantic cues from a pretrained model like DINOv2. Specifically, our differentiable renderer takes the 2.5D rotatable mesh textured by the RGB and the semantic maps (obtained by DINOv2 from the RGB input), then renders new RGB and semantic maps (with back-surface culling) under a novel rotated view. The refinement loss comes from comparing the rendered RGB and semantic maps with the query ones, back-propagating the gradients through the differentiable renderer to refine the 3D relative pose. As a result, our method can be readily applied to unseen objects, given only a single RGB-D reference, without label/training. Extensive experiments on LineMOD, LM-O, and YCB-V show that our training-free method significantly outperforms the SOTA supervised methods, especially under the rigorous Acc@5/10/15{\deg} metrics and the challenging cross-dataset settings.
comment: The codes are available at https://github.com/ethanygao/training-free_generalizable_relative_pose
☆ Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust Classifiers
Despite extensive research on adversarial training strategies to improve robustness, the decisions of even the most robust deep learning models can still be quite sensitive to imperceptible perturbations, creating serious risks when deploying them for high-stakes real-world applications. While detecting such cases may be critical, evaluating a model's vulnerability at a per-instance level using adversarial attacks is computationally too intensive and unsuitable for real-time deployment scenarios. The input space margin is the exact score to detect non-robust samples and is intractable for deep neural networks. This paper introduces the concept of margin consistency -- a property that links the input space margins and the logit margins in robust models -- for efficient detection of vulnerable samples. First, we establish that margin consistency is a necessary and sufficient condition to use a model's logit margin as a score for identifying non-robust samples. Next, through comprehensive empirical analysis of various robustly trained models on CIFAR10 and CIFAR100 datasets, we show that they indicate strong margin consistency with a strong correlation between their input space margins and the logit margins. Then, we show that we can effectively use the logit margin to confidently detect brittle decisions with such models and accurately estimate robust accuracy on an arbitrarily large test set by estimating the input margins only on a small subset. Finally, we address cases where the model is not sufficiently margin-consistent by learning a pseudo-margin from the feature representation. Our findings highlight the potential of leveraging deep representations to efficiently assess adversarial vulnerability in deployment scenarios.
comment: 11 pages, 7 figures, 2 tables, 1 algorithm
☆ Unveiling the Unknown: Conditional Evidence Decoupling for Unknown Rejection
In this paper, we focus on training an open-set object detector under the condition of scarce training samples, which should distinguish the known and unknown categories. Under this challenging scenario, the decision boundaries of unknowns are difficult to learn and often ambiguous. To mitigate this issue, we develop a novel open-set object detection framework, which delves into conditional evidence decoupling for the unknown rejection. Specifically, we select pseudo-unknown samples by leveraging the discrepancy in attribution gradients between known and unknown classes, alleviating the inadequate unknown distribution coverage of training data. Subsequently, we propose a Conditional Evidence Decoupling Loss (CEDL) based on Evidential Deep Learning (EDL) theory, which decouples known and unknown properties in pseudo-unknown samples to learn distinct knowledge, enhancing separability between knowns and unknowns. Additionally, we propose an Abnormality Calibration Loss (ACL), which serves as a regularization term to adjust the output probability distribution, establishing robust decision boundaries for the unknown rejection. Our method has achieved the superiority performance over previous state-of-the-art approaches, improving the mean recall of unknown class by 7.24% across all shots in VOC10-5-5 dataset settings and 1.38% in VOC-COCO dataset settings. The code is available via https://github.com/zjzwzw/CED-FOOD.
☆ Facial Image Feature Analysis and its Specialization for Fréchet Distance and Neighborhoods
Assessing distances between images and image datasets is a fundamental task in vision-based research. It is a challenging open problem in the literature and despite the criticism it receives, the most ubiquitous method remains the Fr\'echet Inception Distance. The Inception network is trained on a specific labeled dataset, ImageNet, which has caused the core of its criticism in the most recent research. Improvements were shown by moving to self-supervision learning over ImageNet, leaving the training data domain as an open question. We make that last leap and provide the first analysis on domain-specific feature training and its effects on feature distance, on the widely-researched facial image domain. We provide our findings and insights on this domain specialization for Fr\'echet distance and image neighborhoods, supported by extensive experiments and in-depth user studies.
☆ Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling CVPR
This paper investigates a 2D to 3D image translation method with a straightforward technique, enabling correlated 2D X-ray to 3D CT-like reconstruction. We observe that existing approaches, which integrate information across multiple 2D views in the latent space, lose valuable signal information during latent encoding. Instead, we simply repeat and concatenate the 2D views into higher-channel 3D volumes and approach the 3D reconstruction challenge as a straightforward 3D to 3D generative modeling problem, sidestepping several complex modeling issues. This method enables the reconstructed 3D volume to retain valuable information from the 2D inputs, which are passed between channel states in a Swin UNETR backbone. Our approach applies neural optimal transport, which is fast and stable to train, effectively integrating signal information across multiple views without the requirement for precise alignment; it produces non-collapsed reconstructions that are highly faithful to the 2D views, even after limited training. We demonstrate correlated results, both qualitatively and quantitatively, having trained our model on a single dataset and evaluated its generalization ability across six datasets, including out-of-distribution samples.
comment: CVPRW 2024 - DCA in MI; Best Paper Award
☆ BiTrack: Bidirectional Offline 3D Multi-Object Tracking Using Camera-LiDAR Data
Compared with real-time multi-object tracking (MOT), offline multi-object tracking (OMOT) has the advantages to perform 2D-3D detection fusion, erroneous link correction, and full track optimization but has to deal with the challenges from bounding box misalignment and track evaluation, editing, and refinement. This paper proposes "BiTrack", a 3D OMOT framework that includes modules of 2D-3D detection fusion, initial trajectory generation, and bidirectional trajectory re-optimization to achieve optimal tracking results from camera-LiDAR data. The novelty of this paper includes threefold: (1) development of a point-level object registration technique that employs a density-based similarity metric to achieve accurate fusion of 2D-3D detection results; (2) development of a set of data association and track management skills that utilizes a vertex-based similarity metric as well as false alarm rejection and track recovery mechanisms to generate reliable bidirectional object trajectories; (3) development of a trajectory re-optimization scheme that re-organizes track fragments of different fidelities in a greedy fashion, as well as refines each trajectory with completion and smoothing techniques. The experiment results on the KITTI dataset demonstrate that BiTrack achieves the state-of-the-art performance for 3D OMOT tasks in terms of accuracy and efficiency.
☆ DoubleTake: Geometry Guided Depth Estimation
Estimating depth from a sequence of posed RGB images is a fundamental computer vision task, with applications in augmented reality, path planning etc. Prior work typically makes use of previous frames in a multi view stereo framework, relying on matching textures in a local neighborhood. In contrast, our model leverages historical predictions by giving the latest 3D geometry data as an extra input to our network. This self-generated geometric hint can encode information from areas of the scene not covered by the keyframes and it is more regularized when compared to individual predicted depth maps for previous frames. We introduce a Hint MLP which combines cost volume features with a hint of the prior geometry, rendered as a depth map from the current camera location, together with a measure of the confidence in the prior geometry. We demonstrate that our method, which can run at interactive speeds, achieves state-of-the-art estimates of depth and 3D scene reconstruction in both offline and incremental evaluation scenarios.
☆ From Majority to Minority: A Diffusion-based Augmentation for Underrepresented Groups in Skin Lesion Analysis
AI-based diagnoses have demonstrated dermatologist-level performance in classifying skin cancer. However, such systems are prone to under-performing when tested on data from minority groups that lack sufficient representation in the training sets. Although data collection and annotation offer the best means for promoting minority groups, these processes are costly and time-consuming. Prior works have suggested that data from majority groups may serve as a valuable information source to supplement the training of diagnosis tools for minority groups. In this work, we propose an effective diffusion-based augmentation framework that maximizes the use of rich information from majority groups to benefit minority groups. Using groups with different skin types as a case study, our results show that the proposed framework can generate synthetic images that improve diagnostic results for the minority groups, even when there is little or no reference data from these target groups. The practical value of our work is evident in medical imaging analysis, where under-diagnosis persists as a problem for certain groups due to insufficient representation.
☆ Stable Diffusion Segmentation for Biomedical Images with Single-step Reverse Process MICCAI 2024
Diffusion models have demonstrated their effectiveness across various generative tasks. However, when applied to medical image segmentation, these models encounter several challenges, including significant resource and time requirements. They also necessitate a multi-step reverse process and multiple samples to produce reliable predictions. To address these challenges, we introduce the first latent diffusion segmentation model, named SDSeg, built upon stable diffusion (SD). SDSeg incorporates a straightforward latent estimation strategy to facilitate a single-step reverse process and utilizes latent fusion concatenation to remove the necessity for multiple samples. Extensive experiments indicate that SDSeg surpasses existing state-of-the-art methods on five benchmark datasets featuring diverse imaging modalities. Remarkably, SDSeg is capable of generating stable predictions with a solitary reverse step and sample, epitomizing the model's stability as implied by its name. The code is available at https://github.com/lin-tianyu/Stable-Diffusion-Seg
comment: Accepted at MICCAI 2024. Code and citation info see https://github.com/lin-tianyu/Stable-Diffusion-Seg
☆ XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis
Thoroughly testing autonomy systems is crucial in the pursuit of safe autonomous driving vehicles. It necessitates creating safety-critical scenarios that go beyond what can be safely collected from real-world data, as many of these scenarios occur infrequently on public roads. However, the evaluation of most existing NVS methods relies on sporadic sampling of image frames from the training data, comparing the rendered images with ground truth images using metrics. Unfortunately, this evaluation protocol falls short of meeting the actual requirements in closed-loop simulations. Specifically, the true application demands the capability to render novel views that extend beyond the original trajectory (such as cross-lane views), which are challenging to capture in the real world. To address this, this paper presents a novel driving view synthesis dataset and benchmark specifically designed for autonomous driving simulations. This dataset is unique as it includes testing images captured by deviating from the training trajectory by 1-4 meters. It comprises six sequences encompassing various time and weather conditions. Each sequence contains 450 training images, 150 testing images, and their corresponding camera poses and intrinsic parameters. Leveraging this novel dataset, we establish the first realistic benchmark for evaluating existing NVS approaches under front-only and multi-camera settings. The experimental findings underscore the significant gap that exists in current approaches, revealing their inadequate ability to fulfill the demanding prerequisites of cross-lane or closed-loop simulation. Our dataset is released publicly at the project page: https://3d-aigc.github.io/XLD/.
comment: project page: https://3d-aigc.github.io/XLD/
☆ On Reducing Activity with Distillation and Regularization for Energy Efficient Spiking Neural Networks
Interest in spiking neural networks (SNNs) has been growing steadily, promising an energy-efficient alternative to formal neural networks (FNNs), commonly known as artificial neural networks (ANNs). Despite increasing interest, especially for Edge applications, these event-driven neural networks suffered from their difficulty to be trained compared to FNNs. To alleviate this problem, a number of innovative methods have been developed to provide performance more or less equivalent to that of FNNs. However, the spiking activity of a network during inference is usually not considered. While SNNs may usually have performance comparable to that of FNNs, it is often at the cost of an increase of the network's activity, thus limiting the benefit of using them as a more energy-efficient solution. In this paper, we propose to leverage Knowledge Distillation (KD) for SNNs training with surrogate gradient descent in order to optimize the trade-off between performance and spiking activity. Then, after understanding why KD led to an increase in sparsity, we also explored Activations regularization and proposed a novel method with Logits Regularization. These approaches, validated on several datasets, clearly show a reduction in network spiking activity (-26.73% on GSC and -14.32% on CIFAR-10) while preserving accuracy.
☆ AlignedCut: Visual Concepts Discovery on Brain-Guided Universal Feature Space
We study the intriguing connection between visual data, deep networks, and the brain. Our method creates a universal channel alignment by using brain voxel fMRI response prediction as the training objective. We discover that deep networks, trained with different objectives, share common feature channels across various models. These channels can be clustered into recurring sets, corresponding to distinct brain regions, indicating the formation of visual concepts. Tracing the clusters of channel responses onto the images, we see semantically meaningful object segments emerge, even without any supervised decoder. Furthermore, the universal feature alignment and the clustering of channels produce a picture and quantification of how visual information is processed through the different network layers, which produces precise comparisons between the networks.
☆ Continuous Sign Language Recognition Using Intra-inter Gloss Attention
Many continuous sign language recognition (CSLR) studies adopt transformer-based architectures for sequence modeling due to their powerful capacity for capturing global contexts. Nevertheless, vanilla self-attention, which serves as the core module of the transformer, calculates a weighted average over all time steps; therefore, the local temporal semantics of sign videos may not be fully exploited. In this study, we introduce a novel module in sign language recognition studies, called intra-inter gloss attention module, to leverage the relationships among frames within glosses and the semantic and grammatical dependencies between glosses in the video. In the intra-gloss attention module, the video is divided into equally sized chunks and a self-attention mechanism is applied within each chunk. This localized self-attention significantly reduces complexity and eliminates noise introduced by considering non-relative frames. In the inter-gloss attention module, we first aggregate the chunk-level features within each gloss chunk by average pooling along the temporal dimension. Subsequently, multi-head self-attention is applied to all chunk-level features. Given the non-significance of the signer-environment interaction, we utilize segmentation to remove the background of the videos. This enables the proposed model to direct its focus toward the signer. Experimental results on the PHOENIX-2014 benchmark dataset demonstrate that our method can effectively extract sign language features in an end-to-end manner without any prior knowledge, improve the accuracy of CSLR, and achieve the word error rate (WER) of 20.4 on the test set which is a competitive result compare to the state-of-the-art which uses additional supervisions.
☆ Multi-modal Evidential Fusion Network for Trusted PET/CT Tumor Segmentation
Accurate segmentation of tumors in PET/CT images is important in computer-aided diagnosis and treatment of cancer. The key issue of such a segmentation problem lies in the effective integration of complementary information from PET and CT images. However, the quality of PET and CT images varies widely in clinical settings, which leads to uncertainty in the modality information extracted by networks. To take the uncertainty into account in multi-modal information fusion, this paper proposes a novel Multi-modal Evidential Fusion Network (MEFN) comprising a Cross-Modal Feature Learning (CFL) module and a Multi-modal Trusted Fusion (MTF) module. The CFL module reduces the domain gap upon modality conversion and highlights common tumor features, thereby alleviating the needs of the segmentation module to handle modality specificity. The MTF module utilizes mutual attention mechanisms and an uncertainty calibrator to fuse modality features based on modality uncertainty and then fuse the segmentation results under the guidance of Dempster-Shafer Theory. Besides, a new uncertainty perceptual loss is introduced to force the model focusing on uncertain features and hence improve its ability to extract trusted modality information. Extensive comparative experiments are conducted on two publicly available PET/CT datasets to evaluate the performance of our proposed method whose results demonstrate that our MEFN significantly outperforms state-of-the-art methods with improvements of 2.15% and 3.23% in DSC scores on the AutoPET dataset and the Hecktor dataset, respectively. More importantly, our model can provide radiologists with credible uncertainty of the segmentation results for their decision in accepting or rejecting the automatic segmentation results, which is particularly important for clinical applications. Our code will be available at https://github.com/QPaws/MEFN.
☆ Spatial-temporal Hierarchical Reinforcement Learning for Interpretable Pathology Image Super-Resolution
Pathology image are essential for accurately interpreting lesion cells in cytopathology screening, but acquiring high-resolution digital slides requires specialized equipment and long scanning times. Though super-resolution (SR) techniques can alleviate this problem, existing deep learning models recover pathology image in a black-box manner, which can lead to untruthful biological details and misdiagnosis. Additionally, current methods allocate the same computational resources to recover each pixel of pathology image, leading to the sub-optimal recovery issue due to the large variation of pathology image. In this paper, we propose the first hierarchical reinforcement learning framework named Spatial-Temporal hierARchical Reinforcement Learning (STAR-RL), mainly for addressing the aforementioned issues in pathology image super-resolution problem. We reformulate the SR problem as a Markov decision process of interpretable operations and adopt the hierarchical recovery mechanism in patch level, to avoid sub-optimal recovery. Specifically, the higher-level spatial manager is proposed to pick out the most corrupted patch for the lower-level patch worker. Moreover, the higher-level temporal manager is advanced to evaluate the selected patch and determine whether the optimization should be stopped earlier, thereby avoiding the over-processed problem. Under the guidance of spatial-temporal managers, the lower-level patch worker processes the selected patch with pixel-wise interpretable actions at each time step. Experimental results on medical images degraded by different kernels show the effectiveness of STAR-RL. Furthermore, STAR-RL validates the promotion in tumor diagnosis with a large margin and shows generalizability under various degradations. The source code is available at https://github.com/CUHK-AIM-Group/STAR-RL.
comment: Accepted to IEEE TRANSACTIONS ON MEDICAL IMAGING (TMI)
☆ Evaluating and Benchmarking Foundation Models for Earth Observation and Geospatial AI
When we are primarily interested in solving several problems jointly with a given prescribed high performance accuracy for each target application, then Foundation Models should for most cases be used rather than problem-specific models. We focus on the specific Computer Vision application of Foundation Models for Earth Observation (EO) and geospatial AI. These models can solve important problems we are tackling, including for example land cover classification, crop type mapping, flood segmentation, building density estimation, and road regression segmentation. In this paper, we show that for a limited number of labelled data, Foundation Models achieve improved performance compared to problem-specific models. In this work, we also present our proposed evaluation benchmark for Foundation Models for EO. Benchmarking the generalization performance of Foundation Models is important as it has become difficult to standardize a fair comparison across the many different models that have been proposed recently. We present the results using our evaluation benchmark for EO Foundation Models and show that Foundation Models are label efficient in the downstream tasks and help us solve problems we are tackling in EO and remote sensing.
comment: 5 pages, 2 figures, Submitted
☆ RealTalk: Real-time and Realistic Audio-driven Face Generation with 3D Facial Prior-guided Identity Alignment Network
Person-generic audio-driven face generation is a challenging task in computer vision. Previous methods have achieved remarkable progress in audio-visual synchronization, but there is still a significant gap between current results and practical applications. The challenges are two-fold: 1) Preserving unique individual traits for achieving high-precision lip synchronization. 2) Generating high-quality facial renderings in real-time performance. In this paper, we propose a novel generalized audio-driven framework RealTalk, which consists of an audio-to-expression transformer and a high-fidelity expression-to-face renderer. In the first component, we consider both identity and intra-personal variation features related to speaking lip movements. By incorporating cross-modal attention on the enriched facial priors, we can effectively align lip movements with audio, thus attaining greater precision in expression prediction. In the second component, we design a lightweight facial identity alignment (FIA) module which includes a lip-shape control structure and a face texture reference structure. This novel design allows us to generate fine details in real-time, without depending on sophisticated and inefficient feature alignment modules. Our experimental results, both quantitative and qualitative, on public datasets demonstrate the clear advantages of our method in terms of lip-speech synchronization and generation quality. Furthermore, our method is efficient and requires fewer computational resources, making it well-suited to meet the needs of practical applications.
☆ CAS: Confidence Assessments of classification algorithms for Semantic segmentation of EO data
Confidence assessments of semantic segmentation algorithms in remote sensing are important. It is a desirable property of models to a priori know if they produce an incorrect output. Evaluations of the confidence assigned to the estimates of models for the task of classification in Earth Observation (EO) are crucial as they can be used to achieve improved semantic segmentation performance and prevent high error rates during inference and deployment. The model we develop, the Confidence Assessments of classification algorithms for Semantic segmentation (CAS) model, performs confidence evaluations at both the segment and pixel levels, and outputs both labels and confidence. The outcome of this work has important applications. The main application is the evaluation of EO Foundation Models on semantic segmentation downstream tasks, in particular land cover classification using satellite Copernicus Sentinel-2 data. The evaluation shows that the proposed model is effective and outperforms other alternative baseline models.
comment: 5 pages, 7 figures, 4 tables, Submitted
☆ Generalized Deepfake Attribution
The landscape of fake media creation changed with the introduction of Generative Adversarial Networks (GAN s). Fake media creation has been on the rise with the rapid advances in generation technology, leading to new challenges in Detecting fake media. A fundamental characteristic of GAN s is their sensitivity to parameter initialization, known as seeds. Each distinct seed utilized during training leads to the creation of unique model instances, resulting in divergent image outputs despite employing the same architecture. This means that even if we have one GAN architecture, it can produce countless variations of GAN models depending on the seed used. Existing methods for attributing deepfakes work well only if they have seen the specific GAN model during training. If the GAN architectures are retrained with a different seed, these methods struggle to attribute the fakes. This seed dependency issue made it difficult to attribute deepfakes with existing methods. We proposed a generalized deepfake attribution network (GDA-N et) to attribute fake images to their respective GAN architectures, even if they are generated from a retrained version of the GAN architecture with a different seed (cross-seed) or from the fine-tuned version of the existing GAN model. Extensive experiments on cross-seed and fine-tuned data of GAN models show that our method is highly effective compared to existing methods. We have provided the source code to validate our results.
☆ On the Role of Visual Grounding in VQA
Visual Grounding (VG) in VQA refers to a model's proclivity to infer answers based on question-relevant image regions. Conceptually, VG identifies as an axiomatic requirement of the VQA task. In practice, however, DNN-based VQA models are notorious for bypassing VG by way of shortcut (SC) learning without suffering obvious performance losses in standard benchmarks. To uncover the impact of SC learning, Out-of-Distribution (OOD) tests have been proposed that expose a lack of VG with low accuracy. These tests have since been at the center of VG research and served as basis for various investigations into VG's impact on accuracy. However, the role of VG in VQA still remains not fully understood and has not yet been properly formalized. In this work, we seek to clarify VG's role in VQA by formalizing it on a conceptual level. We propose a novel theoretical framework called "Visually Grounded Reasoning" (VGR) that uses the concepts of VG and Reasoning to describe VQA inference in ideal OOD testing. By consolidating fundamental insights into VG's role in VQA, VGR helps to reveal rampant VG-related SC exploitation in OOD testing, which explains why the relationship between VG and OOD accuracy has been difficult to define. Finally, we propose an approach to create OOD tests that properly emphasize a requirement for VG, and show how to improve performance on them.
Foundational Models for Pathology and Endoscopy Images: Application for Gastric Inflammation
The integration of artificial intelligence (AI) in medical diagnostics represents a significant advancement in managing upper gastrointestinal (GI) cancer, a major cause of global cancer mortality. Specifically for gastric cancer (GC), chronic inflammation causes changes in the mucosa such as atrophy, intestinal metaplasia (IM), dysplasia and ultimately cancer. Early detection through endoscopic regular surveillance is essential for better outcomes. Foundation models (FM), which are machine or deep learning models trained on diverse data and applicable to broad use cases, offer a promising solution to enhance the accuracy of endoscopy and its subsequent pathology image analysis. This review explores the recent advancements, applications, and challenges associated with FM in endoscopy and pathology imaging. We started by elucidating the core principles and architectures underlying these models, including their training methodologies and the pivotal role of large-scale data in developing their predictive capabilities. Moreover, this work discusses emerging trends and future research directions, emphasizing the integration of multimodal data, the development of more robust and equitable models, and the potential for real-time diagnostic support. This review aims to provide a roadmap for researchers and practitioners in navigating the complexities of incorporating FM into clinical practice for prevention/management of GC cases, thereby improving patient outcomes.
☆ Generative artificial intelligence in ophthalmology: multimodal retinal images for the diagnosis of Alzheimer's disease with convolutional neural networks
Background/Aim. This study aims to predict Amyloid Positron Emission Tomography (AmyloidPET) status with multimodal retinal imaging and convolutional neural networks (CNNs) and to improve the performance through pretraining with synthetic data. Methods. Fundus autofluorescence, optical coherence tomography (OCT), and OCT angiography images from 328 eyes of 59 AmyloidPET positive subjects and 108 AmyloidPET negative subjects were used for classification. Denoising Diffusion Probabilistic Models (DDPMs) were trained to generate synthetic images and unimodal CNNs were pretrained on synthetic data and finetuned on real data or trained solely on real data. Multimodal classifiers were developed to combine predictions of the four unimodal CNNs with patient metadata. Class activation maps of the unimodal classifiers provided insight into the network's attention to inputs. Results. DDPMs generated diverse, realistic images without memorization. Pretraining unimodal CNNs with synthetic data improved AUPR at most from 0.350 to 0.579. Integration of metadata in multimodal CNNs improved AUPR from 0.486 to 0.634, which was the best overall best classifier. Class activation maps highlighted relevant retinal regions which correlated with AD. Conclusion. Our method for generating and leveraging synthetic data has the potential to improve AmyloidPET prediction from multimodal retinal imaging. A DDPM can generate realistic and unique multimodal synthetic retinal images. Our best performing unimodal and multimodal classifiers were not pretrained on synthetic data, however pretraining with synthetic data slightly improved classification performance for two out of the four modalities.
☆ ConStyle v2: A Strong Prompter for All-in-One Image Restoration
This paper introduces ConStyle v2, a strong plug-and-play prompter designed to output clean visual prompts and assist U-Net Image Restoration models in handling multiple degradations. The joint training process of IRConStyle, an Image Restoration framework consisting of ConStyle and a general restoration network, is divided into two stages: first, pre-training ConStyle alone, and then freezing its weights to guide the training of the general restoration network. Three improvements are proposed in the pre-training stage to train ConStyle: unsupervised pre-training, adding a pretext task (i.e. classification), and adopting knowledge distillation. Without bells and whistles, we can get ConStyle v2, a strong prompter for all-in-one Image Restoration, in less than two GPU days and doesn't require any fine-tuning. Extensive experiments on Restormer (transformer-based), NAFNet (CNN-based), MAXIM-1S (MLP-based), and a vanilla CNN network demonstrate that ConStyle v2 can enhance any U-Net style Image Restoration models to all-in-one Image Restoration models. Furthermore, models guided by the well-trained ConStyle v2 exhibit superior performance in some specific degradation compared to ConStyle.
☆ Concordance in basal cell carcinoma diagnosis. Building a proper ground truth to train Artificial Intelligence tools
Background: The existence of different basal cell carcinoma (BCC) clinical criteria cannot be objectively validated. An adequate ground-truth is needed to train an artificial intelligence (AI) tool that explains the BCC diagnosis by providing its dermoscopic features. Objectives: To determine the consensus among dermatologists on dermoscopic criteria of 204 BCC. To analyze the performance of an AI tool when the ground-truth is inferred. Methods: A single center, diagnostic and prospective study was conducted to analyze the agreement in dermoscopic criteria by four dermatologists and then derive a reference standard. 1434 dermoscopic images have been used, that were taken by a primary health physician, sent via teledermatology, and diagnosed by a dermatologist. They were randomly selected from the teledermatology platform (2019-2021). 204 of them were tested with an AI tool; the remainder trained it. The performance of the AI tool trained using the ground-truth of one dermatologist versus the ground-truth statistically inferred from the consensus of four dermatologists was analyzed using McNemar's test and Hamming distance. Results: Dermatologists achieve perfect agreement in the diagnosis of BCC (Fleiss-Kappa=0.9079), and a high correlation with the biopsy (PPV=0.9670). However, there is low agreement in detecting some dermoscopic criteria. Statistical differences were found in the performance of the AI tool trained using the ground-truth of one dermatologist versus the ground-truth statistically inferred from the consensus of four dermatologists. Conclusions: Care should be taken when training an AI tool to determine the BCC patterns present in a lesion. Ground-truth should be established from multiple dermatologists.
comment: Manuscript word count: 3000, Number of figures: 2, Number of tables: 3
☆ CoDA: Interactive Segmentation and Morphological Analysis of Dendroid Structures Exemplified on Stony Cold-Water Corals
Herein, we present CoDA, the Coral Dendroid structure Analyzer, a visual analytics suite that allows for the first time to investigate the ontogenetic morphological development of complex dendroid coral colonies, exemplified on three important framework-forming dendroid cold-water corals: Lophelia pertusa (Linnaeus, 1758), Madrepora oculata (Linnaeus, 1758), and Goniocorella dumosa (Alcock, 1902). Input to CoDA is an initial instance segmentation of the coral polyp cavities (calices), from which it estimates the skeleton tree of the colony and extracts classical morphological measurements and advanced shape features of the individual corallites. CoDA also works as a proofreading and error correction tool by helping to identify wrong parts in the skeleton tree and providing tools to quickly correct these errors. The final skeleton tree enables the derivation of additional information about the calices/corallite instances that otherwise could not be obtained, including their ontogenetic generation and branching patterns - the basis of a fully quantitative statistical analysis of the coral colony morphology. Part of CoDA is CoDAGraph, a feature-rich link-and-brush user interface for visualizing the extracted features and 2D graph layouts of the skeleton tree, enabling the real-time exploration of complex coral colonies and their building blocks, the individual corallites and branches. In the future, we expect CoDA to greatly facilitate the analysis of large stony corals of different species and morphotypes, as well as other dendroid structures, enabling new insights into the influence of genetic and environmental factors on their ontogenetic morphological development.
☆ GUIDE: A Guideline-Guided Dataset for Instructional Video Comprehension IJCAI 2024
There are substantial instructional videos on the Internet, which provide us tutorials for completing various tasks. Existing instructional video datasets only focus on specific steps at the video level, lacking experiential guidelines at the task level, which can lead to beginners struggling to learn new tasks due to the lack of relevant experience. Moreover, the specific steps without guidelines are trivial and unsystematic, making it difficult to provide a clear tutorial. To address these problems, we present the GUIDE (Guideline-Guided) dataset, which contains 3.5K videos of 560 instructional tasks in 8 domains related to our daily life. Specifically, we annotate each instructional task with a guideline, representing a common pattern shared by all task-related videos. On this basis, we annotate systematic specific steps, including their associated guideline steps, specific step descriptions and timestamps. Our proposed benchmark consists of three sub-tasks to evaluate comprehension ability of models: (1) Step Captioning: models have to generate captions for specific steps from videos. (2) Guideline Summarization: models have to mine the common pattern in task-related videos and summarize a guideline from them. (3) Guideline-Guided Captioning: models have to generate captions for specific steps under the guide of guideline. We evaluate plenty of foundation models with GUIDE and perform in-depth analysis. Given the diversity and practicality of GUIDE, we believe that it can be used as a better benchmark for instructional video comprehension.
comment: IJCAI 2024
☆ Guiding Video Prediction with Explicit Procedural Knowledge ICCV
We propose a general way to integrate procedural knowledge of a domain into deep learning models. We apply it to the case of video prediction, building on top of object-centric deep models and show that this leads to a better performance than using data-driven models alone. We develop an architecture that facilitates latent space disentanglement in order to use the integrated procedural knowledge, and establish a setup that allows the model to learn the procedural interface in the latent space using the downstream task of video prediction. We contrast the performance to a state-of-the-art data-driven approach and show that problems where purely data-driven approaches struggle can be handled by using knowledge about the domain, providing an alternative to simply collecting more data.
comment: Published in 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)
☆ Unlocking the Potential of Operations Research for Multi-Graph Matching
We consider the incomplete multi-graph matching problem, which is a generalization of the NP-hard quadratic assignment problem for matching multiple finite sets. Multi-graph matching plays a central role in computer vision, e.g., for matching images or shapes, so that a number of dedicated optimization techniques have been proposed. While the closely related NP-hard multi-dimensional assignment problem (MDAP) has been studied for decades in the operations research community, it only considers complete matchings and has a different cost structure. We bridge this gap and transfer well-known approximation algorithms for the MDAP to incomplete multi-graph matching. To this end, we revisit respective algorithms, adapt them to incomplete multi-graph matching, and propose their extended and parallelized versions. Our experimental validation shows that our new method substantially outperforms the previous state of the art in terms of objective and runtime. Our algorithm matches, for example, 29 images with more than 500 keypoints each in less than two minutes, whereas the fastest considered competitor requires at least half an hour while producing far worse results.
☆ Trimming the Fat: Efficient Compression of 3D Gaussian Splats through Pruning
In recent times, the utilization of 3D models has gained traction, owing to the capacity for end-to-end training initially offered by Neural Radiance Fields and more recently by 3D Gaussian Splatting (3DGS) models. The latter holds a significant advantage by inherently easing rapid convergence during training and offering extensive editability. However, despite rapid advancements, the literature still lives in its infancy regarding the scalability of these models. In this study, we take some initial steps in addressing this gap, showing an approach that enables both the memory and computational scalability of such models. Specifically, we propose "Trimming the fat", a post-hoc gradient-informed iterative pruning technique to eliminate redundant information encoded in the model. Our experimental findings on widely acknowledged benchmarks attest to the effectiveness of our approach, revealing that up to 75% of the Gaussians can be removed while maintaining or even improving upon baseline performance. Our approach achieves around 50$\times$ compression while preserving performance similar to the baseline model, and is able to speed-up computation up to 600~FPS.
☆ Joint Stream: Malignant Region Learning for Breast Cancer Diagnosis
Early diagnosis of breast cancer (BC) significantly contributes to reducing the mortality rate worldwide. The detection of different factors and biomarkers such as Estrogen receptor (ER), Progesterone receptor (PR), Human epidermal growth factor receptor 2 (HER2) gene, Histological grade (HG), Auxiliary lymph node (ALN) status, and Molecular subtype (MS) can play a significant role in improved BC diagnosis. However, the existing methods predict only a single factor which makes them less suitable to use in diagnosis and designing a strategy for treatment. In this paper, we propose to classify the six essential indicating factors (ER, PR, HER2, ALN, HG, MS) for early BC diagnosis using H\&E stained WSI's. To precisely capture local neighboring relationships, we use spatial and frequency domain information from the large patch size of WSI's malignant regions. Furthermore, to cater the variable number of regions of interest sizes and give due attention to each region, we propose a malignant region learning attention network. Our experimental results demonstrate that combining spatial and frequency information using the malignant region learning module significantly improves multi-factor and single-factor classification performance on publicly available datasets.
comment: Under Review (Biomedical Signal Processing and Control)
☆ EFCNet: Every Feature Counts for Small Medical Object Segmentation
This paper explores the segmentation of very small medical objects with significant clinical value. While Convolutional Neural Networks (CNNs), particularly UNet-like models, and recent Transformers have shown substantial progress in image segmentation, our empirical findings reveal their poor performance in segmenting the small medical objects and lesions concerned in this paper. This limitation may be attributed to information loss during their encoding and decoding process. In response to this challenge, we propose a novel model named EFCNet for small object segmentation in medical images. Our model incorporates two modules: the Cross-Stage Axial Attention Module (CSAA) and the Multi-Precision Supervision Module (MPS). These modules address information loss during encoding and decoding procedures, respectively. Specifically, CSAA integrates features from all stages of the encoder to adaptively learn suitable information needed in different decoding stages, thereby reducing information loss in the encoder. On the other hand, MPS introduces a novel multi-precision supervision mechanism to the decoder. This mechanism prioritizes attention to low-resolution features in the initial stages of the decoder, mitigating information loss caused by subsequent convolution and sampling processes and enhancing the model's global perception. We evaluate our model on two benchmark medical image datasets. The results demonstrate that EFCNet significantly outperforms previous segmentation methods designed for both medical and normal images.
☆ GS-Octree: Octree-based 3D Gaussian Splatting for Robust Object-level 3D Reconstruction Under Strong Lighting
The 3D Gaussian Splatting technique has significantly advanced the construction of radiance fields from multi-view images, enabling real-time rendering. While point-based rasterization effectively reduces computational demands for rendering, it often struggles to accurately reconstruct the geometry of the target object, especially under strong lighting. To address this challenge, we introduce a novel approach that combines octree-based implicit surface representations with Gaussian splatting. Our method consists of four stages. Initially, it reconstructs a signed distance field (SDF) and a radiance field through volume rendering, encoding them in a low-resolution octree. The initial SDF represents the coarse geometry of the target object. Subsequently, it introduces 3D Gaussians as additional degrees of freedom, which are guided by the SDF. In the third stage, the optimized Gaussians further improve the accuracy of the SDF, allowing it to recover finer geometric details compared to the initial SDF obtained in the first stage. Finally, it adopts the refined SDF to further optimize the 3D Gaussians via splatting, eliminating those that contribute little to visual appearance. Experimental results show that our method, which leverages the distribution of 3D Gaussians with SDFs, reconstructs more accurate geometry, particularly in images with specular highlights caused by strong lighting.
☆ VDG: Vision-Only Dynamic Gaussian for Driving Simulation
Dynamic Gaussian splatting has led to impressive scene reconstruction and image synthesis advances in novel views. Existing methods, however, heavily rely on pre-computed poses and Gaussian initialization by Structure from Motion (SfM) algorithms or expensive sensors. For the first time, this paper addresses this issue by integrating self-supervised VO into our pose-free dynamic Gaussian method (VDG) to boost pose and depth initialization and static-dynamic decomposition. Moreover, VDG can work with only RGB image input and construct dynamic scenes at a faster speed and larger scenes compared with the pose-free dynamic view-synthesis method. We demonstrate the robustness of our approach via extensive quantitative and qualitative experiments. Our results show favorable performance over the state-of-the-art dynamic view synthesis methods. Additional video and source code will be posted on our project page at https://3d-aigc.github.io/VDG.
☆ Human-free Prompted Based Anomaly Detection: prompt optimization with Meta-guiding prompt scheme
Pre-trained vision-language models (VLMs) are highly adaptable to various downstream tasks through few-shot learning, making prompt-based anomaly detection a promising approach. Traditional methods depend on human-crafted prompts that require prior knowledge of specific anomaly types. Our goal is to develop a human-free prompt-based anomaly detection framework that optimally learns prompts through data-driven methods, eliminating the need for human intervention. The primary challenge in this approach is the lack of anomalous samples during the training phase. Additionally, the Vision Transformer (ViT)-based image encoder in VLMs is not ideal for pixel-wise anomaly segmentation due to a locality feature mismatch between the original image and the output feature map. To tackle the first challenge, we have developed the Object-Attention Anomaly Generation Module (OAGM) to synthesize anomaly samples for training. Furthermore, our Meta-Guiding Prompt-Tuning Scheme (MPTS) iteratively adjusts the gradient-based optimization direction of learnable prompts to avoid overfitting to the synthesized anomalies. For the second challenge, we propose Locality-Aware Attention, which ensures that each local patch feature attends only to nearby patch features, preserving the locality features corresponding to their original locations. This framework allows for the optimal prompt embeddings by searching in the continuous latent space via backpropagation, free from human semantic constraints. Additionally, the modified locality-aware attention improves the precision of pixel-wise anomaly segmentation.
☆ MammothModa: Multi-Modal Large Language Model
In this report, we introduce MammothModa, yet another multi-modal large language model (MLLM) designed to achieve state-of-the-art performance starting from an elementary baseline. We focus on three key design insights: (i) Integrating Visual Capabilities while Maintaining Complex Language Understanding: In addition to the vision encoder, we incorporated the Visual Attention Experts into the LLM to enhance its visual capabilities. (ii) Extending Context Window for High-Resolution and Long-Duration Visual Feature: We explore the Visual Merger Module to effectively reduce the token number of high-resolution images and incorporated frame position ids to avoid position interpolation. (iii) High-Quality Bilingual Datasets: We meticulously curated and filtered a high-quality bilingual multimodal dataset to reduce visual hallucinations. With above recipe we build MammothModa that consistently outperforms the state-of-the-art models, e.g., LLaVA-series, across main real-world visual language benchmarks without bells and whistles.
comment: Technical report
☆ VIPriors 4: Visual Inductive Priors for Data-Efficient Deep Learning Challenges
The fourth edition of the "VIPriors: Visual Inductive Priors for Data-Efficient Deep Learning" workshop features two data-impaired challenges. These challenges address the problem of training deep learning models for computer vision tasks with limited data. Participants are limited to training models from scratch using a low number of training samples and are not allowed to use any form of transfer learning. We aim to stimulate the development of novel approaches that incorporate inductive biases to improve the data efficiency of deep learning models. Significant advancements are made compared to the provided baselines, where winning solutions surpass the baselines by a considerable margin in both tasks. As in previous editions, these achievements are primarily attributed to heavy use of data augmentation policies and large model ensembles, though novel prior-based methods seem to contribute more to successful solutions compared to last year. This report highlights the key aspects of the challenges and their outcomes.
☆ Human-Aware 3D Scene Generation with Spatially-constrained Diffusion Models
Generating 3D scenes from human motion sequences supports numerous applications, including virtual reality and architectural design. However, previous auto-regression-based human-aware 3D scene generation methods have struggled to accurately capture the joint distribution of multiple objects and input humans, often resulting in overlapping object generation in the same space. To address this limitation, we explore the potential of diffusion models that simultaneously consider all input humans and the floor plan to generate plausible 3D scenes. Our approach not only satisfies all input human interactions but also adheres to spatial constraints with the floor plan. Furthermore, we introduce two spatial collision guidance mechanisms: human-object collision avoidance and object-room boundary constraints. These mechanisms help avoid generating scenes that conflict with human motions while respecting layout constraints. To enhance the diversity and accuracy of human-guided scene generation, we have developed an automated pipeline that improves the variety and plausibility of human-object interactions in the existing 3D FRONT HUMAN dataset. Extensive experiments on both synthetic and real-world datasets demonstrate that our framework can generate more natural and plausible 3D scenes with precise human-scene interactions, while significantly reducing human-object collisions compared to previous state-of-the-art methods. Our code and data will be made publicly available upon publication of this work.
☆ 3D-MVP: 3D Multiview Pretraining for Robotic Manipulation
Recent works have shown that visual pretraining on egocentric datasets using masked autoencoders (MAE) can improve generalization for downstream robotics tasks. However, these approaches pretrain only on 2D images, while many robotics applications require 3D scene understanding. In this work, we propose 3D-MVP, a novel approach for 3D multi-view pretraining using masked autoencoders. We leverage Robotic View Transformer (RVT), which uses a multi-view transformer to understand the 3D scene and predict gripper pose actions. We split RVT's multi-view transformer into visual encoder and action decoder, and pretrain its visual encoder using masked autoencoding on large-scale 3D datasets such as Objaverse. We evaluate 3D-MVP on a suite of virtual robot manipulation tasks and demonstrate improved performance over baselines. We also show promising results on a real robot platform with minimal finetuning. Our results suggest that 3D-aware pretraining is a promising approach to improve sample efficiency and generalization of vision-based robotic manipulation policies. We will release code and pretrained models for 3D-MVP to facilitate future research. Project site: https://jasonqsy.github.io/3DMVP
☆ SynRS3D: A Synthetic Dataset for Global 3D Semantic Understanding from Monocular Remote Sensing Imagery
Global semantic 3D understanding from single-view high-resolution remote sensing (RS) imagery is crucial for Earth Observation (EO). However, this task faces significant challenges due to the high costs of annotations and data collection, as well as geographically restricted data availability. To address these challenges, synthetic data offer a promising solution by being easily accessible and thus enabling the provision of large and diverse datasets. We develop a specialized synthetic data generation pipeline for EO and introduce SynRS3D, the largest synthetic RS 3D dataset. SynRS3D comprises 69,667 high-resolution optical images that cover six different city styles worldwide and feature eight land cover types, precise height information, and building change masks. To further enhance its utility, we develop a novel multi-task unsupervised domain adaptation (UDA) method, RS3DAda, coupled with our synthetic dataset, which facilitates the RS-specific transition from synthetic to real scenarios for land cover mapping and height estimation tasks, ultimately enabling global monocular 3D semantic understanding based on synthetic data. Extensive experiments on various real-world datasets demonstrate the adaptability and effectiveness of our synthetic dataset and proposed RS3DAda method. SynRS3D and related codes will be available.
☆ A Refer-and-Ground Multimodal Large Language Model for Biomedicine MICCAI2024
With the rapid development of multimodal large language models (MLLMs), especially their capabilities in visual chat through refer and ground functionalities, their significance is increasingly recognized. However, the biomedical field currently exhibits a substantial gap in this area, primarily due to the absence of a dedicated refer and ground dataset for biomedical images. To address this challenge, we devised the Med-GRIT-270k dataset. It comprises 270k question-and-answer pairs and spans eight distinct medical imaging modalities. Most importantly, it is the first dedicated to the biomedical domain and integrating refer and ground conversations. The key idea is to sample large-scale biomedical image-mask pairs from medical segmentation datasets and generate instruction datasets from text using chatGPT. Additionally, we introduce a Refer-and-Ground Multimodal Large Language Model for Biomedicine (BiRD) by using this dataset and multi-task instruction learning. Extensive experiments have corroborated the efficacy of the Med-GRIT-270k dataset and the multi-modal, fine-grained interactive capabilities of the BiRD model. This holds significant reference value for the exploration and development of intelligent biomedical assistants.
comment: Accepted by MICCAI2024
☆ Artificial Immune System of Secure Face Recognition Against Adversarial Attacks
Insect production for food and feed presents a promising supplement to ensure food safety and address the adverse impacts of agriculture on climate and environment in the future. However, optimisation is required for insect production to realise its full potential. This can be by targeted improvement of traits of interest through selective breeding, an approach which has so far been underexplored and underutilised in insect farming. Here we present a comprehensive review of the selective breeding framework in the context of insect production. We systematically evaluate adjustments of selective breeding techniques to the realm of insects and highlight the essential components integral to the breeding process. The discussion covers every step of a conventional breeding scheme, such as formulation of breeding objectives, phenotyping, estimation of genetic parameters and breeding values, selection of appropriate breeding strategies, and mitigation of issues associated with genetic diversity depletion and inbreeding. This review combines knowledge from diverse disciplines, bridging the gap between animal breeding, quantitative genetics, evolutionary biology, and entomology, offering an integrated view of the insect breeding research area and uniting knowledge which has previously remained scattered across diverse fields of expertise.
☆ Exclusive Style Removal for Cross Domain Novel Class Discovery
As a promising field in open-world learning, \textit{Novel Class Discovery} (NCD) is usually a task to cluster unseen novel classes in an unlabeled set based on the prior knowledge of labeled data within the same domain. However, the performance of existing NCD methods could be severely compromised when novel classes are sampled from a different distribution with the labeled ones. In this paper, we explore and establish the solvability of NCD in cross domain setting with the necessary condition that style information must be removed. Based on the theoretical analysis, we introduce an exclusive style removal module for extracting style information that is distinctive from the baseline features, thereby facilitating inference. Moreover, this module is easy to integrate with other NCD methods, acting as a plug-in to improve performance on novel classes with different distributions compared to the seen labeled set. Additionally, recognizing the non-negligible influence of different backbones and pre-training strategies on the performance of the NCD methods, we build a fair benchmark for future NCD research. Extensive experiments on three common datasets demonstrate the effectiveness of our proposed module.
☆ LOOK-M: Look-Once Optimization in KV Cache for Efficient Multimodal Long-Context Inference
Long-context Multimodal Large Language Models (MLLMs) demand substantial computational resources for inference as the growth of their multimodal Key-Value (KV) cache, in response to increasing input lengths, challenges memory and time efficiency. Unlike single-modality LLMs that manage only textual contexts, the KV cache of long-context MLLMs includes representations from multiple images with temporal and spatial relationships and related textual contexts. The predominance of image tokens means traditional optimizations for LLMs' KV caches are unsuitable for multimodal long-context settings, and no prior works have addressed this challenge. In this work, we introduce LOOK-M, a pioneering, fine-tuning-free approach that efficiently reduces the multimodal KV cache size while maintaining performance comparable to a full cache. We observe that during prompt prefill, the model prioritizes more textual attention over image features, and based on the multimodal interaction observation, a new proposed text-prior method is explored to compress the KV cache. Furthermore, to mitigate the degradation of image contextual information, we propose several compensatory strategies using KV pairs merging. LOOK-M demonstrates that with a significant reduction in KV Cache memory usage, such as reducing it by 80% in some cases, it not only achieves up to 1.5x faster decoding but also maintains or even enhances performance across a variety of long context multimodal tasks.
☆ CTS: Sim-to-Real Unsupervised Domain Adaptation on 3D Detection
Simulation data can be accurately labeled and have been expected to improve the performance of data-driven algorithms, including object detection. However, due to the various domain inconsistencies from simulation to reality (sim-to-real), cross-domain object detection algorithms usually suffer from dramatic performance drops. While numerous unsupervised domain adaptation (UDA) methods have been developed to address cross-domain tasks between real-world datasets, progress in sim-to-real remains limited. This paper presents a novel Complex-to-Simple (CTS) framework to transfer models from labeled simulation (source) to unlabeled reality (target) domains. Based on a two-stage detector, the novelty of this work is threefold: 1) developing fixed-size anchor heads and RoI augmentation to address size bias and feature diversity between two domains, thereby improving the quality of pseudo-label; 2) developing a novel corner-format representation of aleatoric uncertainty (AU) for the bounding box, to uniformly quantify pseudo-label quality; 3) developing a noise-aware mean teacher domain adaptation method based on AU, as well as object-level and frame-level sampling strategies, to migrate the impact of noisy labels. Experimental results demonstrate that our proposed approach significantly enhances the sim-to-real domain adaptation capability of 3D object detection models, outperforming state-of-the-art cross-domain algorithms, which are usually developed for real-to-real UDA tasks.
☆ Open-vocabulary Mobile Manipulation in Unseen Dynamic Environments with 3D Semantic Maps
Open-Vocabulary Mobile Manipulation (OVMM) is a crucial capability for autonomous robots, especially when faced with the challenges posed by unknown and dynamic environments. This task requires robots to explore and build a semantic understanding of their surroundings, generate feasible plans to achieve manipulation goals, adapt to environmental changes, and comprehend natural language instructions from humans. To address these challenges, we propose a novel framework that leverages the zero-shot detection and grounded recognition capabilities of pretraining visual-language models (VLMs) combined with dense 3D entity reconstruction to build 3D semantic maps. Additionally, we utilize large language models (LLMs) for spatial region abstraction and online planning, incorporating human instructions and spatial semantic context. We have built a 10-DoF mobile manipulation robotic platform JSR-1 and demonstrated in real-world robot experiments that our proposed framework can effectively capture spatial semantics and process natural language user instructions for zero-shot OVMM tasks under dynamic environment settings, with an overall navigation and task success rate of 80.95% and 73.33% over 105 episodes, and better SFT and SPL by 157.18% and 19.53% respectively compared to the baseline. Furthermore, the framework is capable of replanning towards the next most probable candidate location based on the spatial semantic context derived from the 3D semantic map when initial plans fail, keeping an average success rate of 76.67%.
comment: Open-vocabulary, Mobile Manipulation, Dynamic Environments, 3D Semantic Maps, Zero-shot, LLMs, VLMs, 18 pages, 2 figures
☆ The Surprising Effectiveness of Multimodal Large Language Models for Video Moment Retrieval
Recent studies have shown promising results in utilizing multimodal large language models (MLLMs) for computer vision tasks such as object detection and semantic segmentation. However, many challenging video tasks remain under-explored. Video-language tasks necessitate spatial and temporal comprehension and require significant compute. Therefore, prior works have developed complex, highly specialized architectures or leveraged additional input signals such as video transcripts to best encode contextual and temporal information, which limits their generality and can be impractical. One particularly challenging task is video moment retrieval, which requires precise temporal and contextual grounding. This work demonstrates the surprising effectiveness of leveraging image-text pretrained MLLMs for moment retrieval. We introduce Mr. BLIP (Mr. as in Moment Retrieval), a multimodal, single-stage model that requires no expensive video-language pretraining, no additional input signal (e.g., no transcript or audio), and has a simpler and more versatile design than prior state-of-the-art methods. We achieve a new state-of-the-art in moment retrieval on the widely used benchmarks Charades-STA, QVHighlights, and ActivityNet Captions and illustrate our method's versatility with a new state-of-the-art in temporal action localization on ActivityNet. Notably, we attain over 9% (absolute) higher Recall (at 0.5 and 0.7 IoU) on the challenging long-video multi-moment QVHighlights benchmark. Our code is publicly available.
comment: 16 pages, 3 figures
☆ A Lung Nodule Dataset with Histopathology-based Cancer Type Annotation
Recently, Computer-Aided Diagnosis (CAD) systems have emerged as indispensable tools in clinical diagnostic workflows, significantly alleviating the burden on radiologists. Nevertheless, despite their integration into clinical settings, CAD systems encounter limitations. Specifically, while CAD systems can achieve high performance in the detection of lung nodules, they face challenges in accurately predicting multiple cancer types. This limitation can be attributed to the scarcity of publicly available datasets annotated with expert-level cancer type information. This research aims to bridge this gap by providing publicly accessible datasets and reliable tools for medical diagnosis, facilitating a finer categorization of different types of lung diseases so as to offer precise treatment recommendations. To achieve this objective, we curated a diverse dataset of lung Computed Tomography (CT) images, comprising 330 annotated nodules (nodules are labeled as bounding boxes) from 95 distinct patients. The quality of the dataset was evaluated using a variety of classical classification and detection models, and these promising results demonstrate that the dataset has a feasible application and further facilitate intelligent auxiliary diagnosis.
☆ MFDNet: Multi-Frequency Deflare Network for Efficient Nighttime Flare Removal
When light is scattered or reflected accidentally in the lens, flare artifacts may appear in the captured photos, affecting the photos' visual quality. The main challenge in flare removal is to eliminate various flare artifacts while preserving the original content of the image. To address this challenge, we propose a lightweight Multi-Frequency Deflare Network (MFDNet) based on the Laplacian Pyramid. Our network decomposes the flare-corrupted image into low and high-frequency bands, effectively separating the illumination and content information in the image. The low-frequency part typically contains illumination information, while the high-frequency part contains detailed content information. So our MFDNet consists of two main modules: the Low-Frequency Flare Perception Module (LFFPM) to remove flare in the low-frequency part and the Hierarchical Fusion Reconstruction Module (HFRM) to reconstruct the flare-free image. Specifically, to perceive flare from a global perspective while retaining detailed information for image restoration, LFFPM utilizes Transformer to extract global information while utilizing a convolutional neural network to capture detailed local features. Then HFRM gradually fuses the outputs of LFFPM with the high-frequency component of the image through feature aggregation. Moreover, our MFDNet can reduce the computational cost by processing in multiple frequency bands instead of directly removing the flare on the input image. Experimental results demonstrate that our approach outperforms state-of-the-art methods in removing nighttime flare on real-world and synthetic images from the Flare7K dataset. Furthermore, the computational complexity of our model is remarkably low.
comment: Accepted by The Visual Computer journal
☆ Few-Shot Medical Image Segmentation with High-Fidelity Prototypes
Few-shot Semantic Segmentation (FSS) aims to adapt a pretrained model to new classes with as few as a single labelled training sample per class. Despite the prototype based approaches have achieved substantial success, existing models are limited to the imaging scenarios with considerably distinct objects and not highly complex background, e.g., natural images. This makes such models suboptimal for medical imaging with both conditions invalid. To address this problem, we propose a novel Detail Self-refined Prototype Network (DSPNet) to constructing high-fidelity prototypes representing the object foreground and the background more comprehensively. Specifically, to construct global semantics while maintaining the captured detail semantics, we learn the foreground prototypes by modelling the multi-modal structures with clustering and then fusing each in a channel-wise manner. Considering that the background often has no apparent semantic relation in the spatial dimensions, we integrate channel-specific structural information under sparse channel-aware regulation. Extensive experiments on three challenging medical image benchmarks show the superiority of DSPNet over previous state-of-the-art methods.
☆ EgoVideo: Exploring Egocentric Foundation Model and Downstream Adaptation CVPR 2024
In this report, we present our solutions to the EgoVis Challenges in CVPR 2024, including five tracks in the Ego4D challenge and three tracks in the EPIC-Kitchens challenge. Building upon the video-language two-tower model and leveraging our meticulously organized egocentric video data, we introduce a novel foundation model called EgoVideo. This model is specifically designed to cater to the unique characteristics of egocentric videos and provides strong support for our competition submissions. In the Ego4D challenges, we tackle various tasks including Natural Language Queries, Step Grounding, Moment Queries, Short-term Object Interaction Anticipation, and Long-term Action Anticipation. In addition, we also participate in the EPIC-Kitchens challenge, where we engage in the Action Recognition, Multiple Instance Retrieval, and Domain Adaptation for Action Recognition tracks. By adapting EgoVideo to these diverse tasks, we showcase its versatility and effectiveness in different egocentric video analysis scenarios, demonstrating the powerful representation ability of EgoVideo as an egocentric foundation model. Our codebase and pretrained models are publicly available at https://github.com/OpenGVLab/EgoVideo.
comment: Champion solutions in the EgoVis CVPR 2024 workshop
☆ Speech2UnifiedExpressions: Synchronous Synthesis of Co-Speech Affective Face and Body Expressions from Affordable Inputs
We present a multimodal learning-based method to simultaneously synthesize co-speech facial expressions and upper-body gestures for digital characters using RGB video data captured using commodity cameras. Our approach learns from sparse face landmarks and upper-body joints, estimated directly from video data, to generate plausible emotive character motions. Given a speech audio waveform and a token sequence of the speaker's face landmark motion and body-joint motion computed from a video, our method synthesizes the motion sequences for the speaker's face landmarks and body joints to match the content and the affect of the speech. We design a generator consisting of a set of encoders to transform all the inputs into a multimodal embedding space capturing their correlations, followed by a pair of decoders to synthesize the desired face and pose motions. To enhance the plausibility of synthesis, we use an adversarial discriminator that learns to differentiate between the face and pose motions computed from the original videos and our synthesized motions based on their affective expressions. To evaluate our approach, we extend the TED Gesture Dataset to include view-normalized, co-speech face landmarks in addition to body gestures. We demonstrate the performance of our method through thorough quantitative and qualitative experiments on multiple evaluation metrics and via a user study. We observe that our method results in low reconstruction error and produces synthesized samples with diverse facial expressions and body gestures for digital characters.
comment: 14 pages, 7 figures, 2 tables
☆ Leveraging Pre-trained Models for FF-to-FFPE Histopathological Image Translation
The two primary types of Hematoxylin and Eosin (H&E) slides in histopathology are Formalin-Fixed Paraffin-Embedded (FFPE) and Fresh Frozen (FF). FFPE slides offer high quality histopathological images but require a labor-intensive acquisition process. In contrast, FF slides can be prepared quickly, but the image quality is relatively poor. Our task is to translate FF images into FFPE style, thereby improving the image quality for diagnostic purposes. In this paper, we propose Diffusion-FFPE, a method for FF-to-FFPE histopathological image translation using a pre-trained diffusion model. Specifically, we employ a one-step diffusion model as the generator and fine-tune it with LoRA adapters using adversarial learning objectives. To ensure that the model effectively captures both global structural information and local details, we propose a multi-scale feature fusion (MFF) module. This module utilizes two VAE encoders to extract features of varying image sizes and performs feature fusion before feeding them into the UNet. Furthermore, we utilize a pre-trained vision-language model for histopathology as the backbone for the discriminator to further improve performance We conducted FF-to-FFPE translation experiments on the TCGA-NSCLC datasets, and our method achieved better performance compared to other methods. The code and models are released at https://github.com/QilaiZhang/Diffusion-FFPE.
☆ ViT-1.58b: Mobile Vision Transformers in the 1-bit Era
Vision Transformers (ViTs) have achieved remarkable performance in various image classification tasks by leveraging the attention mechanism to process image patches as tokens. However, the high computational and memory demands of ViTs pose significant challenges for deployment in resource-constrained environments. This paper introduces ViT-1.58b, a novel 1.58-bit quantized ViT model designed to drastically reduce memory and computational overhead while preserving competitive performance. ViT-1.58b employs ternary quantization, which refines the balance between efficiency and accuracy by constraining weights to {-1, 0, 1} and quantizing activations to 8-bit precision. Our approach ensures efficient scaling in terms of both memory and computation. Experiments on CIFAR-10 and ImageNet-1k demonstrate that ViT-1.58b maintains comparable accuracy to full-precision Vit, with significant reductions in memory usage and computational costs. This paper highlights the potential of extreme quantization techniques in developing sustainable AI solutions and contributes to the broader discourse on efficient model deployment in practical applications. Our code and weights are available at https://github.com/DLYuanGod/ViT-1.58b.
☆ A Multi-Stage Goal-Driven Network for Pedestrian Trajectory Prediction
Pedestrian trajectory prediction plays a pivotal role in ensuring the safety and efficiency of various applications, including autonomous vehicles and traffic management systems. This paper proposes a novel method for pedestrian trajectory prediction, called multi-stage goal-driven network (MGNet). Diverging from prior approaches relying on stepwise recursive prediction and the singular forecasting of a long-term goal, MGNet directs trajectory generation by forecasting intermediate stage goals, thereby reducing prediction errors. The network comprises three main components: a conditional variational autoencoder (CVAE), an attention module, and a multi-stage goal evaluator. Trajectories are encoded using conditional variational autoencoders to acquire knowledge about the approximate distribution of pedestrians' future trajectories, and combined with an attention mechanism to capture the temporal dependency between trajectory sequences. The pivotal module is the multi-stage goal evaluator, which utilizes the encoded feature vectors to predict intermediate goals, effectively minimizing cumulative errors in the recursive inference process. The effectiveness of MGNet is demonstrated through comprehensive experiments on the JAAD and PIE datasets. Comparative evaluations against state-of-the-art algorithms reveal significant performance improvements achieved by our proposed method.
comment: Paper accepted by 5th International Conference on Computer Vision, Image and Deep Learning (CVIDL 2024)
☆ ScanFormer: Referring Expression Comprehension by Iteratively Scanning CVPR2024
Referring Expression Comprehension (REC) aims to localize the target objects specified by free-form natural language descriptions in images. While state-of-the-art methods achieve impressive performance, they perform a dense perception of images, which incorporates redundant visual regions unrelated to linguistic queries, leading to additional computational overhead. This inspires us to explore a question: can we eliminate linguistic-irrelevant redundant visual regions to improve the efficiency of the model? Existing relevant methods primarily focus on fundamental visual tasks, with limited exploration in vision-language fields. To address this, we propose a coarse-to-fine iterative perception framework, called ScanFormer. It can iteratively exploit the image scale pyramid to extract linguistic-relevant visual patches from top to bottom. In each iteration, irrelevant patches are discarded by our designed informativeness prediction. Furthermore, we propose a patch selection strategy for discarded patches to accelerate inference. Experiments on widely used datasets, namely RefCOCO, RefCOCO+, RefCOCOg, and ReferItGame, verify the effectiveness of our method, which can strike a balance between accuracy and efficiency.
comment: Accepted by CVPR2024
☆ Multimodal foundation world models for generalist embodied agents
Learning generalist embodied agents, able to solve multitudes of tasks in different domains is a long-standing problem. Reinforcement learning (RL) is hard to scale up as it requires a complex reward design for each task. In contrast, language can specify tasks in a more natural way. Current foundation vision-language models (VLMs) generally require fine-tuning or other adaptations to be functional, due to the significant domain gap. However, the lack of multimodal data in such domains represents an obstacle toward developing foundation models for embodied applications. In this work, we overcome these problems by presenting multimodal foundation world models, able to connect and align the representation of foundation VLMs with the latent space of generative world models for RL, without any language annotations. The resulting agent learning framework, GenRL, allows one to specify tasks through vision and/or language prompts, ground them in the embodied domain's dynamics, and learns the corresponding behaviors in imagination. As assessed through large-scale multi-task benchmarking, GenRL exhibits strong multi-task generalization performance in several locomotion and manipulation domains. Furthermore, by introducing a data-free RL strategy, it lays the groundwork for foundation model-based RL for generalist embodied agents.
☆ Towards Synchronous Memorizability and Generalizability with Site-Modulated Diffusion Replay for Cross-Site Continual Segmentation
The ability to learn sequentially from different data sites is crucial for a deep network in solving practical medical image diagnosis problems due to privacy restrictions and storage limitations. However, adapting on incoming site leads to catastrophic forgetting on past sites and decreases generalizablity on unseen sites. Existing Continual Learning (CL) and Domain Generalization (DG) methods have been proposed to solve these two challenges respectively, but none of them can address both simultaneously. Recognizing this limitation, this paper proposes a novel training paradigm, learning towards Synchronous Memorizability and Generalizability (SMG-Learning). To achieve this, we create the orientational gradient alignment to ensure memorizability on previous sites, and arbitrary gradient alignment to enhance generalizability on unseen sites. This approach is named as Parallel Gradient Alignment (PGA). Furthermore, we approximate the PGA as dual meta-objectives using the first-order Taylor expansion to reduce computational cost of aligning gradients. Considering that performing gradient alignments, especially for previous sites, is not feasible due to the privacy constraints, we design a Site-Modulated Diffusion (SMD) model to generate images with site-specific learnable prompts, replaying images have similar data distributions as previous sites. We evaluate our method on two medical image segmentation tasks, where data from different sites arrive sequentially. Experimental results show that our method efficiently enhances both memorizability and generalizablity better than other state-of-the-art methods, delivering satisfactory performance across all sites. Our code will be available at: https://github.com/dyxu-cuhkcse/SMG-Learning.
☆ Real-time Structure Flow
This article introduces the structure flow field; a flow field that can provide high-speed robo-centric motion information for motion control of highly dynamic robotic devices and autonomous vehicles. Structure flow is the angular 3D velocity of the scene at a given pixel. We show that structure flow posses an elegant evolution model in the form of a Partial Differential Equation (PDE) that enables us to create dense flow predictions forward in time. We exploit this structure to design a predictor-update algorithm to compute structure flow in real time using image and depth measurements. The prediction stage takes the previous estimate of the structure flow and propagates it forward in time using a numerical implementation of the structure flow PDE. The predicted flow is then updated using new image and depth data. The algorithm runs up to 600 Hz on a Desktop GPU machine for 512x512 images with flow values up to 8 pixels. We provide ground truth validation on high-speed synthetic image sequences as well as results on real-life video on driving scenarios.
☆ View-Invariant Pixelwise Anomaly Detection in Multi-object Scenes with Adaptive View Synthesis
The inspection and monitoring of infrastructure assets typically requires identifying visual anomalies in scenes periodically photographed over time. Images collected manually or with robots such as unmanned aerial vehicles from the same scene at different instances in time are typically not perfectly aligned. Supervised segmentation methods can be applied to identify known problems, but unsupervised anomaly detection approaches are required when unknown anomalies occur. Current unsupervised pixel-level anomaly detection methods have mainly been developed for industrial settings where the camera position is known and constant. However, we find that these methods fail to generalize to the case when images are not perfectly aligned. We term the problem of unsupervised anomaly detection between two such imperfectly aligned sets of images as Scene Anomaly Detection (Scene AD). We present a novel network termed OmniAD to address the Scene AD problem posed. Specifically, we refine the anomaly detection method reverse distillation to achieve a 40% increase in pixel-level anomaly detection performance. The network's performance is further demonstrated to improve with two new data augmentation strategies proposed that leverage novel view synthesis and camera localization to improve generalization. We validate our approach with qualitative and quantitative results on a new dataset, ToyCity, the first Scene AD dataset with multiple objects, as well as on the established single object-centric dataset, MAD. https://drags99.github.io/OmniAD/
☆ Expressive Keypoints for Skeleton-based Action Recognition via Skeleton Transformation
In the realm of skeleton-based action recognition, the traditional methods which rely on coarse body keypoints fall short of capturing subtle human actions. In this work, we propose Expressive Keypoints that incorporates hand and foot details to form a fine-grained skeletal representation, improving the discriminative ability for existing models in discerning intricate actions. To efficiently model Expressive Keypoints, the Skeleton Transformation strategy is presented to gradually downsample the keypoints and prioritize prominent joints by allocating the importance weights. Additionally, a plug-and-play Instance Pooling module is exploited to extend our approach to multi-person scenarios without surging computation costs. Extensive experimental results over seven datasets present the superiority of our method compared to the state-of-the-art for skeleton-based human action recognition. Code is available at https://github.com/YijieYang23/SkeleT-GCN.
☆ Changen2: Multi-Temporal Remote Sensing Generative Change Foundation Model ICCV 2023
Our understanding of the temporal dynamics of the Earth's surface has been advanced by deep vision models, which often require lots of labeled multi-temporal images for training. However, collecting, preprocessing, and annotating multi-temporal remote sensing images at scale is non-trivial since it is expensive and knowledge-intensive. In this paper, we present change data generators based on generative models, which are cheap and automatic, alleviating these data problems. Our main idea is to simulate a stochastic change process over time. We describe the stochastic change process as a probabilistic graphical model (GPCM), which factorizes the complex simulation problem into two more tractable sub-problems, i.e., change event simulation and semantic change synthesis. To solve these two problems, we present Changen2, a GPCM with a resolution-scalable diffusion transformer which can generate time series of images and their semantic and change labels from labeled or unlabeled single-temporal images. Changen2 is a generative change foundation model that can be trained at scale via self-supervision, and can produce change supervisory signals from unlabeled single-temporal images. Unlike existing foundation models, Changen2 synthesizes change data to train task-specific foundation models for change detection. The resulting model possesses inherent zero-shot change detection capabilities and excellent transferability. Experiments suggest Changen2 has superior spatiotemporal scalability, e.g., Changen2 model trained on 256$^2$ pixel single-temporal images can yield time series of any length and resolutions of 1,024$^2$ pixels. Changen2 pre-trained models exhibit superior zero-shot performance (narrowing the performance gap to 3% on LEVIR-CD and approximately 10% on both S2Looking and SECOND, compared to fully supervised counterparts) and transferability across multiple types of change tasks.
comment: The enhanced extension of our ICCV 2023 (Changen)
☆ DICE: End-to-end Deformation Capture of Hand-Face Interactions from a Single Image
Reconstructing 3D hand-face interactions with deformations from a single image is a challenging yet crucial task with broad applications in AR, VR, and gaming. The challenges stem from self-occlusions during single-view hand-face interactions, diverse spatial relationships between hands and face, complex deformations, and the ambiguity of the single-view setting. The first and only method for hand-face interaction recovery, Decaf, introduces a global fitting optimization guided by contact and deformation estimation networks trained on studio-collected data with 3D annotations. However, Decaf suffers from a time-consuming optimization process and limited generalization capability due to its reliance on 3D annotations of hand-face interaction data. To address these issues, we present DICE, the first end-to-end method for Deformation-aware hand-face Interaction reCovEry from a single image. DICE estimates the poses of hands and faces, contacts, and deformations simultaneously using a Transformer-based architecture. It features disentangling the regression of local deformation fields and global mesh vertex locations into two network branches, enhancing deformation and contact estimation for precise and robust hand-face mesh recovery. To improve generalizability, we propose a weakly-supervised training approach that augments the training set using in-the-wild images without 3D ground-truth annotations, employing the depths of 2D keypoints estimated by off-the-shelf models and adversarial priors of poses for supervision. Our experiments demonstrate that DICE achieves state-of-the-art performance on a standard benchmark and in-the-wild data in terms of accuracy and physical plausibility. Additionally, our method operates at an interactive rate (20 fps) on an Nvidia 4090 GPU, whereas Decaf requires more than 15 seconds for a single image. Our code will be publicly available upon publication.
comment: 23 pages, 9 figures, 3 tables
☆ MUMU: Bootstrapping Multimodal Image Generation from Text-to-Image Data
We train a model to generate images from multimodal prompts of interleaved text and images such as "a man and his dog in an animated style." We bootstrap a multimodal dataset by extracting semantically meaningful image crops corresponding to words in the image captions of synthetically generated and publicly available text-image data. Our model, MUMU, is composed of a vision-language model encoder with a diffusion decoder and is trained on a single 8xH100 GPU node. Despite being only trained on crops from the same image, MUMU learns to compose inputs from different images into a coherent output. For example, an input of a realistic person and a cartoon will output the same person in the cartoon style, and an input of a standing subject and a scooter will output the subject riding the scooter. As a result, our model generalizes to tasks such as style transfer and character consistency. Our results show the promise of using multimodal models as general purpose controllers for image generation.
☆ WV-Net: A foundation model for SAR WV-mode satellite imagery trained using contrastive self-supervised learning on 10 million images NeurIPS 2024
The European Space Agency's Copernicus Sentinel-1 (S-1) mission is a constellation of C-band synthetic aperture radar (SAR) satellites that provide unprecedented monitoring of the world's oceans. S-1's wave mode (WV) captures 20x20 km image patches at 5 m pixel resolution and is unaffected by cloud cover or time-of-day. The mission's open data policy has made SAR data easily accessible for a range of applications, but the need for manual image annotations is a bottleneck that hinders the use of machine learning methods. This study uses nearly 10 million WV-mode images and contrastive self-supervised learning to train a semantic embedding model called WV-Net. In multiple downstream tasks, WV-Net outperforms a comparable model that was pre-trained on natural images (ImageNet) with supervised learning. Experiments show improvements for estimating wave height (0.50 vs 0.60 RMSE using linear probing), estimating near-surface air temperature (0.90 vs 0.97 RMSE), and performing multilabel-classification of geophysical and atmospheric phenomena (0.96 vs 0.95 micro-averaged AUROC). WV-Net embeddings are also superior in an unsupervised image-retrieval task and scale better in data-sparse settings. Together, these results demonstrate that WV-Net embeddings can support geophysical research by providing a convenient foundation model for a variety of data analysis and exploration tasks.
comment: 20 pages, 9 figures, submitted to NeurIPS 2024
☆ 3D Feature Distillation with Object-Centric Priors
Grounding natural language to the physical world is a ubiquitous topic with a wide range of applications in computer vision and robotics. Recently, 2D vision-language models such as CLIP have been widely popularized, due to their impressive capabilities for open-vocabulary grounding in 2D images. Recent works aim to elevate 2D CLIP features to 3D via feature distillation, but either learn neural fields that are scene-specific and hence lack generalization, or focus on indoor room scan data that require access to multiple camera views, which is not practical in robot manipulation scenarios. Additionally, related methods typically fuse features at pixel-level and assume that all camera views are equally informative. In this work, we show that this approach leads to sub-optimal 3D features, both in terms of grounding accuracy, as well as segmentation crispness. To alleviate this, we propose a multi-view feature fusion strategy that employs object-centric priors to eliminate uninformative views based on semantic information, and fuse features at object-level via instance segmentation masks. To distill our object-centric 3D features, we generate a large-scale synthetic multi-view dataset of cluttered tabletop scenes, spawning 15k scenes from over 3300 unique object instances, which we make publicly available. We show that our method reconstructs 3D CLIP features with improved grounding capacity and spatial consistency, while doing so from single-view RGB-D, thus departing from the assumption of multiple camera views at test time. Finally, we show that our approach can generalize to novel tabletop domains and be re-purposed for 3D instance segmentation without fine-tuning, and demonstrate its utility for language-guided robotic grasping in clutter
comment: Submitted CoRL-24
☆ Towards Open-World Grasping with Large Vision-Language Models
The ability to grasp objects in-the-wild from open-ended language instructions constitutes a fundamental challenge in robotics. An open-world grasping system should be able to combine high-level contextual with low-level physical-geometric reasoning in order to be applicable in arbitrary scenarios. Recent works exploit the web-scale knowledge inherent in large language models (LLMs) to plan and reason in robotic context, but rely on external vision and action models to ground such knowledge into the environment and parameterize actuation. This setup suffers from two major bottlenecks: a) the LLM's reasoning capacity is constrained by the quality of visual grounding, and b) LLMs do not contain low-level spatial understanding of the world, which is essential for grasping in contact-rich scenarios. In this work we demonstrate that modern vision-language models (VLMs) are capable of tackling such limitations, as they are implicitly grounded and can jointly reason about semantics and geometry. We propose OWG, an open-world grasping pipeline that combines VLMs with segmentation and grasp synthesis models to unlock grounded world understanding in three stages: open-ended referring segmentation, grounded grasp planning and grasp ranking via contact reasoning, all of which can be applied zero-shot via suitable visual prompting mechanisms. We conduct extensive evaluation in cluttered indoor scene datasets to showcase OWG's robustness in grounding from open-ended language, as well as open-world robotic grasping experiments in both simulation and hardware that demonstrate superior performance compared to previous supervised and zero-shot LLM-based methods.
comment: Submitted CoRL24
☆ Dynamic Gaussian Marbles for Novel View Synthesis of Casual Monocular Videos
Gaussian splatting has become a popular representation for novel-view synthesis, exhibiting clear strengths in efficiency, photometric quality, and compositional edibility. Following its success, many works have extended Gaussians to 4D, showing that dynamic Gaussians maintain these benefits while also tracking scene geometry far better than alternative representations. Yet, these methods assume dense multi-view videos as supervision, constraining their use to controlled capture settings. In this work, we extend the capability of Gaussian scene representations to casually captured monocular videos. We show that existing 4D Gaussian methods dramatically fail in this setup because the monocular setting is underconstrained. Building off this finding, we propose Dynamic Gaussian Marbles (DGMarbles), consisting of three core modifications that target the difficulties of the monocular setting. First, DGMarbles uses isotropic Gaussian "marbles", reducing the degrees of freedom of each Gaussian, and constraining the optimization to focus on motion and appearance over local shape. Second, DGMarbles employs a hierarchical divide-and-conquer learning strategy to guide the optimization towards solutions with coherent motion. Finally, DGMarbles adds image-level and geometry-level priors into the optimization, including a tracking loss that takes advantage of recent progress in point tracking. By constraining the optimization in these ways, DGMarbles learns Gaussian trajectories that enable novel-view rendering and accurately capture the 3D motion of the scene elements. We evaluate on the (monocular) Nvidia Dynamic Scenes dataset and the Dycheck iPhone dataset, and show that DGMarbles significantly outperforms other Gaussian baselines in quality, and is on-par with non-Gaussian representations, all while maintaining the efficiency, compositionality, editability, and tracking benefits of Gaussians.
☆ SpY: A Context-Based Approach to Spacecraft Component Detection
This paper focuses on autonomously characterizing components such as solar panels, body panels, antennas, and thrusters of an unknown resident space object (RSO) using camera feed to aid autonomous on-orbit servicing (OOS) and active debris removal. Significant research has been conducted in this area using convolutional neural networks (CNNs). While CNNs are powerful at learning patterns and performing object detection, they struggle with missed detections and misclassifications in environments different from the training data, making them unreliable for safety in high-stakes missions like OOS. Additionally, failures exhibited by CNNs are often easily rectifiable by humans using commonsense reasoning and contextual knowledge. Embedding such reasoning in an object detector could improve detection accuracy. To validate this hypothesis, this paper presents an end-to-end object detector called SpaceYOLOv2 (SpY), which leverages the generalizability of CNNs while incorporating contextual knowledge using traditional computer vision techniques. SpY consists of two main components: a shape detector and the SpaceYOLO classifier (SYC). The shape detector uses CNNs to detect primitive shapes of RSOs and SYC associates these shapes with contextual knowledge, such as color and texture, to classify them as spacecraft components or "unknown" if the detected shape is uncertain. SpY's modular architecture allows customizable usage of contextual knowledge to improve detection performance, or SYC as a secondary fail-safe classifier with an existing spacecraft component detector. Performance evaluations on hardware-in-the-loop images of a mock-up spacecraft demonstrate that SpY is accurate and an ensemble of SpY with YOLOv5 trained for satellite component detection improved the performance by 23.4% in recall, demonstrating enhanced safety for vision-based navigation tasks.
comment: 12 pages, 9 figures
☆ Geometric Features Enhanced Human-Object Interaction Detection
Cameras are essential vision instruments to capture images for pattern detection and measurement. Human-object interaction (HOI) detection is one of the most popular pattern detection approaches for captured human-centric visual scenes. Recently, Transformer-based models have become the dominant approach for HOI detection due to their advanced network architectures and thus promising results. However, most of them follow the one-stage design of vanilla Transformer, leaving rich geometric priors under-exploited and leading to compromised performance especially when occlusion occurs. Given that geometric features tend to outperform visual ones in occluded scenarios and offer information that complements visual cues, we propose a novel end-to-end Transformer-style HOI detection model, i.e., geometric features enhanced HOI detector (GeoHOI). One key part of the model is a new unified self-supervised keypoint learning method named UniPointNet that bridges the gap of consistent keypoint representation across diverse object categories, including humans. GeoHOI effectively upgrades a Transformer-based HOI detector benefiting from the keypoints similarities measuring the likelihood of human-object interactions as well as local keypoint patches to enhance interaction query representation, so as to boost HOI predictions. Extensive experiments show that the proposed method outperforms the state-of-the-art models on V-COCO and achieves competitive performance on HICO-DET. Case study results on the post-disaster rescue with vision-based instruments showcase the applicability of the proposed GeoHOI in real-world applications.
comment: Accepted to IEEE TIM
☆ CSI4Free: GAN-Augmented mmWave CSI for Improved Pose Classification
In recent years, Joint Communication and Sensing (JC&S), has demonstrated significant success, particularly in utilizing sub-6 GHz frequencies with commercial-off-the-shelf (COTS) Wi-Fi devices for applications such as localization, gesture recognition, and pose classification. Deep learning and the existence of large public datasets has been pivotal in achieving such results. However, at mmWave frequencies (30-300 GHz), which has shown potential for more accurate sensing performance, there is a noticeable lack of research in the domain of COTS Wi-Fi sensing. Challenges such as limited research hardware, the absence of large datasets, limited functionality in COTS hardware, and the complexities of data collection present obstacles to a comprehensive exploration of this field. In this work, we aim to address these challenges by developing a method that can generate synthetic mmWave channel state information (CSI) samples. In particular, we use a generative adversarial network (GAN) on an existing dataset, to generate 30,000 additional CSI samples. The augmented samples exhibit a remarkable degree of consistency with the original data, as indicated by the notably high GAN-train and GAN-test scores. Furthermore, we integrate the augmented samples in training a pose classification model. We observe that the augmented samples complement the real data and improve the generalization of the classification model.
☆ IDA-UIE: An Iterative Framework for Deep Network-based Degradation Aware Underwater Image Enhancement
Underwater image quality is affected by fluorescence, low illumination, absorption, and scattering. Recent works in underwater image enhancement have proposed different deep network architectures to handle these problems. Most of these works have proposed a single network to handle all the challenges. We believe that deep networks trained for specific conditions deliver better performance than a single network learned from all degradation cases. Accordingly, the first contribution of this work lies in the proposal of an iterative framework where a single dominant degradation condition is identified and resolved. This proposal considers the following eight degradation conditions -- low illumination, low contrast, haziness, blurred image, presence of noise and color imbalance in three different channels. A deep network is designed to identify the dominant degradation condition. Accordingly, an appropriate deep network is selected for degradation condition-specific enhancement. The second contribution of this work is the construction of degradation condition specific datasets from good quality images of two standard datasets (UIEB and EUVP). This dataset is used to learn the condition specific enhancement networks. The proposed approach is found to outperform nine baseline methods on UIEB and EUVP datasets.
♻ ☆ Situational Awareness Matters in 3D Vision Language Reasoning CVPR 2024
Being able to carry out complicated vision language reasoning tasks in 3D space represents a significant milestone in developing household robots and human-centered embodied AI. In this work, we demonstrate that a critical and distinct challenge in 3D vision language reasoning is situational awareness, which incorporates two key components: (1) The autonomous agent grounds its self-location based on a language prompt. (2) The agent answers open-ended questions from the perspective of its calculated position. To address this challenge, we introduce SIG3D, an end-to-end Situation-Grounded model for 3D vision language reasoning. We tokenize the 3D scene into sparse voxel representation and propose a language-grounded situation estimator, followed by a situated question answering module. Experiments on the SQA3D and ScanQA datasets show that SIG3D outperforms state-of-the-art models in situation estimation and question answering by a large margin (e.g., an enhancement of over 30% on situation estimation accuracy). Subsequent analysis corroborates our architectural design choices, explores the distinct functions of visual and textual tokens, and highlights the importance of situational awareness in the domain of 3D question answering.
comment: CVPR 2024. Project Page: https://yunzeman.github.io/situation3d
♻ ☆ Invertible Consistency Distillation for Text-Guided Image Editing in Around 7 Steps
Diffusion distillation represents a highly promising direction for achieving faithful text-to-image generation in a few sampling steps. However, despite recent successes, existing distilled models still do not provide the full spectrum of diffusion abilities, such as real image inversion, which enables many precise image manipulation methods. This work aims to enrich distilled text-to-image diffusion models with the ability to effectively encode real images into their latent space. To this end, we introduce invertible Consistency Distillation (iCD), a generalized consistency distillation framework that facilitates both high-quality image synthesis and accurate image encoding in only 3-4 inference steps. Though the inversion problem for text-to-image diffusion models gets exacerbated by high classifier-free guidance scales, we notice that dynamic guidance significantly reduces reconstruction errors without noticeable degradation in generation performance. As a result, we demonstrate that iCD equipped with dynamic guidance may serve as a highly effective tool for zero-shot text-guided image editing, competing with more expensive state-of-the-art alternatives.
comment: Project page: https://yandex-research.github.io/invertible-cd/
♻ ☆ Unsupervised Open-Vocabulary Object Localization in Videos ICCV 2023
In this paper, we show that recent advances in video representation learning and pre-trained vision-language models allow for substantial improvements in self-supervised video object localization. We propose a method that first localizes objects in videos via an object-centric approach with slot attention and then assigns text to the obtained slots. The latter is achieved by an unsupervised way to read localized semantic information from the pre-trained CLIP model. The resulting video object localization is entirely unsupervised apart from the implicit annotation contained in CLIP, and it is effectively the first unsupervised approach that yields good results on regular video benchmarks.
comment: Accepted by ICCV 2023; Presented on CVPR 2024 Workshop CORR; Project Page:https://github.com/amazon-science/object-centric-vol
♻ ☆ Towards Arbitrary-Scale Histopathology Image Super-resolution: An Efficient Dual-branch Framework via Implicit Self-texture Enhancement
High-quality whole-slide scanners are expensive, complex, and time-consuming, thus limiting the acquisition and utilization of high-resolution pathology whole-slide images in daily clinical work. Deep learning-based single-image super-resolution techniques are an effective way to solve this problem by synthesizing high-resolution images from low-resolution ones. However, the existing super-resolution models applied in pathology images can only work in fixed integer magnifications, significantly decreasing their applicability. Though methods based on implicit neural representation have shown promising results in arbitrary-scale super-resolution of natural images, applying them directly to pathology images is inadequate because they have unique fine-grained image textures different from natural images. Thus, we propose an Implicit Self-Texture Enhancement-based dual-branch framework (ISTE) for arbitrary-scale super-resolution of pathology images to address this challenge. ISTE contains a pixel learning branch and a texture learning branch, which first learn pixel features and texture features, respectively. Then, we design a two-stage texture enhancement strategy to fuse the features from the two branches to obtain the super-resolution results, where the first stage is feature-based texture enhancement, and the second stage is spatial-domain-based texture enhancement. Extensive experiments on three public datasets show that ISTE outperforms existing fixed-scale and arbitrary-scale algorithms at multiple magnifications and helps to improve downstream task performance. To the best of our knowledge, this is the first work to achieve arbitrary-scale super-resolution in pathology images. Codes will be available.
♻ ☆ An unsupervised approach towards promptable defect segmentation in laser-based additive manufacturing by Segment Anything
Foundation models are currently driving a paradigm shift in computer vision tasks for various fields including biology, astronomy, and robotics among others, leveraging user-generated prompts to enhance their performance. In the Laser Additive Manufacturing (LAM) domain, accurate image-based defect segmentation is imperative to ensure product quality and facilitate real-time process control. However, such tasks are often characterized by multiple challenges including the absence of labels and the requirement for low latency inference among others. Porosity is a very common defect in LAM due to lack of fusion, entrapped gas, and keyholes, directly affecting mechanical properties like tensile strength, stiffness, and hardness, thereby compromising the quality of the final product. To address these issues, we construct a framework for image segmentation using a state-of-the-art Vision Transformer (ViT) based Foundation model (Segment Anything Model) with a novel multi-point prompt generation scheme using unsupervised clustering. Utilizing our framework we perform porosity segmentation in a case study of laser-based powder bed fusion (L-PBF) and obtain high accuracy without using any labeled data to guide the prompt tuning process. By capitalizing on lightweight foundation model inference combined with unsupervised prompt generation, we envision constructing a real-time anomaly detection pipeline that could revolutionize current laser additive manufacturing processes, thereby facilitating the shift towards Industry 4.0 and promoting defect-free production along with operational efficiency.
comment: 18 pages, 9 figures
♻ ☆ InstantGroup: Instant Template Generation for Scalable Group of Brain MRI Registration
Template generation is a critical step in groupwise image registration, which involves aligning a group of subjects into a common space. While existing methods can generate high-quality template images, they often incur substantial time costs or are limited by fixed group scales. In this paper, we present InstantGroup, an efficient groupwise template generation framework based on variational autoencoder (VAE) models that leverage latent representations' arithmetic properties, enabling scalability to groups of any size. InstantGroup features a Dual VAEs backbone with shared-weight twin networks to handle pairs of inputs and incorporates a Displacement Inversion Module (DIM) to maintain template unbiasedness and a Subject-Template Alignment Module (STAM) to improve template quality and registration accuracy. Experiments on 3D brain MRI scans from the OASIS and ADNI datasets reveal that InstantGroup dramatically reduces runtime, generating templates within seconds for various group sizes while maintaining superior performance compared to state-of-the-art baselines on quantitative metrics, including unbiasedness and registration accuracy.
♻ ☆ WhaleNet: a Novel Deep Learning Architecture for Marine Mammals Vocalizations on Watkins Marine Mammal Sound Database
Marine mammal communication is a complex field, hindered by the diversity of vocalizations and environmental factors. The Watkins Marine Mammal Sound Database (WMMD) constitutes a comprehensive labeled dataset employed in machine learning applications. Nevertheless, the methodologies for data preparation, preprocessing, and classification documented in the literature exhibit considerable variability and are typically not applied to the dataset in its entirety. This study initially undertakes a concise review of the state-of-the-art benchmarks pertaining to the dataset, with a particular focus on clarifying data preparation and preprocessing techniques. Subsequently, we explore the utilization of the Wavelet Scattering Transform (WST) and Mel spectrogram as preprocessing mechanisms for feature extraction. In this paper, we introduce \textbf{WhaleNet} (Wavelet Highly Adaptive Learning Ensemble Network), a sophisticated deep ensemble architecture for the classification of marine mammal vocalizations, leveraging both WST and Mel spectrogram for enhanced feature discrimination. By integrating the insights derived from WST and Mel representations, we achieved an improvement in classification accuracy by $8-10\%$ over existing architectures, corresponding to a classification accuracy of $97.61\%$.
♻ ☆ Scaling Painting Style Transfer
Neural style transfer (NST) is a deep learning technique that produces an unprecedentedly rich style transfer from a style image to a content image. It is particularly impressive when it comes to transferring style from a painting to an image. NST was originally achieved by solving an optimization problem to match the global statistics of the style image while preserving the local geometric features of the content image. The two main drawbacks of this original approach is that it is computationally expensive and that the resolution of the output images is limited by high GPU memory requirements. Many solutions have been proposed to both accelerate NST and produce images with larger size. However, our investigation shows that these accelerated methods all compromise the quality of the produced images in the context of painting style transfer. Indeed, transferring the style of a painting is a complex task involving features at different scales, from the color palette and compositional style to the fine brushstrokes and texture of the canvas. This paper provides a solution to solve the original global optimization for ultra-high resolution (UHR) images, enabling multiscale NST at unprecedented image sizes. This is achieved by spatially localizing the computation of each forward and backward passes through the VGG network. Extensive qualitative and quantitative comparisons, as well as a \textcolor{coverletter}{perceptual study}, show that our method produces style transfer of unmatched quality for such high-resolution painting styles. By a careful comparison, we show that state-of-the-art fast methods are still prone to artifacts, thus suggesting that fast painting style transfer remains an open problem. Source code is available at https://github.com/bgalerne/scaling_painting_style_transfer.
comment: 14 pages, 9 figures, 4 tables, accepted at EGSR 2024
♻ ☆ SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation 3DV 2024
Learning models on one labeled dataset that generalize well on another domain is a difficult task, as several shifts might happen between the data domains. This is notably the case for lidar data, for which models can exhibit large performance discrepancies due for instance to different lidar patterns or changes in acquisition conditions. This paper addresses the corresponding Unsupervised Domain Adaptation (UDA) task for semantic segmentation. To mitigate this problem, we introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data. As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data. This novel strategy differs from classical minimization of statistical divergences or lidar-specific domain adaptation techniques. Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
comment: Accepted as spotlight to 3DV 2024. Project repository: github.com/valeoai/SALUDA
♻ ☆ Towards Zero-Shot Interpretable Human Recognition: A 2D-3D Registration Framework
Large vision models based in deep learning architectures have been consistently advancing the state-of-the-art in biometric recognition. However, three weaknesses are commonly reported for such kind of approaches: 1) their extreme demands in terms of learning data; 2) the difficulties in generalising between different domains; and 3) the lack of interpretability/explainability, with biometrics being of particular interest, as it is important to provide evidence able to be used for forensics/legal purposes (e.g., in courts). To the best of our knowledge, this paper describes the first recognition framework/strategy that aims at addressing the three weaknesses simultaneously. At first, it relies exclusively in synthetic samples for learning purposes. Instead of requiring a large amount and variety of samples for each subject, the idea is to exclusively enroll a 3D point cloud per identity. Then, using generative strategies, we synthesize a very large (potentially infinite) number of samples, containing all the desired covariates (poses, clothing, distances, perspectives, lighting, occlusions,...). Upon the synthesizing method used, it is possible to adapt precisely to different kind of domains, which accounts for generalization purposes. Such data are then used to learn a model that performs local registration between image pairs, establishing positive correspondences between body parts that are the key, not only to recognition (according to cardinality and distribution), but also to provide an interpretable description of the response (e.g.: "both samples are from the same person, as they have similar facial shape, hair color and legs thickness").
♻ ☆ CTNeRF: Cross-Time Transformer for Dynamic Neural Radiance Field from Monocular Video
The goal of our work is to generate high-quality novel views from monocular videos of complex and dynamic scenes. Prior methods, such as DynamicNeRF, have shown impressive performance by leveraging time-varying dynamic radiation fields. However, these methods have limitations when it comes to accurately modeling the motion of complex objects, which can lead to inaccurate and blurry renderings of details. To address this limitation, we propose a novel approach that builds upon a recent generalization NeRF, which aggregates nearby views onto new viewpoints. However, such methods are typically only effective for static scenes. To overcome this challenge, we introduce a module that operates in both the time and frequency domains to aggregate the features of object motion. This allows us to learn the relationship between frames and generate higher-quality images. Our experiments demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets. Specifically, our approach outperforms existing methods in terms of both the accuracy and visual quality of the synthesized views. Our code is available on https://github.com/xingy038/CTNeRF.
comment: Accepted by Pattern Recognition
♻ ☆ Jina CLIP: Your CLIP Model Is Also Your Text Retriever ICML2024
Contrastive Language-Image Pretraining (CLIP) is widely used to train models to align images and texts in a common embedding space by mapping them to fixed-sized vectors. These models are key to multimodal information retrieval and related tasks. However, CLIP models generally underperform in text-only tasks compared to specialized text models. This creates inefficiencies for information retrieval systems that keep separate embeddings and models for text-only and multimodal tasks. We propose a novel, multi-task contrastive training method to address this issue, which we use to train the jina-clip-v1 model to achieve the state-of-the-art performance on both text-image and text-text retrieval tasks.
comment: 4 pages, MFM-EAI@ICML2024
♻ ☆ Single-Model Attribution of Generative Models Through Final-Layer Inversion ICML2024
Recent breakthroughs in generative modeling have sparked interest in practical single-model attribution. Such methods predict whether a sample was generated by a specific generator or not, for instance, to prove intellectual property theft. However, previous works are either limited to the closed-world setting or require undesirable changes to the generative model. We address these shortcomings by, first, viewing single-model attribution through the lens of anomaly detection. Arising from this change of perspective, we propose FLIPAD, a new approach for single-model attribution in the open-world setting based on final-layer inversion and anomaly detection. We show that the utilized final-layer inversion can be reduced to a convex lasso optimization problem, making our approach theoretically sound and computationally efficient. The theoretical findings are accompanied by an experimental study demonstrating the effectiveness of our approach and its flexibility to various domains.
comment: Accepted at the Forty-first International Conference on Machine Learning [ICML2024]
♻ ☆ Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
Deep learning (DL)-based methods have achieved state-of-the-art performance for a wide range of medical image segmentation tasks. Nevertheless, recent studies show that deep neural networks (DNNs) can be miscalibrated and overconfident, leading to "silent failures" that are risky} for clinical applications. Bayesian statistics provide an intuitive approach to DL failure detection, based on posterior probability estimation. However, Bayesian DL, and in particular the posterior estimation, is intractable for large medical image segmentation DNNs. To tackle this challenge, we propose a Bayesian learning framework by Hamiltonian Monte Carlo (HMC), tempered by cold posterior (CP) to accommodate medical data augmentation, named HMC-CP. For HMC computation, we further propose a cyclical annealing strategy, which captures both local and global geometries of the posterior distribution, enabling highly efficient Bayesian DNN training with the same computational budget requirements as training a single DNN. The resulting Bayesian DNN outputs an ensemble segmentation along with the segmentation uncertainty. We evaluate the proposed HMC-CP extensively on cardiac magnetic resonance image (MRI) segmentation, using in-domain steady-state free precession (SSFP) cine images as well as out-of-domain datasets of quantitative $T_1$ and $T_2$ mapping.
♻ ☆ Mitigate the Gap: Investigating Approaches for Improving Cross-Modal Alignment in CLIP
Contrastive Language--Image Pre-training (CLIP) has manifested remarkable improvements in zero-shot classification and cross-modal vision-language tasks. Yet, from a geometrical point of view, the CLIP embedding space has been found to have a pronounced modality gap. This gap renders the embedding space overly sparse and disconnected, with different modalities being densely distributed in distinct subregions of the hypersphere. In this work, we aim at answering two main questions: 1. Does sharing the parameter space between the multi-modal encoders reduce the modality gap? 2. Can the gap be mitigated by pushing apart the uni-modal embeddings via intra-modality separation? We design AlignCLIP, in order to answer these questions and show that answers to both questions are positive. Through extensive experiments, we show that AlignCLIP achieves noticeable enhancements in the cross-modal alignment of the embeddings, and thereby, reduces the modality gap, while maintaining the performance across several downstream evaluations, such as zero-shot image classification, zero-shot multi-modal retrieval and zero-shot semantic text similarity.
♻ ☆ Commonsense Prototype for Outdoor Unsupervised 3D Object Detection CVPR 2024
The prevalent approaches of unsupervised 3D object detection follow cluster-based pseudo-label generation and iterative self-training processes. However, the challenge arises due to the sparsity of LiDAR scans, which leads to pseudo-labels with erroneous size and position, resulting in subpar detection performance. To tackle this problem, this paper introduces a Commonsense Prototype-based Detector, termed CPD, for unsupervised 3D object detection. CPD first constructs Commonsense Prototype (CProto) characterized by high-quality bounding box and dense points, based on commonsense intuition. Subsequently, CPD refines the low-quality pseudo-labels by leveraging the size prior from CProto. Furthermore, CPD enhances the detection accuracy of sparsely scanned objects by the geometric knowledge from CProto. CPD outperforms state-of-the-art unsupervised 3D detectors on Waymo Open Dataset (WOD), PandaSet, and KITTI datasets by a large margin. Besides, by training CPD on WOD and testing on KITTI, CPD attains 90.85% and 81.01% 3D Average Precision on easy and moderate car classes, respectively. These achievements position CPD in close proximity to fully supervised detectors, highlighting the significance of our method. The code will be available at https://github.com/hailanyi/CPD.
comment: Accepted by CVPR 2024
♻ ☆ Editable Scene Simulation for Autonomous Driving via Collaborative LLM-Agents CVPR 2024
Scene simulation in autonomous driving has gained significant attention because of its huge potential for generating customized data. However, existing editable scene simulation approaches face limitations in terms of user interaction efficiency, multi-camera photo-realistic rendering and external digital assets integration. To address these challenges, this paper introduces ChatSim, the first system that enables editable photo-realistic 3D driving scene simulations via natural language commands with external digital assets. To enable editing with high command flexibility,~ChatSim leverages a large language model (LLM) agent collaboration framework. To generate photo-realistic outcomes, ChatSim employs a novel multi-camera neural radiance field method. Furthermore, to unleash the potential of extensive high-quality digital assets, ChatSim employs a novel multi-camera lighting estimation method to achieve scene-consistent assets' rendering. Our experiments on Waymo Open Dataset demonstrate that ChatSim can handle complex language commands and generate corresponding photo-realistic scene videos.
comment: CVPR 2024(Highlight)
♻ ☆ ChangeMamba: Remote Sensing Change Detection with Spatio-Temporal State Space Model
Convolutional neural networks (CNN) and Transformers have made impressive progress in the field of remote sensing change detection (CD). However, both architectures have inherent shortcomings: CNN are constrained by a limited receptive field that may hinder their ability to capture broader spatial contexts, while Transformers are computationally intensive, making them costly to train and deploy on large datasets. Recently, the Mamba architecture, based on state space models, has shown remarkable performance in a series of natural language processing tasks, which can effectively compensate for the shortcomings of the above two architectures. In this paper, we explore for the first time the potential of the Mamba architecture for remote sensing CD tasks. We tailor the corresponding frameworks, called MambaBCD, MambaSCD, and MambaBDA, for binary change detection (BCD), semantic change detection (SCD), and building damage assessment (BDA), respectively. All three frameworks adopt the cutting-edge Visual Mamba architecture as the encoder, which allows full learning of global spatial contextual information from the input images. For the change decoder, which is available in all three architectures, we propose three spatio-temporal relationship modeling mechanisms, which can be naturally combined with the Mamba architecture and fully utilize its attribute to achieve spatio-temporal interaction of multi-temporal features, thereby obtaining accurate change information. On five benchmark datasets, our proposed frameworks outperform current CNN- and Transformer-based approaches without using any complex training strategies or tricks, fully demonstrating the potential of the Mamba architecture in CD tasks. Further experiments show that our architecture is quite robust to degraded data. The source code will be available in https://github.com/ChenHongruixuan/MambaCD
comment: Accepted by IEEE TGRS
♻ ☆ ObjFormer: Learning Land-Cover Changes From Paired OSM Data and Optical High-Resolution Imagery via Object-Guided Transformer
Optical high-resolution imagery and OSM data are two important data sources of change detection (CD). Previous related studies focus on utilizing the information in OSM data to aid the CD on optical high-resolution images. This paper pioneers the direct detection of land-cover changes utilizing paired OSM data and optical imagery, thereby expanding the scope of CD tasks. To this end, we propose an object-guided Transformer (ObjFormer) by naturally combining the object-based image analysis (OBIA) technique with the advanced vision Transformer architecture. This combination can significantly reduce the computational overhead in the self-attention module without adding extra parameters or layers. ObjFormer has a hierarchical pseudo-siamese encoder consisting of object-guided self-attention modules that extracts multi-level heterogeneous features from OSM data and optical images; a decoder consisting of object-guided cross-attention modules can recover land-cover changes from the extracted heterogeneous features. Beyond basic binary change detection, this paper raises a new semi-supervised semantic change detection task that does not require any manually annotated land-cover labels to train semantic change detectors. Two lightweight semantic decoders are added to ObjFormer to accomplish this task efficiently. A converse cross-entropy loss is designed to fully utilize negative samples, contributing to the great performance improvement in this task. A large-scale benchmark dataset called OpenMapCD containing 1,287 samples covering 40 regions on six continents is constructed to conduct detailed experiments. The results show the effectiveness of our methods in this new kind of CD task. Additionally, case studies in Japanese cities demonstrate the framework's generalizability and practical potential. The OpenMapCD and source code are available in https://github.com/ChenHongruixuan/ObjFormer
comment: Accepted by IEEE TGRS
♻ ☆ Splatter a Video: Video Gaussian Representation for Versatile Processing
Video representation is a long-standing problem that is crucial for various down-stream tasks, such as tracking,depth prediction,segmentation,view synthesis,and editing. However, current methods either struggle to model complex motions due to the absence of 3D structure or rely on implicit 3D representations that are ill-suited for manipulation tasks. To address these challenges, we introduce a novel explicit 3D representation-video Gaussian representation -- that embeds a video into 3D Gaussians. Our proposed representation models video appearance in a 3D canonical space using explicit Gaussians as proxies and associates each Gaussian with 3D motions for video motion. This approach offers a more intrinsic and explicit representation than layered atlas or volumetric pixel matrices. To obtain such a representation, we distill 2D priors, such as optical flow and depth, from foundation models to regularize learning in this ill-posed setting. Extensive applications demonstrate the versatility of our new video representation. It has been proven effective in numerous video processing tasks, including tracking, consistent video depth and feature refinement, motion and appearance editing, and stereoscopic video generation. Project page: https://sunyangtian.github.io/spatter_a_video_web/
♻ ☆ Visual Odometry with Neuromorphic Resonator Networks
Visual Odometry (VO) is a method to estimate self-motion of a mobile robot using visual sensors. Unlike odometry based on integrating differential measurements that can accumulate errors, such as inertial sensors or wheel encoders, visual odometry is not compromised by drift. However, image-based VO is computationally demanding, limiting its application in use cases with low-latency, -memory, and -energy requirements. Neuromorphic hardware offers low-power solutions to many vision and AI problems, but designing such solutions is complicated and often has to be assembled from scratch. Here we propose to use Vector Symbolic Architecture (VSA) as an abstraction layer to design algorithms compatible with neuromorphic hardware. Building from a VSA model for scene analysis, described in our companion paper, we present a modular neuromorphic algorithm that achieves state-of-the-art performance on two-dimensional VO tasks. Specifically, the proposed algorithm stores and updates a working memory of the presented visual environment. Based on this working memory, a resonator network estimates the changing location and orientation of the camera. We experimentally validate the neuromorphic VSA-based approach to VO with two benchmarks: one based on an event camera dataset and the other in a dynamic scene with a robotic task.
comment: 19 pages, 5 figures, minor revisions, added results for shapes_translation dataset
♻ ☆ Neuromorphic Visual Scene Understanding with Resonator Networks
Analyzing a visual scene by inferring the configuration of a generative model is widely considered the most flexible and generalizable approach to scene understanding. Yet, one major problem is the computational challenge of the inference procedure, involving a combinatorial search across object identities and poses. Here we propose a neuromorphic solution exploiting three key concepts: (1) a computational framework based on Vector Symbolic Architectures (VSA) with complex-valued vectors; (2) the design of Hierarchical Resonator Networks (HRN) to factorize the non-commutative transforms translation and rotation in visual scenes; (3) the design of a multi-compartment spiking phasor neuron model for implementing complex-valued resonator networks on neuromorphic hardware. The VSA framework uses vector binding operations to form a generative image model in which binding acts as the equivariant operation for geometric transformations. A scene can, therefore, be described as a sum of vector products, which can then be efficiently factorized by a resonator network to infer objects and their poses. The HRN features a partitioned architecture in which vector binding is equivariant for horizontal and vertical translation within one partition and for rotation and scaling within the other partition. The spiking neuron model allows mapping the resonator network onto efficient and low-power neuromorphic hardware. Our approach is demonstrated on synthetic scenes composed of simple 2D shapes undergoing rigid geometric transformations and color changes. A companion paper demonstrates the same approach in real-world application scenarios for machine vision and robotics.
comment: 23 pages, 8 figures, minor revisions and extended supplementary material
♻ ☆ MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions
The integration of neural-network-based systems into clinical practice is limited by challenges related to domain generalization and robustness. The computer vision community established benchmarks such as ImageNet-C as a fundamental prerequisite to measure progress towards those challenges. Similar datasets are largely absent in the medical imaging community which lacks a comprehensive benchmark that spans across imaging modalities and applications. To address this gap, we create and open-source MedMNIST-C, a benchmark dataset based on the MedMNIST+ collection covering 12 datasets and 9 imaging modalities. We simulate task and modality-specific image corruptions of varying severity to comprehensively evaluate the robustness of established algorithms against real-world artifacts and distribution shifts. We further provide quantitative evidence that our simple-to-use artificial corruptions allow for highly performant, lightweight data augmentation to enhance model robustness. Unlike traditional, generic augmentation strategies, our approach leverages domain knowledge, exhibiting significantly higher robustness when compared to widely adopted methods. By introducing MedMNIST-C and open-sourcing the corresponding library allowing for targeted data augmentations, we contribute to the development of increasingly robust methods tailored to the challenges of medical imaging. The code is available at https://github.com/francescodisalvo05/medmnistc-api}{github.com/francescodisalvo05/medmnistc-api .
♻ ☆ ECGrecover: a Deep Learning Approach for Electrocardiogram Signal Completion
In this work, we address the challenge of reconstructing the complete 12-lead ECG signal from incomplete parts of it. We focus on two main scenarii: (i) reconstructing missing signal segments within an ECG lead and (ii) recovering missing leads from a single-lead. We propose a model with a U-Net architecture trained on a novel objective function to address the reconstruction problem. This function incorporates both spatial and temporal aspects of the ECG by combining the distance in amplitude between the reconstructed and real signals with the signal trend. Through comprehensive assessments using both a real-life dataset and a publicly accessible one, we demonstrate that the proposed approach consistently outperforms state-of-the-art methods based on generative adversarial networks and a CopyPaste strategy. Our proposed model demonstrates superior performance in standard distortion metrics and preserves critical ECG characteristics, particularly the P, Q, R, S, and T wave coordinates. Two emerging clinical applications emphasize the relevance of our work. The first is the increasing need to digitize paper-stored ECGs for utilization in AI-based applications (automatic annotation and risk-quantification), often limited to digital ECG complete 10s recordings. The second is the widespread use of wearable devices that record ECGs but typically capture only a small subset of the 12 standard leads. In both cases, a non-negligible amount of information is lost or not recorded, which our approach aims to recover to overcome these limitations.
♻ ☆ Fast Learnings of Coupled Nonnegative Tensor Decomposition Using Optimal Gradient and Low-rank Approximation
Tensor decomposition is a fundamental technique widely applied in signal processing, machine learning, and various other fields. However, traditional tensor decomposition methods encounter limitations when jointly analyzing multi-block tensors, as they often struggle to effectively explore shared information among tensors. In this study, we first introduce a novel coupled nonnegative CANDECOMP/PARAFAC decomposition algorithm optimized by the alternating proximal gradient method (CoNCPD-APG). This algorithm is specially designed to address the challenges of jointly decomposing different tensors that are partially or fully linked, while simultaneously extracting common components, individual components and, core tensors. Recognizing the computational challenges inherent in optimizing nonnegative constraints over high-dimensional tensor data, we further propose the lraCoNCPD-APG algorithm. By integrating low-rank approximation with the proposed CoNCPD-APG method, the proposed algorithm can significantly decrease the computational burden without compromising decomposition quality, particularly for multi-block large-scale tensors. Simulation experiments conducted on synthetic data, real-world face image data, and two kinds of electroencephalography (EEG) data demonstrate the practicality and superiority of the proposed algorithms for coupled nonnegative tensor decomposition problems. Our results underscore the efficacy of our methods in uncovering meaningful patterns and structures from complex multi-block tensor data, thereby offering valuable insights for future applications.
comment: 15 pages, 6 figures
♻ ☆ Re-initialization-free Level Set Method via Molecular Beam Epitaxy Equation Regularization for Image Segmentation
Variational level set method has become a powerful tool in image segmentation due to its ability to handle complex topological changes and maintain continuity and smoothness in the process of evolution. However its evolution process can be unstable, which results in over flatted or over sharpened contours and segmentation failure. To improve the accuracy and stability of evolution, we propose a high-order level set variational segmentation method integrated with molecular beam epitaxy (MBE) equation regularization. This method uses the crystal growth in the MBE process to limit the evolution of the level set function, and thus can avoid the re-initialization in the evolution process and regulate the smoothness of the segmented curve. It also works for noisy images with intensity inhomogeneity, which is a challenge in image segmentation. To solve the variational model, we derive the gradient flow and design scalar auxiliary variable (SAV) scheme coupled with fast Fourier transform (FFT), which can significantly improve the computational efficiency compared with the traditional semi-implicit and semi-explicit scheme. Numerical experiments show that the proposed method can generate smooth segmentation curves, retain fine segmentation targets and obtain robust segmentation results of small objects. Compared to existing level set methods, this model is state-of-the-art in both accuracy and efficiency.
♻ ☆ Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network
This paper presents a novel and interpretable end-to-end learning framework, called the deep compensation unfolding network (DCUNet), for restoring light field (LF) images captured under low-light conditions. DCUNet is designed with a multi-stage architecture that mimics the optimization process of solving an inverse imaging problem in a data-driven fashion. The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result. Additionally, DCUNet includes a content-associated deep compensation module at each optimization stage to suppress noise and illumination map estimation errors. To properly mine and leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module that comprehensively exploits redundant information in LF images. The experimental results on both simulated and real datasets demonstrate the superiority of our DCUNet over state-of-the-art methods, both qualitatively and quantitatively. Moreover, DCUNet preserves the essential geometric structure of enhanced LF images much better. The code will be publicly available at https://github.com/lyuxianqiang/LFLL-DCU.
♻ ☆ SPHINX-X: Scaling Data and Parameters for a Family of Multi-modal Large Language Models ICML 2024
We propose SPHINX-X, an extensive Multimodality Large Language Model (MLLM) series developed upon SPHINX. To improve the architecture and training efficiency, we modify the SPHINX framework by removing redundant visual encoders, bypassing fully-padded sub-images with skip tokens, and simplifying multi-stage training into a one-stage all-in-one paradigm. To fully unleash the potential of MLLMs, we assemble a comprehensive multi-domain and multimodal dataset covering publicly available resources in language, vision, and vision-language tasks. We further enrich this collection with our curated OCR intensive and Set-of-Mark datasets, extending the diversity and generality. By training over different base LLMs including TinyLlama1.1B, InternLM2-7B, LLaMA2-13B, and Mixtral8x7B, we obtain a spectrum of MLLMs that vary in parameter size and multilingual capabilities. Comprehensive benchmarking reveals a strong correlation between the multi-modal performance with the data and parameter scales. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
comment: Accepted by ICML 2024. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
♻ ☆ Cognitive Visual-Language Mapper: Advancing Multimodal Comprehension with Enhanced Visual Knowledge Alignment ACL 2024
Evaluating and Rethinking the current landscape of Large Multimodal Models (LMMs), we observe that widely-used visual-language projection approaches (e.g., Q-former or MLP) focus on the alignment of image-text descriptions yet ignore the visual knowledge-dimension alignment, i.e., connecting visuals to their relevant knowledge. Visual knowledge plays a significant role in analyzing, inferring, and interpreting information from visuals, helping improve the accuracy of answers to knowledge-based visual questions. In this paper, we mainly explore improving LMMs with visual-language knowledge alignment, especially aimed at challenging knowledge-based visual question answering (VQA). To this end, we present a Cognitive Visual-Language Mapper (CVLM), which contains a pretrained Visual Knowledge Aligner (VKA) and a Fine-grained Knowledge Adapter (FKA) used in the multimodal instruction tuning stage. Specifically, we design the VKA based on the interaction between a small language model and a visual encoder, training it on collected image-knowledge pairs to achieve visual knowledge acquisition and projection. FKA is employed to distill the fine-grained visual knowledge of an image and inject it into Large Language Models (LLMs). We conduct extensive experiments on knowledge-based VQA benchmarks and experimental results show that CVLM significantly improves the performance of LMMs on knowledge-based VQA (average gain by 5.0%). Ablation studies also verify the effectiveness of VKA and FKA, respectively. The codes are available at https://github.com/HITsz-TMG/Cognitive-Visual-Language-Mapper
comment: 12 pages,4 figures; Accepted by ACL 2024 Main Conference
♻ ☆ RGB-Sonar Tracking Benchmark and Spatial Cross-Attention Transformer Tracker
Vision camera and sonar are naturally complementary in the underwater environment. Combining the information from two modalities will promote better observation of underwater targets. However, this problem has not received sufficient attention in previous research. Therefore, this paper introduces a new challenging RGB-Sonar (RGB-S) tracking task and investigates how to achieve efficient tracking of an underwater target through the interaction of RGB and sonar modalities. Specifically, we first propose an RGBS50 benchmark dataset containing 50 sequences and more than 87000 high-quality annotated bounding boxes. Experimental results show that the RGBS50 benchmark poses a challenge to currently popular SOT trackers. Second, we propose an RGB-S tracker called SCANet, which includes a spatial cross-attention module (SCAM) consisting of a novel spatial cross-attention layer and two independent global integration modules. The spatial cross-attention is used to overcome the problem of spatial misalignment of between RGB and sonar images. Third, we propose a SOT data-based RGB-S simulation training method (SRST) to overcome the lack of RGB-S training datasets. It converts RGB images into sonar-like saliency images to construct pseudo-data pairs, enabling the model to learn the semantic structure of RGB-S-like data. Comprehensive experiments show that the proposed spatial cross-attention effectively achieves the interaction between RGB and sonar modalities and SCANet achieves state-of-the-art performance on the proposed benchmark. The code is available at https://github.com/LiYunfengLYF/RGBS50.
♻ ☆ Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models
Recent advancements in general-purpose or domain-specific multimodal large language models (LLMs) have witnessed remarkable progress for medical decision-making. However, they are designated for specific classification or generative tasks, and require model training or finetuning on large-scale datasets with sizeable parameters and tremendous computing, hindering their clinical utility across diverse resource-constrained scenarios in practice. In this paper, we propose a novel and lightweight framework Med-MoE (Mixture-of-Experts) that tackles both discriminative and generative multimodal medical tasks. The learning of Med-MoE consists of three steps: multimodal medical alignment, instruction tuning and routing, and domain-specific MoE tuning. After aligning multimodal medical images with LLM tokens, we then enable the model for different multimodal medical tasks with instruction tuning, together with a trainable router tailored for expert selection across input modalities. Finally, the model is tuned by integrating the router with multiple domain-specific experts, which are selectively activated and further empowered by meta expert. Comprehensive experiments on both open- and close-end medical question answering (Med-VQA) and image classification tasks across datasets such as VQA-RAD, SLAKE and Path-VQA demonstrate that our model can achieve performance superior to or on par with state-of-the-art baselines, while only requiring approximately 30\%-50\% of activated model parameters. Extensive analysis and ablations corroborate the effectiveness and practical utility of our method.
♻ ☆ InterCLIP-MEP: Interactive CLIP and Memory-Enhanced Predictor for Multi-modal Sarcasm Detection
The prevalence of sarcasm in social media, conveyed through text-image combinations, presents significant challenges for sentiment analysis and intention mining. Current multi-modal sarcasm detection methods have been proven to struggle with biases from spurious cues, leading to a superficial understanding of the complex interactions between text and image. To address these issues, we propose InterCLIP-MEP, a robust framework for multi-modal sarcasm detection. InterCLIP-MEP introduces a refined variant of CLIP, Interactive CLIP (InterCLIP), as the backbone, enhancing sample representations by embedding cross-modality information in each encoder. Furthermore, a novel training strategy is designed to adapt InterCLIP for a Memory-Enhanced Predictor (MEP). MEP uses dynamic dual-channel memory to store valuable historical knowledge of test samples and then leverages this memory as a non-parametric classifier to derive the final prediction. By using InterCLIP to encode text-image interactions more effectively and incorporating MEP, InterCLIP-MEP offers a more robust recognition of multi-modal sarcasm. Experiments demonstrate that InterCLIP-MEP achieves state-of-the-art performance on the MMSD2.0 benchmark. Code and data are available at https://github.com/CoderChen01/InterCLIP-MEP.
comment: 8 pages, 6 figures, 6 tables
♻ ☆ LayerMerge: Neural Network Depth Compression through Layer Pruning and Merging ICML 2024
Recent works show that reducing the number of layers in a convolutional neural network can enhance efficiency while maintaining the performance of the network. Existing depth compression methods remove redundant non-linear activation functions and merge the consecutive convolution layers into a single layer. However, these methods suffer from a critical drawback; the kernel size of the merged layers becomes larger, significantly undermining the latency reduction gained from reducing the depth of the network. We show that this problem can be addressed by jointly pruning convolution layers and activation functions. To this end, we propose LayerMerge, a novel depth compression method that selects which activation layers and convolution layers to remove, to achieve a desired inference speed-up while minimizing performance loss. Since the corresponding selection problem involves an exponential search space, we formulate a novel surrogate optimization problem and efficiently solve it via dynamic programming. Empirical results demonstrate that our method consistently outperforms existing depth compression and layer pruning methods on various network architectures, both on image classification and generation tasks. We release the code at https://github.com/snu-mllab/LayerMerge.
comment: ICML 2024
♻ ☆ DeCoF: Generated Video Detection via Frame Consistency: The First Benchmark Dataset
The escalating quality of video generated by advanced video generation methods results in new security challenges, while there have been few relevant research efforts: 1) There is no open-source dataset for generated video detection, 2) No generated video detection method has been proposed so far. To this end, we propose an open-source dataset and a detection method for generated video for the first time. First, we propose a scalable dataset consisting of 964 prompts, covering various forgery targets, scenes, behaviors, and actions, as well as various generation models with different architectures and generation methods, including the most popular commercial models like OpenAI's Sora and Google's Veo. Second, we found via probing experiments that spatial artifact-based detectors lack generalizability. Hence, we propose a simple yet effective \textbf{de}tection model based on \textbf{f}rame \textbf{co}nsistency (\textbf{DeCoF}), which focuses on temporal artifacts by eliminating the impact of spatial artifacts during feature learning. Extensive experiments demonstrate the efficacy of DeCoF in detecting videos generated by unseen video generation models and confirm its powerful generalizability across several commercially proprietary models. Our code and dataset will be released at \url{https://github.com/wuwuwuyue/DeCoF}.
♻ ☆ InstructTA: Instruction-Tuned Targeted Attack for Large Vision-Language Models
Large vision-language models (LVLMs) have demonstrated their incredible capability in image understanding and response generation. However, this rich visual interaction also makes LVLMs vulnerable to adversarial examples. In this paper, we formulate a novel and practical targeted attack scenario that the adversary can only know the vision encoder of the victim LVLM, without the knowledge of its prompts (which are often proprietary for service providers and not publicly available) and its underlying large language model (LLM). This practical setting poses challenges to the cross-prompt and cross-model transferability of targeted adversarial attack, which aims to confuse the LVLM to output a response that is semantically similar to the attacker's chosen target text. To this end, we propose an instruction-tuned targeted attack (dubbed \textsc{InstructTA}) to deliver the targeted adversarial attack on LVLMs with high transferability. Initially, we utilize a public text-to-image generative model to "reverse" the target response into a target image, and employ GPT-4 to infer a reasonable instruction $\boldsymbol{p}^\prime$ from the target response. We then form a local surrogate model (sharing the same vision encoder with the victim LVLM) to extract instruction-aware features of an adversarial image example and the target image, and minimize the distance between these two features to optimize the adversarial example. To further improve the transferability with instruction tuning, we augment the instruction $\boldsymbol{p}^\prime$ with instructions paraphrased from GPT-4. Extensive experiments demonstrate the superiority of our proposed method in targeted attack performance and transferability. The code is available at https://github.com/xunguangwang/InstructTA.
♻ ☆ A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning
Underwater image enhancement (UIE) presents a significant challenge within computer vision research. Despite the development of numerous UIE algorithms, a thorough and systematic review is still absent. To foster future advancements, we provide a detailed overview of the UIE task from several perspectives. Firstly, we introduce the physical models, data construction processes, evaluation metrics, and loss functions. Secondly, we categorize and discuss recent algorithms based on their contributions, considering six aspects: network architecture, learning strategy, learning stage, auxiliary tasks, domain perspective, and disentanglement fusion. Thirdly, due to the varying experimental setups in the existing literature, a comprehensive and unbiased comparison is currently unavailable. To address this, we perform both quantitative and qualitative evaluations of state-of-the-art algorithms across multiple benchmark datasets. Lastly, we identify key areas for future research in UIE. A collection of resources for UIE can be found at {https://github.com/YuZhao1999/UIE}.
comment: A survey on the underwater image enhancement task
♻ ☆ An Event-based Algorithm for Simultaneous 6-DOF Camera Pose Tracking and Mapping
Compared to regular cameras, Dynamic Vision Sensors or Event Cameras can output compact visual data based on a change in the intensity in each pixel location asynchronously. In this paper, we study the application of current image-based SLAM techniques to these novel sensors. To this end, the information in adaptively selected event windows is processed to form motion-compensated images. These images are then used to reconstruct the scene and estimate the 6-DOF pose of the camera. We also propose an inertial version of the event-only pipeline to assess its capabilities. We compare the results of different configurations of the proposed algorithm against the ground truth for sequences of two publicly available event datasets. We also compare the results of the proposed event-inertial pipeline with the state-of-the-art and show it can produce comparable or more accurate results provided the map estimate is reliable.
♻ ☆ Minimal Interaction Edge Tuning: A New Paradigm for Visual Adaptation
The rapid scaling of large vision pretrained models makes fine-tuning tasks more and more difficult on edge devices with low computational resources. We explore a new visual adaptation paradigm called edge tuning, which treats large pretrained models as standalone feature extractors that run on powerful cloud servers. The fine-tuning carries out on edge devices with small networks which require low computational resources. Existing methods that are potentially suitable for our edge tuning paradigm are discussed. But, three major drawbacks hinder their application in edge tuning: low adaptation capability, large adapter network, and high information transfer overhead. To address these issues, we propose Minimal Interaction Edge Tuning, or MIET, which reveals that the sum of intermediate features from pretrained models not only has minimal information transfer but also has high adaptation capability. With a lightweight attention-based adaptor network, MIET achieves information transfer efficiency, parameter efficiency, computational and memory efficiency, and at the same time demonstrates competitive results on various visual adaptation benchmarks.
comment: 9 pages
♻ ☆ Scalp Diagnostic System With Label-Free Segmentation and Training-Free Image Translation
Scalp diseases and alopecia affect millions of people around the world, underscoring the urgent need for early diagnosis and management of the disease. However, the development of a comprehensive AI-based diagnosis system encompassing these conditions remains an underexplored domain due to the challenges associated with data imbalance and the costly nature of labeling. To address these issues, we propose ScalpVision, an AI-driven system for the holistic diagnosis of scalp diseases and alopecia. In ScalpVision, effective hair segmentation is achieved using pseudo image-label pairs and an innovative prompting method in the absence of traditional hair masking labels. This approach is crucial for extracting key features such as hair thickness and count, which are then used to assess alopecia severity. Additionally, ScalpVision introduces DiffuseIT-M, a generative model adept at dataset augmentation while maintaining hair information, facilitating improved predictions of scalp disease severity. Our experimental results affirm ScalpVision's efficiency in diagnosing a variety of scalp conditions and alopecia, showcasing its potential as a valuable tool in dermatological care.
comment: IEEE Transactions on Medical Imaging (Under Review)
♻ ☆ DF-SLAM: Dictionary Factors Representation for High-Fidelity Neural Implicit Dense Visual SLAM System
We introduce a high-fidelity neural implicit dense visual Simultaneous Localization and Mapping (SLAM) system, termed DF-SLAM. In our work, we employ dictionary factors for scene representation, encoding the geometry and appearance information of the scene as a combination of basis and coefficient factors. Compared to neural implicit dense visual SLAM methods that directly encode scene information as features, our method exhibits superior scene detail reconstruction capabilities and more efficient memory usage, while our model size is insensitive to the size of the scene map, making our method more suitable for large-scale scenes. Additionally, we employ feature integration rendering to accelerate color rendering speed while ensuring color rendering quality, further enhancing the real-time performance of our neural SLAM method. Extensive experiments on synthetic and real-world datasets demonstrate that our method is competitive with existing state-of-the-art neural implicit SLAM methods in terms of real-time performance, localization accuracy, and scene reconstruction quality. Our source code is available at https://github.com/funcdecl/DF-SLAM.
♻ ☆ Towards Training-free Open-world Segmentation via Image Prompt Foundation Models
The realm of computer vision has witnessed a paradigm shift with the advent of foundational models, mirroring the transformative influence of large language models in the domain of natural language processing. This paper delves into the exploration of open-world segmentation, presenting a novel approach called Image Prompt Segmentation (IPSeg) that harnesses the power of vision foundational models. IPSeg lies the principle of a training-free paradigm, which capitalizes on image prompt techniques. Specifically, IPSeg utilizes a single image containing a subjective visual concept as a flexible prompt to query vision foundation models like DINOv2 and Stable Diffusion. Our approach extracts robust features for the prompt image and input image, then matches the input representations to the prompt representations via a novel feature interaction module to generate point prompts highlighting target objects in the input image. The generated point prompts are further utilized to guide the Segment Anything Model to segment the target object in the input image. The proposed method stands out by eliminating the need for exhaustive training sessions, thereby offering a more efficient and scalable solution. Experiments on COCO, PASCAL VOC, and other datasets demonstrate IPSeg's efficacy for flexible open-world segmentation using intuitive image prompts. This work pioneers tapping foundation models for open-world understanding through visual concepts conveyed in images.
comment: This paper is accepted by IJCV2024
♻ ☆ Regional Style and Color Transfer
This paper presents a novel contribution to the field of regional style transfer. Existing methods often suffer from the drawback of applying style homogeneously across the entire image, leading to stylistic inconsistencies or foreground object twisted when applied to image with foreground elements such as person figures. To address this limitation, we propose a new approach that leverages a segmentation network to precisely isolate foreground objects within the input image. Subsequently, style transfer is applied exclusively to the background region. The isolated foreground objects are then carefully reintegrated into the style-transferred background. To enhance the visual coherence between foreground and background, a color transfer step is employed on the foreground elements prior to their rein-corporation. Finally, we utilize feathering techniques to achieve a seamless amalgamation of foreground and background, resulting in a visually unified and aesthetically pleasing final composition. Extensive evaluations demonstrate that our proposed approach yields significantly more natural stylistic transformations compared to conventional methods.
comment: Accepted by 2024 5th International Conference on Computer Vision, Image and Deep Learning
♻ ☆ Latent diffusion models for parameterization and data assimilation of facies-based geomodels
Geological parameterization entails the representation of a geomodel using a small set of latent variables and a mapping from these variables to grid-block properties such as porosity and permeability. Parameterization is useful for data assimilation (history matching), as it maintains geological realism while reducing the number of variables to be determined. Diffusion models are a new class of generative deep-learning procedures that have been shown to outperform previous methods, such as generative adversarial networks, for image generation tasks. Diffusion models are trained to "denoise", which enables them to generate new geological realizations from input fields characterized by random noise. Latent diffusion models, which are the specific variant considered in this study, provide dimension reduction through use of a low-dimensional latent variable. The model developed in this work includes a variational autoencoder for dimension reduction and a U-net for the denoising process. Our application involves conditional 2D three-facies (channel-levee-mud) systems. The latent diffusion model is shown to provide realizations that are visually consistent with samples from geomodeling software. Quantitative metrics involving spatial and flow-response statistics are evaluated, and general agreement between the diffusion-generated models and reference realizations is observed. Stability tests are performed to assess the smoothness of the parameterization method. The latent diffusion model is then used for ensemble-based data assimilation. Two synthetic "true" models are considered. Significant uncertainty reduction, posterior P$_{10}$-P$_{90}$ forecasts that generally bracket observed data, and consistent posterior geomodels, are achieved in both cases.
comment: - Moved Table 1 from before to after Section 4.2 heading - Renamed output pdf file with paper title
♻ ☆ Source-Free Domain Adaptation with Diffusion-Guided Source Data Generation
This paper introduces a novel approach to leverage the generalizability of Diffusion Models for Source-Free Domain Adaptation (DM-SFDA). Our proposed DMSFDA method involves fine-tuning a pre-trained text-to-image diffusion model to generate source domain images using features from the target images to guide the diffusion process. Specifically, the pre-trained diffusion model is fine-tuned to generate source samples that minimize entropy and maximize confidence for the pre-trained source model. We then use a diffusion model-based image mixup strategy to bridge the domain gap between the source and target domains. We validate our approach through comprehensive experiments across a range of datasets, including Office-31, Office-Home, and VisDA. The results demonstrate significant improvements in SFDA performance, highlighting the potential of diffusion models in generating contextually relevant, domain-specific images.
comment: arXiv admin note: substantial text overlap with arXiv:2310.01701
♻ ☆ Diff3Dformer: Leveraging Slice Sequence Diffusion for Enhanced 3D CT Classification with Transformer Networks
The manifestation of symptoms associated with lung diseases can vary in different depths for individual patients, highlighting the significance of 3D information in CT scans for medical image classification. While Vision Transformer has shown superior performance over convolutional neural networks in image classification tasks, their effectiveness is often demonstrated on sufficiently large 2D datasets and they easily encounter overfitting issues on small medical image datasets. To address this limitation, we propose a Diffusion-based 3D Vision Transformer (Diff3Dformer), which utilizes the latent space of the Diffusion model to form the slice sequence for 3D analysis and incorporates clustering attention into ViT to aggregate repetitive information within 3D CT scans, thereby harnessing the power of the advanced transformer in 3D classification tasks on small datasets. Our method exhibits improved performance on two different scales of small datasets of 3D lung CT scans, surpassing the state of the art 3D methods and other transformer-based approaches that emerged during the COVID-19 pandemic, demonstrating its robust and superior performance across different scales of data. Experimental results underscore the superiority of our proposed method, indicating its potential for enhancing medical image classification tasks in real-world scenarios.
comment: conference
♻ ☆ AutoProSAM: Automated Prompting SAM for 3D Multi-Organ Segmentation
Segment Anything Model (SAM) is one of the pioneering prompt-based foundation models for image segmentation and has been rapidly adopted for various medical imaging applications. However, in clinical settings, creating effective prompts is notably challenging and time-consuming, requiring the expertise of domain specialists such as physicians. This requirement significantly diminishes SAM's primary advantage - its interactive capability with end users - in medical applications. Moreover, recent studies have indicated that SAM, originally designed for 2D natural images, performs sub optimally on 3D medical image segmentation tasks. This subpar performance is attributed to the domain gaps between natural and medical images and the disparities in spatial arrangements between 2D and 3D images, particularly in multi-organ segmentation applications. To overcome these challenges, we present a novel technique termed AutoProSAM. This method automates 3D multi-organ CT-based segmentation by leveraging SAM's foundational model capabilities without relying on domain experts for prompts. The approach utilizes parameter-efficient adaptation techniques to adapt SAM for 3D medical imagery and incorporates an effective automatic prompt learning paradigm specific to this domain. By eliminating the need for manual prompts, it enhances SAM's capabilities for 3D medical image segmentation and achieves state-of-the-art (SOTA) performance in CT-based multi-organ segmentation tasks.
♻ ☆ Fast Encoder-Based 3D from Casual Videos via Point Track Processing
This paper addresses the long-standing challenge of reconstructing 3D structures from videos with dynamic content. Current approaches to this problem were not designed to operate on casual videos recorded by standard cameras or require a long optimization time. Aiming to significantly improve the efficiency of previous approaches, we present TracksTo4D, a learning-based approach that enables inferring 3D structure and camera positions from dynamic content originating from casual videos using a single efficient feed-forward pass. To achieve this, we propose operating directly over 2D point tracks as input and designing an architecture tailored for processing 2D point tracks. Our proposed architecture is designed with two key principles in mind: (1) it takes into account the inherent symmetries present in the input point tracks data, and (2) it assumes that the movement patterns can be effectively represented using a low-rank approximation. TracksTo4D is trained in an unsupervised way on a dataset of casual videos utilizing only the 2D point tracks extracted from the videos, without any 3D supervision. Our experiments show that TracksTo4D can reconstruct a temporal point cloud and camera positions of the underlying video with accuracy comparable to state-of-the-art methods, while drastically reducing runtime by up to 95\%. We further show that TracksTo4D generalizes well to unseen videos of unseen semantic categories at inference time.
♻ ☆ I2V-Adapter: A General Image-to-Video Adapter for Diffusion Models
Text-guided image-to-video (I2V) generation aims to generate a coherent video that preserves the identity of the input image and semantically aligns with the input prompt. Existing methods typically augment pretrained text-to-video (T2V) models by either concatenating the image with noised video frames channel-wise before being fed into the model or injecting the image embedding produced by pretrained image encoders in cross-attention modules. However, the former approach often necessitates altering the fundamental weights of pretrained T2V models, thus restricting the model's compatibility within the open-source communities and disrupting the model's prior knowledge. Meanwhile, the latter typically fails to preserve the identity of the input image. We present I2V-Adapter to overcome such limitations. I2V-Adapter adeptly propagates the unnoised input image to subsequent noised frames through a cross-frame attention mechanism, maintaining the identity of the input image without any changes to the pretrained T2V model. Notably, I2V-Adapter only introduces a few trainable parameters, significantly alleviating the training cost and also ensures compatibility with existing community-driven personalized models and control tools. Moreover, we propose a novel Frame Similarity Prior to balance the motion amplitude and the stability of generated videos through two adjustable control coefficients. Our experimental results demonstrate that I2V-Adapter is capable of producing high-quality videos. This performance, coupled with its agility and adaptability, represents a substantial advancement in the field of I2V, particularly for personalized and controllable applications.
Information Retrieval 15
☆ UniRec: A Dual Enhancement of Uniformity and Frequency in Sequential Recommendations
Representation learning in sequential recommendation is critical for accurately modeling user interaction patterns and improving recommendation precision. However, existing approaches predominantly emphasize item-to-item transitions, often neglecting the time intervals between interactions, which are closely related to behavior pattern changes. Additionally, broader interaction attributes, such as item frequency, are frequently overlooked. We found that both sequences with more uniform time intervals and items with higher frequency yield better prediction performance. Conversely, non-uniform sequences exacerbate user interest drift and less-frequent items are difficult to model due to sparse sampling, presenting unique challenges inadequately addressed by current methods. In this paper, we propose UniRec, a novel bidirectional enhancement sequential recommendation method. UniRec leverages sequence uniformity and item frequency to enhance performance, particularly improving the representation of non-uniform sequences and less-frequent items. These two branches mutually reinforce each other, driving comprehensive performance optimization in complex sequential recommendation scenarios. Additionally, we present a multidimensional time module to further enhance adaptability. To the best of our knowledge, UniRec is the first method to utilize the characteristics of uniformity and frequency for feature augmentation. Comparing with eleven advanced models across four datasets, we demonstrate that UniRec outperforms SOTA models significantly. The code is available at https://github.com/Linxi000/UniRec.
comment: 15 pages, 8 figures, for source code, see https://github.com/Linxi000/UniRec
☆ The Effects of Data Split Strategies on the Offline Experiments for CTR Prediction
Click-through rate (CTR) prediction is a crucial task in online advertising to recommend products that users are likely to be interested in. To identify the best-performing models, rigorous model evaluation is necessary. Offline experimentation plays a significant role in selecting models for live user-item interactions, despite the value of online experimentation like A/B testing, which has its own limitations and risks. Often, the correlation between offline performance metrics and actual online model performance is inadequate. One main reason for this discrepancy is the common practice of using random splits to create training, validation, and test datasets in CTR prediction. In contrast, real-world CTR prediction follows a temporal order. Therefore, the methodology used in offline evaluation, particularly the data splitting strategy, is crucial. This study aims to address the inconsistency between current offline evaluation methods and real-world use cases, by focusing on data splitting strategies. To examine the impact of different data split strategies on offline performance, we conduct extensive experiments using both random and temporal splits on a large open benchmark dataset, Criteo.
☆ Effects of Using Synthetic Data on Deep Recommender Models' Performance
Recommender systems are essential for enhancing user experiences by suggesting items based on individual preferences. However, these systems frequently face the challenge of data imbalance, characterized by a predominance of negative interactions over positive ones. This imbalance can result in biased recommendations favoring popular items. This study investigates the effectiveness of synthetic data generation in addressing data imbalances within recommender systems. Six different methods were used to generate synthetic data. Our experimental approach involved generating synthetic data using these methods and integrating the generated samples into the original dataset. Our results show that the inclusion of generated negative samples consistently improves the Area Under the Curve (AUC) scores. The significant impact of synthetic negative samples highlights the potential of data augmentation strategies to address issues of data sparsity and imbalance, ultimately leading to improved performance of recommender systems.
☆ Improving the Consistency in Cross-Lingual Cross-Modal Retrieval with 1-to-K Contrastive Learning KDD 2024
Cross-lingual Cross-modal Retrieval (CCR) is an essential task in web search, which aims to break the barriers between modality and language simultaneously and achieves image-text retrieval in the multi-lingual scenario with a single model. In recent years, excellent progress has been made based on cross-lingual cross-modal pre-training; particularly, the methods based on contrastive learning on large-scale data have significantly improved retrieval tasks. However, these methods directly follow the existing pre-training methods in the cross-lingual or cross-modal domain, leading to two problems of inconsistency in CCR: The methods with cross-lingual style suffer from the intra-modal error propagation, resulting in inconsistent recall performance across languages in the whole dataset. The methods with cross-modal style suffer from the inter-modal optimization direction bias, resulting in inconsistent rank across languages within each instance, which cannot be reflected by Recall@K. To solve these problems, we propose a simple but effective 1-to-K contrastive learning method, which treats each language equally and eliminates error propagation and optimization bias. In addition, we propose a new evaluation metric, Mean Rank Variance (MRV), to reflect the rank inconsistency across languages within each instance. Extensive experiments on four CCR datasets show that our method improves both recall rates and MRV with smaller-scale pre-trained data, achieving the new state-of-art.
comment: Accepted by KDD 2024 Research Track
☆ Concordance in basal cell carcinoma diagnosis. Building a proper ground truth to train Artificial Intelligence tools
Background: The existence of different basal cell carcinoma (BCC) clinical criteria cannot be objectively validated. An adequate ground-truth is needed to train an artificial intelligence (AI) tool that explains the BCC diagnosis by providing its dermoscopic features. Objectives: To determine the consensus among dermatologists on dermoscopic criteria of 204 BCC. To analyze the performance of an AI tool when the ground-truth is inferred. Methods: A single center, diagnostic and prospective study was conducted to analyze the agreement in dermoscopic criteria by four dermatologists and then derive a reference standard. 1434 dermoscopic images have been used, that were taken by a primary health physician, sent via teledermatology, and diagnosed by a dermatologist. They were randomly selected from the teledermatology platform (2019-2021). 204 of them were tested with an AI tool; the remainder trained it. The performance of the AI tool trained using the ground-truth of one dermatologist versus the ground-truth statistically inferred from the consensus of four dermatologists was analyzed using McNemar's test and Hamming distance. Results: Dermatologists achieve perfect agreement in the diagnosis of BCC (Fleiss-Kappa=0.9079), and a high correlation with the biopsy (PPV=0.9670). However, there is low agreement in detecting some dermoscopic criteria. Statistical differences were found in the performance of the AI tool trained using the ground-truth of one dermatologist versus the ground-truth statistically inferred from the consensus of four dermatologists. Conclusions: Care should be taken when training an AI tool to determine the BCC patterns present in a lesion. Ground-truth should be established from multiple dermatologists.
comment: Manuscript word count: 3000, Number of figures: 2, Number of tables: 3
☆ Knowledge Graph Enhanced Retrieval-Augmented Generation for Failure Mode and Effects Analysis
Failure mode and effects analysis (FMEA) is a critical tool for mitigating potential failures, particular during ramp-up phases of new products. However, its effectiveness is often limited by the missing reasoning capabilities of the FMEA tools, which are usually tabular structured. Meanwhile, large language models (LLMs) offer novel prospects for fine-tuning on custom datasets for reasoning within FMEA contexts. However, LLMs face challenges in tasks that require factual knowledge, a gap that retrieval-augmented generation (RAG) approaches aim to fill. RAG retrieves information from a non-parametric data store and uses a language model to generate responses. Building on this idea, we propose to advance the non-parametric data store with a knowledge graph (KG). By enhancing the RAG framework with a KG, our objective is to leverage analytical and semantic question-answering capabilities on FMEA data. This paper contributes by presenting a new ontology for FMEA observations, an algorithm for creating vector embeddings from the FMEA KG, and a KG enhanced RAG framework. Our approach is validated through a human study and we measure the performance of the context retrieval recall and precision.
☆ A Stem-Agnostic Single-Decoder System for Music Source Separation Beyond Four Stems
Despite significant recent progress across multiple subtasks of audio source separation, few music source separation systems support separation beyond the four-stem vocals, drums, bass, and other (VDBO) setup. Of the very few current systems that support source separation beyond this setup, most continue to rely on an inflexible decoder setup that can only support a fixed pre-defined set of stems. Increasing stem support in these inflexible systems correspondingly requires increasing computational complexity, rendering extensions of these systems computationally infeasible for long-tail instruments. In this work, we propose Banquet, a system that allows source separation of multiple stems using just one decoder. A bandsplit source separation model is extended to work in a query-based setup in tandem with a music instrument recognition PaSST model. On the MoisesDB dataset, Banquet, at only 24.9 M trainable parameters, approached the performance level of the significantly more complex 6-stem Hybrid Transformer Demucs on VDBO stems and outperformed it on guitar and piano. The query-based setup allows for the separation of narrow instrument classes such as clean acoustic guitars, and can be successfully applied to the extraction of less common stems such as reeds and organs. Implementation is available at https://github.com/kwatcharasupat/query-bandit.
comment: Submitted to the 25th International Society for Music Information Retrieval Conference (ISMIR 2024)
☆ Re-Ranking Step by Step: Investigating Pre-Filtering for Re-Ranking with Large Language Models
Large Language Models (LLMs) have been revolutionizing a myriad of natural language processing tasks with their diverse zero-shot capabilities. Indeed, existing work has shown that LLMs can be used to great effect for many tasks, such as information retrieval (IR), and passage ranking. However, current state-of-the-art results heavily lean on the capabilities of the LLM being used. Currently, proprietary, and very large LLMs such as GPT-4 are the highest performing passage re-rankers. Hence, users without the resources to leverage top of the line LLMs, or ones that are closed source, are at a disadvantage. In this paper, we investigate the use of a pre-filtering step before passage re-ranking in IR. Our experiments show that by using a small number of human generated relevance scores, coupled with LLM relevance scoring, it is effectively possible to filter out irrelevant passages before re-ranking. Our experiments also show that this pre-filtering then allows the LLM to perform significantly better at the re-ranking task. Indeed, our results show that smaller models such as Mixtral can become competitive with much larger proprietary models (e.g., ChatGPT and GPT-4).
♻ ☆ Generate then Retrieve: Conversational Response Retrieval Using LLMs as Answer and Query Generators
CIS is a prominent area in IR which focuses on developing interactive knowledge assistants. These systems must adeptly comprehend the user's information requirements within the conversational context and retrieve the relevant information. To this aim, the existing approaches model the user's information needs by generating a single query rewrite or a single representation of the query in the query space embedding. However, to answer complex questions, a single query rewrite or representation is often ineffective. To address this, a system needs to do reasoning over multiple passages. In this work, we propose using a generate-then-retrieve approach to improve the passage retrieval performance for complex user queries. In this approach, we utilize large language models (LLMs) to (i) generate an initial answer to the user's information need by doing reasoning over the context of the conversation, and (ii) ground this answer to the collection. Based on the experiments, our proposed approach significantly improves the retrieval performance on TREC iKAT 23, TREC CAsT 20 and 22 datasets, under various setups. Also, we show that grounding the LLM's answer requires more than one searchable query, where an average of 3 queries outperforms human rewrites.
♻ ☆ General Distribution Learning: A theoretical framework for Deep Learning
There remain numerous unanswered research questions on deep learning (DL) within the classical learning theory framework. These include the remarkable generalization capabilities of overparametrized neural networks (NNs), the efficient optimization performance despite non-convexity of objectives, the mechanism of flat minima for generalization, and the exceptional performance of deep architectures in solving physical problems. This paper introduces General Distribution Learning (GD Learning), a novel theoretical learning framework designed to address a comprehensive range of machine learning and statistical tasks, including classification, regression and parameter estimation. Departing from traditional statistical machine learning, GD Learning focuses on the true underlying distribution. In GD Learning, learning error, corresponding to the expected error in classical statistical learning framework, is divided into fitting errors due to models and algorithms, as well as sampling errors introduced by limited sampling data. The framework significantly incorporates prior knowledge, especially in scenarios characterized by data scarcity, thereby enhancing performance. Within the GD Learning framework, we demonstrate that the global optimal solutions in non-convex optimization can be approached by minimizing the gradient norm and the non-uniformity of the eigenvalues of the model's Jacobian matrix. This insight leads to the development of the gradient structure control algorithm. GD Learning also offers fresh insights into the questions on deep learning, including overparameterization and non-convex optimization, bias-variance trade-off, and the mechanism of flat minima.
comment: arXiv admin note: text overlap with arXiv:2105.04026 by other authors. arXiv admin note: text overlap with arXiv:2105.04026 by other authors
♻ ☆ Jina CLIP: Your CLIP Model Is Also Your Text Retriever ICML2024
Contrastive Language-Image Pretraining (CLIP) is widely used to train models to align images and texts in a common embedding space by mapping them to fixed-sized vectors. These models are key to multimodal information retrieval and related tasks. However, CLIP models generally underperform in text-only tasks compared to specialized text models. This creates inefficiencies for information retrieval systems that keep separate embeddings and models for text-only and multimodal tasks. We propose a novel, multi-task contrastive training method to address this issue, which we use to train the jina-clip-v1 model to achieve the state-of-the-art performance on both text-image and text-text retrieval tasks.
comment: 4 pages, MFM-EAI@ICML2024
♻ ☆ ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction WWW 2024
Click-through rate (CTR) prediction has become increasingly indispensable for various Internet applications. Traditional CTR models convert the multi-field categorical data into ID features via one-hot encoding, and extract the collaborative signals among features. Such a paradigm suffers from the problem of semantic information loss. Another line of research explores the potential of pretrained language models (PLMs) for CTR prediction by converting input data into textual sentences through hard prompt templates. Although semantic signals are preserved, they generally fail to capture the collaborative information (e.g., feature interactions, pure ID features), not to mention the unacceptable inference overhead brought by the huge model size. In this paper, we aim to model both the semantic knowledge and collaborative knowledge for accurate CTR estimation, and meanwhile address the inference inefficiency issue. To benefit from both worlds and close their gaps, we propose a novel model-agnostic framework (i.e., ClickPrompt), where we incorporate CTR models to generate interaction-aware soft prompts for PLMs. We design a prompt-augmented masked language modeling (PA-MLM) pretraining task, where PLM has to recover the masked tokens based on the language context, as well as the soft prompts generated by CTR model. The collaborative and semantic knowledge from ID and textual features would be explicitly aligned and interacted via the prompt interface. Then, we can either tune the CTR model with PLM for superior performance, or solely tune the CTR model without PLM for inference efficiency. Experiments on four real-world datasets validate the effectiveness of ClickPrompt compared with existing baselines.
comment: Accepted by WWW 2024
♻ ☆ Continual Collaborative Distillation for Recommender System KDD 2024
Knowledge distillation (KD) has emerged as a promising technique for addressing the computational challenges associated with deploying large-scale recommender systems. KD transfers the knowledge of a massive teacher system to a compact student model, to reduce the huge computational burdens for inference while retaining high accuracy. The existing KD studies primarily focus on one-time distillation in static environments, leaving a substantial gap in their applicability to real-world scenarios dealing with continuously incoming users, items, and their interactions. In this work, we delve into a systematic approach to operating the teacher-student KD in a non-stationary data stream. Our goal is to enable efficient deployment through a compact student, which preserves the high performance of the massive teacher, while effectively adapting to continuously incoming data. We propose Continual Collaborative Distillation (CCD) framework, where both the teacher and the student continually and collaboratively evolve along the data stream. CCD facilitates the student in effectively adapting to new data, while also enabling the teacher to fully leverage accumulated knowledge. We validate the effectiveness of CCD through extensive quantitative, ablative, and exploratory experiments on two real-world datasets. We expect this research direction to contribute to narrowing the gap between existing KD studies and practical applications, thereby enhancing the applicability of KD in real-world systems.
comment: Accepted by KDD 2024 research track. 9 main pages + 1 appendix page, 5 figures
♻ ☆ Retrieval Augmented Zero-Shot Text Classification SIGIR
Zero-shot text learning enables text classifiers to handle unseen classes efficiently, alleviating the need for task-specific training data. A simple approach often relies on comparing embeddings of query (text) to those of potential classes. However, the embeddings of a simple query sometimes lack rich contextual information, which hinders the classification performance. Traditionally, this has been addressed by improving the embedding model with expensive training. We introduce QZero, a novel training-free knowledge augmentation approach that reformulates queries by retrieving supporting categories from Wikipedia to improve zero-shot text classification performance. Our experiments across six diverse datasets demonstrate that QZero enhances performance for state-of-the-art static and contextual embedding models without the need for retraining. Notably, in News and medical topic classification tasks, QZero improves the performance of even the largest OpenAI embedding model by at least 5% and 3%, respectively. Acting as a knowledge amplifier, QZero enables small word embedding models to achieve performance levels comparable to those of larger contextual models, offering the potential for significant computational savings. Additionally, QZero offers meaningful insights that illuminate query context and verify topic relevance, aiding in understanding model predictions. Overall, QZero improves embedding-based zero-shot classifiers while maintaining their simplicity. This makes it particularly valuable for resource-constrained environments and domains with constantly evolving information.
comment: Proceedings of the 2024 ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR '24), July 13, 2024, Washington DC, DC, USA
♻ ☆ ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation WWW 2024
With large language models (LLMs) achieving remarkable breakthroughs in natural language processing (NLP) domains, LLM-enhanced recommender systems have received much attention and have been actively explored currently. In this paper, we focus on adapting and empowering a pure large language model for zero-shot and few-shot recommendation tasks. First and foremost, we identify and formulate the lifelong sequential behavior incomprehension problem for LLMs in recommendation domains, i.e., LLMs fail to extract useful information from a textual context of long user behavior sequence, even if the length of context is far from reaching the context limitation of LLMs. To address such an issue and improve the recommendation performance of LLMs, we propose a novel framework, namely Retrieval-enhanced Large Language models (ReLLa) for recommendation tasks in both zero-shot and few-shot settings. For zero-shot recommendation, we perform semantic user behavior retrieval (SUBR) to improve the data quality of testing samples, which greatly reduces the difficulty for LLMs to extract the essential knowledge from user behavior sequences. As for few-shot recommendation, we further design retrieval-enhanced instruction tuning (ReiT) by adopting SUBR as a data augmentation technique for training samples. Specifically, we develop a mixed training dataset consisting of both the original data samples and their retrieval-enhanced counterparts. We conduct extensive experiments on three real-world public datasets to demonstrate the superiority of ReLLa compared with existing baseline models, as well as its capability for lifelong sequential behavior comprehension. To be highlighted, with only less than 10% training samples, few-shot ReLLa can outperform traditional CTR models that are trained on the entire training set (e.g., DCNv2, DIN, SIM). The code is available \url{https://github.com/LaVieEnRose365/ReLLa}.
comment: Accepted by WWW 2024. Full and More Readable Version
Machine Learning 155
☆ Towards Compositionality in Concept Learning ICML 2024
Concept-based interpretability methods offer a lens into the internals of foundation models by decomposing their embeddings into high-level concepts. These concept representations are most useful when they are compositional, meaning that the individual concepts compose to explain the full sample. We show that existing unsupervised concept extraction methods find concepts which are not compositional. To automatically discover compositional concept representations, we identify two salient properties of such representations, and propose Compositional Concept Extraction (CCE) for finding concepts which obey these properties. We evaluate CCE on five different datasets over image and text data. Our evaluation shows that CCE finds more compositional concept representations than baselines and yields better accuracy on four downstream classification tasks. Code and data are available at https://github.com/adaminsky/compositional_concepts .
comment: Accepted at ICML 2024. 26 pages, 10 figures
☆ Symbolic Learning Enables Self-Evolving Agents
The AI community has been exploring a pathway to artificial general intelligence (AGI) by developing "language agents", which are complex large language models (LLMs) pipelines involving both prompting techniques and tool usage methods. While language agents have demonstrated impressive capabilities for many real-world tasks, a fundamental limitation of current language agents research is that they are model-centric, or engineering-centric. That's to say, the progress on prompts, tools, and pipelines of language agents requires substantial manual engineering efforts from human experts rather than automatically learning from data. We believe the transition from model-centric, or engineering-centric, to data-centric, i.e., the ability of language agents to autonomously learn and evolve in environments, is the key for them to possibly achieve AGI. In this work, we introduce agent symbolic learning, a systematic framework that enables language agents to optimize themselves on their own in a data-centric way using symbolic optimizers. Specifically, we consider agents as symbolic networks where learnable weights are defined by prompts, tools, and the way they are stacked together. Agent symbolic learning is designed to optimize the symbolic network within language agents by mimicking two fundamental algorithms in connectionist learning: back-propagation and gradient descent. Instead of dealing with numeric weights, agent symbolic learning works with natural language simulacrums of weights, loss, and gradients. We conduct proof-of-concept experiments on both standard benchmarks and complex real-world tasks and show that agent symbolic learning enables language agents to update themselves after being created and deployed in the wild, resulting in "self-evolving agents".
comment: Code available at https://github.com/aiwaves-cn/agents
☆ Confident Natural Policy Gradient for Local Planning in $q_π$-realizable Constrained MDPs
The constrained Markov decision process (CMDP) framework emerges as an important reinforcement learning approach for imposing safety or other critical objectives while maximizing cumulative reward. However, the current understanding of how to learn efficiently in a CMDP environment with a potentially infinite number of states remains under investigation, particularly when function approximation is applied to the value functions. In this paper, we address the learning problem given linear function approximation with $q_{\pi}$-realizability, where the value functions of all policies are linearly representable with a known feature map, a setting known to be more general and challenging than other linear settings. Utilizing a local-access model, we propose a novel primal-dual algorithm that, after $\tilde{O}(\text{poly}(d) \epsilon^{-3})$ queries, outputs with high probability a policy that strictly satisfies the constraints while nearly optimizing the value with respect to a reward function. Here, $d$ is the feature dimension and $\epsilon > 0$ is a given error. The algorithm relies on a carefully crafted off-policy evaluation procedure to evaluate the policy using historical data, which informs policy updates through policy gradients and conserves samples. To our knowledge, this is the first result achieving polynomial sample complexity for CMDP in the $q_{\pi}$-realizable setting.
☆ APIGen: Automated Pipeline for Generating Verifiable and Diverse Function-Calling Datasets
The advancement of function-calling agent models requires diverse, reliable, and high-quality datasets. This paper presents APIGen, an automated data generation pipeline designed to synthesize verifiable high-quality datasets for function-calling applications. We leverage APIGen and collect 3,673 executable APIs across 21 different categories to generate diverse function-calling datasets in a scalable and structured manner. Each data in our dataset is verified through three hierarchical stages: format checking, actual function executions, and semantic verification, ensuring its reliability and correctness. We demonstrate that models trained with our curated datasets, even with only 7B parameters, can achieve state-of-the-art performance on the Berkeley Function-Calling Benchmark, outperforming multiple GPT-4 models. Moreover, our 1B model achieves exceptional performance, surpassing GPT-3.5-Turbo and Claude-3 Haiku. We release a dataset containing 60,000 high-quality entries, aiming to advance the field of function-calling agent domains. The dataset is available on Huggingface: https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k and the project homepage: https://apigen-pipeline.github.io/
☆ Mental Modeling of Reinforcement Learning Agents by Language Models
Can emergent language models faithfully model the intelligence of decision-making agents? Though modern language models exhibit already some reasoning ability, and theoretically can potentially express any probable distribution over tokens, it remains underexplored how the world knowledge these pretrained models have memorized can be utilized to comprehend an agent's behaviour in the physical world. This study empirically examines, for the first time, how well large language models (LLMs) can build a mental model of agents, termed agent mental modelling, by reasoning about an agent's behaviour and its effect on states from agent interaction history. This research may unveil the potential of leveraging LLMs for elucidating RL agent behaviour, addressing a key challenge in eXplainable reinforcement learning (XRL). To this end, we propose specific evaluation metrics and test them on selected RL task datasets of varying complexity, reporting findings on agent mental model establishment. Our results disclose that LLMs are not yet capable of fully mental modelling agents through inference alone without further innovations. This work thus provides new insights into the capabilities and limitations of modern LLMs.
comment: https://lukaswill.github.io/
☆ Enhancing Federated Learning with Adaptive Differential Privacy and Priority-Based Aggregation
Federated learning (FL), a novel branch of distributed machine learning (ML), develops global models through a private procedure without direct access to local datasets. However, it is still possible to access the model updates (gradient updates of deep neural networks) transferred between clients and servers, potentially revealing sensitive local information to adversaries using model inversion attacks. Differential privacy (DP) offers a promising approach to addressing this issue by adding noise to the parameters. On the other hand, heterogeneities in data structure, storage, communication, and computational capabilities of devices can cause convergence problems and delays in developing the global model. A personalized weighted averaging of local parameters based on the resources of each device can yield a better aggregated model in each round. In this paper, to efficiently preserve privacy, we propose a personalized DP framework that injects noise based on clients' relative impact factors and aggregates parameters while considering heterogeneities and adjusting properties. To fulfill the DP requirements, we first analyze the convergence boundary of the FL algorithm when impact factors are personalized and fixed throughout the learning process. We then further study the convergence property considering time-varying (adaptive) impact factors.
☆ UniRec: A Dual Enhancement of Uniformity and Frequency in Sequential Recommendations
Representation learning in sequential recommendation is critical for accurately modeling user interaction patterns and improving recommendation precision. However, existing approaches predominantly emphasize item-to-item transitions, often neglecting the time intervals between interactions, which are closely related to behavior pattern changes. Additionally, broader interaction attributes, such as item frequency, are frequently overlooked. We found that both sequences with more uniform time intervals and items with higher frequency yield better prediction performance. Conversely, non-uniform sequences exacerbate user interest drift and less-frequent items are difficult to model due to sparse sampling, presenting unique challenges inadequately addressed by current methods. In this paper, we propose UniRec, a novel bidirectional enhancement sequential recommendation method. UniRec leverages sequence uniformity and item frequency to enhance performance, particularly improving the representation of non-uniform sequences and less-frequent items. These two branches mutually reinforce each other, driving comprehensive performance optimization in complex sequential recommendation scenarios. Additionally, we present a multidimensional time module to further enhance adaptability. To the best of our knowledge, UniRec is the first method to utilize the characteristics of uniformity and frequency for feature augmentation. Comparing with eleven advanced models across four datasets, we demonstrate that UniRec outperforms SOTA models significantly. The code is available at https://github.com/Linxi000/UniRec.
comment: 15 pages, 8 figures, for source code, see https://github.com/Linxi000/UniRec
☆ Bayesian inverse Navier-Stokes problems: joint flow field reconstruction and parameter learning
We formulate and solve a Bayesian inverse Navier-Stokes (N-S) problem that assimilates velocimetry data in order to jointly reconstruct a 3D flow field and learn the unknown N-S parameters, including the boundary position. By hardwiring a generalised N-S problem, and regularising its unknown parameters using Gaussian prior distributions, we learn the most likely parameters in a collapsed search space. The most likely flow field reconstruction is then the N-S solution that corresponds to the learned parameters. We develop the method in the variational setting and use a stabilised Nitsche weak form of the N-S problem that permits the control of all N-S parameters. To regularise the inferred the geometry, we use a viscous signed distance field (vSDF) as an auxiliary variable, which is given as the solution of a viscous Eikonal boundary value problem. We devise an algorithm that solves this inverse problem, and numerically implement it using an adjoint-consistent stabilised cut-cell finite element method. We then use this method to reconstruct magnetic resonance velocimetry (flow-MRI) data of a 3D steady laminar flow through a physical model of an aortic arch for two different Reynolds numbers and signal-to-noise ratio (SNR) levels (low/high). We find that the method can accurately i) reconstruct the low SNR data by filtering out the noise/artefacts and recovering flow features that are obscured by noise, and ii) reproduce the high SNR data without overfitting. Although the framework that we develop applies to 3D steady laminar flows in complex geometries, it readily extends to time-dependent laminar and Reynolds-averaged turbulent flows, as well as non-Newtonian (e.g. viscoelastic) fluids.
☆ Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust Classifiers
Despite extensive research on adversarial training strategies to improve robustness, the decisions of even the most robust deep learning models can still be quite sensitive to imperceptible perturbations, creating serious risks when deploying them for high-stakes real-world applications. While detecting such cases may be critical, evaluating a model's vulnerability at a per-instance level using adversarial attacks is computationally too intensive and unsuitable for real-time deployment scenarios. The input space margin is the exact score to detect non-robust samples and is intractable for deep neural networks. This paper introduces the concept of margin consistency -- a property that links the input space margins and the logit margins in robust models -- for efficient detection of vulnerable samples. First, we establish that margin consistency is a necessary and sufficient condition to use a model's logit margin as a score for identifying non-robust samples. Next, through comprehensive empirical analysis of various robustly trained models on CIFAR10 and CIFAR100 datasets, we show that they indicate strong margin consistency with a strong correlation between their input space margins and the logit margins. Then, we show that we can effectively use the logit margin to confidently detect brittle decisions with such models and accurately estimate robust accuracy on an arbitrarily large test set by estimating the input margins only on a small subset. Finally, we address cases where the model is not sufficiently margin-consistent by learning a pseudo-margin from the feature representation. Our findings highlight the potential of leveraging deep representations to efficiently assess adversarial vulnerability in deployment scenarios.
comment: 11 pages, 7 figures, 2 tables, 1 algorithm
☆ Preference Elicitation for Offline Reinforcement Learning
Applying reinforcement learning (RL) to real-world problems is often made challenging by the inability to interact with the environment and the difficulty of designing reward functions. Offline RL addresses the first challenge by considering access to an offline dataset of environment interactions labeled by the reward function. In contrast, Preference-based RL does not assume access to the reward function and learns it from preferences, but typically requires an online interaction with the environment. We bridge the gap between these frameworks by exploring efficient methods for acquiring preference feedback in a fully offline setup. We propose Sim-OPRL, an offline preference-based reinforcement learning algorithm, which leverages a learned environment model to elicit preference feedback on simulated rollouts. Drawing on insights from both the offline RL and the preference-based RL literature, our algorithm employs a pessimistic approach for out-of-distribution data, and an optimistic approach for acquiring informative preferences about the optimal policy. We provide theoretical guarantees regarding the sample complexity of our approach, dependent on how well the offline data covers the optimal policy. Finally, we demonstrate the empirical performance of Sim-OPRL in different environments.
☆ An Autotuning-based Optimization Framework for Mixed-kernel SVM Classifications in Smart Pixel Datasets and Heterojunction Transistors
Support Vector Machine (SVM) is a state-of-the-art classification method widely used in science and engineering due to its high accuracy, its ability to deal with high dimensional data, and its flexibility in modeling diverse sources of data. In this paper, we propose an autotuning-based optimization framework to quantify the ranges of hyperparameters in SVMs to identify their optimal choices, and apply the framework to two SVMs with the mixed-kernel between Sigmoid and Gaussian kernels for smart pixel datasets in high energy physics (HEP) and mixed-kernel heterojunction transistors (MKH). Our experimental results show that the optimal selection of hyperparameters in the SVMs and the kernels greatly varies for different applications and datasets, and choosing their optimal choices is critical for a high classification accuracy of the mixed kernel SVMs. Uninformed choices of hyperparameters C and coef0 in the mixed-kernel SVMs result in severely low accuracy, and the proposed framework effectively quantifies the proper ranges for the hyperparameters in the SVMs to identify their optimal choices to achieve the highest accuracy 94.6\% for the HEP application and the highest average accuracy 97.2\% with far less tuning time for the MKH application.
Graph Neural Networks for Emulation of Finite-Element Ice Dynamics in Greenland and Antarctic Ice Sheets ICML 2024
Although numerical models provide accurate solutions for ice sheet dynamics based on physics laws, they accompany intensified computational demands to solve partial differential equations. In recent years, convolutional neural networks (CNNs) have been widely used as statistical emulators for those numerical models. However, since CNNs operate on regular grids, they cannot represent the refined meshes and computational efficiency of finite-element numerical models. Therefore, instead of CNNs, this study adopts an equivariant graph convolutional network (EGCN) as an emulator for the ice sheet dynamics modeling. EGCN reproduces ice thickness and velocity changes in the Helheim Glacier, Greenland, and Pine Island Glacier, Antarctica, with 260 times and 44 times faster computation time, respectively. Compared to the traditional CNN and graph convolutional network, EGCN shows outstanding accuracy in thickness prediction near fast ice streams by preserving the equivariance to the translation and rotation of graphs.
comment: 6 pages, 2 figures, submitted to the ICML 2024 Workshop on Machine Learning for Earth System Modeling
☆ Mixture of Experts in a Mixture of RL settings
Mixtures of Experts (MoEs) have gained prominence in (self-)supervised learning due to their enhanced inference efficiency, adaptability to distributed training, and modularity. Previous research has illustrated that MoEs can significantly boost Deep Reinforcement Learning (DRL) performance by expanding the network's parameter count while reducing dormant neurons, thereby enhancing the model's learning capacity and ability to deal with non-stationarity. In this work, we shed more light on MoEs' ability to deal with non-stationarity and investigate MoEs in DRL settings with "amplified" non-stationarity via multi-task training, providing further evidence that MoEs improve learning capacity. In contrast to previous work, our multi-task results allow us to better understand the underlying causes for the beneficial effect of MoE in DRL training, the impact of the various MoE components, and insights into how best to incorporate them in actor-critic-based DRL networks. Finally, we also confirm results from previous work.
☆ Differential error feedback for communication-efficient decentralized learning
Communication-constrained algorithms for decentralized learning and optimization rely on local updates coupled with the exchange of compressed signals. In this context, differential quantization is an effective technique to mitigate the negative impact of compression by leveraging correlations between successive iterates. In addition, the use of error feedback, which consists of incorporating the compression error into subsequent steps, is a powerful mechanism to compensate for the bias caused by the compression. Under error feedback, performance guarantees in the literature have so far focused on algorithms employing a fusion center or a special class of contractive compressors that cannot be implemented with a finite number of bits. In this work, we propose a new decentralized communication-efficient learning approach that blends differential quantization with error feedback. The approach is specifically tailored for decentralized learning problems where agents have individual risk functions to minimize subject to subspace constraints that require the minimizers across the network to lie in low-dimensional subspaces. This constrained formulation includes consensus or single-task optimization as special cases, and allows for more general task relatedness models such as multitask smoothness and coupled optimization. We show that, under some general conditions on the compression noise, and for sufficiently small step-sizes $\mu$, the resulting communication-efficient strategy is stable both in terms of mean-square error and average bit rate: by reducing $\mu$, it is possible to keep the estimation errors small (on the order of $\mu$) without increasing indefinitely the bit rate as $\mu\rightarrow 0$. The results establish that, in the small step-size regime and with a finite number of bits, it is possible to attain the performance achievable in the absence of compression.
comment: arXiv admin note: text overlap with arXiv:2209.07821
☆ Towards diffusion models for large-scale sea-ice modelling ICML 2024
We make the first steps towards diffusion models for unconditional generation of multivariate and Arctic-wide sea-ice states. While targeting to reduce the computational costs by diffusion in latent space, latent diffusion models also offer the possibility to integrate physical knowledge into the generation process. We tailor latent diffusion models to sea-ice physics with a censored Gaussian distribution in data space to generate data that follows the physical bounds of the modelled variables. Our latent diffusion models reach similar scores as the diffusion model trained in data space, but they smooth the generated fields as caused by the latent mapping. While enforcing physical bounds cannot reduce the smoothing, it improves the representation of the marginal ice zone. Therefore, for large-scale Earth system modelling, latent diffusion models can have many advantages compared to diffusion in data space if the significant barrier of smoothing can be resolved.
comment: 21 pages, 5 figure, Accepted at the ICML 2024 Machine Learning for Earth System Modeling workshop
☆ Do LLMs dream of elephants (when told not to)? Latent concept association and associative memory in transformers
Large Language Models (LLMs) have the capacity to store and recall facts. Through experimentation with open-source models, we observe that this ability to retrieve facts can be easily manipulated by changing contexts, even without altering their factual meanings. These findings highlight that LLMs might behave like an associative memory model where certain tokens in the contexts serve as clues to retrieving facts. We mathematically explore this property by studying how transformers, the building blocks of LLMs, can complete such memory tasks. We study a simple latent concept association problem with a one-layer transformer and we show theoretically and empirically that the transformer gathers information using self-attention and uses the value matrix for associative memory.
☆ Second Maximum of a Gaussian Random Field and Exact (t-)Spacing test
In this article, we introduce the novel concept of the second maximum of a Gaussian random field on a Riemannian submanifold. This second maximum serves as a powerful tool for characterizing the distribution of the maximum. By utilizing an ad-hoc Kac Rice formula, we derive the explicit form of the maximum's distribution, conditioned on the second maximum and some regressed component of the Riemannian Hessian. This approach results in an exact test, based on the evaluation of spacing between these maxima, which we refer to as the spacing test. We investigate the applicability of this test in detecting sparse alternatives within Gaussian symmetric tensors, continuous sparse deconvolution, and two-layered neural networks with smooth rectifiers. Our theoretical results are supported by numerical experiments, which illustrate the calibration and power of the proposed tests. More generally, this test can be applied to any Gaussian random field on a Riemannian manifold, and we provide a general framework for the application of the spacing test in continuous sparse kernel regression. Furthermore, when the variance-covariance function of the Gaussian random field is known up to a scaling factor, we derive an exact Studentized version of our test, coined the $t$-spacing test. This test is perfectly calibrated under the null hypothesis and has high power for detecting sparse alternatives.
comment: 5 figures, 22 pages main document, 2 pages supplements
☆ DoubleTake: Geometry Guided Depth Estimation
Estimating depth from a sequence of posed RGB images is a fundamental computer vision task, with applications in augmented reality, path planning etc. Prior work typically makes use of previous frames in a multi view stereo framework, relying on matching textures in a local neighborhood. In contrast, our model leverages historical predictions by giving the latest 3D geometry data as an extra input to our network. This self-generated geometric hint can encode information from areas of the scene not covered by the keyframes and it is more regularized when compared to individual predicted depth maps for previous frames. We introduce a Hint MLP which combines cost volume features with a hint of the prior geometry, rendered as a depth map from the current camera location, together with a measure of the confidence in the prior geometry. We demonstrate that our method, which can run at interactive speeds, achieves state-of-the-art estimates of depth and 3D scene reconstruction in both offline and incremental evaluation scenarios.
☆ Adversarial Search Engine Optimization for Large Language Models
Large Language Models (LLMs) are increasingly used in applications where the model selects from competing third-party content, such as in LLM-powered search engines or chatbot plugins. In this paper, we introduce Preference Manipulation Attacks, a new class of attacks that manipulate an LLM's selections to favor the attacker. We demonstrate that carefully crafted website content or plugin documentations can trick an LLM to promote the attacker products and discredit competitors, thereby increasing user traffic and monetization. We show this leads to a prisoner's dilemma, where all parties are incentivized to launch attacks, but the collective effect degrades the LLM's outputs for everyone. We demonstrate our attacks on production LLM search engines (Bing and Perplexity) and plugin APIs (for GPT-4 and Claude). As LLMs are increasingly used to rank third-party content, we expect Preference Manipulation Attacks to emerge as a significant threat.
☆ KAGNNs: Kolmogorov-Arnold Networks meet Graph Learning
In recent years, Graph Neural Networks (GNNs) have become the de facto tool for learning node and graph representations. Most GNNs typically consist of a sequence of neighborhood aggregation (a.k.a., message passing) layers. Within each of these layers, the representation of each node is updated from an aggregation and transformation of its neighbours representations at the previous layer. The upper bound for the expressive power of message passing GNNs was reached through the use of MLPs as a transformation, due to their universal approximation capabilities. However, MLPs suffer from well-known limitations, which recently motivated the introduction of Kolmogorov-Arnold Networks (KANs). KANs rely on the Kolmogorov-Arnold representation theorem, rendering them a promising alternative to MLPs. In this work, we compare the performance of KANs against that of MLPs in graph learning tasks. We perform extensive experiments on node classification, graph classification and graph regression datasets. Our preliminary results indicate that while KANs are on-par with MLPs in classification tasks, they seem to have a clear advantage in the graph regression tasks.
☆ Learning pure quantum states (almost) without regret
We initiate the study of quantum state tomography with minimal regret. A learner has sequential oracle access to an unknown pure quantum state, and in each round selects a pure probe state. Regret is incurred if the unknown state is measured orthogonal to this probe, and the learner's goal is to minimise the expected cumulative regret over $T$ rounds. The challenge is to find a balance between the most informative measurements and measurements incurring minimal regret. We show that the cumulative regret scales as $\Theta(\operatorname{polylog} T)$ using a new tomography algorithm based on a median of means least squares estimator. This algorithm employs measurements biased towards the unknown state and produces online estimates that are optimal (up to logarithmic terms) in the number of observed samples.
comment: 24 pages, 2 figures
☆ Kolmogorov-Arnold Graph Neural Networks
Graph neural networks (GNNs) excel in learning from network-like data but often lack interpretability, making their application challenging in domains requiring transparent decision-making. We propose the Graph Kolmogorov-Arnold Network (GKAN), a novel GNN model leveraging spline-based activation functions on edges to enhance both accuracy and interpretability. Our experiments on five benchmark datasets demonstrate that GKAN outperforms state-of-the-art GNN models in node classification, link prediction, and graph classification tasks. In addition to the improved accuracy, GKAN's design inherently provides clear insights into the model's decision-making process, eliminating the need for post-hoc explainability techniques. This paper discusses the methodology, performance, and interpretability of GKAN, highlighting its potential for applications in domains where interpretability is crucial.
comment: 7 pages, 4 figures, under review
☆ Reinforcement Learning with Intrinsically Motivated Feedback Graph for Lost-sales Inventory Control
Reinforcement learning (RL) has proven to be well-performed and general-purpose in the inventory control (IC). However, further improvement of RL algorithms in the IC domain is impeded due to two limitations of online experience. First, online experience is expensive to acquire in real-world applications. With the low sample efficiency nature of RL algorithms, it would take extensive time to train the RL policy to convergence. Second, online experience may not reflect the true demand due to the lost sales phenomenon typical in IC, which makes the learning process more challenging. To address the above challenges, we propose a decision framework that combines reinforcement learning with feedback graph (RLFG) and intrinsically motivated exploration (IME) to boost sample efficiency. In particular, we first take advantage of the inherent properties of lost-sales IC problems and design the feedback graph (FG) specially for lost-sales IC problems to generate abundant side experiences aid RL updates. Then we conduct a rigorous theoretical analysis of how the designed FG reduces the sample complexity of RL methods. Based on the theoretical insights, we design an intrinsic reward to direct the RL agent to explore to the state-action space with more side experiences, further exploiting FG's power. Experimental results demonstrate that our method greatly improves the sample efficiency of applying RL in IC. Our code is available at https://anonymous.4open.science/r/RLIMFG4IC-811D/
☆ EmT: A Novel Transformer for Generalized Cross-subject EEG Emotion Recognition
Integrating prior knowledge of neurophysiology into neural network architecture enhances the performance of emotion decoding. While numerous techniques emphasize learning spatial and short-term temporal patterns, there has been limited emphasis on capturing the vital long-term contextual information associated with emotional cognitive processes. In order to address this discrepancy, we introduce a novel transformer model called emotion transformer (EmT). EmT is designed to excel in both generalized cross-subject EEG emotion classification and regression tasks. In EmT, EEG signals are transformed into a temporal graph format, creating a sequence of EEG feature graphs using a temporal graph construction module (TGC). A novel residual multi-view pyramid GCN module (RMPG) is then proposed to learn dynamic graph representations for each EEG feature graph within the series, and the learned representations of each graph are fused into one token. Furthermore, we design a temporal contextual transformer module (TCT) with two types of token mixers to learn the temporal contextual information. Finally, the task-specific output module (TSO) generates the desired outputs. Experiments on four publicly available datasets show that EmT achieves higher results than the baseline methods for both EEG emotion classification and regression tasks. The code is available at https://github.com/yi-ding-cs/EmT.
comment: 11 pages, 5 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ Efficient and Accurate Explanation Estimation with Distribution Compression ICML 2024
Exact computation of various machine learning explanations requires numerous model evaluations and in extreme cases becomes impractical. The computational cost of approximation increases with an ever-increasing size of data and model parameters. Many heuristics have been proposed to approximate post-hoc explanations efficiently. This paper shows that the standard i.i.d. sampling used in a broad spectrum of algorithms for explanation estimation leads to an approximation error worthy of improvement. To this end, we introduce Compress Then Explain (CTE), a new paradigm for more efficient and accurate explanation estimation. CTE uses distribution compression through kernel thinning to obtain a data sample that best approximates the marginal distribution. We show that CTE improves the estimation of removal-based local and global explanations with negligible computational overhead. It often achieves an on-par explanation approximation error using 2-3x less samples, i.e. requiring 2-3x less model evaluations. CTE is a simple, yet powerful, plug-in for any explanation method that now relies on i.i.d. sampling.
comment: To be presented at the ICML 2024 Workshop on DMLR
☆ Early Classification of Time Series: Taxonomy and Benchmark
In many situations, the measurements of a studied phenomenon are provided sequentially, and the prediction of its class needs to be made as early as possible so as not to incur too high a time penalty, but not too early and risk paying the cost of misclassification. This problem has been particularly studied in the case of time series, and is known as Early Classification of Time Series (ECTS). Although it has been the subject of a growing body of literature, there is still a lack of a systematic, shared evaluation protocol to compare the relative merits of the various existing methods. This document begins by situating these methods within a principle-based taxonomy. It defines dimensions for organizing their evaluation, and then reports the results of a very extensive set of experiments along these dimensions involving nine state-of-the art ECTS algorithms. In addition, these and other experiments can be carried out using an open-source library in which most of the existing ECTS algorithms have been implemented (see \url{https://github.com/ML-EDM/ml_edm}).
☆ Molecular Diffusion Models with Virtual Receptors
Machine learning approaches to Structure-Based Drug Design (SBDD) have proven quite fertile over the last few years. In particular, diffusion-based approaches to SBDD have shown great promise. We present a technique which expands on this diffusion approach in two crucial ways. First, we address the size disparity between the drug molecule and the target/receptor, which makes learning more challenging and inference slower. We do so through the notion of a Virtual Receptor, which is a compressed version of the receptor; it is learned so as to preserve key aspects of the structural information of the original receptor, while respecting the relevant group equivariance. Second, we incorporate a protein language embedding used originally in the context of protein folding. We experimentally demonstrate the contributions of both the virtual receptors and the protein embeddings: in practice, they lead to both better performance, as well as significantly faster computations.
☆ PDFA Distillation via String Probability Queries {PDFA Distillation via String Probability Queries}
Probabilistic deterministic finite automata (PDFA) are discrete event systems modeling conditional probabilities over languages: Given an already seen sequence of tokens they return the probability of tokens of interest to appear next. These types of models have gained interest in the domain of explainable machine learning, where they are used as surrogate models for neural networks trained as language models. In this work we present an algorithm to distill PDFA from neural networks. Our algorithm is a derivative of the L# algorithm and capable of learning PDFA from a new type of query, in which the algorithm infers conditional probabilities from the probability of the queried string to occur. We show its effectiveness on a recent public dataset by distilling PDFA from a set of trained neural networks.
comment: LearnAUT 2024
☆ Multi-modal Evidential Fusion Network for Trusted PET/CT Tumor Segmentation
Accurate segmentation of tumors in PET/CT images is important in computer-aided diagnosis and treatment of cancer. The key issue of such a segmentation problem lies in the effective integration of complementary information from PET and CT images. However, the quality of PET and CT images varies widely in clinical settings, which leads to uncertainty in the modality information extracted by networks. To take the uncertainty into account in multi-modal information fusion, this paper proposes a novel Multi-modal Evidential Fusion Network (MEFN) comprising a Cross-Modal Feature Learning (CFL) module and a Multi-modal Trusted Fusion (MTF) module. The CFL module reduces the domain gap upon modality conversion and highlights common tumor features, thereby alleviating the needs of the segmentation module to handle modality specificity. The MTF module utilizes mutual attention mechanisms and an uncertainty calibrator to fuse modality features based on modality uncertainty and then fuse the segmentation results under the guidance of Dempster-Shafer Theory. Besides, a new uncertainty perceptual loss is introduced to force the model focusing on uncertain features and hence improve its ability to extract trusted modality information. Extensive comparative experiments are conducted on two publicly available PET/CT datasets to evaluate the performance of our proposed method whose results demonstrate that our MEFN significantly outperforms state-of-the-art methods with improvements of 2.15% and 3.23% in DSC scores on the AutoPET dataset and the Hecktor dataset, respectively. More importantly, our model can provide radiologists with credible uncertainty of the segmentation results for their decision in accepting or rejecting the automatic segmentation results, which is particularly important for clinical applications. Our code will be available at https://github.com/QPaws/MEFN.
☆ Trade-off between Gradient Measurement Efficiency and Expressivity in Deep Quantum Neural Networks
Quantum neural networks (QNNs) require an efficient training algorithm to achieve practical quantum advantages. A promising approach is the use of gradient-based optimization algorithms, where gradients are estimated through quantum measurements. However, it is generally difficult to efficiently measure gradients in QNNs because the quantum state collapses upon measurement. In this work, we prove a general trade-off between gradient measurement efficiency and expressivity in a wide class of deep QNNs, elucidating the theoretical limits and possibilities of efficient gradient estimation. This trade-off implies that a more expressive QNN requires a higher measurement cost in gradient estimation, whereas we can increase gradient measurement efficiency by reducing the QNN expressivity to suit a given task. We further propose a general QNN ansatz called the stabilizer-logical product ansatz (SLPA), which can reach the upper limit of the trade-off inequality by leveraging the symmetric structure of the quantum circuit. In learning an unknown symmetric function, the SLPA drastically reduces the quantum resources required for training while maintaining accuracy and trainability compared to a well-designed symmetric circuit based on the parameter-shift method. Our results not only reveal a theoretical understanding of efficient training in QNNs but also provide a standard and broadly applicable efficient QNN design.
comment: 32 pages, 11 figures
☆ ContactNet: Geometric-Based Deep Learning Model for Predicting Protein-Protein Interactions
Deep learning approaches achieved significant progress in predicting protein structures. These methods are often applied to protein-protein interactions (PPIs) yet require Multiple Sequence Alignment (MSA) which is unavailable for various interactions, such as antibody-antigen. Computational docking methods are capable of sampling accurate complex models, but also produce thousands of invalid configurations. The design of scoring functions for identifying accurate models is a long-standing challenge. We develop a novel attention-based Graph Neural Network (GNN), ContactNet, for classifying PPI models obtained from docking algorithms into accurate and incorrect ones. When trained on docked antigen and modeled antibody structures, ContactNet doubles the accuracy of current state-of-the-art scoring functions, achieving accurate models among its Top-10 at 43% of the test cases. When applied to unbound antibodies, its Top-10 accuracy increases to 65%. This performance is achieved without MSA and the approach is applicable to other types of interactions, such as host-pathogens or general PPIs.
☆ Online Learning of Multiple Tasks and Their Relationships : Testing on Spam Email Data and EEG Signals Recorded in Construction Fields
This paper examines an online multi-task learning (OMTL) method, which processes data sequentially to predict labels across related tasks. The framework learns task weights and their relatedness concurrently. Unlike previous models that assumed static task relatedness, our approach treats tasks as initially independent, updating their relatedness iteratively using newly calculated weight vectors. We introduced three rules to update the task relatedness matrix: OMTLCOV, OMTLLOG, and OMTLVON, and compared them against a conventional method (CMTL) that uses a fixed relatedness value. Performance evaluations on three datasets a spam dataset and two EEG datasets from construction workers under varying conditions demonstrated that our OMTL methods outperform CMTL, improving accuracy by 1\% to 3\% on EEG data, and maintaining low error rates around 12\% on the spam dataset.
☆ Spatial-temporal Hierarchical Reinforcement Learning for Interpretable Pathology Image Super-Resolution
Pathology image are essential for accurately interpreting lesion cells in cytopathology screening, but acquiring high-resolution digital slides requires specialized equipment and long scanning times. Though super-resolution (SR) techniques can alleviate this problem, existing deep learning models recover pathology image in a black-box manner, which can lead to untruthful biological details and misdiagnosis. Additionally, current methods allocate the same computational resources to recover each pixel of pathology image, leading to the sub-optimal recovery issue due to the large variation of pathology image. In this paper, we propose the first hierarchical reinforcement learning framework named Spatial-Temporal hierARchical Reinforcement Learning (STAR-RL), mainly for addressing the aforementioned issues in pathology image super-resolution problem. We reformulate the SR problem as a Markov decision process of interpretable operations and adopt the hierarchical recovery mechanism in patch level, to avoid sub-optimal recovery. Specifically, the higher-level spatial manager is proposed to pick out the most corrupted patch for the lower-level patch worker. Moreover, the higher-level temporal manager is advanced to evaluate the selected patch and determine whether the optimization should be stopped earlier, thereby avoiding the over-processed problem. Under the guidance of spatial-temporal managers, the lower-level patch worker processes the selected patch with pixel-wise interpretable actions at each time step. Experimental results on medical images degraded by different kernels show the effectiveness of STAR-RL. Furthermore, STAR-RL validates the promotion in tumor diagnosis with a large margin and shows generalizability under various degradations. The source code is available at https://github.com/CUHK-AIM-Group/STAR-RL.
comment: Accepted to IEEE TRANSACTIONS ON MEDICAL IMAGING (TMI)
☆ Automated Immunophenotyping Assessment for Diagnosing Childhood Acute Leukemia using Set-Transformers
Acute Leukemia is the most common hematologic malignancy in children and adolescents. A key methodology in the diagnostic evaluation of this malignancy is immunophenotyping based on Multiparameter Flow Cytometry (FCM). However, this approach is manual, and thus time-consuming and subjective. To alleviate this situation, we propose in this paper the FCM-Former, a machine learning, self-attention based FCM-diagnostic tool, automating the immunophenotyping assessment in Childhood Acute Leukemia. The FCM-Former is trained in a supervised manner, by directly using flow cytometric data. Our FCM-Former achieves an accuracy of 96.5% assigning lineage to each sample among 960 cases of either acute B-cell, T-cell lymphoblastic, and acute myeloid leukemia (B-ALL, T-ALL, AML). To the best of our knowledge, the FCM-Former is the first work that automates the immunophenotyping assessment with FCM data in diagnosing pediatric Acute Leukemia.
comment: The paper has been accepted at IEEE EMBS 2024 (46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society)
☆ Evaluating and Benchmarking Foundation Models for Earth Observation and Geospatial AI
When we are primarily interested in solving several problems jointly with a given prescribed high performance accuracy for each target application, then Foundation Models should for most cases be used rather than problem-specific models. We focus on the specific Computer Vision application of Foundation Models for Earth Observation (EO) and geospatial AI. These models can solve important problems we are tackling, including for example land cover classification, crop type mapping, flood segmentation, building density estimation, and road regression segmentation. In this paper, we show that for a limited number of labelled data, Foundation Models achieve improved performance compared to problem-specific models. In this work, we also present our proposed evaluation benchmark for Foundation Models for EO. Benchmarking the generalization performance of Foundation Models is important as it has become difficult to standardize a fair comparison across the many different models that have been proposed recently. We present the results using our evaluation benchmark for EO Foundation Models and show that Foundation Models are label efficient in the downstream tasks and help us solve problems we are tackling in EO and remote sensing.
comment: 5 pages, 2 figures, Submitted
☆ Combining Automated Optimisation of Hyperparameters and Reward Shape
There has been significant progress in deep reinforcement learning (RL) in recent years. Nevertheless, finding suitable hyperparameter configurations and reward functions remains challenging even for experts, and performance heavily relies on these design choices. Also, most RL research is conducted on known benchmarks where knowledge about these choices already exists. However, novel practical applications often pose complex tasks for which no prior knowledge about good hyperparameters and reward functions is available, thus necessitating their derivation from scratch. Prior work has examined automatically tuning either hyperparameters or reward functions individually. We demonstrate empirically that an RL algorithm's hyperparameter configurations and reward function are often mutually dependent, meaning neither can be fully optimised without appropriate values for the other. We then propose a methodology for the combined optimisation of hyperparameters and the reward function. Furthermore, we include a variance penalty as an optimisation objective to improve the stability of learned policies. We conducted extensive experiments using Proximal Policy Optimisation and Soft Actor-Critic on four environments. Our results show that combined optimisation significantly improves over baseline performance in half of the environments and achieves competitive performance in the others, with only a minor increase in computational costs. This suggests that combined optimisation should be best practice.
comment: Published in the Reinforcement Learning Journal 2024
☆ CAS: Confidence Assessments of classification algorithms for Semantic segmentation of EO data
Confidence assessments of semantic segmentation algorithms in remote sensing are important. It is a desirable property of models to a priori know if they produce an incorrect output. Evaluations of the confidence assigned to the estimates of models for the task of classification in Earth Observation (EO) are crucial as they can be used to achieve improved semantic segmentation performance and prevent high error rates during inference and deployment. The model we develop, the Confidence Assessments of classification algorithms for Semantic segmentation (CAS) model, performs confidence evaluations at both the segment and pixel levels, and outputs both labels and confidence. The outcome of this work has important applications. The main application is the evaluation of EO Foundation Models on semantic segmentation downstream tasks, in particular land cover classification using satellite Copernicus Sentinel-2 data. The evaluation shows that the proposed model is effective and outperforms other alternative baseline models.
comment: 5 pages, 7 figures, 4 tables, Submitted
Foundational Models for Pathology and Endoscopy Images: Application for Gastric Inflammation
The integration of artificial intelligence (AI) in medical diagnostics represents a significant advancement in managing upper gastrointestinal (GI) cancer, a major cause of global cancer mortality. Specifically for gastric cancer (GC), chronic inflammation causes changes in the mucosa such as atrophy, intestinal metaplasia (IM), dysplasia and ultimately cancer. Early detection through endoscopic regular surveillance is essential for better outcomes. Foundation models (FM), which are machine or deep learning models trained on diverse data and applicable to broad use cases, offer a promising solution to enhance the accuracy of endoscopy and its subsequent pathology image analysis. This review explores the recent advancements, applications, and challenges associated with FM in endoscopy and pathology imaging. We started by elucidating the core principles and architectures underlying these models, including their training methodologies and the pivotal role of large-scale data in developing their predictive capabilities. Moreover, this work discusses emerging trends and future research directions, emphasizing the integration of multimodal data, the development of more robust and equitable models, and the potential for real-time diagnostic support. This review aims to provide a roadmap for researchers and practitioners in navigating the complexities of incorporating FM into clinical practice for prevention/management of GC cases, thereby improving patient outcomes.
☆ Generative artificial intelligence in ophthalmology: multimodal retinal images for the diagnosis of Alzheimer's disease with convolutional neural networks
Background/Aim. This study aims to predict Amyloid Positron Emission Tomography (AmyloidPET) status with multimodal retinal imaging and convolutional neural networks (CNNs) and to improve the performance through pretraining with synthetic data. Methods. Fundus autofluorescence, optical coherence tomography (OCT), and OCT angiography images from 328 eyes of 59 AmyloidPET positive subjects and 108 AmyloidPET negative subjects were used for classification. Denoising Diffusion Probabilistic Models (DDPMs) were trained to generate synthetic images and unimodal CNNs were pretrained on synthetic data and finetuned on real data or trained solely on real data. Multimodal classifiers were developed to combine predictions of the four unimodal CNNs with patient metadata. Class activation maps of the unimodal classifiers provided insight into the network's attention to inputs. Results. DDPMs generated diverse, realistic images without memorization. Pretraining unimodal CNNs with synthetic data improved AUPR at most from 0.350 to 0.579. Integration of metadata in multimodal CNNs improved AUPR from 0.486 to 0.634, which was the best overall best classifier. Class activation maps highlighted relevant retinal regions which correlated with AD. Conclusion. Our method for generating and leveraging synthetic data has the potential to improve AmyloidPET prediction from multimodal retinal imaging. A DDPM can generate realistic and unique multimodal synthetic retinal images. Our best performing unimodal and multimodal classifiers were not pretrained on synthetic data, however pretraining with synthetic data slightly improved classification performance for two out of the four modalities.
☆ Guiding Video Prediction with Explicit Procedural Knowledge ICCV
We propose a general way to integrate procedural knowledge of a domain into deep learning models. We apply it to the case of video prediction, building on top of object-centric deep models and show that this leads to a better performance than using data-driven models alone. We develop an architecture that facilitates latent space disentanglement in order to use the integrated procedural knowledge, and establish a setup that allows the model to learn the procedural interface in the latent space using the downstream task of video prediction. We contrast the performance to a state-of-the-art data-driven approach and show that problems where purely data-driven approaches struggle can be handled by using knowledge about the domain, providing an alternative to simply collecting more data.
comment: Published in 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)
☆ A Closer Look into Mixture-of-Experts in Large Language Models
Mixture-of-experts (MoE) is gaining increasing attention due to its unique properties and remarkable performance, especially for language tasks. By sparsely activating a subset of parameters for each token, MoE architecture could increase the model size without sacrificing computational efficiency, achieving a better trade-off between performance and training costs. However, the underlying mechanism of MoE still lacks further exploration, and its modularization degree remains questionable. In this paper, we make an initial attempt to understand the inner workings of MoE-based large language models. Concretely, we comprehensively study the parametric and behavioral features of three recent MoE-based models and reveal some intriguing observations, including (1) Neurons act like fine-grained experts. (2) The router of MoE usually selects experts with larger output norms. (3) The expert diversity increases as the layer increases, while the last layer is an outlier. Based on the observations, we also provide suggestions for a broad spectrum of MoE practitioners, such as router design and expert allocation. We hope this work could shed light on future research on the MoE framework and other modular architectures. Code is available at https://github.com/kamanphoebe/Look-into-MoEs.
☆ Selective Prompting Tuning for Personalized Conversations with LLMs ACL 2024
In conversational AI, personalizing dialogues with persona profiles and contextual understanding is essential. Despite large language models' (LLMs) improved response coherence, effective persona integration remains a challenge. In this work, we first study two common approaches for personalizing LLMs: textual prompting and direct fine-tuning. We observed that textual prompting often struggles to yield responses that are similar to the ground truths in datasets, while direct fine-tuning tends to produce repetitive or overly generic replies. To alleviate those issues, we propose \textbf{S}elective \textbf{P}rompt \textbf{T}uning (SPT), which softly prompts LLMs for personalized conversations in a selective way. Concretely, SPT initializes a set of soft prompts and uses a trainable dense retriever to adaptively select suitable soft prompts for LLMs according to different input contexts, where the prompt retriever is dynamically updated through feedback from the LLMs. Additionally, we propose context-prompt contrastive learning and prompt fusion learning to encourage the SPT to enhance the diversity of personalized conversations. Experiments on the CONVAI2 dataset demonstrate that SPT significantly enhances response diversity by up to 90\%, along with improvements in other critical performance indicators. Those results highlight the efficacy of SPT in fostering engaging and personalized dialogue generation. The SPT model code (https://github.com/hqsiswiliam/SPT) is publicly available for further exploration.
comment: Accepted to ACL 2024 findings
☆ DeepExtremeCubes: Integrating Earth system spatio-temporal data for impact assessment of climate extremes
With climate extremes' rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models. Despite recent progress in deep learning to ecosystem monitoring, there is a need for datasets specifically designed to analyse compound heatwave and drought extreme impact. Here, we introduce the DeepExtremeCubes database, tailored to map around these extremes, focusing on persistent natural vegetation. It comprises over 40,000 spatially sampled small data cubes (i.e. minicubes) globally, with a spatial coverage of 2.5 by 2.5 km. Each minicube includes (i) Sentinel-2 L2A images, (ii) ERA5-Land variables and generated extreme event cube covering 2016 to 2022, and (iii) ancillary land cover and topography maps. The paper aims to (1) streamline data accessibility, structuring, pre-processing, and enhance scientific reproducibility, and (2) facilitate biosphere dynamics forecasting in response to compound extremes.
☆ NeBuLa: A discourse aware Minecraft Builder
When engaging in collaborative tasks, humans efficiently exploit the semantic structure of a conversation to optimize verbal and nonverbal interactions. But in recent "language to code" or "language to action" models, this information is lacking. We show how incorporating the prior discourse and nonlinguistic context of a conversation situated in a nonlinguistic environment can improve the "language to action" component of such interactions. We fine tune an LLM to predict actions based on prior context; our model, NeBuLa, doubles the net-action F1 score over the baseline on this task of Jayannavar et al.(2020). We also investigate our model's ability to construct shapes and understand location descriptions using a synthetic dataset.
comment: 10 pages, 3 figures
☆ FedAQ: Communication-Efficient Federated Edge Learning via Joint Uplink and Downlink Adaptive Quantization
Federated learning (FL) is a powerful machine learning paradigm which leverages the data as well as the computational resources of clients, while protecting clients' data privacy. However, the substantial model size and frequent aggregation between the server and clients result in significant communication overhead, making it challenging to deploy FL in resource-limited wireless networks. In this work, we aim to mitigate the communication overhead by using quantization. Previous research on quantization has primarily focused on the uplink communication, employing either fixed-bit quantization or adaptive quantization methods. In this work, we introduce a holistic approach by joint uplink and downlink adaptive quantization to reduce the communication overhead. In particular, we optimize the learning convergence by determining the optimal uplink and downlink quantization bit-length, with a communication energy constraint. Theoretical analysis shows that the optimal quantization levels depend on the range of model gradients or weights. Based on this insight, we propose a decreasing-trend quantization for the uplink and an increasing-trend quantization for the downlink, which aligns with the change of the model parameters during the training process. Experimental results show that, the proposed joint uplink and downlink adaptive quantization strategy can save up to 66.7% energy compared with the existing schemes.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ Beyond Statistical Estimation: Differentially Private Individual Computation in the Shuffle Model
The shuffle model of differential privacy (DP) has recently emerged as a powerful one for decentralized computation without fully trustable parties. Since it anonymizes and permutes messages from clients through a shuffler, the privacy can be amplified and utility can be improved. However, the shuffling procedure in turn restricts its applications only to statistical tasks that are permutation-invariant. This work explores the feasibility of shuffle privacy amplification for prevalent non-statistical computations: spatial crowdsourcing, combinatorial optimization, location-based social systems, and federated learning with incentives, which suffer either computationally intractability or intolerable utility loss in existing approaches (e.g., secure MPC and local DP). We proposes a new paradigm of shuffle model that can provide critical security functionalities like message authorization and result access control, meanwhile maintaining the most of privacy amplification effects. It incurs almost the same computation/communication costs as the non-private setting, and permits the server to run arbitrary algorithms on (noisy) client information in plaintext. Our novel technique is introducing statistically random identity into DP and force identical random distribution on all clients, so as to support secure functionalities even after message shuffling and to maintain privacy amplification simultaneously. Given that existing DP randomizers fails in the new shuffle model, we also propose a new mechanism and prove its optimality therein. Experimental results on spatial crowdsourcing, location-based social system, and federated learning with incentives, show that our paradigm and mechanism is fast as non-private settings, while reducing up to 90% error and increasing utility performance indicates by 100%-300% relatively, and can be practical under reasonable privacy budget.
☆ Sparse deep neural networks for nonparametric estimation in high-dimensional sparse regression
Generalization theory has been established for sparse deep neural networks under high-dimensional regime. Beyond generalization, parameter estimation is also important since it is crucial for variable selection and interpretability of deep neural networks. Current theoretical studies concerning parameter estimation mainly focus on two-layer neural networks, which is due to the fact that the convergence of parameter estimation heavily relies on the regularity of the Hessian matrix, while the Hessian matrix of deep neural networks is highly singular. To avoid the unidentifiability of deep neural networks in parameter estimation, we propose to conduct nonparametric estimation of partial derivatives with respect to inputs. We first show that model convergence of sparse deep neural networks is guaranteed in that the sample complexity only grows with the logarithm of the number of parameters or the input dimension when the $\ell_{1}$-norm of parameters is well constrained. Then by bounding the norm and the divergence of partial derivatives, we establish that the convergence rate of nonparametric estimation of partial derivatives scales as $\mathcal{O}(n^{-1/4})$, a rate which is slower than the model convergence rate $\mathcal{O}(n^{-1/2})$. To the best of our knowledge, this study combines nonparametric estimation and parametric sparse deep neural networks for the first time. As nonparametric estimation of partial derivatives is of great significance for nonlinear variable selection, the current results show the promising future for the interpretability of deep neural networks.
☆ Sequential Disentanglement by Extracting Static Information From A Single Sequence Element ICML 2024
One of the fundamental representation learning tasks is unsupervised sequential disentanglement, where latent codes of inputs are decomposed to a single static factor and a sequence of dynamic factors. To extract this latent information, existing methods condition the static and dynamic codes on the entire input sequence. Unfortunately, these models often suffer from information leakage, i.e., the dynamic vectors encode both static and dynamic information, or vice versa, leading to a non-disentangled representation. Attempts to alleviate this problem via reducing the dynamic dimension and auxiliary loss terms gain only partial success. Instead, we propose a novel and simple architecture that mitigates information leakage by offering a simple and effective subtraction inductive bias while conditioning on a single sample. Remarkably, the resulting variational framework is simpler in terms of required loss terms, hyperparameters, and data augmentation. We evaluate our method on multiple data-modality benchmarks including general time series, video, and audio, and we show beyond state-of-the-art results on generation and prediction tasks in comparison to several strong baselines.
comment: Accepted to ICML 2024; The first four authors contributed equally
☆ CTS: Sim-to-Real Unsupervised Domain Adaptation on 3D Detection
Simulation data can be accurately labeled and have been expected to improve the performance of data-driven algorithms, including object detection. However, due to the various domain inconsistencies from simulation to reality (sim-to-real), cross-domain object detection algorithms usually suffer from dramatic performance drops. While numerous unsupervised domain adaptation (UDA) methods have been developed to address cross-domain tasks between real-world datasets, progress in sim-to-real remains limited. This paper presents a novel Complex-to-Simple (CTS) framework to transfer models from labeled simulation (source) to unlabeled reality (target) domains. Based on a two-stage detector, the novelty of this work is threefold: 1) developing fixed-size anchor heads and RoI augmentation to address size bias and feature diversity between two domains, thereby improving the quality of pseudo-label; 2) developing a novel corner-format representation of aleatoric uncertainty (AU) for the bounding box, to uniformly quantify pseudo-label quality; 3) developing a noise-aware mean teacher domain adaptation method based on AU, as well as object-level and frame-level sampling strategies, to migrate the impact of noisy labels. Experimental results demonstrate that our proposed approach significantly enhances the sim-to-real domain adaptation capability of 3D object detection models, outperforming state-of-the-art cross-domain algorithms, which are usually developed for real-to-real UDA tasks.
☆ ResumeAtlas: Revisiting Resume Classification with Large-Scale Datasets and Large Language Models
The increasing reliance on online recruitment platforms coupled with the adoption of AI technologies has highlighted the critical need for efficient resume classification methods. However, challenges such as small datasets, lack of standardized resume templates, and privacy concerns hinder the accuracy and effectiveness of existing classification models. In this work, we address these challenges by presenting a comprehensive approach to resume classification. We curated a large-scale dataset of 13,389 resumes from diverse sources and employed Large Language Models (LLMs) such as BERT and Gemma1.1 2B for classification. Our results demonstrate significant improvements over traditional machine learning approaches, with our best model achieving a top-1 accuracy of 92\% and a top-5 accuracy of 97.5\%. These findings underscore the importance of dataset quality and advanced model architectures in enhancing the accuracy and robustness of resume classification systems, thus advancing the field of online recruitment practices.
comment: 8 pages, 6 figures, 1 table, 6th International Conference on AI in Computational Linguistics
☆ ArzEn-LLM: Code-Switched Egyptian Arabic-English Translation and Speech Recognition Using LLMs
Motivated by the widespread increase in the phenomenon of code-switching between Egyptian Arabic and English in recent times, this paper explores the intricacies of machine translation (MT) and automatic speech recognition (ASR) systems, focusing on translating code-switched Egyptian Arabic-English to either English or Egyptian Arabic. Our goal is to present the methodologies employed in developing these systems, utilizing large language models such as LLama and Gemma. In the field of ASR, we explore the utilization of the Whisper model for code-switched Egyptian Arabic recognition, detailing our experimental procedures including data preprocessing and training techniques. Through the implementation of a consecutive speech-to-text translation system that integrates ASR with MT, we aim to overcome challenges posed by limited resources and the unique characteristics of the Egyptian Arabic dialect. Evaluation against established metrics showcases promising results, with our methodologies yielding a significant improvement of $56\%$ in English translation over the state-of-the-art and $9.3\%$ in Arabic translation. Since code-switching is deeply inherent in spoken languages, it is crucial that ASR systems can effectively handle this phenomenon. This capability is crucial for enabling seamless interaction in various domains, including business negotiations, cultural exchanges, and academic discourse. Our models and code are available as open-source resources. Code: \url{http://github.com/ahmedheakl/arazn-llm}}, Models: \url{http://huggingface.co/collections/ahmedheakl/arazn-llm-662ceaf12777656607b9524e}.
comment: 9 pages, 4 figures, 5 tables, 6th International Conference on AI in Computational Linguistics
☆ Robust personnel rostering: how accurate should absenteeism predictions be?
Disruptions to personnel rosters caused by absenteeism often necessitate last-minute adjustments to the employees' working hours. A common strategy to mitigate the impact of such changes is to assign employees to reserve shifts: special on-call duties during which an employee can be called in to cover for an absent employee. To maximize roster robustness, we assume a predict-then-optimize approach that uses absence predictions from a machine learning model to schedule an adequate number of reserve shifts. In this paper we propose a methodology to evaluate the robustness of rosters generated by the predict-then-optimize approach, assuming the machine learning model will make predictions at a predetermined prediction performance level. Instead of training and testing machine learning models, our methodology simulates the predictions based on a characterization of model performance. We show how this methodology can be applied to identify the minimum performance level needed for the model to outperform simple non-data-driven robust rostering policies. In a computational study on a nurse rostering problem, we demonstrate how the predict-then-optimize approach outperforms non-data-driven policies under reasonable performance requirements, particularly when employees possess interchangeable skills.
☆ Token-Weighted RNN-T for Learning from Flawed Data
ASR models are commonly trained with the cross-entropy criterion to increase the probability of a target token sequence. While optimizing the probability of all tokens in the target sequence is sensible, one may want to de-emphasize tokens that reflect transcription errors. In this work, we propose a novel token-weighted RNN-T criterion that augments the RNN-T objective with token-specific weights. The new objective is used for mitigating accuracy loss from transcriptions errors in the training data, which naturally appear in two settings: pseudo-labeling and human annotation errors. Experiments results show that using our method for semi-supervised learning with pseudo-labels leads to a consistent accuracy improvement, up to 38% relative. We also analyze the accuracy degradation resulting from different levels of WER in the reference transcription, and show that token-weighted RNN-T is suitable for overcoming this degradation, recovering 64%-99% of the accuracy loss.
☆ Learning for Bandits under Action Erasures
We consider a novel multi-arm bandit (MAB) setup, where a learner needs to communicate the actions to distributed agents over erasure channels, while the rewards for the actions are directly available to the learner through external sensors. In our model, while the distributed agents know if an action is erased, the central learner does not (there is no feedback), and thus does not know whether the observed reward resulted from the desired action or not. We propose a scheme that can work on top of any (existing or future) MAB algorithm and make it robust to action erasures. Our scheme results in a worst-case regret over action-erasure channels that is at most a factor of $O(1/\sqrt{1-\epsilon})$ away from the no-erasure worst-case regret of the underlying MAB algorithm, where $\epsilon$ is the erasure probability. We also propose a modification of the successive arm elimination algorithm and prove that its worst-case regret is $\Tilde{O}(\sqrt{KT}+K/(1-\epsilon))$, which we prove is optimal by providing a matching lower bound.
☆ Learning Optimal Filters Using Variational Inference
Filtering-the task of estimating the conditional distribution of states of a dynamical system given partial, noisy, observations-is important in many areas of science and engineering, including weather and climate prediction. However, the filtering distribution is generally intractable to obtain for high-dimensional, nonlinear systems. Filters used in practice, such as the ensemble Kalman filter (EnKF), are biased for nonlinear systems and have numerous tuning parameters. Here, we present a framework for learning a parameterized analysis map-the map that takes a forecast distribution and observations to the filtering distribution-using variational inference. We show that this methodology can be used to learn gain matrices for filtering linear and nonlinear dynamical systems, as well as inflation and localization parameters for an EnKF. Future work will apply this framework to learn new filtering algorithms.
☆ Breaking the Barrier: Enhanced Utility and Robustness in Smoothed DRL Agents ICML 2024
Robustness remains a paramount concern in deep reinforcement learning (DRL), with randomized smoothing emerging as a key technique for enhancing this attribute. However, a notable gap exists in the performance of current smoothed DRL agents, often characterized by significantly low clean rewards and weak robustness. In response to this challenge, our study introduces innovative algorithms aimed at training effective smoothed robust DRL agents. We propose S-DQN and S-PPO, novel approaches that demonstrate remarkable improvements in clean rewards, empirical robustness, and robustness guarantee across standard RL benchmarks. Notably, our S-DQN and S-PPO agents not only significantly outperform existing smoothed agents by an average factor of $2.16\times$ under the strongest attack, but also surpass previous robustly-trained agents by an average factor of $2.13\times$. This represents a significant leap forward in the field. Furthermore, we introduce Smoothed Attack, which is $1.89\times$ more effective in decreasing the rewards of smoothed agents than existing adversarial attacks.
comment: Published in ICML 2024
☆ AdaZeta: Adaptive Zeroth-Order Tensor-Train Adaption for Memory-Efficient Large Language Models Fine-Tuning
Fine-tuning large language models (LLMs) has achieved remarkable performance across various natural language processing tasks, yet it demands more and more memory as model sizes keep growing. To address this issue, the recently proposed Memory-efficient Zeroth-order (MeZO) methods attempt to fine-tune LLMs using only forward passes, thereby avoiding the need for a backpropagation graph. However, significant performance drops and a high risk of divergence have limited their widespread adoption. In this paper, we propose the Adaptive Zeroth-order Tensor-Train Adaption (AdaZeta) framework, specifically designed to improve the performance and convergence of the ZO methods. To enhance dimension-dependent ZO estimation accuracy, we introduce a fast-forward, low-parameter tensorized adapter. To tackle the frequently observed divergence issue in large-scale ZO fine-tuning tasks, we propose an adaptive query number schedule that guarantees convergence. Detailed theoretical analysis and extensive experimental results on Roberta-Large and Llama-2-7B models substantiate the efficacy of our AdaZeta framework in terms of accuracy, memory efficiency, and convergence speed.
☆ Bidirectional-Reachable Hierarchical Reinforcement Learning with Mutually Responsive Policies
Hierarchical reinforcement learning (HRL) addresses complex long-horizon tasks by skillfully decomposing them into subgoals. Therefore, the effectiveness of HRL is greatly influenced by subgoal reachability. Typical HRL methods only consider subgoal reachability from the unilateral level, where a dominant level enforces compliance to the subordinate level. However, we observe that when the dominant level becomes trapped in local exploration or generates unattainable subgoals, the subordinate level is negatively affected and cannot follow the dominant level's actions. This can potentially make both levels stuck in local optima, ultimately hindering subsequent subgoal reachability. Allowing real-time bilateral information sharing and error correction would be a natural cure for this issue, which motivates us to propose a mutual response mechanism. Based on this, we propose the Bidirectional-reachable Hierarchical Policy Optimization (BrHPO)--a simple yet effective algorithm that also enjoys computation efficiency. Experiment results on a variety of long-horizon tasks showcase that BrHPO outperforms other state-of-the-art HRL baselines, coupled with a significantly higher exploration efficiency and robustness.
☆ Multimodal foundation world models for generalist embodied agents
Learning generalist embodied agents, able to solve multitudes of tasks in different domains is a long-standing problem. Reinforcement learning (RL) is hard to scale up as it requires a complex reward design for each task. In contrast, language can specify tasks in a more natural way. Current foundation vision-language models (VLMs) generally require fine-tuning or other adaptations to be functional, due to the significant domain gap. However, the lack of multimodal data in such domains represents an obstacle toward developing foundation models for embodied applications. In this work, we overcome these problems by presenting multimodal foundation world models, able to connect and align the representation of foundation VLMs with the latent space of generative world models for RL, without any language annotations. The resulting agent learning framework, GenRL, allows one to specify tasks through vision and/or language prompts, ground them in the embodied domain's dynamics, and learns the corresponding behaviors in imagination. As assessed through large-scale multi-task benchmarking, GenRL exhibits strong multi-task generalization performance in several locomotion and manipulation domains. Furthermore, by introducing a data-free RL strategy, it lays the groundwork for foundation model-based RL for generalist embodied agents.
☆ MT2ST: Adaptive Multi-Task to Single-Task Learning
The conventional training approaches often face challenges in balancing the breadth of multi-task learning (MTL) with the depth of single-task learning (STL). To address this issue, we introduce the Multi-Task to Single-Task (MT2ST) framework, a groundbreaking approach that can combine the generalizability of MTL with the precision of STL. Our work include two strategies: 'Diminish' and 'Switch'. 'Diminish' Strategy will gradually reduce the influence of auxiliary tasks, while the 'Switch' strategy involves a shift from multi-tasking to single-tasking at a specific timepoint at the training process. In this paper, we propose the Multi-Task to Single-Task (MT2ST) framework, a novel approach that significantly enhances the efficiency and accuracy of word embedding training while concurrently addressing prevalent issues such as overfitting. Our empirical studies demonstrate that MT2ST can reduce training time by 67\% when contrasted with single-task learning approaches, and by 13\% compared to traditional multi-task learning methods. These findings underscore MT2ST's potential to be a powerful tools for word embedding training acceleration.
☆ Local Linear Recovery Guarantee of Deep Neural Networks at Overparameterization
Determining whether deep neural network (DNN) models can reliably recover target functions at overparameterization is a critical yet complex issue in the theory of deep learning. To advance understanding in this area, we introduce a concept we term "local linear recovery" (LLR), a weaker form of target function recovery that renders the problem more amenable to theoretical analysis. In the sense of LLR, we prove that functions expressible by narrower DNNs are guaranteed to be recoverable from fewer samples than model parameters. Specifically, we establish upper limits on the optimistic sample sizes, defined as the smallest sample size necessary to guarantee LLR, for functions in the space of a given DNN. Furthermore, we prove that these upper bounds are achieved in the case of two-layer tanh neural networks. Our research lays a solid groundwork for future investigations into the recovery capabilities of DNNs in overparameterized scenarios.
comment: arXiv admin note: text overlap with arXiv:2211.11623
☆ Boosting Soft Q-Learning by Bounding
An agent's ability to leverage past experience is critical for efficiently solving new tasks. Prior work has focused on using value function estimates to obtain zero-shot approximations for solutions to a new task. In soft Q-learning, we show how any value function estimate can also be used to derive double-sided bounds on the optimal value function. The derived bounds lead to new approaches for boosting training performance which we validate experimentally. Notably, we find that the proposed framework suggests an alternative method for updating the Q-function, leading to boosted performance.
comment: To appear in the 1st Reinforcement Learning Conference
☆ AutoOPE: Automated Off-Policy Estimator Selection
The Off-Policy Evaluation (OPE) problem consists of evaluating the performance of counterfactual policies with data collected by another one. This problem is of utmost importance for various application domains, e.g., recommendation systems, medical treatments, and many others. To solve the OPE problem, we resort to estimators, which aim to estimate in the most accurate way possible the performance that the counterfactual policies would have had if they were deployed in place of the logging policy. In the literature, several estimators have been developed, all with different characteristics and theoretical guarantees. Therefore, there is no dominant estimator, and each estimator may be the best one for different OPE problems, depending on the characteristics of the dataset at hand. While the selection of the estimator is a crucial choice for an accurate OPE, this problem has been widely overlooked in the literature. We propose an automated data-driven OPE estimator selection method based on machine learning. In particular, the core idea we propose in this paper is to create several synthetic OPE tasks and use a machine learning model trained to predict the best estimator for those synthetic tasks. We empirically show how our method is able to generalize to unseen tasks and make a better estimator selection compared to a baseline method on several real-world datasets, with a computational cost significantly lower than the one of the baseline.
☆ SC-MoE: Switch Conformer Mixture of Experts for Unified Streaming and Non-streaming Code-Switching ASR
In this work, we propose a Switch-Conformer-based MoE system named SC-MoE for unified streaming and non-streaming code-switching (CS) automatic speech recognition (ASR), where we design a streaming MoE layer consisting of three language experts, which correspond to Mandarin, English, and blank, respectively, and equipped with a language identification (LID) network with a Connectionist Temporal Classification (CTC) loss as a router in the encoder of SC-MoE to achieve a real-time streaming CS ASR system. To further utilize the language information embedded in text, we also incorporate MoE layers into the decoder of SC-MoE. In addition, we introduce routers into every MoE layer of the encoder and the decoder and achieve better recognition performance. Experimental results show that the SC-MoE significantly improves CS ASR performances over baseline with comparable computational efficiency.
comment: Accepted by InterSpeech 2024; 5 pages, 2 figures
☆ MolFusion: Multimodal Fusion Learning for Molecular Representations via Multi-granularity Views
Artificial Intelligence predicts drug properties by encoding drug molecules, aiding in the rapid screening of candidates. Different molecular representations, such as SMILES and molecule graphs, contain complementary information for molecular encoding. Thus exploiting complementary information from different molecular representations is one of the research priorities in molecular encoding. Most existing methods for combining molecular multi-modalities only use molecular-level information, making it hard to encode intra-molecular alignment information between different modalities. To address this issue, we propose a multi-granularity fusion method that is MolFusion. The proposed MolFusion consists of two key components: (1) MolSim, a molecular-level encoding component that achieves molecular-level alignment between different molecular representations. and (2) AtomAlign, an atomic-level encoding component that achieves atomic-level alignment between different molecular representations. Experimental results show that MolFusion effectively utilizes complementary multimodal information, leading to significant improvements in performance across various classification and regression tasks.
comment: 8 pages, 5 figures
☆ Explicit Diversity Conditions for Effective Question Answer Generation with Large Language Models COLING 2024
Question Answer Generation (QAG) is an effective data augmentation technique to improve the accuracy of question answering systems, especially in low-resource domains. While recent pretrained and large language model-based QAG methods have made substantial progress, they face the critical issue of redundant QA pair generation, affecting downstream QA systems. Implicit diversity techniques such as sampling and diverse beam search are proven effective solutions but often yield smaller diversity. We present explicit diversity conditions for QAG, focusing on spatial aspects, question types, and entities, substantially increasing diversity in QA generation. Our work emphasizes the need of explicit diversity conditions for generating diverse question-answer synthetic data by showing significant improvements in downstream QA task over existing widely adopted implicit diversity techniques. In particular, generated QA pairs from explicit diversity conditions when used to train the downstream QA model results in an average 4.1% exact match and 4.5% F1 improvement over QAG from implicit sampling techniques on SQuADDU. Our work emphasizes the need for explicit diversity conditions even more in low-resource datasets (SubjQA), where average downstream QA performance improvements are around 12% EM.
comment: Published at COLING 2024
☆ Learning Neural Networks with Sparse Activations COLT 2024
A core component present in many successful neural network architectures, is an MLP block of two fully connected layers with a non-linear activation in between. An intriguing phenomenon observed empirically, including in transformer architectures, is that, after training, the activations in the hidden layer of this MLP block tend to be extremely sparse on any given input. Unlike traditional forms of sparsity, where there are neurons/weights which can be deleted from the network, this form of {\em dynamic} activation sparsity appears to be harder to exploit to get more efficient networks. Motivated by this we initiate a formal study of PAC learnability of MLP layers that exhibit activation sparsity. We present a variety of results showing that such classes of functions do lead to provable computational and statistical advantages over their non-sparse counterparts. Our hope is that a better theoretical understanding of {\em sparsely activated} networks would lead to methods that can exploit activation sparsity in practice.
comment: Proceedings of the 37th Conference on Learning Theory (COLT 2024), 20 pages
☆ Operator Learning of Lipschitz Operators: An Information-Theoretic Perspective
Operator learning based on neural operators has emerged as a promising paradigm for the data-driven approximation of operators, mapping between infinite-dimensional Banach spaces. Despite significant empirical progress, our theoretical understanding regarding the efficiency of these approximations remains incomplete. This work addresses the parametric complexity of neural operator approximations for the general class of Lipschitz continuous operators. Motivated by recent findings on the limitations of specific architectures, termed curse of parametric complexity, we here adopt an information-theoretic perspective. Our main contribution establishes lower bounds on the metric entropy of Lipschitz operators in two approximation settings; uniform approximation over a compact set of input functions, and approximation in expectation, with input functions drawn from a probability measure. It is shown that these entropy bounds imply that, regardless of the activation function used, neural operator architectures attaining an approximation accuracy $\epsilon$ must have a size that is exponentially large in $\epsilon^{-1}$. The size of architectures is here measured by counting the number of encoded bits necessary to store the given model in computational memory. The results of this work elucidate fundamental trade-offs and limitations in
☆ Unified Uncertainties: Combining Input, Data and Model Uncertainty into a Single Formulation ICML 2024
Modelling uncertainty in Machine Learning models is essential for achieving safe and reliable predictions. Most research on uncertainty focuses on output uncertainty (predictions), but minimal attention is paid to uncertainty at inputs. We propose a method for propagating uncertainty in the inputs through a Neural Network that is simultaneously able to estimate input, data, and model uncertainty. Our results show that this propagation of input uncertainty results in a more stable decision boundary even under large amounts of input noise than comparatively simple Monte Carlo sampling. Additionally, we discuss and demonstrate that input uncertainty, when propagated through the model, results in model uncertainty at the outputs. The explicit incorporation of input uncertainty may be beneficial in situations where the amount of input uncertainty is known, though good datasets for this are still needed.
comment: 4 pages, 3 figures, with appendix. LatinX in AI Research Workshop @ ICML 2024 Camera Ready
☆ Psychological Profiling in Cybersecurity: A Look at LLMs and Psycholinguistic Features
The increasing sophistication of cyber threats necessitates innovative approaches to cybersecurity. In this paper, we explore the potential of psychological profiling techniques, particularly focusing on the utilization of Large Language Models (LLMs) and psycholinguistic features. We investigate the intersection of psychology and cybersecurity, discussing how LLMs can be employed to analyze textual data for identifying psychological traits of threat actors. We explore the incorporation of psycholinguistic features, such as linguistic patterns and emotional cues, into cybersecurity frameworks. \iffalse Through case studies and experiments, we discuss the effectiveness of these methods in enhancing threat detection and mitigation strategies.\fi Our research underscores the importance of integrating psychological perspectives into cybersecurity practices to bolster defense mechanisms against evolving threats.
☆ Learning to Remove Cuts in Integer Linear Programming
Cutting plane methods are a fundamental approach for solving integer linear programs (ILPs). In each iteration of such methods, additional linear constraints (cuts) are introduced to the constraint set with the aim of excluding the previous fractional optimal solution while not affecting the optimal integer solution. In this work, we explore a novel approach within cutting plane methods: instead of only adding new cuts, we also consider the removal of previous cuts introduced at any of the preceding iterations of the method under a learnable parametric criteria. We demonstrate that in fundamental combinatorial optimization settings such cut removal policies can lead to significant improvements over both human-based and machine learning-guided cut addition policies even when implemented with simple models.
comment: International Conference on Machine Learning
☆ Aligning Model Properties via Conformal Risk Control
AI model alignment is crucial due to inadvertent biases in training data and the underspecified pipeline in modern machine learning, where numerous models with excellent test set metrics can be produced, yet they may not meet end-user requirements. Recent advances demonstrate that post-training model alignment via human feedback can address some of these challenges. However, these methods are often confined to settings (such as generative AI) where humans can interpret model outputs and provide feedback. In traditional non-generative settings, where model outputs are numerical values or classes, detecting misalignment through single-sample outputs is highly challenging. In this paper we consider an alternative strategy. We propose interpreting model alignment through property testing, defining an aligned model $f$ as one belonging to a subset $\mathcal{P}$ of functions that exhibit specific desired behaviors. We focus on post-processing a pre-trained model $f$ to better align with $\mathcal{P}$ using conformal risk control. Specifically, we develop a general procedure for converting queries for a given property $\mathcal{P}$ to a collection of loss functions suitable for use in a conformal risk control algorithm. We prove a probabilistic guarantee that the resulting conformal interval around $f$ contains a function approximately satisfying $\mathcal{P}$. Given the capabilities of modern AI models with extensive parameters and training data, one might assume alignment issues will resolve naturally. However, increasing training data or parameters in a random feature model doesn't eliminate the need for alignment techniques when pre-training data is biased. We demonstrate our alignment methodology on supervised learning datasets for properties like monotonicity and concavity. Our flexible procedure can be applied to various desired properties.
☆ ADO-LLM: Analog Design Bayesian Optimization with In-Context Learning of Large Language Models
Analog circuit design requires substantial human expertise and involvement, which is a significant roadblock to design productivity. Bayesian Optimization (BO), a popular machine learning based optimization strategy, has been leveraged to automate analog design given its applicability across various circuit topologies and technologies. Traditional BO methods employ black box Gaussian Process surrogate models and optimized labeled data queries to find optimization solutions by trading off between exploration and exploitation. However, the search for the optimal design solution in BO can be expensive from both a computational and data usage point of view, particularly for high dimensional optimization problems. This paper presents ADO-LLM, the first work integrating large language models (LLMs) with Bayesian Optimization for analog design optimization. ADO-LLM leverages the LLM's ability to infuse domain knowledge to rapidly generate viable design points to remedy BO's inefficiency in finding high value design areas specifically under the limited design space coverage of the BO's probabilistic surrogate model. In the meantime, sampling of design points evaluated in the iterative BO process provides quality demonstrations for the LLM to generate high quality design points while leveraging infused broad design knowledge. Furthermore, the diversity brought by BO's exploration enriches the contextual understanding of the LLM and allows it to more broadly search in the design space and prevent repetitive and redundant suggestions. We evaluate the proposed framework on two different types of analog circuits and demonstrate notable improvements in design efficiency and effectiveness.
comment: 8 pages, 3 figures
♻ ☆ Situational Awareness Matters in 3D Vision Language Reasoning CVPR 2024
Being able to carry out complicated vision language reasoning tasks in 3D space represents a significant milestone in developing household robots and human-centered embodied AI. In this work, we demonstrate that a critical and distinct challenge in 3D vision language reasoning is situational awareness, which incorporates two key components: (1) The autonomous agent grounds its self-location based on a language prompt. (2) The agent answers open-ended questions from the perspective of its calculated position. To address this challenge, we introduce SIG3D, an end-to-end Situation-Grounded model for 3D vision language reasoning. We tokenize the 3D scene into sparse voxel representation and propose a language-grounded situation estimator, followed by a situated question answering module. Experiments on the SQA3D and ScanQA datasets show that SIG3D outperforms state-of-the-art models in situation estimation and question answering by a large margin (e.g., an enhancement of over 30% on situation estimation accuracy). Subsequent analysis corroborates our architectural design choices, explores the distinct functions of visual and textual tokens, and highlights the importance of situational awareness in the domain of 3D question answering.
comment: CVPR 2024. Project Page: https://yunzeman.github.io/situation3d
♻ ☆ On Convex Data-Driven Inverse Optimal Control for Nonlinear, Non-stationary and Stochastic Systems
This paper is concerned with a finite-horizon inverse control problem, which has the goal of reconstructing, from observations, the possibly non-convex and non-stationary cost driving the actions of an agent. In this context, we present a result enabling cost reconstruction by solving an optimization problem that is convex even when the agent cost is not and when the underlying dynamics is nonlinear, non-stationary and stochastic. To obtain this result, we also study a finite-horizon forward control problem that has randomized policies as decision variables. We turn our findings into algorithmic procedures and show the effectiveness of our approach via in-silico and hardware validations. All experiments confirm the effectiveness of our approach.
comment: 17 pages, 5 figures. An early version of this paper with only a sketch of the proof for one of the results and without the hardware validation was presentation at the 62nd IEEE Conference on Decision and Control. arXiv admin note: text overlap with arXiv:2303.17957
♻ ☆ Large Language Model Enhanced Clustering for News Event Detection
The news landscape is continuously evolving, with an ever-increasing volume of information from around the world. Automated event detection within this vast data repository is essential for monitoring, identifying, and categorizing significant news occurrences across diverse platforms. This paper presents an event detection framework that leverages Large Language Models (LLMs) combined with clustering analysis to detect news events from the Global Database of Events, Language, and Tone (GDELT). The framework enhances event clustering through both pre-event detection tasks (keyword extraction and text embedding) and post-event detection tasks (event summarization and topic labeling). We also evaluate the impact of various textual embeddings on the quality of clustering outcomes, ensuring robust news categorization. Additionally, we introduce a novel Cluster Stability Assessment Index (CSAI) to assess the validity and robustness of clustering results. CSAI utilizes latent feature vectors to provide a new way of measuring clustering quality. Our experiments indicate that combining LLM embeddings with clustering algorithms yields the best results, demonstrating greater robustness in terms of CSAI scores. Moreover, post-event detection tasks generate meaningful insights, facilitating effective interpretation of event clustering results. Overall, our experimental results indicate that the proposed framework offers valuable insights and could enhance the accuracy and depth of news reporting.
♻ ☆ Multimodal and Force-Matched Imitation Learning with a See-Through Visuotactile Sensor
Contact-rich tasks continue to present a variety of challenges for robotic manipulation. In this work, we leverage a multimodal visuotactile sensor within the framework of imitation learning (IL) to perform contact rich tasks that involve relative motion (slipping/sliding) between the end-effector and object. We introduce two algorithmic contributions, tactile force matching and learned mode switching, as complimentary methods for improving IL. Tactile force matching enhances kinesthetic teaching by reading approximate forces during the demonstration and generating an adapted robot trajectory that recreates the recorded forces. Learned mode switching uses IL to couple visual and tactile sensor modes with the learned motion policy, simplifying the transition from reaching to contacting. We perform robotic manipulation experiments on four door opening tasks with a variety of observation and method configurations to study the utility of our proposed improvements and multimodal visuotactile sensing. Our results show that the inclusion of force matching raises average policy success rates by 62.5%, visuotactile mode switching by 30.3%, and visuotactile data as a policy input by 42.5%, emphasizing the value of see-through tactile sensing for IL, both for data collection to allow force matching, and for policy execution to allow accurate task feedback.
comment: Submitted to IEEE Transactions on Robotics (T-RO): Special Section on Tactile Robotics
♻ ☆ BASS: Batched Attention-optimized Speculative Sampling
Speculative decoding has emerged as a powerful method to improve latency and throughput in hosting large language models. However, most existing implementations focus on generating a single sequence. Real-world generative AI applications often require multiple responses and how to perform speculative decoding in a batched setting while preserving its latency benefits poses non-trivial challenges. This paper describes a system of batched speculative decoding that sets a new state of the art in multi-sequence generation latency and that demonstrates superior GPU utilization as well as quality of generations within a time budget. For example, for a 7.8B-size model on a single A100 GPU and with a batch size of 8, each sequence is generated at an average speed of 5.8ms per token, the overall throughput being 1.1K tokens per second. These results represent state-of-the-art latency and a 2.15X speed-up over optimized regular decoding. Within a time budget that regular decoding does not finish, our system is able to generate sequences with HumanEval Pass@First of 43% and Pass@All of 61%, far exceeding what's feasible with single-sequence speculative decoding. Our peak GPU utilization during decoding reaches as high as 15.8%, more than 3X the highest of that of regular decoding and around 10X of single-sequence speculative decoding.
♻ ☆ Learning Generalizable Program and Architecture Representations for Performance Modeling SC 2024
Performance modeling is an essential tool in many areas, including performance characterization/optimization, design space exploration, and resource allocation problems, to name a few. However, existing performance modeling approaches have limitations, such as high computational cost for discrete-event simulators, narrow flexibility of hardware emulators, or restricted accuracy/generality of analytical/data-driven models. To address these limitations, this paper proposes PerfVec, a novel deep learning-based performance modeling framework that learns high-dimensional and independent/orthogonal program and microarchitecture representations. Once learned, a program representation can be used to predict its performance on any microarchitecture, and likewise, a microarchitecture representation can be applied in the performance prediction of any program. Additionally, PerfVec yields a foundation model that captures the performance essence of instructions, which can be directly used by developers in numerous performance modeling related tasks without incurring its training cost. The evaluation demonstrates that PerfVec is more general and efficient than previous approaches.
comment: To be published at SC 2024
♻ ☆ Scaling and renormalization in high-dimensional regression
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models using the basic tools of random matrix theory and free probability. We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning. Analytic formulas for the training and generalization errors are obtained in a few lines of algebra directly from the properties of the $S$-transform of free probability. This allows for a straightforward identification of the sources of power-law scaling in model performance. We compute the generalization error of a broad class of random feature models. We find that in all models, the $S$-transform corresponds to the train-test generalization gap, and yields an analogue of the generalized-cross-validation estimator. Using these techniques, we derive fine-grained bias-variance decompositions for a very general class of random feature models with structured covariates. These novel results allow us to discover a scaling regime for random feature models where the variance due to the features limits performance in the overparameterized setting. We also demonstrate how anisotropic weight structure in random feature models can limit performance and lead to nontrivial exponents for finite-width corrections in the overparameterized setting. Our results extend and provide a unifying perspective on earlier models of neural scaling laws.
comment: 68 pages, 17 figures
♻ ☆ Mixtures of Experts Unlock Parameter Scaling for Deep RL
The recent rapid progress in (self) supervised learning models is in large part predicted by empirical scaling laws: a model's performance scales proportionally to its size. Analogous scaling laws remain elusive for reinforcement learning domains, however, where increasing the parameter count of a model often hurts its final performance. In this paper, we demonstrate that incorporating Mixture-of-Expert (MoE) modules, and in particular Soft MoEs (Puigcerver et al., 2023), into value-based networks results in more parameter-scalable models, evidenced by substantial performance increases across a variety of training regimes and model sizes. This work thus provides strong empirical evidence towards developing scaling laws for reinforcement learning.
♻ ☆ VADA: a Data-Driven Simulator for Nanopore Sequencing
Nanopore sequencing offers the ability for real-time analysis of long DNA sequences at a low cost, enabling new applications such as early detection of cancer. Due to the complex nature of nanopore measurements and the high cost of obtaining ground truth datasets, there is a need for nanopore simulators. Existing simulators rely on handcrafted rules and parameters and do not learn an internal representation that would allow for analysing underlying biological factors of interest. Instead, we propose VADA, a purely data-driven method for simulating nanopores based on an autoregressive latent variable model. We embed subsequences of DNA and introduce a conditional prior to address the challenge of a collapsing conditioning. We introduce an auxiliary regressor on the latent variable to encourage our model to learn an informative latent representation. We empirically demonstrate that our model achieves competitive simulation performance on experimental nanopore data. Moreover, we show we have learned an informative latent representation that is predictive of the DNA labels. We hypothesize that other biological factors of interest, beyond the DNA labels, can potentially be extracted from such a learned latent representation.
♻ ☆ Robustness to Subpopulation Shift with Domain Label Noise via Regularized Annotation of Domains
Existing methods for last layer retraining that aim to optimize worst-group accuracy (WGA) rely heavily on well-annotated groups in the training data. We show, both in theory and practice, that annotation-based data augmentations using either downsampling or upweighting for WGA are susceptible to domain annotation noise, and in high-noise regimes approach the WGA of a model trained with vanilla empirical risk minimization. We introduce Regularized Annotation of Domains (RAD) in order to train robust last layer classifiers without the need for explicit domain annotations. Our results show that RAD is competitive with other recently proposed domain annotation-free techniques. Most importantly, RAD outperforms state-of-the-art annotation-reliant methods even with only 5% noise in the training data for several publicly available datasets.
comment: Generalized Gaussian assumption
♻ ☆ ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models
Neural networks often operate in the overparameterized regime, in which there are far more parameters than training samples, allowing the training data to be fit perfectly. That is, training the network effectively learns an interpolating function, and properties of the interpolant affect predictions the network will make on new samples. This manuscript explores how properties of such functions learned by neural networks of depth greater than two layers. Our framework considers a family of networks of varying depths that all have the same capacity but different representation costs. The representation cost of a function induced by a neural network architecture is the minimum sum of squared weights needed for the network to represent the function; it reflects the function space bias associated with the architecture. Our results show that adding additional linear layers to the input side of a shallow ReLU network yields a representation cost favoring functions with low mixed variation - that is, it has limited variation in directions orthogonal to a low-dimensional subspace and can be well approximated by a single- or multi-index model. Such functions may be represented by the composition of a function with low two-layer representation cost and a low-rank linear operator. Our experiments confirm this behavior in standard network training regimes. They additionally show that linear layers can improve generalization and the learned network is well-aligned with the true latent low-dimensional linear subspace when data is generated using a multi-index model.
♻ ☆ ProFLingo: A Fingerprinting-based Intellectual Property Protection Scheme for Large Language Models
Large language models (LLMs) have attracted significant attention in recent years. Due to their "Large" nature, training LLMs from scratch consumes immense computational resources. Since several major players in the artificial intelligence (AI) field have open-sourced their original LLMs, an increasing number of individual researchers and smaller companies are able to build derivative LLMs based on these open-sourced models at much lower costs. However, this practice opens up possibilities for unauthorized use or reproduction that may not comply with licensing agreements, and fine-tuning can change the model's behavior, thus complicating the determination of model ownership. Current intellectual property (IP) protection schemes for LLMs are either designed for white-box settings or require additional modifications to the original model, which restricts their use in real-world settings. In this paper, we propose ProFLingo, a black-box fingerprinting-based IP protection scheme for LLMs. ProFLingo generates queries that elicit specific responses from an original model, thereby establishing unique fingerprints. Our scheme assesses the effectiveness of these queries on a suspect model to determine whether it has been derived from the original model. ProFLingo offers a non-invasive approach, which neither requires knowledge of the suspect model nor modifications to the base model or its training process. To the best of our knowledge, our method represents the first black-box fingerprinting technique for IP protection for LLMs. Our source code and generated queries are available at: https://github.com/hengvt/ProFLingo.
comment: This is the author's pre-print version of the work. It is posted here for your personal use. Not for redistribution
♻ ☆ Normalizing Flows for Conformal Regression UAI 2024
Conformal Prediction (CP) algorithms estimate the uncertainty of a prediction model by calibrating its outputs on labeled data. The same calibration scheme usually applies to any model and data without modifications. The obtained prediction intervals are valid by construction but could be inefficient, i.e. unnecessarily big, if the prediction errors are not uniformly distributed over the input space. We present a general scheme to localize the intervals by training the calibration process. The standard prediction error is replaced by an optimized distance metric that depends explicitly on the object attributes. Learning the optimal metric is equivalent to training a Normalizing Flow that acts on the joint distribution of the errors and the inputs. Unlike the Error Reweighting CP algorithm of Papadopoulos et al. (2008), the framework allows estimating the gap between nominal and empirical conditional validity. The approach is compatible with existing locally-adaptive CP strategies based on re-weighting the calibration samples and applies to any point-prediction model without retraining.
comment: To be presented at the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024). Changes from v1: improved Section 1.2, two figures replaced, minor typos fixed
♻ ☆ ICTSurF: Implicit Continuous-Time Survival Functions with Neural Networks
Survival analysis is a widely known method for predicting the likelihood of an event over time. The challenge of dealing with censored samples still remains. Traditional methods, such as the Cox Proportional Hazards (CPH) model, hinge on the limitations due to the strong assumptions of proportional hazards and the predetermined relationships between covariates. The rise of models based on deep neural networks (DNNs) has demonstrated enhanced effectiveness in survival analysis. This research introduces the Implicit Continuous-Time Survival Function (ICTSurF), built on a continuous-time survival model, and constructs survival distribution through implicit representation. As a result, our method is capable of accepting inputs in continuous-time space and producing survival probabilities in continuous-time space, independent of neural network architecture. Comparative assessments with existing methods underscore the high competitiveness of our proposed approach. Our implementation of ICTSurF is available at https://github.com/44REAM/ICTSurF.
♻ ☆ DiarizationLM: Speaker Diarization Post-Processing with Large Language Models
In this paper, we introduce DiarizationLM, a framework to leverage large language models (LLM) to post-process the outputs from a speaker diarization system. Various goals can be achieved with the proposed framework, such as improving the readability of the diarized transcript, or reducing the word diarization error rate (WDER). In this framework, the outputs of the automatic speech recognition (ASR) and speaker diarization systems are represented as a compact textual format, which is included in the prompt to an optionally finetuned LLM. The outputs of the LLM can be used as the refined diarization results with the desired enhancement. As a post-processing step, this framework can be easily applied to any off-the-shelf ASR and speaker diarization systems without retraining existing components. Our experiments show that a finetuned PaLM 2-S model can reduce the WDER by rel. 55.5% on the Fisher telephone conversation dataset, and rel. 44.9% on the Callhome English dataset.
♻ ☆ RL in Latent MDPs is Tractable: Online Guarantees via Off-Policy Evaluation
In many real-world decision problems there is partially observed, hidden or latent information that remains fixed throughout an interaction. Such decision problems can be modeled as Latent Markov Decision Processes (LMDPs), where a latent variable is selected at the beginning of an interaction and is not disclosed to the agent. In the last decade, there has been significant progress in solving LMDPs under different structural assumptions. However, for general LMDPs, there is no known learning algorithm that provably matches the existing lower bound (Kwon et al., 2021). We introduce the first sample-efficient algorithm for LMDPs without any additional structural assumptions. Our result builds off a new perspective on the role of off-policy evaluation guarantees and coverage coefficients in LMDPs, a perspective, that has been overlooked in the context of exploration in partially observed environments. Specifically, we establish a novel off-policy evaluation lemma and introduce a new coverage coefficient for LMDPs. Then, we show how these can be used to derive near-optimal guarantees of an optimistic exploration algorithm. These results, we believe, can be valuable for a wide range of interactive learning problems beyond LMDPs, and especially, for partially observed environments.
comment: Fixed typos + alpha
♻ ☆ Benchmarking mortality risk prediction from electrocardiograms
Several recent high-impact studies leverage large hospital-owned electrocardiographic (ECG) databases to model and predict patient mortality. MIMIC-IV, released September 2023, is the first comparable public dataset and includes 800,000 ECGs from a U.S. hospital system. Previously, the largest public ECG dataset was Code-15, containing 345,000 ECGs collected during routine care in Brazil. These datasets now provide an excellent resource for a broader audience to explore ECG survival modeling. Here, we benchmark survival model performance on Code-15 and MIMIC-IV with two neural network architectures, compare four deep survival modeling approaches to Cox regressions trained on classifier outputs, and evaluate performance at one to ten years. Our results yield AUROC and concordance scores comparable to past work (circa 0.8) and reasonable AUPRC scores (MIMIC-IV: 0.4-0.5, Code-15: 0.05-0.13) considering the fraction of ECG samples linked to a mortality (MIMIC-IV: 27\%, Code-15: 4\%). When evaluating models on the opposite dataset, AUROC and concordance values drop by 0.1-0.15, which may be due to cohort differences. All code and results are made public.
comment: 9 pages plus appendix, 2 figures
♻ ☆ Active Preference Inference using Language Models and Probabilistic Reasoning
Actively inferring user preferences, for example by asking good questions, is important for any human-facing decision-making system. Active inference allows such systems to adapt and personalize themselves to nuanced individual preferences. To enable this ability for instruction-tuned large language models (LLMs), one may prompt them to ask users questions to infer their preferences, transforming the language models into more robust, interactive systems. However, out of the box, these models are not efficient at extracting preferences: the questions they generate are not informative, requiring a high number of user interactions and impeding the usability of the downstream system. In this work, we introduce an inference-time algorithm that helps LLMs quickly infer preferences by using more informative questions. Our algorithm uses a probabilistic model whose conditional distributions are defined by prompting an LLM, and returns questions that optimize expected entropy and expected model change. Results in a simplified interactive web shopping setting with real product items show that an LLM equipped with our entropy reduction algorithm outperforms baselines with the same underlying LLM on task performance while using fewer user interactions.
♻ ☆ Efficient Low-rank Identification via Accelerated Iteratively Reweighted Nuclear Norm Minimization
This paper considers the problem of minimizing the sum of a smooth function and the Schatten-$p$ norm of the matrix. Our contribution involves proposing accelerated iteratively reweighted nuclear norm methods designed for solving the nonconvex low-rank minimization problem. Two major novelties characterize our approach. Firstly, the proposed method possesses a rank identification property, enabling the provable identification of the "correct" rank of the stationary point within a finite number of iterations. Secondly, we introduce an adaptive updating strategy for smoothing parameters. This strategy automatically fixes parameters associated with zero singular values as constants upon detecting the "correct" rank while quickly driving the rest of the parameters to zero. This adaptive behavior transforms the algorithm into one that effectively solves smooth problems after a few iterations, setting our work apart from existing iteratively reweighted methods for low-rank optimization. We prove the global convergence of the proposed algorithm, guaranteeing that every limit point of the iterates is a critical point. Furthermore, a local convergence rate analysis is provided under the Kurdyka-{\L}ojasiewicz property. We conduct numerical experiments using both synthetic and real data to showcase our algorithm's efficiency and superiority over existing methods.
comment: Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ An Information Theoretic Perspective on Conformal Prediction
Conformal Prediction (CP) is a distribution-free uncertainty estimation framework that constructs prediction sets guaranteed to contain the true answer with a user-specified probability. Intuitively, the size of the prediction set encodes a general notion of uncertainty, with larger sets associated with higher degrees of uncertainty. In this work, we leverage information theory to connect conformal prediction to other notions of uncertainty. More precisely, we prove three different ways to upper bound the intrinsic uncertainty, as described by the conditional entropy of the target variable given the inputs, by combining CP with information theoretical inequalities. Moreover, we demonstrate two direct and useful applications of such connection between conformal prediction and information theory: (i) more principled and effective conformal training objectives that generalize previous approaches and enable end-to-end training of machine learning models from scratch, and (ii) a natural mechanism to incorporate side information into conformal prediction. We empirically validate both applications in centralized and federated learning settings, showing our theoretical results translate to lower inefficiency (average prediction set size) for popular CP methods.
♻ ☆ WhaleNet: a Novel Deep Learning Architecture for Marine Mammals Vocalizations on Watkins Marine Mammal Sound Database
Marine mammal communication is a complex field, hindered by the diversity of vocalizations and environmental factors. The Watkins Marine Mammal Sound Database (WMMD) constitutes a comprehensive labeled dataset employed in machine learning applications. Nevertheless, the methodologies for data preparation, preprocessing, and classification documented in the literature exhibit considerable variability and are typically not applied to the dataset in its entirety. This study initially undertakes a concise review of the state-of-the-art benchmarks pertaining to the dataset, with a particular focus on clarifying data preparation and preprocessing techniques. Subsequently, we explore the utilization of the Wavelet Scattering Transform (WST) and Mel spectrogram as preprocessing mechanisms for feature extraction. In this paper, we introduce \textbf{WhaleNet} (Wavelet Highly Adaptive Learning Ensemble Network), a sophisticated deep ensemble architecture for the classification of marine mammal vocalizations, leveraging both WST and Mel spectrogram for enhanced feature discrimination. By integrating the insights derived from WST and Mel representations, we achieved an improvement in classification accuracy by $8-10\%$ over existing architectures, corresponding to a classification accuracy of $97.61\%$.
♻ ☆ Emergent World Representations: Exploring a Sequence Model Trained on a Synthetic Task ICLR 2023
Language models show a surprising range of capabilities, but the source of their apparent competence is unclear. Do these networks just memorize a collection of surface statistics, or do they rely on internal representations of the process that generates the sequences they see? We investigate this question by applying a variant of the GPT model to the task of predicting legal moves in a simple board game, Othello. Although the network has no a priori knowledge of the game or its rules, we uncover evidence of an emergent nonlinear internal representation of the board state. Interventional experiments indicate this representation can be used to control the output of the network and create "latent saliency maps" that can help explain predictions in human terms.
comment: ICLR 2023 oral (notable-top-5%): https://openreview.net/forum?id=DeG07_TcZvT ; code: https://github.com/likenneth/othello_world
♻ ☆ The Fundamental Limits of Least-Privilege Learning
The promise of least-privilege learning -- to find feature representations that are useful for a learning task but prevent inference of any sensitive information unrelated to this task -- is highly appealing. However, so far this concept has only been stated informally. It thus remains an open question whether and how we can achieve this goal. In this work, we provide the first formalisation of the least-privilege principle for machine learning and characterise its feasibility. We prove that there is a fundamental trade-off between a representation's utility for a given task and its leakage beyond the intended task: it is not possible to learn representations that have high utility for the intended task but, at the same time prevent inference of any attribute other than the task label itself. This trade-off holds under realistic assumptions on the data distribution and regardless of the technique used to learn the feature mappings that produce these representations. We empirically validate this result for a wide range of learning techniques, model architectures, and datasets.
♻ ☆ Inference-Time Intervention: Eliciting Truthful Answers from a Language Model NeurIPS 2023
We introduce Inference-Time Intervention (ITI), a technique designed to enhance the "truthfulness" of large language models (LLMs). ITI operates by shifting model activations during inference, following a set of directions across a limited number of attention heads. This intervention significantly improves the performance of LLaMA models on the TruthfulQA benchmark. On an instruction-finetuned LLaMA called Alpaca, ITI improves its truthfulness from 32.5% to 65.1%. We identify a tradeoff between truthfulness and helpfulness and demonstrate how to balance it by tuning the intervention strength. ITI is minimally invasive and computationally inexpensive. Moreover, the technique is data efficient: while approaches like RLHF require extensive annotations, ITI locates truthful directions using only few hundred examples. Our findings suggest that LLMs may have an internal representation of the likelihood of something being true, even as they produce falsehoods on the surface.
comment: NeurIPS 2023 spotlight; code: https://github.com/likenneth/honest_llama
♻ ☆ MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time
Although Large Language Models (LLMs) achieve remarkable performance across various tasks, they often struggle with complex reasoning tasks, such as answering mathematical questions. Recent efforts to address this issue have primarily focused on leveraging mathematical datasets through supervised fine-tuning or self-improvement techniques. However, these methods often depend on high-quality datasets that are difficult to prepare, or they require substantial computational resources for fine-tuning. Inspired by findings that LLMs know how to produce the right answer but struggle to select the correct reasoning path, we propose a purely inference-based searching method -- MindStar (M*). This method formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths. We evaluate the M* framework on both the GSM8K and MATH datasets, comparing its performance with existing open and closed-source LLMs. Our results demonstrate that M* significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1, but with substantially reduced model size and computational costs.
♻ ☆ Topological data quality via 0-dimensional persistence matching
Data quality is crucial for the successful training, generalization and performance of artificial intelligence models. We propose to measure data quality for supervised learning using topological data analysis techniques. Specifically, we provide a novel topological invariant based on persistence matchings induced by inclusions and using $0$-dimensional persistent homology. We show that such an invariant is stable. We provide an algorithm and relate it to images, kernels, and cokernels of the induced morphisms. Also, we show that the invariant allows us to understand whether the subset "represents well" the clusters from the larger dataset or not, and we also use it to estimate bounds for the Hausdorff distance between the subset and the complete dataset. This approach enables us to explain why the chosen dataset will lead to poor performance.
♻ ☆ Introducing 3DCNN ResNets for ASD full-body kinematic assessment: a comparison with hand-crafted features
Autism Spectrum Disorder (ASD) is characterized by challenges in social communication and restricted patterns, with motor abnormalities gaining traction for early detection. However, kinematic analysis in ASD is limited, often lacking robust validation and relying on hand-crafted features for single tasks, leading to inconsistencies across studies. End-to-end models have emerged as promising methods to overcome the need for feature engineering. Our aim is to propose a newly adapted 3DCNN ResNet from and compare it to widely used hand-crafted features for motor ASD assessment. Specifically, we developed a virtual reality environment with multiple motor tasks and trained models using both approaches. We prioritized a reliable validation framework with repeated cross-validation. Results show the proposed model achieves a maximum accuracy of 85$\pm$3%, outperforming state-of-the-art end-to-end models with short 1-to-3 minute samples. Our comparative analysis with hand-crafted features shows feature-engineered models outperformed our end-to-end model in certain tasks. However, our end-to-end model achieved a higher mean AUC of 0.80$\pm$0.03. Additionally, statistical differences were found in model variance, with our end-to-end model providing more consistent results with less variability across all VR tasks, demonstrating domain generalization and reliability. These findings show that end-to-end models enable less variable and context-independent ASD classification without requiring domain knowledge or task specificity. However, they also recognize the effectiveness of hand-crafted features in specific task scenarios.
comment: This work has been submitted to Expert Systems with Applications for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ Combining Reconstruction and Contrastive Methods for Multimodal Representations in RL
Learning self-supervised representations using reconstruction or contrastive losses improves performance and sample complexity of image-based and multimodal reinforcement learning (RL). Here, different self-supervised loss functions have distinct advantages and limitations depending on the information density of the underlying sensor modality. Reconstruction provides strong learning signals but is susceptible to distractions and spurious information. While contrastive approaches can ignore those, they may fail to capture all relevant details and can lead to representation collapse. For multimodal RL, this suggests that different modalities should be treated differently based on the amount of distractions in the signal. We propose Contrastive Reconstructive Aggregated representation Learning (CoRAL), a unified framework enabling us to choose the most appropriate self-supervised loss for each sensor modality and allowing the representation to better focus on relevant aspects. We evaluate CoRAL's benefits on a wide range of tasks with images containing distractions or occlusions, a new locomotion suite, and a challenging manipulation suite with visually realistic distractions. Our results show that learning a multimodal representation by combining contrastive and reconstruction-based losses can significantly improve performance and solve tasks that are out of reach for more naive representation learning approaches and other recent baselines.
comment: Published in "Reinforcement Learning Conference (RLC)", August 2024
♻ ☆ The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks
The Neural Tangent Kernel (NTK) viewpoint is widely employed to analyze the training dynamics of overparameterized Physics-Informed Neural Networks (PINNs). However, unlike the case of linear Partial Differential Equations (PDEs), we show how the NTK perspective falls short in the nonlinear scenario. Specifically, we establish that the NTK yields a random matrix at initialization that is not constant during training, contrary to conventional belief. Another significant difference from the linear regime is that, even in the idealistic infinite-width limit, the Hessian does not vanish and hence it cannot be disregarded during training. This motivates the adoption of second-order optimization methods. We explore the convergence guarantees of such methods in both linear and nonlinear cases, addressing challenges such as spectral bias and slow convergence. Every theoretical result is supported by numerical examples with both linear and nonlinear PDEs, and we highlight the benefits of second-order methods in benchmark test cases.
comment: 10 pages, 4 figures, appendix of 12 additional pages
♻ ☆ Adam-mini: Use Fewer Learning Rates To Gain More
We propose Adam-mini, an optimizer that achieves on-par or better performance than AdamW with 45% to 50% less memory footprint. Adam-mini reduces memory by cutting down the learning rate resources in Adam (i.e., $1/\sqrt{v}$). We find that $\geq$ 90% of these learning rates in $v$ could be harmlessly removed if we (1) carefully partition the parameters into blocks following our proposed principle on Hessian structure; (2) assign a single but good learning rate to each parameter block. We further find that, for each of these parameter blocks, there exists a single high-quality learning rate that can outperform Adam, provided that sufficient resources are available to search it out. We then provide one cost-effective way to find good learning rates and propose Adam-mini. Empirically, we verify that Adam-mini performs on par or better than AdamW on various language models sized from 125M to 7B for pre-training, supervised fine-tuning, and RLHF. The reduced memory footprint of Adam-mini also alleviates communication overheads among GPUs and CPUs, thereby increasing throughput. For instance, Adam-mini achieves 49.6% higher throughput than AdamW when pre-training Llama2-7B on $2\times$ A800-80GB GPUs, which saves 33% wall-clock time for pre-training.
♻ ☆ Autoencoder-based Anomaly Detection System for Online Data Quality Monitoring of the CMS Electromagnetic Calorimeter
The CMS detector is a general-purpose apparatus that detects high-energy collisions produced at the LHC. Online Data Quality Monitoring of the CMS electromagnetic calorimeter is a vital operational tool that allows detector experts to quickly identify, localize, and diagnose a broad range of detector issues that could affect the quality of physics data. A real-time autoencoder-based anomaly detection system using semi-supervised machine learning is presented enabling the detection of anomalies in the CMS electromagnetic calorimeter data. A novel method is introduced which maximizes the anomaly detection performance by exploiting the time-dependent evolution of anomalies as well as spatial variations in the detector response. The autoencoder-based system is able to efficiently detect anomalies, while maintaining a very low false discovery rate. The performance of the system is validated with anomalies found in 2018 and 2022 LHC collision data. Additionally, the first results from deploying the autoencoder-based system in the CMS online Data Quality Monitoring workflow during the beginning of Run 3 of the LHC are presented, showing its ability to detect issues missed by the existing system.
comment: Replaced with the published version. Added the journal reference and the DOI
♻ ☆ SUB-PLAY: Adversarial Policies against Partially Observed Multi-Agent Reinforcement Learning Systems CCS'24
Recent advancements in multi-agent reinforcement learning (MARL) have opened up vast application prospects, such as swarm control of drones, collaborative manipulation by robotic arms, and multi-target encirclement. However, potential security threats during the MARL deployment need more attention and thorough investigation. Recent research reveals that attackers can rapidly exploit the victim's vulnerabilities, generating adversarial policies that result in the failure of specific tasks. For instance, reducing the winning rate of a superhuman-level Go AI to around 20%. Existing studies predominantly focus on two-player competitive environments, assuming attackers possess complete global state observation. In this study, we unveil, for the first time, the capability of attackers to generate adversarial policies even when restricted to partial observations of the victims in multi-agent competitive environments. Specifically, we propose a novel black-box attack (SUB-PLAY) that incorporates the concept of constructing multiple subgames to mitigate the impact of partial observability and suggests sharing transitions among subpolicies to improve attackers' exploitative ability. Extensive evaluations demonstrate the effectiveness of SUB-PLAY under three typical partial observability limitations. Visualization results indicate that adversarial policies induce significantly different activations of the victims' policy networks. Furthermore, we evaluate three potential defenses aimed at exploring ways to mitigate security threats posed by adversarial policies, providing constructive recommendations for deploying MARL in competitive environments.
comment: To appear in the ACM Conference on Computer and Communications Security (CCS'24), October 14-18, 2024, Salt Lake City, UT, USA
♻ ☆ General Distribution Learning: A theoretical framework for Deep Learning
There remain numerous unanswered research questions on deep learning (DL) within the classical learning theory framework. These include the remarkable generalization capabilities of overparametrized neural networks (NNs), the efficient optimization performance despite non-convexity of objectives, the mechanism of flat minima for generalization, and the exceptional performance of deep architectures in solving physical problems. This paper introduces General Distribution Learning (GD Learning), a novel theoretical learning framework designed to address a comprehensive range of machine learning and statistical tasks, including classification, regression and parameter estimation. Departing from traditional statistical machine learning, GD Learning focuses on the true underlying distribution. In GD Learning, learning error, corresponding to the expected error in classical statistical learning framework, is divided into fitting errors due to models and algorithms, as well as sampling errors introduced by limited sampling data. The framework significantly incorporates prior knowledge, especially in scenarios characterized by data scarcity, thereby enhancing performance. Within the GD Learning framework, we demonstrate that the global optimal solutions in non-convex optimization can be approached by minimizing the gradient norm and the non-uniformity of the eigenvalues of the model's Jacobian matrix. This insight leads to the development of the gradient structure control algorithm. GD Learning also offers fresh insights into the questions on deep learning, including overparameterization and non-convex optimization, bias-variance trade-off, and the mechanism of flat minima.
comment: arXiv admin note: text overlap with arXiv:2105.04026 by other authors. arXiv admin note: text overlap with arXiv:2105.04026 by other authors
♻ ☆ Single-Model Attribution of Generative Models Through Final-Layer Inversion ICML2024
Recent breakthroughs in generative modeling have sparked interest in practical single-model attribution. Such methods predict whether a sample was generated by a specific generator or not, for instance, to prove intellectual property theft. However, previous works are either limited to the closed-world setting or require undesirable changes to the generative model. We address these shortcomings by, first, viewing single-model attribution through the lens of anomaly detection. Arising from this change of perspective, we propose FLIPAD, a new approach for single-model attribution in the open-world setting based on final-layer inversion and anomaly detection. We show that the utilized final-layer inversion can be reduced to a convex lasso optimization problem, making our approach theoretically sound and computationally efficient. The theoretical findings are accompanied by an experimental study demonstrating the effectiveness of our approach and its flexibility to various domains.
comment: Accepted at the Forty-first International Conference on Machine Learning [ICML2024]
♻ ☆ Deep Fusion: Efficient Network Training via Pre-trained Initializations
In recent years, deep learning has made remarkable progress in a wide range of domains, with a particularly notable impact on natural language processing tasks. One of the challenges associated with training deep neural networks in the context of LLMs is the need for large amounts of computational resources and time. To mitigate this, network growing algorithms offer potential cost savings, but their underlying mechanisms are poorly understood. We present two notable contributions in this paper. First, we present Deep Fusion, an efficient approach to network training that leverages pre-trained initializations of smaller networks. Second, we propose a theoretical framework using backward error analysis to illustrate the dynamics of mid-training network growth. Our experiments show how Deep Fusion is a practical and effective approach that not only accelerates the training process but also reduces computational requirements, maintaining or surpassing traditional training methods' performance in various NLP tasks and T5 model sizes. Finally, we validate our theoretical framework, which guides the optimal use of Deep Fusion, showing that with carefully optimized training dynamics, it significantly reduces both training time and resource consumption.
♻ ☆ Weisfeiler Leman for Euclidean Equivariant Machine Learning
The $k$-Weisfeiler-Leman ($k$-WL) graph isomorphism test hierarchy is a common method for assessing the expressive power of graph neural networks (GNNs). Recently, GNNs whose expressive power is equivalent to the $2$-WL test were proven to be universal on weighted graphs which encode $3\mathrm{D}$ point cloud data, yet this result is limited to invariant continuous functions on point clouds. In this paper, we extend this result in three ways: Firstly, we show that PPGN can simulate $2$-WL uniformly on all point clouds with low complexity. Secondly, we show that $2$-WL tests can be extended to point clouds which include both positions and velocities, a scenario often encountered in applications. Finally, we provide a general framework for proving equivariant universality and leverage it to prove that a simple modification of this invariant PPGN architecture can be used to obtain a universal equivariant architecture that can approximate all continuous equivariant functions uniformly. Building on our results, we develop our WeLNet architecture, which sets new state-of-the-art results on the N-Body dynamics task and the GEOM-QM9 molecular conformation generation task.
♻ ☆ A Survey of Generative AI for de novo Drug Design: New Frontiers in Molecule and Protein Generation
Artificial intelligence (AI)-driven methods can vastly improve the historically costly drug design process, with various generative models already in widespread use. Generative models for de novo drug design, in particular, focus on the creation of novel biological compounds entirely from scratch, representing a promising future direction. Rapid development in the field, combined with the inherent complexity of the drug design process, creates a difficult landscape for new researchers to enter. In this survey, we organize de novo drug design into two overarching themes: small molecule and protein generation. Within each theme, we identify a variety of subtasks and applications, highlighting important datasets, benchmarks, and model architectures and comparing the performance of top models. We take a broad approach to AI-driven drug design, allowing for both micro-level comparisons of various methods within each subtask and macro-level observations across different fields. We discuss parallel challenges and approaches between the two applications and highlight future directions for AI-driven de novo drug design as a whole. An organized repository of all covered sources is available at https://github.com/gersteinlab/GenAI4Drug.
♻ ☆ Mitigate the Gap: Investigating Approaches for Improving Cross-Modal Alignment in CLIP
Contrastive Language--Image Pre-training (CLIP) has manifested remarkable improvements in zero-shot classification and cross-modal vision-language tasks. Yet, from a geometrical point of view, the CLIP embedding space has been found to have a pronounced modality gap. This gap renders the embedding space overly sparse and disconnected, with different modalities being densely distributed in distinct subregions of the hypersphere. In this work, we aim at answering two main questions: 1. Does sharing the parameter space between the multi-modal encoders reduce the modality gap? 2. Can the gap be mitigated by pushing apart the uni-modal embeddings via intra-modality separation? We design AlignCLIP, in order to answer these questions and show that answers to both questions are positive. Through extensive experiments, we show that AlignCLIP achieves noticeable enhancements in the cross-modal alignment of the embeddings, and thereby, reduces the modality gap, while maintaining the performance across several downstream evaluations, such as zero-shot image classification, zero-shot multi-modal retrieval and zero-shot semantic text similarity.
♻ ☆ Adversarial Multi-dueling Bandits
We introduce the problem of regret minimization in adversarial multi-dueling bandits. While adversarial preferences have been studied in dueling bandits, they have not been explored in multi-dueling bandits. In this setting, the learner is required to select $m \geq 2$ arms at each round and observes as feedback the identity of the most preferred arm which is based on an arbitrary preference matrix chosen obliviously. We introduce a novel algorithm, MiDEX (Multi Dueling EXP3), to learn from such preference feedback that is assumed to be generated from a pairwise-subset choice model. We prove that the expected cumulative $T$-round regret of MiDEX compared to a Borda-winner from a set of $K$ arms is upper bounded by $O((K \log K)^{1/3} T^{2/3})$. Moreover, we prove a lower bound of $\Omega(K^{1/3} T^{2/3})$ for the expected regret in this setting which demonstrates that our proposed algorithm is near-optimal.
♻ ☆ Improving Local Training in Federated Learning via Temperature Scaling
Federated learning is inherently hampered by data heterogeneity: non-i.i.d. training data over local clients. We propose a novel model training approach for federated learning, FLex&Chill, which exploits the Logit Chilling method. Through extensive evaluations, we demonstrate that, in the presence of non-i.i.d. data characteristics inherent in federated learning systems, this approach can expedite model convergence and improve inference accuracy. Quantitatively, from our experiments, we observe up to 6X improvement in the global federated learning model convergence time, and up to 3.37% improvement in inference accuracy.
comment: 24 pages
♻ ☆ MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions
The integration of neural-network-based systems into clinical practice is limited by challenges related to domain generalization and robustness. The computer vision community established benchmarks such as ImageNet-C as a fundamental prerequisite to measure progress towards those challenges. Similar datasets are largely absent in the medical imaging community which lacks a comprehensive benchmark that spans across imaging modalities and applications. To address this gap, we create and open-source MedMNIST-C, a benchmark dataset based on the MedMNIST+ collection covering 12 datasets and 9 imaging modalities. We simulate task and modality-specific image corruptions of varying severity to comprehensively evaluate the robustness of established algorithms against real-world artifacts and distribution shifts. We further provide quantitative evidence that our simple-to-use artificial corruptions allow for highly performant, lightweight data augmentation to enhance model robustness. Unlike traditional, generic augmentation strategies, our approach leverages domain knowledge, exhibiting significantly higher robustness when compared to widely adopted methods. By introducing MedMNIST-C and open-sourcing the corresponding library allowing for targeted data augmentations, we contribute to the development of increasingly robust methods tailored to the challenges of medical imaging. The code is available at https://github.com/francescodisalvo05/medmnistc-api}{github.com/francescodisalvo05/medmnistc-api .
♻ ☆ Learning Antenna Pointing Correction in Operations: Efficient Calibration of a Black Box
We propose an efficient offline pointing calibration method for operational antenna systems which does not require any downtime. Our approach minimizes the calibration effort and exploits technical signal information which is typically used for monitoring and control purposes in ground station operations. Using a standard antenna interface and data from an operational satellite contact, we come up with a robust strategy for training data set generation. On top of this, we learn the parameters of a suitable coordinate transform by means of linear regression. In our experiments, we show the usefulness of the method in a real-world setup.
comment: 5 pages, to be published in the conference proceedings of the European Signal Processing Conference (EUSIPCO) 2024, camera-ready fixing typos and extending motivation, test description, calibration strategy description, as well as result discussion
♻ ☆ ECGrecover: a Deep Learning Approach for Electrocardiogram Signal Completion
In this work, we address the challenge of reconstructing the complete 12-lead ECG signal from incomplete parts of it. We focus on two main scenarii: (i) reconstructing missing signal segments within an ECG lead and (ii) recovering missing leads from a single-lead. We propose a model with a U-Net architecture trained on a novel objective function to address the reconstruction problem. This function incorporates both spatial and temporal aspects of the ECG by combining the distance in amplitude between the reconstructed and real signals with the signal trend. Through comprehensive assessments using both a real-life dataset and a publicly accessible one, we demonstrate that the proposed approach consistently outperforms state-of-the-art methods based on generative adversarial networks and a CopyPaste strategy. Our proposed model demonstrates superior performance in standard distortion metrics and preserves critical ECG characteristics, particularly the P, Q, R, S, and T wave coordinates. Two emerging clinical applications emphasize the relevance of our work. The first is the increasing need to digitize paper-stored ECGs for utilization in AI-based applications (automatic annotation and risk-quantification), often limited to digital ECG complete 10s recordings. The second is the widespread use of wearable devices that record ECGs but typically capture only a small subset of the 12 standard leads. In both cases, a non-negligible amount of information is lost or not recorded, which our approach aims to recover to overcome these limitations.
♻ ☆ Boosting the Cross-Architecture Generalization of Dataset Distillation through an Empirical Study
The poor cross-architecture generalization of dataset distillation greatly weakens its practical significance. This paper attempts to mitigate this issue through an empirical study, which suggests that the synthetic datasets undergo an inductive bias towards the distillation model. Therefore, the evaluation model is strictly confined to having similar architectures of the distillation model. We propose a novel method of EvaLuation with distillation Feature (ELF), which utilizes features from intermediate layers of the distillation model for the cross-architecture evaluation. In this manner, the evaluation model learns from bias-free knowledge therefore its architecture becomes unfettered while retaining performance. By performing extensive experiments, we successfully prove that ELF can well enhance the cross-architecture generalization of current DD methods. Code of this project is at \url{https://github.com/Lirui-Zhao/ELF}.
♻ ☆ Fast Learnings of Coupled Nonnegative Tensor Decomposition Using Optimal Gradient and Low-rank Approximation
Tensor decomposition is a fundamental technique widely applied in signal processing, machine learning, and various other fields. However, traditional tensor decomposition methods encounter limitations when jointly analyzing multi-block tensors, as they often struggle to effectively explore shared information among tensors. In this study, we first introduce a novel coupled nonnegative CANDECOMP/PARAFAC decomposition algorithm optimized by the alternating proximal gradient method (CoNCPD-APG). This algorithm is specially designed to address the challenges of jointly decomposing different tensors that are partially or fully linked, while simultaneously extracting common components, individual components and, core tensors. Recognizing the computational challenges inherent in optimizing nonnegative constraints over high-dimensional tensor data, we further propose the lraCoNCPD-APG algorithm. By integrating low-rank approximation with the proposed CoNCPD-APG method, the proposed algorithm can significantly decrease the computational burden without compromising decomposition quality, particularly for multi-block large-scale tensors. Simulation experiments conducted on synthetic data, real-world face image data, and two kinds of electroencephalography (EEG) data demonstrate the practicality and superiority of the proposed algorithms for coupled nonnegative tensor decomposition problems. Our results underscore the efficacy of our methods in uncovering meaningful patterns and structures from complex multi-block tensor data, thereby offering valuable insights for future applications.
comment: 15 pages, 6 figures
♻ ☆ Transferable Reward Learning by Dynamics-Agnostic Discriminator Ensemble
Recovering reward function from expert demonstrations is a fundamental problem in reinforcement learning. The recovered reward function captures the motivation of the expert. Agents can imitate experts by following these reward functions in their environment, which is known as apprentice learning. However, the agents may face environments different from the demonstrations, and therefore, desire transferable reward functions. Classical reward learning methods such as inverse reinforcement learning (IRL) or, equivalently, adversarial imitation learning (AIL), recover reward functions coupled with training dynamics, which are hard to be transferable. Previous dynamics-agnostic reward learning methods rely on assumptions such as that the reward function has to be state-only, restricting their applicability. In this work, we present a dynamics-agnostic discriminator-ensemble reward learning method (DARL) within the AIL framework, capable of learning both state-action and state-only reward functions. DARL achieves this by decoupling the reward function from training dynamics, employing a dynamics-agnostic discriminator on a latent space derived from the original state-action space. This latent space is optimized to minimize information on the dynamics. We moreover discover the policy-dependency issue of the AIL framework that reduces the transferability. DARL represents the reward function as an ensemble of discriminators during training to eliminate policy dependencies. Empirical studies on MuJoCo tasks with changed dynamics show that DARL better recovers the reward function and results in better imitation performance in transferred environments, handling both state-only and state-action reward scenarios.
♻ ☆ Layer-Wise Quantization: A Pragmatic and Effective Method for Quantizing LLMs Beyond Integer Bit-Levels EMNLP
We present a simple variable quantization approach that quantizes different layers of a large language model (LLM) at different bit levels. Specifically, we quantize the most important layers to higher bit precision and less important layers to lower bits to achieve floating point quantization levels. We propose two effective strategies to measure the importance of layers within LLMs: the first measures the importance of a layer based on how different its output embeddings are from the input embeddings (the higher the better); the second estimates the importance of a layer using the number of layer weights that are much larger than average (the smaller the better). We show that quantizing different layers at varying bits according to our importance scores results in minimal performance drop with a far more compressed model size. Finally, we present several practical key takeaways from our variable layer-wise quantization experiments: (a) LLM performance under variable quantization remains close to the original model until 25-50% of layers are moved in lower quantization using our proposed ordering but only until 5-10% if moved using no specific ordering; (b) Quantizing LLMs to lower bits performs substantially better than pruning unless extreme quantization (2-bit) is used; and (c) Layer-wise quantization to lower bits works better in the case of larger LLMs with more layers compared to smaller LLMs with fewer layers. The code used to run the experiments is available at: https://github.com/RazvanDu/LayerwiseQuant.
comment: submitted to EMNLP, 15 pages, 10 figures, 4 tables
♻ ☆ Benchmarking General-Purpose In-Context Learning
In-context learning (ICL) empowers generative models to address new tasks effectively and efficiently on the fly, without relying on any artificially crafted optimization techniques. In this paper, we study extending ICL to address a broader range of tasks with an extended learning horizon and higher improvement potential, namely General-Purpose In-Context Learning (GPICL). To this end, we introduce two lightweight benchmarks specifically crafted to train and evaluate GPICL functionalities. Each benchmark encompasses a vast number of tasks characterized by significant task variance, facilitating meta-training that minimizes inductive bias. These tasks are also crafted to promote long-horizon in-context learning through continuous generation and interaction. These characteristics necessitate the models to leverage contexts and history interactions to enhance their capabilities, across domains such as language modeling, decision-making, and world modeling. Our experiments on the baseline models demonstrate that meta-training with minimal inductive bias and ICL from the ground up is feasible across all the domains we've discussed. Additionally, our findings indicate that the scale of parameters alone may not be crucial for ICL or GPICL, suggesting alternative approaches such as increasing the scale of contexts and memory states.
♻ ☆ SPHINX-X: Scaling Data and Parameters for a Family of Multi-modal Large Language Models ICML 2024
We propose SPHINX-X, an extensive Multimodality Large Language Model (MLLM) series developed upon SPHINX. To improve the architecture and training efficiency, we modify the SPHINX framework by removing redundant visual encoders, bypassing fully-padded sub-images with skip tokens, and simplifying multi-stage training into a one-stage all-in-one paradigm. To fully unleash the potential of MLLMs, we assemble a comprehensive multi-domain and multimodal dataset covering publicly available resources in language, vision, and vision-language tasks. We further enrich this collection with our curated OCR intensive and Set-of-Mark datasets, extending the diversity and generality. By training over different base LLMs including TinyLlama1.1B, InternLM2-7B, LLaMA2-13B, and Mixtral8x7B, we obtain a spectrum of MLLMs that vary in parameter size and multilingual capabilities. Comprehensive benchmarking reveals a strong correlation between the multi-modal performance with the data and parameter scales. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
comment: Accepted by ICML 2024. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
♻ ☆ CDQuant: Accurate Post-training Weight Quantization of Large Pre-trained Models using Greedy Coordinate Descent
Large language models (LLMs) have recently demonstrated remarkable performance across diverse language tasks. But their deployment is often constrained by their substantial computational and storage requirements. Quantization has emerged as a key technique for addressing this challenge, enabling the compression of large models with minimal impact on performance. The recent GPTQ algorithm, a post-training quantization (PTQ) method, has proven highly effective for compressing LLMs, sparking a wave of research that leverages GPTQ as a core component. Recognizing the pivotal role of GPTQ in the PTQ landscape, we introduce CDQuant, a simple and scalable alternative to GPTQ with improved performance. CDQuant uses coordinate descent to minimize the layer-wise reconstruction loss to achieve high-quality quantized weights. Our algorithm is easy to implement and scales efficiently to models with hundreds of billions of parameters. Through extensive evaluation on the PaLM2 model family, we demonstrate that CDQuant consistently outperforms GPTQ across diverse model sizes and quantization levels. In particular, for INT2 quantization of PaLM2-Otter, CDQuant achieves a 10% reduction in perplexity compared to GPTQ.
♻ ☆ FaithLM: Towards Faithful Explanations for Large Language Models
Large Language Models (LLMs) have become proficient in addressing complex tasks by leveraging their extensive internal knowledge and reasoning capabilities. However, the black-box nature of these models complicates the task of explaining their decision-making processes. While recent advancements demonstrate the potential of leveraging LLMs to self-explain their predictions through natural language (NL) explanations, their explanations may not accurately reflect the LLMs' decision-making process due to a lack of fidelity optimization on the derived explanations. Measuring the fidelity of NL explanations is a challenging issue, as it is difficult to manipulate the input context to mask the semantics of these explanations. To this end, we introduce FaithLM to explain the decision of LLMs with NL explanations. Specifically, FaithLM designs a method for evaluating the fidelity of NL explanations by incorporating the contrary explanations to the query process. Moreover, FaithLM conducts an iterative process to improve the fidelity of derived explanations. Experiment results on three datasets from multiple domains demonstrate that FaithLM can significantly improve the fidelity of derived explanations, which also provides a better alignment with the ground-truth explanations.
♻ ☆ A Survey of Privacy-Preserving Model Explanations: Privacy Risks, Attacks, and Countermeasures
As the adoption of explainable AI (XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorisation of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings. Interested readers are encouraged to access our repository at https://github.com/tamlhp/awesome-privex.
comment: Revision
♻ ☆ A GPU-Accelerated Bi-linear ADMM Algorithm for Distributed Sparse Machine Learning
This paper introduces the Bi-linear consensus Alternating Direction Method of Multipliers (Bi-cADMM), aimed at solving large-scale regularized Sparse Machine Learning (SML) problems defined over a network of computational nodes. Mathematically, these are stated as minimization problems with convex local loss functions over a global decision vector, subject to an explicit $\ell_0$ norm constraint to enforce the desired sparsity. The considered SML problem generalizes different sparse regression and classification models, such as sparse linear and logistic regression, sparse softmax regression, and sparse support vector machines. Bi-cADMM leverages a bi-linear consensus reformulation of the original non-convex SML problem and a hierarchical decomposition strategy that divides the problem into smaller sub-problems amenable to parallel computing. In Bi-cADMM, this decomposition strategy is based on a two-phase approach. Initially, it performs a sample decomposition of the data and distributes local datasets across computational nodes. Subsequently, a delayed feature decomposition of the data is conducted on Graphics Processing Units (GPUs) available to each node. This methodology allows Bi-cADMM to undertake computationally intensive data-centric computations on GPUs, while CPUs handle more cost-effective computations. The proposed algorithm is implemented within an open-source Python package called Parallel Sparse Fitting Toolbox (PsFiT), which is publicly available. Finally, computational experiments demonstrate the efficiency and scalability of our algorithm through numerical benchmarks across various SML problems featuring distributed datasets.
♻ ☆ Empathy Detection from Text, Audiovisual, Audio or Physiological Signals: Task Formulations and Machine Learning Methods
Empathy indicates an individual's ability to understand others. Over the past few years, empathy has drawn attention from various disciplines, including but not limited to Affective Computing, Cognitive Science and Psychology. Detecting empathy has potential applications in society, healthcare and education. Despite being a broad and overlapping topic, the avenue of empathy detection leveraging Machine Learning remains underexplored from a systematic literature review perspective. We collected 828 papers from 10 well-known databases, systematically screened them and analysed the final 61 papers. Our analyses reveal several prominent task formulations $-$ including empathy on localised utterances or overall expressions, unidirectional or parallel empathy, and emotional contagion $-$ in monadic, dyadic and group interactions. Empathy detection methods are summarised based on four input modalities $-$ text, audiovisual, audio and physiological signals $-$ thereby presenting modality-specific network architecture design protocols. We discuss challenges, research gaps and potential applications in the Affective Computing-based empathy domain, which can facilitate new avenues of exploration. We further enlist the public availability of datasets and codes. We believe that our work is a stepping stone to developing a robust empathy detection system that can be deployed in practice to enhance the overall well-being of human life.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice
♻ ☆ ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting
While Graph Neural Networks (GNNs) have achieved enormous success in multiple graph analytical tasks, modern variants mostly rely on the strong inductive bias of homophily. However, real-world networks typically exhibit both homophilic and heterophilic linking patterns, wherein adjacent nodes may share dissimilar attributes and distinct labels. Therefore, GNNs smoothing node proximity holistically may aggregate both task-relevant and irrelevant (even harmful) information, limiting their ability to generalize to heterophilic graphs and potentially causing non-robustness. In this work, we propose a novel Edge Splitting GNN (ES-GNN) framework to adaptively distinguish between graph edges either relevant or irrelevant to learning tasks. This essentially transfers the original graph into two subgraphs with the same node set but complementary edge sets dynamically. Given that, information propagation separately on these subgraphs and edge splitting are alternatively conducted, thus disentangling the task-relevant and irrelevant features. Theoretically, we show that our ES-GNN can be regarded as a solution to a disentangled graph denoising problem, which further illustrates our motivations and interprets the improved generalization beyond homophily. Extensive experiments over 11 benchmark and 1 synthetic datasets not only demonstrate the effective performance of ES-GNN but also highlight its robustness to adversarial graphs and mitigation of the over-smoothing problem.
comment: Under review
♻ ☆ Single-sample versus case-control sampling scheme for Positive Unlabeled data: the story of two scenarios
In the paper we argue that performance of the classifiers based on Empirical Risk Minimization (ERM) for positive unlabeled data, which are designed for case-control sampling scheme may significantly deteriorate when applied to a single-sample scenario. We reveal why their behavior depends, in all but very specific cases, on the scenario. Also, we introduce a single-sample case analogue of the popular non-negative risk classifier designed for case-control data and compare its performance with the original proposal. We show that the significant differences occur between them, especiall when half or more positive of observations are labeled. The opposite case when ERM minimizer designed for the case-control case is applied for single-sample data is also considered and similar conclusions are drawn. Taking into account difference of scenarios requires a sole, but crucial, change in the definition of the Empirical Risk.
♻ ☆ Generating Chain-of-Thoughts with a Pairwise-Comparison Approach to Searching for the Most Promising Intermediate Thought ICML 2024
To improve the ability of the large language model (LLMs) to tackle complex reasoning problems, chain-of-thoughts (CoT) methods were proposed to guide LLMs to reason step-by-step, enabling problem solving from simple to complex. State-of-the-art methods for generating such a chain involve interactive collaboration, where the learner generates candidate intermediate thoughts, evaluated by the LLM, guiding the generation of subsequent thoughts. However, a widespread yet understudied problem is that the evaluation from the LLM is typically noisy and unreliable, potentially misleading the generation process in selecting promising intermediate thoughts. In this paper, motivated by Vapnik's principle, we use pairwise-comparison evaluation instead of point-wise scoring to search for promising intermediate thoughts with the noisy feedback from the LLM. In each round, we randomly pair intermediate thoughts and directly prompt the LLM to select the more promising one from each pair, allowing us to identify the most promising thoughts through an iterative process. To further alleviate the noise in the comparison, we incorporate techniques from ensemble learning and dueling bandits, proposing two variants of the algorithm. Experiments on three real-world tasks demonstrate the effectiveness of our proposed algorithm and verify the rationale of the pairwise comparison mechanism.
comment: ICML 2024
♻ ☆ LayerMerge: Neural Network Depth Compression through Layer Pruning and Merging ICML 2024
Recent works show that reducing the number of layers in a convolutional neural network can enhance efficiency while maintaining the performance of the network. Existing depth compression methods remove redundant non-linear activation functions and merge the consecutive convolution layers into a single layer. However, these methods suffer from a critical drawback; the kernel size of the merged layers becomes larger, significantly undermining the latency reduction gained from reducing the depth of the network. We show that this problem can be addressed by jointly pruning convolution layers and activation functions. To this end, we propose LayerMerge, a novel depth compression method that selects which activation layers and convolution layers to remove, to achieve a desired inference speed-up while minimizing performance loss. Since the corresponding selection problem involves an exponential search space, we formulate a novel surrogate optimization problem and efficiently solve it via dynamic programming. Empirical results demonstrate that our method consistently outperforms existing depth compression and layer pruning methods on various network architectures, both on image classification and generation tasks. We release the code at https://github.com/snu-mllab/LayerMerge.
comment: ICML 2024
♻ ☆ CIMRL: Combining IMitation and Reinforcement Learning for Safe Autonomous Driving
Modern approaches to autonomous driving rely heavily on learned components trained with large amounts of human driving data via imitation learning. However, these methods require large amounts of expensive data collection and even then face challenges with safely handling long-tail scenarios and compounding errors over time. At the same time, pure Reinforcement Learning (RL) methods can fail to learn performant policies in sparse, constrained, and challenging-to-define reward settings like driving. Both of these challenges make deploying purely cloned policies in safety critical applications like autonomous vehicles challenging. In this paper we propose Combining IMitation and Reinforcement Learning (CIMRL) approach - a framework that enables training driving policies in simulation through leveraging imitative motion priors and safety constraints. CIMRL does not require extensive reward specification and improves on the closed loop behavior of pure cloning methods. By combining RL and imitation, we demonstrate that our method achieves state-of-the-art results in closed loop simulation driving benchmarks.
♻ ☆ Neural Methods for Amortised Inference
Simulation-based methods for statistical inference have evolved dramatically over the past 50 years, keeping pace with technological advancements. The field is undergoing a new revolution as it embraces the representational capacity of neural networks, optimisation libraries and graphics processing units for learning complex mappings between data and inferential targets. The resulting tools are amortised, in the sense that they allow rapid inference through fast feedforward operations. In this article we review recent progress in the context of point estimation, approximate Bayesian inference, summary-statistic construction, and likelihood approximation. We also cover software, and include a simple illustration to showcase the wide array of tools available for amortised inference and the benefits they offer over Markov chain Monte Carlo methods. The article concludes with an overview of relevant topics and an outlook on future research directions.
comment: 45 pages, 11 figures, 2 tables
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities ICML 2024
Efficiently generating statistically independent samples from an unnormalized probability distribution, such as equilibrium samples of many-body systems, is a foundational problem in science. In this paper, we propose Iterated Denoising Energy Matching (iDEM), an iterative algorithm that uses a novel stochastic score matching objective leveraging solely the energy function and its gradient -- and no data samples -- to train a diffusion-based sampler. Specifically, iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our stochastic matching objective to further improve the sampler. iDEM is scalable to high dimensions as the inner matching objective, is simulation-free, and requires no MCMC samples. Moreover, by leveraging the fast mode mixing behavior of diffusion, iDEM smooths out the energy landscape enabling efficient exploration and learning of an amortized sampler. We evaluate iDEM on a suite of tasks ranging from standard synthetic energy functions to invariant $n$-body particle systems. We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5\times$ faster, which allows it to be the first method to train using energy on the challenging $55$-particle Lennard-Jones system.
comment: Published at ICML 2024. Code for iDEM is available at https://github.com/jarridrb/dem
♻ ☆ A Large-Scale Exploration of $μ$-Transfer NeurIPS
Large artificial neural networks have become a mainstay of language, vision, and audio processing and synthesis, yet their initializations and learning rates are often set in an unsophisticated fashion, due to the high cost of hyperparameter sweeps at scale. The $\mu$-Parameterization ($\mu$P) offers a potential solution to this challenge, yielding scaling rules for model initialization and learning rates while reportedly enabling zero-shot hyperparameter transfer from small to large models. Despite its evident promise, the $\mu$P method is not yet widely adopted, perhaps due to higher implementation complexity, many variations, or complex theoretical background. This work investigates $\mu$P empirically, focusing on the ubiquitous transformer architecture, and aims to answer a simple question: does $\mu$-Transfer yield optimal learning rates in practice? Studying models of up to 10B parameters and training budgets of up to 190B tokens, we find $\mu$-Transfer works as intended for the majority of important cases, yet also identify a few cases where it may not.
comment: V5: Improved exposition and formatting, expanded bib. V4: NeurIPS style, extra experiments and expanded bib. V3: Formatting, extra experiments, expanded bib. V2: Formatting, extra experiments
♻ ☆ STEEL: Singularity-aware Reinforcement Learning
Batch reinforcement learning (RL) aims at leveraging pre-collected data to find an optimal policy that maximizes the expected total rewards in a dynamic environment. The existing methods require absolutely continuous assumption (e.g., there do not exist non-overlapping regions) on the distribution induced by target policies with respect to the data distribution over either the state or action or both. We propose a new batch RL algorithm that allows for singularity for both state and action spaces (e.g., existence of non-overlapping regions between offline data distribution and the distribution induced by the target policies) in the setting of an infinite-horizon Markov decision process with continuous states and actions. We call our algorithm STEEL: SingulariTy-awarE rEinforcement Learning. Our algorithm is motivated by a new error analysis on off-policy evaluation, where we use maximum mean discrepancy, together with distributionally robust optimization, to characterize the error of off-policy evaluation caused by the possible singularity and to enable model extrapolation. By leveraging the idea of pessimism and under some technical conditions, we derive a first finite-sample regret guarantee for our proposed algorithm under singularity. Compared with existing algorithms,by requiring only minimal data-coverage assumption, STEEL improves the applicability and robustness of batch RL. In addition, a two-step adaptive STEEL, which is nearly tuning-free, is proposed. Extensive simulation studies and one (semi)-real experiment on personalized pricing demonstrate the superior performance of our methods in dealing with possible singularity in batch RL.
♻ ☆ Multi-Agent Imitation Learning: Value is Easy, Regret is Hard
We study a multi-agent imitation learning (MAIL) problem where we take the perspective of a learner attempting to coordinate a group of agents based on demonstrations of an expert doing so. Most prior work in MAIL essentially reduces the problem to matching the behavior of the expert within the support of the demonstrations. While doing so is sufficient to drive the value gap between the learner and the expert to zero under the assumption that agents are non-strategic, it does not guarantee robustness to deviations by strategic agents. Intuitively, this is because strategic deviations can depend on a counterfactual quantity: the coordinator's recommendations outside of the state distribution their recommendations induce. In response, we initiate the study of an alternative objective for MAIL in Markov Games we term the regret gap that explicitly accounts for potential deviations by agents in the group. We first perform an in-depth exploration of the relationship between the value and regret gaps. First, we show that while the value gap can be efficiently minimized via a direct extension of single-agent IL algorithms, even value equivalence can lead to an arbitrarily large regret gap. This implies that achieving regret equivalence is harder than achieving value equivalence in MAIL. We then provide a pair of efficient reductions to no-regret online convex optimization that are capable of minimizing the regret gap (a) under a coverage assumption on the expert (MALICE) or (b) with access to a queryable expert (BLADES).
♻ ☆ Antigen-Specific Antibody Design via Direct Energy-based Preference Optimization
Antibody design, a crucial task with significant implications across various disciplines such as therapeutics and biology, presents considerable challenges due to its intricate nature. In this paper, we tackle antigen-specific antibody sequence-structure co-design as an optimization problem towards specific preferences, considering both rationality and functionality. Leveraging a pre-trained conditional diffusion model that jointly models sequences and structures of antibodies with equivariant neural networks, we propose direct energy-based preference optimization to guide the generation of antibodies with both rational structures and considerable binding affinities to given antigens. Our method involves fine-tuning the pre-trained diffusion model using a residue-level decomposed energy preference. Additionally, we employ gradient surgery to address conflicts between various types of energy, such as attraction and repulsion. Experiments on RAbD benchmark show that our approach effectively optimizes the energy of generated antibodies and achieves state-of-the-art performance in designing high-quality antibodies with low total energy and high binding affinity simultaneously, demonstrating the superiority of our approach.
♻ ☆ GCondenser: Benchmarking Graph Condensation
Large-scale graphs are valuable for graph representation learning, yet the abundant data in these graphs hinders the efficiency of the training process. Graph condensation (GC) alleviates this issue by compressing the large graph into a significantly smaller one that still supports effective model training. Although recent research has introduced various approaches to improve the effectiveness of the condensed graph, comprehensive and practical evaluations across different GC methods are neglected. This paper proposes the first large-scale graph condensation benchmark, GCondenser, to holistically evaluate and compare mainstream GC methods. GCondenser includes a standardised GC paradigm, consisting of condensation, validation, and evaluation procedures, as well as enabling extensions to new GC methods and datasets. With GCondenser, a comprehensive performance study is conducted, presenting the effectiveness of existing methods. GCondenser is open-sourced and available at https://github.com/superallen13/GCondenser.
comment: GCondenser is open-sourced and available at https://github.com/superallen13/GCondenser
♻ ☆ Reinforcement Learning from Delayed Observations via World Models
In standard reinforcement learning settings, agents typically assume immediate feedback about the effects of their actions after taking them. However, in practice, this assumption may not hold true due to physical constraints and can significantly impact the performance of learning algorithms. In this paper, we address observation delays in partially observable environments. We propose leveraging world models, which have shown success in integrating past observations and learning dynamics, to handle observation delays. By reducing delayed POMDPs to delayed MDPs with world models, our methods can effectively handle partial observability, where existing approaches achieve sub-optimal performance or degrade quickly as observability decreases. Experiments suggest that one of our methods can outperform a naive model-based approach by up to 250%. Moreover, we evaluate our methods on visual delayed environments, for the first time showcasing delay-aware reinforcement learning continuous control with visual observations.
♻ ☆ Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process ICML 2024
Considering generating samples with high rewards, we focus on optimizing deep neural networks parameterized stochastic differential equations (SDEs), the advanced generative models with high expressiveness, with policy gradient, the leading algorithm in reinforcement learning. Nevertheless, when applying policy gradients to SDEs, since the policy gradient is estimated on a finite set of trajectories, it can be ill-defined, and the policy behavior in data-scarce regions may be uncontrolled. This challenge compromises the stability of policy gradients and negatively impacts sample complexity. To address these issues, we propose constraining the SDE to be consistent with its associated perturbation process. Since the perturbation process covers the entire space and is easy to sample, we can mitigate the aforementioned problems. Our framework offers a general approach allowing for a versatile selection of policy gradient methods to effectively and efficiently train SDEs. We evaluate our algorithm on the task of structure-based drug design and optimize the binding affinity of generated ligand molecules. Our method achieves the best Vina score -9.07 on the CrossDocked2020 dataset.
comment: Accepted to ICML 2024
♻ ☆ The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources
Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications. To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet: a growing collection of 250+ tools and resources spanning text, vision, and speech modalities. We draw on a large body of prior work to survey resources (e.g. software, documentation, frameworks, guides, and practical tools) that support informed data selection, processing, and understanding, precise and limitation-aware artifact documentation, efficient model training, advance awareness of the environmental impact from training, careful model evaluation of capabilities, risks, and claims, as well as responsible model release, licensing and deployment practices. We hope this curated collection of resources helps guide more responsible development. The process of curating this list, enabled us to review the AI development ecosystem, revealing what tools are critically missing, misused, or over-used in existing practices. We find that (i) tools for data sourcing, model evaluation, and monitoring are critically under-serving ethical and real-world needs, (ii) evaluations for model safety, capabilities, and environmental impact all lack reproducibility and transparency, (iii) text and particularly English-centric analyses continue to dominate over multilingual and multi-modal analyses, and (iv) evaluation of systems, rather than just models, is needed so that capabilities and impact are assessed in context.
♻ ☆ MgNO: Efficient Parameterization of Linear Operators via Multigrid
In this work, we propose a concise neural operator architecture for operator learning. Drawing an analogy with a conventional fully connected neural network, we define the neural operator as follows: the output of the $i$-th neuron in a nonlinear operator layer is defined by $O_i(u) = \sigma\left( \sum_j W_{ij} u + B_{ij}\right)$. Here, $ W_{ij}$ denotes the bounded linear operator connecting $j$-th input neuron to $i$-th output neuron, and the bias $ B_{ij}$ takes the form of a function rather than a scalar. Given its new universal approximation property, the efficient parameterization of the bounded linear operators between two neurons (Banach spaces) plays a critical role. As a result, we introduce MgNO, utilizing multigrid structures to parameterize these linear operators between neurons. This approach offers both mathematical rigor and practical expressivity. Additionally, MgNO obviates the need for conventional lifting and projecting operators typically required in previous neural operators. Moreover, it seamlessly accommodates diverse boundary conditions. Our empirical observations reveal that MgNO exhibits superior ease of training compared to other CNN-based models, while also displaying a reduced susceptibility to overfitting when contrasted with spectral-type neural operators. We demonstrate the efficiency and accuracy of our method with consistently state-of-the-art performance on different types of partial differential equations (PDEs).
♻ ☆ Multimodal Physiological Signals Representation Learning via Multiscale Contrasting for Depression Recognition
Depression recognition based on physiological signals such as functional near-infrared spectroscopy (fNIRS) and electroencephalogram (EEG) has made considerable progress. However, most existing studies ignore the complementarity and semantic consistency of multimodal physiological signals under the same stimulation task in complex spatio-temporal patterns. In this paper, we introduce a multimodal physiological signals representation learning framework using Siamese architecture via multiscale contrasting for depression recognition (MRLMC). First, fNIRS and EEG are transformed into different but correlated data based on a time-domain data augmentation strategy. Then, we design a spatio-temporal contrasting module to learn the representation of fNIRS and EEG through weight-sharing multiscale spatio-temporal convolution. Furthermore, to enhance the learning of semantic representation associated with stimulation tasks, a semantic consistency contrast module is proposed, aiming to maximize the semantic similarity of fNIRS and EEG. Extensive experiments on publicly available and self-collected multimodal physiological signals datasets indicate that MRLMC outperforms the state-of-the-art models. Moreover, our proposed framework is capable of transferring to multimodal time series downstream tasks.
♻ ☆ Vanilla Bayesian Optimization Performs Great in High Dimensions
High-dimensional problems have long been considered the Achilles' heel of Bayesian optimization algorithms. Spurred by the curse of dimensionality, a large collection of algorithms aim to make it more performant in this setting, commonly by imposing various simplifying assumptions on the objective. In this paper, we identify the degeneracies that make vanilla Bayesian optimization poorly suited to high-dimensional tasks, and further show how existing algorithms address these degeneracies through the lens of lowering the model complexity. Moreover, we propose an enhancement to the prior assumptions that are typical to vanilla Bayesian optimization algorithms, which reduces the complexity to manageable levels without imposing structural restrictions on the objective. Our modification - a simple scaling of the Gaussian process lengthscale prior with the dimensionality - reveals that standard Bayesian optimization works drastically better than previously thought in high dimensions, clearly outperforming existing state-of-the-art algorithms on multiple commonly considered real-world high-dimensional tasks.
♻ ☆ Pointwise convergence of Fourier series and deep neural network for the indicator function of d-dimensional ball
In this paper, we clarify the crucial difference between a deep neural network and the Fourier series. For the multiple Fourier series of periodization of some radial functions on $\mathbb{R}^d$, Kuratsubo (2010) investigated the behavior of the spherical partial sum and discovered the third phenomenon other than the well-known Gibbs-Wilbraham and Pinsky phenomena. In particular, the third one exhibits prevention of pointwise convergence. In contrast to it, we give a specific deep neural network and prove pointwise convergence.
comment: When the version 2 was rejected (where I submitted it to an AI journal), I realized I needed to further clarify the key point, and also realized the field is rather Fourier analysis
♻ ☆ Learning in RKHM: a $C^*$-Algebraic Twist for Kernel Machines
Supervised learning in reproducing kernel Hilbert space (RKHS) and vector-valued RKHS (vvRKHS) has been investigated for more than 30 years. In this paper, we provide a new twist to this rich literature by generalizing supervised learning in RKHS and vvRKHS to reproducing kernel Hilbert $C^*$-module (RKHM), and show how to construct effective positive-definite kernels by considering the perspective of $C^*$-algebra. Unlike the cases of RKHS and vvRKHS, we can use $C^*$-algebras to enlarge representation spaces. This enables us to construct RKHMs whose representation power goes beyond RKHSs, vvRKHSs, and existing methods such as convolutional neural networks. Our framework is suitable, for example, for effectively analyzing image data by allowing the interaction of Fourier components.
comment: We corrected errors in the experiments in Section 6.2
♻ ☆ Unleashing the Expressive Power of Pulse-Based Quantum Neural Networks
Quantum machine learning (QML) based on Noisy Intermediate-Scale Quantum (NISQ) devices hinges on the optimal utilization of limited quantum resources. While gate-based QML models are user-friendly for software engineers, their expressivity is restricted by the permissible circuit depth within a finite coherence time. In contrast, pulse-based models enable the construction of "infinitely" deep quantum neural networks within the same time, which may unleash greater expressive power for complex learning tasks. In this paper, this potential is investigated from the perspective of quantum control theory. We first indicate that the nonlinearity of pulse-based models comes from the encoding process that can be viewed as the continuous limit of data-reuploading in gate-based models. Subsequently, we prove that the pulse-based model can approximate arbitrary nonlinear functions when the underlying physical system is ensemble controllable. Under this condition, numerical simulations demonstrate the enhanced expressivity by either increasing the pulse length or the number of qubits. As anticipated, we show through numerical examples that the pulse-based model can unleash more expressive power compared to the gate-based model. These findings lay a theoretical foundation for understanding and designing expressive QML models using NISQ devices.
comment: 12 pages; 6 figures
♻ ☆ Bayesian identification of nonseparable Hamiltonians with multiplicative noise using deep learning and reduced-order modeling
This paper presents a structure-preserving Bayesian approach for learning nonseparable Hamiltonian systems using stochastic dynamic models allowing for statistically-dependent, vector-valued additive and multiplicative measurement noise. The approach is comprised of three main facets. First, we derive a Gaussian filter for a statistically-dependent, vector-valued, additive and multiplicative noise model that is needed to evaluate the likelihood within the Bayesian posterior. Second, we develop a novel algorithm for cost-effective application of Bayesian system identification to high-dimensional systems. Third, we demonstrate how structure-preserving methods can be incorporated into the proposed framework, using nonseparable Hamiltonians as an illustrative system class. We assess the method's performance based on the forecasting accuracy of a model estimated from-single trajectory data. We compare the Bayesian method to a state-of-the-art machine learning method on a canonical nonseparable Hamiltonian model and a chaotic double pendulum model with small, noisy training datasets. The results show that using the Bayesian posterior as a training objective can yield upwards of 724 times improvement in Hamiltonian mean squared error using training data with up to 10% multiplicative noise compared to a standard training objective. Lastly, we demonstrate the utility of the novel algorithm for parameter estimation of a 64-dimensional model of the spatially-discretized nonlinear Schr\"odinger equation with data corrupted by up to 20% multiplicative noise.
♻ ☆ To smooth a cloud or to pin it down: Guarantees and Insights on Score Matching in Denoising Diffusion Models
Denoising diffusion models are a class of generative models which have recently achieved state-of-the-art results across many domains. Gradual noise is added to the data using a diffusion process, which transforms the data distribution into a Gaussian. Samples from the generative model are then obtained by simulating an approximation of the time reversal of this diffusion initialized by Gaussian samples. Recent research has explored adapting diffusion models for sampling and inference tasks. In this paper, we leverage known connections to stochastic control akin to the F\"ollmer drift to extend established neural network approximation results for the F\"ollmer drift to denoising diffusion models and samplers.
comment: arXiv admin note: text overlap with arXiv:1903.01608 by other authors
♻ ☆ Mélange: Cost Efficient Large Language Model Serving by Exploiting GPU Heterogeneity
Large language models (LLMs) are increasingly integrated into many online services, yet they remain cost-prohibitive to deploy due to the requirement of expensive GPU instances. Prior work has addressed the high cost of LLM serving by improving the inference engine, but less attention has been given to selecting the most cost-efficient GPU type(s) for a specific LLM service. There is a large and growing landscape of GPU types and, within these options, higher cost does not always lead to increased performance. Instead, through a comprehensive investigation, we find that three key LLM service characteristics (request size, request rate, SLO) strongly influence GPU cost efficiency, and differing GPU types are most cost efficient for differing LLM service settings. As a result, the most cost-efficient allocation for a given service is typically a mix of heterogeneous GPU types. Based on this analysis, we introduce M\'elange, a GPU allocation framework that navigates these diverse LLM service characteristics and heterogeneous GPU option space to automatically and efficiently derive the minimal-cost GPU allocation for a given LLM service. We formulate the GPU allocation task as a cost-aware bin packing problem where GPUs are bins and items are slices of the service workload. Our formulation's constraints account for a service's unique characteristics, allowing M\'elange to be flexible to support diverse service settings and heterogeneity-aware to adapt the GPU allocation to a specific service. Compared to using only a single GPU type, M\'elange reduces deployment costs by up to 77\% in conversational settings, 33\% in document-based settings, and 51\% in a mixed setting.
♻ ☆ PGODE: Towards High-quality System Dynamics Modeling ICML 2024
This paper studies the problem of modeling multi-agent dynamical systems, where agents could interact mutually to influence their behaviors. Recent research predominantly uses geometric graphs to depict these mutual interactions, which are then captured by powerful graph neural networks (GNNs). However, predicting interacting dynamics in challenging scenarios such as out-of-distribution shift and complicated underlying rules remains unsolved. In this paper, we propose a new approach named Prototypical Graph ODE (PGODE) to address the problem. The core of PGODE is to incorporate prototype decomposition from contextual knowledge into a continuous graph ODE framework. Specifically, PGODE employs representation disentanglement and system parameters to extract both object-level and system-level contexts from historical trajectories, which allows us to explicitly model their independent influence and thus enhances the generalization capability under system changes. Then, we integrate these disentangled latent representations into a graph ODE model, which determines a combination of various interacting prototypes for enhanced model expressivity. The entire model is optimized using an end-to-end variational inference framework to maximize the likelihood. Extensive experiments in both in-distribution and out-of-distribution settings validate the superiority of PGODE compared to various baselines.
comment: Accepted by ICML 2024
♻ ☆ Latent diffusion models for parameterization and data assimilation of facies-based geomodels
Geological parameterization entails the representation of a geomodel using a small set of latent variables and a mapping from these variables to grid-block properties such as porosity and permeability. Parameterization is useful for data assimilation (history matching), as it maintains geological realism while reducing the number of variables to be determined. Diffusion models are a new class of generative deep-learning procedures that have been shown to outperform previous methods, such as generative adversarial networks, for image generation tasks. Diffusion models are trained to "denoise", which enables them to generate new geological realizations from input fields characterized by random noise. Latent diffusion models, which are the specific variant considered in this study, provide dimension reduction through use of a low-dimensional latent variable. The model developed in this work includes a variational autoencoder for dimension reduction and a U-net for the denoising process. Our application involves conditional 2D three-facies (channel-levee-mud) systems. The latent diffusion model is shown to provide realizations that are visually consistent with samples from geomodeling software. Quantitative metrics involving spatial and flow-response statistics are evaluated, and general agreement between the diffusion-generated models and reference realizations is observed. Stability tests are performed to assess the smoothness of the parameterization method. The latent diffusion model is then used for ensemble-based data assimilation. Two synthetic "true" models are considered. Significant uncertainty reduction, posterior P$_{10}$-P$_{90}$ forecasts that generally bracket observed data, and consistent posterior geomodels, are achieved in both cases.
comment: - Moved Table 1 from before to after Section 4.2 heading - Renamed output pdf file with paper title
♻ ☆ Machine Learning-Enabled Software and System Architecture Frameworks
Various architecture frameworks for software, systems, and enterprises have been proposed in the literature. They identified several stakeholders and defined modeling perspectives, architecture viewpoints, and views to frame and address stakeholder concerns. However, the stakeholders with data science and Machine Learning (ML) related concerns, such as data scientists and data engineers, are yet to be included in existing architecture frameworks. Only this way can we envision a holistic system architecture description of an ML-enabled system. Note that the ML component behavior and functionalities are special and should be distinguished from traditional software system behavior and functionalities. The main reason is that the actual functionality should be inferred from data instead of being specified at design time. Additionally, the structural models of ML components, such as ML model architectures, are typically specified using different notations and formalisms from what the Software Engineering (SE) community uses for software structural models. Yet, these two aspects, namely ML and non-ML, are becoming so intertwined that it necessitates an extension of software architecture frameworks and modeling practices toward supporting ML-enabled system architectures. In this paper, we address this gap through an empirical study using an online survey instrument. We surveyed 61 subject matter experts from over 25 organizations in 10 countries.
comment: Journal manuscript
♻ ☆ Towards understanding neural collapse in supervised contrastive learning with the information bottleneck method
Neural collapse describes the geometry of activation in the final layer of a deep neural network when it is trained beyond performance plateaus. Open questions include whether neural collapse leads to better generalization and, if so, why and how training beyond the plateau helps. We model neural collapse as an information bottleneck (IB) problem in order to investigate whether such a compact representation exists and discover its connection to generalization. We demonstrate that neural collapse leads to good generalization specifically when it approaches an optimal IB solution of the classification problem. Recent research has shown that two deep neural networks independently trained with the same contrastive loss objective are linearly identifiable, meaning that the resulting representations are equivalent up to a matrix transformation. We leverage linear identifiability to approximate an analytical solution of the IB problem. This approximation demonstrates that when class means exhibit $K$-simplex Equiangular Tight Frame (ETF) behavior (e.g., $K$=10 for CIFAR10 and $K$=100 for CIFAR100), they coincide with the critical phase transitions of the corresponding IB problem. The performance plateau occurs once the optimal solution for the IB problem includes all of these phase transitions. We also show that the resulting $K$-simplex ETF can be packed into a $K$-dimensional Gaussian distribution using supervised contrastive learning with a ResNet50 backbone. This geometry suggests that the $K$-simplex ETF learned by supervised contrastive learning approximates the optimal features for source coding. Hence, there is a direct correspondence between optimal IB solutions and generalization in contrastive learning.
Multimedia 3
☆ Improving the Consistency in Cross-Lingual Cross-Modal Retrieval with 1-to-K Contrastive Learning KDD 2024
Cross-lingual Cross-modal Retrieval (CCR) is an essential task in web search, which aims to break the barriers between modality and language simultaneously and achieves image-text retrieval in the multi-lingual scenario with a single model. In recent years, excellent progress has been made based on cross-lingual cross-modal pre-training; particularly, the methods based on contrastive learning on large-scale data have significantly improved retrieval tasks. However, these methods directly follow the existing pre-training methods in the cross-lingual or cross-modal domain, leading to two problems of inconsistency in CCR: The methods with cross-lingual style suffer from the intra-modal error propagation, resulting in inconsistent recall performance across languages in the whole dataset. The methods with cross-modal style suffer from the inter-modal optimization direction bias, resulting in inconsistent rank across languages within each instance, which cannot be reflected by Recall@K. To solve these problems, we propose a simple but effective 1-to-K contrastive learning method, which treats each language equally and eliminates error propagation and optimization bias. In addition, we propose a new evaluation metric, Mean Rank Variance (MRV), to reflect the rank inconsistency across languages within each instance. Extensive experiments on four CCR datasets show that our method improves both recall rates and MRV with smaller-scale pre-trained data, achieving the new state-of-art.
comment: Accepted by KDD 2024 Research Track
☆ A Study on Synthesizing Expressive Violin Performances: Approaches and Comparisons
Expressive music synthesis (EMS) for violin performance is a challenging task due to the disagreement among music performers in the interpretation of expressive musical terms (EMTs), scarcity of labeled recordings, and limited generalization ability of the synthesis model. These challenges create trade-offs between model effectiveness, diversity of generated results, and controllability of the synthesis system, making it essential to conduct a comparative study on EMS model design. This paper explores two violin EMS approaches. The end-to-end approach is a modification of a state-of-the-art text-to-speech generator. The parameter-controlled approach is based on a simple parameter sampling process that can render note lengths and other parameters compatible with MIDI-DDSP. We study these two approaches (in total, three model variants) through objective and subjective experiments and discuss several key issues of EMS based on the results.
comment: 15 pages, 2 figures, 3 tables
♻ ☆ ObjFormer: Learning Land-Cover Changes From Paired OSM Data and Optical High-Resolution Imagery via Object-Guided Transformer
Optical high-resolution imagery and OSM data are two important data sources of change detection (CD). Previous related studies focus on utilizing the information in OSM data to aid the CD on optical high-resolution images. This paper pioneers the direct detection of land-cover changes utilizing paired OSM data and optical imagery, thereby expanding the scope of CD tasks. To this end, we propose an object-guided Transformer (ObjFormer) by naturally combining the object-based image analysis (OBIA) technique with the advanced vision Transformer architecture. This combination can significantly reduce the computational overhead in the self-attention module without adding extra parameters or layers. ObjFormer has a hierarchical pseudo-siamese encoder consisting of object-guided self-attention modules that extracts multi-level heterogeneous features from OSM data and optical images; a decoder consisting of object-guided cross-attention modules can recover land-cover changes from the extracted heterogeneous features. Beyond basic binary change detection, this paper raises a new semi-supervised semantic change detection task that does not require any manually annotated land-cover labels to train semantic change detectors. Two lightweight semantic decoders are added to ObjFormer to accomplish this task efficiently. A converse cross-entropy loss is designed to fully utilize negative samples, contributing to the great performance improvement in this task. A large-scale benchmark dataset called OpenMapCD containing 1,287 samples covering 40 regions on six continents is constructed to conduct detailed experiments. The results show the effectiveness of our methods in this new kind of CD task. Additionally, case studies in Japanese cities demonstrate the framework's generalizability and practical potential. The OpenMapCD and source code are available in https://github.com/ChenHongruixuan/ObjFormer
comment: Accepted by IEEE TGRS
Performance 2
☆ An Autotuning-based Optimization Framework for Mixed-kernel SVM Classifications in Smart Pixel Datasets and Heterojunction Transistors
Support Vector Machine (SVM) is a state-of-the-art classification method widely used in science and engineering due to its high accuracy, its ability to deal with high dimensional data, and its flexibility in modeling diverse sources of data. In this paper, we propose an autotuning-based optimization framework to quantify the ranges of hyperparameters in SVMs to identify their optimal choices, and apply the framework to two SVMs with the mixed-kernel between Sigmoid and Gaussian kernels for smart pixel datasets in high energy physics (HEP) and mixed-kernel heterojunction transistors (MKH). Our experimental results show that the optimal selection of hyperparameters in the SVMs and the kernels greatly varies for different applications and datasets, and choosing their optimal choices is critical for a high classification accuracy of the mixed kernel SVMs. Uninformed choices of hyperparameters C and coef0 in the mixed-kernel SVMs result in severely low accuracy, and the proposed framework effectively quantifies the proper ranges for the hyperparameters in the SVMs to identify their optimal choices to achieve the highest accuracy 94.6\% for the HEP application and the highest average accuracy 97.2\% with far less tuning time for the MKH application.
♻ ☆ GVEL: Fast Graph Loading in Edgelist and Compressed Sparse Row (CSR) formats
Efficient IO techniques are crucial in high-performance graph processing frameworks like Gunrock and Hornet, as fast graph loading can help minimize processing time and reduce system/cloud usage charges. This research study presents approaches for efficiently reading an Edgelist from a text file and converting it to a Compressed Sparse Row (CSR) representation. On a server with dual 16-core Intel Xeon Gold 6226R processors and Micron 5200 SSDs, our approach, which we term as GVEL, outperforms Hornet, Gunrock, and PIGO by significant margins in CSR reading, exhibiting an average speedup of 78x, 112x, and 1.8x, respectively. For Edgelist reading, GVEL is 2.6x faster than PIGO on average, and achieves a Edgelist read rate of 1.9 billion edges/s. For every doubling of threads, GVEL improves performance at an average rate of 1.9x and 1.7x for reading Edgelist and reading CSR respectively.
comment: 10 pages, 9 figures, 1 table
Database 4
☆ GlobalTomo: A global dataset for physics-ML seismic wavefield modeling and FWI
Global seismic tomography, taking advantage of seismic waves from natural earthquakes, provides essential insights into the earth's internal dynamics. Advanced Full-waveform Inversion (FWI) techniques, whose aim is to meticulously interpret every detail in seismograms, confront formidable computational demands in forward modeling and adjoint simulations on a global scale. Recent advancements in Machine Learning (ML) offer a transformative potential for accelerating the computational efficiency of FWI and extending its applicability to larger scales. This work presents the first 3D global synthetic dataset tailored for seismic wavefield modeling and full-waveform tomography, referred to as the GlobalTomo dataset. This dataset is uniquely comprehensive, incorporating explicit wave physics and robust geophysical parameterization at realistic global scales, generated through state-of-the-art forward simulations optimized for 3D global wavefield calculations. Through extensive analysis and the establishment of ML baselines, we illustrate that ML approaches are particularly suitable for global FWI, overcoming its limitations with rapid forward modeling and flexible inversion strategies. This work represents a cross-disciplinary effort to enhance our understanding of the earth's interior through physics-ML modeling.
comment: 36 pages
☆ DeepExtremeCubes: Integrating Earth system spatio-temporal data for impact assessment of climate extremes
With climate extremes' rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models. Despite recent progress in deep learning to ecosystem monitoring, there is a need for datasets specifically designed to analyse compound heatwave and drought extreme impact. Here, we introduce the DeepExtremeCubes database, tailored to map around these extremes, focusing on persistent natural vegetation. It comprises over 40,000 spatially sampled small data cubes (i.e. minicubes) globally, with a spatial coverage of 2.5 by 2.5 km. Each minicube includes (i) Sentinel-2 L2A images, (ii) ERA5-Land variables and generated extreme event cube covering 2016 to 2022, and (iii) ancillary land cover and topography maps. The paper aims to (1) streamline data accessibility, structuring, pre-processing, and enhance scientific reproducibility, and (2) facilitate biosphere dynamics forecasting in response to compound extremes.
☆ CompassDB: Pioneering High-Performance Key-Value Store with Perfect Hash
Modern mainstream persistent key-value storage engines utilize Log-Structured Merge tree (LSM-tree) based designs, optimizing read/write performance by leveraging sequential disk I/O. However, the advent of SSDs, with their significant improvements in bandwidth and IOPS, shifts the bottleneck from I/O to CPU. The high compaction cost and large read/write amplification associated with LSM trees have become critical bottlenecks. In this paper, we introduce CompassDB, which utilizes a Two-tier Perfect Hash Table (TPH) design to significantly decrease read/write amplification and compaction costs. CompassDB utilizes a perfect hash algorithm for its in-memory index, resulting in an average index cost of about 6 bytes per key-value pair. This compact index reduces the lookup time complexity from $O(log N)$ to $O(1)$ and decreases the overall cost. Consequently, it allows for the storage of more key-value pairs for reads or provides additional memory for the memtable for writes. This results in substantial improvements in both throughput and latency. Our evaluation using the YCSB benchmark tool shows that CompassDB increases throughput by 2.5x to 4x compared to RocksDB, and by 5x to 17x compared to PebblesDB across six typical workloads. Additionally, CompassDB significantly reduces average and 99th percentile read/write latency, achieving a 50% to 85% reduction in comparison to RocksDB.
♻ ☆ DataDock: An Open Source Data Hub for Research SC
Every research project necessitates data, often requiring sharing and collaborative review within a team. However, there is a dearth of good open-source data sharing and reviewing services. Existing file-sharing services generally mandate paid subscriptions for increased storage or additional members, diverting research funds from addressing the core research problem that a lab is attempting to work on. Moreover, these services often lack direct features for reviewing or commenting on data quality, a vital part of ensuring high quality data generation. In response to these challenges, we present DataDock, a specialized file transfer service crafted for specifically for researchers. DataDock operates as an application hosted on a research lab server. This design ensures that, with access to a machine and an internet connection, teams can facilitate file storage, transfer, and review without incurring extra costs. Being an open-source project, DataDock can be customized to suit the unique requirements of any research team, and is able to evolve to meet the needs of the research community. We also note that there are no limitations with respect to what data can be shared, downloaded, or commented on. As DataDock is agnostic to the file type, it can be used in any field from bioinformatics to particle physics; as long as it can be stored in a file, it can be shared. We open source the code here: https://github.com/lxaw/DataDock
comment: 7 pages, 6 figures, submitted and in review at The 2024 World Congress in Computer Science, Computer Engineering, And Applied Computing (CSCE)
Computation and Language 146
☆ BMIKE-53: Investigating Cross-Lingual Knowledge Editing with In-Context Learning
Large language models (LLMs) possess extensive parametric knowledge, but this knowledge is difficult to update with new information because retraining is very expensive and infeasible for closed-source models. Knowledge editing (KE) has emerged as a viable solution for updating the knowledge of LLMs without compromising their overall performance. On-the-fly KE methods, inspired by in-context learning (ICL), have shown great promise and allow LLMs to be treated as black boxes. In the past, KE was primarily employed in English contexts, whereas the potential for cross-lingual KE in current English-centric LLMs has not been fully explored. To foster more research in this direction, we introduce the BMIKE-53 benchmark for evaluating cross-lingual KE on 53 diverse languages across three KE task types. We also propose a gradient-free KE method called Multilingual In-context Knowledge Editing (MIKE) and evaluate it on BMIKE-53. Our evaluation focuses on cross-lingual knowledge transfer in terms of reliability, generality, locality, and portability, offering valuable insights and a framework for future research in cross-lingual KE. Our code and data are publicly accessible via the anonymous repository at https://anonymous.4open.science/r/MIKE.
comment: 12 pages, 4 figures
☆ CaLMQA: Exploring culturally specific long-form question answering across 23 languages
Large language models (LLMs) are commonly used for long-form question answering, which requires them to generate paragraph-length answers to complex questions. While long-form QA has been well-studied in English via many different datasets and evaluation metrics, this research has not been extended to cover most other languages. To bridge this gap, we introduce CaLMQA, a collection of 2.6K complex questions spanning 23 languages, including under-resourced, rarely-studied languages such as Fijian and Kirundi. Our dataset includes both naturally-occurring questions collected from community web forums as well as questions written by native speakers, whom we hire for this purpose. Our process yields diverse, complex questions that reflect cultural topics (e.g. traditions, laws, news) and the language usage of native speakers. We conduct automatic evaluation across a suite of open- and closed-source models using our novel metric CaLMScore, which detects incorrect language and token repetitions in answers, and observe that the quality of LLM-generated answers degrades significantly for some low-resource languages. We perform human evaluation on a subset of models and see that model performance is significantly worse for culturally specific questions than for culturally agnostic questions. Our findings highlight the need for further research in LLM multilingual capabilities and non-English LFQA evaluation.
comment: 39 pages, 16 figures. Code and data available at https://github.com/2015aroras/CaLMQA
☆ Accelerating Clinical Evidence Synthesis with Large Language Models
Automatic medical discovery by AI is a dream of many. One step toward that goal is to create an AI model to understand clinical studies and synthesize clinical evidence from the literature. Clinical evidence synthesis currently relies on systematic reviews of clinical trials and retrospective analyses from medical literature. However, the rapid expansion of publications presents challenges in efficiently identifying, summarizing, and updating evidence. We introduce TrialMind, a generative AI-based pipeline for conducting medical systematic reviews, encompassing study search, screening, and data extraction phases. We utilize large language models (LLMs) to drive each pipeline component while incorporating human expert oversight to minimize errors. To facilitate evaluation, we also create a benchmark dataset TrialReviewBench, a custom dataset with 870 annotated clinical studies from 25 meta-analysis papers across various medical treatments. Our results demonstrate that TrialMind significantly improves the literature review process, achieving high recall rates (0.897-1.000) in study searching from over 20 million PubMed studies and outperforming traditional language model embeddings-based methods in screening (Recall@20 of 0.227-0.246 vs. 0.000-0.102). Furthermore, our approach surpasses direct GPT-4 performance in result extraction, with accuracy ranging from 0.65 to 0.84. We also support clinical evidence synthesis in forest plots, as validated by eight human annotators who preferred TrialMind over the GPT-4 baseline with a winning rate of 62.5%-100% across the involved reviews. Our findings suggest that an LLM-based clinical evidence synthesis approach, such as TrialMind, can enable reliable and high-quality clinical evidence synthesis to improve clinical research efficiency.
☆ Measuring and Benchmarking Large Language Models' Capabilities to Generate Persuasive Language
We are exposed to much information trying to influence us, such as teaser messages, debates, politically framed news, and propaganda - all of which use persuasive language. With the recent interest in Large Language Models (LLMs), we study the ability of LLMs to produce persuasive text. As opposed to prior work which focuses on particular domains or types of persuasion, we conduct a general study across various domains to measure and benchmark to what degree LLMs produce persuasive text - both when explicitly instructed to rewrite text to be more or less persuasive and when only instructed to paraphrase. To this end, we construct a new dataset, Persuasive-Pairs, of pairs each consisting of a short text and of a text rewritten by an LLM to amplify or diminish persuasive language. We multi-annotate the pairs on a relative scale for persuasive language. This data is not only a valuable resource in itself, but we also show that it can be used to train a regression model to predict a score of persuasive language between text pairs. This model can score and benchmark new LLMs across domains, thereby facilitating the comparison of different LLMs. Finally, we discuss effects observed for different system prompts. Notably, we find that different 'personas' in the system prompt of LLaMA3 change the persuasive language in the text substantially, even when only instructed to paraphrase. These findings underscore the importance of investigating persuasive language in LLM generated text.
☆ Recite, Reconstruct, Recollect: Memorization in LMs as a Multifaceted Phenomenon
Memorization in language models is typically treated as a homogenous phenomenon, neglecting the specifics of the memorized data. We instead model memorization as the effect of a set of complex factors that describe each sample and relate it to the model and corpus. To build intuition around these factors, we break memorization down into a taxonomy: recitation of highly duplicated sequences, reconstruction of inherently predictable sequences, and recollection of sequences that are neither. We demonstrate the usefulness of our taxonomy by using it to construct a predictive model for memorization. By analyzing dependencies and inspecting the weights of the predictive model, we find that different factors influence the likelihood of memorization differently depending on the taxonomic category.
☆ Following Length Constraints in Instructions
Aligned instruction following models can better fulfill user requests than their unaligned counterparts. However, it has been shown that there is a length bias in evaluation of such models, and that training algorithms tend to exploit this bias by learning longer responses. In this work we show how to train models that can be controlled at inference time with instructions containing desired length constraints. Such models are superior in length instructed evaluations, outperforming standard instruction following models such as GPT4, Llama 3 and Mixtral.
comment: 13 pages
☆ Find Parent then Label Children: A Two-stage Taxonomy Completion Method with Pre-trained Language Model
Taxonomies, which organize domain concepts into hierarchical structures, are crucial for building knowledge systems and downstream applications. As domain knowledge evolves, taxonomies need to be continuously updated to include new concepts. Previous approaches have mainly focused on adding concepts to the leaf nodes of the existing hierarchical tree, which does not fully utilize the taxonomy's knowledge and is unable to update the original taxonomy structure (usually involving non-leaf nodes). In this paper, we propose a two-stage method called ATTEMPT for taxonomy completion. Our method inserts new concepts into the correct position by finding a parent node and labeling child nodes. Specifically, by combining local nodes with prompts to generate natural sentences, we take advantage of pre-trained language models for hypernym/hyponymy recognition. Experimental results on two public datasets (including six domains) show that ATTEMPT performs best on both taxonomy completion and extension tasks, surpassing existing methods.
LLM Targeted Underperformance Disproportionately Impacts Vulnerable Users
While state-of-the-art Large Language Models (LLMs) have shown impressive performance on many tasks, there has been extensive research on undesirable model behavior such as hallucinations and bias. In this work, we investigate how the quality of LLM responses changes in terms of information accuracy, truthfulness, and refusals depending on three user traits: English proficiency, education level, and country of origin. We present extensive experimentation on three state-of-the-art LLMs and two different datasets targeting truthfulness and factuality. Our findings suggest that undesirable behaviors in state-of-the-art LLMs occur disproportionately more for users with lower English proficiency, of lower education status, and originating from outside the US, rendering these models unreliable sources of information towards their most vulnerable users.
☆ ViANLI: Adversarial Natural Language Inference for Vietnamese
The development of Natural Language Processing (NLI) datasets and models has been inspired by innovations in annotation design. With the rapid development of machine learning models today, the performance of existing machine learning models has quickly reached state-of-the-art results on a variety of tasks related to natural language processing, including natural language inference tasks. By using a pre-trained model during the annotation process, it is possible to challenge current NLI models by having humans produce premise-hypothesis combinations that the machine model cannot correctly predict. To remain attractive and challenging in the research of natural language inference for Vietnamese, in this paper, we introduce the adversarial NLI dataset to the NLP research community with the name ViANLI. This data set contains more than 10K premise-hypothesis pairs and is built by a continuously adjusting process to obtain the most out of the patterns generated by the annotators. ViANLI dataset has brought many difficulties to many current SOTA models when the accuracy of the most powerful model on the test set only reached 48.4%. Additionally, the experimental results show that the models trained on our dataset have significantly improved the results on other Vietnamese NLI datasets.
☆ FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model KDD 2024
Large language models (LLMs) show amazing performance on many domain-specific tasks after fine-tuning with some appropriate data. However, many domain-specific data are privately distributed across multiple owners. Thus, this dilemma raises the interest in how to perform LLM fine-tuning in federated learning (FL). However, confronted with limited computation and communication capacities, FL clients struggle to fine-tune an LLM effectively. To this end, we introduce FedBiOT, a resource-efficient LLM fine-tuning approach to FL. Specifically, our method involves the server generating a compressed LLM and aligning its performance with the full model. Subsequently, the clients fine-tune a lightweight yet important part of the compressed model, referred to as an adapter. Notice that as the server has no access to the private data owned by the clients, the data used for alignment by the server has a different distribution from the one used for fine-tuning by clients. We formulate the problem into a bi-level optimization problem to minimize the negative effect of data discrepancy and derive the updating rules for the server and clients. We conduct extensive experiments on LLaMA-2, empirically showing that the adapter has exceptional performance when reintegrated into the global LLM. The results also indicate that the proposed FedBiOT significantly reduces resource consumption compared to existing benchmarks, all while achieving comparable performance levels.
comment: KDD 2024
☆ From Distributional to Overton Pluralism: Investigating Large Language Model Alignment
The alignment process changes several properties of a large language model's (LLM's) output distribution. We analyze two aspects of post-alignment distributional shift of LLM responses. First, we re-examine previously reported reductions in response diversity post-alignment. Our analysis suggests that an apparent drop in the diversity of responses is largely explained by quality control and information aggregation. Alignment suppresses irrelevant and unhelpful content while shifting the output distribution toward longer responses that cover information spanning several responses from the base LLM, essentially presenting diverse information in a single response. Finding little evidence that alignment suppresses useful information, it is natural to ask the opposite question: do aligned models surface information that cannot be recovered from base models? Our second investigation shows this is not the case and the behavior of aligned models is recoverable from base models without fine-tuning. A combination of in-context examples and lower-resolution semantic hints about response content can elicit responses from base LLMs that are as similar to alignment-tuned LLM responses as alignment-tuned LLM responses are to each other. Taken together, these results indicate that current alignment techniques capture but do not extend the useful subset of assistant-like base LLM behavior, providing further evidence for the Superficial Alignment Hypothesis. They also show that in-context alignment can go surprisingly far as a strategy for imitating aligned LLMs without fine-tuning. Our code and data is available at https://github.com/thomlake/investigating-alignment.
☆ VarBench: Robust Language Model Benchmarking Through Dynamic Variable Perturbation
As large language models achieve impressive scores on traditional benchmarks, an increasing number of researchers are becoming concerned about benchmark data leakage during pre-training, commonly known as the data contamination problem. To ensure fair evaluation, recent benchmarks release only the training and validation sets, keeping the test set labels closed-source. They require anyone wishing to evaluate his language model to submit the model's predictions for centralized processing and then publish the model's result on their leaderboard. However, this submission process is inefficient and prevents effective error analysis. To address this issue, we propose to variabilize benchmarks and evaluate language models dynamically. Specifically, we extract variables from each test case and define a value range for each variable. For each evaluation, we sample new values from these value ranges to create unique test cases, thus ensuring a fresh evaluation each time. We applied this variable perturbation method to four datasets: GSM8K, ARC, CommonsenseQA, and TruthfulQA, which cover mathematical generation and multiple-choice tasks. Our experimental results demonstrate that this approach provides a more accurate assessment of the true capabilities of language models, effectively mitigating the contamination problem.
☆ Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants. The broader integration of LLMs into society has sparked interest in whether they manifest psychological attributes, and whether these attributes are stable-inquiries that could deepen the understanding of their behaviors. Inspired by psychometrics, this paper presents a framework for investigating psychology in LLMs, including psychological dimension identification, assessment dataset curation, and assessment with results validation. Following this framework, we introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence. This benchmark includes thirteen datasets featuring diverse scenarios and item types. Our findings indicate that LLMs manifest a broad spectrum of psychological attributes. We also uncover discrepancies between LLMs' self-reported traits and their behaviors in real-world scenarios. This paper demonstrates a thorough psychometric assessment of LLMs, providing insights into reliable evaluation and potential applications in AI and social sciences.
☆ This Paper Had the Smartest Reviewers -- Flattery Detection Utilising an Audio-Textual Transformer-Based Approach
Flattery is an important aspect of human communication that facilitates social bonding, shapes perceptions, and influences behavior through strategic compliments and praise, leveraging the power of speech to build rapport effectively. Its automatic detection can thus enhance the naturalness of human-AI interactions. To meet this need, we present a novel audio textual dataset comprising 20 hours of speech and train machine learning models for automatic flattery detection. In particular, we employ pretrained AST, Wav2Vec2, and Whisper models for the speech modality, and Whisper TTS models combined with a RoBERTa text classifier for the textual modality. Subsequently, we build a multimodal classifier by combining text and audio representations. Evaluation on unseen test data demonstrates promising results, with Unweighted Average Recall scores reaching 82.46% in audio-only experiments, 85.97% in text-only experiments, and 87.16% using a multimodal approach.
comment: Interspeech 2024
LLM-ARC: Enhancing LLMs with an Automated Reasoning Critic
We introduce LLM-ARC, a neuro-symbolic framework designed to enhance the logical reasoning capabilities of Large Language Models (LLMs), by combining them with an Automated Reasoning Critic (ARC). LLM-ARC employs an Actor-Critic method where the LLM Actor generates declarative logic programs along with tests for semantic correctness, while the Automated Reasoning Critic evaluates the code, runs the tests and provides feedback on test failures for iterative refinement. Implemented using Answer Set Programming (ASP), LLM-ARC achieves a new state-of-the-art accuracy of 88.32% on the FOLIO benchmark which tests complex logical reasoning capabilities. Our experiments demonstrate significant improvements over LLM-only baselines, highlighting the importance of logic test generation and iterative self-refinement. We achieve our best result using a fully automated self-supervised training loop where the Actor is trained on end-to-end dialog traces with Critic feedback. We discuss potential enhancements and provide a detailed error analysis, showcasing the robustness and efficacy of LLM-ARC for complex natural language reasoning tasks.
☆ ELIZA Reinterpreted: The world's first chatbot was not intended as a chatbot at all
ELIZA, often considered the world's first chatbot, was written by Joseph Weizenbaum in the early 1960s. Weizenbaum did not intend to invent the chatbot, but rather to build a platform for research into human-machine conversation and the important cognitive processes of interpretation and misinterpretation. His purpose was obscured by ELIZA's fame, resulting in large part from the fortuitous timing of it's creation, and it's escape into the wild. In this paper I provide a rich historical context for ELIZA's creation, demonstrating that ELIZA arose from the intersection of some of the central threads in the technical history of AI. I also briefly discuss how ELIZA escaped into the world, and how its accidental escape, along with several coincidental turns of the programming language screws, led both to the misapprehension that ELIZA was intended as a chatbot, and to the loss of the original ELIZA to history for over 50 years.
comment: In review in IEEE Annals of the History of Computing (submitted Apr 2024)
☆ Variationist: Exploring Multifaceted Variation and Bias in Written Language Data ACL 2024
Exploring and understanding language data is a fundamental stage in all areas dealing with human language. It allows NLP practitioners to uncover quality concerns and harmful biases in data before training, and helps linguists and social scientists to gain insight into language use and human behavior. Yet, there is currently a lack of a unified, customizable tool to seamlessly inspect and visualize language variation and bias across multiple variables, language units, and diverse metrics that go beyond descriptive statistics. In this paper, we introduce Variationist, a highly-modular, extensible, and task-agnostic tool that fills this gap. Variationist handles at once a potentially unlimited combination of variable types and semantics across diversity and association metrics with regards to the language unit of choice, and orchestrates the creation of up to five-dimensional interactive charts for over 30 variable type-semantics combinations. Through our case studies on computational dialectology, human label variation, and text generation, we show how Variationist enables researchers from different disciplines to effortlessly answer specific research questions or unveil undesired associations in language data. A Python library, code, documentation, and tutorials are made publicly available to the research community.
comment: ACL 2024 (System Demonstrations)
☆ Banishing LLM Hallucinations Requires Rethinking Generalization
Despite their powerful chat, coding, and reasoning abilities, Large Language Models (LLMs) frequently hallucinate. Conventional wisdom suggests that hallucinations are a consequence of a balance between creativity and factuality, which can be mitigated, but not eliminated, by grounding the LLM in external knowledge sources. Through extensive systematic experiments, we show that these traditional approaches fail to explain why LLMs hallucinate in practice. Specifically, we show that LLMs augmented with a massive Mixture of Memory Experts (MoME) can easily memorize large datasets of random numbers. We corroborate these experimental findings with a theoretical construction showing that simple neural networks trained to predict the next token hallucinate when the training loss is above a threshold as it usually does in practice when training on internet scale data. We interpret our findings by comparing against traditional retrieval methods for mitigating hallucinations. We use our findings to design a first generation model for removing hallucinations -- Lamini-1 -- that stores facts in a massive mixture of millions of memory experts that are retrieved dynamically.
☆ Mitigate the Gap: Investigating Approaches for Improving Cross-Modal Alignment in CLIP
Contrastive Language--Image Pre-training (CLIP) has manifested remarkable improvements in zero-shot classification and cross-modal vision-language tasks. Yet, from a geometrical point of view, the CLIP embedding space has been found to have a pronounced modality gap. This gap renders the embedding space overly sparse and disconnected, with different modalities being densely distributed in distinct subregions of the hypersphere. In this work, we aim at answering two main questions: 1. Does sharing the parameter space between the multi-modal encoders reduce the modality gap? 2. Can the gap be mitigated by pushing apart the uni-modal embeddings via intra-modality separation? We design AlignCLIP, in order to answer these questions and show that answers to both questions are positive. Through extensive experiments, we show that AlignCLIP achieves noticeable enhancements in the cross-modal alignment of the embeddings, and thereby, reduces the modality gap, while maintaining the performance across several downstream evaluations, such as zero-shot image classification, zero-shot multi-modal retrieval and zero-shot semantic text similarity.
☆ Knowledge Distillation in Automated Annotation: Supervised Text Classification with LLM-Generated Training Labels
Computational social science (CSS) practitioners often rely on human-labeled data to fine-tune supervised text classifiers. We assess the potential for researchers to augment or replace human-generated training data with surrogate training labels from generative large language models (LLMs). We introduce a recommended workflow and test this LLM application by replicating 14 classification tasks and measuring performance. We employ a novel corpus of English-language text classification data sets from recent CSS articles in high-impact journals. Because these data sets are stored in password-protected archives, our analyses are less prone to issues of contamination. For each task, we compare supervised classifiers fine-tuned using GPT-4 labels against classifiers fine-tuned with human annotations and against labels from GPT-4 and Mistral-7B with few-shot in-context learning. Our findings indicate that supervised classification models fine-tuned on LLM-generated labels perform comparably to models fine-tuned with labels from human annotators. Fine-tuning models using LLM-generated labels can be a fast, efficient and cost-effective method of building supervised text classifiers.
comment: In Proceedings of the Sixth Workshop on Natural Language Processing and Computational Social Science
☆ CoSafe: Evaluating Large Language Model Safety in Multi-Turn Dialogue Coreference EMNLP 2024
As large language models (LLMs) constantly evolve, ensuring their safety remains a critical research problem. Previous red-teaming approaches for LLM safety have primarily focused on single prompt attacks or goal hijacking. To the best of our knowledge, we are the first to study LLM safety in multi-turn dialogue coreference. We created a dataset of 1,400 questions across 14 categories, each featuring multi-turn coreference safety attacks. We then conducted detailed evaluations on five widely used open-source LLMs. The results indicated that under multi-turn coreference safety attacks, the highest attack success rate was 56% with the LLaMA2-Chat-7b model, while the lowest was 13.9% with the Mistral-7B-Instruct model. These findings highlight the safety vulnerabilities in LLMs during dialogue coreference interactions.
comment: Submitted to EMNLP 2024
☆ Self-assessment, Exhibition, and Recognition: a Review of Personality in Large Language Models
As large language models (LLMs) appear to behave increasingly human-like in text-based interactions, more and more researchers become interested in investigating personality in LLMs. However, the diversity of psychological personality research and the rapid development of LLMs have led to a broad yet fragmented landscape of studies in this interdisciplinary field. Extensive studies across different research focuses, different personality psychometrics, and different LLMs make it challenging to have a holistic overview and further pose difficulties in applying findings to real-world applications. In this paper, we present a comprehensive review by categorizing current studies into three research problems: self-assessment, exhibition, and recognition, based on the intrinsic characteristics and external manifestations of personality in LLMs. For each problem, we provide a thorough analysis and conduct in-depth comparisons of their corresponding solutions. Besides, we summarize research findings and open challenges from current studies and further discuss their underlying causes. We also collect extensive publicly available resources to facilitate interested researchers and developers. Lastly, we discuss the potential future research directions and application scenarios. Our paper is the first comprehensive survey of up-to-date literature on personality in LLMs. By presenting a clear taxonomy, in-depth analysis, promising future directions, and extensive resource collections, we aim to provide a better understanding and facilitate further advancements in this emerging field.
☆ Towards Building an End-to-End Multilingual Automatic Lyrics Transcription Model
Multilingual automatic lyrics transcription (ALT) is a challenging task due to the limited availability of labelled data and the challenges introduced by singing, compared to multilingual automatic speech recognition. Although some multilingual singing datasets have been released recently, English continues to dominate these collections. Multilingual ALT remains underexplored due to the scale of data and annotation quality. In this paper, we aim to create a multilingual ALT system with available datasets. Inspired by architectures that have been proven effective for English ALT, we adapt these techniques to the multilingual scenario by expanding the target vocabulary set. We then evaluate the performance of the multilingual model in comparison to its monolingual counterparts. Additionally, we explore various conditioning methods to incorporate language information into the model. We apply analysis by language and combine it with the language classification performance. Our findings reveal that the multilingual model performs consistently better than the monolingual models trained on the language subsets. Furthermore, we demonstrate that incorporating language information significantly enhances performance.
comment: Accepted at EUSIPCO 2024
☆ "Seeing the Big through the Small": Can LLMs Approximate Human Judgment Distributions on NLI from a Few Explanations?
Human label variation (HLV) is a valuable source of information that arises when multiple human annotators provide different labels for valid reasons. In Natural Language Inference (NLI) earlier approaches to capturing HLV involve either collecting annotations from many crowd workers to represent human judgment distribution (HJD) or use expert linguists to provide detailed explanations for their chosen labels. While the former method provides denser HJD information, obtaining it is resource-intensive. In contrast, the latter offers richer textual information but it is challenging to scale up to many human judges. Besides, large language models (LLMs) are increasingly used as evaluators (``LLM judges'') but with mixed results, and few works aim to study HJDs. This study proposes to exploit LLMs to approximate HJDs using a small number of expert labels and explanations. Our experiments show that a few explanations significantly improve LLMs' ability to approximate HJDs with and without explicit labels, thereby providing a solution to scale up annotations for HJD. However, fine-tuning smaller soft-label aware models with the LLM-generated model judgment distributions (MJDs) presents partially inconsistent results: while similar in distance, their resulting fine-tuned models and visualized distributions differ substantially. We show the importance of complementing instance-level distance measures with a global-level shape metric and visualization to more effectively evaluate MJDs against human judgment distributions.
comment: 22 pages, 9 figures
☆ LongIns: A Challenging Long-context Instruction-based Exam for LLMs
The long-context capabilities of large language models (LLMs) have been a hot topic in recent years. To evaluate the performance of LLMs in different scenarios, various assessment benchmarks have emerged. However, as most of these benchmarks focus on identifying key information to answer questions, which mainly requires the retrieval ability of LLMs, these benchmarks can partially represent the reasoning performance of LLMs from large amounts of information. Meanwhile, although LLMs often claim to have context windows of 32k, 128k, 200k, or even longer, these benchmarks fail to reveal the actual supported length of these LLMs. To address these issues, we propose the LongIns benchmark dataset, a challenging long-context instruction-based exam for LLMs, which is built based on the existing instruction datasets. Specifically, in our LongIns, we introduce three evaluation settings: Global Instruction & Single Task (GIST), Local Instruction & Single Task (LIST), and Local Instruction & Multiple Tasks (LIMT). Based on LongIns, we perform comprehensive evaluations on existing LLMs and have the following important findings: (1). The top-performing GPT-4 with 128k context length performs poorly on the evaluation context window of 16k in our LongIns. (2). For the multi-hop reasoning ability of many existing LLMs, significant efforts are still needed under short context windows (less than 4k).
☆ Beyond Text-to-SQL for IoT Defense: A Comprehensive Framework for Querying and Classifying IoT Threats
Recognizing the promise of natural language interfaces to databases, prior studies have emphasized the development of text-to-SQL systems. While substantial progress has been made in this field, existing research has concentrated on generating SQL statements from text queries. The broader challenge, however, lies in inferring new information about the returned data. Our research makes two major contributions to address this gap. First, we introduce a novel Internet-of-Things (IoT) text-to-SQL dataset comprising 10,985 text-SQL pairs and 239,398 rows of network traffic activity. The dataset contains additional query types limited in prior text-to-SQL datasets, notably temporal-related queries. Our dataset is sourced from a smart building's IoT ecosystem exploring sensor read and network traffic data. Second, our dataset allows two-stage processing, where the returned data (network traffic) from a generated SQL can be categorized as malicious or not. Our results show that joint training to query and infer information about the data can improve overall text-to-SQL performance, nearly matching substantially larger models. We also show that current large language models (e.g., GPT3.5) struggle to infer new information about returned data, thus our dataset provides a novel test bed for integrating complex domain-specific reasoning into LLMs.
☆ FrenchToxicityPrompts: a Large Benchmark for Evaluating and Mitigating Toxicity in French Texts
Large language models (LLMs) are increasingly popular but are also prone to generating bias, toxic or harmful language, which can have detrimental effects on individuals and communities. Although most efforts is put to assess and mitigate toxicity in generated content, it is primarily concentrated on English, while it's essential to consider other languages as well. For addressing this issue, we create and release FrenchToxicityPrompts, a dataset of 50K naturally occurring French prompts and their continuations, annotated with toxicity scores from a widely used toxicity classifier. We evaluate 14 different models from four prevalent open-sourced families of LLMs against our dataset to assess their potential toxicity across various dimensions. We hope that our contribution will foster future research on toxicity detection and mitigation beyond Englis
comment: TRAC-2024, Fourth Workshop on Threat, Aggression and Cyberbullying. 20 May 2024
☆ Multi-property Steering of Large Language Models with Dynamic Activation Composition
Activation steering methods were shown to be effective in conditioning language model generation by additively intervening over models' intermediate representations. However, the evaluation of these techniques has so far been limited to single conditioning properties and synthetic settings. In this work, we conduct a comprehensive evaluation of various activation steering strategies, highlighting the property-dependent nature of optimal parameters to ensure a robust effect throughout generation. To address this issue, we propose Dynamic Activation Composition, an information-theoretic approach to modulate the steering intensity of one or more properties throughout generation. Our experiments on multi-property steering show that our method successfully maintains high conditioning while minimizing the impact of conditioning on generation fluency.
☆ The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale
The performance of a large language model (LLM) depends heavily on the quality and size of its pretraining dataset. However, the pretraining datasets for state-of-the-art open LLMs like Llama 3 and Mixtral are not publicly available and very little is known about how they were created. In this work, we introduce FineWeb, a 15-trillion token dataset derived from 96 Common Crawl snapshots that produces better-performing LLMs than other open pretraining datasets. To advance the understanding of how best to curate high-quality pretraining datasets, we carefully document and ablate all of the design choices used in FineWeb, including in-depth investigations of deduplication and filtering strategies. In addition, we introduce FineWeb-Edu, a 1.3-trillion token collection of educational text filtered from FineWeb. LLMs pretrained on FineWeb-Edu exhibit dramatically better performance on knowledge- and reasoning-intensive benchmarks like MMLU and ARC. Along with our datasets, we publicly release our data curation codebase and all of the models trained during our ablation experiments.
☆ Retrieval-Augmented Code Generation for Situated Action Generation: A Case Study on Minecraft
In the Minecraft Collaborative Building Task, two players collaborate: an Architect (A) provides instructions to a Builder (B) to assemble a specified structure using 3D blocks. In this work, we investigate the use of large language models (LLMs) to predict the sequence of actions taken by the Builder. Leveraging LLMs' in-context learning abilities, we use few-shot prompting techniques, that significantly improve performance over baseline methods. Additionally, we present a detailed analysis of the gaps in performance for future work
comment: under review
☆ CDQuant: Accurate Post-training Weight Quantization of Large Pre-trained Models using Greedy Coordinate Descent
Large language models (LLMs) have recently demonstrated remarkable performance across diverse language tasks. But their deployment is often constrained by their substantial computational and storage requirements. Quantization has emerged as a key technique for addressing this challenge, enabling the compression of large models with minimal impact on performance. The recent GPTQ algorithm, a post-training quantization (PTQ) method, has proven highly effective for compressing LLMs, sparking a wave of research that leverages GPTQ as a core component. Recognizing the pivotal role of GPTQ in the PTQ landscape, we introduce CDQuant, a simple and scalable alternative to GPTQ with improved performance. CDQuant uses coordinate descent to minimize the layer-wise reconstruction loss to achieve high-quality quantized weights. Our algorithm is easy to implement and scales efficiently to models with hundreds of billions of parameters. Through extensive evaluation on the PaLM2 model family, we demonstrate that CDQuant consistently outperforms GPTQ across diverse model sizes and quantization levels. In particular, for INT2 quantization of PaLM2-Otter, CDQuant achieves a 10% reduction in perplexity compared to GPTQ.
☆ Disce aut Deficere: Evaluating LLMs Proficiency on the INVALSI Italian Benchmark
Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to generate and manipulate human language, highlighting their potential across various applications. Evaluating LLMs in languages other than English is crucial for ensuring their linguistic versatility, cultural relevance, and applicability in diverse global contexts, thus broadening their usability and effectiveness. We tackle this challenge by introducing a structured benchmark using the INVALSI tests, a set of well-established assessments designed to measure educational competencies across Italy. Our study makes three primary contributions: Firstly, we adapt the INVALSI benchmark for automated LLM evaluation, which involves rigorous adaptation of the test format to suit automated processing while retaining the essence of the original tests. Secondly, we provide a detailed assessment of current LLMs, offering a crucial reference point for the academic community. Finally, we visually compare the performance of these models against human results. Additionally, researchers are invited to submit their models for ongoing evaluation, ensuring the benchmark remains a current and valuable resource.
☆ Retrieval-style In-Context Learning for Few-shot Hierarchical Text Classification
Hierarchical text classification (HTC) is an important task with broad applications, while few-shot HTC has gained increasing interest recently. While in-context learning (ICL) with large language models (LLMs) has achieved significant success in few-shot learning, it is not as effective for HTC because of the expansive hierarchical label sets and extremely-ambiguous labels. In this work, we introduce the first ICL-based framework with LLM for few-shot HTC. We exploit a retrieval database to identify relevant demonstrations, and an iterative policy to manage multi-layer hierarchical labels. Particularly, we equip the retrieval database with HTC label-aware representations for the input texts, which is achieved by continual training on a pretrained language model with masked language modeling (MLM), layer-wise classification (CLS, specifically for HTC), and a novel divergent contrastive learning (DCL, mainly for adjacent semantically-similar labels) objective. Experimental results on three benchmark datasets demonstrate superior performance of our method, and we can achieve state-of-the-art results in few-shot HTC.
comment: 17 pages
☆ Can Large Language Models Understand DL-Lite Ontologies? An Empirical Study
Large language models (LLMs) have shown significant achievements in solving a wide range of tasks. Recently, LLMs' capability to store, retrieve and infer with symbolic knowledge has drawn a great deal of attention, showing their potential to understand structured information. However, it is not yet known whether LLMs can understand Description Logic (DL) ontologies. In this work, we empirically analyze the LLMs' capability of understanding DL-Lite ontologies covering 6 representative tasks from syntactic and semantic aspects. With extensive experiments, we demonstrate both the effectiveness and limitations of LLMs in understanding DL-Lite ontologies. We find that LLMs can understand formal syntax and model-theoretic semantics of concepts and roles. However, LLMs struggle with understanding TBox NI transitivity and handling ontologies with large ABoxes. We hope that our experiments and analyses provide more insights into LLMs and inspire to build more faithful knowledge engineering solutions.
☆ LumberChunker: Long-Form Narrative Document Segmentation
Modern NLP tasks increasingly rely on dense retrieval methods to access up-to-date and relevant contextual information. We are motivated by the premise that retrieval benefits from segments that can vary in size such that a content's semantic independence is better captured. We propose LumberChunker, a method leveraging an LLM to dynamically segment documents, which iteratively prompts the LLM to identify the point within a group of sequential passages where the content begins to shift. To evaluate our method, we introduce GutenQA, a benchmark with 3000 "needle in a haystack" type of question-answer pairs derived from 100 public domain narrative books available on Project Gutenberg. Our experiments show that LumberChunker not only outperforms the most competitive baseline by 7.37% in retrieval performance (DCG@20) but also that, when integrated into a RAG pipeline, LumberChunker proves to be more effective than other chunking methods and competitive baselines, such as the Gemini 1.5M Pro. Our Code and Data are available at https://github.com/joaodsmarques/LumberChunker
☆ Entropy-Based Decoding for Retrieval-Augmented Large Language Models
Augmenting Large Language Models (LLMs) with retrieved external knowledge has proven effective for improving the factual accuracy of generated responses. Despite their success, retrieval-augmented LLMs still face the distractibility issue, where the generated responses are negatively influenced by noise from both external and internal knowledge sources. In this paper, we introduce a novel, training-free decoding method guided by entropy considerations to mitigate this issue. Our approach utilizes entropy-based document-parallel ensemble decoding to prioritize low-entropy distributions from retrieved documents, thereby enhancing the extraction of relevant information of context. Additionally, it incorporates a contrastive decoding mechanism that contrasts the obtained low-entropy ensemble distribution with the high-entropy distribution derived from the model's internal knowledge across layers, which ensures a greater emphasis on reliable external information. Extensive experiments on open-domain question answering datasets demonstrate the superiority of our method.
☆ Benchmarking Mental State Representations in Language Models ICML 2024
While numerous works have assessed the generative performance of language models (LMs) on tasks requiring Theory of Mind reasoning, research into the models' internal representation of mental states remains limited. Recent work has used probing to demonstrate that LMs can represent beliefs of themselves and others. However, these claims are accompanied by limited evaluation, making it difficult to assess how mental state representations are affected by model design and training choices. We report an extensive benchmark with various LM types with different model sizes, fine-tuning approaches, and prompt designs to study the robustness of mental state representations and memorisation issues within the probes. Our results show that the quality of models' internal representations of the beliefs of others increases with model size and, more crucially, with fine-tuning. We are the first to study how prompt variations impact probing performance on theory of mind tasks. We demonstrate that models' representations are sensitive to prompt variations, even when such variations should be beneficial. Finally, we complement previous activation editing experiments on Theory of Mind tasks and show that it is possible to improve models' reasoning performance by steering their activations without the need to train any probe.
comment: ICML 2024 Workshop on Mechanistic Interpretability
☆ MedCare: Advancing Medical LLMs through Decoupling Clinical Alignment and Knowledge Aggregation
Large language models (LLMs) have shown substantial progress in natural language understanding and generation, proving valuable especially in the medical field. Despite advancements, challenges persist due to the complexity and diversity inherent in medical tasks, which can be categorized as knowledge-intensive tasks and alignment-required tasks. Previous approaches either ignore the latter task or focus on a minority of tasks and hence lose generalization. To address these drawbacks, we propose a progressive fine-tuning pipeline. This pipeline employs a Knowledge Aggregator and a Noise aggregator to encode diverse knowledge in the first stage and filter out detrimental information. In the second stage, we drop the Noise Aggregator to avoid the interference of suboptimal representation and leverage an additional alignment module optimized towards an orthogonal direction to the knowledge space to mitigate knowledge forgetting. Based on this two-stage paradigm, we proposed a Medical LLM through decoupling Clinical Alignment and Knowledge Aggregation (MedCare), which is designed to achieve state-of-the-art (SOTA) performance on over 20 medical tasks, as well as SOTA results on specific medical alignment tasks. Various model sizes of MedCare (1.8B, 7B, 14B) all demonstrate significant improvements over existing models with similar model sizes.
comment: 19 pages, 6 figures
Transformer-based Named Entity Recognition with Combined Data Representation
This study examines transformer-based models and their effectiveness in named entity recognition tasks. The study investigates data representation strategies, including single, merged, and context, which respectively use one sentence, multiple sentences, and sentences joined with attention to context per vector. Analysis shows that training models with a single strategy may lead to poor performance on different data representations. To address this limitation, the study proposes a combined training procedure that utilizes all three strategies to improve model stability and adaptability. The results of this approach are presented and discussed for four languages (English, Polish, Czech, and German) across various datasets, demonstrating the effectiveness of the combined strategy.
comment: 14 pages, 6 figures
☆ Enhancing Tool Retrieval with Iterative Feedback from Large Language Models
Tool learning aims to enhance and expand large language models' (LLMs) capabilities with external tools, which has gained significant attention recently. Current methods have shown that LLMs can effectively handle a certain amount of tools through in-context learning or fine-tuning. However, in real-world scenarios, the number of tools is typically extensive and irregularly updated, emphasizing the necessity for a dedicated tool retrieval component. Tool retrieval is nontrivial due to the following challenges: 1) complex user instructions and tool descriptions; 2) misalignment between tool retrieval and tool usage models. To address the above issues, we propose to enhance tool retrieval with iterative feedback from the large language model. Specifically, we prompt the tool usage model, i.e., the LLM, to provide feedback for the tool retriever model in multi-round, which could progressively improve the tool retriever's understanding of instructions and tools and reduce the gap between the two standalone components. We build a unified and comprehensive benchmark to evaluate tool retrieval models. The extensive experiments indicate that our proposed approach achieves advanced performance in both in-domain evaluation and out-of-domain evaluation.
☆ Improving Grammatical Error Correction via Contextual Data Augmentation ACL 2024
Nowadays, data augmentation through synthetic data has been widely used in the field of Grammatical Error Correction (GEC) to alleviate the problem of data scarcity. However, these synthetic data are mainly used in the pre-training phase rather than the data-limited fine-tuning phase due to inconsistent error distribution and noisy labels. In this paper, we propose a synthetic data construction method based on contextual augmentation, which can ensure an efficient augmentation of the original data with a more consistent error distribution. Specifically, we combine rule-based substitution with model-based generation, using the generative model to generate a richer context for the extracted error patterns. Besides, we also propose a relabeling-based data cleaning method to mitigate the effects of noisy labels in synthetic data. Experiments on CoNLL14 and BEA19-Test show that our proposed augmentation method consistently and substantially outperforms strong baselines and achieves the state-of-the-art level with only a few synthetic data.
comment: Accepted as Findings of ACL 2024
☆ Learning to Ask Informative Questions: Enhancing LLMs with Preference Optimization and Expected Information Gain
Questions are essential tools for acquiring the necessary information to complete information-seeking tasks. However, large language models (LLMs), especially open-source models, often perform poorly in generating informative questions, as measured by expected information gain (EIG). In this paper, we propose a method to enhance the informativeness of LLM-generated questions in 20-question game dialogues. We sample multiple questions from the same model (LLAMA 2-CHAT 7B) for each game and create pairs of low-EIG and high-EIG questions to apply a Direct Preference Optimization (DPO) algorithm. Our results show that this method produces more effective questions (in terms of EIG), even in domains different from those used to train the DPO model.
☆ Towards Probing Speech-Specific Risks in Large Multimodal Models: A Taxonomy, Benchmark, and Insights
Large Multimodal Models (LMMs) have achieved great success recently, demonstrating a strong capability to understand multimodal information and to interact with human users. Despite the progress made, the challenge of detecting high-risk interactions in multimodal settings, and in particular in speech modality, remains largely unexplored. Conventional research on risk for speech modality primarily emphasises the content (e.g., what is captured as transcription). However, in speech-based interactions, paralinguistic cues in audio can significantly alter the intended meaning behind utterances. In this work, we propose a speech-specific risk taxonomy, covering 8 risk categories under hostility (malicious sarcasm and threats), malicious imitation (age, gender, ethnicity), and stereotypical biases (age, gender, ethnicity). Based on the taxonomy, we create a small-scale dataset for evaluating current LMMs capability in detecting these categories of risk. We observe even the latest models remain ineffective to detect various paralinguistic-specific risks in speech (e.g., Gemini 1.5 Pro is performing only slightly above random baseline). Warning: this paper contains biased and offensive examples.
☆ Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA
Long-context modeling capabilities have garnered widespread attention, leading to the emergence of Large Language Models (LLMs) with ultra-context windows. Meanwhile, benchmarks for evaluating long-context LLMs are gradually catching up. However, existing benchmarks employ irrelevant noise texts to artificially extend the length of test cases, diverging from the real-world scenarios of long-context applications. To bridge this gap, we propose a novel long-context benchmark, Loong, aligning with realistic scenarios through extended multi-document question answering (QA). Unlike typical document QA, in Loong's test cases, each document is relevant to the final answer, ignoring any document will lead to the failure of the answer. Furthermore, Loong introduces four types of tasks with a range of context lengths: Spotlight Locating, Comparison, Clustering, and Chain of Reasoning, to facilitate a more realistic and comprehensive evaluation of long-context understanding. Extensive experiments indicate that existing long-context language models still exhibit considerable potential for enhancement. Retrieval augmented generation (RAG) achieves poor performance, demonstrating that Loong can reliably assess the model's long-context modeling capabilities.
comment: We release our code and data publicly at https://github.com/MozerWang/Loong
☆ Variable Layer-Wise Quantization: A Simple and Effective Approach to Quantize LLMs EMNLP
We present a simple variable quantization approach that quantizes different layers of a large language model (LLM) at different bit levels. Specifically, we quantize the most important layers to higher bit precision and less important layers to lower bits to achieve floating point quantization levels. We propose two effective strategies to measure the importance of layers within LLMs: the first measures the importance of a layer based on how different its output embeddings are from the input embeddings (the higher the better); the second estimates the importance of a layer using the number of layer weights that are much larger than average (the smaller the better). We show that quantizing different layers at varying bits according to our importance scores results in minimal performance drop with a far more compressed model size. Finally, we present several practical key takeaways from our variable layer-wise quantization experiments: (a) LLM performance under variable quantization remains close to the original model until 25-50% of layers are moved in lower quantization using our proposed ordering but only until 5-10% if moved using no specific ordering; (b) Quantizing LLMs to lower bits performs substantially better than pruning unless extreme quantization (2-bit) is used; and (c) Layer-wise quantization to lower bits works better in the case of larger LLMs with more layers compared to smaller LLMs with fewer layers. The code used to run the experiments is available at: https://github.com/RazvanDu/LayerwiseQuant.
comment: submitted to EMNLP, 15 pages, 10 figures, 4 tables
☆ Make Some Noise: Unlocking Language Model Parallel Inference Capability through Noisy Training
Existing speculative decoding methods typically require additional model structure and training processes to assist the model for draft token generation. This makes the migration of acceleration methods to the new model more costly and more demanding on device memory. To address this problem, we propose the Make Some Noise (MSN) training framework as a replacement for the supervised fine-tuning stage of the large language model. The training method simply introduces some noise at the input for the model to learn the denoising task. It significantly enhances the parallel decoding capability of the model without affecting the original task capability. In addition, we propose a tree-based retrieval-augmented Jacobi (TR-Jacobi) decoding strategy to further improve the inference speed of MSN models. Experiments in both the general and code domains have shown that MSN can improve inference speed by 2.3-2.7x times without compromising model performance. The MSN model also achieves comparable acceleration ratios to the SOTA model with additional model structure on Spec-Bench.
comment: 11 pages, 6 figures
☆ Native Design Bias: Studying the Impact of English Nativeness on Language Model Performance
Large Language Models (LLMs) excel at providing information acquired during pretraining on large-scale corpora and following instructions through user prompts. This study investigates whether the quality of LLM responses varies depending on the demographic profile of users. Considering English as the global lingua franca, along with the diversity of its dialects among speakers of different native languages, we explore whether non-native English speakers receive lower-quality or even factually incorrect responses from LLMs more frequently. Our results show that performance discrepancies occur when LLMs are prompted by native versus non-native English speakers and persist when comparing native speakers from Western countries with others. Additionally, we find a strong anchoring effect when the model recognizes or is made aware of the user's nativeness, which further degrades the response quality when interacting with non-native speakers. Our analysis is based on a newly collected dataset with over 12,000 unique annotations from 124 annotators, including information on their native language and English proficiency.
☆ A Text is Worth Several Tokens: Text Embedding from LLMs Secretly Aligns Well with The Key Tokens
Text embeddings from large language models (LLMs) have achieved excellent results in tasks such as information retrieval, semantic textual similarity, etc. In this work, we show an interesting finding: when feeding a text into the embedding LLMs, the obtained text embedding will be able to be aligned with the key tokens in the input text. We first fully analyze this phenomenon on eight embedding LLMs and show that this phenomenon is universal and is not affected by model architecture, training strategy, and embedding method. With a deeper analysis, we then find that the main change in embedding space between the embedding LLMs and their original generative LLMs is in the first principal component. By adjusting the first principal component, we can align text embedding with the key tokens. Finally, we give several examples to demonstrate the vast application potential of this finding: (1) we propose a simple and practical sparse retrieval method based on the aligned tokens, which can achieve 80\% of the dense retrieval effect of the same model while reducing the computation significantly; (2) we show that our findings provide a fresh perspective to help understand fuzzy concepts (e.g., semantic relatedness vs. semantic similarity) and emerging technologies (e.g., instruction-following embedding) in this field.
comment: Work in Progress
☆ A Three-Pronged Approach to Cross-Lingual Adaptation with Multilingual LLMs
Low-resource languages, by its very definition, tend to be under represented in the pre-training corpora of Large Language Models. In this work, we investigate three low-resource cross-lingual approaches that enable an LLM adapt to tasks in previously unseen languages. Llama-2 is an LLM where Indic languages, among many other language families, contribute to less than $0.005\%$ of the total $2$ trillion token pre-training corpora. In this work, we experiment with the English-dominated Llama-2 for cross-lingual transfer to three Indic languages, Bengali, Hindi, and Tamil as target languages. We study three approaches for cross-lingual transfer, under ICL and fine-tuning. One, we find that adding additional supervisory signals via a dominant language in the LLM, leads to improvements, both under in-context learning and fine-tuning. Two, adapting the target languages to word reordering may be beneficial under ICL, but its impact diminishes with fine tuning. Finally, continued pre-training in one low-resource language can improve model performance for other related low-resource languages.
☆ An Empirical Study on the Characteristics of Bias upon Context Length Variation for Bangla ACL
Pretrained language models inherently exhibit various social biases, prompting a crucial examination of their social impact across various linguistic contexts due to their widespread usage. Previous studies have provided numerous methods for intrinsic bias measurements, predominantly focused on high-resource languages. In this work, we aim to extend these investigations to Bangla, a low-resource language. Specifically, in this study, we (1) create a dataset for intrinsic gender bias measurement in Bangla, (2) discuss necessary adaptations to apply existing bias measurement methods for Bangla, and (3) examine the impact of context length variation on bias measurement, a factor that has been overlooked in previous studies. Through our experiments, we demonstrate a clear dependency of bias metrics on context length, highlighting the need for nuanced considerations in Bangla bias analysis. We consider our work as a stepping stone for bias measurement in the Bangla Language and make all of our resources publicly available to support future research.
comment: Accepted in Findings of ACL, 2024
☆ Leveraging Synthetic Audio Data for End-to-End Low-Resource Speech Translation
This paper describes our system submission to the International Conference on Spoken Language Translation (IWSLT 2024) for Irish-to-English speech translation. We built end-to-end systems based on Whisper, and employed a number of data augmentation techniques, such as speech back-translation and noise augmentation. We investigate the effect of using synthetic audio data and discuss several methods for enriching signal diversity.
comment: IWSLT 2024
☆ Dual-Space Knowledge Distillation for Large Language Models
Knowledge distillation (KD) is known as a promising solution to compress large language models (LLMs) via transferring their knowledge to smaller models. During this process, white-box KD methods usually minimize the distance between the output distributions of the two models so that more knowledge can be transferred. However, in the current white-box KD framework, the output distributions are from the respective output spaces of the two models, using their own prediction heads. We argue that the space discrepancy will lead to low similarity between the teacher model and the student model on both representation and distribution levels. Furthermore, this discrepancy also hinders the KD process between models with different vocabularies, which is common for current LLMs. To address these issues, we propose a dual-space knowledge distillation (DSKD) framework that unifies the output spaces of the two models for KD. On the basis of DSKD, we further develop a cross-model attention mechanism, which can automatically align the representations of the two models with different vocabularies. Thus, our framework is not only compatible with various distance functions for KD (e.g., KL divergence) like the current framework, but also supports KD between any two LLMs regardless of their vocabularies. Experiments on task-agnostic instruction-following benchmarks show that DSKD significantly outperforms the current white-box KD framework with various distance functions, and also surpasses existing KD methods for LLMs with different vocabularies.
comment: 17 pages, 11 figures, code available at: https://github.com/songmzhang/DSKD
☆ Delving into the Utilisation of ChatGPT in Scientific Publications in Astronomy SP
Rapid progress in the capabilities of machine learning approaches in natural language processing has culminated in the rise of large language models over the last two years. Recent works have shown unprecedented adoption of these for academic writing, especially in some fields, but their pervasiveness in astronomy has not been studied sufficiently. To remedy this, we extract words that ChatGPT uses more often than humans when generating academic text and search a total of 1 million articles for them. This way, we assess the frequency of word occurrence in published works in astronomy tracked by the NASA Astrophysics Data System since 2000. We then perform a statistical analysis of the occurrences. We identify a list of words favoured by ChatGPT and find a statistically significant increase for these words against a control group in 2024, which matches the trend in other disciplines. These results suggest a widespread adoption of these models in the writing of astronomy papers. We encourage organisations, publishers, and researchers to work together to identify ethical and pragmatic guidelines to maximise the benefits of these systems while maintaining scientific rigour.
comment: Submitted to SPAICE
☆ Not All Preference Pairs Are Created Equal: A Recipe for Annotation-Efficient Iterative Preference Learning
Iterative preference learning, though yielding superior performances, requires online annotated preference labels. In this work, we study strategies to select worth-annotating response pairs for cost-efficient annotation while achieving competitive or even better performances compared with the random selection baseline for iterative preference learning. Built on assumptions regarding uncertainty and distribution shifts, we propose a comparative view to rank the implicit reward margins as predicted by DPO to select the response pairs that yield more benefits. Through extensive experiments, we show that annotating those response pairs with small margins is generally better than large or random, under both single- and multi-iteration scenarios. Besides, our empirical results suggest allocating more annotation budgets in the earlier iterations rather than later across multiple iterations.
☆ Retrieval Augmented Instruction Tuning for Open NER with Large Language Models
The strong capability of large language models (LLMs) has been applied to information extraction (IE) through either retrieval augmented prompting or instruction tuning (IT). However, the best way to incorporate information with LLMs for IE remains an open question. In this paper, we explore Retrieval Augmented Instruction Tuning (RA-IT) for IE, focusing on the task of open named entity recognition (NER). Specifically, for each training sample, we retrieve semantically similar examples from the training dataset as the context and prepend them to the input of the original instruction. To evaluate our RA-IT approach more thoroughly, we construct a Chinese IT dataset for open NER and evaluate RA-IT in both English and Chinese scenarios. Experimental results verify the effectiveness of RA-IT across various data sizes and in both English and Chinese scenarios. We also conduct thorough studies to explore the impacts of various retrieval strategies in the proposed RA-IT framework. Code and data are available at: https://github.com/Emma1066/Retrieval-Augmented-IT-OpenNER
☆ Leveraging LLMs for Dialogue Quality Measurement
In task-oriented conversational AI evaluation, unsupervised methods poorly correlate with human judgments, and supervised approaches lack generalization. Recent advances in large language models (LLMs) show robust zeroshot and few-shot capabilities across NLP tasks. This paper explores using LLMs for automated dialogue quality evaluation, experimenting with various configurations on public and proprietary datasets. Manipulating factors such as model size, in-context examples, and selection techniques, we examine "chain-of-thought" (CoT) reasoning and label extraction procedures. Our results show that (1) larger models yield more accurate dialogue labels; (2) algorithmic selection of in-context examples outperforms random selection; (3) CoT reasoning where an LLM is asked to provide justifications before outputting final labels improves performance; and (4) fine-tuned LLMs outperform out-of-the-box ones. Our results indicate that LLMs that are suitably fine-tuned and have sufficient reasoning capabilities can be leveraged for automated dialogue evaluation.
☆ CausalScore: An Automatic Reference-Free Metric for Assessing Response Relevance in Open-Domain Dialogue Systems
Automatically evaluating the quality of responses in open-domain dialogue systems is a challenging but crucial task. Current evaluation metrics often fail to align with human judgments, especially when assessing responses that are grammatically correct. To address this issue, we propose a novel metric, called CausalScore, which assesses the relevance of responses by measuring the causal strength between dialogue histories and responses. The causal strength is estimated by utilizing both unconditional dependence and conditional dependencies from the dialogue history to responses. We compare our metric with the existing competitive metrics in terms of their alignment with human judgements. Our experimental results demonstrate that CausalScore significantly surpasses existing state-of-the-art metrics by aligning better with human judgements. Additionally, we collect a new dialogue dataset CGDIALOG+ with human-annotated causal relations and a set of pairwise human judgements to facilitate the development of future automatic metrics.
☆ Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models
Large language models (LLMs) have demonstrated impressive reasoning capabilities, particularly in textual mathematical problem-solving. However, existing open-source image instruction fine-tuning datasets, containing limited question-answer pairs per image, do not fully exploit visual information to enhance the multimodal mathematical reasoning capabilities of Multimodal LLMs (MLLMs). To bridge this gap, we address the lack of high-quality, diverse multimodal mathematical datasets by collecting 40K high-quality images with question-answer pairs from 24 existing datasets and synthesizing 320K new pairs, creating the MathV360K dataset, which enhances both the breadth and depth of multimodal mathematical questions. We introduce Math-LLaVA, a LLaVA-1.5-based model fine-tuned with MathV360K. This novel approach significantly improves the multimodal mathematical reasoning capabilities of LLaVA-1.5, achieving a 19-point increase and comparable performance to GPT-4V on MathVista's minitest split. Furthermore, Math-LLaVA demonstrates enhanced generalizability, showing substantial improvements on the MMMU benchmark. Our research highlights the importance of dataset diversity and synthesis in advancing MLLMs' mathematical reasoning abilities. The code and data are available at: \url{https://github.com/HZQ950419/Math-LLaVA}.
comment: 8 pages
☆ Predicting the Big Five Personality Traits in Chinese Counselling Dialogues Using Large Language Models
Accurate assessment of personality traits is crucial for effective psycho-counseling, yet traditional methods like self-report questionnaires are time-consuming and biased. This study exams whether Large Language Models (LLMs) can predict the Big Five personality traits directly from counseling dialogues and introduces an innovative framework to perform the task. Our framework applies role-play and questionnaire-based prompting to condition LLMs on counseling sessions, simulating client responses to the Big Five Inventory. We evaluated our framework on 853 real-world counseling sessions, finding a significant correlation between LLM-predicted and actual Big Five traits, proving the validity of framework. Moreover, ablation studies highlight the importance of role-play simulations and task simplification via questionnaires in enhancing prediction accuracy. Meanwhile, our fine-tuned Llama3-8B model, utilizing Direct Preference Optimization with Supervised Fine-Tuning, achieves a 130.95\% improvement, surpassing the state-of-the-art Qwen1.5-110B by 36.94\% in personality prediction validity. In conclusion, LLMs can predict personality based on counseling dialogues. Our code and model are publicly available at \url{https://github.com/kuri-leo/BigFive-LLM-Predictor}, providing a valuable tool for future research in computational psychometrics.
☆ A Recursive Encoding for Cuneiform Signs
One of the most significant problems in cuneiform pedagogy is the process of looking up unknown signs, which often involves a tedious page-by-page search through a sign list. This paper proposes a new "recursive encoding" for signs, which represents the arrangement of strokes in a way a computer can process. A series of new algorithms then offers students a new way to look up signs by any distinctive component, as well as providing new ways to render signs and tablets electronically.
comment: 27 pages, 29 figures, 5 tables
BERT, Neural Information Retrieval, Boolean Retrieval, Negation Retrieval
We introduce SetBERT, a fine-tuned BERT-based model designed to enhance query embeddings for set operations and Boolean logic queries, such as Intersection (AND), Difference (NOT), and Union (OR). SetBERT significantly improves retrieval performance for logic-structured queries, an area where both traditional and neural retrieval methods typically underperform. We propose an innovative use of inversed-contrastive loss, focusing on identifying the negative sentence, and fine-tuning BERT with a dataset generated via prompt GPT. Furthermore, we demonstrate that, unlike other BERT-based models, fine-tuning with triplet loss actually degrades performance for this specific task. Our experiments reveal that SetBERT-base not only significantly outperforms BERT-base (up to a 63% improvement in Recall) but also achieves performance comparable to the much larger BERT-large model, despite being only one-third the size.
comment: 10 pages, 1 figure
☆ OPT-Tree: Speculative Decoding with Adaptive Draft Tree Structure
Autoregressive language models demonstrate excellent performance in various scenarios. However, the inference efficiency is limited by its one-step-one-word generation mode, which has become a pressing problem recently as the models become increasingly larger. Speculative decoding employs a "draft and then verify" mechanism to allow multiple tokens to be generated in one step, realizing lossless acceleration. Existing methods mainly adopt fixed heuristic draft structures, which fail to adapt to different situations to maximize the acceptance length during verification. To alleviate this dilemma, we proposed OPT-Tree, an algorithm to construct adaptive and scalable draft trees. It searches the optimal tree structure that maximizes the mathematical expectation of the acceptance length in each decoding step. Experimental results reveal that OPT-Tree outperforms the existing draft structures and achieves a speed-up ratio of up to 3.2 compared with autoregressive decoding. If the draft model is powerful enough and the node budget is sufficient, it can generate more than ten tokens in a single step. Our code is available at https://github.com/Jikai0Wang/OPT-Tree.
☆ Can We Trust the Performance Evaluation of Uncertainty Estimation Methods in Text Summarization?
Text summarization, a key natural language generation (NLG) task, is vital in various domains. However, the high cost of inaccurate summaries in risk-critical applications, particularly those involving human-in-the-loop decision-making, raises concerns about the reliability of uncertainty estimation on text summarization (UE-TS) evaluation methods. This concern stems from the dependency of uncertainty model metrics on diverse and potentially conflicting NLG metrics. To address this issue, we introduce a comprehensive UE-TS benchmark incorporating 31 NLG metrics across four dimensions. The benchmark evaluates the uncertainty estimation capabilities of two large language models and one pre-trained language model on three datasets, with human-annotation analysis incorporated where applicable. We also assess the performance of 14 common uncertainty estimation methods within this benchmark. Our findings emphasize the importance of considering multiple uncorrelated NLG metrics and diverse uncertainty estimation methods to ensure reliable and efficient evaluation of UE-TS techniques.
comment: 63 pages, 41 figures, 11 tables
☆ DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph
The current paradigm of evaluating Large Language Models (LLMs) through static benchmarks comes with significant limitations, such as vulnerability to data contamination and a lack of adaptability to the evolving capabilities of LLMs. Therefore, evaluation methods that can adapt and generate evaluation data with controlled complexity are urgently needed. In this work, we introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity. Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data. Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks. We further use a code-augmented LLM to ensure the label correctness of newly generated data. We apply our DARG framework to diverse reasoning tasks in four domains with 15 state-of-the-art LLMs. Experimental results show that almost all LLMs experience a performance decrease with increased complexity and certain LLMs exhibit significant drops. Additionally, we find that LLMs exhibit more biases when being evaluated via the data generated by DARG with higher complexity levels. These observations provide useful insights into how to dynamically and adaptively evaluate LLMs. The code is available at https://github.com/SALT-NLP/DARG.
☆ AG-LSEC: Audio Grounded Lexical Speaker Error Correction INTERSPEECH 2024
Speaker Diarization (SD) systems are typically audio-based and operate independently of the ASR system in traditional speech transcription pipelines and can have speaker errors due to SD and/or ASR reconciliation, especially around speaker turns and regions of speech overlap. To reduce these errors, a Lexical Speaker Error Correction (LSEC), in which an external language model provides lexical information to correct the speaker errors, was recently proposed. Though the approach achieves good Word Diarization error rate (WDER) improvements, it does not use any additional acoustic information and is prone to miscorrections. In this paper, we propose to enhance and acoustically ground the LSEC system with speaker scores directly derived from the existing SD pipeline. This approach achieves significant relative WDER reductions in the range of 25-40% over the audio-based SD, ASR system and beats the LSEC system by 15-25% relative on RT03-CTS, Callhome American English and Fisher datasets.
comment: Accepted at INTERSPEECH 2024
☆ D2LLM: Decomposed and Distilled Large Language Models for Semantic Search
The key challenge in semantic search is to create models that are both accurate and efficient in pinpointing relevant sentences for queries. While BERT-style bi-encoders excel in efficiency with pre-computed embeddings, they often miss subtle nuances in search tasks. Conversely, GPT-style LLMs with cross-encoder designs capture these nuances but are computationally intensive, hindering real-time applications. In this paper, we present D2LLMs-Decomposed and Distilled LLMs for semantic search-that combines the best of both worlds. We decompose a cross-encoder into an efficient bi-encoder integrated with Pooling by Multihead Attention and an Interaction Emulation Module, achieving nuanced understanding and pre-computability. Knowledge from the LLM is distilled into this model using contrastive, rank, and feature imitation techniques. Our experiments show that D2LLM surpasses five leading baselines in terms of all metrics across three tasks, particularly improving NLI task performance by at least 6.45%. The source code is available at https://github.com/codefuse-ai/D2LLM.
☆ TRAWL: Tensor Reduced and Approximated Weights for Large Language Models EMNLP 2024
Large language models (LLMs) have fundamentally transformed artificial intelligence, catalyzing recent advancements while imposing substantial environmental and computational burdens. We introduce TRAWL (Tensor Reduced and Approximated Weights for Large Language Models), a novel methodology for optimizing LLMs through tensor decomposition. TRAWL leverages diverse strategies to exploit matrices within transformer-based architectures, realizing notable performance enhancements without necessitating retraining. The most significant improvements were observed through a layer-by-layer intervention strategy, particularly when applied to fully connected weights of the final layers, yielding up to 16% enhancement in accuracy without the need for additional data or fine-tuning. These results underscore the importance of targeted and adaptive techniques in increasing the efficiency and effectiveness of large language model optimization, thereby promoting the development of more sustainable and accessible AI systems.
comment: 8 pages, 5 figures. Submitted to EMNLP 2024 and under review
☆ Mitigating Hallucination in Fictional Character Role-Play
Role-playing has wide-ranging applications in customer support, embodied agents, computational social science, etc. The influence of parametric world knowledge of large language models (LLMs) often causes role-playing characters to act out of character and hallucinate about things outside the scope of their knowledge. In this work, we focus on the evaluation and mitigation of hallucination in fictional character role-play. We introduce a dataset with more than 2,000 characters and 72,000 interviews, including 18,000 adversarial questions. We propose RoleFact, a role-playing method that mitigates hallucination by modulating the influence of parametric knowledge using a pre-calibrated confidence threshold. Experiments show that the proposed method improves the factual precision of generated responses by 18% for adversarial questions with a 44% reduction in temporal hallucination for time-sensitive interviews. The code and the dataset will be available at https://github.com/NafisSadeq/rolefact.git.
☆ Leveraging Parameter-Efficient Transfer Learning for Multi-Lingual Text-to-Speech Adaptation
Different languages have distinct phonetic systems and vary in their prosodic features making it challenging to develop a Text-to-Speech (TTS) model that can effectively synthesise speech in multilingual settings. Furthermore, TTS architecture needs to be both efficient enough to capture nuances in multiple languages and efficient enough to be practical for deployment. The standard approach is to build transformer based model such as SpeechT5 and train it on large multilingual dataset. As the size of these models grow the conventional fine-tuning for adapting these model becomes impractical due to heavy computational cost. In this paper, we proposes to integrate parameter-efficient transfer learning (PETL) methods such as adapters and hypernetwork with TTS architecture for multilingual speech synthesis. Notably, in our experiments PETL methods able to achieve comparable or even better performance compared to full fine-tuning with only $\sim$2.5\% tunable parameters.The code and samples are available at: https://anonymous.4open.science/r/multilingualTTS-BA4C.
☆ MPCODER: Multi-user Personalized Code Generator with Explicit and Implicit Style Representation Learning ACL 2024
Large Language Models (LLMs) have demonstrated great potential for assisting developers in their daily development. However, most research focuses on generating correct code, how to use LLMs to generate personalized code has seldom been investigated. To bridge this gap, we proposed MPCoder (Multi-user Personalized Code Generator) to generate personalized code for multiple users. To better learn coding style features, we utilize explicit coding style residual learning to capture the syntax code style standards and implicit style learning to capture the semantic code style conventions. We train a multi-user style adapter to better differentiate the implicit feature representations of different users through contrastive learning, ultimately enabling personalized code generation for multiple users. We further propose a novel evaluation metric for estimating similarities between codes of different coding styles. The experimental results show the effectiveness of our approach for this novel task.
comment: Accepted by ACL 2024, Main Conference
☆ How Well Can Knowledge Edit Methods Edit Perplexing Knowledge?
As large language models (LLMs) are widely deployed, targeted editing of their knowledge has become a critical challenge. Recently, advancements in model editing techniques, such as Rank-One Model Editing (ROME), have paved the way for updating LLMs with new knowledge. However, the efficacy of these methods varies across different types of knowledge. This study investigates the capability of knowledge editing methods to incorporate new knowledge with varying degrees of "perplexingness", a term we use to describe the initial difficulty LLMs have in understanding new concepts. We begin by quantifying the "perplexingness" of target knowledge using pre-edit conditional probabilities, and assess the efficacy of edits through post-edit conditional probabilities. Utilizing the widely-used CounterFact dataset, we find significant negative correlations between the "perplexingness" of the new knowledge and the edit efficacy across all 12 scenarios. To dive deeper into this phenomenon, we introduce a novel dataset, HierarchyData, consisting of 99 hyponym-hypernym pairs across diverse categories. Our analysis reveal that more abstract concepts (hypernyms) tend to be more perplexing than their specific counterparts (hyponyms). Further exploration into the influence of knowledge hierarchy on editing outcomes indicates that knowledge positioned at higher hierarchical levels is more challenging to modify in some scenarios. Our research highlights a previously overlooked aspect of LLM editing: the variable efficacy of editing methods in handling perplexing knowledge. By revealing how hierarchical relationships can influence editing outcomes, our findings offer new insights into the challenges of updating LLMs and pave the way for more nuanced approaches to model editing in the future.
☆ Unlocking Continual Learning Abilities in Language Models
Language models (LMs) exhibit impressive performance and generalization capabilities. However, LMs struggle with the persistent challenge of catastrophic forgetting, which undermines their long-term sustainability in continual learning (CL). Existing approaches usually address the issue by incorporating old task data or task-wise inductive bias into LMs. However, old data and accurate task information are often unavailable or costly to collect, hindering the availability of current CL approaches for LMs. To address this limitation, we introduce $\textbf{MIGU}$ ($\textbf{M}$agn$\textbf{I}$tude-based $\textbf{G}$radient $\textbf{U}$pdating for continual learning), a rehearsal-free and task-label-free method that only updates the model parameters with large magnitudes of output in LMs' linear layers. MIGU is based on our observation that the L1-normalized magnitude distribution of the output in LMs' linear layers is different when the LM models deal with different task data. By imposing this simple constraint on the gradient update process, we can leverage the inherent behaviors of LMs, thereby unlocking their innate CL abilities. Our experiments demonstrate that MIGU is universally applicable to all three LM architectures (T5, RoBERTa, and Llama2), delivering state-of-the-art or on-par performance across continual finetuning and continual pre-training settings on four CL benchmarks. For example, MIGU brings a 15.2% average accuracy improvement over conventional parameter-efficient finetuning baselines in a 15-task CL benchmark. MIGU can also seamlessly integrate with all three existing CL types to further enhance performance. Code is available at \href{https://github.com/wenyudu/MIGU}{this https URL}.
comment: preprint, 19 pages
☆ What Do the Circuits Mean? A Knowledge Edit View
In the field of language model interpretability, circuit discovery is gaining popularity. Despite this, the true meaning of these circuits remain largely unanswered. We introduce a novel method to learn their meanings as a holistic object through the lens of knowledge editing. We extract circuits in the GPT2-XL model using diverse text classification datasets, and use hierarchical relations datasets to explore knowledge editing in the circuits. Our findings indicate that these circuits contain entity knowledge but resist new knowledge more than complementary circuits during knowledge editing. Additionally, we examine the impact of circuit size, discovering that an ideal "theoretical circuit" where essential knowledge is concentrated likely incorporates more than 5% but less than 50% of the model's parameters. We also assess the overlap between circuits from different datasets, finding moderate similarities. What constitutes these circuits, then? We find that up to 60% of the circuits consist of layer normalization modules rather than attention or MLP modules, adding evidence to the ongoing debates regarding knowledge localization. In summary, our findings offer new insights into the functions of the circuits, and introduce research directions for further interpretability and safety research of language models.
☆ Self-Constructed Context Decompilation with Fined-grained Alignment Enhancement
Decompilation transforms compiled code back into a high-level programming language for analysis when source code is unavailable. Previous work has primarily focused on enhancing decompilation performance by increasing the scale of model parameters or training data for pre-training. Based on the characteristics of the decompilation task, we propose two methods: (1) Without fine-tuning, the Self-Constructed Context Decompilation (sc$^2$dec) method recompiles the LLM's decompilation results to construct pairs for in-context learning, helping the model improve decompilation performance. (2) Fine-grained Alignment Enhancement (FAE), which meticulously aligns assembly code with source code at the statement level by leveraging debugging information, is employed during the fine-tuning phase to achieve further improvements in decompilation. By integrating these two methods, we achieved a Re-Executability performance improvement of approximately 7.35\% on the Decompile-Eval benchmark, establishing a new state-of-the-art performance of 55.03\%.
comment: Under Review
☆ Beyond Demographics: Aligning Role-playing LLM-based Agents Using Human Belief Networks
Creating human-like large language model (LLM) agents is crucial for faithful social simulation. Having LLMs role-play based on demographic information sometimes improves human likeness but often does not. This study assessed whether LLM alignment with human behavior can be improved by integrating information from empirically-derived human belief networks. Using data from a human survey, we estimated a belief network encompassing 18 topics loading on two non-overlapping latent factors. We then seeded LLM-based agents with an opinion on one topic, and assessed the alignment of its expressed opinions on remaining test topics with corresponding human data. Role-playing based on demographic information alone did not align LLM and human opinions, but seeding the agent with a single belief greatly improved alignment for topics related in the belief network, and not for topics outside the network. These results suggest a novel path for human-LLM belief alignment in work seeking to simulate and understand patterns of belief distributions in society.
☆ CogMG: Collaborative Augmentation Between Large Language Model and Knowledge Graph
Large language models have become integral to question-answering applications despite their propensity for generating hallucinations and factually inaccurate content. Querying knowledge graphs to reduce hallucinations in LLM meets the challenge of incomplete knowledge coverage in knowledge graphs. On the other hand, updating knowledge graphs by information extraction and knowledge graph completion faces the knowledge update misalignment issue. In this work, we introduce a collaborative augmentation framework, CogMG, leveraging knowledge graphs to address the limitations of LLMs in QA scenarios, explicitly targeting the problems of incomplete knowledge coverage and knowledge update misalignment. The LLMs identify and decompose required knowledge triples that are not present in the KG, enriching them and aligning updates with real-world demands. We demonstrate the efficacy of this approach through a supervised fine-tuned LLM within an agent framework, showing significant improvements in reducing hallucinations and enhancing factual accuracy in QA responses. Our code and video are publicly available.
Large Language Models are Interpretable Learners
The trade-off between expressiveness and interpretability remains a core challenge when building human-centric predictive models for classification and decision-making. While symbolic rules offer interpretability, they often lack expressiveness, whereas neural networks excel in performance but are known for being black boxes. In this paper, we show a combination of Large Language Models (LLMs) and symbolic programs can bridge this gap. In the proposed LLM-based Symbolic Programs (LSPs), the pretrained LLM with natural language prompts provides a massive set of interpretable modules that can transform raw input into natural language concepts. Symbolic programs then integrate these modules into an interpretable decision rule. To train LSPs, we develop a divide-and-conquer approach to incrementally build the program from scratch, where the learning process of each step is guided by LLMs. To evaluate the effectiveness of LSPs in extracting interpretable and accurate knowledge from data, we introduce IL-Bench, a collection of diverse tasks, including both synthetic and real-world scenarios across different modalities. Empirical results demonstrate LSP's superior performance compared to traditional neurosymbolic programs and vanilla automatic prompt tuning methods. Moreover, as the knowledge learned by LSP is a combination of natural language descriptions and symbolic rules, it is easily transferable to humans (interpretable), and other LLMs, and generalizes well to out-of-distribution samples.
comment: Preliminary Version, Code at [this url](https://github.com/ruocwang/llm-symbolic-program)
☆ Detecting Frames in News Headlines and Lead Images in U.S. Gun Violence Coverage EMNLP 2021
News media structure their reporting of events or issues using certain perspectives. When describing an incident involving gun violence, for example, some journalists may focus on mental health or gun regulation, while others may emphasize the discussion of gun rights. Such perspectives are called \say{frames} in communication research. We study, for the first time, the value of combining lead images and their contextual information with text to identify the frame of a given news article. We observe that using multiple modes of information(article- and image-derived features) improves prediction of news frames over any single mode of information when the images are relevant to the frames of the headlines. We also observe that frame image relevance is related to the ease of conveying frames via images, which we call frame concreteness. Additionally, we release the first multimodal news framing dataset related to gun violence in the U.S., curated and annotated by communication researchers. The dataset will allow researchers to further examine the use of multiple information modalities for studying media framing.
comment: published at Findings of the Association for Computational Linguistics: EMNLP 2021
☆ EDEN: Empathetic Dialogues for English learning
Dialogue systems have been used as conversation partners in English learning, but few have studied whether these systems improve learning outcomes. Student passion and perseverance, or grit, has been associated with language learning success. Recent work establishes that as students perceive their English teachers to be more supportive, their grit improves. Hypothesizing that the same pattern applies to English-teaching chatbots, we create EDEN, a robust open-domain chatbot for spoken conversation practice that provides empathetic feedback. To construct EDEN, we first train a specialized spoken utterance grammar correction model and a high-quality social chit-chat conversation model. We then conduct a preliminary user study with a variety of strategies for empathetic feedback. Our experiment suggests that using adaptive empathetic feedback leads to higher perceived affective support, which, in turn, predicts increased student grit.
☆ Inherent Challenges of Post-Hoc Membership Inference for Large Language Models
Large Language Models (LLMs) are often trained on vast amounts of undisclosed data, motivating the development of post-hoc Membership Inference Attacks (MIAs) to gain insight into their training data composition. However, in this paper, we identify inherent challenges in post-hoc MIA evaluation due to potential distribution shifts between collected member and non-member datasets. Using a simple bag-of-words classifier, we demonstrate that datasets used in recent post-hoc MIAs suffer from significant distribution shifts, in some cases achieving near-perfect distinction between members and non-members. This implies that previously reported high MIA performance may be largely attributable to these shifts rather than model memorization. We confirm that randomized, controlled setups eliminate such shifts and thus enable the development and fair evaluation of new MIAs. However, we note that such randomized setups are rarely available for the latest LLMs, making post-hoc data collection still required to infer membership for real-world LLMs. As a potential solution, we propose a Regression Discontinuity Design (RDD) approach for post-hoc data collection, which substantially mitigates distribution shifts. Evaluating various MIA methods on this RDD setup yields performance barely above random guessing, in stark contrast to previously reported results. Overall, our findings highlight the challenges in accurately measuring LLM memorization and the need for careful experimental design in (post-hoc) membership inference tasks.
☆ Evaluating Fairness in Large Vision-Language Models Across Diverse Demographic Attributes and Prompts
Large vision-language models (LVLMs) have recently achieved significant progress, demonstrating strong capabilities in open-world visual understanding. However, it is not yet clear how LVLMs address demographic biases in real life, especially the disparities across attributes such as gender, skin tone, and age. In this paper, we empirically investigate \emph{visual fairness} in several mainstream LVLMs and audit their performance disparities across sensitive demographic attributes, based on public fairness benchmark datasets (e.g., FACET). To disclose the visual bias in LVLMs, we design a fairness evaluation framework with direct questions and single-choice question-instructed prompts on visual question-answering/classification tasks. The zero-shot prompting results indicate that, despite enhancements in visual understanding, both open-source and closed-source LVLMs exhibit prevalent fairness issues across different instruct prompts and demographic attributes.
☆ LABOR-LLM: Language-Based Occupational Representations with Large Language Models
Many empirical studies of labor market questions rely on estimating relatively simple predictive models using small, carefully constructed longitudinal survey datasets based on hand-engineered features. Large Language Models (LLMs), trained on massive datasets, encode vast quantities of world knowledge and can be used for the next job prediction problem. However, while an off-the-shelf LLM produces plausible career trajectories when prompted, the probability with which an LLM predicts a particular job transition conditional on career history will not, in general, align with the true conditional probability in a given population. Recently, Vafa et al. (2024) introduced a transformer-based "foundation model", CAREER, trained using a large, unrepresentative resume dataset, that predicts transitions between jobs; it further demonstrated how transfer learning techniques can be used to leverage the foundation model to build better predictive models of both transitions and wages that reflect conditional transition probabilities found in nationally representative survey datasets. This paper considers an alternative where the fine-tuning of the CAREER foundation model is replaced by fine-tuning LLMs. For the task of next job prediction, we demonstrate that models trained with our approach outperform several alternatives in terms of predictive performance on the survey data, including traditional econometric models, CAREER, and LLMs with in-context learning, even though the LLM can in principle predict job titles that are not allowed in the survey data. Further, we show that our fine-tuned LLM-based models' predictions are more representative of the career trajectories of various workforce subpopulations than off-the-shelf LLM models and CAREER. We conduct experiments and analyses that highlight the sources of the gains in the performance of our models for representative predictions.
☆ Encourage or Inhibit Monosemanticity? Revisit Monosemanticity from a Feature Decorrelation Perspective
To better interpret the intrinsic mechanism of large language models (LLMs), recent studies focus on monosemanticity on its basic units. A monosemantic neuron is dedicated to a single and specific concept, which forms a one-to-one correlation between neurons and concepts. Despite extensive research in monosemanticity probing, it remains unclear whether monosemanticity is beneficial or harmful to model capacity. To explore this question, we revisit monosemanticity from the feature decorrelation perspective and advocate for its encouragement. We experimentally observe that the current conclusion by wang2024learning, which suggests that decreasing monosemanticity enhances model performance, does not hold when the model changes. Instead, we demonstrate that monosemanticity consistently exhibits a positive correlation with model capacity, in the preference alignment process. Consequently, we apply feature correlation as a proxy for monosemanticity and incorporate a feature decorrelation regularizer into the dynamic preference optimization process. The experiments show that our method not only enhances representation diversity and activation sparsity but also improves preference alignment performance.
☆ Unmasking the Imposters: In-Domain Detection of Human vs. Machine-Generated Tweets
The rapid development of large language models (LLMs) has significantly improved the generation of fluent and convincing text, raising concerns about their misuse on social media platforms. We present a methodology using Twitter datasets to examine the generative capabilities of four LLMs: Llama 3, Mistral, Qwen2, and GPT4o. We evaluate 7B and 8B parameter base-instruction models of the three open-source LLMs and validate the impact of further fine-tuning and "uncensored" versions. Our findings show that "uncensored" models with additional in-domain fine-tuning dramatically reduce the effectiveness of automated detection methods. This study addresses a gap by exploring smaller open-source models and the effects of "uncensoring," providing insights into how fine-tuning and content moderation influence machine-generated text detection.
☆ SimsChat: A Customisable Persona-Driven Role-Playing Agent
Large Language Models (LLMs) possess the remarkable capability to understand human instructions and generate high-quality text, enabling them to act as agents that simulate human behaviours. This capability allows LLMs to emulate human beings in a more advanced manner, beyond merely replicating simple human behaviours. However, there is a lack of exploring into leveraging LLMs to craft characters from several aspects. In this work, we introduce the Customisable Conversation Agent Framework, which employs LLMs to simulate real-world characters that can be freely customised according to different user preferences. The customisable framework is helpful for designing customisable characters and role-playing agents according to human's preferences. We first propose the SimsConv dataset, which comprises 68 different customised characters, 1,360 multi-turn role-playing dialogues, and encompasses 13,971 interaction dialogues in total. The characters are created from several real-world elements, such as career, aspiration, trait, and skill. Building on these foundations, we present SimsChat, a freely customisable role-playing agent. It incorporates different real-world scenes and topic-specific character interaction dialogues, simulating characters' life experiences in various scenarios and topic-specific interactions with specific emotions. Experimental results show that our proposed framework achieves desirable performance and provides helpful guideline for building better simulacra of human beings in the future. Our data and code are available at https://github.com/Bernard-Yang/SimsChat.
☆ NormTab: Improving Symbolic Reasoning in LLMs Through Tabular Data Normalization
In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities in parsing textual data and generating code. However, their performance in tasks involving tabular data, especially those requiring symbolic reasoning, faces challenges due to the structural variance and inconsistency in table cell values often found in web tables. In this paper, we introduce NormTab, a novel framework aimed at enhancing the symbolic reasoning performance of LLMs by normalizing web tables. We study table normalization as a stand-alone, one-time preprocessing step using LLMs to support symbolic reasoning on tabular data. Our experimental evaluation, conducted on challenging web table datasets such as WikiTableQuestion and TabFact, demonstrates that leveraging NormTab significantly improves symbolic reasoning performance, showcasing the importance and effectiveness of web table normalization for enhancing LLM-based symbolic reasoning tasks.
comment: Work in Progress
☆ Do they mean 'us'? Interpreting Referring Expressions in Intergroup Bias
The variations between in-group and out-group speech (intergroup bias) are subtle and could underlie many social phenomena like stereotype perpetuation and implicit bias. In this paper, we model the intergroup bias as a tagging task on English sports comments from forums dedicated to fandom for NFL teams. We curate a unique dataset of over 6 million game-time comments from opposing perspectives (the teams in the game), each comment grounded in a non-linguistic description of the events that precipitated these comments (live win probabilities for each team). Expert and crowd annotations justify modeling the bias through tagging of implicit and explicit referring expressions and reveal the rich, contextual understanding of language and the world required for this task. For large-scale analysis of intergroup variation, we use LLMs for automated tagging, and discover that some LLMs perform best when prompted with linguistic descriptions of the win probability at the time of the comment, rather than numerical probability. Further, large-scale tagging of comments using LLMs uncovers linear variations in the form of referent across win probabilities that distinguish in-group and out-group utterances. Code and data are available at https://github.com/venkatasg/intergroup-nfl .
☆ Sequential Editing for Lifelong Training of Speech Recognition Models INTERSPEECH 2024
Automatic Speech Recognition (ASR) traditionally assumes known domains, but adding data from a new domain raises concerns about computational inefficiencies linked to retraining models on both existing and new domains. Fine-tuning solely on new domain risks Catastrophic Forgetting (CF). To address this, Lifelong Learning (LLL) algorithms have been proposed for ASR. Prior research has explored techniques such as Elastic Weight Consolidation, Knowledge Distillation, and Replay, all of which necessitate either additional parameters or access to prior domain data. We propose Sequential Model Editing as a novel method to continually learn new domains in ASR systems. Different than previous methods, our approach does not necessitate access to prior datasets or the introduction of extra parameters. Our study demonstrates up to 15% Word Error Rate Reduction (WERR) over fine-tuning baseline, and superior efficiency over other LLL techniques on CommonVoice English multi-accent dataset.
comment: INTERSPEECH 2024
☆ FASA: a Flexible and Automatic Speech Aligner for Extracting High-quality Aligned Children Speech Data
Automatic Speech Recognition (ASR) for adults' speeches has made significant progress by employing deep neural network (DNN) models recently, but improvement in children's speech is still unsatisfactory due to children's speech's distinct characteristics. DNN models pre-trained on adult data often struggle in generalizing children's speeches with fine tuning because of the lack of high-quality aligned children's speeches. When generating datasets, human annotations are not scalable, and existing forced-alignment tools are not usable as they make impractical assumptions about the quality of the input transcriptions. To address these challenges, we propose a new forced-alignment tool, FASA, as a flexible and automatic speech aligner to extract high-quality aligned children's speech data from many of the existing noisy children's speech data. We demonstrate its usage on the CHILDES dataset and show that FASA can improve data quality by 13.6$\times$ over human annotations.
comment: 4 pages, 1 figure
☆ PAFT: A Parallel Training Paradigm for Effective LLM Fine-Tuning
Large language models (LLMs) have shown remarkable abilities in diverse natural language processing (NLP) tasks. The LLMs generally undergo supervised fine-tuning (SFT) followed by preference alignment to be usable in downstream applications. However, this sequential training pipeline leads to alignment tax that degrades the LLM performance. This paper introduces PAFT, a new PArallel training paradigm for effective LLM Fine-Tuning, which independently performs SFT and preference alignment (e.g., DPO and ORPO, etc.) with the same pre-trained model on respective datasets. The model produced by SFT and the model from preference alignment are then merged into a final model by parameter fusing for use in downstream applications. This work reveals important findings that preference alignment like DPO naturally results in a sparse model while SFT leads to a natural dense model which needs to be sparsified for effective model merging. This paper introduces an effective interference resolution which reduces the redundancy by sparsifying the delta parameters. The LLM resulted from the new training paradigm achieved Rank #1 on the HuggingFace Open LLM Leaderboard. Comprehensive evaluation shows the effectiveness of the parallel training paradigm.
☆ X-ray Made Simple: Radiology Report Generation and Evaluation with Layman's Terms
Radiology Report Generation (RRG) has achieved significant progress with the advancements of multimodal generative models. However, the evaluation in the domain suffers from a lack of fair and robust metrics. We reveal that, high performance on RRG with existing lexical-based metrics (e.g. BLEU) might be more of a mirage - a model can get a high BLEU only by learning the template of reports. This has become an urgent problem for RRG due to the highly patternized nature of these reports. In this work, we un-intuitively approach this problem by proposing the Layman's RRG framework, a layman's terms-based dataset, evaluation and training framework that systematically improves RRG with day-to-day language. We first contribute the translated Layman's terms dataset. Building upon the dataset, we then propose a semantics-based evaluation method, which is proved to mitigate the inflated numbers of BLEU and provides fairer evaluation. Last, we show that training on the layman's terms dataset encourages models to focus on the semantics of the reports, as opposed to overfitting to learning the report templates. We reveal a promising scaling law between the number of training examples and semantics gain provided by our dataset, compared to the inverse pattern brought by the original formats. Our code is available at \url{https://github.com/hegehongcha/LaymanRRG}.
☆ Mapping the Past: Geographically Linking an Early 20th Century Swedish Encyclopedia with Wikidata
In this paper, we describe the extraction of all the location entries from a prominent Swedish encyclopedia from the early 20th century, the \textit{Nordisk Familjebok} `Nordic Family Book.' We focused on the second edition called \textit{Uggleupplagan}, which comprises 38 volumes and over 182,000 articles. This makes it one of the most extensive Swedish encyclopedias. Using a classifier, we first determined the category of the entries. We found that approximately 22 percent of them were locations. We applied a named entity recognition to these entries and we linked them to Wikidata. Wikidata enabled us to extract their precise geographic locations resulting in almost 18,000 valid coordinates. We then analyzed the distribution of these locations and the entry selection process. It showed a higher density within Sweden, Germany, and the United Kingdom. The paper sheds light on the selection and representation of geographic information in the \textit{Nordisk Familjebok}, providing insights into historical and societal perspectives. It also paves the way for future investigations into entry selection in different time periods and comparative analyses among various encyclopedias.
comment: 9 pages, 3 figures
☆ Script-Agnostic Language Identification ACL
Language identification is used as the first step in many data collection and crawling efforts because it allows us to sort online text into language-specific buckets. However, many modern languages, such as Konkani, Kashmiri, Punjabi etc., are synchronically written in several scripts. Moreover, languages with different writing systems do not share significant lexical, semantic, and syntactic properties in neural representation spaces, which is a disadvantage for closely related languages and low-resource languages, especially those from the Indian Subcontinent. To counter this, we propose learning script-agnostic representations using several different experimental strategies (upscaling, flattening, and script mixing) focusing on four major Dravidian languages (Tamil, Telugu, Kannada, and Malayalam). We find that word-level script randomization and exposure to a language written in multiple scripts is extremely valuable for downstream script-agnostic language identification, while also maintaining competitive performance on naturally occurring text.
comment: Under Review in ACL Rolling Review
☆ CTBench: A Comprehensive Benchmark for Evaluating Language Model Capabilities in Clinical Trial Design
CTBench is introduced as a benchmark to assess language models (LMs) in aiding clinical study design. Given study-specific metadata, CTBench evaluates AI models' ability to determine the baseline features of a clinical trial (CT), which include demographic and relevant features collected at the trial's start from all participants. These baseline features, typically presented in CT publications (often as Table 1), are crucial for characterizing study cohorts and validating results. Baseline features, including confounders and covariates, are also necessary for accurate treatment effect estimation in studies involving observational data. CTBench consists of two datasets: "CT-Repo," containing baseline features from 1,690 clinical trials sourced from clinicaltrials.gov, and "CT-Pub," a subset of 100 trials with more comprehensive baseline features gathered from relevant publications. Two LM-based evaluation methods are developed to compare the actual baseline feature lists against LM-generated responses. "ListMatch-LM" and "ListMatch-BERT" use GPT-4o and BERT scores (at various thresholds), respectively, for evaluation. To establish baseline results, advanced prompt engineering techniques using LLaMa3-70B-Instruct and GPT-4o in zero-shot and three-shot learning settings are applied to generate potential baseline features. The performance of GPT-4o as an evaluator is validated through human-in-the-loop evaluations on the CT-Pub dataset, where clinical experts confirm matches between actual and LM-generated features. The results highlight a promising direction with significant potential for improvement, positioning CTBench as a useful tool for advancing research on AI in CT design and potentially enhancing the efficacy and robustness of CTs.
☆ ET tu, CLIP? Addressing Common Object Errors for Unseen Environments
We introduce a simple method that employs pre-trained CLIP encoders to enhance model generalization in the ALFRED task. In contrast to previous literature where CLIP replaces the visual encoder, we suggest using CLIP as an additional module through an auxiliary object detection objective. We validate our method on the recently proposed Episodic Transformer architecture and demonstrate that incorporating CLIP improves task performance on the unseen validation set. Additionally, our analysis results support that CLIP especially helps with leveraging object descriptions, detecting small objects, and interpreting rare words.
☆ Cloaked Classifiers: Pseudonymization Strategies on Sensitive Classification Tasks
Protecting privacy is essential when sharing data, particularly in the case of an online radicalization dataset that may contain personal information. In this paper, we explore the balance between preserving data usefulness and ensuring robust privacy safeguards, since regulations like the European GDPR shape how personal information must be handled. We share our method for manually pseudonymizing a multilingual radicalization dataset, ensuring performance comparable to the original data. Furthermore, we highlight the importance of establishing comprehensive guidelines for processing sensitive NLP data by sharing our complete pseudonymization process, our guidelines, the challenges we encountered as well as the resulting dataset.
comment: Proceedings of the fifth Workshop on Privacy in Natural Language Processing
♻ ☆ Discrete Multimodal Transformers with a Pretrained Large Language Model for Mixed-Supervision Speech Processing
Recent work on discrete speech tokenization has paved the way for models that can seamlessly perform multiple tasks across modalities, e.g., speech recognition, text to speech, speech to speech translation. Moreover, large language models (LLMs) pretrained from vast text corpora contain rich linguistic information that can improve accuracy in a variety of tasks. In this paper, we present a decoder-only Discrete Multimodal Language Model (DMLM), which can be flexibly applied to multiple tasks (ASR, T2S, S2TT, etc.) and modalities (text, speech, vision). We explore several critical aspects of discrete multi-modal models, including the loss function, weight initialization, mixed training supervision, and codebook. Our results show that DMLM benefits significantly, across multiple tasks and datasets, from a combination of supervised and unsupervised training. Moreover, for ASR, it benefits from initializing DMLM from a pretrained LLM, and from a codebook derived from Whisper activations.
♻ ☆ Large Language Models in Healthcare: A Comprehensive Benchmark
The adoption of large language models (LLMs) to assist clinicians has attracted remarkable attention. Existing works mainly adopt the close-ended question-answering (QA) task with answer options for evaluation. However, many clinical decisions involve answering open-ended questions without pre-set options. To better understand LLMs in the clinic, we construct a benchmark ClinicBench. We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks. Furthermore, we construct six novel datasets and complex clinical tasks that are close to real-world practice, i.e., referral QA, treatment recommendation, hospitalization (long document) summarization, patient education, pharmacology QA and drug interaction for emerging drugs. We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings. Finally, we invite medical experts to evaluate the clinical usefulness of LLMs.
♻ ☆ A Data-Centric Approach To Generate Faithful and High Quality Patient Summaries with Large Language Models
Patients often face difficulties in understanding their hospitalizations, while healthcare workers have limited resources to provide explanations. In this work, we investigate the potential of large language models to generate patient summaries based on doctors' notes and study the effect of training data on the faithfulness and quality of the generated summaries. To this end, we release (i) a rigorous labeling protocol for errors in medical texts and (ii) a publicly available dataset of annotated hallucinations in 100 doctor-written and 100 generated summaries. We show that fine-tuning on hallucination-free data effectively reduces hallucinations from 2.60 to 1.55 per summary for Llama 2, while preserving relevant information. We observe a similar effect on GPT-4 (0.70 to 0.40), when the few-shot examples are hallucination-free. We also conduct a qualitative evaluation using hallucination-free and improved training data. We find that common quantitative metrics do not correlate well with faithfulness and quality. Finally, we test GPT-4 for automatic hallucination detection, which clearly outperforms common baselines.
♻ ☆ Reward Steering with Evolutionary Heuristics for Decoding-time Alignment
The widespread applicability and increasing omnipresence of LLMs have instigated a need to align LLM responses to user and stakeholder preferences. Many preference optimization approaches have been proposed that fine-tune LLM parameters to achieve good alignment. However, such parameter tuning is known to interfere with model performance on many tasks. Moreover, keeping up with shifting user preferences is tricky in such a situation. Decoding-time alignment with reward model guidance solves these issues at the cost of increased inference time. However, most of such methods fail to strike the right balance between exploration and exploitation of reward -- often due to the conflated formulation of these two aspects - to give well-aligned responses. To remedy this we decouple these two aspects and implement them in an evolutionary fashion: exploration is enforced by decoding from mutated instructions and exploitation is represented as the periodic replacement of poorly-rewarded generations with well-rewarded ones. Empirical evidences indicate that this strategy outperforms many preference optimization and decode-time alignment approaches on two widely accepted alignment benchmarks AlpacaEval 2 and MT-Bench. Our implementation will be available at: https://darwin-alignment.github.io.
♻ ☆ An Embedded Diachronic Sense Change Model with a Case Study from Ancient Greek
Word meanings change over time, and word senses evolve, emerge or die out in the process. For ancient languages, where the corpora are often small and sparse, modelling such changes accurately proves challenging, and quantifying uncertainty in sense-change estimates consequently becomes important. GASC (Genre-Aware Semantic Change) and DiSC (Diachronic Sense Change) are existing generative models that have been used to analyse sense change for target words from an ancient Greek text corpus, using unsupervised learning without the help of any pre-training. These models represent the senses of a given target word such as "kosmos" (meaning decoration, order or world) as distributions over context words, and sense prevalence as a distribution over senses. The models are fitted using Markov Chain Monte Carlo (MCMC) methods to measure temporal changes in these representations. This paper introduces EDiSC, an Embedded DiSC model, which combines word embeddings with DiSC to provide superior model performance. It is shown empirically that EDiSC offers improved predictive accuracy, ground-truth recovery and uncertainty quantification, as well as better sampling efficiency and scalability properties with MCMC methods. The challenges of fitting these models are also discussed.
♻ ☆ Evaluating $n$-Gram Novelty of Language Models Using Rusty-DAWG
How novel are texts generated by language models (LMs) relative to their training corpora? In this work, we investigate the extent to which modern LMs generate $n$-grams from their training data, evaluating both (i) the probability LMs assign to complete training $n$-grams and (ii) $n$-novelty, the proportion of $n$-grams generated by an LM that did not appear in the training data (for arbitrarily large $n$). To enable arbitrary-length $n$-gram search over a corpus in constant time, we develop Rusty-DAWG, a novel search tool inspired by indexing of genomic data. We compare the novelty of LM-generated text to human-written text and explore factors that affect generation novelty, focusing on the Pythia models. We find that, for $n > 4$, LM-generated text is less novel than human-written text, though it is more novel for smaller $n$. Larger LMs and more constrained decoding strategies both decrease novelty. Finally, we show that LMs complete $n$-grams with lower loss if they are more frequent in the training data. Overall, our results reveal factors influencing the novelty of LM-generated text, and we release Rusty-DAWG to facilitate further pretraining data research.
comment: 8 page preprint + appendix. Minor fixes and appendix changes June 25, 2024
♻ ☆ Towards Zero-Shot Text-To-Speech for Arabic Dialects
Zero-shot multi-speaker text-to-speech (ZS-TTS) systems have advanced for English, however, it still lags behind due to insufficient resources. We address this gap for Arabic, a language of more than 450 million native speakers, by first adapting a sizeable existing dataset to suit the needs of speech synthesis. Additionally, we employ a set of Arabic dialect identification models to explore the impact of pre-defined dialect labels on improving the ZS-TTS model in a multi-dialect setting. Subsequently, we fine-tune the XTTS\footnote{https://docs.coqui.ai/en/latest/models/xtts.html}\footnote{https://medium.com/machine-learns/xtts-v2-new-version-of-the-open-source-text-to-speech-model-af73914db81f}\footnote{https://medium.com/@erogol/xtts-v1-techincal-notes-eb83ff05bdc} model, an open-source architecture. We then evaluate our models on a dataset comprising 31 unseen speakers and an in-house dialectal dataset. Our automated and human evaluation results show convincing performance while capable of generating dialectal speech. Our study highlights significant potential for improvements in this emerging area of research in Arabic.
♻ ☆ SynDARin: Synthesising Datasets for Automated Reasoning in Low-Resource Languages
Question Answering (QA) datasets have been instrumental in developing and evaluating Large Language Model (LLM) capabilities. However, such datasets are scarce for languages other than English due to the cost and difficulties of collection and manual annotation. This means that producing novel models and measuring the performance of multilingual LLMs in low-resource languages is challenging. To mitigate this, we propose $\textbf{S}$yn$\textbf{DAR}$in, a method for generating and validating QA datasets for low-resource languages. We utilize parallel content mining to obtain $\textit{human-curated}$ paragraphs between English and the target language. We use the English data as context to $\textit{generate}$ synthetic multiple-choice (MC) question-answer pairs, which are automatically translated and further validated for quality. Combining these with their designated non-English $\textit{human-curated}$ paragraphs form the final QA dataset. The method allows to maintain the content quality, reduces the likelihood of factual errors, and circumvents the need for costly annotation. To test the method, we created a QA dataset with $1.2$K samples for the Armenian language. The human evaluation shows that $98\%$ of the generated English data maintains quality and diversity in the question types and topics, while the translation validation pipeline can filter out $\sim70\%$ of data with poor quality. We use the dataset to benchmark state-of-the-art LLMs, showing their inability to achieve human accuracy with some model performances closer to random chance. This shows that the generated dataset is non-trivial and can be used to evaluate reasoning capabilities in low-resource language.
♻ ☆ Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs
Existing methods for adapting large language models (LLMs) to new tasks are not suited to multi-task adaptation because they modify all the model weights -- causing destructive interference between tasks. The resulting effects, such as catastrophic forgetting of earlier tasks, make it challenging to obtain good performance on multiple tasks at the same time. To mitigate this, we propose Lottery Ticket Adaptation (LoTA), a sparse adaptation method that identifies and optimizes only a sparse subnetwork of the model. We evaluate LoTA on a wide range of challenging tasks such as instruction following, reasoning, math, and summarization. LoTA obtains better performance than full fine-tuning and low-rank adaptation (LoRA), and maintains good performance even after training on other tasks -- thus, avoiding catastrophic forgetting. By extracting and fine-tuning over lottery tickets (or sparse task vectors), LoTA also enables model merging over highly dissimilar tasks. Our code is made publicly available at https://github.com/kiddyboots216/lottery-ticket-adaptation.
♻ ☆ MedCalc-Bench: Evaluating Large Language Models for Medical Calculations
As opposed to evaluating computation and logic-based reasoning, current benchmarks for evaluating large language models (LLMs) in medicine are primarily focused on question-answering involving domain knowledge and descriptive reasoning. While such qualitative capabilities are vital to medical diagnosis, in real-world scenarios, doctors frequently use clinical calculators that follow quantitative equations and rule-based reasoning paradigms for evidence-based decision support. To this end, we propose MedCalc-Bench, a first-of-its-kind dataset focused on evaluating the medical calculation capability of LLMs. MedCalc-Bench contains an evaluation set of over 1000 manually reviewed instances from 55 different medical calculation tasks. Each instance in MedCalc-Bench consists of a patient note, a question requesting to compute a specific medical value, a ground truth answer, and a step-by-step explanation showing how the answer is obtained. While our evaluation results show the potential of LLMs in this area, none of them are effective enough for clinical settings. Common issues include extracting the incorrect entities, not using the correct equation or rules for a calculation task, or incorrectly performing the arithmetic for the computation. We hope our study highlights the quantitative knowledge and reasoning gaps in LLMs within medical settings, encouraging future improvements of LLMs for various clinical calculation tasks.
comment: Github link: https://github.com/ncbi-nlp/MedCalc-Bench HuggingFace link: https://huggingface.co/datasets/nsk7153/MedCalc-Bench
♻ ☆ Aligning Large Language Models by On-Policy Self-Judgment ACL 2024
Existing approaches for aligning large language models with human preferences face a trade-off that requires a separate reward model (RM) for on-policy learning. In this paper, we present a novel alignment framework, SELF-JUDGE that (1) does on-policy learning and 2) is parameter efficient, as it does not require an additional RM for evaluating the samples for on-policy learning. To this end, we propose Judge-augmented Supervised Fine-Tuning (JSFT) to train a single model to act as both a policy and a judge. Specifically, we view the pairwise judgment task, choosing the better response from a response pair, as a special case of the instruction-following task. The resulting model can judge preferences of on-the-fly responses from current policy initialized from itself. Experimental results show the efficacy of SELF-JUDGE, outperforming baselines in preference benchmarks. We also show that the rejecting sampling by itself can improve performance further without an additional evaluator.
comment: Published as a main conference paper at ACL 2024
♻ ☆ MT-Bench-101: A Fine-Grained Benchmark for Evaluating Large Language Models in Multi-Turn Dialogues ACL 2024
The advent of Large Language Models (LLMs) has drastically enhanced dialogue systems. However, comprehensively evaluating the dialogue abilities of LLMs remains a challenge. Previous benchmarks have primarily focused on single-turn dialogues or provided coarse-grained and incomplete assessments of multi-turn dialogues, overlooking the complexity and fine-grained nuances of real-life dialogues. To address this issue, we introduce MT-Bench-101, specifically designed to evaluate the fine-grained abilities of LLMs in multi-turn dialogues. By conducting a detailed analysis of real multi-turn dialogue data, we construct a three-tier hierarchical ability taxonomy comprising 4208 turns across 1388 multi-turn dialogues in 13 distinct tasks. We then evaluate 21 popular LLMs based on MT-Bench-101, conducting comprehensive analyses from both ability and task perspectives and observing differing trends in LLMs performance across dialogue turns within various tasks. Further analysis indicates that neither utilizing common alignment techniques nor chat-specific designs has led to obvious enhancements in the multi-turn abilities of LLMs. Extensive case studies suggest that our designed tasks accurately assess the corresponding multi-turn abilities. The data and code are available at \url{https://github.com/mtbench101/mt-bench-101}.
comment: [ACL 2024] The first three authors contribute equally, 34 pages, repo at https://github.com/mtbench101/mt-bench-101
♻ ☆ Representation Surgery: Theory and Practice of Affine Steering ICML 2024
Language models often exhibit undesirable behavior, e.g., generating toxic or gender-biased text. In the case of neural language models, an encoding of the undesirable behavior is often present in the model's representations. Thus, one natural (and common) approach to prevent the model from exhibiting undesirable behavior is to steer the model's representations in a manner that reduces the probability of it generating undesirable text. This paper investigates the formal and empirical properties of steering functions, i.e., transformation of the neural language model's representations that alter its behavior. First, we derive two optimal, in the least-squares sense, affine steering functions under different constraints. Our theory provides justification for existing approaches and offers a novel, improved steering approach. Second, we offer a series of experiments that demonstrate the empirical effectiveness of the methods in mitigating bias and reducing toxic generation.
comment: Accepted in ICML 2024
♻ ☆ Practical Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration
Membership Inference Attacks (MIA) aim to infer whether a target data record has been utilized for model training or not. Prior attempts have quantified the privacy risks of language models (LMs) via MIAs, but there is still no consensus on whether existing MIA algorithms can cause remarkable privacy leakage on practical Large Language Models (LLMs). Existing MIAs designed for LMs can be classified into two categories: reference-free and reference-based attacks. They are both based on the hypothesis that training records consistently strike a higher probability of being sampled. Nevertheless, this hypothesis heavily relies on the overfitting of target models, which will be mitigated by multiple regularization methods and the generalization of LLMs. The reference-based attack seems to achieve promising effectiveness in LLMs, which measures a more reliable membership signal by comparing the probability discrepancy between the target model and the reference model. However, the performance of reference-based attack is highly dependent on a reference dataset that closely resembles the training dataset, which is usually inaccessible in the practical scenario. Overall, existing MIAs are unable to effectively unveil privacy leakage over practical fine-tuned LLMs that are overfitting-free and private. We propose a Membership Inference Attack based on Self-calibrated Probabilistic Variation (SPV-MIA). Specifically, since memorization in LLMs is inevitable during the training process and occurs before overfitting, we introduce a more reliable membership signal, probabilistic variation, which is based on memorization rather than overfitting. Furthermore, we introduce a self-prompt approach, which constructs the dataset to fine-tune the reference model by prompting the target LLM itself. In this manner, the adversary can collect a dataset with a similar distribution from public APIs.
comment: Repo: https://github.com/wjfu99/MIA-LLMs
♻ ☆ AudioBench: A Universal Benchmark for Audio Large Language Models
We introduce AudioBench, a new benchmark designed to evaluate audio large language models (AudioLLMs). AudioBench encompasses 8 distinct tasks and 26 carefully selected or newly curated datasets, focusing on speech understanding, voice interpretation, and audio scene understanding. Despite the rapid advancement of large language models, including multimodal versions, a significant gap exists in comprehensive benchmarks for thoroughly evaluating their capabilities. AudioBench addresses this gap by providing relevant datasets and evaluation metrics. In our study, we evaluated the capabilities of four models across various aspects and found that no single model excels consistently across all tasks. We outline the research outlook for AudioLLMs and anticipate that our open-source code, data, and leaderboard will offer a robust testbed for future model developments.
comment: 20 pages; v2 - typo update; Code: https://github.com/AudioLLMs/AudioBench
♻ ☆ High-Dimension Human Value Representation in Large Language Models
The widespread application of Large Language Models (LLMs) across various tasks and fields has necessitated the alignment of these models with human values and preferences. Given various approaches of human value alignment, ranging from Reinforcement Learning with Human Feedback (RLHF), to constitutional learning, etc. there is an urgent need to understand the scope and nature of human values injected into these models before their release. There is also a need for model alignment without a costly large scale human annotation effort. We propose UniVaR, a high-dimensional representation of human value distributions in LLMs, orthogonal to model architecture and training data. Trained from the value-relevant output of eight multilingual LLMs and tested on the output from four multilingual LLMs, namely LlaMA2, ChatGPT, JAIS and Yi, we show that UniVaR is a powerful tool to compare the distribution of human values embedded in different LLMs with different langauge sources. Through UniVaR, we explore how different LLMs prioritize various values in different languages and cultures, shedding light on the complex interplay between human values and language modeling.
♻ ☆ Embedding Ontologies via Incorporating Extensional and Intensional Knowledge
Ontologies contain rich knowledge within domain, which can be divided into two categories, namely extensional knowledge and intensional knowledge. Extensional knowledge provides information about the concrete instances that belong to specific concepts in the ontology, while intensional knowledge details inherent properties, characteristics, and semantic associations among concepts. However, existing ontology embedding approaches fail to take both extensional knowledge and intensional knowledge into fine consideration simultaneously. In this paper, we propose a novel ontology embedding approach named EIKE (Extensional and Intensional Knowledge Embedding) by representing ontologies in two spaces, called extensional space and intensional space. EIKE presents a unified framework for embedding instances, concepts and their relations in an ontology, applying a geometry-based method to model extensional knowledge and a pretrained language model to model intensional knowledge, which can capture both structure information and textual information. Experimental results show that EIKE significantly outperforms state-of-the-art methods in three datasets for both triple classification and link prediction, indicating that EIKE provides a more comprehensive and representative perspective of the domain.
♻ ☆ LLMs Are Few-Shot In-Context Low-Resource Language Learners
In-context learning (ICL) empowers large language models (LLMs) to perform diverse tasks in underrepresented languages using only short in-context information, offering a crucial avenue for narrowing the gap between high-resource and low-resource languages. Nonetheless, there is only a handful of works explored ICL for low-resource languages with most of them focusing on relatively high-resource languages, such as French and Spanish. In this work, we extensively study ICL and its cross-lingual variation (X-ICL) on 25 low-resource and 7 relatively higher-resource languages. Our study not only assesses the effectiveness of ICL with LLMs in low-resource languages but also identifies the shortcomings of in-context label alignment, and introduces a more effective alternative: query alignment. Moreover, we provide valuable insights into various facets of ICL for low-resource languages. Our study concludes the significance of few-shot in-context information on enhancing the low-resource understanding quality of LLMs through semantically relevant information by closing the language gap in the target language and aligning the semantics between the targeted low-resource and the high-resource language that the model is proficient in. Our work highlights the importance of advancing ICL research, particularly for low-resource languages. Our code is publicly released at https://github.com/SamuelCahyawijaya/in-context-alignment
♻ ☆ Embodied Question Answering via Multi-LLM Systems
Embodied Question Answering (EQA) is an important problem, which involves an agent exploring the environment to answer user queries. In the existing literature, EQA has exclusively been studied in single-agent scenarios, where exploration can be time-consuming and costly. In this work, we consider EQA in a multi-agent framework involving multiple large language models (LLM) based agents independently answering queries about a household environment. To generate one answer for each query, we use the individual responses to train a Central Answer Model (CAM) that aggregates responses for a robust answer. Using CAM, we observe a $50\%$ higher EQA accuracy when compared against aggregation methods for ensemble LLM, such as voting schemes and debates. CAM does not require any form of agent communication, alleviating it from the associated costs. We ablate CAM with various nonlinear (neural network, random forest, decision tree, XGBoost) and linear (logistic regression classifier, SVM) algorithms. Finally, we present a feature importance analysis for CAM via permutation feature importance (PFI), quantifying CAMs reliance on each independent agent and query context.
comment: 17 pages, 13 Figures, 4 Tables
♻ ☆ WRDScore: New Metric for Evaluation of Natural Language Generation Models
The problem of natural language generation, and, more specifically, method name prediction, faces significant difficulties when proposed models need to be evaluated on test data. Such a metric would need to consider the versatility with which a single method can be named, with respect to both semantics and syntax. Measuring the direct overlap between the predicted and reference (true) sequences will not be able to capture these subtleties. Other existing embedding based metrics either do not measure precision and recall or impose strict unrealistic assumptions on both sequences. To address these issues, we propose a new metric that, on the one hand, is very simple and lightweight, and, on the other hand, is able to calculate precision and recall without resorting to any assumptions while obtaining good performance with respect to the human judgement.
♻ ☆ DE-COP: Detecting Copyrighted Content in Language Models Training Data
How can we detect if copyrighted content was used in the training process of a language model, considering that the training data is typically undisclosed? We are motivated by the premise that a language model is likely to identify verbatim excerpts from its training text. We propose DE-COP, a method to determine whether a piece of copyrighted content was included in training. DE-COP's core approach is to probe an LLM with multiple-choice questions, whose options include both verbatim text and their paraphrases. We construct BookTection, a benchmark with excerpts from 165 books published prior and subsequent to a model's training cutoff, along with their paraphrases. Our experiments show that DE-COP surpasses the prior best method by 9.6% in detection performance (AUC) on models with logits available. Moreover, DE-COP also achieves an average accuracy of 72% for detecting suspect books on fully black-box models where prior methods give approximately 4% accuracy. The code and datasets are available at https://github.com/LeiLiLab/DE-COP.
♻ ☆ S$^3$HQA: A Three-Stage Approach for Multi-hop Text-Table Hybrid Question Answering ACL 2023
Answering multi-hop questions over hybrid factual knowledge from the given text and table (TextTableQA) is a challenging task. Existing models mainly adopt a retriever-reader framework, which have several deficiencies, such as noisy labeling in training retriever, insufficient utilization of heterogeneous information over text and table, and deficient ability for different reasoning operations. In this paper, we propose a three-stage TextTableQA framework S3HQA, which comprises of retriever, selector, and reasoner. We use a retriever with refinement training to solve the noisy labeling problem. Then, a hybrid selector considers the linked relationships between heterogeneous data to select the most relevant factual knowledge. For the final stage, instead of adapting a reading comprehension module like in previous methods, we employ a generation-based reasoner to obtain answers. This includes two approaches: a row-wise generator and an LLM prompting generator~(first time used in this task). The experimental results demonstrate that our method achieves competitive results in the few-shot setting. When trained on the full dataset, our approach outperforms all baseline methods, ranking first on the HybridQA leaderboard.
comment: ACL 2023
♻ ☆ Telecom Language Models: Must They Be Large?
The increasing interest in Large Language Models (LLMs) within the telecommunications sector underscores their potential to revolutionize operational efficiency. However, the deployment of these sophisticated models is often hampered by their substantial size and computational demands, raising concerns about their viability in resource-constrained environments. Addressing this challenge, recent advancements have seen the emergence of small language models that surprisingly exhibit performance comparable to their larger counterparts in many tasks, such as coding and common-sense reasoning. Phi-2, a compact yet powerful model, exemplifies this new wave of efficient small language models. This paper conducts a comprehensive evaluation of Phi-2's intrinsic understanding of the telecommunications domain. Recognizing the scale-related limitations, we enhance Phi-2's capabilities through a Retrieval-Augmented Generation approach, meticulously integrating an extensive knowledge base specifically curated with telecom standard specifications. The enhanced Phi-2 model demonstrates a profound improvement in accuracy, answering questions about telecom standards with a precision that closely rivals the more resource-intensive GPT-3.5. The paper further explores the refined capabilities of Phi-2 in addressing problem-solving scenarios within the telecom sector, highlighting its potential and limitations.
♻ ☆ R4: Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models
Retrieval-augmented large language models (LLMs) leverage relevant content retrieved by information retrieval systems to generate correct responses, aiming to alleviate the hallucination problem. However, existing retriever-responder methods typically append relevant documents to the prompt of LLMs to perform text generation tasks without considering the interaction of fine-grained structural semantics between the retrieved documents and the LLMs. This issue is particularly important for accurate response generation as LLMs tend to "lose in the middle" when dealing with input prompts augmented with lengthy documents. In this work, we propose a new pipeline named "Reinforced Retriever-Reorder-Responder" (R$^4$) to learn document orderings for retrieval-augmented LLMs, thereby further enhancing their generation abilities while the large numbers of parameters of LLMs remain frozen. The reordering learning process is divided into two steps according to the quality of the generated responses: document order adjustment and document representation enhancement. Specifically, document order adjustment aims to organize retrieved document orderings into beginning, middle, and end positions based on graph attention learning, which maximizes the reinforced reward of response quality. Document representation enhancement further refines the representations of retrieved documents for responses of poor quality via document-level gradient adversarial learning. Extensive experiments demonstrate that our proposed pipeline achieves better factual question-answering performance on knowledge-intensive tasks compared to strong baselines across various public datasets. The source codes and trained models will be released upon paper acceptance.
comment: need to further experiment
♻ ☆ Direct Multi-Turn Preference Optimization for Language Agents
Adapting Large Language Models (LLMs) for agent tasks is critical in developing language agents. Direct Preference Optimization (DPO) is a promising technique for this adaptation with the alleviation of compounding errors, offering a means to directly optimize Reinforcement Learning (RL) objectives. However, applying DPO to multi-turn tasks presents challenges due to the inability to cancel the partition function. Overcoming this obstacle involves making the partition function independent of the current state and addressing length disparities between preferred and dis-preferred trajectories. In this light, we replace the policy constraint with the state-action occupancy measure constraint in the RL objective and add length normalization to the Bradley-Terry model, yielding a novel loss function named DMPO for multi-turn agent tasks with theoretical explanations. Extensive experiments on three multi-turn agent task datasets confirm the effectiveness and superiority of the DMPO loss.
♻ ☆ Comprehensive Evaluation of Large Language Models for Topic Modeling
Recent work utilizes Large Language Models (LLMs) for topic modeling, generating comprehensible topic labels for given documents. However, their performance has mainly been evaluated qualitatively, and there remains room for quantitative investigation of their capabilities. In this paper, we quantitatively evaluate LLMs from multiple perspectives: the quality of topics, the impact of LLM-specific concerns, such as hallucination and shortcuts for limited documents, and LLMs' controllability of topic categories via prompts. Our findings show that LLMs can identify coherent and diverse topics with few hallucinations but may take shortcuts by focusing only on parts of documents. We also found that their controllability is limited.
♻ ☆ Harnessing Large Language Models as Post-hoc Correctors
As Machine Learning (ML) models grow in size and demand higher-quality training data, the expenses associated with re-training and fine-tuning these models are escalating rapidly. Inspired by recent impressive achievements of Large Language Models (LLMs) in different fields, this paper delves into the question: can LLMs efficiently improve an ML's performance at a minimal cost? We show that, through our proposed training-free framework LlmCorr, an LLM can work as a post-hoc corrector to propose corrections for the predictions of an arbitrary ML model. In particular, we form a contextual knowledge database by incorporating the dataset's label information and the ML model's predictions on the validation dataset. Leveraging the in-context learning capability of LLMs, we ask the LLM to summarise the instances in which the ML model makes mistakes and the correlation between primary predictions and true labels. Following this, the LLM can transfer its acquired knowledge to suggest corrections for the ML model's predictions. Our experimental results on text analysis and the challenging molecular predictions show that \model improves the performance of a number of models by up to 39%.
♻ ☆ PatentEval: Understanding Errors in Patent Generation
In this work, we introduce a comprehensive error typology specifically designed for evaluating two distinct tasks in machine-generated patent texts: claims-to-abstract generation, and the generation of the next claim given previous ones. We have also developed a benchmark, PatentEval, for systematically assessing language models in this context. Our study includes a comparative analysis, annotated by humans, of various models. These range from those specifically adapted during training for tasks within the patent domain to the latest general-purpose large language models (LLMs). Furthermore, we explored and evaluated some metrics to approximate human judgments in patent text evaluation, analyzing the extent to which these metrics align with expert assessments. These approaches provide valuable insights into the capabilities and limitations of current language models in the specialized field of patent text generation.
♻ ☆ Enhancing Automated Audio Captioning via Large Language Models with Optimized Audio Encoding
Automated audio captioning (AAC) is an audio-to-text task to describe audio contents in natural language. Recently, the advancements in large language models (LLMs), with improvements in training approaches for audio encoders, have opened up possibilities for improving AAC. Thus, we explore enhancing AAC from three aspects: 1) a pre-trained audio encoder via consistent ensemble distillation (CED) is used to improve the effectivity of acoustic tokens, with a querying transformer (Q-Former) bridging the modality gap to LLM and compress acoustic tokens; 2) we investigate the advantages of using a Llama 2 with 7B parameters as the decoder; 3) another pre-trained LLM corrects text errors caused by insufficient training data and annotation ambiguities. Both the audio encoder and text decoder are optimized by low-rank adaptation (LoRA). Experiments show that each of these enhancements is effective. Our method obtains a 33.0 SPIDEr-FL score, outperforming the winner of DCASE 2023 Task 6A.
comment: Accepted by Interspeech 2024
♻ ☆ SegHist: A General Segmentation-based Framework for Chinese Historical Document Text Line Detection ICDAR2024
Text line detection is a key task in historical document analysis facing many challenges of arbitrary-shaped text lines, dense texts, and text lines with high aspect ratios, etc. In this paper, we propose a general framework for historical document text detection (SegHist), enabling existing segmentation-based text detection methods to effectively address the challenges, especially text lines with high aspect ratios. Integrating the SegHist framework with the commonly used method DB++, we develop DB-SegHist. This approach achieves SOTA on the CHDAC, MTHv2, and competitive results on HDRC datasets, with a significant improvement of 1.19% on the most challenging CHDAC dataset which features more text lines with high aspect ratios. Moreover, our method attains SOTA on rotated MTHv2 and rotated HDRC, demonstrating its rotational robustness. The code is available at https://github.com/LumionHXJ/SegHist.
comment: Accepted by ICDAR2024
♻ ☆ TemPrompt: Multi-Task Prompt Learning for Temporal Relation Extraction in RAG-based Crowdsourcing Systems
Temporal relation extraction (TRE) aims to grasp the evolution of events or actions, and thus shape the workflow of associated tasks, so it holds promise in helping understand task requests initiated by requesters in crowdsourcing systems. However, existing methods still struggle with limited and unevenly distributed annotated data. Therefore, inspired by the abundant global knowledge stored within pre-trained language models (PLMs), we propose a multi-task prompt learning framework for TRE (TemPrompt), incorporating prompt tuning and contrastive learning to tackle these issues. To elicit more effective prompts for PLMs, we introduce a task-oriented prompt construction approach that thoroughly takes the myriad factors of TRE into consideration for automatic prompt generation. In addition, we present temporal event reasoning as a supplement to bolster the model's focus on events and temporal cues. The experimental results demonstrate that TemPrompt outperforms all compared baselines across the majority of metrics under both standard and few-shot settings. A case study is provided to validate its effectiveness in crowdsourcing scenarios.
comment: 12 pages, 9 figures
♻ ☆ A Resilient and Accessible Distribution-Preserving Watermark for Large Language Models ICML 2024
Watermarking techniques offer a promising way to identify machine-generated content via embedding covert information into the contents generated from language models. A challenge in the domain lies in preserving the distribution of original generated content after watermarking. Our research extends and improves upon existing watermarking framework, placing emphasis on the importance of a \textbf{Di}stribution-\textbf{P}reserving (DiP) watermark. Contrary to the current strategies, our proposed DiPmark simultaneously preserves the original token distribution during watermarking (distribution-preserving), is detectable without access to the language model API and prompts (accessible), and is provably robust to moderate changes of tokens (resilient). DiPmark operates by selecting a random set of tokens prior to the generation of a word, then modifying the token distribution through a distribution-preserving reweight function to enhance the probability of these selected tokens during the sampling process. Extensive empirical evaluation on various language models and tasks demonstrates our approach's distribution-preserving property, accessibility, and resilience, making it a effective solution for watermarking tasks that demand impeccable quality preservation.
comment: ICML 2024
♻ ☆ Knowledge Crosswords: Geometric Knowledge Reasoning with Large Language Models
We propose Knowledge Crosswords, a geometric knowledge reasoning benchmark consisting of incomplete knowledge networks bounded by structured factual constraints, where LLMs are tasked with inferring the missing facts to meet all constraints. The novel setting of geometric knowledge reasoning necessitates new LM abilities beyond existing atomic/linear multi-hop QA, such as backtracking, verifying facts and constraints, reasoning with uncertainty, and more. Knowledge Crosswords contains 2,101 individual problems, covering diverse knowledge domains, and is further divided into three difficulty levels. We conduct extensive experiments to evaluate existing LLMs and approaches on Knowledge Crosswords. Results demonstrate that baseline approaches struggle with larger knowledge networks and semantically-equivalent entity distractors. In light of their limitations, we propose two new approaches, Staged Prompting and Verify-All, to augment LLMs' abilities for error-aware backtracking and constraint verification. Our Verify-All significantly outperforms prior methods and is more robust towards problems in the hard subset. Further analysis shows that geometric knowledge reasoning poses new challenges to LLMs' knowledge abilities, particularly in robustness towards varying option orders, complex structural constraints in knowledge networks, "none of the above" scenarios, and more.
♻ ☆ Universal Prompt Optimizer for Safe Text-to-Image Generation NAACL 2024
Text-to-Image (T2I) models have shown great performance in generating images based on textual prompts. However, these models are vulnerable to unsafe input to generate unsafe content like sexual, harassment and illegal-activity images. Existing studies based on image checker, model fine-tuning and embedding blocking are impractical in real-world applications. Hence, we propose the first universal prompt optimizer for safe T2I (POSI) generation in black-box scenario. We first construct a dataset consisting of toxic-clean prompt pairs by GPT-3.5 Turbo. To guide the optimizer to have the ability of converting toxic prompt to clean prompt while preserving semantic information, we design a novel reward function measuring toxicity and text alignment of generated images and train the optimizer through Proximal Policy Optimization. Experiments show that our approach can effectively reduce the likelihood of various T2I models in generating inappropriate images, with no significant impact on text alignment. It is also flexible to be combined with methods to achieve better performance. Our code is available at https://github.com/wzongyu/POSI.
comment: NAACL 2024
♻ ☆ NExT-GPT: Any-to-Any Multimodal LLM ICML 2024
While recently Multimodal Large Language Models (MM-LLMs) have made exciting strides, they mostly fall prey to the limitation of only input-side multimodal understanding, without the ability to produce content in multiple modalities. As we humans always perceive the world and communicate with people through various modalities, developing any-to-any MM-LLMs capable of accepting and delivering content in any modality becomes essential to human-level AI. To fill the gap, we present an end-to-end general-purpose any-to-any MM-LLM system, NExT-GPT. We connect an LLM with multimodal adaptors and different diffusion decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary combinations of text, images, videos, and audio. By leveraging the existing well-trained highly-performing encoders and decoders, NExT-GPT is tuned with only a small amount of parameter (1%) of certain projection layers, which not only benefits low-cost training and also facilitates convenient expansion to more potential modalities. Moreover, we introduce a modality-switching instruction tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on which NExT-GPT is empowered with complex cross-modal semantic understanding and content generation. Overall, our research showcases the promising possibility of building an AI agent capable of modeling universal modalities, paving the way for more human-like AI research in the community. Project page: https://next-gpt.github.io/
comment: ICML 2024 (Oral)
♻ ☆ LLMs Are Zero-Shot Context-Aware Simultaneous Translators
The advent of transformers has fueled progress in machine translation. More recently large language models (LLMs) have come to the spotlight thanks to their generality and strong performance in a wide range of language tasks, including translation. Here we show that open-source LLMs perform on par with or better than some state-of-the-art baselines in simultaneous machine translation (SiMT) tasks, zero-shot. We also demonstrate that injection of minimal background information, which is easy with an LLM, brings further performance gains, especially on challenging technical subject-matter. This highlights LLMs' potential for building next generation of massively multilingual, context-aware and terminologically accurate SiMT systems that require no resource-intensive training or fine-tuning.
♻ ☆ Modeling Emotions and Ethics with Large Language Models
This paper explores the integration of human-like emotions and ethical considerations into Large Language Models (LLMs). We first model eight fundamental human emotions, presented as opposing pairs, and employ collaborative LLMs to reinterpret and express these emotions across a spectrum of intensity. Our focus extends to embedding a latent ethical dimension within LLMs, guided by a novel self-supervised learning algorithm with human feedback (SSHF). This approach enables LLMs to perform self-evaluations and adjustments concerning ethical guidelines, enhancing their capability to generate content that is not only emotionally resonant but also ethically aligned. The methodologies and case studies presented herein illustrate the potential of LLMs to transcend mere text and image generation, venturing into the realms of empathetic interaction and principled decision-making, thereby setting a new precedent in the development of emotionally aware and ethically conscious AI systems.
comment: 8 pages, 4 figures, 3 tables
♻ ☆ When Large Language Models Meet Optical Networks: Paving the Way for Automation
Since the advent of GPT, large language models (LLMs) have brought about revolutionary advancements in all walks of life. As a superior natural language processing (NLP) technology, LLMs have consistently achieved state-of-the-art performance on numerous areas. However, LLMs are considered to be general-purpose models for NLP tasks, which may encounter challenges when applied to complex tasks in specialized fields such as optical networks. In this study, we propose a framework of LLM-empowered optical networks, facilitating intelligent control of the physical layer and efficient interaction with the application layer through an LLM-driven agent (AI-Agent) deployed in the control layer. The AI-Agent can leverage external tools and extract domain knowledge from a comprehensive resource library specifically established for optical networks. This is achieved through user input and well-crafted prompts, enabling the generation of control instructions and result representations for autonomous operation and maintenance in optical networks. To improve LLM's capability in professional fields and stimulate its potential on complex tasks, the details of performing prompt engineering, establishing domain knowledge library, and implementing complex tasks are illustrated in this study. Moreover, the proposed framework is verified on two typical tasks: network alarm analysis and network performance optimization. The good response accuracies and sematic similarities of 2,400 test situations exhibit the great potential of LLM in optical networks.
♻ ☆ GLoRe: When, Where, and How to Improve LLM Reasoning via Global and Local Refinements
State-of-the-art language models can exhibit impressive reasoning refinement capabilities on math, science or coding tasks. However, recent work demonstrates that even the best models struggle to identify \textit{when and where to refine} without access to external feedback. Outcome-based Reward Models (\textbf{ORMs}), trained to predict correctness of the final answer indicating when to refine, offer one convenient solution for deciding when to refine. Process Based Reward Models (\textbf{PRMs}), trained to predict correctness of intermediate steps, can then be used to indicate where to refine. But they are expensive to train, requiring extensive human annotations. In this paper, we propose Stepwise ORMs (\textbf{SORMs}) which are trained, only on synthetic data, to approximate the expected future reward of the optimal policy or $V^{\star}$. More specifically, SORMs are trained to predict the correctness of the final answer when sampling the current policy many times (rather than only once as in the case of ORMs). Our experiments show that SORMs can more accurately detect incorrect reasoning steps compared to ORMs, thus improving downstream accuracy when doing refinements. We then train \textit{global} refinement models, which take only the question and a draft solution as input and predict a corrected solution, and \textit{local} refinement models which also take as input a critique indicating the location of the first reasoning error. We generate training data for both models synthetically by reusing data used to train the SORM. We find combining global and local refinements, using the ORM as a reranker, significantly outperforms either one individually, as well as a best of three sample baseline. With this strategy we can improve the accuracy of a LLaMA-2 13B model (already fine-tuned with RL) on GSM8K from 53\% to 65\% when greedily sampled.
♻ ☆ Annotating FrameNet via Structure-Conditioned Language Generation ACL 2024
Despite the remarkable generative capabilities of language models in producing naturalistic language, their effectiveness on explicit manipulation and generation of linguistic structures remain understudied. In this paper, we investigate the task of generating new sentences preserving a given semantic structure, following the FrameNet formalism. We propose a framework to produce novel frame-semantically annotated sentences following an overgenerate-and-filter approach. Our results show that conditioning on rich, explicit semantic information tends to produce generations with high human acceptance, under both prompting and finetuning. Our generated frame-semantic structured annotations are effective at training data augmentation for frame-semantic role labeling in low-resource settings; however, we do not see benefits under higher resource settings. Our study concludes that while generating high-quality, semantically rich data might be within reach, the downstream utility of such generations remains to be seen, highlighting the outstanding challenges with automating linguistic annotation tasks.
comment: This paper has been accepted to ACL 2024
♻ ☆ OTCE: Hybrid SSM and Attention with Cross Domain Mixture of Experts to construct Observer-Thinker-Conceiver-Expresser
Recent research has shown that combining Mamba with Transformer architecture, which has selective state space and quadratic self-attention mechanism, outperforms using Mamba or Transformer architecture alone in language modeling tasks. The quadratic self-attention mechanism effectively alleviates the shortcomings of selective state space in handling long-term dependencies of any element in the sequence. We propose a position information injection method that connects the selective state space model with the quadratic attention, and integrates these two architectures with hybrid experts with cross-sharing domains, so that we can enjoy the advantages of both. We design a new architecture with a more biomimetic idea: Observer-Thinker-Conceiver-Expresser (OTCE), which can compete with well-known medium-scale open-source language models on a small scale in language modeling tasks.
♻ ☆ Superposed Decoding: Multiple Generations from a Single Autoregressive Inference Pass
Many applications today provide users with multiple auto-complete drafts as they type, including GitHub's code completion, Gmail's smart compose, and Apple's messaging auto-suggestions. Under the hood, language models support this by running an autoregressive inference pass to provide a draft. Consequently, providing $k$ drafts to the user requires running an expensive language model $k$ times. To alleviate the computation cost of running $k$ inference passes, we propose Superposed Decoding, a new decoding algorithm that generates $k$ drafts at the computation cost of one autoregressive inference pass. We achieve this by feeding a superposition of the most recent token embeddings from the $k$ drafts as input to the next decoding step of the language model. At every inference step we combine the $k$ drafts with the top-$k$ tokens to get $k^2$ new drafts and cache the $k$ most likely options, using an n-gram interpolation with minimal compute overhead to filter out incoherent generations. Our experiments show that $k$ drafts from Superposed Decoding are at least as coherent and factual as Nucleus Sampling and Greedy Decoding respectively, while being at least $2.44\times$ faster for $k\ge3$. In a compute-normalized setting, user evaluations demonstrably favor text generated by Superposed Decoding over Nucleus Sampling. Code and more examples open-sourced at https://github.com/RAIVNLab/SuperposedDecoding.
comment: 22 pages, 15 figures
♻ ☆ Modeling the Sacred: Considerations when Using Religious Texts in Natural Language Processing NAACL2024
This position paper concerns the use of religious texts in Natural Language Processing (NLP), which is of special interest to the Ethics of NLP. Religious texts are expressions of culturally important values, and machine learned models have a propensity to reproduce cultural values encoded in their training data. Furthermore, translations of religious texts are frequently used by NLP researchers when language data is scarce. This repurposes the translations from their original uses and motivations, which often involve attracting new followers. This paper argues that NLP's use of such texts raises considerations that go beyond model biases, including data provenance, cultural contexts, and their use in proselytism. We argue for more consideration of researcher positionality, and of the perspectives of marginalized linguistic and religious communities.
comment: Findings of NAACL2024
♻ ☆ Investigating writing style as a contributor to gender gaps in science and technology
A growing stream of research finds that scientific contributions are evaluated differently depending on the gender of the author. In this article, we consider whether gender differences in writing styles - how men and women communicate their work - may contribute to these observed gender gaps. We ground our investigation in a framework for characterizing the linguistic style of written text, with two sets of features - informational (i.e., features that emphasize facts) and involved (i.e., features that emphasize relationships). Using a large sample of academic papers and patents, we find significant differences in writing style by gender, with women using more involved features in their writing. Papers and patents with more involved features also tend to be cited more by women. Our findings suggest that scientific text is not devoid of personal character, which could contribute to bias in evaluation, thereby compromising the norm of universalism as a foundational principle of science.
♻ ☆ Instruct, Not Assist: LLM-based Multi-Turn Planning and Hierarchical Questioning for Socratic Code Debugging
Socratic questioning is an effective teaching strategy, encouraging critical thinking and problem-solving. The conversational capabilities of large language models (LLMs) show great potential for providing scalable, real-time student guidance. However, current LLMs often give away solutions directly, making them ineffective instructors. We tackle this issue in the code debugging domain with TreeInstruct, an Instructor agent guided by a novel state space-based planning algorithm. TreeInstruct asks probing questions to help students independently identify and resolve errors. It estimates a student's conceptual and syntactical knowledge to dynamically construct a question tree based on their responses and current knowledge state, effectively addressing both independent and dependent mistakes concurrently in a multi-turn interaction setting. In addition to using an existing single-bug debugging benchmark, we construct a more challenging multi-bug dataset of 150 coding problems, incorrect solutions, and bug fixes -- all carefully constructed and annotated by experts. Extensive evaluation shows TreeInstruct's state-of-the-art performance on both datasets, proving it to be a more effective instructor than baselines. Furthermore, a real-world case study with five students of varying skill levels further demonstrates TreeInstruct's ability to guide students to debug their code efficiently with minimal turns and highly Socratic questioning.
♻ ☆ Benchmarking Large Language Models on Answering and Explaining Challenging Medical Questions
LLMs have demonstrated impressive performance in answering medical questions, such as achieving passing scores on medical licensing examinations. However, medical board exam or general clinical questions do not capture the complexity of realistic clinical cases. Moreover, the lack of reference explanations means we cannot easily evaluate the reasoning of model decisions, a crucial component of supporting doctors in making complex medical decisions. To address these challenges, we construct two new datasets: JAMA Clinical Challenge and Medbullets. JAMA Clinical Challenge consists of questions based on challenging clinical cases, while Medbullets comprises simulated clinical questions. Both datasets are structured as multiple-choice question-answering tasks, accompanied by expert-written explanations. We evaluate seven LLMs on the two datasets using various prompts. Experiments demonstrate that our datasets are harder than previous benchmarks. Human and automatic evaluations of model-generated explanations provide insights into the promise and deficiency of LLMs for explainable medical QA.
♻ ☆ Do Large Language Models Rank Fairly? An Empirical Study on the Fairness of LLMs as Rankers NAACL 2024
The integration of Large Language Models (LLMs) in information retrieval has raised a critical reevaluation of fairness in the text-ranking models. LLMs, such as GPT models and Llama2, have shown effectiveness in natural language understanding tasks, and prior works (e.g., RankGPT) have also demonstrated that the LLMs exhibit better performance than the traditional ranking models in the ranking task. However, their fairness remains largely unexplored. This paper presents an empirical study evaluating these LLMs using the TREC Fair Ranking dataset, focusing on the representation of binary protected attributes such as gender and geographic location, which are historically underrepresented in search outcomes. Our analysis delves into how these LLMs handle queries and documents related to these attributes, aiming to uncover biases in their ranking algorithms. We assess fairness from both user and content perspectives, contributing an empirical benchmark for evaluating LLMs as the fair ranker.
comment: Accepted at NAACL 2024 Main Conference
♻ ☆ SpecExec: Massively Parallel Speculative Decoding for Interactive LLM Inference on Consumer Devices
As large language models gain widespread adoption, running them efficiently becomes crucial. Recent works on LLM inference use speculative decoding to achieve extreme speedups. However, most of these works implicitly design their algorithms for high-end datacenter hardware. In this work, we ask the opposite question: how fast can we run LLMs on consumer machines? Consumer GPUs can no longer fit the largest available models (50B+ parameters) and must offload them to RAM or SSD. When running with offloaded parameters, the inference engine can process batches of hundreds or thousands of tokens at the same time as just one token, making it a natural fit for speculative decoding. We propose SpecExec (Speculative Execution), a simple parallel decoding method that can generate up to 20 tokens per target model iteration for popular LLM families. It utilizes the high spikiness of the token probabilities distribution in modern LLMs and a high degree of alignment between model output probabilities. SpecExec takes the most probable tokens continuation from the draft model to build a "cache" tree for the target model, which then gets validated in a single pass. Using SpecExec, we demonstrate inference of 50B+ parameter LLMs on consumer GPUs with RAM offloading at 4-6 tokens per second with 4-bit quantization or 2-3 tokens per second with 16-bit weights.
comment: preprint
♻ ☆ SpeechX: Neural Codec Language Model as a Versatile Speech Transformer
Recent advancements in generative speech models based on audio-text prompts have enabled remarkable innovations like high-quality zero-shot text-to-speech. However, existing models still face limitations in handling diverse audio-text speech generation tasks involving transforming input speech and processing audio captured in adverse acoustic conditions. This paper introduces SpeechX, a versatile speech generation model capable of zero-shot TTS and various speech transformation tasks, dealing with both clean and noisy signals. SpeechX combines neural codec language modeling with multi-task learning using task-dependent prompting, enabling unified and extensible modeling and providing a consistent way for leveraging textual input in speech enhancement and transformation tasks. Experimental results show SpeechX's efficacy in various tasks, including zero-shot TTS, noise suppression, target speaker extraction, speech removal, and speech editing with or without background noise, achieving comparable or superior performance to specialized models across tasks. See https://aka.ms/speechx for demo samples.
comment: To appear in TASLP. See https://aka.ms/speechx for demo samples
♻ ☆ Confabulation: The Surprising Value of Large Language Model Hallucinations ACL2024
This paper presents a systematic defense of large language model (LLM) hallucinations or 'confabulations' as a potential resource instead of a categorically negative pitfall. The standard view is that confabulations are inherently problematic and AI research should eliminate this flaw. In this paper, we argue and empirically demonstrate that measurable semantic characteristics of LLM confabulations mirror a human propensity to utilize increased narrativity as a cognitive resource for sense-making and communication. In other words, it has potential value. Specifically, we analyze popular hallucination benchmarks and reveal that hallucinated outputs display increased levels of narrativity and semantic coherence relative to veridical outputs. This finding reveals a tension in our usually dismissive understandings of confabulation. It suggests, counter-intuitively, that the tendency for LLMs to confabulate may be intimately associated with a positive capacity for coherent narrative-text generation.
comment: Forthcoming at ACL2024 main conference. 1 figure
Computer Vision and Pattern Recognition 142
☆ Text-Animator: Controllable Visual Text Video Generation
Video generation is a challenging yet pivotal task in various industries, such as gaming, e-commerce, and advertising. One significant unresolved aspect within T2V is the effective visualization of text within generated videos. Despite the progress achieved in Text-to-Video~(T2V) generation, current methods still cannot effectively visualize texts in videos directly, as they mainly focus on summarizing semantic scene information, understanding, and depicting actions. While recent advances in image-level visual text generation show promise, transitioning these techniques into the video domain faces problems, notably in preserving textual fidelity and motion coherence. In this paper, we propose an innovative approach termed Text-Animator for visual text video generation. Text-Animator contains a text embedding injection module to precisely depict the structures of visual text in generated videos. Besides, we develop a camera control module and a text refinement module to improve the stability of generated visual text by controlling the camera movement as well as the motion of visualized text. Quantitative and qualitative experimental results demonstrate the superiority of our approach to the accuracy of generated visual text over state-of-the-art video generation methods. The project page can be found at https://laulampaul.github.io/text-animator.html.
comment: Project Page: https://laulampaul.github.io/text-animator.html
☆ Fast and Uncertainty-Aware SVBRDF Recovery from Multi-View Capture using Frequency Domain Analysis
Relightable object acquisition is a key challenge in simplifying digital asset creation. Complete reconstruction of an object typically requires capturing hundreds to thousands of photographs under controlled illumination, with specialized equipment. The recent progress in differentiable rendering improved the quality and accessibility of inverse rendering optimization. Nevertheless, under uncontrolled illumination and unstructured viewpoints, there is no guarantee that the observations contain enough information to reconstruct the appearance properties of the captured object. We thus propose to consider the acquisition process from a signal-processing perspective. Given an object's geometry and a lighting environment, we estimate the properties of the materials on the object's surface in seconds. We do so by leveraging frequency domain analysis, considering the recovery of material properties as a deconvolution, enabling fast error estimation. We then quantify the uncertainty of the estimation, based on the available data, highlighting the areas for which priors or additional samples would be required for improved acquisition quality. We compare our approach to previous work and quantitatively evaluate our results, showing similar quality as previous work in a fraction of the time, and providing key information about the certainty of the results.
comment: Project page: https://brdf-uncertainty.github.io
☆ MG-LLaVA: Towards Multi-Granularity Visual Instruction Tuning
Multi-modal large language models (MLLMs) have made significant strides in various visual understanding tasks. However, the majority of these models are constrained to process low-resolution images, which limits their effectiveness in perception tasks that necessitate detailed visual information. In our study, we present MG-LLaVA, an innovative MLLM that enhances the model's visual processing capabilities by incorporating a multi-granularity vision flow, which includes low-resolution, high-resolution, and object-centric features. We propose the integration of an additional high-resolution visual encoder to capture fine-grained details, which are then fused with base visual features through a Conv-Gate fusion network. To further refine the model's object recognition abilities, we incorporate object-level features derived from bounding boxes identified by offline detectors. Being trained solely on publicly available multimodal data through instruction tuning, MG-LLaVA demonstrates exceptional perception skills. We instantiate MG-LLaVA with a wide variety of language encoders, ranging from 3.8B to 34B, to evaluate the model's performance comprehensively. Extensive evaluations across multiple benchmarks demonstrate that MG-LLaVA outperforms existing MLLMs of comparable parameter sizes, showcasing its remarkable efficacy. The code will be available at https://github.com/PhoenixZ810/MG-LLaVA.
☆ DiffusionPDE: Generative PDE-Solving Under Partial Observation
We introduce a general framework for solving partial differential equations (PDEs) using generative diffusion models. In particular, we focus on the scenarios where we do not have the full knowledge of the scene necessary to apply classical solvers. Most existing forward or inverse PDE approaches perform poorly when the observations on the data or the underlying coefficients are incomplete, which is a common assumption for real-world measurements. In this work, we propose DiffusionPDE that can simultaneously fill in the missing information and solve a PDE by modeling the joint distribution of the solution and coefficient spaces. We show that the learned generative priors lead to a versatile framework for accurately solving a wide range of PDEs under partial observation, significantly outperforming the state-of-the-art methods for both forward and inverse directions.
comment: Project page: https://jhhuangchloe.github.io/Diffusion-PDE/
☆ MotionBooth: Motion-Aware Customized Text-to-Video Generation
In this work, we present MotionBooth, an innovative framework designed for animating customized subjects with precise control over both object and camera movements. By leveraging a few images of a specific object, we efficiently fine-tune a text-to-video model to capture the object's shape and attributes accurately. Our approach presents subject region loss and video preservation loss to enhance the subject's learning performance, along with a subject token cross-attention loss to integrate the customized subject with motion control signals. Additionally, we propose training-free techniques for managing subject and camera motions during inference. In particular, we utilize cross-attention map manipulation to govern subject motion and introduce a novel latent shift module for camera movement control as well. MotionBooth excels in preserving the appearance of subjects while simultaneously controlling the motions in generated videos. Extensive quantitative and qualitative evaluations demonstrate the superiority and effectiveness of our method. Our project page is at https://jianzongwu.github.io/projects/motionbooth
comment: Project page at https://jianzongwu.github.io/projects/motionbooth
☆ Benchmarking Deep Learning Models on NVIDIA Jetson Nano for Real-Time Systems: An Empirical Investigation
The proliferation of complex deep learning (DL) models has revolutionized various applications, including computer vision-based solutions, prompting their integration into real-time systems. However, the resource-intensive nature of these models poses challenges for deployment on low-computational power and low-memory devices, like embedded and edge devices. This work empirically investigates the optimization of such complex DL models to analyze their functionality on an embedded device, particularly on the NVIDIA Jetson Nano. It evaluates the effectiveness of the optimized models in terms of their inference speed for image classification and video action detection. The experimental results reveal that, on average, optimized models exhibit a 16.11% speed improvement over their non-optimized counterparts. This not only emphasizes the critical need to consider hardware constraints and environmental sustainability in model development and deployment but also underscores the pivotal role of model optimization in enabling the widespread deployment of AI-assisted technologies on resource-constrained computational systems. It also serves as proof that prioritizing hardware-specific model optimization leads to efficient and scalable solutions that substantially decrease energy consumption and carbon footprint.
comment: 7 pages, 4 figures
☆ Point-SAM: Promptable 3D Segmentation Model for Point Clouds
The development of 2D foundation models for image segmentation has been significantly advanced by the Segment Anything Model (SAM). However, achieving similar success in 3D models remains a challenge due to issues such as non-unified data formats, lightweight models, and the scarcity of labeled data with diverse masks. To this end, we propose a 3D promptable segmentation model (Point-SAM) focusing on point clouds. Our approach utilizes a transformer-based method, extending SAM to the 3D domain. We leverage part-level and object-level annotations and introduce a data engine to generate pseudo labels from SAM, thereby distilling 2D knowledge into our 3D model. Our model outperforms state-of-the-art models on several indoor and outdoor benchmarks and demonstrates a variety of applications, such as 3D annotation. Codes and demo can be found at https://github.com/zyc00/Point-SAM.
☆ Structured Unrestricted-Rank Matrices for Parameter Efficient Fine-tuning
Recent efforts to scale Transformer models have demonstrated rapid progress across a wide range of tasks (Wei et al., 2022). However, fine-tuning these models for downstream tasks is expensive due to their large parameter counts. Parameter-efficient fine-tuning (PEFT) approaches have emerged as a viable alternative by allowing us to fine-tune models by updating only a small number of parameters. In this work, we propose a general framework for parameter efficient fine-tuning (PEFT), based on structured unrestricted-rank matrices (SURM) which can serve as a drop-in replacement for popular approaches such as Adapters and LoRA. Unlike other methods like LoRA, SURMs provides more flexibility in finding the right balance between compactness and expressiveness. This is achieved by using low displacement rank matrices (LDRMs), which hasn't been used in this context before. SURMs remain competitive with baselines, often providing significant quality improvements while using a smaller parameter budget. SURMs achieve 5-7% accuracy gains on various image classification tasks while replacing low-rank matrices in LoRA. It also results in up to 12x reduction of the number of parameters in adapters (with virtually no loss in quality) on the GLUE benchmark.
comment: Work in progress
☆ Arboretum: A Large Multimodal Dataset Enabling AI for Biodiversity
We introduce Arboretum, the largest publicly accessible dataset designed to advance AI for biodiversity applications. This dataset, curated from the iNaturalist community science platform and vetted by domain experts to ensure accuracy, includes 134.6 million images, surpassing existing datasets in scale by an order of magnitude. The dataset encompasses image-language paired data for a diverse set of species from birds (Aves), spiders/ticks/mites (Arachnida), insects (Insecta), plants (Plantae), fungus/mushrooms (Fungi), snails (Mollusca), and snakes/lizards (Reptilia), making it a valuable resource for multimodal vision-language AI models for biodiversity assessment and agriculture research. Each image is annotated with scientific names, taxonomic details, and common names, enhancing the robustness of AI model training. We showcase the value of Arboretum by releasing a suite of CLIP models trained using a subset of 40 million captioned images. We introduce several new benchmarks for rigorous assessment, report accuracy for zero-shot learning, and evaluations across life stages, rare species, confounding species, and various levels of the taxonomic hierarchy. We anticipate that Arboretum will spur the development of AI models that can enable a variety of digital tools ranging from pest control strategies, crop monitoring, and worldwide biodiversity assessment and environmental conservation. These advancements are critical for ensuring food security, preserving ecosystems, and mitigating the impacts of climate change. Arboretum is publicly available, easily accessible, and ready for immediate use. Please see the \href{https://baskargroup.github.io/Arboretum/}{project website} for links to our data, models, and code.
comment: Preprint under review
☆ Mask-Guided Attention U-Net for Enhanced Neonatal Brain Extraction and Image Preprocessing
In this study, we introduce MGA-Net, a novel mask-guided attention neural network, which extends the U-net model for precision neonatal brain imaging. MGA-Net is designed to extract the brain from other structures and reconstruct high-quality brain images. The network employs a common encoder and two decoders: one for brain mask extraction and the other for brain region reconstruction. A key feature of MGA-Net is its high-level mask-guided attention module, which leverages features from the brain mask decoder to enhance image reconstruction. To enable the same encoder and decoder to process both MRI and ultrasound (US) images, MGA-Net integrates sinusoidal positional encoding. This encoding assigns distinct positional values to MRI and US images, allowing the model to effectively learn from both modalities. Consequently, features learned from a single modality can aid in learning a modality with less available data, such as US. We extensively validated the proposed MGA-Net on diverse datasets from varied clinical settings and neonatal age groups. The metrics used for assessment included the DICE similarity coefficient, recall, and accuracy for image segmentation; structural similarity for image reconstruction; and root mean squared error for total brain volume estimation from 3D ultrasound images. Our results demonstrate that MGA-Net significantly outperforms traditional methods, offering superior performance in brain extraction and segmentation while achieving high precision in image reconstruction and volumetric analysis. Thus, MGA-Net represents a robust and effective preprocessing tool for MRI and 3D ultrasound images, marking a significant advance in neuroimaging that enhances both research and clinical diagnostics in the neonatal period and beyond.
☆ SurgeMOD: Translating image-space tissue motions into vision-based surgical forces
We present a new approach for vision-based force estimation in Minimally Invasive Robotic Surgery based on frequency domain basis of motion of organs derived directly from video. Using internal movements generated by natural processes like breathing or the cardiac cycle, we infer the image-space basis of the motion on the frequency domain. As we are working with this representation, we discretize the problem to a limited amount of low-frequencies to build an image-space mechanical model of the environment. We use this pre-built model to define our force estimation problem as a dynamic constraint problem. We demonstrate that this method can estimate point contact forces reliably for silicone phantom and ex-vivo experiments, matching real readings from a force sensor. In addition, we perform qualitative experiments in which we synthesize coherent force textures from surgical videos over a certain region of interest selected by the user. Our method demonstrates good results for both quantitative and qualitative analysis, providing a good starting point for a purely vision-based method for surgical force estimation.
☆ HGTDP-DTA: Hybrid Graph-Transformer with Dynamic Prompt for Drug-Target Binding Affinity Prediction
Drug target binding affinity (DTA) is a key criterion for drug screening. Existing experimental methods are time-consuming and rely on limited structural and domain information. While learning-based methods can model sequence and structural information, they struggle to integrate contextual data and often lack comprehensive modeling of drug-target interactions. In this study, we propose a novel DTA prediction method, termed HGTDP-DTA, which utilizes dynamic prompts within a hybrid Graph-Transformer framework. Our method generates context-specific prompts for each drug-target pair, enhancing the model's ability to capture unique interactions. The introduction of prompt tuning further optimizes the prediction process by filtering out irrelevant noise and emphasizing task-relevant information, dynamically adjusting the input features of the molecular graph. The proposed hybrid Graph-Transformer architecture combines structural information from Graph Convolutional Networks (GCNs) with sequence information captured by Transformers, facilitating the interaction between global and local information. Additionally, we adopted the multi-view feature fusion method to project molecular graph views and affinity subgraph views into a common feature space, effectively combining structural and contextual information. Experiments on two widely used public datasets, Davis and KIBA, show that HGTDP-DTA outperforms state-of-the-art DTA prediction methods in both prediction performance and generalization ability.
☆ Unified Auto-Encoding with Masked Diffusion
At the core of both successful generative and self-supervised representation learning models there is a reconstruction objective that incorporates some form of image corruption. Diffusion models implement this approach through a scheduled Gaussian corruption process, while masked auto-encoder models do so by masking patches of the image. Despite their different approaches, the underlying similarity in their methodologies suggests a promising avenue for an auto-encoder capable of both de-noising tasks. We propose a unified self-supervised objective, dubbed Unified Masked Diffusion (UMD), that combines patch-based and noise-based corruption techniques within a single auto-encoding framework. Specifically, UMD modifies the diffusion transformer (DiT) training process by introducing an additional noise-free, high masking representation step in the diffusion noising schedule, and utilizes a mixed masked and noised image for subsequent timesteps. By integrating features useful for diffusion modeling and for predicting masked patch tokens, UMD achieves strong performance in downstream generative and representation learning tasks, including linear probing and class-conditional generation. This is achieved without the need for heavy data augmentations, multiple views, or additional encoders. Furthermore, UMD improves over the computational efficiency of prior diffusion based methods in total training time. We release our code at https://github.com/philippe-eecs/small-vision.
comment: 19 Pages, 8 Figures, 3Tables
☆ End-to-End Autonomous Driving without Costly Modularization and 3D Manual Annotation
We propose UAD, a method for vision-based end-to-end autonomous driving (E2EAD), achieving the best open-loop evaluation performance in nuScenes, meanwhile showing robust closed-loop driving quality in CARLA. Our motivation stems from the observation that current E2EAD models still mimic the modular architecture in typical driving stacks, with carefully designed supervised perception and prediction subtasks to provide environment information for oriented planning. Although achieving groundbreaking progress, such design has certain drawbacks: 1) preceding subtasks require massive high-quality 3D annotations as supervision, posing a significant impediment to scaling the training data; 2) each submodule entails substantial computation overhead in both training and inference. To this end, we propose UAD, an E2EAD framework with an unsupervised proxy to address all these issues. Firstly, we design a novel Angular Perception Pretext to eliminate the annotation requirement. The pretext models the driving scene by predicting the angular-wise spatial objectness and temporal dynamics, without manual annotation. Secondly, a self-supervised training strategy, which learns the consistency of the predicted trajectories under different augment views, is proposed to enhance the planning robustness in steering scenarios. Our UAD achieves 38.7% relative improvements over UniAD on the average collision rate in nuScenes and surpasses VAD for 41.32 points on the driving score in CARLA's Town05 Long benchmark. Moreover, the proposed method only consumes 44.3% training resources of UniAD and runs 3.4 times faster in inference. Our innovative design not only for the first time demonstrates unarguable performance advantages over supervised counterparts, but also enjoys unprecedented efficiency in data, training, and inference. Code and models will be released at https://github.com/KargoBot_Research/UAD.
comment: 17 pages, 10 figures and 15 tables
☆ Local-to-Global Cross-Modal Attention-Aware Fusion for HSI-X Semantic Segmentation
Hyperspectral image (HSI) classification has recently reached its performance bottleneck. Multimodal data fusion is emerging as a promising approach to overcome this bottleneck by providing rich complementary information from the supplementary modality (X-modality). However, achieving comprehensive cross-modal interaction and fusion that can be generalized across different sensing modalities is challenging due to the disparity in imaging sensors, resolution, and content of different modalities. In this study, we propose a Local-to-Global Cross-modal Attention-aware Fusion (LoGoCAF) framework for HSI-X classification that jointly considers efficiency, accuracy, and generalizability. LoGoCAF adopts a pixel-to-pixel two-branch semantic segmentation architecture to learn information from HSI and X modalities. The pipeline of LoGoCAF consists of a local-to-global encoder and a lightweight multilayer perceptron (MLP) decoder. In the encoder, convolutions are used to encode local and high-resolution fine details in shallow layers, while transformers are used to integrate global and low-resolution coarse features in deeper layers. The MLP decoder aggregates information from the encoder for feature fusion and prediction. In particular, two cross-modality modules, the feature enhancement module (FEM) and the feature interaction and fusion module (FIFM), are introduced in each encoder stage. The FEM is used to enhance complementary information by combining the feature from the other modality across direction-aware, position-sensitive, and channel-wise dimensions. With the enhanced features, the FIFM is designed to promote cross-modality information interaction and fusion for the final semantic prediction. Extensive experiments demonstrate that our LoGoCAF achieves superior performance and generalizes well. The code will be made publicly available.
☆ Brain Tumor Classification using Vision Transformer with Selective Cross-Attention Mechanism and Feature Calibration
Brain tumor classification is a challenging task in medical image analysis. In this paper, we propose a novel approach to brain tumor classification using a vision transformer with a novel cross-attention mechanism. Our approach leverages the strengths of transformers in modeling long-range dependencies and multi-scale feature fusion. We introduce two new mechanisms to improve the performance of the cross-attention fusion module: Feature Calibration Mechanism (FCM) and Selective Cross-Attention (SCA). FCM calibrates the features from different branches to make them more compatible, while SCA selectively attends to the most informative features. Our experiments demonstrate that the proposed approach outperforms other state-of-the-art methods in brain tumor classification, achieving improved accuracy and efficiency. The proposed FCM and SCA mechanisms can be easily integrated into other vision transformer architectures, making them a promising direction for future research in medical image analysis. Experimental results confirm that our approach surpasses existing methods, achieving state-of-the-art performance in brain tumor classification tasks.
☆ Time-varying Extremum Graphs
We introduce time-varying extremum graph (TVEG), a topological structure to support visualization and analysis of a time-varying scalar field. The extremum graph is a substructure of the Morse-Smale complex. It captures the adjacency relationship between cells in the Morse decomposition of a scalar field. We define the TVEG as a time-varying extension of the extremum graph and demonstrate how it captures salient feature tracks within a dynamic scalar field. We formulate the construction of the TVEG as an optimization problem and describe an algorithm for computing the graph. We also demonstrate the capabilities of \TVEG towards identification and exploration of topological events such as deletion, generation, split, and merge within a dynamic scalar field via comprehensive case studies including a viscous fingers and a 3D von K\'arm\'an vortex street dataset.
☆ BayTTA: Uncertainty-aware medical image classification with optimized test-time augmentation using Bayesian model averaging
Test-time augmentation (TTA) is a well-known technique employed during the testing phase of computer vision tasks. It involves aggregating multiple augmented versions of input data. Combining predictions using a simple average formulation is a common and straightforward approach after performing TTA. This paper introduces a novel framework for optimizing TTA, called BayTTA (Bayesian-based TTA), which is based on Bayesian Model Averaging (BMA). First, we generate a model list associated with different variations of the input data created through TTA. Then, we use BMA to combine model predictions weighted by their respective posterior probabilities. Such an approach allows one to take into account model uncertainty, and thus to enhance the predictive performance of the related machine learning or deep learning model. We evaluate the performance of BayTTA on various public data, including three medical image datasets comprising skin cancer, breast cancer, and chest X-ray images and two well-known gene editing datasets, CRISPOR and GUIDE-seq. Our experimental results indicate that BayTTA can be effectively integrated into state-of-the-art deep learning models used in medical image analysis as well as into some popular pre-trained CNN models such as VGG-16, MobileNetV2, DenseNet201, ResNet152V2, and InceptionRes-NetV2, leading to the enhancement in their accuracy and robustness performance.
☆ Mitigate the Gap: Investigating Approaches for Improving Cross-Modal Alignment in CLIP
Contrastive Language--Image Pre-training (CLIP) has manifested remarkable improvements in zero-shot classification and cross-modal vision-language tasks. Yet, from a geometrical point of view, the CLIP embedding space has been found to have a pronounced modality gap. This gap renders the embedding space overly sparse and disconnected, with different modalities being densely distributed in distinct subregions of the hypersphere. In this work, we aim at answering two main questions: 1. Does sharing the parameter space between the multi-modal encoders reduce the modality gap? 2. Can the gap be mitigated by pushing apart the uni-modal embeddings via intra-modality separation? We design AlignCLIP, in order to answer these questions and show that answers to both questions are positive. Through extensive experiments, we show that AlignCLIP achieves noticeable enhancements in the cross-modal alignment of the embeddings, and thereby, reduces the modality gap, while maintaining the performance across several downstream evaluations, such as zero-shot image classification, zero-shot multi-modal retrieval and zero-shot semantic text similarity.
☆ Aligning Diffusion Models with Noise-Conditioned Perception
Recent advancements in human preference optimization, initially developed for Language Models (LMs), have shown promise for text-to-image Diffusion Models, enhancing prompt alignment, visual appeal, and user preference. Unlike LMs, Diffusion Models typically optimize in pixel or VAE space, which does not align well with human perception, leading to slower and less efficient training during the preference alignment stage. We propose using a perceptual objective in the U-Net embedding space of the diffusion model to address these issues. Our approach involves fine-tuning Stable Diffusion 1.5 and XL using Direct Preference Optimization (DPO), Contrastive Preference Optimization (CPO), and supervised fine-tuning (SFT) within this embedding space. This method significantly outperforms standard latent-space implementations across various metrics, including quality and computational cost. For SDXL, our approach provides 60.8\% general preference, 62.2\% visual appeal, and 52.1\% prompt following against original open-sourced SDXL-DPO on the PartiPrompts dataset, while significantly reducing compute. Our approach not only improves the efficiency and quality of human preference alignment for diffusion models but is also easily integrable with other optimization techniques. The training code and LoRA weights will be available here: https://huggingface.co/alexgambashidze/SDXL\_NCP-DPO\_v0.1
☆ Video Inpainting Localization with Contrastive Learning
Deep video inpainting is typically used as malicious manipulation to remove important objects for creating fake videos. It is significant to identify the inpainted regions blindly. This letter proposes a simple yet effective forensic scheme for Video Inpainting LOcalization with ContrAstive Learning (ViLocal). Specifically, a 3D Uniformer encoder is applied to the video noise residual for learning effective spatiotemporal forensic features. To enhance the discriminative power, supervised contrastive learning is adopted to capture the local inconsistency of inpainted videos through attracting/repelling the positive/negative pristine and forged pixel pairs. A pixel-wise inpainting localization map is yielded by a lightweight convolution decoder with a specialized two-stage training strategy. To prepare enough training samples, we build a video object segmentation dataset of 2500 videos with pixel-level annotations per frame. Extensive experimental results validate the superiority of ViLocal over state-of-the-arts. Code and dataset will be available at https://github.com/multimediaFor/ViLocal.
comment: arXiv admin note: substantial text overlap with arXiv:2406.13576
☆ Embedded event based object detection with spiking neural network
The complexity of event-based object detection (OD) poses considerable challenges. Spiking Neural Networks (SNNs) show promising results and pave the way for efficient event-based OD. Despite this success, the path to efficient SNNs on embedded devices remains a challenge. This is due to the size of the networks required to accomplish the task and the ability of devices to take advantage of SNNs benefits. Even when "edge" devices are considered, they typically use embedded GPUs that consume tens of watts. In response to these challenges, our research introduces an embedded neuromorphic testbench that utilizes the SPiking Low-power Event-based ArchiTecture (SPLEAT) accelerator. Using an extended version of the Qualia framework, we can train, evaluate, quantize, and deploy spiking neural networks on an FPGA implementation of SPLEAT. We used this testbench to load a state-of-the-art SNN solution, estimate the performance loss associated with deploying the network on dedicated hardware, and run real-world event-based OD on neuromorphic hardware specifically designed for low-power spiking neural networks. Remarkably, our embedded spiking solution, which includes a model with 1.08 million parameters, operates efficiently with 490 mJ per prediction.
comment: Result link: https://youtu.be/TsolUDaMY7Y
☆ MSRS: Training Multimodal Speech Recognition Models from Scratch with Sparse Mask Optimization
Pre-trained models have been a foundational approach in speech recognition, albeit with associated additional costs. In this study, we propose a regularization technique that facilitates the training of visual and audio-visual speech recognition models (VSR and AVSR) from scratch. This approach, abbreviated as \textbf{MSRS} (Multimodal Speech Recognition from Scratch), introduces a sparse regularization that rapidly learns sparse structures within the dense model at the very beginning of training, which receives healthier gradient flow than the dense equivalent. Once the sparse mask stabilizes, our method allows transitioning to a dense model or keeping a sparse model by updating non-zero values. MSRS achieves competitive results in VSR and AVSR with 21.1% and 0.9% WER on the LRS3 benchmark, while reducing training time by at least 2x. We explore other sparse approaches and show that only MSRS enables training from scratch by implicitly masking the weights affected by vanishing gradients.
comment: Accepted at Interspeech 2024
☆ Test-Time Generative Augmentation for Medical Image Segmentation
In this paper, we propose a novel approach to enhance medical image segmentation during test time. Instead of employing hand-crafted transforms or functions on the input test image to create multiple views for test-time augmentation, we advocate for the utilization of an advanced domain-fine-tuned generative model (GM), e.g., stable diffusion (SD), for test-time augmentation. Given that the GM has been trained to comprehend and encapsulate comprehensive domain data knowledge, it is superior than segmentation models in terms of representing the data characteristics and distribution. Hence, by integrating the GM into test-time augmentation, we can effectively generate multiple views of a given test sample, aligning with the content and appearance characteristics of the sample and the related local data distribution. This approach renders the augmentation process more adaptable and resilient compared to conventional handcrafted transforms. Comprehensive experiments conducted across three medical image segmentation tasks (nine datasets) demonstrate the efficacy and versatility of the proposed TTGA in enhancing segmentation outcomes. Moreover, TTGA significantly improves pixel-wise error estimation, thereby facilitating the deployment of a more reliable segmentation system. Code will be released at: https://github.com/maxiao0234/TTGA.
comment: 12pages, 2figures
☆ Director3D: Real-world Camera Trajectory and 3D Scene Generation from Text
Recent advancements in 3D generation have leveraged synthetic datasets with ground truth 3D assets and predefined cameras. However, the potential of adopting real-world datasets, which can produce significantly more realistic 3D scenes, remains largely unexplored. In this work, we delve into the key challenge of the complex and scene-specific camera trajectories found in real-world captures. We introduce Director3D, a robust open-world text-to-3D generation framework, designed to generate both real-world 3D scenes and adaptive camera trajectories. To achieve this, (1) we first utilize a Trajectory Diffusion Transformer, acting as the Cinematographer, to model the distribution of camera trajectories based on textual descriptions. (2) Next, a Gaussian-driven Multi-view Latent Diffusion Model serves as the Decorator, modeling the image sequence distribution given the camera trajectories and texts. This model, fine-tuned from a 2D diffusion model, directly generates pixel-aligned 3D Gaussians as an immediate 3D scene representation for consistent denoising. (3) Lastly, the 3D Gaussians are refined by a novel SDS++ loss as the Detailer, which incorporates the prior of the 2D diffusion model. Extensive experiments demonstrate that Director3D outperforms existing methods, offering superior performance in real-world 3D generation.
comment: Code: https://github.com/imlixinyang/director3d
☆ DocParseNet: Advanced Semantic Segmentation and OCR Embeddings for Efficient Scanned Document Annotation
Automating the annotation of scanned documents is challenging, requiring a balance between computational efficiency and accuracy. DocParseNet addresses this by combining deep learning and multi-modal learning to process both text and visual data. This model goes beyond traditional OCR and semantic segmentation, capturing the interplay between text and images to preserve contextual nuances in complex document structures. Our evaluations show that DocParseNet significantly outperforms conventional models, achieving mIoU scores of 49.12 on validation and 49.78 on the test set. This reflects a 58% accuracy improvement over state-of-the-art baseline models and an 18% gain compared to the UNext baseline. Remarkably, DocParseNet achieves these results with only 2.8 million parameters, reducing the model size by approximately 25 times and speeding up training by 5 times compared to other models. These metrics, coupled with a computational efficiency of 0.034 TFLOPs (BS=1), highlight DocParseNet's high performance in document annotation. The model's adaptability and scalability make it well-suited for real-world corporate document processing applications. The code is available at https://github.com/ahmad-shirazi/DocParseNet
☆ Advancing Cell Detection in Anterior Segment Optical Coherence Tomography Images
Anterior uveitis, a common form of eye inflammation, can lead to permanent vision loss if not promptly diagnosed. Monitoring this condition involves quantifying inflammatory cells in the anterior chamber (AC) of the eye, which can be captured using Anterior Segment Optical Coherence Tomography (AS-OCT). However, manually identifying cells in AS-OCT images is time-consuming and subjective. Moreover, existing automated approaches may have limitations in both the effectiveness of detecting cells and the reliability of their detection results. To address these challenges, we propose an automated framework to detect cells in the AS-OCT images. This framework consists of a zero-shot chamber segmentation module and a cell detection module. The first module segments the AC area in the image without requiring human-annotated training data. Subsequently, the second module identifies individual cells within the segmented AC region. Through experiments, our framework demonstrates superior performance compared to current state-of-the-art methods for both AC segmentation and cell detection tasks. Notably, we find that previous cell detection approaches could suffer from low recall, potentially overlooking a significant number of cells. In contrast, our framework offers an improved solution, which could benefit the diagnosis and study of anterior uveitis. Our code for cell detection is publicly available at: https://github.com/joeybyc/cell_detection.
☆ Toward Universal Medical Image Registration via Sharpness-Aware Meta-Continual Learning MICCAI 2024
Current deep learning approaches in medical image registration usually face the challenges of distribution shift and data collection, hindering real-world deployment. In contrast, universal medical image registration aims to perform registration on a wide range of clinically relevant tasks simultaneously, thus having tremendous potential for clinical applications. In this paper, we present the first attempt to achieve the goal of universal 3D medical image registration in sequential learning scenarios by proposing a continual learning method. Specifically, we utilize meta-learning with experience replay to mitigating the problem of catastrophic forgetting. To promote the generalizability of meta-continual learning, we further propose sharpness-aware meta-continual learning (SAMCL). We validate the effectiveness of our method on four datasets in a continual learning setup, including brain MR, abdomen CT, lung CT, and abdomen MR-CT image pairs. Results have shown the potential of SAMCL in realizing universal image registration, which performs better than or on par with vanilla sequential or centralized multi-task training strategies.The source code will be available from https://github.com/xzluo97/Continual-Reg.
comment: Accepted by MICCAI 2024
☆ Minimal Interaction Edge Tuning: A New Paradigm for Visual Adaptation
The rapid scaling of large vision pretrained models makes fine-tuning tasks more and more difficult on edge devices with low computational resources. We explore a new visual adaptation paradigm called edge tuning, which treats large pretrained models as standalone feature extractors that run on powerful cloud servers. The fine-tuning carries out on edge devices with small networks which require low computational resources. Existing methods that are potentially suitable for our edge tuning paradigm are discussed. But, three major drawbacks hinder their application in edge tuning: low adaptation capability, large adapter network, and high information transfer overhead. To address these issues, we propose Minimal Interaction Edge Tuning, or MIET, which reveals that the sum of intermediate features from pretrained models not only has minimal information transfer but also has high adaptation capability. With a lightweight attention-based adaptor network, MIET achieves information transfer efficiency, parameter efficiency, computational and memory efficiency, and at the same time demonstrates competitive results on various visual adaptation benchmarks.
comment: 9 pages
☆ Detection of Synthetic Face Images: Accuracy, Robustness, Generalization
An experimental study on detecting synthetic face images is presented. We collected a dataset, called FF5, of five fake face image generators, including recent diffusion models. We find that a simple model trained on a specific image generator can achieve near-perfect accuracy in separating synthetic and real images. The model handles common image distortions (reduced resolution, compression) by using data augmentation. Moreover, partial manipulations, where synthetic images are blended into real ones by inpainting, are identified and the area of the manipulation is localized by a simple model of YOLO architecture. However, the model turned out to be vulnerable to adversarial attacks and does not generalize to unseen generators. Failure to generalize to detect images produced by a newer generator also occurs for recent state-of-the-art methods, which we tested on Realistic Vision, a fine-tuned version of StabilityAI's Stable Diffusion image generator.
☆ Principal Component Clustering for Semantic Segmentation in Synthetic Data Generation CVPR
This technical report outlines our method for generating a synthetic dataset for semantic segmentation using a latent diffusion model. Our approach eliminates the need for additional models specifically trained on segmentation data and is part of our submission to the CVPR 2024 workshop challenge, entitled CVPR 2024 workshop challenge "SyntaGen Harnessing Generative Models for Synthetic Visual Datasets". Our methodology uses self-attentions to facilitate a novel head-wise semantic information condensation, thereby enabling the direct acquisition of class-agnostic image segmentation from the Stable Diffusion latents. Furthermore, we employ non-prompt-influencing cross-attentions from text to pixel, thus facilitating the classification of the previously generated masks. Finally, we propose a mask refinement step by using only the output image by Stable Diffusion.
comment: This is a technical report for a submission to the CVPR "SyntaGen - Harnessing Generative Models for Synthetic Visual Datasets" workshop challenge. The report is already uploaded to the workshop's homepage https://syntagen.github.io/
☆ SKD-TSTSAN: Three-Stream Temporal-Shift Attention Network Based on Self-Knowledge Distillation for Micro-Expression Recognition
Micro-expressions (MEs) are subtle facial movements that occur spontaneously when people try to conceal the real emotions. Micro-expression recognition (MER) is crucial in many fields, including criminal analysis and psychotherapy. However, MER is challenging since MEs have low intensity and ME datasets are small in size. To this end, a three-stream temporal-shift attention network based on self-knowledge distillation (SKD-TSTSAN) is proposed in this paper. Firstly, to address the low intensity of ME muscle movements, we utilize learning-based motion magnification modules to enhance the intensity of ME muscle movements. Secondly, we employ efficient channel attention (ECA) modules in the local-spatial stream to make the network focus on facial regions that are highly relevant to MEs. In addition, temporal shift modules (TSMs) are used in the dynamic-temporal stream, which enables temporal modeling with no additional parameters by mixing ME motion information from two different temporal domains. Furthermore, we introduce self-knowledge distillation (SKD) into the MER task by introducing auxiliary classifiers and using the deepest section of the network for supervision, encouraging all blocks to fully explore the features of the training set. Finally, extensive experiments are conducted on four ME datasets: CASME II, SAMM, MMEW, and CAS(ME)3. The experimental results demonstrate that our SKD-TSTSAN outperforms other existing methods and achieves new state-of-the-art performance. Our code will be available at https://github.com/GuanghaoZhu663/SKD-TSTSAN.
☆ MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions
The integration of neural-network-based systems into clinical practice is limited by challenges related to domain generalization and robustness. The computer vision community established benchmarks such as ImageNet-C as a fundamental prerequisite to measure progress towards those challenges. Similar datasets are largely absent in the medical imaging community which lacks a comprehensive benchmark that spans across imaging modalities and applications. To address this gap, we create and open-source MedMNIST-C, a benchmark dataset based on the MedMNIST+ collection covering 12 datasets and 9 imaging modalities. We simulate task and modality-specific image corruptions of varying severity to comprehensively evaluate the robustness of established algorithms against real-world artifacts and distribution shifts. We further provide quantitative evidence that our simple-to-use artificial corruptions allow for highly performant, lightweight data augmentation to enhance model robustness. Unlike traditional, generic augmentation strategies, our approach leverages domain knowledge, exhibiting significantly higher robustness when compared to widely adopted methods. By introducing MedMNIST-C and open-sourcing the corresponding library allowing for targeted data augmentations, we contribute to the development of increasingly robust methods tailored to the challenges of medical imaging. The code is available at https://github.com/francescodisalvo05/medmnistc-api}{github.com/francescodisalvo05/medmnistc-api.
☆ Point Tree Transformer for Point Cloud Registration
Point cloud registration is a fundamental task in the fields of computer vision and robotics. Recent developments in transformer-based methods have demonstrated enhanced performance in this domain. However, the standard attention mechanism utilized in these methods often integrates many low-relevance points, thereby struggling to prioritize its attention weights on sparse yet meaningful points. This inefficiency leads to limited local structure modeling capabilities and quadratic computational complexity. To overcome these limitations, we propose the Point Tree Transformer (PTT), a novel transformer-based approach for point cloud registration that efficiently extracts comprehensive local and global features while maintaining linear computational complexity. The PTT constructs hierarchical feature trees from point clouds in a coarse-to-dense manner, and introduces a novel Point Tree Attention (PTA) mechanism, which follows the tree structure to facilitate the progressive convergence of attended regions towards salient points. Specifically, each tree layer selectively identifies a subset of key points with the highest attention scores. Subsequent layers focus attention on areas of significant relevance, derived from the child points of the selected point set. The feature extraction process additionally incorporates coarse point features that capture high-level semantic information, thus facilitating local structure modeling and the progressive integration of multiscale information. Consequently, PTA empowers the model to concentrate on crucial local structures and derive detailed local information while maintaining linear computational complexity. Extensive experiments conducted on the 3DMatch, ModelNet40, and KITTI datasets demonstrate that our method achieves superior performance over the state-of-the-art methods.
☆ Tell Me Where You Are: Multimodal LLMs Meet Place Recognition
Large language models (LLMs) exhibit a variety of promising capabilities in robotics, including long-horizon planning and commonsense reasoning. However, their performance in place recognition is still underexplored. In this work, we introduce multimodal LLMs (MLLMs) to visual place recognition (VPR), where a robot must localize itself using visual observations. Our key design is to use vision-based retrieval to propose several candidates and then leverage language-based reasoning to carefully inspect each candidate for a final decision. Specifically, we leverage the robust visual features produced by off-the-shelf vision foundation models (VFMs) to obtain several candidate locations. We then prompt an MLLM to describe the differences between the current observation and each candidate in a pairwise manner, and reason about the best candidate based on these descriptions. Our results on three datasets demonstrate that integrating the general-purpose visual features from VFMs with the reasoning capabilities of MLLMs already provides an effective place recognition solution, without any VPR-specific supervised training. We believe our work can inspire new possibilities for applying and designing foundation models, i.e., VFMs, LLMs, and MLLMs, to enhance the localization and navigation of mobile robots.
☆ TRIP: Trainable Region-of-Interest Prediction for Hardware-Efficient Neuromorphic Processing on Event-based Vision
Neuromorphic processors are well-suited for efficiently handling sparse events from event-based cameras. However, they face significant challenges in the growth of computing demand and hardware costs as the input resolution increases. This paper proposes the Trainable Region-of-Interest Prediction (TRIP), the first hardware-efficient hard attention framework for event-based vision processing on a neuromorphic processor. Our TRIP framework actively produces low-resolution Region-of-Interest (ROIs) for efficient and accurate classification. The framework exploits sparse events' inherent low information density to reduce the overhead of ROI prediction. We introduced extensive hardware-aware optimizations for TRIP and implemented the hardware-optimized algorithm on the SENECA neuromorphic processor. We utilized multiple event-based classification datasets for evaluation. Our approach achieves state-of-the-art accuracies in all datasets and produces reasonable ROIs with varying locations and sizes. On the DvsGesture dataset, our solution requires 46x less computation than the state-of-the-art while achieving higher accuracy. Furthermore, TRIP enables more than 2x latency and energy improvements on the SENECA neuromorphic processor compared to the conventional solution.
comment: Accepted in ICONS 2024
☆ TSynD: Targeted Synthetic Data Generation for Enhanced Medical Image Classification
The usage of medical image data for the training of large-scale machine learning approaches is particularly challenging due to its scarce availability and the costly generation of data annotations, typically requiring the engagement of medical professionals. The rapid development of generative models allows towards tackling this problem by leveraging large amounts of realistic synthetically generated data for the training process. However, randomly choosing synthetic samples, might not be an optimal strategy. In this work, we investigate the targeted generation of synthetic training data, in order to improve the accuracy and robustness of image classification. Therefore, our approach aims to guide the generative model to synthesize data with high epistemic uncertainty, since large measures of epistemic uncertainty indicate underrepresented data points in the training set. During the image generation we feed images reconstructed by an auto encoder into the classifier and compute the mutual information over the class-probability distribution as a measure for uncertainty.We alter the feature space of the autoencoder through an optimization process with the objective of maximizing the classifier uncertainty on the decoded image. By training on such data we improve the performance and robustness against test time data augmentations and adversarial attacks on several classifications tasks.
☆ UHD-IQA Benchmark Database: Pushing the Boundaries of Blind Photo Quality Assessment
We introduce a novel Image Quality Assessment (IQA) dataset comprising 6073 UHD-1 (4K) images, annotated at a fixed width of 3840 pixels. Contrary to existing No-Reference (NR) IQA datasets, ours focuses on highly aesthetic photos of high technical quality, filling a gap in the literature. The images, carefully curated to exclude synthetic content, are sufficiently diverse to train general NR-IQA models. The dataset is annotated with perceptual quality ratings obtained through a crowdsourcing study. Ten expert raters, comprising photographers and graphics artists, assessed each image at least twice in multiple sessions spanning several days, resulting in highly reliable labels. Annotators were rigorously selected based on several metrics, including self-consistency, to ensure their reliability. The dataset includes rich metadata with user and machine-generated tags from over 5,000 categories and popularity indicators such as favorites, likes, downloads, and views. With its unique characteristics, such as its focus on high-quality images, reliable crowdsourced annotations, and high annotation resolution, our dataset opens up new opportunities for advancing perceptual image quality assessment research and developing practical NR-IQA models that apply to modern photos. Our dataset is available at https://database.mmsp-kn.de/uhd-iqa-benchmark-database.html
☆ Medical Image Segmentation Using Directional Window Attention
Accurate segmentation of medical images is crucial for diagnostic purposes, including cell segmentation, tumor identification, and organ localization. Traditional convolutional neural network (CNN)-based approaches struggled to achieve precise segmentation results due to their limited receptive fields, particularly in cases involving multi-organ segmentation with varying shapes and sizes. The transformer-based approaches address this limitation by leveraging the global receptive field, but they often face challenges in capturing local information required for pixel-precise segmentation. In this work, we introduce DwinFormer, a hierarchical encoder-decoder architecture for medical image segmentation comprising a directional window (Dwin) attention and global self-attention (GSA) for feature encoding. The focus of our design is the introduction of Dwin block within DwinFormer that effectively captures local and global information along the horizontal, vertical, and depthwise directions of the input feature map by separately performing attention in each of these directional volumes. To this end, our Dwin block introduces a nested Dwin attention (NDA) that progressively increases the receptive field in horizontal, vertical, and depthwise directions and a convolutional Dwin attention (CDA) that captures local contextual information for the attention computation. While the proposed Dwin block captures local and global dependencies at the first two high-resolution stages of DwinFormer, the GSA block encodes global dependencies at the last two lower-resolution stages. Experiments over the challenging 3D Synapse Multi-organ dataset and Cell HMS dataset demonstrate the benefits of our DwinFormer over the state-of-the-art approaches. Our source code will be publicly available at \url{https://github.com/Daniyanaj/DWINFORMER}.
comment: 5 pages
☆ Cross-Modal Spherical Aggregation for Weakly Supervised Remote Sensing Shadow Removal
Remote sensing shadow removal, which aims to recover contaminated surface information, is tricky since shadows typically display overwhelmingly low illumination intensities. In contrast, the infrared image is robust toward significant light changes, providing visual clues complementary to the visible image. Nevertheless, the existing methods ignore the collaboration between heterogeneous modalities, leading to undesired quality degradation. To fill this gap, we propose a weakly supervised shadow removal network with a spherical feature space, dubbed S2-ShadowNet, to explore the best of both worlds for visible and infrared modalities. Specifically, we employ a modal translation (visible-to-infrared) model to learn the cross-domain mapping, thus generating realistic infrared samples. Then, Swin Transformer is utilized to extract strong representational visible/infrared features. Simultaneously, the extracted features are mapped to the smooth spherical manifold, which alleviates the domain shift through regularization. Well-designed similarity loss and orthogonality loss are embedded into the spherical space, prompting the separation of private visible/infrared features and the alignment of shared visible/infrared features through constraints on both representation content and orientation. Such a manner encourages implicit reciprocity between modalities, thus providing a novel insight into shadow removal. Notably, ground truth is not available in practice, thus S2-ShadowNet is trained by cropping shadow and shadow-free patches from the shadow image itself, avoiding stereotypical and strict pair data acquisition. More importantly, we contribute a large-scale weakly supervised shadow removal benchmark, including 4000 shadow images with corresponding shadow masks.
comment: 9pages, 11 figures
☆ The Tree of Diffusion Life: Evolutionary Embeddings to Understand the Generation Process of Diffusion Models
Diffusion models generate high-quality samples by corrupting data with Gaussian noise and iteratively reconstructing it with deep learning, slowly transforming noisy images into refined outputs. Understanding this data evolution is important for interpretability but is complex due to its high-dimensional evolutionary nature. While traditional dimensionality reduction methods like t-distributed stochastic neighborhood embedding (t-SNE) aid in understanding high-dimensional spaces, they neglect evolutionary structure preservation. Hence, we propose Tree of Diffusion Life (TDL), a method to understand data evolution in the generative process of diffusion models. TDL samples a diffusion model's generative space via instances with varying prompts and employs image encoders to extract semantic meaning from these samples, projecting them to an intermediate space. It employs a novel evolutionary embedding algorithm that explicitly encodes the iterations while preserving the high-dimensional relations, facilitating the visualization of data evolution. This embedding leverages three metrics: a standard t-SNE loss to group semantically similar elements, a displacement loss to group elements from the same iteration step, and an instance alignment loss to align elements of the same instance across iterations. We present rectilinear and radial layouts to represent iterations, enabling comprehensive exploration. We assess various feature extractors and highlight TDL's potential with prominent diffusion models like GLIDE and Stable Diffusion with different prompt sets. TDL simplifies understanding data evolution within diffusion models, offering valuable insights into their functioning.
☆ Investigating Self-Supervised Methods for Label-Efficient Learning
Vision transformers combined with self-supervised learning have enabled the development of models which scale across large datasets for several downstream tasks like classification, segmentation and detection. The low-shot learning capability of these models, across several low-shot downstream tasks, has been largely under explored. We perform a system level study of different self supervised pretext tasks, namely contrastive learning, clustering, and masked image modelling for their low-shot capabilities by comparing the pretrained models. In addition we also study the effects of collapse avoidance methods, namely centring, ME-MAX, sinkhorn, on these downstream tasks. Based on our detailed analysis, we introduce a framework involving both mask image modelling and clustering as pretext tasks, which performs better across all low-shot downstream tasks, including multi-class classification, multi-label classification and semantic segmentation. Furthermore, when testing the model on full scale datasets, we show performance gains in multi-class classification, multi-label classification and semantic segmentation.
☆ Continuous Urban Change Detection from Satellite Image Time Series with Temporal Feature Refinement and Multi-Task Integration
Urbanization advances at unprecedented rates, resulting in negative effects on the environment and human well-being. Remote sensing has the potential to mitigate these effects by supporting sustainable development strategies with accurate information on urban growth. Deep learning-based methods have achieved promising urban change detection results from optical satellite image pairs using convolutional neural networks (ConvNets), transformers, and a multi-task learning setup. However, transformers have not been leveraged for urban change detection with multi-temporal data, i.e., >2 images, and multi-task learning methods lack integration approaches that combine change and segmentation outputs. To fill this research gap, we propose a continuous urban change detection method that identifies changes in each consecutive image pair of a satellite image time series. Specifically, we propose a temporal feature refinement (TFR) module that utilizes self-attention to improve ConvNet-based multi-temporal building representations. Furthermore, we propose a multi-task integration (MTI) module that utilizes Markov networks to find an optimal building map time series based on segmentation and dense change outputs. The proposed method effectively identifies urban changes based on high-resolution satellite image time series acquired by the PlanetScope constellation (F1 score 0.551) and Gaofen-2 (F1 score 0.440). Moreover, our experiments on two challenging datasets demonstrate the effectiveness of the proposed method compared to bi-temporal and multi-temporal urban change detection and segmentation methods.
comment: Submitted to IEEE Transactions on Geoscience and Remote Sensing, Code will be available at https://github.com/SebastianHafner/ContUrbanCD.git
☆ Pseudo Labelling for Enhanced Masked Autoencoders
Masked Image Modeling (MIM)-based models, such as SdAE, CAE, GreenMIM, and MixAE, have explored different strategies to enhance the performance of Masked Autoencoders (MAE) by modifying prediction, loss functions, or incorporating additional architectural components. In this paper, we propose an enhanced approach that boosts MAE performance by integrating pseudo labelling for both class and data tokens, alongside replacing the traditional pixel-level reconstruction with token-level reconstruction. This strategy uses cluster assignments as pseudo labels to promote instance-level discrimination within the network, while token reconstruction requires generation of discrete tokens encapturing local context. The targets for pseudo labelling and reconstruction needs to be generated by a teacher network. To disentangle the generation of target pseudo labels and the reconstruction of the token features, we decouple the teacher into two distinct models, where one serves as a labelling teacher and the other as a reconstruction teacher. This separation proves empirically superior to a single teacher, while having negligible impact on throughput and memory consumption. Incorporating pseudo-labelling as an auxiliary task has demonstrated notable improvements in ImageNet-1K and other downstream tasks, including classification, semantic segmentation, and detection.
☆ Using joint angles based on the international biomechanical standards for human action recognition and related tasks
Keypoint data has received a considerable amount of attention in machine learning for tasks like action detection and recognition. However, human experts in movement such as doctors, physiotherapists, sports scientists and coaches use a notion of joint angles standardised by the International Society of Biomechanics to precisely and efficiently communicate static body poses and movements. In this paper, we introduce the basic biomechanical notions and show how they can be used to convert common keypoint data into joint angles that uniquely describe the given pose and have various desirable mathematical properties, such as independence of both the camera viewpoint and the person performing the action. We experimentally demonstrate that the joint angle representation of keypoint data is suitable for machine learning applications and can in some cases bring an immediate performance gain. The use of joint angles as a human meaningful representation of kinematic data is in particular promising for applications where interpretability and dialog with human experts is important, such as many sports and medical applications. To facilitate further research in this direction, we will release a python package to convert keypoint data into joint angles as outlined in this paper.
☆ Mamba24/8D: Enhancing Global Interaction in Point Clouds via State Space Model
Transformers have demonstrated impressive results for 3D point cloud semantic segmentation. However, the quadratic complexity of transformer makes computation cost high, limiting the number of points that can be processed simultaneously and impeding the modeling of long-range dependencies. Drawing inspiration from the great potential of recent state space models (SSM) for long sequence modeling, we introduce Mamba, a SSM-based architecture, to the point cloud domain and propose Mamba24/8D, which has strong global modeling capability under linear complexity. Specifically, to make disorderness of point clouds fit in with the causal nature of Mamba, we propose a multi-path serialization strategy applicable to point clouds. Besides, we propose the ConvMamba block to compensate for the shortcomings of Mamba in modeling local geometries and in unidirectional modeling. Mamba24/8D obtains state of the art results on several 3D point cloud segmentation tasks, including ScanNet v2, ScanNet200 and nuScenes, while its effectiveness is validated by extensive experiments.
☆ Implicit-Zoo: A Large-Scale Dataset of Neural Implicit Functions for 2D Images and 3D Scenes
Neural implicit functions have demonstrated significant importance in various areas such as computer vision, graphics. Their advantages include the ability to represent complex shapes and scenes with high fidelity, smooth interpolation capabilities, and continuous representations. Despite these benefits, the development and analysis of implicit functions have been limited by the lack of comprehensive datasets and the substantial computational resources required for their implementation and evaluation. To address these challenges, we introduce "Implicit-Zoo": a large-scale dataset requiring thousands of GPU training days designed to facilitate research and development in this field. Our dataset includes diverse 2D and 3D scenes, such as CIFAR-10, ImageNet-1K, and Cityscapes for 2D image tasks, and the OmniObject3D dataset for 3D vision tasks. We ensure high quality through strict checks, refining or filtering out low-quality data. Using Implicit-Zoo, we showcase two immediate benefits as it enables to: (1) learn token locations for transformer models; (2) directly regress 3D cameras poses of 2D images with respect to NeRF models. This in turn leads to an improved performance in all three task of image classification, semantic segmentation, and 3D pose regression, thereby unlocking new avenues for research.
☆ Advancing Question Answering on Handwritten Documents: A State-of-the-Art Recognition-Based Model for HW-SQuAD
Question-answering handwritten documents is a challenging task with numerous real-world applications. This paper proposes a novel recognition-based approach that improves upon the previous state-of-the-art on the HW-SQuAD and BenthamQA datasets. Our model incorporates transformer-based document retrieval and ensemble methods at the model level, achieving an Exact Match score of 82.02% and 92.55% in HW-SQuAD and BenthamQA datasets, respectively, surpassing the previous best recognition-based approach by 10.89% and 26%. We also enhance the document retrieval component, boosting the top-5 retrieval accuracy from 90% to 95.30%. Our results demonstrate the significance of our proposed approach in advancing question answering on handwritten documents. The code and trained models will be publicly available to facilitate future research in this critical area of natural language.
comment: 16 pages
☆ Deep learning-based brain segmentation model performance validation with clinical radiotherapy CT
Manual segmentation of medical images is labor intensive and especially challenging for images with poor contrast or resolution. The presence of disease exacerbates this further, increasing the need for an automated solution. To this extent, SynthSeg is a robust deep learning model designed for automatic brain segmentation across various contrasts and resolutions. This study validates the SynthSeg robust brain segmentation model on computed tomography (CT), using a multi-center dataset. An open access dataset of 260 paired CT and magnetic resonance imaging (MRI) from radiotherapy patients treated in 5 centers was collected. Brain segmentations from CT and MRI were obtained with SynthSeg model, a component of the Freesurfer imaging suite. These segmentations were compared and evaluated using Dice scores and Hausdorff 95 distance (HD95), treating MRI-based segmentations as the ground truth. Brain regions that failed to meet performance criteria were excluded based on automated quality control (QC) scores. Dice scores indicate a median overlap of 0.76 (IQR: 0.65-0.83). The median HD95 is 2.95 mm (IQR: 1.73-5.39). QC score based thresholding improves median dice by 0.1 and median HD95 by 0.05mm. Morphological differences related to sex and age, as detected by MRI, were also replicated with CT, with an approximate 17% difference between the CT and MRI results for sex and 10% difference between the results for age. SynthSeg can be utilized for CT-based automatic brain segmentation, but only in applications where precision is not essential. CT performance is lower than MRI based on the integrated QC scores, but low-quality segmentations can be excluded with QC-based thresholding. Additionally, performing CT-based neuroanatomical studies is encouraged, as the results show correlations in sex- and age-based analyses similar to those found with MRI.
comment: 15 pages, 9 figures, 3 supplementary data csv's, 1 supplementary file with 1 figure
☆ Real-Time Remote Control via VR over Limited Wireless Connectivity SC
This work introduces a solution to enhance human-robot interaction over limited wireless connectivity. The goal is toenable remote control of a robot through a virtual reality (VR)interface, ensuring a smooth transition to autonomous mode in the event of connectivity loss. The VR interface provides accessto a dynamic 3D virtual map that undergoes continuous updatesusing real-time sensor data collected and transmitted by therobot. Furthermore, the robot monitors wireless connectivity and automatically switches to a autonomous mode in scenarios with limited connectivity. By integrating four key functionalities: real-time mapping, remote control through glasses VR, continuous monitoring of wireless connectivity, and autonomous navigation during limited connectivity, we achieve seamless end-to-end operation.
comment: Accepted in ISCC 2024 conference
☆ Consensus Learning with Deep Sets for Essential Matrix Estimation
Robust estimation of the essential matrix, which encodes the relative position and orientation of two cameras, is a fundamental step in structure from motion pipelines. Recent deep-based methods achieved accurate estimation by using complex network architectures that involve graphs, attention layers, and hard pruning steps. Here, we propose a simpler network architecture based on Deep Sets. Given a collection of point matches extracted from two images, our method identifies outlier point matches and models the displacement noise in inlier matches. A weighted DLT module uses these predictions to regress the essential matrix. Our network achieves accurate recovery that is superior to existing networks with significantly more complex architectures.
☆ Depth-Guided Semi-Supervised Instance Segmentation
Semi-Supervised Instance Segmentation (SSIS) aims to leverage an amount of unlabeled data during training. Previous frameworks primarily utilized the RGB information of unlabeled images to generate pseudo-labels. However, such a mechanism often introduces unstable noise, as a single instance can display multiple RGB values. To overcome this limitation, we introduce a Depth-Guided (DG) SSIS framework. This framework uses depth maps extracted from input images, which represent individual instances with closely associated distance values, offering precise contours for distinct instances. Unlike RGB data, depth maps provide a unique perspective, making their integration into the SSIS process complex. To this end, we propose Depth Feature Fusion, which integrates features extracted from depth estimation. This integration allows the model to understand depth information better and ensure its effective utilization. Additionally, to manage the variability of depth images during training, we introduce the Depth Controller. This component enables adaptive adjustments of the depth map, enhancing convergence speed and dynamically balancing the loss weights between RGB and depth maps. Extensive experiments conducted on the COCO and Cityscapes datasets validate the efficacy of our proposed method. Our approach establishes a new benchmark for SSIS, outperforming previous methods. Specifically, our DG achieves 22.29%, 31.47%, and 35.14% mAP for 1%, 5%, and 10% labeled data on the COCO dataset, respectively.
comment: 12 pages, 6 figures, 4 tables
☆ Less can be more: representational vs. stereotypical gender bias in facial expression recognition
Machine learning models can inherit biases from their training data, leading to discriminatory or inaccurate predictions. This is particularly concerning with the increasing use of large, unsupervised datasets for training foundational models. Traditionally, demographic biases within these datasets have not been well-understood, limiting our ability to understand how they propagate to the models themselves. To address this issue, this paper investigates the propagation of demographic biases from datasets into machine learning models. We focus on the gender demographic component, analyzing two types of bias: representational and stereotypical. For our analysis, we consider the domain of facial expression recognition (FER), a field known to exhibit biases in most popular datasets. We use Affectnet, one of the largest FER datasets, as our baseline for carefully designing and generating subsets that incorporate varying strengths of both representational and stereotypical bias. Subsequently, we train several models on these biased subsets, evaluating their performance on a common test set to assess the propagation of bias into the models' predictions. Our results show that representational bias has a weaker impact than expected. Models exhibit a good generalization ability even in the absence of one gender in the training dataset. Conversely, stereotypical bias has a significantly stronger impact, primarily concentrated on the biased class, although it can also influence predictions for unbiased classes. These results highlight the need for a bias analysis that differentiates between types of bias, which is crucial for the development of effective bias mitigation strategies.
comment: 21 pages including appendix, 11 figures
☆ SyncNoise: Geometrically Consistent Noise Prediction for Text-based 3D Scene Editing
Text-based 2D diffusion models have demonstrated impressive capabilities in image generation and editing. Meanwhile, the 2D diffusion models also exhibit substantial potentials for 3D editing tasks. However, how to achieve consistent edits across multiple viewpoints remains a challenge. While the iterative dataset update method is capable of achieving global consistency, it suffers from slow convergence and over-smoothed textures. We propose SyncNoise, a novel geometry-guided multi-view consistent noise editing approach for high-fidelity 3D scene editing. SyncNoise synchronously edits multiple views with 2D diffusion models while enforcing multi-view noise predictions to be geometrically consistent, which ensures global consistency in both semantic structure and low-frequency appearance. To further enhance local consistency in high-frequency details, we set a group of anchor views and propagate them to their neighboring frames through cross-view reprojection. To improve the reliability of multi-view correspondences, we introduce depth supervision during training to enhance the reconstruction of precise geometries. Our method achieves high-quality 3D editing results respecting the textual instructions, especially in scenes with complex textures, by enhancing geometric consistency at the noise and pixel levels.
comment: 16 pages, 13 figures
☆ Automatic infant 2D pose estimation from videos: comparing seven deep neural network methods
Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There is rapid development of human pose estimation methods in computer vision thanks to advances in deep learning and machine learning. However, these methods are trained on datasets featuring adults in different contexts. This work tests and compares seven popular methods (AlphaPose, DeepLabCut/DeeperCut, Detectron2, HRNet, MediaPipe/BlazePose, OpenPose, and ViTPose) on videos of infants in supine position. Surprisingly, all methods except DeepLabCut and MediaPipe have competitive performance without additional finetuning, with ViTPose performing best. Next to standard performance metrics (object keypoint similarity, average precision and recall), we introduce errors expressed in the neck-mid-hip ratio and additionally study missed and redundant detections and the reliability of the internal confidence ratings of the different methods, which are relevant for downstream tasks. Among the networks with competitive performance, only AlphaPose could run close to real time (27 fps) on our machine. We provide documented Docker containers or instructions for all the methods we used, our analysis scripts, and processed data at https://hub.docker.com/u/humanoidsctu and https://osf.io/x465b/.
comment: 21 pages, 3 figures, 14 tables
☆ Forget but Recall: Incremental Latent Rectification in Continual Learning
Intrinsic capability to continuously learn a changing data stream is a desideratum of deep neural networks (DNNs). However, current DNNs suffer from catastrophic forgetting, which hinders remembering past knowledge. To mitigate this issue, existing Continual Learning (CL) approaches either retain exemplars for replay, regularize learning, or allocate dedicated capacity for new tasks. This paper investigates an unexplored CL direction for incremental learning called Incremental Latent Rectification or ILR. In a nutshell, ILR learns to propagate with correction (or rectify) the representation from the current trained DNN backward to the representation space of the old task, where performing predictive decisions is easier. This rectification process only employs a chain of small representation mapping networks, called rectifier units. Empirical experiments on several continual learning benchmarks, including CIFAR10, CIFAR100, and Tiny ImageNet, demonstrate the effectiveness and potential of this novel CL direction compared to existing representative CL methods.
☆ Semantic Deep Hiding for Robust Unlearnable Examples
Ensuring data privacy and protection has become paramount in the era of deep learning. Unlearnable examples are proposed to mislead the deep learning models and prevent data from unauthorized exploration by adding small perturbations to data. However, such perturbations (e.g., noise, texture, color change) predominantly impact low-level features, making them vulnerable to common countermeasures. In contrast, semantic images with intricate shapes have a wealth of high-level features, making them more resilient to countermeasures and potential for producing robust unlearnable examples. In this paper, we propose a Deep Hiding (DH) scheme that adaptively hides semantic images enriched with high-level features. We employ an Invertible Neural Network (INN) to invisibly integrate predefined images, inherently hiding them with deceptive perturbations. To enhance data unlearnability, we introduce a Latent Feature Concentration module, designed to work with the INN, regularizing the intra-class variance of these perturbations. To further boost the robustness of unlearnable examples, we design a Semantic Images Generation module that produces hidden semantic images. By utilizing similar semantic information, this module generates similar semantic images for samples within the same classes, thereby enlarging the inter-class distance and narrowing the intra-class distance. Extensive experiments on CIFAR-10, CIFAR-100, and an ImageNet subset, against 18 countermeasures, reveal that our proposed method exhibits outstanding robustness for unlearnable examples, demonstrating its efficacy in preventing unauthorized data exploitation.
comment: Accepted by TIFS 2024
☆ NerfBaselines: Consistent and Reproducible Evaluation of Novel View Synthesis Methods
Novel view synthesis is an important problem with many applications, including AR/VR, gaming, and simulations for robotics. With the recent rapid development of Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) methods, it is becoming difficult to keep track of the current state of the art (SoTA) due to methods using different evaluation protocols, codebases being difficult to install and use, and methods not generalizing well to novel 3D scenes. Our experiments support this claim by showing that tiny differences in evaluation protocols of various methods can lead to inconsistent reported metrics. To address these issues, we propose a framework called NerfBaselines, which simplifies the installation of various methods, provides consistent benchmarking tools, and ensures reproducibility. We validate our implementation experimentally by reproducing numbers reported in the original papers. To further improve the accessibility, we release a web platform where commonly used methods are compared on standard benchmarks. Web: https://jkulhanek.com/nerfbaselines
comment: Web: https://jkulhanek.com/nerfbaselines
☆ Q-DiT: Accurate Post-Training Quantization for Diffusion Transformers
Recent advancements in diffusion models, particularly the trend of architectural transformation from UNet-based Diffusion to Diffusion Transformer (DiT), have significantly improved the quality and scalability of image synthesis. Despite the incredible generative quality, the large computational requirements of these large-scale models significantly hinder the deployments in real-world scenarios. Post-training Quantization (PTQ) offers a promising solution by compressing model sizes and speeding up inference for the pretrained models while eliminating model retraining. However, we have observed the existing PTQ frameworks exclusively designed for both ViT and conventional Diffusion models fall into biased quantization and result in remarkable performance degradation. In this paper, we find that the DiTs typically exhibit considerable variance in terms of both weight and activation, which easily runs out of the limited numerical representations. To address this issue, we devise Q-DiT, which seamlessly integrates three techniques: fine-grained quantization to manage substantial variance across input channels of weights and activations, an automatic search strategy to optimize the quantization granularity and mitigate redundancies, and dynamic activation quantization to capture the activation changes across timesteps. Extensive experiments on the ImageNet dataset demonstrate the effectiveness of the proposed Q-DiT. Specifically, when quantizing DiT-XL/2 to W8A8 on ImageNet 256x256, Q-DiT achieves a remarkable reduction in FID by 1.26 compared to the baseline. Under a W4A8 setting, it maintains high fidelity in image generation, showcasing only a marginal increase in FID and setting a new benchmark for efficient, high-quality quantization in diffusion transformers. Code is available at \href{https://github.com/Juanerx/Q-DiT}{https://github.com/Juanerx/Q-DiT}.
☆ Masked Generative Extractor for Synergistic Representation and 3D Generation of Point Clouds
In the field of 2D image generation modeling and representation learning, Masked Generative Encoder (MAGE) has demonstrated the synergistic potential between generative modeling and representation learning. Inspired by this, we propose Point-MAGE to extend this concept to point cloud data. Specifically, this framework first utilizes a Vector Quantized Variational Autoencoder (VQVAE) to reconstruct a neural field representation of 3D shapes, thereby learning discrete semantic features of point patches. Subsequently, by combining the masking model with variable masking ratios, we achieve synchronous training for both generation and representation learning. Furthermore, our framework seamlessly integrates with existing point cloud self-supervised learning (SSL) models, thereby enhancing their performance. We extensively evaluate the representation learning and generation capabilities of Point-MAGE. In shape classification tasks, Point-MAGE achieved an accuracy of 94.2% on the ModelNet40 dataset and 92.9% (+1.3%) on the ScanObjectNN dataset. Additionally, it achieved new state-of-the-art performance in few-shot learning and part segmentation tasks. Experimental results also confirmed that Point-MAGE can generate detailed and high-quality 3D shapes in both unconditional and conditional settings.
☆ Robustly Optimized Deep Feature Decoupling Network for Fatty Liver Diseases Detection MICCAI 2024
Current medical image classification efforts mainly aim for higher average performance, often neglecting the balance between different classes. This can lead to significant differences in recognition accuracy between classes and obvious recognition weaknesses. Without the support of massive data, deep learning faces challenges in fine-grained classification of fatty liver. In this paper, we propose an innovative deep learning framework that combines feature decoupling and adaptive adversarial training. Firstly, we employ two iteratively compressed decouplers to supervised decouple common features and specific features related to fatty liver in abdominal ultrasound images. Subsequently, the decoupled features are concatenated with the original image after transforming the color space and are fed into the classifier. During adversarial training, we adaptively adjust the perturbation and balance the adversarial strength by the accuracy of each class. The model will eliminate recognition weaknesses by correctly classifying adversarial samples, thus improving recognition robustness. Finally, the accuracy of our method improved by 4.16%, achieving 82.95%. As demonstrated by extensive experiments, our method is a generalized learning framework that can be directly used to eliminate the recognition weaknesses of any classifier while improving its average performance. Code is available at https://github.com/HP-ML/MICCAI2024.
comment: MICCAI 2024
☆ XAMI -- A Benchmark Dataset for Artefact Detection in XMM-Newton Optical Images SP
Reflected or scattered light produce artefacts in astronomical observations that can negatively impact the scientific study. Hence, automated detection of these artefacts is highly beneficial, especially with the increasing amounts of data gathered. Machine learning methods are well-suited to this problem, but currently there is a lack of annotated data to train such approaches to detect artefacts in astronomical observations. In this work, we present a dataset of images from the XMM-Newton space telescope Optical Monitoring camera showing different types of artefacts. We hand-annotated a sample of 1000 images with artefacts which we use to train automated ML methods. We further demonstrate techniques tailored for accurate detection and masking of artefacts using instance segmentation. We adopt a hybrid approach, combining knowledge from both convolutional neural networks (CNNs) and transformer-based models and use their advantages in segmentation. The presented method and dataset will advance artefact detection in astronomical observations by providing a reproducible baseline. All code and data are made available (https://github.com/ESA-Datalabs/XAMI-model and https://github.com/ESA-Datalabs/XAMI-dataset).
comment: submitted to SPAICE 2024
☆ DMF-Net: Image-Guided Point Cloud Completion with Dual-Channel Modality Fusion and Shape-Aware Upsampling Transformer
In this paper we study the task of a single-view image-guided point cloud completion. Existing methods have got promising results by fusing the information of image into point cloud explicitly or implicitly. However, given that the image has global shape information and the partial point cloud has rich local details, We believe that both modalities need to be given equal attention when performing modality fusion. To this end, we propose a novel dual-channel modality fusion network for image-guided point cloud completion(named DMF-Net), in a coarse-to-fine manner. In the first stage, DMF-Net takes a partial point cloud and corresponding image as input to recover a coarse point cloud. In the second stage, the coarse point cloud will be upsampled twice with shape-aware upsampling transformer to get the dense and complete point cloud. Extensive quantitative and qualitative experimental results show that DMF-Net outperforms the state-of-the-art unimodal and multimodal point cloud completion works on ShapeNet-ViPC dataset.
☆ Zero-Shot Long-Form Video Understanding through Screenplay CVPR'2024
The Long-form Video Question-Answering task requires the comprehension and analysis of extended video content to respond accurately to questions by utilizing both temporal and contextual information. In this paper, we present MM-Screenplayer, an advanced video understanding system with multi-modal perception capabilities that can convert any video into textual screenplay representations. Unlike previous storytelling methods, we organize video content into scenes as the basic unit, rather than just visually continuous shots. Additionally, we developed a ``Look Back'' strategy to reassess and validate uncertain information, particularly targeting breakpoint mode. MM-Screenplayer achieved highest score in the CVPR'2024 LOng-form VidEo Understanding (LOVEU) Track 1 Challenge, with a global accuracy of 87.5% and a breakpoint accuracy of 68.8%.
comment: Highest Score Award to the CVPR'2024 LOVEU Track 1 Challenge
☆ Towards Open-set Camera 3D Object Detection
Traditional camera 3D object detectors are typically trained to recognize a predefined set of known object classes. In real-world scenarios, these detectors may encounter unknown objects outside the training categories and fail to identify them correctly. To address this gap, we present OS-Det3D (Open-set Camera 3D Object Detection), a two-stage training framework enhancing the ability of camera 3D detectors to identify both known and unknown objects. The framework involves our proposed 3D Object Discovery Network (ODN3D), which is specifically trained using geometric cues such as the location and scale of 3D boxes to discover general 3D objects. ODN3D is trained in a class-agnostic manner, and the provided 3D object region proposals inherently come with data noise. To boost accuracy in identifying unknown objects, we introduce a Joint Objectness Selection (JOS) module. JOS selects the pseudo ground truth for unknown objects from the 3D object region proposals of ODN3D by combining the ODN3D objectness and camera feature attention objectness. Experiments on the nuScenes and KITTI datasets demonstrate the effectiveness of our framework in enabling camera 3D detectors to successfully identify unknown objects while also improving their performance on known objects.
☆ Image-Guided Outdoor LiDAR Perception Quality Assessment for Autonomous Driving
LiDAR is one of the most crucial sensors for autonomous vehicle perception. However, current LiDAR-based point cloud perception algorithms lack comprehensive and rigorous LiDAR quality assessment methods, leading to uncertainty in detection performance. Additionally, existing point cloud quality assessment algorithms are predominantly designed for indoor environments or single-object scenarios. In this paper, we introduce a novel image-guided point cloud quality assessment algorithm for outdoor autonomous driving environments, named the Image-Guided Outdoor Point Cloud Quality Assessment (IGO-PQA) algorithm. Our proposed algorithm comprises two main components. The first component is the IGO-PQA generation algorithm, which leverages point cloud data, corresponding RGB surrounding view images, and agent objects' ground truth annotations to generate an overall quality score for a single-frame LiDAR-based point cloud. The second component is a transformer-based IGO-PQA regression algorithm for no-reference outdoor point cloud quality assessment. This regression algorithm allows for the direct prediction of IGO-PQA scores in an online manner, without requiring image data and object ground truth annotations. We evaluate our proposed algorithm using the nuScenes and Waymo open datasets. The IGO-PQA generation algorithm provides consistent and reasonable perception quality indices. Furthermore, our proposed IGO-PQA regression algorithm achieves a Pearson Linear Correlation Coefficient (PLCC) of 0.86 on the nuScenes dataset and 0.97 on the Waymo dataset.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ Disentangled Motion Modeling for Video Frame Interpolation
Video frame interpolation (VFI) aims to synthesize intermediate frames in between existing frames to enhance visual smoothness and quality. Beyond the conventional methods based on the reconstruction loss, recent works employ the high quality generative models for perceptual quality. However, they require complex training and large computational cost for modeling on the pixel space. In this paper, we introduce disentangled Motion Modeling (MoMo), a diffusion-based approach for VFI that enhances visual quality by focusing on intermediate motion modeling. We propose disentangled two-stage training process, initially training a frame synthesis model to generate frames from input pairs and their optical flows. Subsequently, we propose a motion diffusion model, equipped with our novel diffusion U-Net architecture designed for optical flow, to produce bi-directional flows between frames. This method, by leveraging the simpler low-frequency representation of motions, achieves superior perceptual quality with reduced computational demands compared to generative modeling methods on the pixel space. Our method surpasses state-of-the-art methods in perceptual metrics across various benchmarks, demonstrating its efficacy and efficiency in VFI. Our code is available at: https://github.com/JHLew/MoMo
☆ Scalp Diagnostic System With Label-Free Segmentation and Training-Free Image Translation
Scalp diseases and alopecia affect millions of people around the world, underscoring the urgent need for early diagnosis and management of the disease.However, the development of a comprehensive AI-based diagnosis system encompassing these conditions remains an underexplored domain due to the challenges associated with data imbalance and the costly nature of labeling. To address these issues, we propose ``ScalpVision", an AI-driven system for the holistic diagnosis of scalp diseases and alopecia.In ScalpVision, effective hair segmentation is achieved using pseudo image-label pairs and an innovative prompting method in the absence of traditional hair masking labels. This approach is crucial for extracting key features such as hair thickness and count, which are then used to assess alopecia severity. Additionally, ScalpVision introduces DiffuseIT-M, a generative model adept at dataset augmentation while maintaining hair information, facilitating improved predictions of scalp disease severity. Our experimental results affirm ScalpVision's efficiency in diagnosing a variety of scalp conditions and alopecia, showcasing its potential as a valuable tool in dermatological care.
comment: IEEE Transactions on Medical Imaging (Under Review)
☆ A benchmark for 2D foetal brain ultrasound analysis
Brain development involves a sequence of structural changes from early stages of the embryo until several months after birth. Currently, ultrasound is the established technique for screening due to its ability to acquire dynamic images in real-time without radiation and to its cost-efficiency. However, identifying abnormalities remains challenging due to the difficulty in interpreting foetal brain images. In this work we present a set of 104 2D foetal brain ultrasound images acquired during the 20th week of gestation that have been co-registered to a common space from a rough skull segmentation. The images are provided both on the original space and template space centred on the ellipses of all the subjects. Furthermore, the images have been annotated to highlight landmark points from structures of interest to analyse brain development. Both the final atlas template with probabilistic maps and the original images can be used to develop new segmentation techniques, test registration approaches for foetal brain ultrasound, extend our work to longitudinal datasets and to detect anomalies in new images.
☆ Expansive Synthesis: Generating Large-Scale Datasets from Minimal Samples
The challenge of limited availability of data for training in machine learning arises in many applications and the impact on performance and generalization is serious. Traditional data augmentation methods aim to enhance training with a moderately sufficient data set. Generative models like Generative Adversarial Networks (GANs) often face problematic convergence when generating significant and diverse data samples. Diffusion models, though effective, still struggle with high computational cost and long training times. This paper introduces an innovative Expansive Synthesis model that generates large-scale, high-fidelity datasets from minimal samples. The proposed approach exploits expander graph mappings and feature interpolation to synthesize expanded datasets while preserving the intrinsic data distribution and feature structural relationships. The rationale of the model is rooted in the non-linear property of neural networks' latent space and in its capture by a Koopman operator to yield a linear space of features to facilitate the construction of larger and enriched consistent datasets starting with a much smaller dataset. This process is optimized by an autoencoder architecture enhanced with self-attention layers and further refined for distributional consistency by optimal transport. We validate our Expansive Synthesis by training classifiers on the generated datasets and comparing their performance to classifiers trained on larger, original datasets. Experimental results demonstrate that classifiers trained on synthesized data achieve performance metrics on par with those trained on full-scale datasets, showcasing the model's potential to effectively augment training data. This work represents a significant advancement in data generation, offering a robust solution to data scarcity and paving the way for enhanced data availability in machine learning applications.
comment: 14 pages. arXiv admin note: text overlap with arXiv:2405.13866
☆ LIPE: Learning Personalized Identity Prior for Non-rigid Image Editing
Although recent years have witnessed significant advancements in image editing thanks to the remarkable progress of text-to-image diffusion models, the problem of non-rigid image editing still presents its complexities and challenges. Existing methods often fail to achieve consistent results due to the absence of unique identity characteristics. Thus, learning a personalized identity prior might help with consistency in the edited results. In this paper, we explore a novel task: learning the personalized identity prior for text-based non-rigid image editing. To address the problems in jointly learning prior and editing the image, we present LIPE, a two-stage framework designed to customize the generative model utilizing a limited set of images of the same subject, and subsequently employ the model with learned prior for non-rigid image editing. Experimental results demonstrate the advantages of our approach in various editing scenarios over past related leading methods in qualitative and quantitative ways.
☆ Task-Agnostic Federated Learning
In the realm of medical imaging, leveraging large-scale datasets from various institutions is crucial for developing precise deep learning models, yet privacy concerns frequently impede data sharing. federated learning (FL) emerges as a prominent solution for preserving privacy while facilitating collaborative learning. However, its application in real-world scenarios faces several obstacles, such as task & data heterogeneity, label scarcity, non-identically distributed (non-IID) data, computational vaiation, etc. In real-world, medical institutions may not want to disclose their tasks to FL server and generalization challenge of out-of-network institutions with un-seen task want to join the on-going federated system. This study address task-agnostic and generalization problem on un-seen tasks by adapting self-supervised FL framework. Utilizing Vision Transformer (ViT) as consensus feature encoder for self-supervised pre-training, no initial labels required, the framework enabling effective representation learning across diverse datasets and tasks. Our extensive evaluations, using various real-world non-IID medical imaging datasets, validate our approach's efficacy, retaining 90\% of F1 accuracy with only 5\% of the training data typically required for centralized approaches and exhibiting superior adaptability to out-of-distribution task. The result indicate that federated learning architecture can be a potential approach toward multi-task foundation modeling.
☆ Multimodal Cross-Task Interaction for Survival Analysis in Whole Slide Pathological Images
Survival prediction, utilizing pathological images and genomic profiles, is increasingly important in cancer analysis and prognosis. Despite significant progress, precise survival analysis still faces two main challenges: (1) The massive pixels contained in whole slide images (WSIs) complicate the process of pathological images, making it difficult to generate an effective representation of the tumor microenvironment (TME). (2) Existing multimodal methods often rely on alignment strategies to integrate complementary information, which may lead to information loss due to the inherent heterogeneity between pathology and genes. In this paper, we propose a Multimodal Cross-Task Interaction (MCTI) framework to explore the intrinsic correlations between subtype classification and survival analysis tasks. Specifically, to capture TME-related features in WSIs, we leverage the subtype classification task to mine tumor regions. Simultaneously, multi-head attention mechanisms are applied in genomic feature extraction, adaptively performing genes grouping to obtain task-related genomic embedding. With the joint representation of pathological images and genomic data, we further introduce a Transport-Guided Attention (TGA) module that uses optimal transport theory to model the correlation between subtype classification and survival analysis tasks, effectively transferring potential information. Extensive experiments demonstrate the superiority of our approaches, with MCTI outperforming state-of-the-art frameworks on three public benchmarks. \href{https://github.com/jsh0792/MCTI}{https://github.com/jsh0792/MCTI}.
Large Language Models are Interpretable Learners
The trade-off between expressiveness and interpretability remains a core challenge when building human-centric predictive models for classification and decision-making. While symbolic rules offer interpretability, they often lack expressiveness, whereas neural networks excel in performance but are known for being black boxes. In this paper, we show a combination of Large Language Models (LLMs) and symbolic programs can bridge this gap. In the proposed LLM-based Symbolic Programs (LSPs), the pretrained LLM with natural language prompts provides a massive set of interpretable modules that can transform raw input into natural language concepts. Symbolic programs then integrate these modules into an interpretable decision rule. To train LSPs, we develop a divide-and-conquer approach to incrementally build the program from scratch, where the learning process of each step is guided by LLMs. To evaluate the effectiveness of LSPs in extracting interpretable and accurate knowledge from data, we introduce IL-Bench, a collection of diverse tasks, including both synthetic and real-world scenarios across different modalities. Empirical results demonstrate LSP's superior performance compared to traditional neurosymbolic programs and vanilla automatic prompt tuning methods. Moreover, as the knowledge learned by LSP is a combination of natural language descriptions and symbolic rules, it is easily transferable to humans (interpretable), and other LLMs, and generalizes well to out-of-distribution samples.
comment: Preliminary Version, Code at [this url](https://github.com/ruocwang/llm-symbolic-program)
☆ Facial Identity Anonymization via Intrinsic and Extrinsic Attention Distraction CVPR
The unprecedented capture and application of face images raise increasing concerns on anonymization to fight against privacy disclosure. Most existing methods may suffer from the problem of excessive change of the identity-independent information or insufficient identity protection. In this paper, we present a new face anonymization approach by distracting the intrinsic and extrinsic identity attentions. On the one hand, we anonymize the identity information in the feature space by distracting the intrinsic identity attention. On the other, we anonymize the visual clues (i.e. appearance and geometry structure) by distracting the extrinsic identity attention. Our approach allows for flexible and intuitive manipulation of face appearance and geometry structure to produce diverse results, and it can also be used to instruct users to perform personalized anonymization. We conduct extensive experiments on multiple datasets and demonstrate that our approach outperforms state-of-the-art methods.
comment: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024: 12406-12415
☆ Evaluating Fairness in Large Vision-Language Models Across Diverse Demographic Attributes and Prompts
Large vision-language models (LVLMs) have recently achieved significant progress, demonstrating strong capabilities in open-world visual understanding. However, it is not yet clear how LVLMs address demographic biases in real life, especially the disparities across attributes such as gender, skin tone, and age. In this paper, we empirically investigate \emph{visual fairness} in several mainstream LVLMs and audit their performance disparities across sensitive demographic attributes, based on public fairness benchmark datasets (e.g., FACET). To disclose the visual bias in LVLMs, we design a fairness evaluation framework with direct questions and single-choice question-instructed prompts on visual question-answering/classification tasks. The zero-shot prompting results indicate that, despite enhancements in visual understanding, both open-source and closed-source LVLMs exhibit prevalent fairness issues across different instruct prompts and demographic attributes.
☆ Highly Constrained Coded Aperture Imaging Systems Design Via a Knowledge Distillation Approach ICIP 2024
Computational optical imaging (COI) systems have enabled the acquisition of high-dimensional signals through optical coding elements (OCEs). OCEs encode the high-dimensional signal in one or more snapshots, which are subsequently decoded using computational algorithms. Currently, COI systems are optimized through an end-to-end (E2E) approach, where the OCEs are modeled as a layer of a neural network and the remaining layers perform a specific imaging task. However, the performance of COI systems optimized through E2E is limited by the physical constraints imposed by these systems. This paper proposes a knowledge distillation (KD) framework for the design of highly physically constrained COI systems. This approach employs the KD methodology, which consists of a teacher-student relationship, where a high-performance, unconstrained COI system (the teacher), guides the optimization of a physically constrained system (the student) characterized by a limited number of snapshots. We validate the proposed approach, using a binary coded apertures single pixel camera for monochromatic and multispectral image reconstruction. Simulation results demonstrate the superiority of the KD scheme over traditional E2E optimization for the designing of highly physically constrained COI systems.
comment: 7 pages, 3 figures. Accepted at ICIP 2024
☆ MAGIC: Meta-Ability Guided Interactive Chain-of-Distillation for Effective-and-Efficient Vision-and-Language Navigation
Despite the remarkable developments of recent large models in Embodied Artificial Intelligence (E-AI), their integration into robotics is hampered by their excessive parameter sizes and computational demands. Towards the Vision-and-Language Navigation (VLN) task, a core task in E-AI, this paper reveals the great potential of using knowledge distillation for obtaining lightweight student models by proposing a Meta-Ability Guided Interactive Chain-of-distillation (MAGIC) method. Specifically, a Meta-Ability Knowledge Distillation (MAKD) framework is proposed for decoupling and refining the necessary meta-abilities of VLN agents. A Meta-Knowledge Randomization Weighting (MKRW) and a Meta-Knowledge Transferable Determination (MKTD) module are incorporated to dynamically adjust aggregation weights at the meta-ability and sample levels, respectively. Move beyond the traditional one-step unidirectional distillation, an Interactive Chain-of-Distillation (ICoD) learning strategy is proposed to allow students to give feedback to teachers, forming a new multi-step teacher-student co-evolution pipeline. Remarkably, on the R2R test unseen public leaderboard, our smallest model, MAGIC-S, with only 5% (11M) of the teacher's size, outperforms all previous methods under the same training data. Additionally, our largest model, MAGIC-L, surpasses the previous state-of-the-art by 5.84% in SPL and 3.18% in SR. Furthermore, a new dataset was collected and annotated from our living environments, where MAGIC-S demonstrated superior performance and real-time efficiency. Our code is publicly available on https://github.com/CrystalSixone/VLN-MAGIC.
☆ Hot-Distance: Combining One-Hot and Signed Distance Embeddings for Segmentation
Machine learning models are only as good as the data to which they are fit. As such, it is always preferable to use as much data as possible in training models. What data can be used for fitting a model depends a lot on the formulation of the task. We introduce Hot-Distance, a novel segmentation target that incorporates the strength of signed boundary distance prediction with the flexibility of one-hot encoding, to increase the amount of usable training data for segmentation of subcellular structures in focused ion beam scanning electron microscopy (FIB-SEM).
comment: 3 pages, 1 figure, in progress
☆ Semi-supervised classification of dental conditions in panoramic radiographs using large language model and instance segmentation: A real-world dataset evaluation
Dental panoramic radiographs offer vast diagnostic opportunities, but training supervised deep learning networks for automatic analysis of those radiology images is hampered by a shortage of labeled data. Here, a different perspective on this problem is introduced. A semi-supervised learning framework is proposed to classify thirteen dental conditions on panoramic radiographs, with a particular emphasis on teeth. Large language models were explored to annotate the most common dental conditions based on dental reports. Additionally, a masked autoencoder was employed to pre-train the classification neural network, and a Vision Transformer was used to leverage the unlabeled data. The analyses were validated using two of the most extensive datasets in the literature, comprising 8,795 panoramic radiographs and 8,029 paired reports and images. Encouragingly, the results consistently met or surpassed the baseline metrics for the Matthews correlation coefficient. A comparison of the proposed solution with human practitioners, supported by statistical analysis, highlighted its effectiveness and performance limitations; based on the degree of agreement among specialists, the solution demonstrated an accuracy level comparable to that of a junior specialist.
comment: 43 pages, 12 figures, 9 tables
☆ DeepSense-V2V: A Vehicle-to-Vehicle Multi-Modal Sensing, Localization, and Communications Dataset
High data rate and low-latency vehicle-to-vehicle (V2V) communication are essential for future intelligent transport systems to enable coordination, enhance safety, and support distributed computing and intelligence requirements. Developing effective communication strategies, however, demands realistic test scenarios and datasets. This is important at the high-frequency bands where more spectrum is available, yet harvesting this bandwidth is challenged by the need for direction transmission and the sensitivity of signal propagation to blockages. This work presents the first large-scale multi-modal dataset for studying mmWave vehicle-to-vehicle communications. It presents a two-vehicle testbed that comprises data from a 360-degree camera, four radars, four 60 GHz phased arrays, a 3D lidar, and two precise GPSs. The dataset contains vehicles driving during the day and night for 120 km in intercity and rural settings, with speeds up to 100 km per hour. More than one million objects were detected across all images, from trucks to bicycles. This work further includes detailed dataset statistics that prove the coverage of various situations and highlights how this dataset can enable novel machine-learning applications.
comment: 14 pages, 15 figures, 2 tables. The dataset is available on the DeepSense6G website: https://deepsense6g.net/
☆ Domain Adaptation of Echocardiography Segmentation Via Reinforcement Learning
Performance of deep learning segmentation models is significantly challenged in its transferability across different medical imaging domains, particularly when aiming to adapt these models to a target domain with insufficient annotated data for effective fine-tuning. While existing domain adaptation (DA) methods propose strategies to alleviate this problem, these methods do not explicitly incorporate human-verified segmentation priors, compromising the potential of a model to produce anatomically plausible segmentations. We introduce RL4Seg, an innovative reinforcement learning framework that reduces the need to otherwise incorporate large expertly annotated datasets in the target domain, and eliminates the need for lengthy manual human review. Using a target dataset of 10,000 unannotated 2D echocardiographic images, RL4Seg not only outperforms existing state-of-the-art DA methods in accuracy but also achieves 99% anatomical validity on a subset of 220 expert-validated subjects from the target domain. Furthermore, our framework's reward network offers uncertainty estimates comparable with dedicated state-of-the-art uncertainty methods, demonstrating the utility and effectiveness of RL4Seg in overcoming domain adaptation challenges in medical image segmentation.
comment: 9 pages
☆ Entity Augmentation for Efficient Classification of Vertically Partitioned Data with Limited Overlap IJCAI 2024
Vertical Federated Learning (VFL) is a machine learning paradigm for learning from vertically partitioned data (i.e. features for each input are distributed across multiple "guest" clients and an aggregating "host" server owns labels) without communicating raw data. Traditionally, VFL involves an "entity resolution" phase where the host identifies and serializes the unique entities known to all guests. This is followed by private set intersection to find common entities, and an "entity alignment" step to ensure all guests are always processing the same entity's data. However, using only data of entities from the intersection means guests discard potentially useful data. Besides, the effect on privacy is dubious and these operations are computationally expensive. We propose a novel approach that eliminates the need for set intersection and entity alignment in categorical tasks. Our Entity Augmentation technique generates meaningful labels for activations sent to the host, regardless of their originating entity, enabling efficient VFL without explicit entity alignment. With limited overlap between training data, this approach performs substantially better (e.g. with 5% overlap, 48.1% vs 69.48% test accuracy on CIFAR-10). In fact, thanks to the regularizing effect, our model performs marginally better even with 100% overlap.
comment: GLOW @ IJCAI 2024 (12 pages + 2 page bibliography. 15 figures.)
☆ MLLM as Video Narrator: Mitigating Modality Imbalance in Video Moment Retrieval
Video Moment Retrieval (VMR) aims to localize a specific temporal segment within an untrimmed long video given a natural language query. Existing methods often suffer from inadequate training annotations, i.e., the sentence typically matches with a fraction of the prominent video content in the foreground with limited wording diversity. This intrinsic modality imbalance leaves a considerable portion of visual information remaining unaligned with text. It confines the cross-modal alignment knowledge within the scope of a limited text corpus, thereby leading to sub-optimal visual-textual modeling and poor generalizability. By leveraging the visual-textual understanding capability of multi-modal large language models (MLLM), in this work, we take an MLLM as a video narrator to generate plausible textual descriptions of the video, thereby mitigating the modality imbalance and boosting the temporal localization. To effectively maintain temporal sensibility for localization, we design to get text narratives for each certain video timestamp and construct a structured text paragraph with time information, which is temporally aligned with the visual content. Then we perform cross-modal feature merging between the temporal-aware narratives and corresponding video temporal features to produce semantic-enhanced video representation sequences for query localization. Subsequently, we introduce a uni-modal narrative-query matching mechanism, which encourages the model to extract complementary information from contextual cohesive descriptions for improved retrieval. Extensive experiments on two benchmarks show the effectiveness and generalizability of our proposed method.
comment: Under review
☆ ET tu, CLIP? Addressing Common Object Errors for Unseen Environments
We introduce a simple method that employs pre-trained CLIP encoders to enhance model generalization in the ALFRED task. In contrast to previous literature where CLIP replaces the visual encoder, we suggest using CLIP as an additional module through an auxiliary object detection objective. We validate our method on the recently proposed Episodic Transformer architecture and demonstrate that incorporating CLIP improves task performance on the unseen validation set. Additionally, our analysis results support that CLIP especially helps with leveraging object descriptions, detecting small objects, and interpreting rare words.
☆ Burst Image Super-Resolution with Base Frame Selection CVPR2024
Burst image super-resolution has been a topic of active research in recent years due to its ability to obtain a high-resolution image by using complementary information between multiple frames in the burst. In this work, we explore using burst shots with non-uniform exposures to confront real-world practical scenarios by introducing a new benchmark dataset, dubbed Non-uniformly Exposed Burst Image (NEBI), that includes the burst frames at varying exposure times to obtain a broader range of irradiance and motion characteristics within a scene. As burst shots with non-uniform exposures exhibit varying levels of degradation, fusing information of the burst shots into the first frame as a base frame may not result in optimal image quality. To address this limitation, we propose a Frame Selection Network (FSN) for non-uniform scenarios. This network seamlessly integrates into existing super-resolution methods in a plug-and-play manner with low computational costs. The comparative analysis reveals the effectiveness of the nonuniform setting for the practical scenario and our FSN on synthetic-/real- NEBI datasets.
comment: CVPR2024W NTIRE accepted
☆ Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection MICCAI 2024
Laparoscopic liver surgery poses a complex intraoperative dynamic environment for surgeons, where remains a significant challenge to distinguish critical or even hidden structures inside the liver. Liver anatomical landmarks, e.g., ridge and ligament, serve as important markers for 2D-3D alignment, which can significantly enhance the spatial perception of surgeons for precise surgery. To facilitate the detection of laparoscopic liver landmarks, we collect a novel dataset called L3D, which comprises 1,152 frames with elaborated landmark annotations from surgical videos of 39 patients across two medical sites. For benchmarking purposes, 12 mainstream detection methods are selected and comprehensively evaluated on L3D. Further, we propose a depth-driven geometric prompt learning network, namely D2GPLand. Specifically, we design a Depth-aware Prompt Embedding (DPE) module that is guided by self-supervised prompts and generates semantically relevant geometric information with the benefit of global depth cues extracted from SAM-based features. Additionally, a Semantic-specific Geometric Augmentation (SGA) scheme is introduced to efficiently merge RGB-D spatial and geometric information through reverse anatomic perception. The experimental results indicate that D2GPLand obtains state-of-the-art performance on L3D, with 63.52% DICE and 48.68% IoU scores. Together with 2D-3D fusion technology, our method can directly provide the surgeon with intuitive guidance information in laparoscopic scenarios.
comment: This paper has been accepted by MICCAI 2024
☆ Human-Object Interaction from Human-Level Instructions
Intelligent agents need to autonomously navigate and interact within contextual environments to perform a wide range of daily tasks based on human-level instructions. These agents require a foundational understanding of the world, incorporating common sense and knowledge, to interpret such instructions. Moreover, they must possess precise low-level skills for movement and interaction to execute the detailed task plans derived from these instructions. In this work, we address the task of synthesizing continuous human-object interactions for manipulating large objects within contextual environments, guided by human-level instructions. Our goal is to generate synchronized object motion, full-body human motion, and detailed finger motion, all essential for realistic interactions. Our framework consists of a large language model (LLM) planning module and a low-level motion generator. We use LLMs to deduce spatial object relationships and devise a method for accurately determining their positions and orientations in target scene layouts. Additionally, the LLM planner outlines a detailed task plan specifying a sequence of sub-tasks. This task plan, along with the target object poses, serves as input for our low-level motion generator, which seamlessly alternates between navigation and interaction modules. We present the first complete system that can synthesize object motion, full-body motion, and finger motion simultaneously from human-level instructions. Our experiments demonstrate the effectiveness of our high-level planner in generating plausible target layouts and our low-level motion generator in synthesizing realistic interactions for diverse objects. Please refer to our project page for more results: https://hoifhli.github.io/.
comment: 10 pages
♻ ☆ CT-Bound: Robust Boundary Detection From Noisy Images Via Hybrid Convolution and Transformer Neural Networks
We present CT-Bound, a robust and fast boundary detection method for very noisy images using a hybrid Convolution and Transformer neural network. The proposed architecture decomposes boundary estimation into two tasks: local detection and global regularization. During the local detection, the model uses a convolutional architecture to predict the boundary structure of each image patch in the form of a pre-defined local boundary representation, the field-of-junctions (FoJ). Then, it uses a feed-forward transformer architecture to globally refine the boundary structures of each patch to generate an edge map and a smoothed color map simultaneously. Our quantitative analysis shows that CT-Bound outperforms the previous best algorithms in edge detection on very noisy images. It also increases the edge detection accuracy of FoJ-based methods while having a 3-time speed improvement. Finally, we demonstrate that CT-Bound can produce boundary and color maps on real captured images without extra fine-tuning and real-time boundary map and color map videos at ten frames per second.
♻ ☆ DriveVLM: The Convergence of Autonomous Driving and Large Vision-Language Models
A primary hurdle of autonomous driving in urban environments is understanding complex and long-tail scenarios, such as challenging road conditions and delicate human behaviors. We introduce DriveVLM, an autonomous driving system leveraging Vision-Language Models (VLMs) for enhanced scene understanding and planning capabilities. DriveVLM integrates a unique combination of reasoning modules for scene description, scene analysis, and hierarchical planning. Furthermore, recognizing the limitations of VLMs in spatial reasoning and heavy computational requirements, we propose DriveVLM-Dual, a hybrid system that synergizes the strengths of DriveVLM with the traditional autonomous driving pipeline. Experiments on both the nuScenes dataset and our SUP-AD dataset demonstrate the efficacy of DriveVLM and DriveVLM-Dual in handling complex and unpredictable driving conditions. Finally, we deploy the DriveVLM-Dual on a production vehicle, verifying it is effective in real-world autonomous driving environments.
comment: Project Page: https://tsinghua-mars-lab.github.io/DriveVLM/
♻ ☆ Enhancing Active Learning for Sentinel 2 Imagery through Contrastive Learning and Uncertainty Estimation
In this paper, we introduce a novel method designed to enhance label efficiency in satellite imagery analysis by integrating semi-supervised learning (SSL) with active learning strategies. Our approach utilizes contrastive learning together with uncertainty estimations via Monte Carlo Dropout (MC Dropout), with a particular focus on Sentinel-2 imagery analyzed using the Eurosat dataset. We explore the effectiveness of our method in scenarios featuring both balanced and unbalanced class distributions. Our results show that the proposed method performs better than several other popular methods in this field, enabling significant savings in labeling effort while maintaining high classification accuracy. These findings highlight the potential of our approach to facilitate scalable and cost-effective satellite image analysis, particularly advantageous for extensive environmental monitoring and land use classification tasks.
♻ ☆ Diverse Part Synthesis for 3D Shape Creation
Methods that use neural networks for synthesizing 3D shapes in the form of a part-based representation have been introduced over the last few years. These methods represent shapes as a graph or hierarchy of parts and enable a variety of applications such as shape sampling and reconstruction. However, current methods do not allow easily regenerating individual shape parts according to user preferences. In this paper, we investigate techniques that allow the user to generate multiple, diverse suggestions for individual parts. Specifically, we experiment with multimodal deep generative models that allow sampling diverse suggestions for shape parts and focus on models which have not been considered in previous work on shape synthesis. To provide a comparative study of these techniques, we introduce a method for synthesizing 3D shapes in a part-based representation and evaluate all the part suggestion techniques within this synthesis method. In our method, which is inspired by previous work, shapes are represented as a set of parts in the form of implicit functions which are then positioned in space to form the final shape. Synthesis in this representation is enabled by a neural network architecture based on an implicit decoder and a spatial transformer. We compare the various multimodal generative models by evaluating their performance in generating part suggestions. Our contribution is to show with qualitative and quantitative evaluations which of the new techniques for multimodal part generation perform the best and that a synthesis method based on the top-performing techniques allows the user to more finely control the parts that are generated in the 3D shapes while maintaining high shape fidelity when reconstructing shapes.
♻ ☆ XCube: Large-Scale 3D Generative Modeling using Sparse Voxel Hierarchies CVPR 2024
We present XCube (abbreviated as $\mathcal{X}^3$), a novel generative model for high-resolution sparse 3D voxel grids with arbitrary attributes. Our model can generate millions of voxels with a finest effective resolution of up to $1024^3$ in a feed-forward fashion without time-consuming test-time optimization. To achieve this, we employ a hierarchical voxel latent diffusion model which generates progressively higher resolution grids in a coarse-to-fine manner using a custom framework built on the highly efficient VDB data structure. Apart from generating high-resolution objects, we demonstrate the effectiveness of XCube on large outdoor scenes at scales of 100m$\times$100m with a voxel size as small as 10cm. We observe clear qualitative and quantitative improvements over past approaches. In addition to unconditional generation, we show that our model can be used to solve a variety of tasks such as user-guided editing, scene completion from a single scan, and text-to-3D. The source code and more results can be found at https://research.nvidia.com/labs/toronto-ai/xcube/.
comment: CVPR 2024 Highlight. Code: https://github.com/nv-tlabs/XCube/ Website: https://research.nvidia.com/labs/toronto-ai/xcube/
♻ ☆ ID-Animator: Zero-Shot Identity-Preserving Human Video Generation
Generating high-fidelity human video with specified identities has attracted significant attention in the content generation community. However, existing techniques struggle to strike a balance between training efficiency and identity preservation, either requiring tedious case-by-case fine-tuning or usually missing identity details in the video generation process. In this study, we present \textbf{ID-Animator}, a zero-shot human-video generation approach that can perform personalized video generation given a single reference facial image without further training. ID-Animator inherits existing diffusion-based video generation backbones with a face adapter to encode the ID-relevant embeddings from learnable facial latent queries. To facilitate the extraction of identity information in video generation, we introduce an ID-oriented dataset construction pipeline that incorporates unified human attributes and action captioning techniques from a constructed facial image pool. Based on this pipeline, a random reference training strategy is further devised to precisely capture the ID-relevant embeddings with an ID-preserving loss, thus improving the fidelity and generalization capacity of our model for ID-specific video generation. Extensive experiments demonstrate the superiority of ID-Animator to generate personalized human videos over previous models. Moreover, our method is highly compatible with popular pre-trained T2V models like animatediff and various community backbone models, showing high extendability in real-world applications for video generation where identity preservation is highly desired. Our codes and checkpoints are released at https://github.com/ID-Animator/ID-Animator.
comment: Project Page: https://id-animator.github.io/
♻ ☆ Deep Pulse-Signal Magnification for remote Heart Rate Estimation in Compressed Videos
Recent advancements in data-driven approaches for remote photoplethysmography (rPPG) have significantly improved the accuracy of remote heart rate estimation. However, the performance of such approaches worsens considerably under video compression, which is nevertheless necessary to store and transmit video data efficiently. In this paper, we present a novel approach to address the impact of video compression on rPPG estimation, which leverages a pulse-signal magnification transformation to adapt compressed videos to an uncompressed data domain in which the rPPG signal is magnified. We validate the effectiveness of our model by exhaustive evaluations on two publicly available datasets, UCLA-rPPG and UBFC-rPPG, employing both intra- and cross-database performance at several compression rates. Additionally, we assess the robustness of our approach on two additional highly compressed and widely-used datasets, MAHNOB-HCI and COHFACE, which reveal outstanding heart rate estimation results.
♻ ☆ Image Distillation for Safe Data Sharing in Histopathology MICCAI 2024
Histopathology can help clinicians make accurate diagnoses, determine disease prognosis, and plan appropriate treatment strategies. As deep learning techniques prove successful in the medical domain, the primary challenges become limited data availability and concerns about data sharing and privacy. Federated learning has addressed this challenge by training models locally and updating parameters on a server. However, issues, such as domain shift and bias, persist and impact overall performance. Dataset distillation presents an alternative approach to overcoming these challenges. It involves creating a small synthetic dataset that encapsulates essential information, which can be shared without constraints. At present, this paradigm is not practicable as current distillation approaches only generate non human readable representations and exhibit insufficient performance for downstream learning tasks. We train a latent diffusion model and construct a new distilled synthetic dataset with a small number of human readable synthetic images. Selection of maximally informative synthetic images is done via graph community analysis of the representation space. We compare downstream classification models trained on our synthetic distillation data to models trained on real data and reach performances suitable for practical application.
comment: accepted at MICCAI 2024
♻ ☆ Fine-grained Prompt Tuning: A Parameter and Memory Efficient Transfer Learning Method for High-resolution Medical Image Classification MICCAI 2024
Parameter-efficient transfer learning (PETL) is proposed as a cost-effective way to transfer pre-trained models to downstream tasks, avoiding the high cost of updating entire large-scale pre-trained models (LPMs). In this work, we present Fine-grained Prompt Tuning (FPT), a novel PETL method for medical image classification. FPT significantly reduces memory consumption compared to other PETL methods, especially in high-resolution input contexts. To achieve this, we first freeze the weights of the LPM and construct a learnable lightweight side network. The frozen LPM takes high-resolution images as input to extract fine-grained features, while the side network is fed low-resolution images to reduce memory usage. To allow the side network to access pre-trained knowledge, we introduce fine-grained prompts that summarize information from the LPM through a fusion module. Important tokens selection and preloading techniques are employed to further reduce training cost and memory requirements. We evaluate FPT on four medical datasets with varying sizes, modalities, and complexities. Experimental results demonstrate that FPT achieves comparable performance to fine-tuning the entire LPM while using only 1.8% of the learnable parameters and 13% of the memory costs of an encoder ViT-B model with a 512 x 512 input resolution.
comment: MICCAI 2024
♻ ☆ Metrics for Dataset Demographic Bias: A Case Study on Facial Expression Recognition
Demographic biases in source datasets have been shown as one of the causes of unfairness and discrimination in the predictions of Machine Learning models. One of the most prominent types of demographic bias are statistical imbalances in the representation of demographic groups in the datasets. In this paper, we study the measurement of these biases by reviewing the existing metrics, including those that can be borrowed from other disciplines. We develop a taxonomy for the classification of these metrics, providing a practical guide for the selection of appropriate metrics. To illustrate the utility of our framework, and to further understand the practical characteristics of the metrics, we conduct a case study of 20 datasets used in Facial Emotion Recognition (FER), analyzing the biases present in them. Our experimental results show that many metrics are redundant and that a reduced subset of metrics may be sufficient to measure the amount of demographic bias. The paper provides valuable insights for researchers in AI and related fields to mitigate dataset bias and improve the fairness and accuracy of AI models. The code is available at https://github.com/irisdominguez/dataset_bias_metrics.
comment: 16 pages, 8 figures. Including appendix: 45 pages, 32 figures. Updated from previous version with an additional appendix, addressing concerns about the interest of studying bias at the dataset level
♻ ☆ MaPa: Text-driven Photorealistic Material Painting for 3D Shapes SIGGRAPH 2024
This paper aims to generate materials for 3D meshes from text descriptions. Unlike existing methods that synthesize texture maps, we propose to generate segment-wise procedural material graphs as the appearance representation, which supports high-quality rendering and provides substantial flexibility in editing. Instead of relying on extensive paired data, i.e., 3D meshes with material graphs and corresponding text descriptions, to train a material graph generative model, we propose to leverage the pre-trained 2D diffusion model as a bridge to connect the text and material graphs. Specifically, our approach decomposes a shape into a set of segments and designs a segment-controlled diffusion model to synthesize 2D images that are aligned with mesh parts. Based on generated images, we initialize parameters of material graphs and fine-tune them through the differentiable rendering module to produce materials in accordance with the textual description. Extensive experiments demonstrate the superior performance of our framework in photorealism, resolution, and editability over existing methods. Project page: https://zju3dv.github.io/MaPa
comment: SIGGRAPH 2024. Project page: https://zju3dv.github.io/MaPa
♻ ☆ Instance-level quantitative saliency in multiple sclerosis lesion segmentation
In recent years, explainable methods for artificial intelligence (XAI) have tried to reveal and describe models' decision mechanisms in the case of classification tasks. However, XAI for semantic segmentation and in particular for single instances has been little studied to date. Understanding the process underlying automatic segmentation of single instances is crucial to reveal what information was used to detect and segment a given object of interest. In this study, we proposed two instance-level explanation maps for semantic segmentation based on SmoothGrad and Grad-CAM++ methods. Then, we investigated their relevance for the detection and segmentation of white matter lesions (WML), a magnetic resonance imaging (MRI) biomarker in multiple sclerosis (MS). 687 patients diagnosed with MS for a total of 4043 FLAIR and MPRAGE MRI scans were collected at the University Hospital of Basel, Switzerland. Data were randomly split into training, validation and test sets to train a 3D U-Net for MS lesion segmentation. We observed 3050 true positive (TP), 1818 false positive (FP), and 789 false negative (FN) cases. We generated instance-level explanation maps for semantic segmentation, by developing two XAI methods based on SmoothGrad and Grad-CAM++. We investigated: 1) the distribution of gradients in saliency maps with respect to both input MRI sequences; 2) the model's response in the case of synthetic lesions; 3) the amount of perilesional tissue needed by the model to segment a lesion. Saliency maps (based on SmoothGrad) in FLAIR showed positive values inside a lesion and negative in its neighborhood. Peak values of saliency maps generated for these four groups of volumes presented distributions that differ significantly from one another, suggesting a quantitative nature of the proposed saliency. Contextual information of 7mm around the lesion border was required for their segmentation.
♻ ☆ Soundify: Matching Sound Effects to Video
In the art of video editing, sound helps add character to an object and immerse the viewer within a space. Through formative interviews with professional editors (N=10), we found that the task of adding sounds to video can be challenging. This paper presents Soundify, a system that assists editors in matching sounds to video. Given a video, Soundify identifies matching sounds, synchronizes the sounds to the video, and dynamically adjusts panning and volume to create spatial audio. In a human evaluation study (N=889), we show that Soundify is capable of matching sounds to video out-of-the-box for a diverse range of audio categories. In a within-subjects expert study (N=12), we demonstrate the usefulness of Soundify in helping video editors match sounds to video with lighter workload, reduced task completion time, and improved usability.
comment: https://soundify.cc
♻ ☆ VideoMap: Supporting Video Editing Exploration, Brainstorming, and Prototyping in the Latent Space
Video editing is a creative and complex endeavor and we believe that there is potential for reimagining a new video editing interface to better support the creative and exploratory nature of video editing. We take inspiration from latent space exploration tools that help users find patterns and connections within complex datasets. We present VideoMap, a proof-of-concept video editing interface that operates on video frames projected onto a latent space. We support intuitive navigation through map-inspired navigational elements and facilitate transitioning between different latent spaces through swappable lenses. We built three VideoMap components to support editors in three common video tasks. In a user study with both professionals and non-professionals, editors found that VideoMap helps reduce grunt work, offers a user-friendly experience, provides an inspirational way of editing, and effectively supports the exploratory nature of video editing. We further demonstrate the versatility of VideoMap by implementing three extended applications. For interactive examples, we invite you to visit our project page: https://humanvideointeraction.github.io/videomap.
comment: https://humanvideointeraction.github.io/videomap
♻ ☆ Videogenic: Identifying Highlight Moments in Videos with Professional Photographs as a Prior
This paper investigates the challenge of extracting highlight moments from videos. To perform this task, we need to understand what constitutes a highlight for arbitrary video domains while at the same time being able to scale across different domains. Our key insight is that photographs taken by photographers tend to capture the most remarkable or photogenic moments of an activity. Drawing on this insight, we present Videogenic, a technique capable of creating domain-specific highlight videos for a diverse range of domains. In a human evaluation study (N=50), we show that a high-quality photograph collection combined with CLIP-based retrieval (which uses a neural network with semantic knowledge of images) can serve as an excellent prior for finding video highlights. In a within-subjects expert study (N=12), we demonstrate the usefulness of Videogenic in helping video editors create highlight videos with lighter workload, shorter task completion time, and better usability.
comment: https://humanvideointeraction.github.io/videogenic
♻ ☆ FSBI: Deepfakes Detection with Frequency Enhanced Self-Blended Images
Advances in deepfake research have led to the creation of almost perfect manipulations undetectable by human eyes and some deepfakes detection tools. Recently, several techniques have been proposed to differentiate deepfakes from realistic images and videos. This paper introduces a Frequency Enhanced Self-Blended Images (FSBI) approach for deepfakes detection. This proposed approach utilizes Discrete Wavelet Transforms (DWT) to extract discriminative features from the self-blended images (SBI) to be used for training a convolutional network architecture model. The SBIs blend the image with itself by introducing several forgery artifacts in a copy of the image before blending it. This prevents the classifier from overfitting specific artifacts by learning more generic representations. These blended images are then fed into the frequency features extractor to detect artifacts that can not be detected easily in the time domain. The proposed approach has been evaluated on FF++ and Celeb-DF datasets and the obtained results outperformed the state-of-the-art techniques with the cross-dataset evaluation protocol.
comment: The paper is under review
♻ ☆ The Ninth NTIRE 2024 Efficient Super-Resolution Challenge Report CVPR
This paper provides a comprehensive review of the NTIRE 2024 challenge, focusing on efficient single-image super-resolution (ESR) solutions and their outcomes. The task of this challenge is to super-resolve an input image with a magnification factor of x4 based on pairs of low and corresponding high-resolution images. The primary objective is to develop networks that optimize various aspects such as runtime, parameters, and FLOPs, while still maintaining a peak signal-to-noise ratio (PSNR) of approximately 26.90 dB on the DIV2K_LSDIR_valid dataset and 26.99 dB on the DIV2K_LSDIR_test dataset. In addition, this challenge has 4 tracks including the main track (overall performance), sub-track 1 (runtime), sub-track 2 (FLOPs), and sub-track 3 (parameters). In the main track, all three metrics (ie runtime, FLOPs, and parameter count) were considered. The ranking of the main track is calculated based on a weighted sum-up of the scores of all other sub-tracks. In sub-track 1, the practical runtime performance of the submissions was evaluated, and the corresponding score was used to determine the ranking. In sub-track 2, the number of FLOPs was considered. The score calculated based on the corresponding FLOPs was used to determine the ranking. In sub-track 3, the number of parameters was considered. The score calculated based on the corresponding parameters was used to determine the ranking. RLFN is set as the baseline for efficiency measurement. The challenge had 262 registered participants, and 34 teams made valid submissions. They gauge the state-of-the-art in efficient single-image super-resolution. To facilitate the reproducibility of the challenge and enable other researchers to build upon these findings, the code and the pre-trained model of validated solutions are made publicly available at https://github.com/Amazingren/NTIRE2024_ESR/.
comment: The report paper of NTIRE2024 Efficient Super-resolution, accepted by CVPRW2024
♻ ☆ Advancing dermatological diagnosis: Development of a hyperspectral dermatoscope for enhanced skin imaging
Clinical dermatology necessitates precision and innovation for efficient diagnosis and treatment of various skin conditions. This paper introduces the development of a cutting-edge hyperspectral dermatoscope (the Hyperscope) tailored for human skin analysis. We detail the requirements to such a device and the design considerations, from optical configurations to sensor selection, necessary to capture a wide spectral range with high fidelity. Preliminary results from 15 individuals and 160 recorded skin images demonstrate the potential of the Hyperscope in identifying and characterizing various skin conditions, offering a promising avenue for non-invasive skin evaluation and a platform for future research in dermatology-related hyperspectral imaging.
comment: 12 pages, 11 Figures
♻ ☆ A Probabilistic Fluctuation based Membership Inference Attack for Diffusion Models
Membership Inference Attack (MIA) identifies whether a record exists in a machine learning model's training set by querying the model. MIAs on the classic classification models have been well-studied, and recent works have started to explore how to transplant MIA onto generative models. Our investigation indicates that existing MIAs designed for generative models mainly depend on the overfitting in target models. However, overfitting can be avoided by employing various regularization techniques, whereas existing MIAs demonstrate poor performance in practice. Unlike overfitting, memorization is essential for deep learning models to attain optimal performance, making it a more prevalent phenomenon. Memorization in generative models leads to an increasing trend in the probability distribution of generating records around the member record. Therefore, we propose a Probabilistic Fluctuation Assessing Membership Inference Attack (PFAMI), a black-box MIA that infers memberships by detecting these trends via analyzing the overall probabilistic fluctuations around given records. We conduct extensive experiments across multiple generative models and datasets, which demonstrate PFAMI can improve the attack success rate (ASR) by about 27.9% when compared with the best baseline.
comment: Repo: https://github.com/wjfu99/MIA-Gen
♻ ☆ Deep Frequency-Aware Functional Maps for Robust Shape Matching
Deep functional map frameworks are widely employed for 3D shape matching. However, most existing deep functional map methods cannot adaptively capture important frequency information for functional map estimation in specific matching scenarios, i.e., lacking \textit{frequency awareness}, resulting in poor performance when dealing with large deformable shape matching. To this end, we propose a novel unsupervised learning-based framework called Deep Frequency-Aware Functional Maps, which can gracefully cope with various shape matching scenarios. We first introduce a general constraint called Spectral Filter Operator Preservation to compute desirable functional maps, where the spectral filter operator encodes informative frequency information and can promote frequency awareness for deep functional map frameworks by learning a set of filter functions. Then, we directly utilize the proposed constraint as a loss function to supervise functional maps, pointwise maps, and filter functions simultaneously, where the filter functions are derived from the orthonormal Jacobi basis, and the coefficients of the basis are learnable parameters. Finally, we develop an effective refinement strategy to improve the final pointwise map, which incorporates our constraint and learned filter functions, leading to more robust and accurate correspondences during the inference process. Extensive experimental results on various datasets demonstrate that our approach outperforms the existing state-of-the-art methods, especially in challenging settings like datasets with non-isometric deformation and inconsistent topology.
♻ ☆ Probabilistic Approach for Detection of High-Frequency Periodic Signals using an Event Camera
Being inspired by the biological eye, event camera is a novel asynchronous technology that pose a paradigm shift in acquisition of visual information. This paradigm enables event cameras to capture pixel-size fast motions much more naturally compared to classical cameras. In this paper we present a new asynchronous event-driven algorithm for detection of high-frequency pixel-size periodic signals using an event camera. Development of such new algorithms, to efficiently process the asynchronous information of event cameras, is essential and being a main challenge in the research community, in order to utilize its special properties and potential. It turns out that this algorithm, that was developed in order to satisfy the new paradigm, is related to an untreated theoretical problem in probability: let $0\leq\tau_{1}\leq\tau_{2}\leq\cdots\leq\tau_{m}\leq1$, originated from an unknown distribution. Let also $\epsilon,\delta\in\mathbb{R}$, and $d\in\mathbb{N}$. What can be said about the probability $\Phi(m,d)$ of having more than $d$ adjacent $\tau_{i}$-s pairs that the distance between them is $\delta$, up to an error $\epsilon$ ? This problem, that reminds the area of order statistic, shows how the new visualization paradigm is also an opportunity to develop new areas and problems in mathematics.
comment: 12 pages
♻ ☆ Sampling Strategies in Bayesian Inversion: A Study of RTO and Langevin Methods
This paper studies two classes of sampling methods for the solution of inverse problems, namely Randomize-Then-Optimize (RTO), which is rooted in sensitivity analysis, and Langevin methods, which are rooted in the Bayesian framework. The two classes of methods correspond to different assumptions and yield samples from different target distributions. We highlight the main conceptual and theoretical differences between the two approaches and compare them from a practical point of view by tackling two classical inverse problems in imaging: deblurring and inpainting. We show that the choice of the sampling method has a significant impact on the quality of the reconstruction and that the RTO method is more robust to the choice of the parameters.
♻ ☆ SoK: Facial Deepfake Detectors
Deepfakes have rapidly emerged as a profound and serious threat to society, primarily due to their ease of creation and dissemination. This situation has triggered an accelerated development of deepfake detection technologies. However, many existing detectors rely heavily on lab-generated datasets for validation, which may not effectively prepare them for novel, emerging, and real-world deepfake techniques. In this paper, we conduct an extensive and comprehensive review and analysis of the latest state-of-the-art deepfake detectors, evaluating them against several critical criteria. These criteria facilitate the categorization of these detectors into 4 high-level groups and 13 fine-grained sub-groups, all aligned with a unified standard conceptual framework. This classification and framework offer deep and practical insights into the factors that affect detector efficacy. We assess the generalizability of 16 leading detectors across various standard attack scenarios, including black-box, white-box, and gray-box settings. Our systematized analysis and experimentation lay the groundwork for a deeper understanding of deepfake detectors and their generalizability, paving the way for future research focused on creating detectors adept at countering various attack scenarios. Additionally, this work offers insights for developing more proactive defenses against deepfakes.
comment: 18 pages, 6 figures, 5 table, under peer-review
♻ ☆ Graph Image Prior for Unsupervised Dynamic Cardiac Cine MRI Reconstruction
The inductive bias of the convolutional neural network (CNN) can be a strong prior for image restoration, which is known as the Deep Image Prior (DIP). Recently, DIP is utilized in unsupervised dynamic MRI reconstruction, which adopts a generative model from the latent space to the image space. However, existing methods usually use a pyramid-shaped CNN generator shared by all frames, embedding the temporal modeling within the latent space, which may hamper the model expression capability. In this work, we propose a novel scheme for dynamic MRI representation, named ``Graph Image Prior'' (GIP). GIP adopts a two-stage generative network in a new modeling methodology, which first employs independent CNNs to recover the image structure for each frame, and then exploits the spatio-temporal correlations within the feature space parameterized by a graph model. A graph convolutional network is utilized for feature fusion and dynamic image generation. In addition, we devise an ADMM algorithm to alternately optimize the images and the network parameters to improve the reconstruction performance. Experiments were conducted on cardiac cine MRI reconstruction, which demonstrate that GIP outperforms compressed sensing methods and other DIP-based unsupervised methods, significantly reducing the performance gap with state-of-the-art supervised algorithms. Moreover, GIP displays superior generalization ability when transferred to a different reconstruction setting, without the need for any additional data.
♻ ☆ SegHist: A General Segmentation-based Framework for Chinese Historical Document Text Line Detection ICDAR2024
Text line detection is a key task in historical document analysis facing many challenges of arbitrary-shaped text lines, dense texts, and text lines with high aspect ratios, etc. In this paper, we propose a general framework for historical document text detection (SegHist), enabling existing segmentation-based text detection methods to effectively address the challenges, especially text lines with high aspect ratios. Integrating the SegHist framework with the commonly used method DB++, we develop DB-SegHist. This approach achieves SOTA on the CHDAC, MTHv2, and competitive results on HDRC datasets, with a significant improvement of 1.19% on the most challenging CHDAC dataset which features more text lines with high aspect ratios. Moreover, our method attains SOTA on rotated MTHv2 and rotated HDRC, demonstrating its rotational robustness. The code is available at https://github.com/LumionHXJ/SegHist.
comment: Accepted by ICDAR2024
♻ ☆ X-ray2CTPA: Generating 3D CTPA scans from 2D X-ray conditioning
Chest X-rays or chest radiography (CXR), commonly used for medical diagnostics, typically enables limited imaging compared to computed tomography (CT) scans, which offer more detailed and accurate three-dimensional data, particularly contrast-enhanced scans like CT Pulmonary Angiography (CTPA). However, CT scans entail higher costs, greater radiation exposure, and are less accessible than CXRs. In this work we explore cross-modal translation from a 2D low contrast-resolution X-ray input to a 3D high contrast and spatial-resolution CTPA scan. Driven by recent advances in generative AI, we introduce a novel diffusion-based approach to this task. We evaluate the models performance using both quantitative metrics and qualitative feedback from radiologists, ensuring diagnostic relevance of the generated images. Furthermore, we employ the synthesized 3D images in a classification framework and show improved AUC in a PE categorization task, using the initial CXR input. The proposed method is generalizable and capable of performing additional cross-modality translations in medical imaging. It may pave the way for more accessible and cost-effective advanced diagnostic tools. The code for this project is available: https://github.com/NoaCahan/X-ray2CTPA .
comment: preprint, project code: https://github.com/NoaCahan/X-ray2CTPA
♻ ☆ Open-vocabulary object 6D pose estimation CVPR 2024
We introduce the new setting of open-vocabulary object 6D pose estimation, in which a textual prompt is used to specify the object of interest. In contrast to existing approaches, in our setting (i) the object of interest is specified solely through the textual prompt, (ii) no object model (e.g., CAD or video sequence) is required at inference, and (iii) the object is imaged from two RGBD viewpoints of different scenes. To operate in this setting, we introduce a novel approach that leverages a Vision-Language Model to segment the object of interest from the scenes and to estimate its relative 6D pose. The key of our approach is a carefully devised strategy to fuse object-level information provided by the prompt with local image features, resulting in a feature space that can generalize to novel concepts. We validate our approach on a new benchmark based on two popular datasets, REAL275 and Toyota-Light, which collectively encompass 34 object instances appearing in four thousand image pairs. The results demonstrate that our approach outperforms both a well-established hand-crafted method and a recent deep learning-based baseline in estimating the relative 6D pose of objects in different scenes. Code and dataset are available at https://jcorsetti.github.io/oryon.
comment: Camera ready version (CVPR 2024, poster highlight). New Oryon version: arXiv:2406.16384
♻ ☆ Universal Prompt Optimizer for Safe Text-to-Image Generation NAACL 2024
Text-to-Image (T2I) models have shown great performance in generating images based on textual prompts. However, these models are vulnerable to unsafe input to generate unsafe content like sexual, harassment and illegal-activity images. Existing studies based on image checker, model fine-tuning and embedding blocking are impractical in real-world applications. Hence, we propose the first universal prompt optimizer for safe T2I (POSI) generation in black-box scenario. We first construct a dataset consisting of toxic-clean prompt pairs by GPT-3.5 Turbo. To guide the optimizer to have the ability of converting toxic prompt to clean prompt while preserving semantic information, we design a novel reward function measuring toxicity and text alignment of generated images and train the optimizer through Proximal Policy Optimization. Experiments show that our approach can effectively reduce the likelihood of various T2I models in generating inappropriate images, with no significant impact on text alignment. It is also flexible to be combined with methods to achieve better performance. Our code is available at https://github.com/wzongyu/POSI.
comment: NAACL 2024
♻ ☆ Bilateral Reference for High-Resolution Dichotomous Image Segmentation
We introduce a novel bilateral reference framework (BiRefNet) for high-resolution dichotomous image segmentation (DIS). It comprises two essential components: the localization module (LM) and the reconstruction module (RM) with our proposed bilateral reference (BiRef). The LM aids in object localization using global semantic information. Within the RM, we utilize BiRef for the reconstruction process, where hierarchical patches of images provide the source reference and gradient maps serve as the target reference. These components collaborate to generate the final predicted maps. We also introduce auxiliary gradient supervision to enhance focus on regions with finer details. Furthermore, we outline practical training strategies tailored for DIS to improve map quality and training process. To validate the general applicability of our approach, we conduct extensive experiments on four tasks to evince that BiRefNet exhibits remarkable performance, outperforming task-specific cutting-edge methods across all benchmarks. Our codes are available at https://github.com/ZhengPeng7/BiRefNet.
comment: Version 5, with updated DIS performance, accuracy-efficiency comparison, and 3rd-party applications
♻ ☆ DITTO: Dual and Integrated Latent Topologies for Implicit 3D Reconstruction CVPR 2024
We propose a novel concept of dual and integrated latent topologies (DITTO in short) for implicit 3D reconstruction from noisy and sparse point clouds. Most existing methods predominantly focus on single latent type, such as point or grid latents. In contrast, the proposed DITTO leverages both point and grid latents (i.e., dual latent) to enhance their strengths, the stability of grid latents and the detail-rich capability of point latents. Concretely, DITTO consists of dual latent encoder and integrated implicit decoder. In the dual latent encoder, a dual latent layer, which is the key module block composing the encoder, refines both latents in parallel, maintaining their distinct shapes and enabling recursive interaction. Notably, a newly proposed dynamic sparse point transformer within the dual latent layer effectively refines point latents. Then, the integrated implicit decoder systematically combines these refined latents, achieving high-fidelity 3D reconstruction and surpassing previous state-of-the-art methods on object- and scene-level datasets, especially in thin and detailed structures.
comment: Accepted by CVPR 2024
♻ ☆ DK-SLAM: Monocular Visual SLAM with Deep Keypoint Learning, Tracking and Loop-Closing
The performance of visual SLAM in complex, real-world scenarios is often compromised by unreliable feature extraction and matching when using handcrafted features. Although deep learning-based local features excel at capturing high-level information and perform well on matching benchmarks, they struggle with generalization in continuous motion scenes, adversely affecting loop detection accuracy. Our system employs a Model-Agnostic Meta-Learning (MAML) strategy to optimize the training of keypoint extraction networks, enhancing their adaptability to diverse environments. Additionally, we introduce a coarse-to-fine feature tracking mechanism for learned keypoints. It begins with a direct method to approximate the relative pose between consecutive frames, followed by a feature matching method for refined pose estimation. To mitigate cumulative positioning errors, DK-SLAM incorporates a novel online learning module that utilizes binary features for loop closure detection. This module dynamically identifies loop nodes within a sequence, ensuring accurate and efficient localization. Experimental evaluations on publicly available datasets demonstrate that DK-SLAM outperforms leading traditional and learning based SLAM systems, such as ORB-SLAM3 and LIFT-SLAM. These results underscore the efficacy and robustness of our DK-SLAM in varied and challenging real-world environments.
comment: In submission
♻ ☆ AAformer: Auto-Aligned Transformer for Person Re-Identification
In person re-identification (re-ID), extracting part-level features from person images has been verified to be crucial to offer fine-grained information. Most of the existing CNN-based methods only locate the human parts coarsely, or rely on pretrained human parsing models and fail in locating the identifiable nonhuman parts (e.g., knapsack). In this article, we introduce an alignment scheme in transformer architecture for the first time and propose the auto-aligned transformer (AAformer) to automatically locate both the human parts and nonhuman ones at patch level. We introduce the "Part tokens ([PART]s)", which are learnable vectors, to extract part features in the transformer. A [PART] only interacts with a local subset of patches in self-attention and learns to be the part representation. To adaptively group the image patches into different subsets, we design the auto-alignment. Auto-alignment employs a fast variant of optimal transport (OT) algorithm to online cluster the patch embeddings into several groups with the [PART]s as their prototypes. AAformer integrates the part alignment into the self-attention and the output [PART]s can be directly used as part features for retrieval. Extensive experiments validate the effectiveness of [PART]s and the superiority of AAformer over various state-of-the-art methods.
comment: Accepted by TNNLS. IEEE Transactions on Neural Networks and Learning Systems (2023)
♻ ☆ LKM-UNet: Large Kernel Vision Mamba UNet for Medical Image Segmentation MICCAI 2024
In clinical practice, medical image segmentation provides useful information on the contours and dimensions of target organs or tissues, facilitating improved diagnosis, analysis, and treatment. In the past few years, convolutional neural networks (CNNs) and Transformers have dominated this area, but they still suffer from either limited receptive fields or costly long-range modeling. Mamba, a State Space Sequence Model (SSM), recently emerged as a promising paradigm for long-range dependency modeling with linear complexity. In this paper, we introduce a Large Kernel Vision Mamba U-shape Network, or LKM-UNet, for medical image segmentation. A distinguishing feature of our LKM-UNet is its utilization of large Mamba kernels, excelling in locally spatial modeling compared to small kernel-based CNNs and Transformers, while maintaining superior efficiency in global modeling compared to self-attention with quadratic complexity. Additionally, we design a novel hierarchical and bidirectional Mamba block to further enhance Mamba's global and neighborhood spatial modeling capability for vision inputs. Comprehensive experiments demonstrate the feasibility and the effectiveness of using large-size Mamba kernels to achieve large receptive fields. Codes are available at https://github.com/wjh892521292/LKM-UNet.
comment: Accepted by MICCAI 2024
♻ ☆ Rapid and Accurate Diagnosis of Acute Aortic Syndrome using Non-contrast CT: A Large-scale, Retrospective, Multi-center and AI-based Study
Chest pain symptoms are highly prevalent in emergency departments (EDs), where acute aortic syndrome (AAS) is a catastrophic cardiovascular emergency with a high fatality rate, especially when timely and accurate treatment is not administered. However, current triage practices in the ED can cause up to approximately half of patients with AAS to have an initially missed diagnosis or be misdiagnosed as having other acute chest pain conditions. Subsequently, these AAS patients will undergo clinically inaccurate or suboptimal differential diagnosis. Fortunately, even under these suboptimal protocols, nearly all these patients underwent non-contrast CT covering the aorta anatomy at the early stage of differential diagnosis. In this study, we developed an artificial intelligence model (DeepAAS) using non-contrast CT, which is highly accurate for identifying AAS and provides interpretable results to assist in clinical decision-making. Performance was assessed in two major phases: a multi-center retrospective study (n = 20,750) and an exploration in real-world emergency scenarios (n = 137,525). In the multi-center cohort, DeepAAS achieved a mean area under the receiver operating characteristic curve of 0.958 (95% CI 0.950-0.967). In the real-world cohort, DeepAAS detected 109 AAS patients with misguided initial suspicion, achieving 92.6% (95% CI 76.2%-97.5%) in mean sensitivity and 99.2% (95% CI 99.1%-99.3%) in mean specificity. Our AI model performed well on non-contrast CT at all applicable early stages of differential diagnosis workflows, effectively reduced the overall missed diagnosis and misdiagnosis rate from 48.8% to 4.8% and shortened the diagnosis time for patients with misguided initial suspicion from an average of 681.8 (74-11,820) mins to 68.5 (23-195) mins. DeepAAS could effectively fill the gap in the current clinical workflow without requiring additional tests.
comment: under peer review
♻ ☆ OmAgent: A Multi-modal Agent Framework for Complex Video Understanding with Task Divide-and-Conquer
Recent advancements in Large Language Models (LLMs) have expanded their capabilities to multimodal contexts, including comprehensive video understanding. However, processing extensive videos such as 24-hour CCTV footage or full-length films presents significant challenges due to the vast data and processing demands. Traditional methods, like extracting key frames or converting frames to text, often result in substantial information loss. To address these shortcomings, we develop OmAgent, efficiently stores and retrieves relevant video frames for specific queries, preserving the detailed content of videos. Additionally, it features an Divide-and-Conquer Loop capable of autonomous reasoning, dynamically invoking APIs and tools to enhance query processing and accuracy. This approach ensures robust video understanding, significantly reducing information loss. Experimental results affirm OmAgent's efficacy in handling various types of videos and complex tasks. Moreover, we have endowed it with greater autonomy and a robust tool-calling system, enabling it to accomplish even more intricate tasks.
♻ ☆ Revisiting Active Learning in the Era of Vision Foundation Models
Foundation vision or vision-language models are trained on large unlabeled or noisy data and learn robust representations that can achieve impressive zero- or few-shot performance on diverse tasks. Given these properties, they are a natural fit for active learning (AL), which aims to maximize labeling efficiency. However, the full potential of foundation models has not been explored in the context of AL, specifically in the low-budget regime. In this work, we evaluate how foundation models influence three critical components of effective AL, namely, 1) initial labeled pool selection, 2) ensuring diverse sampling, and 3) the trade-off between representative and uncertainty sampling. We systematically study how the robust representations of foundation models (DINOv2, OpenCLIP) challenge existing findings in active learning. Our observations inform the principled construction of a new simple and elegant AL strategy that balances uncertainty estimated via dropout with sample diversity. We extensively test our strategy on many challenging image classification benchmarks, including natural images as well as out-of-domain biomedical images that are relatively understudied in the AL literature. We also provide a highly performant and efficient implementation of modern AL strategies (including our method) at https://github.com/sanketx/AL-foundation-models.
comment: Accepted to TMLR
♻ ☆ Accurately Classifying Out-Of-Distribution Data in Facial Recognition
Standard classification theory assumes that the distribution of images in the test and training sets are identical. Unfortunately, real-life scenarios typically feature unseen data ("out-of-distribution data") which is different from data in the training distribution("in-distribution"). This issue is most prevalent in social justice problems where data from under-represented groups may appear in the test data without representing an equal proportion of the training data. This may result in a model returning confidently wrong decisions and predictions. We are interested in the following question: Can the performance of a neural network improve on facial images of out-of-distribution data when it is trained simultaneously on multiple datasets of in-distribution data? We approach this problem by incorporating the Outlier Exposure model and investigate how the model's performance changes when other datasets of facial images were implemented. We observe that the accuracy and other metrics of the model can be increased by applying Outlier Exposure, incorporating a trainable weight parameter to increase the machine's emphasis on outlier images, and by re-weighting the importance of different class labels. We also experimented with whether sorting the images and determining outliers via image features would have more of an effect on the metrics than sorting by average pixel value. Our goal was to make models not only more accurate but also more fair by scanning a more expanded range of images. We also tested the datasets in reverse order to see whether a more fair dataset with balanced features has an effect on the model's accuracy.
comment: 18 pages, 6 tables, 6 figures
♻ ☆ Exploring Test-Time Adaptation for Object Detection in Continually Changing Environments
For real-world applications, neural network models are commonly deployed in dynamic environments, where the distribution of the target domain undergoes temporal changes. Continual Test-Time Adaptation (CTTA) has recently emerged as a promising technique to gradually adapt a source-trained model to test data drawn from a continually changing target domain. Despite recent advancements in addressing CTTA, two critical issues remain: 1) The use of a fixed threshold for pseudo-labeling in existing methodologies leads to the generation of low-quality pseudo-labels, as model confidence varies across categories and domains; 2) While current solutions utilize stochastic parameter restoration to mitigate catastrophic forgetting, their capacity to preserve critical information is undermined by its intrinsic randomness. To tackle these challenges, we present CTAOD, aiming to enhance the performance of detection models in CTTA scenarios. Inspired by prior CTTA works for effective adaptation, CTAOD is founded on the mean-teacher framework, characterized by three core components. Firstly, the object-level contrastive learning module tailored for object detection extracts object-level features using the teacher's region of interest features and optimizes them through contrastive learning. Secondly, the dynamic threshold strategy updates the category-specific threshold based on predicted confidence scores to improve the quality of pseudo-labels. Lastly, we design a data-driven stochastic restoration mechanism to selectively reset inactive parameters using the gradients as weights for a random mask matrix, thereby ensuring the retention of essential knowledge. We demonstrate the effectiveness of our approach on four CTTA tasks for object detection, where CTAOD outperforms existing methods, especially achieving a 3.0 mAP improvement on the Cityscapes-to-Cityscapes-C CTTA task.
♻ ☆ Domain Adaptation based Object Detection for Autonomous Driving in Foggy and Rainy Weather
Typically, object detection methods for autonomous driving that rely on supervised learning make the assumption of a consistent feature distribution between the training and testing data, this such assumption may fail in different weather conditions. Due to the domain gap, a detection model trained under clear weather may not perform well in foggy and rainy conditions. Overcoming detection bottlenecks in foggy and rainy weather is a real challenge for autonomous vehicles deployed in the wild. To bridge the domain gap and improve the performance of object detection in foggy and rainy weather, this paper presents a novel framework for domain-adaptive object detection. The adaptations at both the image-level and object-level are intended to minimize the differences in image style and object appearance between domains. Furthermore, in order to improve the model's performance on challenging examples, we introduce a novel adversarial gradient reversal layer that conducts adversarial mining on difficult instances in addition to domain adaptation. Additionally, we suggest generating an auxiliary domain through data augmentation to enforce a new domain-level metric regularization. Experimental findings on public V2V benchmark exhibit a substantial enhancement in object detection specifically for foggy and rainy driving scenarios.
comment: the final version
♻ ☆ Text-to-Image Rectified Flow as Plug-and-Play Priors
Large-scale diffusion models have achieved remarkable performance in generative tasks. Beyond their initial training applications, these models have proven their ability to function as versatile plug-and-play priors. For instance, 2D diffusion models can serve as loss functions to optimize 3D implicit models. Rectified flow, a novel class of generative models, enforces a linear progression from the source to the target distribution and has demonstrated superior performance across various domains. Compared to diffusion-based methods, rectified flow approaches surpass in terms of generation quality and efficiency, requiring fewer inference steps. In this work, we present theoretical and experimental evidence demonstrating that rectified flow based methods offer similar functionalities to diffusion models - they can also serve as effective priors. Besides the generative capabilities of diffusion priors, motivated by the unique time-symmetry properties of rectified flow models, a variant of our method can additionally perform image inversion. Experimentally, our rectified flow-based priors outperform their diffusion counterparts - the SDS and VSD losses - in text-to-3D generation. Our method also displays competitive performance in image inversion and editing.
comment: Added results on Stable Diffusion 3. Code: https://github.com/yangxiaofeng/rectified_flow_prior
♻ ☆ MIRReS: Multi-bounce Inverse Rendering using Reservoir Sampling
We present MIRReS, a novel two-stage inverse rendering framework that jointly reconstructs and optimizes the explicit geometry, material, and lighting from multi-view images. Unlike previous methods that rely on implicit irradiance fields or simplified path tracing algorithms, our method extracts an explicit geometry (triangular mesh) in stage one, and introduces a more realistic physically-based inverse rendering model that utilizes multi-bounce path tracing and Monte Carlo integration. By leveraging multi-bounce path tracing, our method effectively estimates indirect illumination, including self-shadowing and internal reflections, which improves the intrinsic decomposition of shape, material, and lighting. Moreover, we incorporate reservoir sampling into our framework to address the noise in Monte Carlo integration, enhancing convergence and facilitating gradient-based optimization with low sample counts. Through qualitative and quantitative evaluation of several scenarios, especially in challenging scenarios with complex shadows, we demonstrate that our method achieves state-of-the-art performance on decomposition results. Additionally, our optimized explicit geometry enables applications such as scene editing, relighting, and material editing with modern graphics engines or CAD software. The source code is available at https://brabbitdousha.github.io/MIRReS/
comment: 16 pages, 14 figures
♻ ☆ ECLIPSE: Expunging Clean-label Indiscriminate Poisons via Sparse Diffusion Purification ESORICS 2024
Clean-label indiscriminate poisoning attacks add invisible perturbations to correctly labeled training images, thus dramatically reducing the generalization capability of the victim models. Recently, some defense mechanisms have been proposed such as adversarial training, image transformation techniques, and image purification. However, these schemes are either susceptible to adaptive attacks, built on unrealistic assumptions, or only effective against specific poison types, limiting their universal applicability. In this research, we propose a more universally effective, practical, and robust defense scheme called ECLIPSE. We first investigate the impact of Gaussian noise on the poisons and theoretically prove that any kind of poison will be largely assimilated when imposing sufficient random noise. In light of this, we assume the victim has access to an extremely limited number of clean images (a more practical scene) and subsequently enlarge this sparse set for training a denoising probabilistic model (a universal denoising tool). We then begin by introducing Gaussian noise to absorb the poisons and then apply the model for denoising, resulting in a roughly purified dataset. Finally, to address the trade-off of the inconsistency in the assimilation sensitivity of different poisons by Gaussian noise, we propose a lightweight corruption compensation module to effectively eliminate residual poisons, providing a more universal defense approach. Extensive experiments demonstrate that our defense approach outperforms 10 state-of-the-art defenses. We also propose an adaptive attack against ECLIPSE and verify the robustness of our defense scheme. Our code is available at https://github.com/CGCL-codes/ECLIPSE.
comment: Accepted by ESORICS 2024
♻ ☆ CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation MICCAI 2024
Segmenting medical images is critical to facilitating both patient diagnoses and quantitative research. A major limiting factor is the lack of labeled data, as obtaining expert annotations for each new set of imaging data and task can be labor intensive and inconsistent among annotators. We present CUTS, an unsupervised deep learning framework for medical image segmentation. CUTS operates in two stages. For each image, it produces an embedding map via intra-image contrastive learning and local patch reconstruction. Then, these embeddings are partitioned at dynamic granularity levels that correspond to the data topology. CUTS yields a series of coarse-to-fine-grained segmentations that highlight features at various granularities. We applied CUTS to retinal fundus images and two types of brain MRI images to delineate structures and patterns at different scales. When evaluated against predefined anatomical masks, CUTS improved the dice coefficient and Hausdorff distance by at least 10% compared to existing unsupervised methods. Finally, CUTS showed performance on par with Segment Anything Models (SAM, MedSAM, SAM-Med2D) pre-trained on gigantic labeled datasets.
comment: Accepted to the 27th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2024)
♻ ☆ Towards Task-Compatible Compressible Representations ICME
We identify an issue in multi-task learnable compression, in which a representation learned for one task does not positively contribute to the rate-distortion performance of a different task as much as expected, given the estimated amount of information available in it. We interpret this issue using the predictive $\mathcal{V}$-information framework. In learnable scalable coding, previous work increased the utilization of side-information for input reconstruction by also rewarding input reconstruction when learning this shared representation. We evaluate the impact of this idea in the context of input reconstruction more rigorously and extended it to other computer vision tasks. We perform experiments using representations trained for object detection on COCO 2017 and depth estimation on the Cityscapes dataset, and use them to assist in image reconstruction and semantic segmentation tasks. The results show considerable improvements in the rate-distortion performance of the assisted tasks. Moreover, using the proposed representations, the performance of the base tasks are also improved. Results suggest that the proposed method induces simpler representations that are more compatible with downstream processes.
comment: To be published in ICME Workshops 2024
♻ ☆ Listening to the Noise: Blind Denoising with Gibbs Diffusion
In recent years, denoising problems have become intertwined with the development of deep generative models. In particular, diffusion models are trained like denoisers, and the distribution they model coincide with denoising priors in the Bayesian picture. However, denoising through diffusion-based posterior sampling requires the noise level and covariance to be known, preventing blind denoising. We overcome this limitation by introducing Gibbs Diffusion (GDiff), a general methodology addressing posterior sampling of both the signal and the noise parameters. Assuming arbitrary parametric Gaussian noise, we develop a Gibbs algorithm that alternates sampling steps from a conditional diffusion model trained to map the signal prior to the family of noise distributions, and a Monte Carlo sampler to infer the noise parameters. Our theoretical analysis highlights potential pitfalls, guides diagnostic usage, and quantifies errors in the Gibbs stationary distribution caused by the diffusion model. We showcase our method for 1) blind denoising of natural images involving colored noises with unknown amplitude and spectral index, and 2) a cosmology problem, namely the analysis of cosmic microwave background data, where Bayesian inference of "noise" parameters means constraining models of the evolution of the Universe.
comment: 12+9 pages, 7+5 figures, 1+1 tables; accepted to 2024 International Conference on Machine Learning; code: https://github.com/rubenohana/Gibbs-Diffusion
♻ ☆ LEDITS++: Limitless Image Editing using Text-to-Image Models CVPR
Text-to-image diffusion models have recently received increasing interest for their astonishing ability to produce high-fidelity images from solely text inputs. Subsequent research efforts aim to exploit and apply their capabilities to real image editing. However, existing image-to-image methods are often inefficient, imprecise, and of limited versatility. They either require time-consuming finetuning, deviate unnecessarily strongly from the input image, and/or lack support for multiple, simultaneous edits. To address these issues, we introduce LEDITS++, an efficient yet versatile and precise textual image manipulation technique. LEDITS++'s novel inversion approach requires no tuning nor optimization and produces high-fidelity results with a few diffusion steps. Second, our methodology supports multiple simultaneous edits and is architecture-agnostic. Third, we use a novel implicit masking technique that limits changes to relevant image regions. We propose the novel TEdBench++ benchmark as part of our exhaustive evaluation. Our results demonstrate the capabilities of LEDITS++ and its improvements over previous methods.
comment: Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) The project page is available at https://leditsplusplus-project.static.hf.space
♻ ☆ ODIN: A Single Model for 2D and 3D Segmentation CVPR 2024
State-of-the-art models on contemporary 3D segmentation benchmarks like ScanNet consume and label dataset-provided 3D point clouds, obtained through post processing of sensed multiview RGB-D images. They are typically trained in-domain, forego large-scale 2D pre-training and outperform alternatives that featurize the posed RGB-D multiview images instead. The gap in performance between methods that consume posed images versus post-processed 3D point clouds has fueled the belief that 2D and 3D perception require distinct model architectures. In this paper, we challenge this view and propose ODIN (Omni-Dimensional INstance segmentation), a model that can segment and label both 2D RGB images and 3D point clouds, using a transformer architecture that alternates between 2D within-view and 3D cross-view information fusion. Our model differentiates 2D and 3D feature operations through the positional encodings of the tokens involved, which capture pixel coordinates for 2D patch tokens and 3D coordinates for 3D feature tokens. ODIN achieves state-of-the-art performance on ScanNet200, Matterport3D and AI2THOR 3D instance segmentation benchmarks, and competitive performance on ScanNet, S3DIS and COCO. It outperforms all previous works by a wide margin when the sensed 3D point cloud is used in place of the point cloud sampled from 3D mesh. When used as the 3D perception engine in an instructable embodied agent architecture, it sets a new state-of-the-art on the TEACh action-from-dialogue benchmark. Our code and checkpoints can be found at the project website (https://odin-seg.github.io).
comment: Camera Ready (CVPR 2024, Highlight)
♻ ☆ Learning Point Spread Function Invertibility Assessment for Image Deconvolution
Deep-learning (DL)-based image deconvolution (ID) has exhibited remarkable recovery performance, surpassing traditional linear methods. However, unlike traditional ID approaches that rely on analytical properties of the point spread function (PSF) to achieve high recovery performance - such as specific spectrum properties or small conditional numbers in the convolution matrix - DL techniques lack quantifiable metrics for evaluating PSF suitability for DL-assisted recovery. Aiming to enhance deconvolution quality, we propose a metric that employs a non-linear approach to learn the invertibility of an arbitrary PSF using a neural network by mapping it to a unit impulse. A lower discrepancy between the mapped PSF and a unit impulse indicates a higher likelihood of successful inversion by a DL network. Our findings reveal that this metric correlates with high recovery performance in DL and traditional methods, thereby serving as an effective regularizer in deconvolution tasks. This approach reduces the computational complexity over conventional condition number assessments and is a differentiable process. These useful properties allow its application in designing diffractive optical elements through end-to-end (E2E) optimization, achieving invertible PSFs, and outperforming the E2E baseline framework.
comment: Accepted at EUSIPCO 2024
♻ ☆ Visualize and Paint GAN Activations
We investigate how generated structures of GANs correlate with their activations in hidden layers, with the purpose of better understanding the inner workings of those models and being able to paint structures with unconditionally trained GANs. This gives us more control over the generated images, allowing to generate them from a semantic segmentation map while not requiring such a segmentation in the training data. To this end we introduce the concept of tileable features, allowing us to identify activations that work well for painting.
♻ ☆ MambaMIR: An Arbitrary-Masked Mamba for Joint Medical Image Reconstruction and Uncertainty Estimation
The recent Mamba model has shown remarkable adaptability for visual representation learning, including in medical imaging tasks. This study introduces MambaMIR, a Mamba-based model for medical image reconstruction, as well as its Generative Adversarial Network-based variant, MambaMIR-GAN. Our proposed MambaMIR inherits several advantages, such as linear complexity, global receptive fields, and dynamic weights, from the original Mamba model. The innovated arbitrary-mask mechanism effectively adapt Mamba to our image reconstruction task, providing randomness for subsequent Monte Carlo-based uncertainty estimation. Experiments conducted on various medical image reconstruction tasks, including fast MRI and SVCT, which cover anatomical regions such as the knee, chest, and abdomen, have demonstrated that MambaMIR and MambaMIR-GAN achieve comparable or superior reconstruction results relative to state-of-the-art methods. Additionally, the estimated uncertainty maps offer further insights into the reliability of the reconstruction quality. The code is publicly available at https://github.com/ayanglab/MambaMIR.
♻ ☆ Enhancing Global Sensitivity and Uncertainty Quantification in Medical Image Reconstruction with Monte Carlo Arbitrary-Masked Mamba
Deep learning has been extensively applied in medical image reconstruction, where Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) represent the predominant paradigms, each possessing distinct advantages and inherent limitations: CNNs exhibit linear complexity with local sensitivity, whereas ViTs demonstrate quadratic complexity with global sensitivity. The emerging Mamba has shown superiority in learning visual representation, which combines the advantages of linear scalability and global sensitivity. In this study, we introduce MambaMIR, an Arbitrary-Masked Mamba-based model with wavelet decomposition for joint medical image reconstruction and uncertainty estimation. A novel Arbitrary Scan Masking (ASM) mechanism "masks out" redundant information to introduce randomness for further uncertainty estimation. Compared to the commonly used Monte Carlo (MC) dropout, our proposed MC-ASM provides an uncertainty map without the need for hyperparameter tuning and mitigates the performance drop typically observed when applying dropout to low-level tasks. For further texture preservation and better perceptual quality, we employ the wavelet transformation into MambaMIR and explore its variant based on the Generative Adversarial Network, namely MambaMIR-GAN. Comprehensive experiments have been conducted for multiple representative medical image reconstruction tasks, demonstrating that the proposed MambaMIR and MambaMIR-GAN outperform other baseline and state-of-the-art methods in different reconstruction tasks, where MambaMIR achieves the best reconstruction fidelity and MambaMIR-GAN has the best perceptual quality. In addition, our MC-ASM provides uncertainty maps as an additional tool for clinicians, while mitigating the typical performance drop caused by the commonly used dropout.
♻ ☆ Deciphering the Definition of Adversarial Robustness for post-hoc OOD Detectors
Detecting out-of-distribution (OOD) inputs is critical for safely deploying deep learning models in real-world scenarios. In recent years, many OOD detectors have been developed, and even the benchmarking has been standardized, i.e. OpenOOD. The number of post-hoc detectors is growing fast and showing an option to protect a pre-trained classifier against natural distribution shifts, claiming to be ready for real-world scenarios. However, its efficacy in handling adversarial examples has been neglected in the majority of studies. This paper investigates the adversarial robustness of the 16 post-hoc detectors on several evasion attacks and discuss a roadmap towards adversarial defense in OOD detectors.
♻ ☆ Deep Learning for Multi-Label Learning: A Comprehensive Survey
Multi-label learning is a rapidly growing research area that aims to predict multiple labels from a single input data point. In the era of big data, tasks involving multi-label classification (MLC) or ranking present significant and intricate challenges, capturing considerable attention in diverse domains. Inherent difficulties in MLC include dealing with high-dimensional data, addressing label correlations, and handling partial labels, for which conventional methods prove ineffective. Recent years have witnessed a notable increase in adopting deep learning (DL) techniques to address these challenges more effectively in MLC. Notably, there is a burgeoning effort to harness the robust learning capabilities of DL for improved modelling of label dependencies and other challenges in MLC. However, it is noteworthy that comprehensive studies specifically dedicated to DL for multi-label learning are limited. Thus, this survey aims to thoroughly review recent progress in DL for multi-label learning, along with a summary of open research problems in MLC. The review consolidates existing research efforts in DL for MLC,including deep neural networks, transformers, autoencoders, and convolutional and recurrent architectures. Finally, the study presents a comparative analysis of the existing methods to provide insightful observations and stimulate future research directions in this domain.
comment: 20 pages, 5 tables
♻ ☆ Expected Grad-CAM: Towards gradient faithfulness
Although input-gradients techniques have evolved to mitigate and tackle the challenges associated with gradients, modern gradient-weighted CAM approaches still rely on vanilla gradients, which are inherently susceptible to the saturation phenomena. Despite recent enhancements have incorporated counterfactual gradient strategies as a mitigating measure, these local explanation techniques still exhibit a lack of sensitivity to their baseline parameter. Our work proposes a gradient-weighted CAM augmentation that tackles both the saturation and sensitivity problem by reshaping the gradient computation, incorporating two well-established and provably approaches: Expected Gradients and kernel smoothing. By revisiting the original formulation as the smoothed expectation of the perturbed integrated gradients, one can concurrently construct more faithful, localized and robust explanations which minimize infidelity. Through fine modulation of the perturbation distribution it is possible to regulate the complexity characteristic of the explanation, selectively discriminating stable features. Our technique, Expected Grad-CAM, differently from recent works, exclusively optimizes the gradient computation, purposefully designed as an enhanced substitute of the foundational Grad-CAM algorithm and any method built therefrom. Quantitative and qualitative evaluations have been conducted to assess the effectiveness of our method.
comment: Updated appendix figures to vector format for improved clarity
Information Retrieval 12
☆ Light-weight End-to-End Graph Interest Network for CTR Prediction in E-commerce Search
Click-through-rate (CTR) prediction has an essential impact on improving user experience and revenue in e-commerce search. With the development of deep learning, graph-based methods are well exploited to utilize graph structure extracted from user behaviors and other information to help embedding learning. However, most of the previous graph-based methods mainly focus on recommendation scenarios, and therefore their graph structures highly depend on item's sequential information from user behaviors, ignoring query's sequential signal and query-item correlation. In this paper, we propose a new approach named Light-weight End-to-End Graph Interest Network (EGIN) to effectively mine users' search interests and tackle previous challenges. (i) EGIN utilizes query and item's correlation and sequential information from the search system to build a heterogeneous graph for better CTR prediction in e-commerce search. (ii) EGIN's graph embedding learning shares the same training input and is jointly trained with CTR prediction, making the end-to-end framework effortless to deploy in large-scale search systems. The proposed EGIN is composed of three parts: query-item heterogeneous graph, light-weight graph sampling, and multi-interest network. The query-item heterogeneous graph captures correlation and sequential information of query and item efficiently by the proposed light-weight graph sampling. The multi-interest network is well designed to utilize graph embedding to capture various similarity relationships between query and item to enhance the final CTR prediction. We conduct extensive experiments on both public and industrial datasets to demonstrate the effectiveness of the proposed EGIN. At the same time, the training cost of graph learning is relatively low compared with the main CTR prediction task, ensuring efficiency in practical applications.
comment: 8 pages, 4 figures
☆ LumberChunker: Long-Form Narrative Document Segmentation
Modern NLP tasks increasingly rely on dense retrieval methods to access up-to-date and relevant contextual information. We are motivated by the premise that retrieval benefits from segments that can vary in size such that a content's semantic independence is better captured. We propose LumberChunker, a method leveraging an LLM to dynamically segment documents, which iteratively prompts the LLM to identify the point within a group of sequential passages where the content begins to shift. To evaluate our method, we introduce GutenQA, a benchmark with 3000 "needle in a haystack" type of question-answer pairs derived from 100 public domain narrative books available on Project Gutenberg. Our experiments show that LumberChunker not only outperforms the most competitive baseline by 7.37% in retrieval performance (DCG@20) but also that, when integrated into a RAG pipeline, LumberChunker proves to be more effective than other chunking methods and competitive baselines, such as the Gemini 1.5M Pro. Our Code and Data are available at https://github.com/joaodsmarques/LumberChunker
☆ ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling
Generative retrieval, which has demonstrated effectiveness in text-to-text retrieval, utilizes a sequence-to-sequence model to directly generate candidate identifiers based on natural language queries. Without explicitly computing the similarity between queries and candidates, generative retrieval surpasses dual-tower models in both speed and accuracy on large-scale corpora, providing new insights for cross-modal retrieval. However, constructing identifiers for multimodal data remains an untapped problem, and the modality gap between natural language queries and multimodal candidates hinders retrieval performance due to the absence of additional encoders. To this end, we propose a pioneering generAtive Cross-modal rEtrieval framework (ACE), which is a comprehensive framework for end-to-end cross-modal retrieval based on coarse-to-fine semantic modeling. We propose combining K-Means and RQ-VAE to construct coarse and fine tokens, serving as identifiers for multimodal data. Correspondingly, we design the coarse-to-fine feature fusion strategy to efficiently align natural language queries and candidate identifiers. ACE is the first work to comprehensively demonstrate the feasibility of generative approach on text-to-image/audio/video retrieval, challenging the dominance of the embedding-based dual-tower architecture. Extensive experiments show that ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
☆ Performative Debias with Fair-exposure Optimization Driven by Strategic Agents in Recommender Systems KDD 2024
Data bias, e.g., popularity impairs the dynamics of two-sided markets within recommender systems. This overshadows the less visible but potentially intriguing long-tail items that could capture user interest. Despite the abundance of research surrounding this issue, it still poses challenges and remains a hot topic in academic circles. Along this line, in this paper, we developed a re-ranking approach in dynamic settings with fair-exposure optimization driven by strategic agents. Designed for the producer side, the execution of agents assumes content creators can modify item features based on strategic incentives to maximize their exposure. This iterative process entails an end-to-end optimization, employing differentiable ranking operators that simultaneously target accuracy and fairness. Joint objectives ensure the performance of recommendations while enhancing the visibility of tail items. We also leveraged the performativity nature of predictions to illustrate how strategic learning influences content creators to shift towards fairness efficiently, thereby incentivizing features of tail items. Through comprehensive experiments on both public and industrial datasets, we have substantiated the effectiveness and dominance of the proposed method especially on unveiling the potential of tail items.
comment: SIGKDD 2024 accepted paper
☆ A Text is Worth Several Tokens: Text Embedding from LLMs Secretly Aligns Well with The Key Tokens
Text embeddings from large language models (LLMs) have achieved excellent results in tasks such as information retrieval, semantic textual similarity, etc. In this work, we show an interesting finding: when feeding a text into the embedding LLMs, the obtained text embedding will be able to be aligned with the key tokens in the input text. We first fully analyze this phenomenon on eight embedding LLMs and show that this phenomenon is universal and is not affected by model architecture, training strategy, and embedding method. With a deeper analysis, we then find that the main change in embedding space between the embedding LLMs and their original generative LLMs is in the first principal component. By adjusting the first principal component, we can align text embedding with the key tokens. Finally, we give several examples to demonstrate the vast application potential of this finding: (1) we propose a simple and practical sparse retrieval method based on the aligned tokens, which can achieve 80\% of the dense retrieval effect of the same model while reducing the computation significantly; (2) we show that our findings provide a fresh perspective to help understand fuzzy concepts (e.g., semantic relatedness vs. semantic similarity) and emerging technologies (e.g., instruction-following embedding) in this field.
comment: Work in Progress
☆ A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems
Since the creation of the Web, recommender systems (RSs) have been an indispensable mechanism in information filtering. State-of-the-art RSs primarily depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables. To prevent over-parameterized embedding tables from harming scalability, both academia and industry have seen increasing efforts in compressing RS embeddings. However, despite the prosperity of lightweight embedding-based RSs (LERSs), a wide diversity is seen in evaluation protocols, resulting in obstacles when relating LERS performance to real-world usability. Moreover, despite the common goal of lightweight embeddings, LERSs are evaluated with a single choice between the two main recommendation tasks -- collaborative filtering and content-based recommendation. This lack of discussions on cross-task transferability hinders the development of unified, more scalable solutions. Motivated by these issues, this study investigates various LERSs' performance, efficiency, and cross-task transferability via a thorough benchmarking process. Additionally, we propose an efficient embedding compression method using magnitude pruning, which is an easy-to-deploy yet highly competitive baseline that outperforms various complex LERSs. Our study reveals the distinct performance of LERSs across the two tasks, shedding light on their effectiveness and generalizability. To support edge-based recommendations, we tested all LERSs on a Raspberry Pi 4, where the efficiency bottleneck is exposed. Finally, we conclude this paper with critical summaries of LERS performance, model selection suggestions, and underexplored challenges around LERSs for future research. To encourage future research, we publish source codes and artifacts at \href{this link}{https://github.com/chenxing1999/recsys-benchmark}.
☆ Hyperbolic Knowledge Transfer in Cross-Domain Recommendation System
Cross-Domain Recommendation (CDR) seeks to utilize knowledge from different domains to alleviate the problem of data sparsity in the target recommendation domain, and it has been gaining more attention in recent years. Although there have been notable advancements in this area, most current methods represent users and items in Euclidean space, which is not ideal for handling long-tail distributed data in recommendation systems. Additionally, adding data from other domains can worsen the long-tail characteristics of the entire dataset, making it harder to train CDR models effectively. Recent studies have shown that hyperbolic methods are particularly suitable for modeling long-tail distributions, which has led us to explore hyperbolic representations for users and items in CDR scenarios. However, due to the distinct characteristics of the different domains, applying hyperbolic representation learning to CDR tasks is quite challenging. In this paper, we introduce a new framework called Hyperbolic Contrastive Learning (HCTS), designed to capture the unique features of each domain while enabling efficient knowledge transfer between domains. We achieve this by embedding users and items from each domain separately and mapping them onto distinct hyperbolic manifolds with adjustable curvatures for prediction. To improve the representations of users and items in the target domain, we develop a hyperbolic contrastive learning module for knowledge transfer. Extensive experiments on real-world datasets demonstrate that hyperbolic manifolds are a promising alternative to Euclidean space for CDR tasks.
☆ Efficient Document Ranking with Learnable Late Interactions
Cross-Encoder (CE) and Dual-Encoder (DE) models are two fundamental approaches for query-document relevance in information retrieval. To predict relevance, CE models use joint query-document embeddings, while DE models maintain factorized query and document embeddings; usually, the former has higher quality while the latter benefits from lower latency. Recently, late-interaction models have been proposed to realize more favorable latency-quality tradeoffs, by using a DE structure followed by a lightweight scorer based on query and document token embeddings. However, these lightweight scorers are often hand-crafted, and there is no understanding of their approximation power; further, such scorers require access to individual document token embeddings, which imposes an increased latency and storage burden. In this paper, we propose novel learnable late-interaction models (LITE) that resolve these issues. Theoretically, we prove that LITE is a universal approximator of continuous scoring functions, even for relatively small embedding dimension. Empirically, LITE outperforms previous late-interaction models such as ColBERT on both in-domain and zero-shot re-ranking tasks. For instance, experiments on MS MARCO passage re-ranking show that LITE not only yields a model with better generalization, but also lowers latency and requires 0.25x storage compared to ColBERT.
☆ NormTab: Improving Symbolic Reasoning in LLMs Through Tabular Data Normalization
In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities in parsing textual data and generating code. However, their performance in tasks involving tabular data, especially those requiring symbolic reasoning, faces challenges due to the structural variance and inconsistency in table cell values often found in web tables. In this paper, we introduce NormTab, a novel framework aimed at enhancing the symbolic reasoning performance of LLMs by normalizing web tables. We study table normalization as a stand-alone, one-time preprocessing step using LLMs to support symbolic reasoning on tabular data. Our experimental evaluation, conducted on challenging web table datasets such as WikiTableQuestion and TabFact, demonstrates that leveraging NormTab significantly improves symbolic reasoning performance, showcasing the importance and effectiveness of web table normalization for enhancing LLM-based symbolic reasoning tasks.
comment: Work in Progress
♻ ☆ Gradient Coding with Iterative Block Leverage Score Sampling
We generalize the leverage score sampling sketch for $\ell_2$-subspace embeddings, to accommodate sampling subsets of the transformed data, so that the sketching approach is appropriate for distributed settings. This is then used to derive an approximate coded computing approach for first-order methods; known as gradient coding, to accelerate linear regression in the presence of failures in distributed computational networks, \textit{i.e.} stragglers. We replicate the data across the distributed network, to attain the approximation guarantees through the induced sampling distribution. The significance and main contribution of this work, is that it unifies randomized numerical linear algebra with approximate coded computing, while attaining an induced $\ell_2$-subspace embedding through uniform sampling. The transition to uniform sampling is done without applying a random projection, as in the case of the subsampled randomized Hadamard transform. Furthermore, by incorporating this technique to coded computing, our scheme is an iterative sketching approach to approximately solving linear regression. We also propose weighting when sketching takes place through sampling with replacement, for further compression.
comment: 26 pages, 6 figures, 1 table
♻ ☆ Neural Optimization with Adaptive Heuristics for Intelligent Marketing System KDD 2024
Computational marketing has become increasingly important in today's digital world, facing challenges such as massive heterogeneous data, multi-channel customer journeys, and limited marketing budgets. In this paper, we propose a general framework for marketing AI systems, the Neural Optimization with Adaptive Heuristics (NOAH) framework. NOAH is the first general framework for marketing optimization that considers both to-business (2B) and to-consumer (2C) products, as well as both owned and paid channels. We describe key modules of the NOAH framework, including prediction, optimization, and adaptive heuristics, providing examples for bidding and content optimization. We then detail the successful application of NOAH to LinkedIn's email marketing system, showcasing significant wins over the legacy ranking system. Additionally, we share details and insights that are broadly useful, particularly on: (i) addressing delayed feedback with lifetime value, (ii) performing large-scale linear programming with randomization, (iii) improving retrieval with audience expansion, (iv) reducing signal dilution in targeting tests, and (v) handling zero-inflated heavy-tail metrics in statistical testing.
comment: KDD 2024
♻ ☆ Do Large Language Models Rank Fairly? An Empirical Study on the Fairness of LLMs as Rankers NAACL 2024
The integration of Large Language Models (LLMs) in information retrieval has raised a critical reevaluation of fairness in the text-ranking models. LLMs, such as GPT models and Llama2, have shown effectiveness in natural language understanding tasks, and prior works (e.g., RankGPT) have also demonstrated that the LLMs exhibit better performance than the traditional ranking models in the ranking task. However, their fairness remains largely unexplored. This paper presents an empirical study evaluating these LLMs using the TREC Fair Ranking dataset, focusing on the representation of binary protected attributes such as gender and geographic location, which are historically underrepresented in search outcomes. Our analysis delves into how these LLMs handle queries and documents related to these attributes, aiming to uncover biases in their ranking algorithms. We assess fairness from both user and content perspectives, contributing an empirical benchmark for evaluating LLMs as the fair ranker.
comment: Accepted at NAACL 2024 Main Conference
Machine Learning 158
☆ EXTRACT: Efficient Policy Learning by Extracting Transferrable Robot Skills from Offline Data
Most reinforcement learning (RL) methods focus on learning optimal policies over low-level action spaces. While these methods can perform well in their training environments, they lack the flexibility to transfer to new tasks. Instead, RL agents that can act over useful, temporally extended skills rather than low-level actions can learn new tasks more easily. Prior work in skill-based RL either requires expert supervision to define useful skills, which is hard to scale, or learns a skill-space from offline data with heuristics that limit the adaptability of the skills, making them difficult to transfer during downstream RL. Our approach, EXTRACT, instead utilizes pre-trained vision language models to extract a discrete set of semantically meaningful skills from offline data, each of which is parameterized by continuous arguments, without human supervision. This skill parameterization allows robots to learn new tasks by only needing to learn when to select a specific skill and how to modify its arguments for the specific task. We demonstrate through experiments in sparse-reward, image-based, robot manipulation environments that EXTRACT can more quickly learn new tasks than prior works, with major gains in sample efficiency and performance over prior skill-based RL. Website at https://www.jessezhang.net/projects/extract/.
comment: 22 pages, 13 figures
☆ DiffusionPDE: Generative PDE-Solving Under Partial Observation
We introduce a general framework for solving partial differential equations (PDEs) using generative diffusion models. In particular, we focus on the scenarios where we do not have the full knowledge of the scene necessary to apply classical solvers. Most existing forward or inverse PDE approaches perform poorly when the observations on the data or the underlying coefficients are incomplete, which is a common assumption for real-world measurements. In this work, we propose DiffusionPDE that can simultaneously fill in the missing information and solve a PDE by modeling the joint distribution of the solution and coefficient spaces. We show that the learned generative priors lead to a versatile framework for accurately solving a wide range of PDEs under partial observation, significantly outperforming the state-of-the-art methods for both forward and inverse directions.
comment: Project page: https://jhhuangchloe.github.io/Diffusion-PDE/
☆ Solving Hard Mizar Problems with Instantiation and Strategy Invention
In this work, we prove over 3000 previously ATP-unproved Mizar/MPTP problems by using several ATP and AI methods, raising the number of ATP-solved Mizar problems from 75\% to above 80\%. First, we start to experiment with the cvc5 SMT solver which uses several instantiation-based heuristics that differ from the superposition-based systems, that were previously applied to Mizar,and add many new solutions. Then we use automated strategy invention to develop cvc5 strategies that largely improve cvc5's performance on the hard problems. In particular, the best invented strategy solves over 14\% more problems than the best previously available cvc5 strategy. We also show that different clausification methods have a high impact on such instantiation-based methods, again producing many new solutions. In total, the methods solve 3021 (21.3\%) of the 14163 previously unsolved hard Mizar problems. This is a new milestone over the Mizar large-theory benchmark and a large strengthening of the hammer methods for Mizar.
☆ CaLMQA: Exploring culturally specific long-form question answering across 23 languages
Large language models (LLMs) are commonly used for long-form question answering, which requires them to generate paragraph-length answers to complex questions. While long-form QA has been well-studied in English via many different datasets and evaluation metrics, this research has not been extended to cover most other languages. To bridge this gap, we introduce CaLMQA, a collection of 2.6K complex questions spanning 23 languages, including under-resourced, rarely-studied languages such as Fijian and Kirundi. Our dataset includes both naturally-occurring questions collected from community web forums as well as questions written by native speakers, whom we hire for this purpose. Our process yields diverse, complex questions that reflect cultural topics (e.g. traditions, laws, news) and the language usage of native speakers. We conduct automatic evaluation across a suite of open- and closed-source models using our novel metric CaLMScore, which detects incorrect language and token repetitions in answers, and observe that the quality of LLM-generated answers degrades significantly for some low-resource languages. We perform human evaluation on a subset of models and see that model performance is significantly worse for culturally specific questions than for culturally agnostic questions. Our findings highlight the need for further research in LLM multilingual capabilities and non-English LFQA evaluation.
comment: 39 pages, 16 figures. Code and data available at https://github.com/2015aroras/CaLMQA
☆ Interpreting Attention Layer Outputs with Sparse Autoencoders
Decomposing model activations into interpretable components is a key open problem in mechanistic interpretability. Sparse autoencoders (SAEs) are a popular method for decomposing the internal activations of trained transformers into sparse, interpretable features, and have been applied to MLP layers and the residual stream. In this work we train SAEs on attention layer outputs and show that also here SAEs find a sparse, interpretable decomposition. We demonstrate this on transformers from several model families and up to 2B parameters. We perform a qualitative study of the features computed by attention layers, and find multiple families: long-range context, short-range context and induction features. We qualitatively study the role of every head in GPT-2 Small, and estimate that at least 90% of the heads are polysemantic, i.e. have multiple unrelated roles. Further, we show that Sparse Autoencoders are a useful tool that enable researchers to explain model behavior in greater detail than prior work. For example, we explore the mystery of why models have so many seemingly redundant induction heads, use SAEs to motivate the hypothesis that some are long-prefix whereas others are short-prefix, and confirm this with more rigorous analysis. We use our SAEs to analyze the computation performed by the Indirect Object Identification circuit (Wang et al.), validating that the SAEs find causally meaningful intermediate variables, and deepening our understanding of the semantics of the circuit. We open-source the trained SAEs and a tool for exploring arbitrary prompts through the lens of Attention Output SAEs.
☆ Benchmarking Deep Learning Models on NVIDIA Jetson Nano for Real-Time Systems: An Empirical Investigation
The proliferation of complex deep learning (DL) models has revolutionized various applications, including computer vision-based solutions, prompting their integration into real-time systems. However, the resource-intensive nature of these models poses challenges for deployment on low-computational power and low-memory devices, like embedded and edge devices. This work empirically investigates the optimization of such complex DL models to analyze their functionality on an embedded device, particularly on the NVIDIA Jetson Nano. It evaluates the effectiveness of the optimized models in terms of their inference speed for image classification and video action detection. The experimental results reveal that, on average, optimized models exhibit a 16.11% speed improvement over their non-optimized counterparts. This not only emphasizes the critical need to consider hardware constraints and environmental sustainability in model development and deployment but also underscores the pivotal role of model optimization in enabling the widespread deployment of AI-assisted technologies on resource-constrained computational systems. It also serves as proof that prioritizing hardware-specific model optimization leads to efficient and scalable solutions that substantially decrease energy consumption and carbon footprint.
comment: 7 pages, 4 figures
☆ A New Perspective on Shampoo's Preconditioner
Shampoo, a second-order optimization algorithm which uses a Kronecker product preconditioner, has recently garnered increasing attention from the machine learning community. The preconditioner used by Shampoo can be viewed either as an approximation of the Gauss--Newton component of the Hessian or the covariance matrix of the gradients maintained by Adagrad. We provide an explicit and novel connection between the $\textit{optimal}$ Kronecker product approximation of these matrices and the approximation made by Shampoo. Our connection highlights a subtle but common misconception about Shampoo's approximation. In particular, the $\textit{square}$ of the approximation used by the Shampoo optimizer is equivalent to a single step of the power iteration algorithm for computing the aforementioned optimal Kronecker product approximation. Across a variety of datasets and architectures we empirically demonstrate that this is close to the optimal Kronecker product approximation. Additionally, for the Hessian approximation viewpoint, we empirically study the impact of various practical tricks to make Shampoo more computationally efficient (such as using the batch gradient and the empirical Fisher) on the quality of Hessian approximation.
☆ Probing the effects of broken symmetries in machine learning
Symmetry is one of the most central concepts in physics, and it is no surprise that it has also been widely adopted as an inductive bias for machine-learning models applied to the physical sciences. This is especially true for models targeting the properties of matter at the atomic scale. Both established and state-of-the-art approaches, with almost no exceptions, are built to be exactly equivariant to translations, permutations, and rotations of the atoms. Incorporating symmetries -- rotations in particular -- constrains the model design space and implies more complicated architectures that are often also computationally demanding. There are indications that non-symmetric models can easily learn symmetries from data, and that doing so can even be beneficial for the accuracy of the model. We put a model that obeys rotational invariance only approximately to the test, in realistic scenarios involving simulations of gas-phase, liquid, and solid water. We focus specifically on physical observables that are likely to be affected -- directly or indirectly -- by symmetry breaking, finding negligible consequences when the model is used in an interpolative, bulk, regime. Even for extrapolative gas-phase predictions, the model remains very stable, even though symmetry artifacts are noticeable. We also discuss strategies that can be used to systematically reduce the magnitude of symmetry breaking when it occurs, and assess their impact on the convergence of observables.
☆ Light-weight End-to-End Graph Interest Network for CTR Prediction in E-commerce Search
Click-through-rate (CTR) prediction has an essential impact on improving user experience and revenue in e-commerce search. With the development of deep learning, graph-based methods are well exploited to utilize graph structure extracted from user behaviors and other information to help embedding learning. However, most of the previous graph-based methods mainly focus on recommendation scenarios, and therefore their graph structures highly depend on item's sequential information from user behaviors, ignoring query's sequential signal and query-item correlation. In this paper, we propose a new approach named Light-weight End-to-End Graph Interest Network (EGIN) to effectively mine users' search interests and tackle previous challenges. (i) EGIN utilizes query and item's correlation and sequential information from the search system to build a heterogeneous graph for better CTR prediction in e-commerce search. (ii) EGIN's graph embedding learning shares the same training input and is jointly trained with CTR prediction, making the end-to-end framework effortless to deploy in large-scale search systems. The proposed EGIN is composed of three parts: query-item heterogeneous graph, light-weight graph sampling, and multi-interest network. The query-item heterogeneous graph captures correlation and sequential information of query and item efficiently by the proposed light-weight graph sampling. The multi-interest network is well designed to utilize graph embedding to capture various similarity relationships between query and item to enhance the final CTR prediction. We conduct extensive experiments on both public and industrial datasets to demonstrate the effectiveness of the proposed EGIN. At the same time, the training cost of graph learning is relatively low compared with the main CTR prediction task, ensuring efficiency in practical applications.
comment: 8 pages, 4 figures
☆ Structured Unrestricted-Rank Matrices for Parameter Efficient Fine-tuning
Recent efforts to scale Transformer models have demonstrated rapid progress across a wide range of tasks (Wei et al., 2022). However, fine-tuning these models for downstream tasks is expensive due to their large parameter counts. Parameter-efficient fine-tuning (PEFT) approaches have emerged as a viable alternative by allowing us to fine-tune models by updating only a small number of parameters. In this work, we propose a general framework for parameter efficient fine-tuning (PEFT), based on structured unrestricted-rank matrices (SURM) which can serve as a drop-in replacement for popular approaches such as Adapters and LoRA. Unlike other methods like LoRA, SURMs provides more flexibility in finding the right balance between compactness and expressiveness. This is achieved by using low displacement rank matrices (LDRMs), which hasn't been used in this context before. SURMs remain competitive with baselines, often providing significant quality improvements while using a smaller parameter budget. SURMs achieve 5-7% accuracy gains on various image classification tasks while replacing low-rank matrices in LoRA. It also results in up to 12x reduction of the number of parameters in adapters (with virtually no loss in quality) on the GLUE benchmark.
comment: Work in progress
LLM Targeted Underperformance Disproportionately Impacts Vulnerable Users
While state-of-the-art Large Language Models (LLMs) have shown impressive performance on many tasks, there has been extensive research on undesirable model behavior such as hallucinations and bias. In this work, we investigate how the quality of LLM responses changes in terms of information accuracy, truthfulness, and refusals depending on three user traits: English proficiency, education level, and country of origin. We present extensive experimentation on three state-of-the-art LLMs and two different datasets targeting truthfulness and factuality. Our findings suggest that undesirable behaviors in state-of-the-art LLMs occur disproportionately more for users with lower English proficiency, of lower education status, and originating from outside the US, rendering these models unreliable sources of information towards their most vulnerable users.
☆ When does Self-Prediction help? Understanding Auxiliary Tasks in Reinforcement Learning
We investigate the impact of auxiliary learning tasks such as observation reconstruction and latent self-prediction on the representation learning problem in reinforcement learning. We also study how they interact with distractions and observation functions in the MDP. We provide a theoretical analysis of the learning dynamics of observation reconstruction, latent self-prediction, and TD learning in the presence of distractions and observation functions under linear model assumptions. With this formalization, we are able to explain why latent-self prediction is a helpful \emph{auxiliary task}, while observation reconstruction can provide more useful features when used in isolation. Our empirical analysis shows that the insights obtained from our learning dynamics framework predicts the behavior of these loss functions beyond the linear model assumption in non-linear neural networks. This reinforces the usefulness of the linear model framework not only for theoretical analysis, but also practical benefit for applied problems.
☆ Compositional Models for Estimating Causal Effects
Many real-world systems can be represented as sets of interacting components. Examples of such systems include computational systems such as query processors, natural systems such as cells, and social systems such as families. Many approaches have been proposed in traditional (associational) machine learning to model such structured systems, including statistical relational models and graph neural networks. Despite this prior work, existing approaches to estimating causal effects typically treat such systems as single units, represent them with a fixed set of variables and assume a homogeneous data-generating process. We study a compositional approach for estimating individual treatment effects (ITE) in structured systems, where each unit is represented by the composition of multiple heterogeneous components. This approach uses a modular architecture to model potential outcomes at each component and aggregates component-level potential outcomes to obtain the unit-level potential outcomes. We discover novel benefits of the compositional approach in causal inference - systematic generalization to estimate counterfactual outcomes of unseen combinations of components and improved overlap guarantees between treatment and control groups compared to the classical methods for causal effect estimation. We also introduce a set of novel environments for empirically evaluating the compositional approach and demonstrate the effectiveness of our approach using both simulated and real-world data.
☆ Data curation via joint example selection further accelerates multimodal learning
Data curation is an essential component of large-scale pretraining. In this work, we demonstrate that jointly selecting batches of data is more effective for learning than selecting examples independently. Multimodal contrastive objectives expose the dependencies between data and thus naturally yield criteria for measuring the joint learnability of a batch. We derive a simple and tractable algorithm for selecting such batches, which significantly accelerate training beyond individually-prioritized data points. As performance improves by selecting from larger super-batches, we also leverage recent advances in model approximation to reduce the associated computational overhead. As a result, our approach--multimodal contrastive learning with joint example selection (JEST)--surpasses state-of-the-art models with up to 13$\times$ fewer iterations and 10$\times$ less computation. Essential to the performance of JEST is the ability to steer the data selection process towards the distribution of smaller, well-curated datasets via pretrained reference models, exposing the level of data curation as a new dimension for neural scaling laws.
comment: Main text: 9 pages, 5 figures, 3 tables, 1 algorithm. Appendix: 7 pages, 5 figures, 1 table, 2. algorithm
☆ FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model KDD 2024
Large language models (LLMs) show amazing performance on many domain-specific tasks after fine-tuning with some appropriate data. However, many domain-specific data are privately distributed across multiple owners. Thus, this dilemma raises the interest in how to perform LLM fine-tuning in federated learning (FL). However, confronted with limited computation and communication capacities, FL clients struggle to fine-tune an LLM effectively. To this end, we introduce FedBiOT, a resource-efficient LLM fine-tuning approach to FL. Specifically, our method involves the server generating a compressed LLM and aligning its performance with the full model. Subsequently, the clients fine-tune a lightweight yet important part of the compressed model, referred to as an adapter. Notice that as the server has no access to the private data owned by the clients, the data used for alignment by the server has a different distribution from the one used for fine-tuning by clients. We formulate the problem into a bi-level optimization problem to minimize the negative effect of data discrepancy and derive the updating rules for the server and clients. We conduct extensive experiments on LLaMA-2, empirically showing that the adapter has exceptional performance when reintegrated into the global LLM. The results also indicate that the proposed FedBiOT significantly reduces resource consumption compared to existing benchmarks, all while achieving comparable performance levels.
comment: KDD 2024
☆ Can independent Metropolis beat crude Monte Carlo?
Assume that we would like to estimate the expected value of a function $F$ with respect to a density $\pi$. We prove that if $\pi$ is close enough under KL divergence to another density $q$, an independent Metropolis sampler estimator that obtains samples from $\pi$ with proposal density $q$, enriched with a variance reduction computational strategy based on control variates, achieves smaller asymptotic variance than that of the crude Monte Carlo estimator. The control variates construction requires no extra computational effort but assumes that the expected value of $F$ under $q$ is analytically available. We illustrate this result by calculating the marginal likelihood in a linear regression model with prior-likelihood conflict and a non-conjugate prior. Furthermore, we propose an adaptive independent Metropolis algorithm that adapts the proposal density such that its KL divergence with the target is being reduced. We demonstrate its applicability in a Bayesian logistic and Gaussian process regression problems and we rigorously justify our asymptotic arguments under easily verifiable and essentially minimal conditions.
comment: 37 pages, 3 figures
☆ Identifying Nonstationary Causal Structures with High-Order Markov Switching Models UAI2024
Causal discovery in time series is a rapidly evolving field with a wide variety of applications in other areas such as climate science and neuroscience. Traditional approaches assume a stationary causal graph, which can be adapted to nonstationary time series with time-dependent effects or heterogeneous noise. In this work we address nonstationarity via regime-dependent causal structures. We first establish identifiability for high-order Markov Switching Models, which provide the foundations for identifiable regime-dependent causal discovery. Our empirical studies demonstrate the scalability of our proposed approach for high-order regime-dependent structure estimation, and we illustrate its applicability on brain activity data.
comment: CI4TS Workshop @UAI2024
☆ HGTDP-DTA: Hybrid Graph-Transformer with Dynamic Prompt for Drug-Target Binding Affinity Prediction
Drug target binding affinity (DTA) is a key criterion for drug screening. Existing experimental methods are time-consuming and rely on limited structural and domain information. While learning-based methods can model sequence and structural information, they struggle to integrate contextual data and often lack comprehensive modeling of drug-target interactions. In this study, we propose a novel DTA prediction method, termed HGTDP-DTA, which utilizes dynamic prompts within a hybrid Graph-Transformer framework. Our method generates context-specific prompts for each drug-target pair, enhancing the model's ability to capture unique interactions. The introduction of prompt tuning further optimizes the prediction process by filtering out irrelevant noise and emphasizing task-relevant information, dynamically adjusting the input features of the molecular graph. The proposed hybrid Graph-Transformer architecture combines structural information from Graph Convolutional Networks (GCNs) with sequence information captured by Transformers, facilitating the interaction between global and local information. Additionally, we adopted the multi-view feature fusion method to project molecular graph views and affinity subgraph views into a common feature space, effectively combining structural and contextual information. Experiments on two widely used public datasets, Davis and KIBA, show that HGTDP-DTA outperforms state-of-the-art DTA prediction methods in both prediction performance and generalization ability.
☆ From Distributional to Overton Pluralism: Investigating Large Language Model Alignment
The alignment process changes several properties of a large language model's (LLM's) output distribution. We analyze two aspects of post-alignment distributional shift of LLM responses. First, we re-examine previously reported reductions in response diversity post-alignment. Our analysis suggests that an apparent drop in the diversity of responses is largely explained by quality control and information aggregation. Alignment suppresses irrelevant and unhelpful content while shifting the output distribution toward longer responses that cover information spanning several responses from the base LLM, essentially presenting diverse information in a single response. Finding little evidence that alignment suppresses useful information, it is natural to ask the opposite question: do aligned models surface information that cannot be recovered from base models? Our second investigation shows this is not the case and the behavior of aligned models is recoverable from base models without fine-tuning. A combination of in-context examples and lower-resolution semantic hints about response content can elicit responses from base LLMs that are as similar to alignment-tuned LLM responses as alignment-tuned LLM responses are to each other. Taken together, these results indicate that current alignment techniques capture but do not extend the useful subset of assistant-like base LLM behavior, providing further evidence for the Superficial Alignment Hypothesis. They also show that in-context alignment can go surprisingly far as a strategy for imitating aligned LLMs without fine-tuning. Our code and data is available at https://github.com/thomlake/investigating-alignment.
☆ LaTable: Towards Large Tabular Models
Tabular data is one of the most ubiquitous modalities, yet the literature on tabular generative foundation models is lagging far behind its text and vision counterparts. Creating such a model is hard, due to the heterogeneous feature spaces of different tabular datasets, tabular metadata (e.g. dataset description and feature headers), and tables lacking prior knowledge (e.g. feature order). In this work we propose LaTable: a novel tabular diffusion model that addresses these challenges and can be trained across different datasets. Through extensive experiments we find that LaTable outperforms baselines on in-distribution generation, and that finetuning LaTable can generate out-of-distribution datasets better with fewer samples. On the other hand, we explore the poor zero-shot performance of LaTable, and what it may teach us about building generative tabular foundation models with better zero- and few-shot generation capabilities.
☆ Grass: Compute Efficient Low-Memory LLM Training with Structured Sparse Gradients
Large language model (LLM) training and finetuning are often bottlenecked by limited GPU memory. While existing projection-based optimization methods address this by projecting gradients into a lower-dimensional subspace to reduce optimizer state memory, they typically rely on dense projection matrices, which can introduce computational and memory overheads. In this work, we propose Grass (GRAdient Stuctured Sparsification), a novel approach that leverages sparse projections to transform gradients into structured sparse updates. This design not only significantly reduces memory usage for optimizer states but also minimizes gradient memory footprint, computation, and communication costs, leading to substantial throughput improvements. Extensive experiments on pretraining and finetuning tasks demonstrate that Grass achieves competitive performance to full-rank training and existing projection-based methods. Notably, Grass enables half-precision pretraining of a 13B parameter LLaMA model on a single 40GB A100 GPU--a feat infeasible for previous methods--and yields up to a $2\times$ throughput improvement on an 8-GPU system. Code can be found at https://github.com/aashiqmuhamed/GRASS .
☆ Privacy Preserving Reinforcement Learning for Population Processes
We consider the problem of privacy protection in Reinforcement Learning (RL) algorithms that operate over population processes, a practical but understudied setting that includes, for example, the control of epidemics in large populations of dynamically interacting individuals. In this setting, the RL algorithm interacts with the population over $T$ time steps by receiving population-level statistics as state and performing actions which can affect the entire population at each time step. An individual's data can be collected across multiple interactions and their privacy must be protected at all times. We clarify the Bayesian semantics of Differential Privacy (DP) in the presence of correlated data in population processes through a Pufferfish Privacy analysis. We then give a meta algorithm that can take any RL algorithm as input and make it differentially private. This is achieved by taking an approach that uses DP mechanisms to privatize the state and reward signal at each time step before the RL algorithm receives them as input. Our main theoretical result shows that the value-function approximation error when applying standard RL algorithms directly to the privatized states shrinks quickly as the population size and privacy budget increase. This highlights that reasonable privacy-utility trade-offs are possible for differentially private RL algorithms in population processes. Our theoretical findings are validated by experiments performed on a simulated epidemic control problem over large population sizes.
☆ BayTTA: Uncertainty-aware medical image classification with optimized test-time augmentation using Bayesian model averaging
Test-time augmentation (TTA) is a well-known technique employed during the testing phase of computer vision tasks. It involves aggregating multiple augmented versions of input data. Combining predictions using a simple average formulation is a common and straightforward approach after performing TTA. This paper introduces a novel framework for optimizing TTA, called BayTTA (Bayesian-based TTA), which is based on Bayesian Model Averaging (BMA). First, we generate a model list associated with different variations of the input data created through TTA. Then, we use BMA to combine model predictions weighted by their respective posterior probabilities. Such an approach allows one to take into account model uncertainty, and thus to enhance the predictive performance of the related machine learning or deep learning model. We evaluate the performance of BayTTA on various public data, including three medical image datasets comprising skin cancer, breast cancer, and chest X-ray images and two well-known gene editing datasets, CRISPOR and GUIDE-seq. Our experimental results indicate that BayTTA can be effectively integrated into state-of-the-art deep learning models used in medical image analysis as well as into some popular pre-trained CNN models such as VGG-16, MobileNetV2, DenseNet201, ResNet152V2, and InceptionRes-NetV2, leading to the enhancement in their accuracy and robustness performance.
☆ Mitigate the Gap: Investigating Approaches for Improving Cross-Modal Alignment in CLIP
Contrastive Language--Image Pre-training (CLIP) has manifested remarkable improvements in zero-shot classification and cross-modal vision-language tasks. Yet, from a geometrical point of view, the CLIP embedding space has been found to have a pronounced modality gap. This gap renders the embedding space overly sparse and disconnected, with different modalities being densely distributed in distinct subregions of the hypersphere. In this work, we aim at answering two main questions: 1. Does sharing the parameter space between the multi-modal encoders reduce the modality gap? 2. Can the gap be mitigated by pushing apart the uni-modal embeddings via intra-modality separation? We design AlignCLIP, in order to answer these questions and show that answers to both questions are positive. Through extensive experiments, we show that AlignCLIP achieves noticeable enhancements in the cross-modal alignment of the embeddings, and thereby, reduces the modality gap, while maintaining the performance across several downstream evaluations, such as zero-shot image classification, zero-shot multi-modal retrieval and zero-shot semantic text similarity.
☆ Knowledge Distillation in Automated Annotation: Supervised Text Classification with LLM-Generated Training Labels
Computational social science (CSS) practitioners often rely on human-labeled data to fine-tune supervised text classifiers. We assess the potential for researchers to augment or replace human-generated training data with surrogate training labels from generative large language models (LLMs). We introduce a recommended workflow and test this LLM application by replicating 14 classification tasks and measuring performance. We employ a novel corpus of English-language text classification data sets from recent CSS articles in high-impact journals. Because these data sets are stored in password-protected archives, our analyses are less prone to issues of contamination. For each task, we compare supervised classifiers fine-tuned using GPT-4 labels against classifiers fine-tuned with human annotations and against labels from GPT-4 and Mistral-7B with few-shot in-context learning. Our findings indicate that supervised classification models fine-tuned on LLM-generated labels perform comparably to models fine-tuned with labels from human annotators. Fine-tuning models using LLM-generated labels can be a fast, efficient and cost-effective method of building supervised text classifiers.
comment: In Proceedings of the Sixth Workshop on Natural Language Processing and Computational Social Science
☆ KANQAS: Kolmogorov Arnold Network for Quantum Architecture Search
Quantum architecture search~(QAS) is a promising direction for optimization and automated design of quantum circuits towards quantum advantage. Recent techniques in QAS focus on machine learning-based approaches from reinforcement learning, like deep Q-network. While multi-layer perceptron-based deep Q-networks have been applied for QAS, their interpretability remains challenging due to the high number of parameters. In this work, we evaluate the practicality of KANs in quantum architecture search problems, analyzing their efficiency in terms of the probability of success, frequency of optimal solutions and their dependencies on various degrees of freedom of the network. In a noiseless scenario, the probability of success and the number of optimal quantum circuit configurations to generate the multi-qubit maximally entangled states are significantly higher than MLPs. Moreover in noisy scenarios, KAN can achieve a better fidelity in approximating maximally entangled state than MLPs, where the performance of the MLP significantly depends on the choice of activation function. Further investigation reveals that KAN requires a very small number of learnable parameters compared to MLPs, however, the average time of executing each episode for KAN is much higher.
comment: 10 pages and 4 figures
☆ Querying Labeled Time Series Data with Scenario Programs
In order to ensure autonomous vehicles are safe for on-road deployment, simulation-based testing has become an integral complement to on-road testing. The rise in simulation testing and validation reflects a growing need to verify that AV behavior is consistent with desired outcomes even in edge case scenarios $-$ which may seldom or never appear in on-road testing data. This raises a critical question: to what extent are AV failures in simulation consistent with data collected from real-world testing? As a result of the gap between simulated and real sensor data (sim-to-real gap), failures in simulation can either be spurious (simulation- or simulator-specific issues) or relevant (safety-critical AV system issues). One possible method for validating if simulated time series failures are consistent with real world time series sensor data could involve retrieving instances of the failure scenario from a real-world time series dataset, in order to understand AV performance in these scenarios. Adopting this strategy, we propose a formal definition of what constitutes a match between a real-world labeled time series data item and a simulated scenario written from a fragment of the Scenic probabilistic programming language for simulation generation. With this definition of a match, we develop a querying algorithm that identifies the subset of a labeled time series dataset matching a given scenario. To allow this approach to be used to verify the safety of other cyber-physical systems (CPS), we present a definition and algorithm for matching scalable beyond the autonomous vehicles domain. Experiments demonstrate the precision and scalability of the algorithm for a set of challenging and uncommon time series scenarios identified from the nuScenes autonomous driving dataset. We include a full system implementation of the querying algorithm freely available for use across a wide range of CPS.
comment: 72 pages, 6 figures, 5 algorithms. Published on https://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-136.html
☆ Aligning Programming Language and Natural Language: Exploring Design Choices in Multi-Modal Transformer-Based Embedding for Bug Localization
Bug localization refers to the identification of source code files which is in a programming language and also responsible for the unexpected behavior of software using the bug report, which is a natural language. As bug localization is labor-intensive, bug localization models are employed to assist software developers. Due to the domain difference between source code files and bug reports, modern bug-localization systems, based on deep learning models, rely heavily on embedding techniques that project bug reports and source code files into a shared vector space. The creation of an embedding involves several design choices, but the impact of these choices on the quality of embedding and the performance of bug localization models remains unexplained in current research. To address this gap, our study evaluated 14 distinct embedding models to gain insights into the effects of various design choices. Subsequently, we developed bug localization models utilizing these embedding models to assess the influence of these choices on the performance of the localization models. Our findings indicate that the pre-training strategies significantly affect the quality of the embedding. Moreover, we discovered that the familiarity of the embedding models with the data has a notable impact on the bug localization model's performance. Notably, when the training and testing data are collected from different projects, the performance of the bug localization models exhibits substantial fluctuations.
☆ Distributed Training of Large Graph Neural Networks with Variable Communication Rates
Training Graph Neural Networks (GNNs) on large graphs presents unique challenges due to the large memory and computing requirements. Distributed GNN training, where the graph is partitioned across multiple machines, is a common approach to training GNNs on large graphs. However, as the graph cannot generally be decomposed into small non-interacting components, data communication between the training machines quickly limits training speeds. Compressing the communicated node activations by a fixed amount improves the training speeds, but lowers the accuracy of the trained GNN. In this paper, we introduce a variable compression scheme for reducing the communication volume in distributed GNN training without compromising the accuracy of the learned model. Based on our theoretical analysis, we derive a variable compression method that converges to a solution equivalent to the full communication case, for all graph partitioning schemes. Our empirical results show that our method attains a comparable performance to the one obtained with full communication. We outperform full communication at any fixed compression ratio for any communication budget.
☆ Diffusion-based Adversarial Purification for Intrusion Detection
The escalating sophistication of cyberattacks has encouraged the integration of machine learning techniques in intrusion detection systems, but the rise of adversarial examples presents a significant challenge. These crafted perturbations mislead ML models, enabling attackers to evade detection or trigger false alerts. As a reaction, adversarial purification has emerged as a compelling solution, particularly with diffusion models showing promising results. However, their purification potential remains unexplored in the context of intrusion detection. This paper demonstrates the effectiveness of diffusion models in purifying adversarial examples in network intrusion detection. Through a comprehensive analysis of the diffusion parameters, we identify optimal configurations maximizing adversarial robustness with minimal impact on normal performance. Importantly, this study reveals insights into the relationship between diffusion noise and diffusion steps, representing a novel contribution to the field. Our experiments are carried out on two datasets and against 5 adversarial attacks. The implementation code is publicly available.
☆ Constructing structured tensor priors for Bayesian inverse problems
Specifying a prior distribution is an essential part of solving Bayesian inverse problems. The prior encodes a belief on the nature of the solution and this regularizes the problem. In this article we completely characterize a Gaussian prior that encodes the belief that the solution is a structured tensor. We first define the notion of (A,b)-constrained tensors and show that they describe a large variety of different structures such as Hankel, circulant, triangular, symmetric, and so on. Then we completely characterize the Gaussian probability distribution of such tensors by specifying its mean vector and covariance matrix. Furthermore, explicit expressions are proved for the covariance matrix of tensors whose entries are invariant under a permutation. These results unlock a whole new class of priors for Bayesian inverse problems. We illustrate how new kernel functions can be designed and efficiently computed and apply our results on two particular Bayesian inverse problems: completing a Hankel matrix from a few noisy measurements and learning an image classifier of handwritten digits. The effectiveness of the proposed priors is demonstrated for both problems. All applications have been implemented as reactive Pluto notebooks in Julia.
☆ Learning Dynamic Bayesian Networks from Data: Foundations, First Principles and Numerical Comparisons
In this paper, we present a guide to the foundations of learning Dynamic Bayesian Networks (DBNs) from data in the form of multiple samples of trajectories for some length of time. We present the formalism for a generic as well as a set of common types of DBNs for particular variable distributions. We present the analytical form of the models, with a comprehensive discussion on the interdependence between structure and weights in a DBN model and their implications for learning. Next, we give a broad overview of learning methods and describe and categorize them based on the most important statistical features, and how they treat the interplay between learning structure and weights. We give the analytical form of the likelihood and Bayesian score functions, emphasizing the distinction from the static case. We discuss functions used in optimization to enforce structural requirements. We briefly discuss more complex extensions and representations. Finally we present a set of comparisons in different settings for various distinct but representative algorithms across the variants.
☆ Towards Compositional Interpretability for XAI
Artificial intelligence (AI) is currently based largely on black-box machine learning models which lack interpretability. The field of eXplainable AI (XAI) strives to address this major concern, being critical in high-stakes areas such as the finance, legal and health sectors. We present an approach to defining AI models and their interpretability based on category theory. For this we employ the notion of a compositional model, which sees a model in terms of formal string diagrams which capture its abstract structure together with its concrete implementation. This comprehensive view incorporates deterministic, probabilistic and quantum models. We compare a wide range of AI models as compositional models, including linear and rule-based models, (recurrent) neural networks, transformers, VAEs, and causal and DisCoCirc models. Next we give a definition of interpretation of a model in terms of its compositional structure, demonstrating how to analyse the interpretability of a model, and using this to clarify common themes in XAI. We find that what makes the standard 'intrinsically interpretable' models so transparent is brought out most clearly diagrammatically. This leads us to the more general notion of compositionally-interpretable (CI) models, which additionally include, for instance, causal, conceptual space, and DisCoCirc models. We next demonstrate the explainability benefits of CI models. Firstly, their compositional structure may allow the computation of other quantities of interest, and may facilitate inference from the model to the modelled phenomenon by matching its structure. Secondly, they allow for diagrammatic explanations for their behaviour, based on influence constraints, diagram surgery and rewrite explanations. Finally, we discuss many future directions for the approach, raising the question of how to learn such meaningfully structured models in practice.
☆ Leveraging Reinforcement Learning in Red Teaming for Advanced Ransomware Attack Simulations
Ransomware presents a significant and increasing threat to individuals and organizations by encrypting their systems and not releasing them until a large fee has been extracted. To bolster preparedness against potential attacks, organizations commonly conduct red teaming exercises, which involve simulated attacks to assess existing security measures. This paper proposes a novel approach utilizing reinforcement learning (RL) to simulate ransomware attacks. By training an RL agent in a simulated environment mirroring real-world networks, effective attack strategies can be learned quickly, significantly streamlining traditional, manual penetration testing processes. The attack pathways revealed by the RL agent can provide valuable insights to the defense team, helping them identify network weak points and develop more resilient defensive measures. Experimental results on a 152-host example network confirm the effectiveness of the proposed approach, demonstrating the RL agent's capability to discover and orchestrate attacks on high-value targets while evading honeyfiles (decoy files strategically placed to detect unauthorized access).
☆ Multi-property Steering of Large Language Models with Dynamic Activation Composition
Activation steering methods were shown to be effective in conditioning language model generation by additively intervening over models' intermediate representations. However, the evaluation of these techniques has so far been limited to single conditioning properties and synthetic settings. In this work, we conduct a comprehensive evaluation of various activation steering strategies, highlighting the property-dependent nature of optimal parameters to ensure a robust effect throughout generation. To address this issue, we propose Dynamic Activation Composition, an information-theoretic approach to modulate the steering intensity of one or more properties throughout generation. Our experiments on multi-property steering show that our method successfully maintains high conditioning while minimizing the impact of conditioning on generation fluency.
☆ Modularity Based Community Detection in Hypergraphs
In this paper, we propose a scalable community detection algorithm using hypergraph modularity function, h-Louvain. It is an adaptation of the classical Louvain algorithm in the context of hypergraphs. We observe that a direct application of the Louvain algorithm to optimize the hypergraph modularity function often fails to find meaningful communities. We propose a solution to this issue by adjusting the initial stage of the algorithm via carefully and dynamically tuned linear combination of the graph modularity function of the corresponding two-section graph and the desired hypergraph modularity function. The process is guided by Bayesian optimization of the hyper-parameters of the proposed procedure. Various experiments on synthetic as well as real-world networks are performed showing that this process yields improved results in various regimes.
comment: 21 pages, 8 figures, 4 tables
☆ CDQuant: Accurate Post-training Weight Quantization of Large Pre-trained Models using Greedy Coordinate Descent
Large language models (LLMs) have recently demonstrated remarkable performance across diverse language tasks. But their deployment is often constrained by their substantial computational and storage requirements. Quantization has emerged as a key technique for addressing this challenge, enabling the compression of large models with minimal impact on performance. The recent GPTQ algorithm, a post-training quantization (PTQ) method, has proven highly effective for compressing LLMs, sparking a wave of research that leverages GPTQ as a core component. Recognizing the pivotal role of GPTQ in the PTQ landscape, we introduce CDQuant, a simple and scalable alternative to GPTQ with improved performance. CDQuant uses coordinate descent to minimize the layer-wise reconstruction loss to achieve high-quality quantized weights. Our algorithm is easy to implement and scales efficiently to models with hundreds of billions of parameters. Through extensive evaluation on the PaLM2 model family, we demonstrate that CDQuant consistently outperforms GPTQ across diverse model sizes and quantization levels. In particular, for INT2 quantization of PaLM2-Otter, CDQuant achieves a 10% reduction in perplexity compared to GPTQ.
☆ SincVAE: a New Approach to Improve Anomaly Detection on EEG Data Using SincNet and Variational Autoencoder
Over the past few decades, electroencephalography (EEG) monitoring has become a pivotal tool for diagnosing neurological disorders, particularly for detecting seizures. Epilepsy, one of the most prevalent neurological diseases worldwide, affects approximately the 1 \% of the population. These patients face significant risks, underscoring the need for reliable, continuous seizure monitoring in daily life. Most of the techniques discussed in the literature rely on supervised Machine Learning (ML) methods. However, the challenge of accurately labeling variations in epileptic EEG waveforms complicates the use of these approaches. Additionally, the rarity of ictal events introduces an high imbalancing within the data, which could lead to poor prediction performance in supervised learning approaches. Instead, a semi-supervised approach allows to train the model only on data not containing seizures, thus avoiding the issues related to the data imbalancing. This work proposes a semi-supervised approach for detecting epileptic seizures from EEG data, utilizing a novel Deep Learning-based method called SincVAE. This proposal incorporates the learning of an ad-hoc array of bandpass filter as a first layer of a Variational Autoencoder (VAE), potentially eliminating the preprocessing stage where informative band frequencies are identified and isolated. Results indicate that SincVAE improves seizure detection in EEG data and is capable of identifying early seizures during the preictal stage as well as monitoring patients throughout the postictal stage.
☆ MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions
The integration of neural-network-based systems into clinical practice is limited by challenges related to domain generalization and robustness. The computer vision community established benchmarks such as ImageNet-C as a fundamental prerequisite to measure progress towards those challenges. Similar datasets are largely absent in the medical imaging community which lacks a comprehensive benchmark that spans across imaging modalities and applications. To address this gap, we create and open-source MedMNIST-C, a benchmark dataset based on the MedMNIST+ collection covering 12 datasets and 9 imaging modalities. We simulate task and modality-specific image corruptions of varying severity to comprehensively evaluate the robustness of established algorithms against real-world artifacts and distribution shifts. We further provide quantitative evidence that our simple-to-use artificial corruptions allow for highly performant, lightweight data augmentation to enhance model robustness. Unlike traditional, generic augmentation strategies, our approach leverages domain knowledge, exhibiting significantly higher robustness when compared to widely adopted methods. By introducing MedMNIST-C and open-sourcing the corresponding library allowing for targeted data augmentations, we contribute to the development of increasingly robust methods tailored to the challenges of medical imaging. The code is available at https://github.com/francescodisalvo05/medmnistc-api}{github.com/francescodisalvo05/medmnistc-api.
☆ On the consistency of hyper-parameter selection in value-based deep reinforcement learning
Deep reinforcement learning (deep RL) has achieved tremendous success on various domains through a combination of algorithmic design and careful selection of hyper-parameters. Algorithmic improvements are often the result of iterative enhancements built upon prior approaches, while hyper-parameter choices are typically inherited from previous methods or fine-tuned specifically for the proposed technique. Despite their crucial impact on performance, hyper-parameter choices are frequently overshadowed by algorithmic advancements. This paper conducts an extensive empirical study focusing on the reliability of hyper-parameter selection for value-based deep reinforcement learning agents, including the introduction of a new score to quantify the consistency and reliability of various hyper-parameters. Our findings not only help establish which hyper-parameters are most critical to tune, but also help clarify which tunings remain consistent across different training regimes.
☆ Preserving Node Distinctness in Graph Autoencoders via Similarity Distillation
Graph autoencoders (GAEs), as a kind of generative self-supervised learning approach, have shown great potential in recent years. GAEs typically rely on distance-based criteria, such as mean-square-error (MSE), to reconstruct the input graph. However, relying solely on a single reconstruction criterion may lead to a loss of distinctiveness in the reconstructed graph, causing nodes to collapse into similar representations and resulting in sub-optimal performance. To address this issue, we have developed a simple yet effective strategy to preserve the necessary distinctness in the reconstructed graph. Inspired by the knowledge distillation technique, we found that the dual encoder-decoder architecture of GAEs can be viewed as a teacher-student relationship. Therefore, we propose transferring the knowledge of distinctness from the raw graph to the reconstructed graph, achieved through a simple KL constraint. Specifically, we compute pairwise node similarity scores in the raw graph and reconstructed graph. During the training process, the KL constraint is optimized alongside the reconstruction criterion. We conducted extensive experiments across three types of graph tasks, demonstrating the effectiveness and generality of our strategy. This indicates that the proposed approach can be employed as a plug-and-play method to avoid vague reconstructions and enhance overall performance.
☆ WAVE: Weight Template for Adaptive Initialization of Variable-sized Models
The expansion of model parameters underscores the significance of pre-trained models; however, the constraints encountered during model deployment necessitate models of variable sizes. Consequently, the traditional pre-training and fine-tuning paradigm fails to address the initialization problem when target models are incompatible with pre-trained models. We tackle this issue from a multitasking perspective and introduce \textbf{WAVE}, which incorporates a set of shared \textbf{W}eight templates for \textbf{A}daptive initialization of \textbf{V}ariable-siz\textbf{E}d Models. During initialization, target models will initialize the corresponding weight scalers tailored to their model size, which are sufficient to learn the connection rules of weight templates based on the Kronecker product from a limited amount of data. For the construction of the weight templates, WAVE utilizes the \textit{Learngene} framework, which structurally condenses common knowledge from ancestry models into weight templates as the learngenes through knowledge distillation. This process allows the integration of pre-trained models' knowledge into structured knowledge according to the rules of weight templates. We provide a comprehensive benchmark for the learngenes, and extensive experiments demonstrate the efficacy of WAVE. The results show that WAVE achieves state-of-the-art performance when initializing models with various depth and width, and even outperforms the direct pre-training of $n$ entire models, particularly for smaller models, saving approximately $n\times$ and $5\times$ in computational and storage resources, respectively. WAVE simultaneously achieves the most efficient knowledge transfer across a series of datasets, specifically achieving an average improvement of 1.8\% and 1.2\% on 7 downstream datasets.
☆ BricksRL: A Platform for Democratizing Robotics and Reinforcement Learning Research and Education with LEGO
We present BricksRL, a platform designed to democratize access to robotics for reinforcement learning research and education. BricksRL facilitates the creation, design, and training of custom LEGO robots in the real world by interfacing them with the TorchRL library for reinforcement learning agents. The integration of TorchRL with the LEGO hubs, via Bluetooth bidirectional communication, enables state-of-the-art reinforcement learning training on GPUs for a wide variety of LEGO builds. This offers a flexible and cost-efficient approach for scaling and also provides a robust infrastructure for robot-environment-algorithm communication. We present various experiments across tasks and robot configurations, providing built plans and training results. Furthermore, we demonstrate that inexpensive LEGO robots can be trained end-to-end in the real world to achieve simple tasks, with training times typically under 120 minutes on a normal laptop. Moreover, we show how users can extend the capabilities, exemplified by the successful integration of non-LEGO sensors. By enhancing accessibility to both robotics and reinforcement learning, BricksRL establishes a strong foundation for democratized robotic learning in research and educational settings.
☆ Towards Federated Low-Rank Adaptation with Rank-Heterogeneous Communication
Low-rank adaptation (LoRA) is an attractive alternative of adapting full weights for the federated fine-tuning of large pretrained models, which can significantly reduce the memory and communication burden. In principle, federated LoRA can provide an effective mean to allocate different resources to each client by tuning ranks for each client, which can be useful in achieving a better communication-performance tradeoff. We find, however, that the empirical performance of LoRA is highly unstable with respect to such rank-heterogeneity, severely limiting the applicability to the scenarios where it is desirable or even required to allocate nonuniform communication bandwidth to each client due to constrained total bandwidth. Our investigation reveals that the root cause of this instability is the zero-padding-based aggregation strategy adopted in conventional federated LoRA frameworks, which causes the information from high rank clients to get diluted during the aggregation process. To address this issue, we propose a new replication-based padding strategy, which allows us to better leverage the information from clients with high-quality datasets. This method ensures that valuable information from high rank clients is retained during the aggregation process, accelerating the convergence speed and enhancing the overall prediction quality of the global model.
☆ Performative Debias with Fair-exposure Optimization Driven by Strategic Agents in Recommender Systems KDD 2024
Data bias, e.g., popularity impairs the dynamics of two-sided markets within recommender systems. This overshadows the less visible but potentially intriguing long-tail items that could capture user interest. Despite the abundance of research surrounding this issue, it still poses challenges and remains a hot topic in academic circles. Along this line, in this paper, we developed a re-ranking approach in dynamic settings with fair-exposure optimization driven by strategic agents. Designed for the producer side, the execution of agents assumes content creators can modify item features based on strategic incentives to maximize their exposure. This iterative process entails an end-to-end optimization, employing differentiable ranking operators that simultaneously target accuracy and fairness. Joint objectives ensure the performance of recommendations while enhancing the visibility of tail items. We also leveraged the performativity nature of predictions to illustrate how strategic learning influences content creators to shift towards fairness efficiently, thereby incentivizing features of tail items. Through comprehensive experiments on both public and industrial datasets, we have substantiated the effectiveness and dominance of the proposed method especially on unveiling the potential of tail items.
comment: SIGKDD 2024 accepted paper
☆ Dynamic Scheduling for Vehicle-to-Vehicle Communications Enhanced Federated Learning
Leveraging the computing and sensing capabilities of vehicles, vehicular federated learning (VFL) has been applied to edge training for connected vehicles. The dynamic and interconnected nature of vehicular networks presents unique opportunities to harness direct vehicle-to-vehicle (V2V) communications, enhancing VFL training efficiency. In this paper, we formulate a stochastic optimization problem to optimize the VFL training performance, considering the energy constraints and mobility of vehicles, and propose a V2V-enhanced dynamic scheduling (VEDS) algorithm to solve it. The model aggregation requirements of VFL and the limited transmission time due to mobility result in a stepwise objective function, which presents challenges in solving the problem. We thus propose a derivative-based drift-plus-penalty method to convert the long-term stochastic optimization problem to an online mixed integer nonlinear programming (MINLP) problem, and provide a theoretical analysis to bound the performance gap between the online solution and the offline optimal solution. Further analysis of the scheduling priority reduces the original problem into a set of convex optimization problems, which are efficiently solved using the interior-point method. Experimental results demonstrate that compared with the state-of-the-art benchmarks, the proposed algorithm enhances the image classification accuracy on the CIFAR-10 dataset by 3.18% and reduces the average displacement errors on the Argoverse trajectory prediction dataset by 10.21%.
comment: Submitted to IEEE for possible publication
☆ Early learning of the optimal constant solution in neural networks and humans
Deep neural networks learn increasingly complex functions over the course of training. Here, we show both empirically and theoretically that learning of the target function is preceded by an early phase in which networks learn the optimal constant solution (OCS) - that is, initial model responses mirror the distribution of target labels, while entirely ignoring information provided in the input. Using a hierarchical category learning task, we derive exact solutions for learning dynamics in deep linear networks trained with bias terms. Even when initialized to zero, this simple architectural feature induces substantial changes in early dynamics. We identify hallmarks of this early OCS phase and illustrate how these signatures are observed in deep linear networks and larger, more complex (and nonlinear) convolutional neural networks solving a hierarchical learning task based on MNIST and CIFAR10. We explain these observations by proving that deep linear networks necessarily learn the OCS during early learning. To further probe the generality of our results, we train human learners over the course of three days on the category learning task. We then identify qualitative signatures of this early OCS phase in terms of the dynamics of true negative (correct-rejection) rates. Surprisingly, we find the same early reliance on the OCS in the behaviour of human learners. Finally, we show that learning of the OCS can emerge even in the absence of bias terms and is equivalently driven by generic correlations in the input data. Overall, our work suggests the OCS as a universal learning principle in supervised, error-corrective learning, and the mechanistic reasons for its prevalence.
☆ Mind the Graph When Balancing Data for Fairness or Robustness
Failures of fairness or robustness in machine learning predictive settings can be due to undesired dependencies between covariates, outcomes and auxiliary factors of variation. A common strategy to mitigate these failures is data balancing, which attempts to remove those undesired dependencies. In this work, we define conditions on the training distribution for data balancing to lead to fair or robust models. Our results display that, in many cases, the balanced distribution does not correspond to selectively removing the undesired dependencies in a causal graph of the task, leading to multiple failure modes and even interference with other mitigation techniques such as regularization. Overall, our results highlight the importance of taking the causal graph into account before performing data balancing.
☆ A Critical Analysis of the Theoretical Framework of the Extreme Learning Machine
Despite the number of successful applications of the Extreme Learning Machine (ELM), we show that its underlying foundational principles do not have a rigorous mathematical justification. Specifically, we refute the proofs of two main statements, and we also create a dataset that provides a counterexample to the ELM learning algorithm and explain its design, which leads to many such counterexamples. Finally, we provide alternative statements of the foundations, which justify the efficiency of ELM in some theoretical cases.
☆ CuDA2: An approach for Incorporating Traitor Agents into Cooperative Multi-Agent Systems
Cooperative Multi-Agent Reinforcement Learning (CMARL) strategies are well known to be vulnerable to adversarial perturbations. Previous works on adversarial attacks have primarily focused on white-box attacks that directly perturb the states or actions of victim agents, often in scenarios with a limited number of attacks. However, gaining complete access to victim agents in real-world environments is exceedingly difficult. To create more realistic adversarial attacks, we introduce a novel method that involves injecting traitor agents into the CMARL system. We model this problem as a Traitor Markov Decision Process (TMDP), where traitors cannot directly attack the victim agents but can influence their formation or positioning through collisions. In TMDP, traitors are trained using the same MARL algorithm as the victim agents, with their reward function set as the negative of the victim agents' reward. Despite this, the training efficiency for traitors remains low because it is challenging for them to directly associate their actions with the victim agents' rewards. To address this issue, we propose the Curiosity-Driven Adversarial Attack (CuDA2) framework. CuDA2 enhances the efficiency and aggressiveness of attacks on the specified victim agents' policies while maintaining the optimal policy invariance of the traitors. Specifically, we employ a pre-trained Random Network Distillation (RND) module, where the extra reward generated by the RND module encourages traitors to explore states unencountered by the victim agents. Extensive experiments on various scenarios from SMAC demonstrate that our CuDA2 framework offers comparable or superior adversarial attack capabilities compared to other baselines.
☆ SE-VGAE: Unsupervised Disentangled Representation Learning for Interpretable Architectural Layout Design Graph Generation
Despite the suitability of graphs for capturing the relational structures inherent in architectural layout designs, there is a notable dearth of research on interpreting architectural design space using graph-based representation learning and exploring architectural design graph generation. Concurrently, disentangled representation learning in graph generation faces challenges such as node permutation invariance and representation expressiveness. To address these challenges, we introduce an unsupervised disentangled representation learning framework, Style-based Edge-augmented Variational Graph Auto-Encoder (SE-VGAE), aiming to generate architectural layout in the form of attributed adjacency multi-graphs while prioritizing representation disentanglement. The framework is designed with three alternative pipelines, each integrating a transformer-based edge-augmented encoder, a latent space disentanglement module, and a style-based decoder. These components collectively facilitate the decomposition of latent factors influencing architectural layout graph generation, enhancing generation fidelity and diversity. We also provide insights into optimizing the framework by systematically exploring graph feature augmentation schemes and evaluating their effectiveness for disentangling architectural layout representation through extensive experiments. Additionally, we contribute a new benchmark large-scale architectural layout graph dataset extracted from real-world floor plan images to facilitate the exploration of graph data-based architectural design representation space interpretation. This study pioneered disentangled representation learning for the architectural layout graph generation. The code and dataset of this study will be open-sourced.
☆ Variable Layer-Wise Quantization: A Simple and Effective Approach to Quantize LLMs EMNLP
We present a simple variable quantization approach that quantizes different layers of a large language model (LLM) at different bit levels. Specifically, we quantize the most important layers to higher bit precision and less important layers to lower bits to achieve floating point quantization levels. We propose two effective strategies to measure the importance of layers within LLMs: the first measures the importance of a layer based on how different its output embeddings are from the input embeddings (the higher the better); the second estimates the importance of a layer using the number of layer weights that are much larger than average (the smaller the better). We show that quantizing different layers at varying bits according to our importance scores results in minimal performance drop with a far more compressed model size. Finally, we present several practical key takeaways from our variable layer-wise quantization experiments: (a) LLM performance under variable quantization remains close to the original model until 25-50% of layers are moved in lower quantization using our proposed ordering but only until 5-10% if moved using no specific ordering; (b) Quantizing LLMs to lower bits performs substantially better than pruning unless extreme quantization (2-bit) is used; and (c) Layer-wise quantization to lower bits works better in the case of larger LLMs with more layers compared to smaller LLMs with fewer layers. The code used to run the experiments is available at: https://github.com/RazvanDu/LayerwiseQuant.
comment: submitted to EMNLP, 15 pages, 10 figures, 4 tables
☆ Make Some Noise: Unlocking Language Model Parallel Inference Capability through Noisy Training
Existing speculative decoding methods typically require additional model structure and training processes to assist the model for draft token generation. This makes the migration of acceleration methods to the new model more costly and more demanding on device memory. To address this problem, we propose the Make Some Noise (MSN) training framework as a replacement for the supervised fine-tuning stage of the large language model. The training method simply introduces some noise at the input for the model to learn the denoising task. It significantly enhances the parallel decoding capability of the model without affecting the original task capability. In addition, we propose a tree-based retrieval-augmented Jacobi (TR-Jacobi) decoding strategy to further improve the inference speed of MSN models. Experiments in both the general and code domains have shown that MSN can improve inference speed by 2.3-2.7x times without compromising model performance. The MSN model also achieves comparable acceleration ratios to the SOTA model with additional model structure on Spec-Bench.
comment: 11 pages, 6 figures
☆ GradCheck: Analyzing classifier guidance gradients for conditional diffusion sampling
To sample from an unconditionally trained Denoising Diffusion Probabilistic Model (DDPM), classifier guidance adds conditional information during sampling, but the gradients from classifiers, especially those not trained on noisy images, are often unstable. This study conducts a gradient analysis comparing robust and non-robust classifiers, as well as multiple gradient stabilization techniques. Experimental results demonstrate that these techniques significantly improve the quality of class-conditional samples for non-robust classifiers by providing more stable and informative classifier guidance gradients. The findings highlight the importance of gradient stability in enhancing the performance of classifier guidance, especially on non-robust classifiers.
☆ Double Momentum Method for Lower-Level Constrained Bilevel Optimization
Bilevel optimization (BO) has recently gained prominence in many machine learning applications due to its ability to capture the nested structure inherent in these problems. Recently, many hypergradient methods have been proposed as effective solutions for solving large-scale problems. However, current hypergradient methods for the lower-level constrained bilevel optimization (LCBO) problems need very restrictive assumptions, namely, where optimality conditions satisfy the differentiability and invertibility conditions and lack a solid analysis of the convergence rate. What's worse, existing methods require either double-loop updates, which are sometimes less efficient. To solve this problem, in this paper, we propose a new hypergradient of LCBO leveraging the theory of nonsmooth implicit function theorem instead of using the restrive assumptions. In addition, we propose a \textit{single-loop single-timescale} algorithm based on the double-momentum method and adaptive step size method and prove it can return a $(\delta, \epsilon)$-stationary point with $\tilde{\mathcal{O}}(d_2^2\epsilon^{-4})$ iterations. Experiments on two applications demonstrate the effectiveness of our proposed method.
comment: 27pages, 9 figures
☆ Forget but Recall: Incremental Latent Rectification in Continual Learning
Intrinsic capability to continuously learn a changing data stream is a desideratum of deep neural networks (DNNs). However, current DNNs suffer from catastrophic forgetting, which hinders remembering past knowledge. To mitigate this issue, existing Continual Learning (CL) approaches either retain exemplars for replay, regularize learning, or allocate dedicated capacity for new tasks. This paper investigates an unexplored CL direction for incremental learning called Incremental Latent Rectification or ILR. In a nutshell, ILR learns to propagate with correction (or rectify) the representation from the current trained DNN backward to the representation space of the old task, where performing predictive decisions is easier. This rectification process only employs a chain of small representation mapping networks, called rectifier units. Empirical experiments on several continual learning benchmarks, including CIFAR10, CIFAR100, and Tiny ImageNet, demonstrate the effectiveness and potential of this novel CL direction compared to existing representative CL methods.
☆ Generalizability of experimental studies
Experimental studies are a cornerstone of machine learning (ML) research. A common, but often implicit, assumption is that the results of a study will generalize beyond the study itself, e.g. to new data. That is, there is a high probability that repeating the study under different conditions will yield similar results. Despite the importance of the concept, the problem of measuring generalizability remains open. This is probably due to the lack of a mathematical formalization of experimental studies. In this paper, we propose such a formalization and develop a quantifiable notion of generalizability. This notion allows to explore the generalizability of existing studies and to estimate the number of experiments needed to achieve the generalizability of new studies. To demonstrate its usefulness, we apply it to two recently published benchmarks to discern generalizable and non-generalizable results. We also publish a Python module that allows our analysis to be repeated for other experimental studies.
comment: Under review
☆ Development of a digital tool for monitoring the behaviour of pre-weaned calves using accelerometer neck-collars
Automatic monitoring of calf behaviour is a promising way of assessing animal welfare from their first week on farms. This study aims to (i) develop machine learning models from accelerometer data to classify the main behaviours of pre-weaned calves and (ii) set up a digital tool for monitoring the behaviour of pre-weaned calves from the models' prediction. Thirty pre-weaned calves were equipped with a 3-D accelerometer attached to a neck-collar for two months and filmed simultaneously. The behaviours were annotated, resulting in 27.4 hours of observation aligned with the accelerometer data. The time-series were then split into 3 seconds windows. Two machine learning models were tuned using data from 80% of the calves: (i) a Random Forest model to classify between active and inactive behaviours using a set of 11 hand-craft features [model 1] and (ii) a RidgeClassifierCV model to classify between lying, running, drinking milk and other behaviours using ROCKET features [model 2]. The performance of the models was tested using data from the remaining 20% of the calves. Model 1 achieved a balanced accuracy of 0.92. Model 2 achieved a balanced accuracy of 0.84. Behavioural metrics such as daily activity ratio and episodes of running, lying, drinking milk, and other behaviours expressed over time were deduced from the predictions. All the development was finally embedded into a Python dashboard so that the individual calf metrics could be displayed directly from the raw accelerometer files.
☆ Stacked Confusion Reject Plots (SCORE)
Machine learning is more and more applied in critical application areas like health and driver assistance. To minimize the risk of wrong decisions, in such applications it is necessary to consider the certainty of a classification to reject uncertain samples. An established tool for this are reject curves that visualize the trade-off between the number of rejected samples and classification performance metrics. We argue that common reject curves are too abstract and hard to interpret by non-experts. We propose Stacked Confusion Reject Plots (SCORE) that offer a more intuitive understanding of the used data and the classifier's behavior. We present example plots on artificial Gaussian data to document the different options of SCORE and provide the code as a Python package.
comment: 6 pages, 2 figures
☆ Generative Modelling of Structurally Constrained Graphs
Graph diffusion models have emerged as state-of-the-art techniques in graph generation, yet integrating domain knowledge into these models remains challenging. Domain knowledge is particularly important in real-world scenarios, where invalid generated graphs hinder deployment in practical applications. Unconstrained and conditioned graph generative models fail to guarantee such domain-specific structural properties. We present ConStruct, a novel framework that allows for hard-constraining graph diffusion models to incorporate specific properties, such as planarity or acyclicity. Our approach ensures that the sampled graphs remain within the domain of graphs that verify the specified property throughout the entire trajectory in both the forward and reverse processes. This is achieved by introducing a specific edge-absorbing noise model and a new projector operator. ConStruct demonstrates versatility across several structural and edge-deletion invariant constraints and achieves state-of-the-art performance for both synthetic benchmarks and attributed real-world datasets. For example, by leveraging planarity in digital pathology graph datasets, the proposed method outperforms existing baselines and enhances generated data validity by up to 71.1 percentage points.
☆ Robustly Optimized Deep Feature Decoupling Network for Fatty Liver Diseases Detection MICCAI 2024
Current medical image classification efforts mainly aim for higher average performance, often neglecting the balance between different classes. This can lead to significant differences in recognition accuracy between classes and obvious recognition weaknesses. Without the support of massive data, deep learning faces challenges in fine-grained classification of fatty liver. In this paper, we propose an innovative deep learning framework that combines feature decoupling and adaptive adversarial training. Firstly, we employ two iteratively compressed decouplers to supervised decouple common features and specific features related to fatty liver in abdominal ultrasound images. Subsequently, the decoupled features are concatenated with the original image after transforming the color space and are fed into the classifier. During adversarial training, we adaptively adjust the perturbation and balance the adversarial strength by the accuracy of each class. The model will eliminate recognition weaknesses by correctly classifying adversarial samples, thus improving recognition robustness. Finally, the accuracy of our method improved by 4.16%, achieving 82.95%. As demonstrated by extensive experiments, our method is a generalized learning framework that can be directly used to eliminate the recognition weaknesses of any classifier while improving its average performance. Code is available at https://github.com/HP-ML/MICCAI2024.
comment: MICCAI 2024
☆ A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems
Since the creation of the Web, recommender systems (RSs) have been an indispensable mechanism in information filtering. State-of-the-art RSs primarily depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables. To prevent over-parameterized embedding tables from harming scalability, both academia and industry have seen increasing efforts in compressing RS embeddings. However, despite the prosperity of lightweight embedding-based RSs (LERSs), a wide diversity is seen in evaluation protocols, resulting in obstacles when relating LERS performance to real-world usability. Moreover, despite the common goal of lightweight embeddings, LERSs are evaluated with a single choice between the two main recommendation tasks -- collaborative filtering and content-based recommendation. This lack of discussions on cross-task transferability hinders the development of unified, more scalable solutions. Motivated by these issues, this study investigates various LERSs' performance, efficiency, and cross-task transferability via a thorough benchmarking process. Additionally, we propose an efficient embedding compression method using magnitude pruning, which is an easy-to-deploy yet highly competitive baseline that outperforms various complex LERSs. Our study reveals the distinct performance of LERSs across the two tasks, shedding light on their effectiveness and generalizability. To support edge-based recommendations, we tested all LERSs on a Raspberry Pi 4, where the efficiency bottleneck is exposed. Finally, we conclude this paper with critical summaries of LERS performance, model selection suggestions, and underexplored challenges around LERSs for future research. To encourage future research, we publish source codes and artifacts at \href{this link}{https://github.com/chenxing1999/recsys-benchmark}.
☆ XAMI -- A Benchmark Dataset for Artefact Detection in XMM-Newton Optical Images SP
Reflected or scattered light produce artefacts in astronomical observations that can negatively impact the scientific study. Hence, automated detection of these artefacts is highly beneficial, especially with the increasing amounts of data gathered. Machine learning methods are well-suited to this problem, but currently there is a lack of annotated data to train such approaches to detect artefacts in astronomical observations. In this work, we present a dataset of images from the XMM-Newton space telescope Optical Monitoring camera showing different types of artefacts. We hand-annotated a sample of 1000 images with artefacts which we use to train automated ML methods. We further demonstrate techniques tailored for accurate detection and masking of artefacts using instance segmentation. We adopt a hybrid approach, combining knowledge from both convolutional neural networks (CNNs) and transformer-based models and use their advantages in segmentation. The presented method and dataset will advance artefact detection in astronomical observations by providing a reproducible baseline. All code and data are made available (https://github.com/ESA-Datalabs/XAMI-model and https://github.com/ESA-Datalabs/XAMI-dataset).
comment: submitted to SPAICE 2024
☆ ALPBench: A Benchmark for Active Learning Pipelines on Tabular Data
In settings where only a budgeted amount of labeled data can be afforded, active learning seeks to devise query strategies for selecting the most informative data points to be labeled, aiming to enhance learning algorithms' efficiency and performance. Numerous such query strategies have been proposed and compared in the active learning literature. However, the community still lacks standardized benchmarks for comparing the performance of different query strategies. This particularly holds for the combination of query strategies with different learning algorithms into active learning pipelines and examining the impact of the learning algorithm choice. To close this gap, we propose ALPBench, which facilitates the specification, execution, and performance monitoring of active learning pipelines. It has built-in measures to ensure evaluations are done reproducibly, saving exact dataset splits and hyperparameter settings of used algorithms. In total, ALPBench consists of 86 real-world tabular classification datasets and 5 active learning settings, yielding 430 active learning problems. To demonstrate its usefulness and broad compatibility with various learning algorithms and query strategies, we conduct an exemplary study evaluating 9 query strategies paired with 8 learning algorithms in 2 different settings. We provide ALPBench here: https://github.com/ValentinMargraf/ActiveLearningPipelines.
☆ A review of unsupervised learning in astronomy
This review summarizes popular unsupervised learning methods, and gives an overview of their past, current, and future uses in astronomy. Unsupervised learning aims to organise the information content of a dataset, in such a way that knowledge can be extracted. Traditionally this has been achieved through dimensionality reduction techniques that aid the ranking of a dataset, for example through principal component analysis or by using auto-encoders, or simpler visualisation of a high dimensional space, for example through the use of a self organising map. Other desirable properties of unsupervised learning include the identification of clusters, i.e. groups of similar objects, which has traditionally been achieved by the k-means algorithm and more recently through density-based clustering such as HDBSCAN. More recently, complex frameworks have emerged, that chain together dimensionality reduction and clustering methods. However, no dataset is fully unknown. Thus, nowadays a lot of research has been directed towards self-supervised and semi-supervised methods that stand to gain from both supervised and unsupervised learning.
comment: 30 pages, 6 figures. Invited contribution to special issue in Astronomy & Computing
☆ Improving Realized LGD Approximation: A Novel Framework with XGBoost for Handling Missing Cash-Flow Data
The scope for the accurate calculation of the Loss Given Default (LGD) parameter is comprehensive in terms of financial data. In this research, we aim to explore methods for improving the approximation of realized LGD in conditions of limited access to the cash-flow data. We enhance the performance of the method which relies on the differences between exposure values (delta outstanding approach) by employing machine learning (ML) techniques. The research utilizes the data from the mortgage portfolio of one of the European countries and assumes a close resemblance to similar economic contexts. It incorporates non-financial variables and macroeconomic data related to the housing market, improving the accuracy of loss severity approximation. The proposed methodology attempts to mitigate the country-specific (related to the local legal) or portfolio-specific factors in aim to show the general advantage of applying ML techniques, rather than case-specific relation. We developed an XGBoost model that does not rely on cash-flow data yet enhances the accuracy of realized LGD estimation compared to results obtained with the delta outstanding approach. A novel aspect of our work is the detailed exploration of the delta outstanding approach and the methodology for addressing conditions of limited access to cash-flow data through machine learning models.
comment: 36 pages, 5 figures, 9 tables
☆ Towards Efficient and Scalable Training of Differentially Private Deep Learning ICML 2024
Differentially private stochastic gradient descent (DP-SGD) is the standard algorithm for training machine learning models under differential privacy (DP). The major drawback of DP-SGD is the drop in utility which prior work has comprehensively studied. However, in practice another major drawback that hinders the large-scale deployment is the significantly higher computational cost. We conduct a comprehensive empirical study to quantify the computational cost of training deep learning models under DP and benchmark methods that aim at reducing the cost. Among these are more efficient implementations of DP-SGD and training with lower precision. Finally, we study the scaling behaviour using up to 80 GPUs.
comment: 15 pages, 12 figures, Accepted to the Workshop on Advancing Neural Network Training at International Conference on Machine Learning (WANT@ICML 2024)
☆ BlockLLM: Memory-Efficient Adaptation of LLMs by Selecting and Optimizing the Right Coordinate Blocks
Training large language models (LLMs) for pretraining or adapting to new tasks and domains has become increasingly critical as their applications expand. However, as the model and the data sizes grow, the training process presents significant memory challenges, often requiring a prohibitive amount of GPU memory that may not be readily available. Existing methods such as low-rank adaptation (LoRA) add trainable low-rank matrix factorizations, altering the training dynamics and limiting the model's parameter search to a low-rank subspace. GaLore, a more recent method, employs Gradient Low-Rank Projection to reduce the memory footprint, in the full parameter training setting. However GaLore can only be applied to a subset of the LLM layers that satisfy the "reversibility" property, thus limiting their applicability. In response to these challenges, we introduce BlockLLM, an approach inspired by block coordinate descent. Our method carefully selects and updates a very small subset of the trainable parameters without altering any part of its architecture and training procedure. BlockLLM achieves state-of-the-art performance in both finetuning and pretraining tasks, while reducing the memory footprint of the underlying optimization process. Our experiments demonstrate that fine-tuning with only less than 5% of the parameters, BlockLLM achieves state-of-the-art perplexity scores on the GLUE benchmarks. On Llama model pretrained on C4 dataset, BlockLLM is able to train with significantly less memory than the state-of-the-art, while still maintaining competitive performance.
comment: 16 pages, 7 figures
☆ MatText: Do Language Models Need More than Text & Scale for Materials Modeling?
Effectively representing materials as text has the potential to leverage the vast advancements of large language models (LLMs) for discovering new materials. While LLMs have shown remarkable success in various domains, their application to materials science remains underexplored. A fundamental challenge is the lack of understanding of how to best utilize text-based representations for materials modeling. This challenge is further compounded by the absence of a comprehensive benchmark to rigorously evaluate the capabilities and limitations of these text representations in capturing the complexity of material systems. To address this gap, we propose MatText, a suite of benchmarking tools and datasets designed to systematically evaluate the performance of language models in modeling materials. MatText encompasses nine distinct text-based representations for material systems, including several novel representations. Each representation incorporates unique inductive biases that capture relevant information and integrate prior physical knowledge about materials. Additionally, MatText provides essential tools for training and benchmarking the performance of language models in the context of materials science. These tools include standardized dataset splits for each representation, probes for evaluating sensitivity to geometric factors, and tools for seamlessly converting crystal structures into text. Using MatText, we conduct an extensive analysis of the capabilities of language models in modeling materials. Our findings reveal that current language models consistently struggle to capture the geometric information crucial for materials modeling across all representations. Instead, these models tend to leverage local information, which is emphasized in some of our novel representations. Our analysis underscores MatText's ability to reveal shortcomings of text-based methods for materials design.
☆ EON-1: A Brain-Inspired Processor for Near-Sensor Extreme Edge Online Feature Extraction
For Edge AI applications, deploying online learning and adaptation on resource-constrained embedded devices can deal with fast sensor-generated streams of data in changing environments. However, since maintaining low-latency and power-efficient inference is paramount at the Edge, online learning and adaptation on the device should impose minimal additional overhead for inference. With this goal in mind, we explore energy-efficient learning and adaptation on-device for streaming-data Edge AI applications using Spiking Neural Networks (SNNs), which follow the principles of brain-inspired computing, such as high-parallelism, neuron co-located memory and compute, and event-driven processing. We propose EON-1, a brain-inspired processor for near-sensor extreme edge online feature extraction, that integrates a fast online learning and adaptation algorithm. We report results of only 1% energy overhead for learning, by far the lowest overhead when compared to other SoTA solutions, while attaining comparable inference accuracy. Furthermore, we demonstrate that EON-1 is up for the challenge of low-latency processing of HD and UHD streaming video in real-time, with learning enabled.
☆ Distance Recomputator and Topology Reconstructor for Graph Neural Networks
This paper introduces novel methodologies, the Distance Recomputator and Topology Reconstructor, aimed at enhancing Graph Neural Networks (GNNs). The Distance Recomputator dynamically recalibrates node distances within k-hop neighborhoods using a dynamic encoding scheme, thereby improving the accuracy and adaptability of node representations. Concurrently, the Topology Reconstructor adjusts local graph structures based on computed "similarity distances," optimizing network configurations for improved learning outcomes. These methods address the limitations of static node representations and fixed aggregation schemes in traditional GNNs, offering a more nuanced approach to modeling complex and dynamic graph topologies. Furthermore, our experimental evaluations demonstrate significant performance advantages over existing methods across various benchmark datasets. The proposed Distance Recomputator and Topology Reconstructor not only enhance node relationship modeling accuracy but also optimize information aggregation efficiency through an asynchronous aggregation mechanism. This approach proves particularly effective in scenarios involving dynamic or large-scale graphs, showcasing the methods' robustness and applicability in real-world graph learning tasks.
☆ Can We Trust the Performance Evaluation of Uncertainty Estimation Methods in Text Summarization?
Text summarization, a key natural language generation (NLG) task, is vital in various domains. However, the high cost of inaccurate summaries in risk-critical applications, particularly those involving human-in-the-loop decision-making, raises concerns about the reliability of uncertainty estimation on text summarization (UE-TS) evaluation methods. This concern stems from the dependency of uncertainty model metrics on diverse and potentially conflicting NLG metrics. To address this issue, we introduce a comprehensive UE-TS benchmark incorporating 31 NLG metrics across four dimensions. The benchmark evaluates the uncertainty estimation capabilities of two large language models and one pre-trained language model on three datasets, with human-annotation analysis incorporated where applicable. We also assess the performance of 14 common uncertainty estimation methods within this benchmark. Our findings emphasize the importance of considering multiple uncorrelated NLG metrics and diverse uncertainty estimation methods to ensure reliable and efficient evaluation of UE-TS techniques.
comment: 63 pages, 41 figures, 11 tables
☆ A Comprehensive Solution to Connect Speech Encoder and Large Language Model for ASR
Recent works have shown promising results in connecting speech encoders to large language models (LLMs) for speech recognition. However, several limitations persist, including limited fine-tuning options, a lack of mechanisms to enforce speech-text alignment, and high insertion errors especially in domain mismatch conditions. This paper presents a comprehensive solution to address these issues. We begin by investigating more thoughtful fine-tuning schemes. Next, we propose a matching loss to enhance alignment between modalities. Finally, we explore training and inference methods to mitigate high insertion errors. Experimental results on the Librispeech corpus demonstrate that partially fine-tuning the encoder and LLM using parameter-efficient methods, such as LoRA, is the most cost-effective approach. Additionally, the matching loss improves modality alignment, enhancing performance. The proposed training and inference methods significantly reduce insertion errors.
☆ AG-LSEC: Audio Grounded Lexical Speaker Error Correction INTERSPEECH 2024
Speaker Diarization (SD) systems are typically audio-based and operate independently of the ASR system in traditional speech transcription pipelines and can have speaker errors due to SD and/or ASR reconciliation, especially around speaker turns and regions of speech overlap. To reduce these errors, a Lexical Speaker Error Correction (LSEC), in which an external language model provides lexical information to correct the speaker errors, was recently proposed. Though the approach achieves good Word Diarization error rate (WDER) improvements, it does not use any additional acoustic information and is prone to miscorrections. In this paper, we propose to enhance and acoustically ground the LSEC system with speaker scores directly derived from the existing SD pipeline. This approach achieves significant relative WDER reductions in the range of 25-40% over the audio-based SD, ASR system and beats the LSEC system by 15-25% relative on RT03-CTS, Callhome American English and Fisher datasets.
comment: Accepted at INTERSPEECH 2024
☆ Efficient, Multimodal, and Derivative-Free Bayesian Inference With Fisher-Rao Gradient Flows
In this paper, we study efficient approximate sampling for probability distributions known up to normalization constants. We specifically focus on a problem class arising in Bayesian inference for large-scale inverse problems in science and engineering applications. The computational challenges we address with the proposed methodology are: (i) the need for repeated evaluations of expensive forward models; (ii) the potential existence of multiple modes; and (iii) the fact that gradient of, or adjoint solver for, the forward model might not be feasible. While existing Bayesian inference methods meet some of these challenges individually, we propose a framework that tackles all three systematically. Our approach builds upon the Fisher-Rao gradient flow in probability space, yielding a dynamical system for probability densities that converges towards the target distribution at a uniform exponential rate. This rapid convergence is advantageous for the computational burden outlined in (i). We apply Gaussian mixture approximations with operator splitting techniques to simulate the flow numerically; the resulting approximation can capture multiple modes thus addressing (ii). Furthermore, we employ the Kalman methodology to facilitate a derivative-free update of these Gaussian components and their respective weights, addressing the issue in (iii). The proposed methodology results in an efficient derivative-free sampler flexible enough to handle multi-modal distributions: Gaussian Mixture Kalman Inversion (GMKI). The effectiveness of GMKI is demonstrated both theoretically and numerically in several experiments with multimodal target distributions, including proof-of-concept and two-dimensional examples, as well as a large-scale application: recovering the Navier-Stokes initial condition from solution data at positive times.
comment: 42 pages, 9 figures
☆ TopoGCL: Topological Graph Contrastive Learning
Graph contrastive learning (GCL) has recently emerged as a new concept which allows for capitalizing on the strengths of graph neural networks (GNNs) to learn rich representations in a wide variety of applications which involve abundant unlabeled information. However, existing GCL approaches largely tend to overlook the important latent information on higher-order graph substructures. We address this limitation by introducing the concepts of topological invariance and extended persistence on graphs to GCL. In particular, we propose a new contrastive mode which targets topological representations of the two augmented views from the same graph, yielded by extracting latent shape properties of the graph at multiple resolutions. Along with the extended topological layer, we introduce a new extended persistence summary, namely, extended persistence landscapes (EPL) and derive its theoretical stability guarantees. Our extensive numerical results on biological, chemical, and social interaction graphs show that the new Topological Graph Contrastive Learning (TopoGCL) model delivers significant performance gains in unsupervised graph classification for 11 out of 12 considered datasets and also exhibits robustness under noisy scenarios.
☆ Unlocking Continual Learning Abilities in Language Models
Language models (LMs) exhibit impressive performance and generalization capabilities. However, LMs struggle with the persistent challenge of catastrophic forgetting, which undermines their long-term sustainability in continual learning (CL). Existing approaches usually address the issue by incorporating old task data or task-wise inductive bias into LMs. However, old data and accurate task information are often unavailable or costly to collect, hindering the availability of current CL approaches for LMs. To address this limitation, we introduce $\textbf{MIGU}$ ($\textbf{M}$agn$\textbf{I}$tude-based $\textbf{G}$radient $\textbf{U}$pdating for continual learning), a rehearsal-free and task-label-free method that only updates the model parameters with large magnitudes of output in LMs' linear layers. MIGU is based on our observation that the L1-normalized magnitude distribution of the output in LMs' linear layers is different when the LM models deal with different task data. By imposing this simple constraint on the gradient update process, we can leverage the inherent behaviors of LMs, thereby unlocking their innate CL abilities. Our experiments demonstrate that MIGU is universally applicable to all three LM architectures (T5, RoBERTa, and Llama2), delivering state-of-the-art or on-par performance across continual finetuning and continual pre-training settings on four CL benchmarks. For example, MIGU brings a 15.2% average accuracy improvement over conventional parameter-efficient finetuning baselines in a 15-task CL benchmark. MIGU can also seamlessly integrate with all three existing CL types to further enhance performance. Code is available at \href{https://github.com/wenyudu/MIGU}{this https URL}.
comment: preprint, 19 pages
☆ Expansive Synthesis: Generating Large-Scale Datasets from Minimal Samples
The challenge of limited availability of data for training in machine learning arises in many applications and the impact on performance and generalization is serious. Traditional data augmentation methods aim to enhance training with a moderately sufficient data set. Generative models like Generative Adversarial Networks (GANs) often face problematic convergence when generating significant and diverse data samples. Diffusion models, though effective, still struggle with high computational cost and long training times. This paper introduces an innovative Expansive Synthesis model that generates large-scale, high-fidelity datasets from minimal samples. The proposed approach exploits expander graph mappings and feature interpolation to synthesize expanded datasets while preserving the intrinsic data distribution and feature structural relationships. The rationale of the model is rooted in the non-linear property of neural networks' latent space and in its capture by a Koopman operator to yield a linear space of features to facilitate the construction of larger and enriched consistent datasets starting with a much smaller dataset. This process is optimized by an autoencoder architecture enhanced with self-attention layers and further refined for distributional consistency by optimal transport. We validate our Expansive Synthesis by training classifiers on the generated datasets and comparing their performance to classifiers trained on larger, original datasets. Experimental results demonstrate that classifiers trained on synthesized data achieve performance metrics on par with those trained on full-scale datasets, showcasing the model's potential to effectively augment training data. This work represents a significant advancement in data generation, offering a robust solution to data scarcity and paving the way for enhanced data availability in machine learning applications.
comment: 14 pages. arXiv admin note: text overlap with arXiv:2405.13866
☆ Inherent Challenges of Post-Hoc Membership Inference for Large Language Models
Large Language Models (LLMs) are often trained on vast amounts of undisclosed data, motivating the development of post-hoc Membership Inference Attacks (MIAs) to gain insight into their training data composition. However, in this paper, we identify inherent challenges in post-hoc MIA evaluation due to potential distribution shifts between collected member and non-member datasets. Using a simple bag-of-words classifier, we demonstrate that datasets used in recent post-hoc MIAs suffer from significant distribution shifts, in some cases achieving near-perfect distinction between members and non-members. This implies that previously reported high MIA performance may be largely attributable to these shifts rather than model memorization. We confirm that randomized, controlled setups eliminate such shifts and thus enable the development and fair evaluation of new MIAs. However, we note that such randomized setups are rarely available for the latest LLMs, making post-hoc data collection still required to infer membership for real-world LLMs. As a potential solution, we propose a Regression Discontinuity Design (RDD) approach for post-hoc data collection, which substantially mitigates distribution shifts. Evaluating various MIA methods on this RDD setup yields performance barely above random guessing, in stark contrast to previously reported results. Overall, our findings highlight the challenges in accurately measuring LLM memorization and the need for careful experimental design in (post-hoc) membership inference tasks.
☆ LABOR-LLM: Language-Based Occupational Representations with Large Language Models
Many empirical studies of labor market questions rely on estimating relatively simple predictive models using small, carefully constructed longitudinal survey datasets based on hand-engineered features. Large Language Models (LLMs), trained on massive datasets, encode vast quantities of world knowledge and can be used for the next job prediction problem. However, while an off-the-shelf LLM produces plausible career trajectories when prompted, the probability with which an LLM predicts a particular job transition conditional on career history will not, in general, align with the true conditional probability in a given population. Recently, Vafa et al. (2024) introduced a transformer-based "foundation model", CAREER, trained using a large, unrepresentative resume dataset, that predicts transitions between jobs; it further demonstrated how transfer learning techniques can be used to leverage the foundation model to build better predictive models of both transitions and wages that reflect conditional transition probabilities found in nationally representative survey datasets. This paper considers an alternative where the fine-tuning of the CAREER foundation model is replaced by fine-tuning LLMs. For the task of next job prediction, we demonstrate that models trained with our approach outperform several alternatives in terms of predictive performance on the survey data, including traditional econometric models, CAREER, and LLMs with in-context learning, even though the LLM can in principle predict job titles that are not allowed in the survey data. Further, we show that our fine-tuned LLM-based models' predictions are more representative of the career trajectories of various workforce subpopulations than off-the-shelf LLM models and CAREER. We conduct experiments and analyses that highlight the sources of the gains in the performance of our models for representative predictions.
☆ Efficient Document Ranking with Learnable Late Interactions
Cross-Encoder (CE) and Dual-Encoder (DE) models are two fundamental approaches for query-document relevance in information retrieval. To predict relevance, CE models use joint query-document embeddings, while DE models maintain factorized query and document embeddings; usually, the former has higher quality while the latter benefits from lower latency. Recently, late-interaction models have been proposed to realize more favorable latency-quality tradeoffs, by using a DE structure followed by a lightweight scorer based on query and document token embeddings. However, these lightweight scorers are often hand-crafted, and there is no understanding of their approximation power; further, such scorers require access to individual document token embeddings, which imposes an increased latency and storage burden. In this paper, we propose novel learnable late-interaction models (LITE) that resolve these issues. Theoretically, we prove that LITE is a universal approximator of continuous scoring functions, even for relatively small embedding dimension. Empirically, LITE outperforms previous late-interaction models such as ColBERT on both in-domain and zero-shot re-ranking tasks. For instance, experiments on MS MARCO passage re-ranking show that LITE not only yields a model with better generalization, but also lowers latency and requires 0.25x storage compared to ColBERT.
☆ Empowering Interdisciplinary Insights with Dynamic Graph Embedding Trajectories
We developed DyGETViz, a novel framework for effectively visualizing dynamic graphs (DGs) that are ubiquitous across diverse real-world systems. This framework leverages recent advancements in discrete-time dynamic graph (DTDG) models to adeptly handle the temporal dynamics inherent in dynamic graphs. DyGETViz effectively captures both micro- and macro-level structural shifts within these graphs, offering a robust method for representing complex and massive dynamic graphs. The application of DyGETViz extends to a diverse array of domains, including ethology, epidemiology, finance, genetics, linguistics, communication studies, social studies, and international relations. Through its implementation, DyGETViz has revealed or confirmed various critical insights. These include the diversity of content sharing patterns and the degree of specialization within online communities, the chronological evolution of lexicons across decades, and the distinct trajectories exhibited by aging-related and non-related genes. Importantly, DyGETViz enhances the accessibility of scientific findings to non-domain experts by simplifying the complexities of dynamic graphs. Our framework is released as an open-source Python package for use across diverse disciplines. Our work not only addresses the ongoing challenges in visualizing and analyzing DTDG models but also establishes a foundational framework for future investigations into dynamic graph representation and analysis across various disciplines.
comment: 25 pages, 11 figures
♻ ☆ Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective
Class incremental learning (CIL) algorithms aim to continually learn new object classes from incrementally arriving data while not forgetting past learned classes. The common evaluation protocol for CIL algorithms is to measure the average test accuracy across all classes learned so far -- however, we argue that solely focusing on maximizing the test accuracy may not necessarily lead to developing a CIL algorithm that also continually learns and updates the representations, which may be transferred to the downstream tasks. To that end, we experimentally analyze neural network models trained by CIL algorithms using various evaluation protocols in representation learning and propose new analysis methods. Our experiments show that most state-of-the-art algorithms prioritize high stability and do not significantly change the learned representation, and sometimes even learn a representation of lower quality than a naive baseline. However, we observe that these algorithms can still achieve high test accuracy because they enable a model to learn a classifier that closely resembles an estimated linear classifier trained for linear probing. Furthermore, the base model learned in the first task, which involves single-task learning, exhibits varying levels of representation quality across different algorithms, and this variance impacts the final performance of CIL algorithms. Therefore, we suggest that the representation-level evaluation should be considered as an additional recipe for more diverse evaluation for CIL algorithms.
comment: CoLLAs 2024 camera-ready version
♻ ☆ Adam-mini: Use Fewer Learning Rates To Gain More
We propose Adam-mini, an optimizer that achieves on-par or better performance than AdamW with 45% to 50% less memory footprint. Adam-mini reduces memory by cutting down the number of learning rates in Adam: Instead of assigning an individual learning rate for each parameter using $1/\sqrt{v}$, Adam-mini uses the average of $v$ within a pre-defined parameter block as the learning rate for that block. Such a design is inspired by two empirical findings. First, the Hessian of Transformers exhibits a near-block diagonal structure with different sizes of dense sub-blocks. Second, for each of these dense sub-blocks, there exists a single high-quality learning rate that can outperform Adam, provided that sufficient resources are available to search it out. Adam-mini provides one cost-effective way to find these good learning rates and manage to cut down $\geq$ 90% $v$ in Adam. Empirically, we verify that Adam-mini performs on par or better than AdamW on various language models sized from 125M to 7B for pre-training, supervised fine-tuning, and RLHF. The reduced memory footprint of Adam-mini also alleviates communication overheads among GPUs and CPUs, thereby increasing throughput. For instance, Adam-mini achieves 49.6% higher throughput than AdamW when pre-training Llama2-7B on 2x A800-80GB GPUs, which saves 33% wall-clock time for pre-training.
♻ ☆ Discrete Multimodal Transformers with a Pretrained Large Language Model for Mixed-Supervision Speech Processing
Recent work on discrete speech tokenization has paved the way for models that can seamlessly perform multiple tasks across modalities, e.g., speech recognition, text to speech, speech to speech translation. Moreover, large language models (LLMs) pretrained from vast text corpora contain rich linguistic information that can improve accuracy in a variety of tasks. In this paper, we present a decoder-only Discrete Multimodal Language Model (DMLM), which can be flexibly applied to multiple tasks (ASR, T2S, S2TT, etc.) and modalities (text, speech, vision). We explore several critical aspects of discrete multi-modal models, including the loss function, weight initialization, mixed training supervision, and codebook. Our results show that DMLM benefits significantly, across multiple tasks and datasets, from a combination of supervised and unsupervised training. Moreover, for ASR, it benefits from initializing DMLM from a pretrained LLM, and from a codebook derived from Whisper activations.
♻ ☆ Regularization and Optimal Multiclass Learning COLT 2024
The quintessential learning algorithm of empirical risk minimization (ERM) is known to fail in various settings for which uniform convergence does not characterize learning. It is therefore unsurprising that the practice of machine learning is rife with considerably richer algorithmic techniques for successfully controlling model capacity. Nevertheless, no such technique or principle has broken away from the pack to characterize optimal learning in these more general settings. The purpose of this work is to characterize the role of regularization in perhaps the simplest setting for which ERM fails: multiclass learning with arbitrary label sets. Using one-inclusion graphs (OIGs), we exhibit optimal learning algorithms that dovetail with tried-and-true algorithmic principles: Occam's Razor as embodied by structural risk minimization (SRM), the principle of maximum entropy, and Bayesian reasoning. Most notably, we introduce an optimal learner which relaxes structural risk minimization on two dimensions: it allows the regularization function to be "local" to datapoints, and uses an unsupervised learning stage to learn this regularizer at the outset. We justify these relaxations by showing that they are necessary: removing either dimension fails to yield a near-optimal learner. We also extract from OIGs a combinatorial sequence we term the Hall complexity, which is the first to characterize a problem's transductive error rate exactly. Lastly, we introduce a generalization of OIGs and the transductive learning setting to the agnostic case, where we show that optimal orientations of Hamming graphs -- judged using nodes' outdegrees minus a system of node-dependent credits -- characterize optimal learners exactly. We demonstrate that an agnostic version of the Hall complexity again characterizes error rates exactly, and exhibit an optimal learner using maximum entropy programs.
comment: COLT 2024; 43 pages
♻ ☆ Enhancing Active Learning for Sentinel 2 Imagery through Contrastive Learning and Uncertainty Estimation
In this paper, we introduce a novel method designed to enhance label efficiency in satellite imagery analysis by integrating semi-supervised learning (SSL) with active learning strategies. Our approach utilizes contrastive learning together with uncertainty estimations via Monte Carlo Dropout (MC Dropout), with a particular focus on Sentinel-2 imagery analyzed using the Eurosat dataset. We explore the effectiveness of our method in scenarios featuring both balanced and unbalanced class distributions. Our results show that the proposed method performs better than several other popular methods in this field, enabling significant savings in labeling effort while maintaining high classification accuracy. These findings highlight the potential of our approach to facilitate scalable and cost-effective satellite image analysis, particularly advantageous for extensive environmental monitoring and land use classification tasks.
♻ ☆ Diverse Part Synthesis for 3D Shape Creation
Methods that use neural networks for synthesizing 3D shapes in the form of a part-based representation have been introduced over the last few years. These methods represent shapes as a graph or hierarchy of parts and enable a variety of applications such as shape sampling and reconstruction. However, current methods do not allow easily regenerating individual shape parts according to user preferences. In this paper, we investigate techniques that allow the user to generate multiple, diverse suggestions for individual parts. Specifically, we experiment with multimodal deep generative models that allow sampling diverse suggestions for shape parts and focus on models which have not been considered in previous work on shape synthesis. To provide a comparative study of these techniques, we introduce a method for synthesizing 3D shapes in a part-based representation and evaluate all the part suggestion techniques within this synthesis method. In our method, which is inspired by previous work, shapes are represented as a set of parts in the form of implicit functions which are then positioned in space to form the final shape. Synthesis in this representation is enabled by a neural network architecture based on an implicit decoder and a spatial transformer. We compare the various multimodal generative models by evaluating their performance in generating part suggestions. Our contribution is to show with qualitative and quantitative evaluations which of the new techniques for multimodal part generation perform the best and that a synthesis method based on the top-performing techniques allows the user to more finely control the parts that are generated in the 3D shapes while maintaining high shape fidelity when reconstructing shapes.
♻ ☆ The Best Arm Evades: Near-optimal Multi-pass Streaming Lower Bounds for Pure Exploration in Multi-armed Bandits COLT 2024
We give a near-optimal sample-pass trade-off for pure exploration in multi-armed bandits (MABs) via multi-pass streaming algorithms: any streaming algorithm with sublinear memory that uses the optimal sample complexity of $O(\frac{n}{\Delta^2})$ requires $\Omega(\frac{\log{(1/\Delta)}}{\log\log{(1/\Delta)}})$ passes. Here, $n$ is the number of arms and $\Delta$ is the reward gap between the best and the second-best arms. Our result matches the $O(\log(\frac{1}{\Delta}))$-pass algorithm of Jin et al. [ICML'21] (up to lower order terms) that only uses $O(1)$ memory and answers an open question posed by Assadi and Wang [STOC'20].
comment: COLT 2024
♻ ☆ Fast gradient-free activation maximization for neurons in spiking neural networks
Elements of neural networks, both biological and artificial, can be described by their selectivity for specific cognitive features. Understanding these features is important for understanding the inner workings of neural networks. For a living system, such as a neuron, whose response to a stimulus is unknown and not differentiable, the only way to reveal these features is through a feedback loop that exposes it to a large set of different stimuli. The properties of these stimuli should be varied iteratively in order to maximize the neuronal response. To utilize this feedback loop for a biological neural network, it is important to run it quickly and efficiently in order to reach the stimuli that maximizes certain neurons' activation with the least number of iterations possible. Here we present a framework with an efficient design for such a loop. We successfully tested it on an artificial spiking neural network (SNN), which is a model that simulates the asynchronous spiking activity of neurons in living brains. Our optimization method for activation maximization is based on the low-rank Tensor Train decomposition of the discrete activation function. The optimization space is the latent parameter space of images generated by SN-GAN or VQ-VAE generative models. To our knowledge, this is the first time that effective AM has been applied to SNNs. We track changes in the optimal stimuli for artificial neurons during training and show that highly selective neurons can form already in the early epochs of training and in the early layers of a convolutional spiking network. This formation of refined optimal stimuli is associated with an increase in classification accuracy. Some neurons, especially in the deeper layers, may gradually change the concepts they are selective for during learning, potentially explaining their importance for model performance.
♻ ☆ A Temporal Stochastic Bias Correction using a Machine Learning Attention model
Climate models are biased with respect to real-world observations. They usually need to be adjusted before being used in impact studies. The suite of statistical methods that enable such adjustments is called bias correction (BC). However, BC methods currently struggle to adjust temporal biases. Because they mostly disregard the dependence between consecutive time points. As a result, climate statistics with long-range temporal properties, such as heatwave duration and frequency, cannot be corrected accurately. This makes it more difficult to produce reliable impact studies on such climate statistics. This paper offers a novel BC methodology to correct temporal biases. This is made possible by rethinking the philosophy behind BC. We will introduce BC as a time-indexed regression task with stochastic outputs. Rethinking BC enables us to adapt state-of-the-art machine learning (ML) attention models and thereby learn different types of biases, including temporal asynchronicities. With a case study of heatwave duration statistics in Abuja, Nigeria, and Tokyo, Japan, we show more accurate results than current climate model outputs and alternative BC methods.
comment: 38 pages, 31 figures
♻ ☆ A Data-Centric Approach To Generate Faithful and High Quality Patient Summaries with Large Language Models
Patients often face difficulties in understanding their hospitalizations, while healthcare workers have limited resources to provide explanations. In this work, we investigate the potential of large language models to generate patient summaries based on doctors' notes and study the effect of training data on the faithfulness and quality of the generated summaries. To this end, we release (i) a rigorous labeling protocol for errors in medical texts and (ii) a publicly available dataset of annotated hallucinations in 100 doctor-written and 100 generated summaries. We show that fine-tuning on hallucination-free data effectively reduces hallucinations from 2.60 to 1.55 per summary for Llama 2, while preserving relevant information. We observe a similar effect on GPT-4 (0.70 to 0.40), when the few-shot examples are hallucination-free. We also conduct a qualitative evaluation using hallucination-free and improved training data. We find that common quantitative metrics do not correlate well with faithfulness and quality. Finally, we test GPT-4 for automatic hallucination detection, which clearly outperforms common baselines.
♻ ☆ XCube: Large-Scale 3D Generative Modeling using Sparse Voxel Hierarchies CVPR 2024
We present XCube (abbreviated as $\mathcal{X}^3$), a novel generative model for high-resolution sparse 3D voxel grids with arbitrary attributes. Our model can generate millions of voxels with a finest effective resolution of up to $1024^3$ in a feed-forward fashion without time-consuming test-time optimization. To achieve this, we employ a hierarchical voxel latent diffusion model which generates progressively higher resolution grids in a coarse-to-fine manner using a custom framework built on the highly efficient VDB data structure. Apart from generating high-resolution objects, we demonstrate the effectiveness of XCube on large outdoor scenes at scales of 100m$\times$100m with a voxel size as small as 10cm. We observe clear qualitative and quantitative improvements over past approaches. In addition to unconditional generation, we show that our model can be used to solve a variety of tasks such as user-guided editing, scene completion from a single scan, and text-to-3D. The source code and more results can be found at https://research.nvidia.com/labs/toronto-ai/xcube/.
comment: CVPR 2024 Highlight. Code: https://github.com/nv-tlabs/XCube/ Website: https://research.nvidia.com/labs/toronto-ai/xcube/
♻ ☆ Analysis of learning a flow-based generative model from limited sample complexity
We study the problem of training a flow-based generative model, parametrized by a two-layer autoencoder, to sample from a high-dimensional Gaussian mixture. We provide a sharp end-to-end analysis of the problem. First, we provide a tight closed-form characterization of the learnt velocity field, when parametrized by a shallow denoising auto-encoder trained on a finite number $n$ of samples from the target distribution. Building on this analysis, we provide a sharp description of the corresponding generative flow, which pushes the base Gaussian density forward to an approximation of the target density. In particular, we provide closed-form formulae for the distance between the mean of the generated mixture and the mean of the target mixture, which we show decays as $\Theta_n(\frac{1}{n})$. Finally, this rate is shown to be in fact Bayes-optimal.
♻ ☆ PiPar: Pipeline Parallelism for Collaborative Machine Learning
Collaborative machine learning (CML) techniques, such as federated learning, have been proposed to train deep learning models across multiple mobile devices and a server. CML techniques are privacy-preserving as a local model that is trained on each device instead of the raw data from the device is shared with the server. However, CML training is inefficient due to low resource utilization. We identify idling resources on the server and devices due to sequential computation and communication as the principal cause of low resource utilization. A novel framework PiPar that leverages pipeline parallelism for CML techniques is developed to substantially improve resource utilization. A new training pipeline is designed to parallelize the computations on different hardware resources and communication on different bandwidth resources, thereby accelerating the training process in CML. A low overhead automated parameter selection method is proposed to optimize the pipeline, maximizing the utilization of available resources. The experimental results confirm the validity of the underlying approach of PiPar and highlight that when compared to federated learning: (i) the idle time of the server can be reduced by up to 64.1x, and (ii) the overall training time can be accelerated by up to 34.6x under varying network conditions for a collection of six small and large popular deep neural networks and four datasets without sacrificing accuracy. It is also experimentally demonstrated that PiPar achieves performance benefits when incorporating differential privacy methods and operating in environments with heterogeneous devices and changing bandwidths.
♻ ☆ Feudal Graph Reinforcement Learning
Graph-based representations and message-passing modular policies constitute prominent approaches to tackling composable control problems in Reinforcement Learning (RL). However, as shown by recent graph deep learning literature, such local message-passing operators can create information bottlenecks and hinder global coordination. The issue becomes more serious in tasks requiring high-level planning. In this work, we propose a novel methodology, named Feudal Graph Reinforcement Learning (FGRL), that addresses such challenges by relying on hierarchical RL and a pyramidal message-passing architecture. In particular, FGRL defines a hierarchy of policies where high-level commands are propagated from the top of the hierarchy down through a layered graph structure. The bottom layers mimic the morphology of the physical system, while the upper layers correspond to higher-order sub-modules. The resulting agents are then characterized by a committee of policies where actions at a certain level set goals for the level below, thus implementing a hierarchical decision-making structure that can naturally implement task decomposition. We evaluate the proposed framework on a graph clustering problem and MuJoCo locomotion tasks; simulation results show that FGRL compares favorably against relevant baselines. Furthermore, an in-depth analysis of the command propagation mechanism provides evidence that the introduced message-passing scheme favors learning hierarchical decision-making policies.
♻ ☆ Multi-Modal Conformal Prediction Regions with Simple Structures by Optimizing Convex Shape Templates
Conformal prediction is a statistical tool for producing prediction regions for machine learning models that are valid with high probability. A key component of conformal prediction algorithms is a \emph{non-conformity score function} that quantifies how different a model's prediction is from the unknown ground truth value. Essentially, these functions determine the shape and the size of the conformal prediction regions. While prior work has gone into creating score functions that produce multi-model prediction regions, such regions are generally too complex for use in downstream planning and control problems. We propose a method that optimizes parameterized \emph{shape template functions} over calibration data, which results in non-conformity score functions that produce prediction regions with minimum volume. Our approach results in prediction regions that are \emph{multi-modal}, so they can properly capture residuals of distributions that have multiple modes, and \emph{practical}, so each region is convex and can be easily incorporated into downstream tasks, such as a motion planner using conformal prediction regions. Our method applies to general supervised learning tasks, while we illustrate its use in time-series prediction. We provide a toolbox and present illustrative case studies of F16 fighter jets and autonomous vehicles, showing an up to $68\%$ reduction in prediction region area compared to a circular baseline region.
comment: Accepted to L4DC 2024. 14 pages, 3 figures. The source code and toolbox are available at https://github.com/nandantumu/conformal_region_designer
♻ ☆ Locally Differentially Private Distributed Online Learning with Guaranteed Optimality
Distributed online learning is gaining increased traction due to its unique ability to process large-scale datasets and streaming data. To address the growing public awareness and concern on privacy protection, plenty of algorithms have been proposed to enable differential privacy in distributed online optimization and learning. However, these algorithms often face the dilemma of trading learning accuracy for privacy. By exploiting the unique characteristics of online learning, this paper proposes an approach that tackles the dilemma and ensures both differential privacy and learning accuracy in distributed online learning. More specifically, while ensuring a diminishing expected instantaneous regret, the approach can simultaneously ensure a finite cumulative privacy budget, even in the infinite time horizon. To cater for the fully distributed setting, we adopt the local differential-privacy framework, which avoids the reliance on a trusted data curator, and, hence, provides stronger protection than the classic "centralized" (global) differential privacy. To the best of our knowledge, this is the first algorithm that successfully ensures both rigorous local differential privacy and learning accuracy. The effectiveness of the proposed algorithm is evaluated using machine learning tasks, including logistic regression on the the "mushrooms" datasets and CNN-based image classification on the "MNIST" and "CIFAR-10" datasets.
comment: 23 pages, 9 figures
♻ ☆ GLAD: Improving Latent Graph Generative Modeling with Simple Quantization ICML 2024
Exploring the graph latent structures has not garnered much attention in the graph generative research field. Yet, exploiting the latent space is as crucial as working on the data space for discrete data such as graphs. However, previous methods either failed to preserve the permutation symmetry of graphs or lacked an effective approaches to model appropriately within the latent space. To mitigate those issues, we propose a simple, yet effective discrete latent graph diffusion generative model. Our model, namely GLAD, not only overcomes the drawbacks of existing latent approaches, but also alleviates inherent issues present in diffusion methods applied on the graph space. We validate our generative model on the molecular benchmark datasets, on which it demonstrates competitive performance compared with the state-of-the-art baselines.
comment: Accepted in the 2nd Structured Probabilistic Inference & Generative Modeling workshop of ICML 2024
♻ ☆ Controlling Moments with Kernel Stein Discrepancies
Kernel Stein discrepancies (KSDs) measure the quality of a distributional approximation and can be computed even when the target density has an intractable normalizing constant. Notable applications include the diagnosis of approximate MCMC samplers and goodness-of-fit tests for unnormalized statistical models. The present work analyzes the convergence control properties of KSDs. We first show that standard KSDs used for weak convergence control fail to control moment convergence. To address this limitation, we next provide sufficient conditions under which alternative diffusion KSDs control both moment and weak convergence. As an immediate consequence we develop, for each $q > 0$, the first KSDs known to exactly characterize $q$-Wasserstein convergence.
comment: 103 pages, 10 figures
♻ ☆ Insights into the Lottery Ticket Hypothesis and Iterative Magnitude Pruning
Lottery ticket hypothesis for deep neural networks emphasizes the importance of initialization used to re-train the sparser networks obtained using the iterative magnitude pruning process. An explanation for why the specific initialization proposed by the lottery ticket hypothesis tends to work better in terms of generalization (and training) performance has been lacking. Moreover, the underlying principles in iterative magnitude pruning, like the pruning of smaller magnitude weights and the role of the iterative process, lack full understanding and explanation. In this work, we attempt to provide insights into these phenomena by empirically studying the volume/geometry and loss landscape characteristics of the solutions obtained at various stages of the iterative magnitude pruning process.
♻ ☆ Fundamental Bounds on Online Strategic Classification
We study the problem of online binary classification where strategic agents can manipulate their observable features in predefined ways, modeled by a manipulation graph, in order to receive a positive classification. We show this setting differs in fundamental ways from non-strategic online classification. For instance, whereas in the non-strategic case, a mistake bound of $\ln|H|$ is achievable via the halving algorithm when the target function belongs to a known class $H$, we show that no deterministic algorithm can achieve a mistake bound $o(\Delta)$ in the strategic setting, where $\Delta$ is the maximum degree of the manipulation graph (even when $|H|=O(\Delta)$). We obtain an algorithm achieving mistake bound $O(\Delta\ln|H|)$. We also extend this to the agnostic setting and obtain an algorithm with a $\Delta$ multiplicative regret, and we show no deterministic algorithm can achieve $o(\Delta)$ multiplicative regret. Next, we study two randomized models based on whether the random choices are made before or after agents respond, and show they exhibit fundamental differences. In the first model, at each round the learner deterministically chooses a probability distribution over classifiers inducing expected values on each vertex (probabilities of being classified as positive), which the strategic agents respond to. We show that any learner in this model has to suffer linear regret. On the other hand, in the second model, while the adversary who selects the next agent must respond to the learner's probability distribution over classifiers, the agent then responds to the actual hypothesis classifier drawn from this distribution. Surprisingly, we show this model is more advantageous to the learner, and we design randomized algorithms that achieve sublinear regret bounds against both oblivious and adaptive adversaries.
♻ ☆ MgNO: Efficient Parameterization of Linear Operators via Multigrid
In this work, we propose a concise neural operator architecture for operator learning. Drawing an analogy with a conventional fully connected neural network, we define the neural operator as follows: the output of the $i$-th neuron in a nonlinear operator layer is defined by $\mathcal O_i(u) = \sigma\left( \sum_j \mathcal W_{ij} u + \mathcal B_{ij}\right)$. Here, $\mathcal W_{ij}$ denotes the bounded linear operator connecting $j$-th input neuron to $i$-th output neuron, and the bias $\mathcal B_{ij}$ takes the form of a function rather than a scalar. Given its new universal approximation property, the efficient parameterization of the bounded linear operators between two neurons (Banach spaces) plays a critical role. As a result, we introduce MgNO, utilizing multigrid structures to parameterize these linear operators between neurons. This approach offers both mathematical rigor and practical expressivity. Additionally, MgNO obviates the need for conventional lifting and projecting operators typically required in previous neural operators. Moreover, it seamlessly accommodates diverse boundary conditions. Our empirical observations reveal that MgNO exhibits superior ease of training compared to other CNN-based models, while also displaying a reduced susceptibility to overfitting when contrasted with spectral-type neural operators. We demonstrate the efficiency and accuracy of our method with consistently state-of-the-art performance on different types of partial differential equations (PDEs).
♻ ☆ Learning with Noisy Labels through Learnable Weighting and Centroid Similarity
We introduce a novel method for training machine learning models in the presence of noisy labels, which are prevalent in domains such as medical diagnosis and autonomous driving and have the potential to degrade a model's generalization performance. Inspired by established literature that highlights how deep learning models are prone to overfitting to noisy samples in the later epochs of training, we propose a strategic approach. This strategy leverages the distance to class centroids in the latent space and incorporates a discounting mechanism, aiming to diminish the influence of samples that lie distant from all class centroids. By doing so, we effectively counteract the adverse effects of noisy labels. The foundational premise of our approach is the assumption that samples situated further from their respective class centroid in the initial stages of training are more likely to be associated with noise. Our methodology is grounded in robust theoretical principles and has been validated empirically through extensive experiments on several benchmark datasets. Our results show that our method consistently outperforms the existing state-of-the-art techniques, achieving significant improvements in classification accuracy in the presence of noisy labels. The code for our proposed loss function and supplementary materials is available at https://github.com/wanifarooq/NCOD
♻ ☆ Generalized Graph Prompt: Toward a Unification of Pre-Training and Downstream Tasks on Graphs
Graph neural networks have emerged as a powerful tool for graph representation learning, but their performance heavily relies on abundant task-specific supervision. To reduce labeling requirement, the "pre-train, prompt" paradigms have become increasingly common. However, existing study of prompting on graphs is limited, lacking a universal treatment to appeal to different downstream tasks. In this paper, we propose GraphPrompt, a novel pre-training and prompting framework on graphs. GraphPrompt not only unifies pre-training and downstream tasks into a common task template but also employs a learnable prompt to assist a downstream task in locating the most relevant knowledge from the pre-trained model in a task-specific manner. To further enhance GraphPrompt in these two stages, we extend it into GraphPrompt+ with two major enhancements. First, we generalize several popular graph pre-training tasks beyond simple link prediction to broaden the compatibility with our task template. Second, we propose a more generalized prompt design that incorporates a series of prompt vectors within every layer of the pre-trained graph encoder, in order to capitalize on the hierarchical information across different layers beyond just the readout layer. Finally, we conduct extensive experiments on five public datasets to evaluate and analyze GraphPrompt and GraphPrompt+.
comment: Extension of "GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks". arXiv admin note: substantial text overlap with arXiv:2302.08043
♻ ☆ A Cost-Efficient FPGA Implementation of Tiny Transformer Model using Neural ODE
Transformer has been adopted to a wide range of tasks and shown to outperform CNNs and RNNs while it suffers from high training cost and computational complexity. To address these issues, a hybrid approach has become a recent research trend, which replaces a part of ResNet with an MHSA (Multi-Head Self-Attention). In this paper, we propose a lightweight hybrid model which uses Neural ODE (Ordinary Differential Equation) as a backbone instead of ResNet for 12.1$\times$ parameter reduction. For the STL10 dataset, the proposed model achieves 80.15% top-1 accuracy which is comparable to ResNet50. Then, the proposed model is deployed on a modest-sized FPGA device for edge computing. To further reduce FPGA resource utilization, the model is quantized following QAT (Quantization Aware Training) scheme instead of PTQ (Post Training Quantization) to suppress the accuracy loss. As a result, an extremely lightweight Transformer-based model can be implemented on resource-limited FPGAs. The weights of the feature extraction network are stored on-chip to minimize the memory transfer overhead, allowing faster inference. By eliminating the overhead of memory transfers, inference can be executed seamlessly, leading to accelerated inference. The proposed FPGA implementation achieves a 34.01$\times$ speedup for the backbone and MHSA parts, and it achieves an overall 9.85$\times$ speedup when taking into account software pre- and post-processing. It also achieves an overall 7.10$\times$ higher energy efficiency compared to the ARM Cortex-A53 CPU.
♻ ☆ SynDARin: Synthesising Datasets for Automated Reasoning in Low-Resource Languages
Question Answering (QA) datasets have been instrumental in developing and evaluating Large Language Model (LLM) capabilities. However, such datasets are scarce for languages other than English due to the cost and difficulties of collection and manual annotation. This means that producing novel models and measuring the performance of multilingual LLMs in low-resource languages is challenging. To mitigate this, we propose $\textbf{S}$yn$\textbf{DAR}$in, a method for generating and validating QA datasets for low-resource languages. We utilize parallel content mining to obtain $\textit{human-curated}$ paragraphs between English and the target language. We use the English data as context to $\textit{generate}$ synthetic multiple-choice (MC) question-answer pairs, which are automatically translated and further validated for quality. Combining these with their designated non-English $\textit{human-curated}$ paragraphs form the final QA dataset. The method allows to maintain the content quality, reduces the likelihood of factual errors, and circumvents the need for costly annotation. To test the method, we created a QA dataset with $1.2$K samples for the Armenian language. The human evaluation shows that $98\%$ of the generated English data maintains quality and diversity in the question types and topics, while the translation validation pipeline can filter out $\sim70\%$ of data with poor quality. We use the dataset to benchmark state-of-the-art LLMs, showing their inability to achieve human accuracy with some model performances closer to random chance. This shows that the generated dataset is non-trivial and can be used to evaluate reasoning capabilities in low-resource language.
♻ ☆ Instance-level quantitative saliency in multiple sclerosis lesion segmentation
In recent years, explainable methods for artificial intelligence (XAI) have tried to reveal and describe models' decision mechanisms in the case of classification tasks. However, XAI for semantic segmentation and in particular for single instances has been little studied to date. Understanding the process underlying automatic segmentation of single instances is crucial to reveal what information was used to detect and segment a given object of interest. In this study, we proposed two instance-level explanation maps for semantic segmentation based on SmoothGrad and Grad-CAM++ methods. Then, we investigated their relevance for the detection and segmentation of white matter lesions (WML), a magnetic resonance imaging (MRI) biomarker in multiple sclerosis (MS). 687 patients diagnosed with MS for a total of 4043 FLAIR and MPRAGE MRI scans were collected at the University Hospital of Basel, Switzerland. Data were randomly split into training, validation and test sets to train a 3D U-Net for MS lesion segmentation. We observed 3050 true positive (TP), 1818 false positive (FP), and 789 false negative (FN) cases. We generated instance-level explanation maps for semantic segmentation, by developing two XAI methods based on SmoothGrad and Grad-CAM++. We investigated: 1) the distribution of gradients in saliency maps with respect to both input MRI sequences; 2) the model's response in the case of synthetic lesions; 3) the amount of perilesional tissue needed by the model to segment a lesion. Saliency maps (based on SmoothGrad) in FLAIR showed positive values inside a lesion and negative in its neighborhood. Peak values of saliency maps generated for these four groups of volumes presented distributions that differ significantly from one another, suggesting a quantitative nature of the proposed saliency. Contextual information of 7mm around the lesion border was required for their segmentation.
♻ ☆ Overcoming the Paradox of Certified Training with Gaussian Smoothing
Training neural networks with high certified accuracy against adversarial examples remains an open problem despite significant efforts. While certification methods can effectively leverage tight convex relaxations for bound computation, in training, these methods perform worse than looser relaxations. Prior work hypothesized that this is caused by the discontinuity and perturbation sensitivity of the loss surface induced by these tighter relaxations. In this work, we show theoretically that Gaussian Loss Smoothing can alleviate both issues. We confirm this empirically by proposing a certified training method combining PGPE, an algorithm computing gradients of a smoothed loss, with different convex relaxations. When using this training method, we observe that tighter bounds indeed lead to strictly better networks. While scaling PGPE training remains challenging due to high computational cost, we show that by using a not theoretically sound, yet much cheaper smoothing approximation, we obtain better certified accuracies than state-of-the-art methods when training on the same network architecture. Our results clearly demonstrate the promise of Gaussian Loss Smoothing for training certifiably robust neural networks.
♻ ☆ Aligning Large Language Models by On-Policy Self-Judgment ACL 2024
Existing approaches for aligning large language models with human preferences face a trade-off that requires a separate reward model (RM) for on-policy learning. In this paper, we present a novel alignment framework, SELF-JUDGE that (1) does on-policy learning and 2) is parameter efficient, as it does not require an additional RM for evaluating the samples for on-policy learning. To this end, we propose Judge-augmented Supervised Fine-Tuning (JSFT) to train a single model to act as both a policy and a judge. Specifically, we view the pairwise judgment task, choosing the better response from a response pair, as a special case of the instruction-following task. The resulting model can judge preferences of on-the-fly responses from current policy initialized from itself. Experimental results show the efficacy of SELF-JUDGE, outperforming baselines in preference benchmarks. We also show that the rejecting sampling by itself can improve performance further without an additional evaluator.
comment: Published as a main conference paper at ACL 2024
♻ ☆ DEM: A Method for Certifying Deep Neural Network Classifier Outputs in Aerospace SC 2024
Software development in the aerospace domain requires adhering to strict, high-quality standards. While there exist regulatory guidelines for commercial software in this domain (e.g., ARP-4754 and DO-178), these do not apply to software with deep neural network (DNN) components. Consequently, it is unclear how to allow aerospace systems to benefit from the deep learning revolution. Our work here seeks to address this challenge with a novel, output-centric approach for DNN certification. Our method employs statistical verification techniques, and has the key advantage of being able to flag specific inputs for which the DNN's output may be unreliable - so that they may be later inspected by a human expert. To achieve this, our method conducts a statistical analysis of the DNN's predictions for other, nearby inputs, in order to detect inconsistencies. This is in contrast to existing techniques, which typically attempt to certify the entire DNN, as opposed to individual outputs. Our method uses the DNN as a black-box, and makes no assumptions about its topology. We hope that this work constitutes another step towards integrating DNNs in safety-critical applications - especially in the aerospace domain, where high standards of quality and reliability are crucial.
comment: This is a preprint version of a paper that will appear at 43rd Digital Avionics Systems Conference (DASC 2024)
♻ ☆ Scoreformer: A Surrogate Model For Large-Scale Prediction of Docking Scores ICML 2024
In this study, we present ScoreFormer, a novel graph transformer model designed to accurately predict molecular docking scores, thereby optimizing high-throughput virtual screening (HTVS) in drug discovery. The architecture integrates Principal Neighborhood Aggregation (PNA) and Learnable Random Walk Positional Encodings (LRWPE), enhancing the model's ability to understand complex molecular structures and their relationship with their respective docking scores. This approach significantly surpasses traditional HTVS methods and recent Graph Neural Network (GNN) models in both recovery and efficiency due to a wider coverage of the chemical space and enhanced performance. Our results demonstrate that ScoreFormer achieves competitive performance in docking score prediction and offers a substantial 1.65-fold reduction in inference time compared to existing models. We evaluated ScoreFormer across multiple datasets under various conditions, confirming its robustness and reliability in identifying potential drug candidates rapidly.
comment: Accepted at the 1st Machine Learning for Life and Material Sciences Workshop at ICML 2024
♻ ☆ Accelerating Look-ahead in Bayesian Optimization: Multilevel Monte Carlo is All you Need ICML 2024
We leverage multilevel Monte Carlo (MLMC) to improve the performance of multi-step look-ahead Bayesian optimization (BO) methods that involve nested expectations and maximizations. Often these expectations must be computed by Monte Carlo (MC). The complexity rate of naive MC degrades for nested operations, whereas MLMC is capable of achieving the canonical MC convergence rate for this type of problem, independently of dimension and without any smoothness assumptions. Our theoretical study focuses on the approximation improvements for twoand three-step look-ahead acquisition functions, but, as we discuss, the approach is generalizable in various ways, including beyond the context of BO. Our findings are verified numerically and the benefits of MLMC for BO are illustrated on several benchmark examples. Code is available at https://github.com/Shangda-Yang/MLMCBO .
comment: Preprint ICML 2024
♻ ☆ In value-based deep reinforcement learning, a pruned network is a good network
Recent work has shown that deep reinforcement learning agents have difficulty in effectively using their network parameters. We leverage prior insights into the advantages of sparse training techniques and demonstrate that gradual magnitude pruning enables value-based agents to maximize parameter effectiveness. This results in networks that yield dramatic performance improvements over traditional networks, using only a small fraction of the full network parameters.
♻ ☆ Accelerating Electronic Stopping Power Predictions by 10 Million Times with a Combination of Time-Dependent Density Functional Theory and Machine Learning
Knowing the rate at which particle radiation releases energy in a material, the stopping power, is key to designing nuclear reactors, medical treatments, semiconductor and quantum materials, and many other technologies. While the nuclear contribution to stopping power, i.e., elastic scattering between atoms, is well understood in the literature, the route for gathering data on the electronic contribution has for decades remained costly and reliant on many simplifying assumptions, including that materials are isotropic. We establish a method that combines time-dependent density functional theory (TDDFT) and machine learning to reduce the time to assess new materials to mere hours on a supercomputer and provides valuable data on how atomic details influence electronic stopping. Our approach uses TDDFT to compute the electronic stopping contributions to stopping power from first principles in several directions and then machine learning to interpolate to other directions at a cost of 10 million times fewer core-hours. We demonstrate the combined approach in a study of proton irradiation in aluminum and employ it to predict how the depth of maximum energy deposition, the "Bragg Peak," varies depending on incident angle -- a quantity otherwise inaccessible to modelers. The lack of any experimental information requirement makes our method applicable to most materials, and its speed makes it a prime candidate for enabling quantum-to-continuum models of radiation damage. The prospect of reusing valuable TDDFT data for training the model make our approach appealing for applications in the age of materials data science.
♻ ☆ Bayesian Exploration Networks
Bayesian reinforcement learning (RL) offers a principled and elegant approach for sequential decision making under uncertainty. Most notably, Bayesian agents do not face an exploration/exploitation dilemma, a major pathology of frequentist methods. However theoretical understanding of model-free approaches is lacking. In this paper, we introduce a novel Bayesian model-free formulation and the first analysis showing that model-free approaches can yield Bayes-optimal policies. We show all existing model-free approaches make approximations that yield policies that can be arbitrarily Bayes-suboptimal. As a first step towards model-free Bayes optimality, we introduce the Bayesian exploration network (BEN) which uses normalising flows to model both the aleatoric uncertainty (via density estimation) and epistemic uncertainty (via variational inference) in the Bellman operator. In the limit of complete optimisation, BEN learns true Bayes-optimal policies, but like in variational expectation-maximisation, partial optimisation renders our approach tractable. Empirical results demonstrate that BEN can learn true Bayes-optimal policies in tasks where existing model-free approaches fail.
comment: Typos fixed and provided clearer proof of Theorem 3.2
♻ ☆ Representation Surgery: Theory and Practice of Affine Steering ICML 2024
Language models often exhibit undesirable behavior, e.g., generating toxic or gender-biased text. In the case of neural language models, an encoding of the undesirable behavior is often present in the model's representations. Thus, one natural (and common) approach to prevent the model from exhibiting undesirable behavior is to steer the model's representations in a manner that reduces the probability of it generating undesirable text. This paper investigates the formal and empirical properties of steering functions, i.e., transformation of the neural language model's representations that alter its behavior. First, we derive two optimal, in the least-squares sense, affine steering functions under different constraints. Our theory provides justification for existing approaches and offers a novel, improved steering approach. Second, we offer a series of experiments that demonstrate the empirical effectiveness of the methods in mitigating bias and reducing toxic generation.
comment: Accepted in ICML 2024
♻ ☆ Jigsaw: Supporting Designers to Prototype Multimodal Applications by Chaining AI Foundation Models
Recent advancements in AI foundation models have made it possible for them to be utilized off-the-shelf for creative tasks, including ideating design concepts or generating visual prototypes. However, integrating these models into the creative process can be challenging as they often exist as standalone applications tailored to specific tasks. To address this challenge, we introduce Jigsaw, a prototype system that employs puzzle pieces as metaphors to represent foundation models. Jigsaw allows designers to combine different foundation model capabilities across various modalities by assembling compatible puzzle pieces. To inform the design of Jigsaw, we interviewed ten designers and distilled design goals. In a user study, we showed that Jigsaw enhanced designers' understanding of available foundation model capabilities, provided guidance on combining capabilities across different modalities and tasks, and served as a canvas to support design exploration, prototyping, and documentation.
comment: https://jigsaw.to
♻ ☆ Practical Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration
Membership Inference Attacks (MIA) aim to infer whether a target data record has been utilized for model training or not. Prior attempts have quantified the privacy risks of language models (LMs) via MIAs, but there is still no consensus on whether existing MIA algorithms can cause remarkable privacy leakage on practical Large Language Models (LLMs). Existing MIAs designed for LMs can be classified into two categories: reference-free and reference-based attacks. They are both based on the hypothesis that training records consistently strike a higher probability of being sampled. Nevertheless, this hypothesis heavily relies on the overfitting of target models, which will be mitigated by multiple regularization methods and the generalization of LLMs. The reference-based attack seems to achieve promising effectiveness in LLMs, which measures a more reliable membership signal by comparing the probability discrepancy between the target model and the reference model. However, the performance of reference-based attack is highly dependent on a reference dataset that closely resembles the training dataset, which is usually inaccessible in the practical scenario. Overall, existing MIAs are unable to effectively unveil privacy leakage over practical fine-tuned LLMs that are overfitting-free and private. We propose a Membership Inference Attack based on Self-calibrated Probabilistic Variation (SPV-MIA). Specifically, since memorization in LLMs is inevitable during the training process and occurs before overfitting, we introduce a more reliable membership signal, probabilistic variation, which is based on memorization rather than overfitting. Furthermore, we introduce a self-prompt approach, which constructs the dataset to fine-tune the reference model by prompting the target LLM itself. In this manner, the adversary can collect a dataset with a similar distribution from public APIs.
comment: Repo: https://github.com/wjfu99/MIA-LLMs
♻ ☆ A Probabilistic Fluctuation based Membership Inference Attack for Diffusion Models
Membership Inference Attack (MIA) identifies whether a record exists in a machine learning model's training set by querying the model. MIAs on the classic classification models have been well-studied, and recent works have started to explore how to transplant MIA onto generative models. Our investigation indicates that existing MIAs designed for generative models mainly depend on the overfitting in target models. However, overfitting can be avoided by employing various regularization techniques, whereas existing MIAs demonstrate poor performance in practice. Unlike overfitting, memorization is essential for deep learning models to attain optimal performance, making it a more prevalent phenomenon. Memorization in generative models leads to an increasing trend in the probability distribution of generating records around the member record. Therefore, we propose a Probabilistic Fluctuation Assessing Membership Inference Attack (PFAMI), a black-box MIA that infers memberships by detecting these trends via analyzing the overall probabilistic fluctuations around given records. We conduct extensive experiments across multiple generative models and datasets, which demonstrate PFAMI can improve the attack success rate (ASR) by about 27.9% when compared with the best baseline.
comment: Repo: https://github.com/wjfu99/MIA-Gen
♻ ☆ Efficient 3D Molecular Generation with Flow Matching and Scale Optimal Transport
Generative models for 3D drug design have gained prominence recently for their potential to design ligands directly within protein pockets. Current approaches, however, often suffer from very slow sampling times or generate molecules with poor chemical validity. Addressing these limitations, we propose Semla, a scalable E(3)-equivariant message passing architecture. We further introduce a molecular generation model, SemlaFlow, which is trained using flow matching along with scale optimal transport, a novel extension of equivariant optimal transport. Our model produces state-of-the-art results on benchmark datasets with just 100 sampling steps. Crucially, SemlaFlow samples high quality molecules with as few as 20 steps, corresponding to a two order-of-magnitude speed-up compared to state-of-the-art, without sacrificing performance. Furthermore, we highlight limitations of current evaluation methods for 3D generation and propose new benchmark metrics for unconditional molecular generators. Finally, using these new metrics, we compare our model's ability to generate high quality samples against current approaches and further demonstrate SemlaFlow's strong performance.
comment: Preprint. Code to be released upon full publication
♻ ☆ Towards Unbiased Calibration using Meta-Regularization
Model miscalibration has been frequently identified in modern deep neural networks. Recent work aims to improve model calibration directly through a differentiable calibration proxy. However, the calibration produced is often biased due to the binning mechanism. In this work, we propose to learn better-calibrated models via meta-regularization, which has two components: (1) gamma network (gamma-net), a meta learner that outputs sample-wise gamma values (continuous variable) for Focal loss for regularizing the backbone network; (2) smooth expected calibration error (SECE), a Gaussian-kernel based, unbiased, and differentiable surrogate to ECE that enables the smooth optimization of gamma-Net. We evaluate the effectiveness of the proposed approach in regularizing neural networks towards improved and unbiased calibration on three computer vision datasets. We empirically demonstrate that: (a) learning sample-wise gamma as continuous variables can effectively improve calibration; (b) SECE smoothly optimizes gamma-net towards unbiased and robust calibration with respect to the binning schemes; and (c) the combination of gamma-net and SECE achieves the best calibration performance across various calibration metrics while retaining very competitive predictive performance as compared to multiple recently proposed methods.
comment: 20 pages. Accepted at TMLR: https://openreview.net/forum?id=Yf8iHCfG4W
♻ ☆ Embodied Question Answering via Multi-LLM Systems
Embodied Question Answering (EQA) is an important problem, which involves an agent exploring the environment to answer user queries. In the existing literature, EQA has exclusively been studied in single-agent scenarios, where exploration can be time-consuming and costly. In this work, we consider EQA in a multi-agent framework involving multiple large language models (LLM) based agents independently answering queries about a household environment. To generate one answer for each query, we use the individual responses to train a Central Answer Model (CAM) that aggregates responses for a robust answer. Using CAM, we observe a $50\%$ higher EQA accuracy when compared against aggregation methods for ensemble LLM, such as voting schemes and debates. CAM does not require any form of agent communication, alleviating it from the associated costs. We ablate CAM with various nonlinear (neural network, random forest, decision tree, XGBoost) and linear (logistic regression classifier, SVM) algorithms. Finally, we present a feature importance analysis for CAM via permutation feature importance (PFI), quantifying CAMs reliance on each independent agent and query context.
comment: 17 pages, 13 Figures, 4 Tables
♻ ☆ High-Performance Hybrid Algorithm for Minimum Sum-of-Squares Clustering of Infinitely Tall Data
This paper introduces a novel formulation of the clustering problem, namely the Minimum Sum-of-Squares Clustering of Infinitely Tall Data (MSSC-ITD), and presents HPClust, an innovative set of hybrid parallel approaches for its effective solution. By utilizing modern high-performance computing techniques, HPClust enhances key clustering metrics: effectiveness, computational efficiency, and scalability. In contrast to vanilla data parallelism, which only accelerates processing time through the MapReduce framework, our approach unlocks superior performance by leveraging the multi-strategy competitive-cooperative parallelism and intricate properties of the objective function landscape. Unlike other available algorithms that struggle to scale, our algorithm is inherently parallel in nature, improving solution quality through increased scalability and parallelism, and outperforming even advanced algorithms designed for small and medium-sized datasets. Our evaluation of HPClust, featuring four parallel strategies, demonstrates its superiority over traditional and cutting-edge methods by offering better performance in the key metrics. These results also show that parallel processing not only enhances the clustering efficiency, but the accuracy as well. Additionally, we explore the balance between computational efficiency and clustering quality, providing insights into optimal parallel strategies based on dataset specifics and resource availability. This research advances our understanding of parallelism in clustering algorithms, demonstrating that a judicious hybridization of advanced parallel approaches yields optimal results for MSSC-ITD. Experiments on synthetic data further confirm HPClust's exceptional scalability and robustness to noise.
comment: Published in the MDPI "Mathematics" journal
♻ ☆ DE-COP: Detecting Copyrighted Content in Language Models Training Data
How can we detect if copyrighted content was used in the training process of a language model, considering that the training data is typically undisclosed? We are motivated by the premise that a language model is likely to identify verbatim excerpts from its training text. We propose DE-COP, a method to determine whether a piece of copyrighted content was included in training. DE-COP's core approach is to probe an LLM with multiple-choice questions, whose options include both verbatim text and their paraphrases. We construct BookTection, a benchmark with excerpts from 165 books published prior and subsequent to a model's training cutoff, along with their paraphrases. Our experiments show that DE-COP surpasses the prior best method by 9.6% in detection performance (AUC) on models with logits available. Moreover, DE-COP also achieves an average accuracy of 72% for detecting suspect books on fully black-box models where prior methods give approximately 4% accuracy. The code and datasets are available at https://github.com/LeiLiLab/DE-COP.
♻ ☆ Evaluating ML-Based Anomaly Detection Across Datasets of Varied Integrity: A Case Study
Cybersecurity remains a critical challenge in the digital age, with network traffic flow anomaly detection being a key pivotal instrument in the fight against cyber threats. In this study, we address the prevalent issue of data integrity in network traffic datasets, which are instrumental in developing machine learning (ML) models for anomaly detection. We introduce two refined versions of the CICIDS-2017 dataset, NFS-2023-nTE and NFS-2023-TE, processed using NFStream to ensure methodologically sound flow expiration and labeling. Our research contrasts the performance of the Random Forest (RF) algorithm across the original CICIDS-2017, its refined counterparts WTMC-2021 and CRiSIS-2022, and our NFStream-generated datasets, in both binary and multi-class classification contexts. We observe that the RF model exhibits exceptional robustness, achieving consistent high-performance metrics irrespective of the underlying dataset quality, which prompts a critical discussion on the actual impact of data integrity on ML efficacy. Our study underscores the importance of continual refinement and methodological rigor in dataset generation for network security research. As the landscape of network threats evolves, so must the tools and techniques used to detect and analyze them.
♻ ☆ Essentially Sharp Estimates on the Entropy Regularization Error in Discrete Discounted Markov Decision Processes
We study the error introduced by entropy regularization of infinite-horizon discrete discounted Markov decision processes. We show that this error decreases exponentially in the inverse regularization strength both in a weighted KL-divergence and in value with a problem-specific exponent. We provide a lower bound matching our upper bound up to a polynomial factor. Our proof relies on the correspondence of the solutions of entropy-regularized Markov decision processes with gradient flows of the unregularized reward with respect to a Riemannian metric common in natural policy gradient methods. Further, this correspondence allows us to identify the limit of the gradient flow as the generalized maximum entropy optimal policy, thereby characterizing the implicit bias of the Kakade gradient flow which corresponds to a time-continuous version of the natural policy gradient method. We use this to show that for entropy-regularized natural policy gradient methods the overall error decays exponentially in the square root of the number of iterations improving existing sublinear guarantees.
comment: 26 pages, 1 figure
♻ ☆ Low-Cost Privacy-Aware Decentralized Learning
This paper introduces ZIP-DL, a novel privacy-aware decentralized learning (DL) algorithm that exploits correlated noise to provide strong privacy protection against a local adversary while yielding efficient convergence guarantees for a low communication cost. The progressive neutralization of the added noise during the distributed aggregation process results in ZIP-DL fostering a high model accuracy under privacy guarantees. ZIP-DL further uses a single communication round between each gradient descent, thus minimizing communication overhead. We provide theoretical guarantees for both convergence speed and privacy guarantees, thereby making ZIP-DL applicable to practical scenarios. Our extensive experimental study shows that ZIP-DL significantly outperforms the state-of-the-art in terms of vulnerability/accuracy trade-off. In particular, ZIP-DL (i) reduces the efficacy of linkability attacks by up to 52 percentage points compared to baseline DL, (ii) improves accuracy by up to 37 percent w.r.t. the state-of-the-art privacy-preserving mechanism operating under the same threat model as ours, when configured to provide the same protection against membership inference attacks, and (iii) reduces communication by up to 10.5x against the same competitor for the same level of protection.
♻ ☆ A Numerical Proof of Shell Model Turbulence Closure
The development of turbulence closure models, parametrizing the influence of small non-resolved scales on the dynamics of large resolved ones, is an outstanding theoretical challenge with vast applicative relevance. We present a closure, based on deep recurrent neural networks, that quantitatively reproduces, within statistical errors, Eulerian and Lagrangian structure functions and the intermittent statistics of the energy cascade, including those of subgrid fluxes. To achieve high-order statistical accuracy, and thus a stringent statistical test, we employ shell models of turbulence. Our results encourage the development of similar approaches for 3D Navier-Stokes turbulence.
♻ ☆ Classification with neural networks with quadratic decision functions
Neural networks with quadratic decision functions have been introduced as alternatives to standard neural networks with affine linear ones. They are advantageous when the objects or classes to be identified are compact and of basic geometries like circles, ellipses etc. In this paper we investigate the use of such ansatz functions for classification. In particular we test and compare the algorithm on the MNIST dataset for classification of handwritten digits and for classification of subspecies. We also show, that the implementation can be based on the neural network structure in the software Tensorflow and Keras, respectively.
♻ ☆ Telecom Language Models: Must They Be Large?
The increasing interest in Large Language Models (LLMs) within the telecommunications sector underscores their potential to revolutionize operational efficiency. However, the deployment of these sophisticated models is often hampered by their substantial size and computational demands, raising concerns about their viability in resource-constrained environments. Addressing this challenge, recent advancements have seen the emergence of small language models that surprisingly exhibit performance comparable to their larger counterparts in many tasks, such as coding and common-sense reasoning. Phi-2, a compact yet powerful model, exemplifies this new wave of efficient small language models. This paper conducts a comprehensive evaluation of Phi-2's intrinsic understanding of the telecommunications domain. Recognizing the scale-related limitations, we enhance Phi-2's capabilities through a Retrieval-Augmented Generation approach, meticulously integrating an extensive knowledge base specifically curated with telecom standard specifications. The enhanced Phi-2 model demonstrates a profound improvement in accuracy, answering questions about telecom standards with a precision that closely rivals the more resource-intensive GPT-3.5. The paper further explores the refined capabilities of Phi-2 in addressing problem-solving scenarios within the telecom sector, highlighting its potential and limitations.
♻ ☆ Explainable Online Unsupervised Anomaly Detection for Cyber-Physical Systems via Causal Discovery from Time Series
Online unsupervised detection of anomalies is crucial to guarantee the correct operation of cyber-physical systems and the safety of humans interacting with them. State-of-the-art approaches based on deep learning via neural networks achieve outstanding performance at anomaly recognition, evaluating the discrepancy between a normal model of the system (with no anomalies) and the real-time stream of sensor time series. However, large training data and time are typically required, and explainability is still a challenge to identify the root of the anomaly and implement predictive maintainance. In this paper, we use causal discovery to learn a normal causal graph of the system, and we evaluate the persistency of causal links during real-time acquisition of sensor data to promptly detect anomalies. On two benchmark anomaly detection datasets, we show that our method has higher training efficiency, outperforms the accuracy of state-of-the-art neural architectures and correctly identifies the sources of >10 different anomalies. The code is at https://github.com/Isla-lab/causal_anomaly_detection.
comment: In publication for IEEE Conference on Automation and Smart Engineering (CASE) 2024
♻ ☆ FedPop: Federated Population-based Hyperparameter Tuning
Federated Learning (FL) is a distributed machine learning (ML) paradigm, in which multiple clients collaboratively train ML models without centralizing their local data. Similar to conventional ML pipelines, the client local optimization and server aggregation procedure in FL are sensitive to the hyperparameter (HP) selection. Despite extensive research on tuning HPs for centralized ML, these methods yield suboptimal results when employed in FL. This is mainly because their "training-after-tuning" framework is unsuitable for FL with limited client computation power. While some approaches have been proposed for HP-Tuning in FL, they are limited to the HPs for client local updates. In this work, we propose a novel HP-tuning algorithm, called Federated Population-based Hyperparameter Tuning (FedPop), to address this vital yet challenging problem. FedPop employs population-based evolutionary algorithms to optimize the HPs, which accommodates various HP types at both client and server sides. Compared with prior tuning methods, FedPop employs an online "tuning-while-training" framework, offering computational efficiency and enabling the exploration of a broader HP search space. Our empirical validation on the common FL benchmarks and complex real-world FL datasets demonstrates the effectiveness of the proposed method, which substantially outperforms the concurrent state-of-the-art HP tuning methods for FL.
comment: Code: https://github.com/HaokunChen245/FedPop
♻ ☆ SoK: Facial Deepfake Detectors
Deepfakes have rapidly emerged as a profound and serious threat to society, primarily due to their ease of creation and dissemination. This situation has triggered an accelerated development of deepfake detection technologies. However, many existing detectors rely heavily on lab-generated datasets for validation, which may not effectively prepare them for novel, emerging, and real-world deepfake techniques. In this paper, we conduct an extensive and comprehensive review and analysis of the latest state-of-the-art deepfake detectors, evaluating them against several critical criteria. These criteria facilitate the categorization of these detectors into 4 high-level groups and 13 fine-grained sub-groups, all aligned with a unified standard conceptual framework. This classification and framework offer deep and practical insights into the factors that affect detector efficacy. We assess the generalizability of 16 leading detectors across various standard attack scenarios, including black-box, white-box, and gray-box settings. Our systematized analysis and experimentation lay the groundwork for a deeper understanding of deepfake detectors and their generalizability, paving the way for future research focused on creating detectors adept at countering various attack scenarios. Additionally, this work offers insights for developing more proactive defenses against deepfakes.
comment: 18 pages, 6 figures, 5 table, under peer-review
♻ ☆ On the numerical reliability of nonsmooth autodiff: a MaxPool case study
This paper considers the reliability of automatic differentiation (AD) for neural networks involving the nonsmooth MaxPool operation. We investigate the behavior of AD across different precision levels (16, 32, 64 bits) and convolutional architectures (LeNet, VGG, and ResNet) on various datasets (MNIST, CIFAR10, SVHN, and ImageNet). Although AD can be incorrect, recent research has shown that it coincides with the derivative almost everywhere, even in the presence of nonsmooth operations (such as MaxPool and ReLU). On the other hand, in practice, AD operates with floating-point numbers (not real numbers), and there is, therefore, a need to explore subsets on which AD can be numerically incorrect. These subsets include a bifurcation zone (where AD is incorrect over reals) and a compensation zone (where AD is incorrect over floating-point numbers but correct over reals). Using SGD for the training process, we study the impact of different choices of the nonsmooth Jacobian for the MaxPool function on the precision of 16 and 32 bits. These findings suggest that nonsmooth MaxPool Jacobians with lower norms help maintain stable and efficient test accuracy, whereas those with higher norms can result in instability and decreased performance. We also observe that the influence of MaxPool's nonsmooth Jacobians on learning can be reduced by using batch normalization, Adam-like optimizers, or increasing the precision level.
♻ ☆ Computational-Statistical Gaps for Improper Learning in Sparse Linear Regression
We study computational-statistical gaps for improper learning in sparse linear regression. More specifically, given $n$ samples from a $k$-sparse linear model in dimension $d$, we ask what is the minimum sample complexity to efficiently (in time polynomial in $d$, $k$, and $n$) find a potentially dense estimate for the regression vector that achieves non-trivial prediction error on the $n$ samples. Information-theoretically this can be achieved using $\Theta(k \log (d/k))$ samples. Yet, despite its prominence in the literature, there is no polynomial-time algorithm known to achieve the same guarantees using less than $\Theta(d)$ samples without additional restrictions on the model. Similarly, existing hardness results are either restricted to the proper setting, in which the estimate must be sparse as well, or only apply to specific algorithms. We give evidence that efficient algorithms for this task require at least (roughly) $\Omega(k^2)$ samples. In particular, we show that an improper learning algorithm for sparse linear regression can be used to solve sparse PCA problems (with a negative spike) in their Wishart form, in regimes in which efficient algorithms are widely believed to require at least $\Omega(k^2)$ samples. We complement our reduction with low-degree and statistical query lower bounds for the sparse PCA problems from which we reduce. Our hardness results apply to the (correlated) random design setting in which the covariates are drawn i.i.d. from a mean-zero Gaussian distribution with unknown covariance.
comment: 24 pages; updated typos, some explanations, and references
♻ ☆ Direct Multi-Turn Preference Optimization for Language Agents
Adapting Large Language Models (LLMs) for agent tasks is critical in developing language agents. Direct Preference Optimization (DPO) is a promising technique for this adaptation with the alleviation of compounding errors, offering a means to directly optimize Reinforcement Learning (RL) objectives. However, applying DPO to multi-turn tasks presents challenges due to the inability to cancel the partition function. Overcoming this obstacle involves making the partition function independent of the current state and addressing length disparities between preferred and dis-preferred trajectories. In this light, we replace the policy constraint with the state-action occupancy measure constraint in the RL objective and add length normalization to the Bradley-Terry model, yielding a novel loss function named DMPO for multi-turn agent tasks with theoretical explanations. Extensive experiments on three multi-turn agent task datasets confirm the effectiveness and superiority of the DMPO loss.
♻ ☆ Efficiently Predicting Mutational Effect on Homologous Proteins by Evolution Encoding
Predicting protein properties is paramount for biological and medical advancements. Current protein engineering mutates on a typical protein, called the wild-type, to construct a family of homologous proteins and study their properties. Yet, existing methods easily neglect subtle mutations, failing to capture the effect on the protein properties. To this end, we propose EvolMPNN, Evolution-aware Message Passing Neural Network, an efficient model to learn evolution-aware protein embeddings. EvolMPNN samples sets of anchor proteins, computes evolutionary information by means of residues and employs a differentiable evolution-aware aggregation scheme over these sampled anchors. This way, EvolMPNN can efficiently utilise a novel message-passing method to capture the mutation effect on proteins with respect to the anchor proteins. Afterwards, the aggregated evolution-aware embeddings are integrated with sequence embeddings to generate final comprehensive protein embeddings. Our model shows up to 6.4% better than state-of-the-art methods and attains 36X inference speedup in comparison with large pre-trained models. Code and models are available at https://github.com/zhiqiangzhongddu/EvolMPNN.
♻ ☆ Harnessing Large Language Models as Post-hoc Correctors
As Machine Learning (ML) models grow in size and demand higher-quality training data, the expenses associated with re-training and fine-tuning these models are escalating rapidly. Inspired by recent impressive achievements of Large Language Models (LLMs) in different fields, this paper delves into the question: can LLMs efficiently improve an ML's performance at a minimal cost? We show that, through our proposed training-free framework LlmCorr, an LLM can work as a post-hoc corrector to propose corrections for the predictions of an arbitrary ML model. In particular, we form a contextual knowledge database by incorporating the dataset's label information and the ML model's predictions on the validation dataset. Leveraging the in-context learning capability of LLMs, we ask the LLM to summarise the instances in which the ML model makes mistakes and the correlation between primary predictions and true labels. Following this, the LLM can transfer its acquired knowledge to suggest corrections for the ML model's predictions. Our experimental results on text analysis and the challenging molecular predictions show that \model improves the performance of a number of models by up to 39%.
♻ ☆ TabVFL: Improving Latent Representation in Vertical Federated Learning
Autoencoders are popular neural networks that are able to compress high dimensional data to extract relevant latent information. TabNet is a state-of-the-art neural network model designed for tabular data that utilizes an autoencoder architecture for training. Vertical Federated Learning (VFL) is an emerging distributed machine learning paradigm that allows multiple parties to train a model collaboratively on vertically partitioned data while maintaining data privacy. The existing design of training autoencoders in VFL is to train a separate autoencoder in each participant and aggregate the latent representation later. This design could potentially break important correlations between feature data of participating parties, as each autoencoder is trained on locally available features while disregarding the features of others. In addition, traditional autoencoders are not specifically designed for tabular data, which is ubiquitous in VFL settings. Moreover, the impact of client failures during training on the model robustness is under-researched in the VFL scene. In this paper, we propose TabVFL, a distributed framework designed to improve latent representation learning using the joint features of participants. The framework (i) preserves privacy by mitigating potential data leakage with the addition of a fully-connected layer, (ii) conserves feature correlations by learning one latent representation vector, and (iii) provides enhanced robustness against client failures during training phase. Extensive experiments on five classification datasets show that TabVFL can outperform the prior work design, with 26.12% of improvement on f1-score.
comment: This document is a preprint of a paper accepted at IEEE SRDS 2024
♻ ☆ CoSMo: a Framework to Instantiate Conditioned Process Simulation Models
Process simulation is gaining attention for its ability to assess potential performance improvements and risks associated with business process changes. The existing literature presents various techniques, generally grounded in process models discovered from event log data or built upon deep learning algorithms. These techniques have specific strengths and limitations. Traditional data-driven approaches offer increased interpretability, while deep learning-based excel at generalizing changes across large event logs. However, the practical application of deep learning faces challenges related to managing stochasticity and integrating information for what-if analysis. This paper introduces a novel recurrent neural architecture tailored to discover COnditioned process Simulation MOdels (CoSMo) based on user-based constraints or any other nature of a-priori knowledge. This architecture facilitates the simulation of event logs that adhere to specific constraints by incorporating declarative-based rules into the learning phase as an attempt to fill the gap of incorporating information into deep learning models to perform what-if analysis. Experimental validation illustrates CoSMo's efficacy in simulating event logs while adhering to predefined declarative conditions, emphasizing both control-flow and data-flow perspectives.
♻ ☆ Straight-Through meets Sparse Recovery: the Support Exploration Algorithm
The {\it straight-through estimator} (STE) is commonly used to optimize quantized neural networks, yet its contexts of effective performance are still unclear despite empirical successes.To make a step forward in this comprehension, we apply STE to a well-understood problem: {\it sparse support recovery}. We introduce the {\it Support Exploration Algorithm} (SEA), a novel algorithm promoting sparsity, and we analyze its performance in support recovery (a.k.a. model selection) problems. SEA explores more supports than the state-of-the-art, leading to superior performance in experiments, especially when the columns of $A$ are strongly coherent.The theoretical analysis considers recovery guarantees when the linear measurements matrix $A$ satisfies the {\it Restricted Isometry Property} (RIP).The sufficient conditions of recovery are comparable but more stringent than those of the state-of-the-art in sparse support recovery. Their significance lies mainly in their applicability to an instance of the STE.
♻ ☆ Adaptive Collaborative Correlation Learning-based Semi-Supervised Multi-Label Feature Selection
Semi-supervised multi-label feature selection has recently been developed to solve the curse of dimensionality problem in high-dimensional multi-label data with certain samples missing labels. Although many efforts have been made, most existing methods use a predefined graph approach to capture the sample similarity or the label correlation. In this manner, the presence of noise and outliers within the original feature space can undermine the reliability of the resulting sample similarity graph. It also fails to precisely depict the label correlation due to the existence of unknown labels. Besides, these methods only consider the discriminative power of selected features, while neglecting their redundancy. In this paper, we propose an Adaptive Collaborative Correlation lEarning-based Semi-Supervised Multi-label Feature Selection (Access-MFS) method to address these issues. Specifically, a generalized regression model equipped with an extended uncorrelated constraint is introduced to select discriminative yet irrelevant features and maintain consistency between predicted and ground-truth labels in labeled data, simultaneously. Then, the instance correlation and label correlation are integrated into the proposed regression model to adaptively learn both the sample similarity graph and the label similarity graph, which mutually enhance feature selection performance. Extensive experimental results demonstrate the superiority of the proposed Access-MFS over other state-of-the-art methods.
♻ ☆ Expert Q-learning: Deep Reinforcement Learning with Coarse State Values from Offline Expert Examples
In this article, we propose a novel algorithm for deep reinforcement learning named Expert Q-learning. Expert Q-learning is inspired by Dueling Q-learning and aims at incorporating semi-supervised learning into reinforcement learning through splitting Q-values into state values and action advantages. We require that an offline expert assesses the value of a state in a coarse manner using three discrete values. An expert network is designed in addition to the Q-network, which updates each time following the regular offline minibatch update whenever the expert example buffer is not empty. Using the board game Othello, we compare our algorithm with the baseline Q-learning algorithm, which is a combination of Double Q-learning and Dueling Q-learning. Our results show that Expert Q-learning is indeed useful and more resistant to the overestimation bias. The baseline Q-learning algorithm exhibits unstable and suboptimal behavior in non-deterministic settings, whereas Expert Q-learning demonstrates more robust performance with higher scores, illustrating that our algorithm is indeed suitable to integrate state values from expert examples into Q-learning.
comment: Camera-ready version
♻ ☆ A Resilient and Accessible Distribution-Preserving Watermark for Large Language Models ICML 2024
Watermarking techniques offer a promising way to identify machine-generated content via embedding covert information into the contents generated from language models. A challenge in the domain lies in preserving the distribution of original generated content after watermarking. Our research extends and improves upon existing watermarking framework, placing emphasis on the importance of a \textbf{Di}stribution-\textbf{P}reserving (DiP) watermark. Contrary to the current strategies, our proposed DiPmark simultaneously preserves the original token distribution during watermarking (distribution-preserving), is detectable without access to the language model API and prompts (accessible), and is provably robust to moderate changes of tokens (resilient). DiPmark operates by selecting a random set of tokens prior to the generation of a word, then modifying the token distribution through a distribution-preserving reweight function to enhance the probability of these selected tokens during the sampling process. Extensive empirical evaluation on various language models and tasks demonstrates our approach's distribution-preserving property, accessibility, and resilience, making it a effective solution for watermarking tasks that demand impeccable quality preservation.
comment: ICML 2024
♻ ☆ Approximation Theory of Tree Tensor Networks: Tensorized Multivariate Functions
We study the approximation of multivariate functions with tensor networks (TNs). The main conclusion of this work is an answer to the following two questions: ``What are the approximation capabilities of TNs?" and "What is an appropriate model class of functions that can be approximated with TNs?" To answer the former, we show that TNs can (near to) optimally replicate $h$-uniform and $h$-adaptive approximation, for any smoothness order of the target function. Tensor networks thus exhibit universal expressivity w.r.t. isotropic, anisotropic and mixed smoothness spaces that is comparable with more general neural networks families such as deep rectified linear unit (ReLU) networks. Put differently, TNs have the capacity to (near to) optimally approximate many function classes -- without being adapted to the particular class in question. To answer the latter, as a candidate model class we consider approximation classes of TNs and show that these are (quasi-)Banach spaces, that many types of classical smoothness spaces are continuously embedded into said approximation classes and that TN approximation classes are themselves not embedded in any classical smoothness space.
comment: This work is a continuation of M. Ali and A. Nouy. Approximation theory of tree tensor networks: Tensorized univariate functions. Constructive Approximation, 58(2):463-544, 2023. It is also available in two parts on arXiv: for part I see arXiv:2007.00118, for part II see arXiv:2007.00128
♻ ☆ Latent Optimal Paths by Gumbel Propagation for Variational Bayesian Dynamic Programming ICML 2024
We propose the stochastic optimal path which solves the classical optimal path problem by a probability-softening solution. This unified approach transforms a wide range of DP problems into directed acyclic graphs in which all paths follow a Gibbs distribution. We show the equivalence of the Gibbs distribution to a message-passing algorithm by the properties of the Gumbel distribution and give all the ingredients required for variational Bayesian inference of a latent path, namely Bayesian dynamic programming (BDP). We demonstrate the usage of BDP in the latent space of variational autoencoders (VAEs) and propose the BDP-VAE which captures structured sparse optimal paths as latent variables. This enables end-to-end training for generative tasks in which models rely on unobserved structural information. At last, we validate the behavior of our approach and showcase its applicability in two real-world applications: text-to-speech and singing voice synthesis. Our implementation code is available at \url{https://github.com/XinleiNIU/LatentOptimalPathsBayesianDP}.
comment: Accepted by ICML 2024
♻ ☆ NExT-GPT: Any-to-Any Multimodal LLM ICML 2024
While recently Multimodal Large Language Models (MM-LLMs) have made exciting strides, they mostly fall prey to the limitation of only input-side multimodal understanding, without the ability to produce content in multiple modalities. As we humans always perceive the world and communicate with people through various modalities, developing any-to-any MM-LLMs capable of accepting and delivering content in any modality becomes essential to human-level AI. To fill the gap, we present an end-to-end general-purpose any-to-any MM-LLM system, NExT-GPT. We connect an LLM with multimodal adaptors and different diffusion decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary combinations of text, images, videos, and audio. By leveraging the existing well-trained highly-performing encoders and decoders, NExT-GPT is tuned with only a small amount of parameter (1%) of certain projection layers, which not only benefits low-cost training and also facilitates convenient expansion to more potential modalities. Moreover, we introduce a modality-switching instruction tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on which NExT-GPT is empowered with complex cross-modal semantic understanding and content generation. Overall, our research showcases the promising possibility of building an AI agent capable of modeling universal modalities, paving the way for more human-like AI research in the community. Project page: https://next-gpt.github.io/
comment: ICML 2024 (Oral)
♻ ☆ Pretrained deep models outperform GBDTs in Learning-To-Rank under label scarcity ICML
On tabular data, a significant body of literature has shown that current deep learning (DL) models perform at best similarly to Gradient Boosted Decision Trees (GBDTs), while significantly underperforming them on outlier data. However, these works often study idealized problem settings which may fail to capture complexities of real-world scenarios. We identify a natural tabular data setting where DL models can outperform GBDTs: tabular Learning-to-Rank (LTR) under label scarcity. Tabular LTR applications, including search and recommendation, often have an abundance of unlabeled data, and scarce labeled data. We show that DL rankers can utilize unsupervised pretraining to exploit this unlabeled data. In extensive experiments over both public and proprietary datasets, we show that pretrained DL rankers consistently outperform GBDT rankers on ranking metrics -- sometimes by as much as 38% -- both overall and on outliers.
comment: ICML-MFPL 2023 Workshop Oral, SPIGM@ICML2024
♻ ☆ Local primordial non-Gaussianity from the large-scale clustering of photometric DESI luminous red galaxies
We use angular clustering of luminous red galaxies from the Dark Energy Spectroscopic Instrument (DESI) imaging surveys to constrain the local primordial non-Gaussianity parameter $\fnl$. Our sample comprises over 12 million targets, covering 14,000 square degrees of the sky, with redshifts in the range $0.2< z < 1.35$. We identify Galactic extinction, survey depth, and astronomical seeing as the primary sources of systematic error, and employ linear regression and artificial neural networks to alleviate non-cosmological excess clustering on large scales. Our methods are tested against simulations with and without $\fnl$ and systematics, showing superior performance of the neural network treatment. The neural network with a set of nine imaging property maps passes our systematic null test criteria, and is chosen as the fiducial treatment. Assuming the universality relation, we find $\fnl = 34^{+24(+50)}_{-44(-73)}$ at 68\%(95\%) confidence. We apply a series of robustness tests (e.g., cuts on imaging, declination, or scales used) that show consistency in the obtained constraints. We study how the regression method biases the measured angular power-spectrum and degrades the $\fnl$ constraining power. The use of the nine maps more than doubles the uncertainty compared to using only the three primary maps in the regression. Our results thus motivate the development of more efficient methods that avoid over-correction, protect large-scale clustering information, and preserve constraining power. Additionally, our results encourage further studies of $\fnl$ with DESI spectroscopic samples, where the inclusion of 3D clustering modes should help separate imaging systematics and lessen the degradation in the $\fnl$ uncertainty.
comment: 21 pages, 17 figures, 7 tables (Appendix excluded). Published in MNRAS
♻ ☆ Distillation Enhanced Time Series Forecasting Network with Momentum Contrastive Learning
Contrastive representation learning is crucial in time series analysis as it alleviates the issue of data noise and incompleteness as well as sparsity of supervision signal. However, existing constrastive learning frameworks usually focus on intral-temporal features, which fails to fully exploit the intricate nature of time series data. To address this issue, we propose DE-TSMCL, an innovative distillation enhanced framework for long sequence time series forecasting. Specifically, we design a learnable data augmentation mechanism which adaptively learns whether to mask a timestamp to obtain optimized sub-sequences. Then, we propose a contrastive learning task with momentum update to explore inter-sample and intra-temporal correlations of time series to learn the underlying structure feature on the unlabeled time series. Meanwhile, we design a supervised task to learn more robust representations and facilitate the contrastive learning process. Finally, we jointly optimize the above two tasks. By developing model loss from multiple tasks, we can learn effective representations for downstream forecasting task. Extensive experiments, in comparison with state-of-the-arts, well demonstrate the effectiveness of DE-TSMCL, where the maximum improvement can reach to 27.3%.
♻ ☆ CEST-KAN: Kolmogorov-Arnold Networks for CEST MRI Data Analysis
Purpose: This study aims to propose and investigate the feasibility of using Kolmogorov-Arnold Network (KAN) for CEST MRI data analysis (CEST-KAN). Methods: CEST MRI data were acquired from twelve healthy volunteers at 3T. Data from ten subjects were used for training, while the remaining two were reserved for testing. The performance of multi-layer perceptron (MLP) and KAN models with the same network settings were evaluated and compared to the conventional multi-pool Lorentzian fitting (MPLF) method in generating water and multiple CEST contrasts, including amide, relayed nuclear Overhauser effect (rNOE), and magnetization transfer (MT). Results: The water and CEST maps generated by both MLP and KAN were visually comparable to the MPLF results. However, the KAN model demonstrated higher accuracy in extrapolating the CEST fitting metrics, as evidenced by the smaller validation loss during training and smaller absolute error during testing. Voxel-wise correlation analysis showed that all four CEST fitting metrics generated by KAN consistently exhibited higher Pearson coefficients than the MLP results, indicating superior performance. Moreover, the KAN models consistently outperformed the MLP models in varying hidden layer numbers despite longer training time. Conclusion: In this study, we demonstrated for the first time the feasibility of utilizing KAN for CEST MRI data analysis, highlighting its superiority over MLP in this task. The findings suggest that CEST-KAN has the potential to be a robust and reliable post-analysis tool for CEST MRI in clinical settings.
♻ ☆ Graph-Augmented LLMs for Personalized Health Insights: A Case Study in Sleep Analysis
Health monitoring systems have revolutionized modern healthcare by enabling the continuous capture of physiological and behavioral data, essential for preventive measures and early health intervention. While integrating this data with Large Language Models (LLMs) has shown promise in delivering interactive health advice, traditional methods like Retrieval-Augmented Generation (RAG) and fine-tuning often fail to fully utilize the complex, multi-dimensional, and temporally relevant data from wearable devices. These conventional approaches typically provide limited actionable and personalized health insights due to their inadequate capacity to dynamically integrate and interpret diverse health data streams. In response, this paper introduces a graph-augmented LLM framework designed to significantly enhance the personalization and clarity of health insights. Utilizing a hierarchical graph structure, the framework captures inter and intra-patient relationships, enriching LLM prompts with dynamic feature importance scores derived from a Random Forest Model. The effectiveness of this approach is demonstrated through a sleep analysis case study involving 20 college students during the COVID-19 lockdown, highlighting the potential of our model to generate actionable and personalized health insights efficiently. We leverage another LLM to evaluate the insights for relevance, comprehensiveness, actionability, and personalization, addressing the critical need for models that process and interpret complex health data effectively. Our findings show that augmenting prompts with our framework yields significant improvements in all 4 criteria. Through our framework, we can elicit well-crafted, more thoughtful responses tailored to a specific patient.
♻ ☆ GLoRe: When, Where, and How to Improve LLM Reasoning via Global and Local Refinements
State-of-the-art language models can exhibit impressive reasoning refinement capabilities on math, science or coding tasks. However, recent work demonstrates that even the best models struggle to identify \textit{when and where to refine} without access to external feedback. Outcome-based Reward Models (\textbf{ORMs}), trained to predict correctness of the final answer indicating when to refine, offer one convenient solution for deciding when to refine. Process Based Reward Models (\textbf{PRMs}), trained to predict correctness of intermediate steps, can then be used to indicate where to refine. But they are expensive to train, requiring extensive human annotations. In this paper, we propose Stepwise ORMs (\textbf{SORMs}) which are trained, only on synthetic data, to approximate the expected future reward of the optimal policy or $V^{\star}$. More specifically, SORMs are trained to predict the correctness of the final answer when sampling the current policy many times (rather than only once as in the case of ORMs). Our experiments show that SORMs can more accurately detect incorrect reasoning steps compared to ORMs, thus improving downstream accuracy when doing refinements. We then train \textit{global} refinement models, which take only the question and a draft solution as input and predict a corrected solution, and \textit{local} refinement models which also take as input a critique indicating the location of the first reasoning error. We generate training data for both models synthetically by reusing data used to train the SORM. We find combining global and local refinements, using the ORM as a reranker, significantly outperforms either one individually, as well as a best of three sample baseline. With this strategy we can improve the accuracy of a LLaMA-2 13B model (already fine-tuned with RL) on GSM8K from 53\% to 65\% when greedily sampled.
♻ ☆ Gradient Coding with Iterative Block Leverage Score Sampling
We generalize the leverage score sampling sketch for $\ell_2$-subspace embeddings, to accommodate sampling subsets of the transformed data, so that the sketching approach is appropriate for distributed settings. This is then used to derive an approximate coded computing approach for first-order methods; known as gradient coding, to accelerate linear regression in the presence of failures in distributed computational networks, \textit{i.e.} stragglers. We replicate the data across the distributed network, to attain the approximation guarantees through the induced sampling distribution. The significance and main contribution of this work, is that it unifies randomized numerical linear algebra with approximate coded computing, while attaining an induced $\ell_2$-subspace embedding through uniform sampling. The transition to uniform sampling is done without applying a random projection, as in the case of the subsampled randomized Hadamard transform. Furthermore, by incorporating this technique to coded computing, our scheme is an iterative sketching approach to approximately solving linear regression. We also propose weighting when sketching takes place through sampling with replacement, for further compression.
comment: 26 pages, 6 figures, 1 table
♻ ☆ Neural Optimization with Adaptive Heuristics for Intelligent Marketing System KDD 2024
Computational marketing has become increasingly important in today's digital world, facing challenges such as massive heterogeneous data, multi-channel customer journeys, and limited marketing budgets. In this paper, we propose a general framework for marketing AI systems, the Neural Optimization with Adaptive Heuristics (NOAH) framework. NOAH is the first general framework for marketing optimization that considers both to-business (2B) and to-consumer (2C) products, as well as both owned and paid channels. We describe key modules of the NOAH framework, including prediction, optimization, and adaptive heuristics, providing examples for bidding and content optimization. We then detail the successful application of NOAH to LinkedIn's email marketing system, showcasing significant wins over the legacy ranking system. Additionally, we share details and insights that are broadly useful, particularly on: (i) addressing delayed feedback with lifetime value, (ii) performing large-scale linear programming with randomization, (iii) improving retrieval with audience expansion, (iv) reducing signal dilution in targeting tests, and (v) handling zero-inflated heavy-tail metrics in statistical testing.
comment: KDD 2024
♻ ☆ Towards Synthesizing Twelve-Lead Electrocardiograms from Two Asynchronous Leads
The electrocardiogram (ECG) records electrical signals in a non-invasive way to observe the condition of the heart, typically looking at the heart from 12 different directions. Several types of the cardiac disease are diagnosed by using 12-lead ECGs Recently, various wearable devices have enabled immediate access to the ECG without the use of wieldy equipment. However, they only provide ECGs with a couple of leads. This results in an inaccurate diagnosis of cardiac disease due to lacking of required leads. We propose a deep generative model for ECG synthesis from two asynchronous leads to ten leads. It first represents a heart condition referring to two leads, and then generates ten leads based on the represented heart condition. Both the rhythm and amplitude of leads generated resemble those of the original ones, while the technique removes noise and the baseline wander appearing in the original leads. As a data augmentation method, our model improves the classification performance of models compared with models using ECGs with only one or two leads.
♻ ☆ Listening to the Noise: Blind Denoising with Gibbs Diffusion
In recent years, denoising problems have become intertwined with the development of deep generative models. In particular, diffusion models are trained like denoisers, and the distribution they model coincide with denoising priors in the Bayesian picture. However, denoising through diffusion-based posterior sampling requires the noise level and covariance to be known, preventing blind denoising. We overcome this limitation by introducing Gibbs Diffusion (GDiff), a general methodology addressing posterior sampling of both the signal and the noise parameters. Assuming arbitrary parametric Gaussian noise, we develop a Gibbs algorithm that alternates sampling steps from a conditional diffusion model trained to map the signal prior to the family of noise distributions, and a Monte Carlo sampler to infer the noise parameters. Our theoretical analysis highlights potential pitfalls, guides diagnostic usage, and quantifies errors in the Gibbs stationary distribution caused by the diffusion model. We showcase our method for 1) blind denoising of natural images involving colored noises with unknown amplitude and spectral index, and 2) a cosmology problem, namely the analysis of cosmic microwave background data, where Bayesian inference of "noise" parameters means constraining models of the evolution of the Universe.
comment: 12+9 pages, 7+5 figures, 1+1 tables; accepted to 2024 International Conference on Machine Learning; code: https://github.com/rubenohana/Gibbs-Diffusion
Multimedia 5
☆ MSRS: Training Multimodal Speech Recognition Models from Scratch with Sparse Mask Optimization
Pre-trained models have been a foundational approach in speech recognition, albeit with associated additional costs. In this study, we propose a regularization technique that facilitates the training of visual and audio-visual speech recognition models (VSR and AVSR) from scratch. This approach, abbreviated as \textbf{MSRS} (Multimodal Speech Recognition from Scratch), introduces a sparse regularization that rapidly learns sparse structures within the dense model at the very beginning of training, which receives healthier gradient flow than the dense equivalent. Once the sparse mask stabilizes, our method allows transitioning to a dense model or keeping a sparse model by updating non-zero values. MSRS achieves competitive results in VSR and AVSR with 21.1% and 0.9% WER on the LRS3 benchmark, while reducing training time by at least 2x. We explore other sparse approaches and show that only MSRS enables training from scratch by implicitly masking the weights affected by vanishing gradients.
comment: Accepted at Interspeech 2024
☆ SonicSense: Object Perception from In-Hand Acoustic Vibration
We introduce SonicSense, a holistic design of hardware and software to enable rich robot object perception through in-hand acoustic vibration sensing. While previous studies have shown promising results with acoustic sensing for object perception, current solutions are constrained to a handful of objects with simple geometries and homogeneous materials, single-finger sensing, and mixing training and testing on the same objects. SonicSense enables container inventory status differentiation, heterogeneous material prediction, 3D shape reconstruction, and object re-identification from a diverse set of 83 real-world objects. Our system employs a simple but effective heuristic exploration policy to interact with the objects as well as end-to-end learning-based algorithms to fuse vibration signals to infer object properties. Our framework underscores the significance of in-hand acoustic vibration sensing in advancing robot tactile perception.
comment: Our project website is at: http://generalroboticslab.com/SonicSense
♻ ☆ Soundify: Matching Sound Effects to Video
In the art of video editing, sound helps add character to an object and immerse the viewer within a space. Through formative interviews with professional editors (N=10), we found that the task of adding sounds to video can be challenging. This paper presents Soundify, a system that assists editors in matching sounds to video. Given a video, Soundify identifies matching sounds, synchronizes the sounds to the video, and dynamically adjusts panning and volume to create spatial audio. In a human evaluation study (N=889), we show that Soundify is capable of matching sounds to video out-of-the-box for a diverse range of audio categories. In a within-subjects expert study (N=12), we demonstrate the usefulness of Soundify in helping video editors match sounds to video with lighter workload, reduced task completion time, and improved usability.
comment: https://soundify.cc
♻ ☆ VideoMap: Supporting Video Editing Exploration, Brainstorming, and Prototyping in the Latent Space
Video editing is a creative and complex endeavor and we believe that there is potential for reimagining a new video editing interface to better support the creative and exploratory nature of video editing. We take inspiration from latent space exploration tools that help users find patterns and connections within complex datasets. We present VideoMap, a proof-of-concept video editing interface that operates on video frames projected onto a latent space. We support intuitive navigation through map-inspired navigational elements and facilitate transitioning between different latent spaces through swappable lenses. We built three VideoMap components to support editors in three common video tasks. In a user study with both professionals and non-professionals, editors found that VideoMap helps reduce grunt work, offers a user-friendly experience, provides an inspirational way of editing, and effectively supports the exploratory nature of video editing. We further demonstrate the versatility of VideoMap by implementing three extended applications. For interactive examples, we invite you to visit our project page: https://humanvideointeraction.github.io/videomap.
comment: https://humanvideointeraction.github.io/videomap
♻ ☆ Videogenic: Identifying Highlight Moments in Videos with Professional Photographs as a Prior
This paper investigates the challenge of extracting highlight moments from videos. To perform this task, we need to understand what constitutes a highlight for arbitrary video domains while at the same time being able to scale across different domains. Our key insight is that photographs taken by photographers tend to capture the most remarkable or photogenic moments of an activity. Drawing on this insight, we present Videogenic, a technique capable of creating domain-specific highlight videos for a diverse range of domains. In a human evaluation study (N=50), we show that a high-quality photograph collection combined with CLIP-based retrieval (which uses a neural network with semantic knowledge of images) can serve as an excellent prior for finding video highlights. In a within-subjects expert study (N=12), we demonstrate the usefulness of Videogenic in helping video editors create highlight videos with lighter workload, shorter task completion time, and better usability.
comment: https://humanvideointeraction.github.io/videogenic
Performance 2
♻ ☆ Optimizing Speculative Decoding for Serving Large Language Models Using Goodput
Reducing the inference latency of large language models (LLMs) is crucial, and speculative decoding (SD) stands out as one of the most effective techniques. Rather than letting the LLM generate all tokens directly, speculative decoding employs effective proxies to predict potential outputs, which are then verified by the LLM without compromising the generation quality. Yet, deploying SD in real online LLM serving systems (with continuous batching) does not always yield improvement -- under higher request rates or low speculation accuracy, it paradoxically increases latency. Furthermore, there is no best speculation length work for all workloads under different system loads. Based on the observations, we develop a dynamic framework SmartSpec. SmartSpec dynamically determines the best speculation length for each request (from 0, i.e., no speculation, to many tokens) -- hence the associated speculative execution costs -- based on a new metric called goodput, which characterizes the current observed load of the entire system and the speculation accuracy. We show that SmartSpec consistently reduces average request latency by up to 3.2x compared to non-speculative decoding baselines across different sizes of target models, draft models, request rates, and datasets. Moreover, SmartSpec can be applied to different styles of speculative decoding, including traditional, model-based approaches as well as model-free methods like prompt lookup and tree-style decoding.
♻ ☆ GVE-LPA: Fast Label Propagation Algorithm (LPA) for Community Detection in Shared Memory Setting
Community detection is the problem of identifying natural divisions in networks. Efficient parallel algorithms for this purpose are crucial in various applications, particularly as datasets grow to substantial scales. This technical report presents an optimized parallel implementation of the Label Propagation Algorithm (LPA), a high speed community detection method, for shared memory multicore systems. On a server equipped with dual 16-core Intel Xeon Gold 6226R processors, our LPA, which we term as GVE-LPA, outperforms FLPA, igraph LPA, and NetworKit LPA by 139x, 97000x, and 40x respectively - achieving a processing rate of 1.4B edges/s on a 3.8B edge graph. In addition, GVE-LPA scales at a rate of 1.7x every doubling of threads.
comment: 9 pages, 7 figures, 1 table. arXiv admin note: text overlap with arXiv:2312.04876
Database 2
☆ NormTab: Improving Symbolic Reasoning in LLMs Through Tabular Data Normalization
In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities in parsing textual data and generating code. However, their performance in tasks involving tabular data, especially those requiring symbolic reasoning, faces challenges due to the structural variance and inconsistency in table cell values often found in web tables. In this paper, we introduce NormTab, a novel framework aimed at enhancing the symbolic reasoning performance of LLMs by normalizing web tables. We study table normalization as a stand-alone, one-time preprocessing step using LLMs to support symbolic reasoning on tabular data. Our experimental evaluation, conducted on challenging web table datasets such as WikiTableQuestion and TabFact, demonstrates that leveraging NormTab significantly improves symbolic reasoning performance, showcasing the importance and effectiveness of web table normalization for enhancing LLM-based symbolic reasoning tasks.
comment: Work in Progress
☆ Revisiting the Expressiveness Landscape of Data Graph Queries
The study of graph queries in database theory has spanned more than three decades, resulting in a multitude of proposals for graph query languages. These languages differ in the mechanisms. We can identify three main families of languages, with the canonical representatives being: (1) regular path queries, (2) walk logic, and (3) first-order logic with transitive closure operators. This paper provides a complete picture of the expressive power of these languages in the context of data graphs. Specifically, we consider a graph data model that supports querying over both data and topology. For example, "Does there exist a path between two different persons in a social network with the same last name?". We also show that an extension of (1), augmented with transitive closure operators, can unify the expressivity of (1)--(3) without increasing the query evaluation complexity.
Computation and Language 154
☆ EAGLE-2: Faster Inference of Language Models with Dynamic Draft Trees
Inference with modern Large Language Models (LLMs) is expensive and time-consuming, and speculative sampling has proven to be an effective solution. Most speculative sampling methods such as EAGLE use a static draft tree, implicitly assuming that the acceptance rate of draft tokens depends only on their position. Interestingly, we found that the acceptance rate of draft tokens is also context-dependent. In this paper, building upon EAGLE, we propose EAGLE-2, which introduces a new technique of context-aware dynamic draft tree into drafting modeling. This improvement leverages the fact that the draft model of EAGLE is well-calibrated: the confidence scores from the draft model approximate acceptance rates with small errors. We conducted extensive evaluations on three series of LLMs and six tasks, with EAGLE-2 achieving speedup ratios 3.05x-4.26x, which is 20%-40% faster than EAGLE-1. EAGLE-2 also ensures that the distribution of the generated text remains unchanged, making it a lossless acceleration algorithm.
☆ Losing Visual Needles in Image Haystacks: Vision Language Models are Easily Distracted in Short and Long Contexts
We present LoCoVQA, a dynamic benchmark generator for evaluating long-context extractive reasoning in vision language models (VLMs). LoCoVQA augments test examples for mathematical reasoning, VQA, and character recognition tasks with increasingly long visual contexts composed of both in-distribution and out-of-distribution distractor images. Across these tasks, a diverse set of VLMs rapidly lose performance as the visual context length grows, often exhibiting a striking exponential decay trend. This test assesses how well VLMs can ignore irrelevant information when answering queries -- a task that is quite easy for language models (LMs) in the text domain -- demonstrating that current state-of-the-art VLMs lack this essential capability for many long-context applications.
comment: Under review
☆ RaTEScore: A Metric for Radiology Report Generation
This paper introduces a novel, entity-aware metric, termed as Radiological Report (Text) Evaluation (RaTEScore), to assess the quality of medical reports generated by AI models. RaTEScore emphasizes crucial medical entities such as diagnostic outcomes and anatomical details, and is robust against complex medical synonyms and sensitive to negation expressions. Technically, we developed a comprehensive medical NER dataset, RaTE-NER, and trained an NER model specifically for this purpose. This model enables the decomposition of complex radiological reports into constituent medical entities. The metric itself is derived by comparing the similarity of entity embeddings, obtained from a language model, based on their types and relevance to clinical significance. Our evaluations demonstrate that RaTEScore aligns more closely with human preference than existing metrics, validated both on established public benchmarks and our newly proposed RaTE-Eval benchmark.
☆ Exploring Factual Entailment with NLI: A News Media Study
We explore the relationship between factuality and Natural Language Inference (NLI) by introducing FactRel -- a novel annotation scheme that models \textit{factual} rather than \textit{textual} entailment, and use it to annotate a dataset of naturally occurring sentences from news articles. Our analysis shows that 84\% of factually supporting pairs and 63\% of factually undermining pairs do not amount to NLI entailment or contradiction, respectively, suggesting that factual relationships are more apt for analyzing media discourse. We experiment with models for pairwise classification on the new dataset, and find that in some cases, generating synthetic data with GPT-4 on the basis of the annotated dataset can improve performance. Surprisingly, few-shot learning with GPT-4 yields strong results on par with medium LMs (DeBERTa) trained on the labelled dataset. We hypothesize that these results indicate the fundamental dependence of this task on both world knowledge and advanced reasoning abilities.
comment: Presented at *SEM 2024
☆ From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models
One of the most striking findings in modern research on large language models (LLMs) is that scaling up compute during training leads to better results. However, less attention has been given to the benefits of scaling compute during inference. This survey focuses on these inference-time approaches. We explore three areas under a unified mathematical formalism: token-level generation algorithms, meta-generation algorithms, and efficient generation. Token-level generation algorithms, often called decoding algorithms, operate by sampling a single token at a time or constructing a token-level search space and then selecting an output. These methods typically assume access to a language model's logits, next-token distributions, or probability scores. Meta-generation algorithms work on partial or full sequences, incorporating domain knowledge, enabling backtracking, and integrating external information. Efficient generation methods aim to reduce token costs and improve the speed of generation. Our survey unifies perspectives from three research communities: traditional natural language processing, modern LLMs, and machine learning systems.
☆ USDC: A Dataset of $\underline{U}$ser $\underline{S}$tance and $\underline{D}$ogmatism in Long $\underline{C}$onversations
Identifying user's opinions and stances in long conversation threads on various topics can be extremely critical for enhanced personalization, market research, political campaigns, customer service, conflict resolution, targeted advertising, and content moderation. Hence, training language models to automate this task is critical. However, to train such models, gathering manual annotations has multiple challenges: 1) It is time-consuming and costly; 2) Conversation threads could be very long, increasing chances of noisy annotations; and 3) Interpreting instances where a user changes their opinion within a conversation is difficult because often such transitions are subtle and not expressed explicitly. Inspired by the recent success of large language models (LLMs) for complex natural language processing (NLP) tasks, we leverage Mistral Large and GPT-4 to automate the human annotation process on the following two tasks while also providing reasoning: i) User Stance classification, which involves labeling a user's stance of a post in a conversation on a five-point scale; ii) User Dogmatism classification, which deals with labeling a user's overall opinion in the conversation on a four-point scale. The majority voting on zero-shot, one-shot, and few-shot annotations from these two LLMs on 764 multi-user Reddit conversations helps us curate the USDC dataset. USDC is then used to finetune and instruction-tune multiple deployable small language models for the 5-class stance and 4-class dogmatism classification tasks. We make the code and dataset publicly available [https://anonymous.4open.science/r/USDC-0F7F].
comment: 32 pages, 18 figures
☆ Understanding and Mitigating Tokenization Bias in Language Models
State-of-the-art language models are autoregressive and operate on subword units known as tokens. Specifically, one must encode the conditioning string into a list of tokens before passing to the language models for next-token prediction. We show that, for encoding schemes such as maximum prefix matching, tokenization induces a sampling bias that cannot be mitigated with more training or data. To counter this universal problem, we propose a novel algorithm to obtain unbiased estimates from a model that was trained on tokenized data. Our method does not require finetuning the model, and its complexity, defined as the number of model runs, scales linearly with the sequence length. As a consequence, we show that one can simulate token-free behavior from a tokenized language model. We empirically verify the correctness of our method through a Markov-chain setup, where it accurately recovers the transition probabilities, as opposed to the conventional method of directly prompting tokens into the language model.
☆ Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track
Did you try out the new Bing Search? Or maybe you fiddled around with Google AI~Overviews? These might sound familiar because the modern-day search stack has recently evolved to include retrieval-augmented generation (RAG) systems. They allow searching and incorporating real-time data into large language models (LLMs) to provide a well-informed, attributed, concise summary in contrast to the traditional search paradigm that relies on displaying a ranked list of documents. Therefore, given these recent advancements, it is crucial to have an arena to build, test, visualize, and systematically evaluate RAG-based search systems. With this in mind, we propose the TREC 2024 RAG Track to foster innovation in evaluating RAG systems. In our work, we lay out the steps we've made towards making this track a reality -- we describe the details of our reusable framework, Ragnar\"ok, explain the curation of the new MS MARCO V2.1 collection choice, release the development topics for the track, and standardize the I/O definitions which assist the end user. Next, using Ragnar\"ok, we identify and provide key industrial baselines such as OpenAI's GPT-4o or Cohere's Command R+. Further, we introduce a web-based user interface for an interactive arena allowing benchmarking pairwise RAG systems by crowdsourcing. We open-source our Ragnar\"ok framework and baselines to achieve a unified standard for future RAG systems.
☆ PISTOL: Dataset Compilation Pipeline for Structural Unlearning of LLMs
Recently, machine unlearning, which seeks to erase specific data stored in the pre-trained or fine-tuned models, has emerged as a crucial protective measure for LLMs. However, unlearning approaches for LLMs that have been considered thus far have focused on the removal of independent data points and have not taken into account that the stored facts are logically connected to one another and form an implicit knowledge graph. To facilitate the development of structural unlearning methods, which are essential for the practical application of unlearning, we propose PISTOL, a pipeline for compiling multi-scenario datasets for benchmarking structural LLM unlearning. Additionally, leveraging sample datasets synthesized using PISTOL, we conducted benchmarks with four distinct unlearning methods on both Llama2-7B and Mistral-7B models. This analysis helps to illustrate the prevailing challenges in effectively and robustly removing highly inter-connected data, batched data, or data skewed towards a specific domain. It also highlights the choice of pre-trained model can impact unlearning performance. This work not only advances our understandings on the limitation of current LLMs unlearning methods and proposes future research directions, but also provides a replicable framework for ongoing exploration and validation in the field.
☆ Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation
Human feedback plays a critical role in learning and refining reward models for text-to-image generation, but the optimal form the feedback should take for learning an accurate reward function has not been conclusively established. This paper investigates the effectiveness of fine-grained feedback which captures nuanced distinctions in image quality and prompt-alignment, compared to traditional coarse-grained feedback (for example, thumbs up/down or ranking between a set of options). While fine-grained feedback holds promise, particularly for systems catering to diverse societal preferences, we show that demonstrating its superiority to coarse-grained feedback is not automatic. Through experiments on real and synthetic preference data, we surface the complexities of building effective models due to the interplay of model choice, feedback type, and the alignment between human judgment and computational interpretation. We identify key challenges in eliciting and utilizing fine-grained feedback, prompting a reassessment of its assumed benefits and practicality. Our findings -- e.g., that fine-grained feedback can lead to worse models for a fixed budget, in some settings; however, in controlled settings with known attributes, fine grained rewards can indeed be more helpful -- call for careful consideration of feedback attributes and potentially beckon novel modeling approaches to appropriately unlock the potential value of fine-grained feedback in-the-wild.
☆ RES-Q: Evaluating Code-Editing Large Language Model Systems at the Repository Scale
The instruction-following ability of Large Language Models (LLMs) has cultivated a class of LLM-based systems capable of approaching complex tasks such as making edits to large code repositories. Due to the high sensitivity and unpredictability of LLM behavior in response to changes in prompting, robust evaluation tools are needed to drive future iteration of these systems. We propose RES-Q, a natural language instruction-based benchmark for evaluating $\textbf{R}$epository $\textbf{E}$diting $\textbf{S}$ystems, which consists of 100 repository editing tasks derived from real GitHub commits. Given an edit instruction and a code repository, RES-Q evaluates an LLM system's ability to gather information and construct an edit that satisfies the criteria set by the instruction. We argue that evaluating LLMs in this way addresses issues with traditional benchmarks and provides a more holistic assessment of a model's abilities. We evaluate various state-of-the-art LLMs as language agents in a repository-editing system built on Qurrent OS, our language agent development software. Despite their 1% pass@1 performance difference on HumanEval, we find Claude Sonnet 3.5 outperforms GPT-4o by 12% pass@1 on RES-Q, indicating RES-Q's capacity to differentiate model capability as traditional benchmarks approach saturation. We further investigate token efficiency, performance relationships with existing benchmarks, and interesting disparities between closed and open-source LLMs. Code and dataset are available at https://github.com/Qurrent-AI/RES-Q.
☆ Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs
Existing methods for adapting large language models (LLMs) to new tasks are not suited to multi-task adaptation because they modify all the model weights -- causing destructive interference between tasks. The resulting effects, such as catastrophic forgetting of earlier tasks, make it challenging to obtain good performance on multiple tasks at the same time. To mitigate this, we propose Lottery Ticket Adaptation (LoTA), a sparse adaptation method that identifies and optimizes only a sparse subnetwork of the model. We evaluate LoTA on a wide range of challenging tasks such as instruction following, reasoning, math, and summarization. LoTA obtains better performance than full fine-tuning and low-rank adaptation (LoRA), and maintains good performance even after training on other tasks -- thus, avoiding catastrophic forgetting. By extracting and fine-tuning over \emph{lottery tickets} (or \emph{sparse task vectors}), LoTA also enables model merging over highly dissimilar tasks.
☆ M2Lingual: Enhancing Multilingual, Multi-Turn Instruction Alignment in Large Language Models
Instruction finetuning (IFT) is critical for aligning Large Language Models (LLMs) to follow instructions. Numerous effective IFT datasets have been proposed in the recent past, but most focus on high resource languages such as English. In this work, we propose a fully synthetic, novel taxonomy (Evol) guided Multilingual, Multi-turn instruction finetuning dataset, called M2Lingual, to better align LLMs on a diverse set of languages and tasks. M2Lingual contains a total of 182K IFT pairs that are built upon diverse seeds, covering 70 languages, 17 NLP tasks and general instruction-response pairs. LLMs finetuned with M2Lingual substantially outperform the majority of existing multilingual IFT datasets. Importantly, LLMs trained with M2Lingual consistently achieve competitive results across a wide variety of evaluation benchmarks compared to existing multilingual IFT datasets. Specifically, LLMs finetuned with M2Lingual achieve strong performance on our translated multilingual, multi-turn evaluation benchmark as well as a wide variety of multilingual tasks. Thus we contribute, and the 2 step Evol taxonomy used for its creation. M2Lingual repository - https://huggingface.co/datasets/ServiceNow-AI/M2Lingual
comment: 39 pages
☆ It Is Not About What You Say, It Is About How You Say It: A Surprisingly Simple Approach for Improving Reading Comprehension ACL
Natural language processing has seen rapid progress over the past decade. Due to the speed of developments, some practices get established without proper evaluation. Considering one such case and focusing on reading comprehension, we ask our first research question: 1) How does the order of inputs -- i.e., question and context -- affect model performance? Additionally, given recent advancements in input emphasis, we ask a second research question: 2) Does emphasizing either the question, the context, or both enhance performance? Experimenting with 9 large language models across 3 datasets, we find that presenting the context before the question improves model performance, with an accuracy increase of up to $31\%$. Furthermore, emphasizing the context yields superior results compared to question emphasis, and in general, emphasizing parts of the input is particularly effective for addressing questions that models lack the parametric knowledge to answer. Experimenting with both prompt-based and attention-based emphasis methods, we additionally find that the best method is surprisingly simple: it only requires concatenating a few tokens to the input and results in an accuracy improvement of up to $36\%$, allowing smaller models to outperform their significantly larger counterparts.
comment: Accepted to ACL Findings
☆ Finding Transformer Circuits with Edge Pruning
The path to interpreting a language model often proceeds via analysis of circuits -- sparse computational subgraphs of the model that capture specific aspects of its behavior. Recent work has automated the task of discovering circuits. Yet, these methods have practical limitations, as they rely either on inefficient search algorithms or inaccurate approximations. In this paper, we frame automated circuit discovery as an optimization problem and propose *Edge Pruning* as an effective and scalable solution. Edge Pruning leverages gradient-based pruning techniques, but instead of removing neurons or components, it prunes the \emph{edges} between components. Our method finds circuits in GPT-2 that use less than half the number of edges compared to circuits found by previous methods while being equally faithful to the full model predictions on standard circuit-finding tasks. Edge Pruning is efficient even with as many as 100K examples, outperforming previous methods in speed and producing substantially better circuits. It also perfectly recovers the ground-truth circuits in two models compiled with Tracr. Thanks to its efficiency, we scale Edge Pruning to CodeLlama-13B, a model over 100x the scale that prior methods operate on. We use this setting for a case study comparing the mechanisms behind instruction prompting and in-context learning. We find two circuits with more than 99.96% sparsity that match the performance of the full model and reveal that the mechanisms in the two settings overlap substantially. Our case study shows that Edge Pruning is a practical and scalable tool for interpretability and sheds light on behaviors that only emerge in large models.
comment: We release our code and data publicly at https://github.com/princeton-nlp/Edge-Pruning
☆ Blending LLMs into Cascaded Speech Translation: KIT's Offline Speech Translation System for IWSLT 2024
Large Language Models (LLMs) are currently under exploration for various tasks, including Automatic Speech Recognition (ASR), Machine Translation (MT), and even End-to-End Speech Translation (ST). In this paper, we present KIT's offline submission in the constrained + LLM track by incorporating recently proposed techniques that can be added to any cascaded speech translation. Specifically, we integrate Mistral-7B\footnote{mistralai/Mistral-7B-Instruct-v0.1} into our system to enhance it in two ways. Firstly, we refine the ASR outputs by utilizing the N-best lists generated by our system and fine-tuning the LLM to predict the transcript accurately. Secondly, we refine the MT outputs at the document level by fine-tuning the LLM, leveraging both ASR and MT predictions to improve translation quality. We find that integrating the LLM into the ASR and MT systems results in an absolute improvement of $0.3\%$ in Word Error Rate and $0.65\%$ in COMET for tst2019 test set. In challenging test sets with overlapping speakers and background noise, we find that integrating LLM is not beneficial due to poor ASR performance. Here, we use ASR with chunked long-form decoding to improve context usage that may be unavailable when transcribing with Voice Activity Detection segmentation alone.
☆ OlympicArena Medal Ranks: Who Is the Most Intelligent AI So Far?
In this report, we pose the following question: Who is the most intelligent AI model to date, as measured by the OlympicArena (an Olympic-level, multi-discipline, multi-modal benchmark for superintelligent AI)? We specifically focus on the most recently released models: Claude-3.5-Sonnet, Gemini-1.5-Pro, and GPT-4o. For the first time, we propose using an Olympic medal Table approach to rank AI models based on their comprehensive performance across various disciplines. Empirical results reveal: (1) Claude-3.5-Sonnet shows highly competitive overall performance over GPT-4o, even surpassing GPT-4o on a few subjects (i.e., Physics, Chemistry, and Biology). (2) Gemini-1.5-Pro and GPT-4V are ranked consecutively just behind GPT-4o and Claude-3.5-Sonnet, but with a clear performance gap between them. (3) The performance of AI models from the open-source community significantly lags behind these proprietary models. (4) The performance of these models on this benchmark has been less than satisfactory, indicating that we still have a long way to go before achieving superintelligence. We remain committed to continuously tracking and evaluating the performance of the latest powerful models on this benchmark (available at https://github.com/GAIR-NLP/OlympicArena).
comment: 10 pages
☆ The GPT-WritingPrompts Dataset: A Comparative Analysis of Character Portrayal in Short Stories
The improved generative capabilities of large language models have made them a powerful tool for creative writing and storytelling. It is therefore important to quantitatively understand the nature of generated stories, and how they differ from human storytelling. We augment the Reddit WritingPrompts dataset with short stories generated by GPT-3.5, given the same prompts. We quantify and compare the emotional and descriptive features of storytelling from both generative processes, human and machine, along a set of six dimensions. We find that generated stories differ significantly from human stories along all six dimensions, and that human and machine generations display similar biases when grouped according to the narrative point-of-view and gender of the main protagonist. We release our dataset and code at https://github.com/KristinHuangg/gpt-writing-prompts.
☆ Towards Fast Multilingual LLM Inference: Speculative Decoding and Specialized Drafters
Large language models (LLMs) have revolutionized natural language processing and broadened their applicability across diverse commercial applications. However, the deployment of these models is constrained by high inference time in multilingual settings. To mitigate this challenge, this paper explores a training recipe of an assistant model in speculative decoding, which are leveraged to draft and-then its future tokens are verified by the target LLM. We show that language-specific draft models, optimized through a targeted pretrain-and-finetune strategy, substantially brings a speedup of inference time compared to the previous methods. We validate these models across various languages in inference time, out-of-domain speedup, and GPT-4o evaluation.
☆ Towards Zero-Shot Text-To-Speech for Arabic Dialects
Zero-shot multi-speaker text-to-speech (ZS-TTS) systems have advanced for English, however, it still lags behind due to insufficient resources. We address this gap for Arabic, a language of more than 450 million native speakers, by first adapting a sizeable existing dataset to suit the needs of speech synthesis. Additionally, we employ a set of Arabic dialect identification models to explore the impact of pre-defined dialect labels on improving the ZS-TTS model in a multi-dialect setting. Subsequently, we fine-tune the XTTS\footnote{https://docs.coqui.ai/en/latest/models/xtts.html}\footnote{https://medium.com/machine-learns/xtts-v2-new-version-of-the-open-source-text-to-speech-model-af73914db81f}\footnote{https://medium.com/@erogol/xtts-v1-techincal-notes-eb83ff05bdc} model, an open-source architecture. We then evaluate our models on a dataset comprising 31 unseen speakers and an in-house dialectal dataset. Our automated and human evaluation results show convincing performance while capable of generating dialectal speech. Our study highlights significant potential for improvements in this emerging area of research in Arabic.
☆ OCALM: Object-Centric Assessment with Language Models
Properly defining a reward signal to efficiently train a reinforcement learning (RL) agent is a challenging task. Designing balanced objective functions from which a desired behavior can emerge requires expert knowledge, especially for complex environments. Learning rewards from human feedback or using large language models (LLMs) to directly provide rewards are promising alternatives, allowing non-experts to specify goals for the agent. However, black-box reward models make it difficult to debug the reward. In this work, we propose Object-Centric Assessment with Language Models (OCALM) to derive inherently interpretable reward functions for RL agents from natural language task descriptions. OCALM uses the extensive world-knowledge of LLMs while leveraging the object-centric nature common to many environments to derive reward functions focused on relational concepts, providing RL agents with the ability to derive policies from task descriptions.
comment: Accepted at the RLBRew Workshop at RLC 2024
☆ Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers
Accommodating long sequences efficiently in autoregressive Transformers, especially within an extended context window, poses significant challenges due to the quadratic computational complexity and substantial KV memory requirements inherent in self-attention mechanisms. In this work, we introduce SPARSEK Attention, a novel sparse attention mechanism designed to overcome these computational and memory obstacles while maintaining performance. Our approach integrates a scoring network and a differentiable top-k mask operator, SPARSEK, to select a constant number of KV pairs for each query, thereby enabling gradient-based optimization. As a result, SPARSEK Attention offers linear time complexity and constant memory footprint during generation. Experimental results reveal that SPARSEK Attention outperforms previous sparse attention methods and provides significant speed improvements during both training and inference, particularly in language modeling and downstream tasks. Furthermore, our method can be seamlessly integrated into pre-trained Large Language Models (LLMs) with minimal fine-tuning, offering a practical solution for effectively managing long-range dependencies in diverse applications.
comment: preprint
☆ The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources
Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications. To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet: a growing collection of 250+ tools and resources spanning text, vision, and speech modalities. We draw on a large body of prior work to survey resources (e.g. software, documentation, frameworks, guides, and practical tools) that support informed data selection, processing, and understanding, precise and limitation-aware artifact documentation, efficient model training, advance awareness of the environmental impact from training, careful model evaluation of capabilities, risks, and claims, as well as responsible model release, licensing and deployment practices. We hope this curated collection of resources helps guide more responsible development. The process of curating this list, enabled us to review the AI development ecosystem, revealing what tools are critically missing, misused, or over-used in existing practices. We find that (i) tools for data sourcing, model evaluation, and monitoring are critically under-serving ethical and real-world needs, (ii) evaluations for model safety, capabilities, and environmental impact all lack reproducibility and transparency, (iii) text and particularly English-centric analyses continue to dominate over multilingual and multi-modal analyses, and (iv) evaluation of systems, rather than just models, is needed so that capabilities and impact are assessed in context.
☆ Adversarial Contrastive Decoding: Boosting Safety Alignment of Large Language Models via Opposite Prompt Optimization
With the widespread application of Large Language Models (LLMs), it has become a significant concern to ensure their safety and prevent harmful responses. While current safe-alignment methods based on instruction fine-tuning and Reinforcement Learning from Human Feedback (RLHF) can effectively reduce harmful responses from LLMs, they often require high-quality datasets and heavy computational overhead during model training. Another way to align language models is to modify the logit of tokens in model outputs without heavy training. Recent studies have shown that contrastive decoding can enhance the performance of language models by reducing the likelihood of confused tokens. However, these methods require the manual selection of contrastive models or instruction templates. To this end, we propose Adversarial Contrastive Decoding (ACD), an optimization-based framework to generate two opposite system prompts for prompt-based contrastive decoding. ACD only needs to apply a lightweight prompt tuning on a rather small anchor dataset (< 3 min for each model) without training the target model. Experiments conducted on extensive models and benchmarks demonstrate that the proposed method achieves much better safety performance than previous model training-free decoding methods without sacrificing its original generation ability.
☆ CLIMATELI: Evaluating Entity Linking on Climate Change Data
Climate Change (CC) is a pressing topic of global importance, attracting increasing attention across research fields, from social sciences to Natural Language Processing (NLP). CC is also discussed in various settings and communication platforms, from academic publications to social media forums. Understanding who and what is mentioned in such data is a first critical step to gaining new insights into CC. We present CLIMATELI (CLIMATe Entity LInking), the first manually annotated CC dataset that links 3,087 entity spans to Wikipedia. Using CLIMATELI (CLIMATe Entity LInking), we evaluate existing entity linking (EL) systems on the CC topic across various genres and propose automated filtering methods for CC entities. We find that the performance of EL models notably lags behind humans at both token and entity levels. Testing within the scope of retaining or excluding non-nominal and/or non-CC entities particularly impacts the models' performances.
comment: 7 pages, ClimateNLP 2024
☆ Venturing into Uncharted Waters: The Navigation Compass from Transformer to Mamba
Transformer, a deep neural network architecture, has long dominated the field of natural language processing and beyond. Nevertheless, the recent introduction of Mamba challenges its supremacy, sparks considerable interest among researchers, and gives rise to a series of Mamba-based models that have exhibited notable potential. This survey paper orchestrates a comprehensive discussion, diving into essential research dimensions, covering: (i) the functioning of the Mamba mechanism and its foundation on the principles of structured state space models; (ii) the proposed improvements and the integration of Mamba with various networks, exploring its potential as a substitute for Transformers; (iii) the combination of Transformers and Mamba to compensate for each other's shortcomings. We have also made efforts to interpret Mamba and Transformer in the framework of kernel functions, allowing for a comparison of their mathematical nature within a unified context. Our paper encompasses the vast majority of improvements related to Mamba to date.
☆ AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models
Although Large Language Models (LLMs) are becoming increasingly powerful, they still exhibit significant but subtle weaknesses, such as mistakes in instruction-following or coding tasks. As these unexpected errors could lead to severe consequences in practical deployments, it is crucial to investigate the limitations within LLMs systematically. Traditional benchmarking approaches cannot thoroughly pinpoint specific model deficiencies, while manual inspections are costly and not scalable. In this paper, we introduce a unified framework, AutoDetect, to automatically expose weaknesses in LLMs across various tasks. Inspired by the educational assessment process that measures students' learning outcomes, AutoDetect consists of three LLM-powered agents: Examiner, Questioner, and Assessor. The collaboration among these three agents is designed to realize comprehensive and in-depth weakness identification. Our framework demonstrates significant success in uncovering flaws, with an identification success rate exceeding 30% in prominent models such as ChatGPT and Claude. More importantly, these identified weaknesses can guide specific model improvements, proving more effective than untargeted data augmentation methods like Self-Instruct. Our approach has led to substantial enhancements in popular LLMs, including the Llama series and Mistral-7b, boosting their performance by over 10% across several benchmarks. Code and data are publicly available at https://github.com/thu-coai/AutoDetect.
☆ Task Oriented In-Domain Data Augmentation
Large Language Models (LLMs) have shown superior performance in various applications and fields. To achieve better performance on specialized domains such as law and advertisement, LLMs are often continue pre-trained on in-domain data. However, existing approaches suffer from two major issues. First, in-domain data are scarce compared with general domain-agnostic data. Second, data used for continual pre-training are not task-aware, such that they may not be helpful to downstream applications. We propose TRAIT, a task-oriented in-domain data augmentation framework. Our framework is divided into two parts: in-domain data selection and task-oriented synthetic passage generation. The data selection strategy identifies and selects a large amount of in-domain data from general corpora, and thus significantly enriches domain knowledge in the continual pre-training data. The synthetic passages contain guidance on how to use domain knowledge to answer questions about downstream tasks. By training on such passages, the model aligns with the need of downstream applications. We adapt LLMs to two domains: advertisement and math. On average, TRAIT improves LLM performance by 8% in the advertisement domain and 7.5% in the math domain.
☆ Scaling Laws for Linear Complexity Language Models
The interest in linear complexity models for large language models is on the rise, although their scaling capacity remains uncertain. In this study, we present the scaling laws for linear complexity language models to establish a foundation for their scalability. Specifically, we examine the scaling behaviors of three efficient linear architectures. These include TNL, a linear attention model with data-independent decay; HGRN2, a linear RNN with data-dependent decay; and cosFormer2, a linear attention model without decay. We also include LLaMA as a baseline architecture for softmax attention for comparison. These models were trained with six variants, ranging from 70M to 7B parameters on a 300B-token corpus, and evaluated with a total of 1,376 intermediate checkpoints on various downstream tasks. These tasks include validation loss, commonsense reasoning, and information retrieval and generation. The study reveals that existing linear complexity language models exhibit similar scaling capabilities as conventional transformer-based models while also demonstrating superior linguistic proficiency and knowledge retention.
comment: Technical report. Yiran Zhong is the corresponding author
☆ Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation
Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model - Segment any Text (SaT) - to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines - including strong LLMs - across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are available at https://huggingface.co/segment-any-text under the MIT license.
☆ Computational Approaches to the Detection of Lesser-Known Rhetorical Figures: A Systematic Survey and Research Challenges
Rhetorical figures play a major role in our everyday communication as they make text more interesting, more memorable, or more persuasive. Therefore, it is important to computationally detect rhetorical figures to fully understand the meaning of a text. We provide a comprehensive overview of computational approaches to lesser-known rhetorical figures. We explore the linguistic and computational perspectives on rhetorical figures, emphasizing their significance for the domain of Natural Language Processing. We present different figures in detail, delving into datasets, definitions, rhetorical functions, and detection approaches. We identified challenges such as dataset scarcity, language limitations, and reliance on rule-based methods.
comment: Submitted to ACM Computing Surveys. 35 pages
☆ CAVE: Controllable Authorship Verification Explanations
Authorship Verification (AV) (do two documents have the same author?) is essential for many sensitive real-life applications. AV is often used in proprietary domains that require a private, offline model, making SOTA online models like ChatGPT undesirable. Other SOTA systems use methods, e.g. Siamese Networks, that are uninterpretable, and hence cannot be trusted in high-stakes applications. In this work, we take the first step to address the above challenges with our model CAVE (Controllable Authorship Verification Explanations): CAVE generates free-text AV explanations that are controlled to be 1) structured (can be decomposed into sub-explanations with respect to relevant linguistic features), and 2) easily verified for explanation-label consistency (via intermediate labels in sub-explanations). In this work, we train a Llama-3-8B as CAVE; since there are no human-written corpora for AV explanations, we sample silver-standard explanations from GPT-4-TURBO and distill them into a pretrained Llama-3-8B. Results on three difficult AV datasets IMdB2, Blog-Auth, and FanFiction show that CAVE generates high quality explanations (as measured by automatic and human evaluation) as well as competitive task accuracies.
Large Language Models Are Cross-Lingual Knowledge-Free Reasoners
Large Language Models have demonstrated impressive reasoning capabilities across multiple languages. However, the relationship between capabilities in different languages is less explored. In this work, we decompose the process of reasoning tasks into two separated parts: knowledge retrieval and knowledge-free reasoning, and analyze the cross-lingual transferability of them. With adapted and constructed knowledge-free reasoning datasets, we show that the knowledge-free reasoning capability can be nearly perfectly transferred across various source-target language directions despite the secondary impact of resource in some specific target languages, while cross-lingual knowledge retrieval significantly hinders the transfer. Moreover, by analyzing the hidden states and feed-forward network neuron activation during the reasoning tasks, we show that higher similarity of hidden representations and larger overlap of activated neurons could explain the better cross-lingual transferability of knowledge-free reasoning than knowledge retrieval. Thus, we hypothesize that knowledge-free reasoning embeds in some language-shared mechanism, while knowledge is stored separately in different languages.
☆ ShadowLLM: Predictor-based Contextual Sparsity for Large Language Models
The high power consumption and latency-sensitive deployments of large language models (LLMs) have motivated techniques like quantization and sparsity. Contextual sparsity, where the sparsity pattern is input-dependent, is crucial in LLMs because the permanent removal of attention heads or neurons from LLMs can significantly degrade accuracy. Prior work has attempted to model contextual sparsity using neural networks trained to predict activation magnitudes, which can be used to dynamically prune structures with low predicted activation magnitude. In this paper, we look beyond magnitude-based pruning criteria to assess attention head and neuron importance in LLMs. We developed a novel predictor called ShadowLLM, which can shadow the LLM behavior and enforce better sparsity patterns, resulting in over 15% improvement in end-to-end accuracy without increasing latency compared to previous methods. ShadowLLM achieves up to a 20\% speed-up over the state-of-the-art DejaVu framework. These enhancements are validated on models with up to 30 billion parameters. Our code is available at \href{https://github.com/abdelfattah-lab/shadow_llm/}{ShadowLLM}.
☆ Evaluation of Language Models in the Medical Context Under Resource-Constrained Settings
Since the emergence of the Transformer architecture, language model development has increased, driven by their promising potential. However, releasing these models into production requires properly understanding their behavior, particularly in sensitive domains such as medicine. Despite this need, the medical literature still lacks technical assessments of pre-trained language models, which are especially valuable in resource-constrained settings in terms of computational power or limited budget. To address this gap, we provide a comprehensive survey of language models in the medical domain. In addition, we selected a subset of these models for thorough evaluation, focusing on classification and text generation tasks. Our subset encompasses 53 models, ranging from 110 million to 13 billion parameters, spanning the three families of Transformer-based models and from diverse knowledge domains. This study employs a series of approaches for text classification together with zero-shot prompting instead of model training or fine-tuning, which closely resembles the limited resource setting in which many users of language models find themselves. Encouragingly, our findings reveal remarkable performance across various tasks and datasets, underscoring the latent potential of certain models to contain medical knowledge, even without domain specialization. Consequently, our study advocates for further exploration of model applications in medical contexts, particularly in resource-constrained settings. The code is available on https://github.com/anpoc/Language-models-in-medicine.
☆ CLEAR: Can Language Models Really Understand Causal Graphs?
Causal reasoning is a cornerstone of how humans interpret the world. To model and reason about causality, causal graphs offer a concise yet effective solution. Given the impressive advancements in language models, a crucial question arises: can they really understand causal graphs? To this end, we pioneer an investigation into language models' understanding of causal graphs. Specifically, we develop a framework to define causal graph understanding, by assessing language models' behaviors through four practical criteria derived from diverse disciplines (e.g., philosophy and psychology). We then develop CLEAR, a novel benchmark that defines three complexity levels and encompasses 20 causal graph-based tasks across these levels. Finally, based on our framework and benchmark, we conduct extensive experiments on six leading language models and summarize five empirical findings. Our results indicate that while language models demonstrate a preliminary understanding of causal graphs, significant potential for improvement remains. Our project website is at https://github.com/OpenCausaLab/CLEAR.
☆ Data Augmentation of Multi-turn Psychological Dialogue via Knowledge-driven Progressive Thought Prompting
Existing dialogue data augmentation (DA) techniques predominantly focus on augmenting utterance-level dialogues, which makes it difficult to take dialogue contextual information into account. The advent of large language models (LLMs) has simplified the implementation of multi-turn dialogues. Due to absence of professional understanding and knowledge, it remains challenging to deliver satisfactory performance in low-resource domain, like psychological dialogue dialogue. DA involves creating new training or prompting data based on the existing data, which help the model better understand and generate psychology-related responses. In this paper, we aim to address the issue of multi-turn dialogue data augmentation for boosted performance in the psychology domain. We propose a knowledge-driven progressive thought prompting method to guide LLM to generate multi-turn psychology-related dialogue. This method integrates a progressive thought generator, a psychology knowledge generator, and a multi-turn dialogue generator. The thought generated by the progressive thought generator serves as a prompt to prevent the generated dialogue from having significant semantic deviations, while the psychology knowledge generator produces psychological knowledge to serve as the dialogue history for the LLM, guiding the dialogue generator to create multi-turn psychological dialogue. To ensure the precision of multi-turn psychological dialogue generation by LLM, a meticulous professional evaluation is required. Extensive experiments conducted on three datasets related to psychological dialogue verify the effectiveness of the proposed method.
☆ Are there identifiable structural parts in the sentence embedding whole?
Sentence embeddings from transformer models encode in a fixed length vector much linguistic information. We explore the hypothesis that these embeddings consist of overlapping layers of information that can be separated, and on which specific types of information -- such as information about chunks and their structural and semantic properties -- can be detected. We show that this is the case using a dataset consisting of sentences with known chunk structure, and two linguistic intelligence datasets, solving which relies on detecting chunks and their grammatical number, and respectively, their semantic roles, and through analyses of the performance on the tasks and of the internal representations built during learning.
comment: 17 pages, 14 figures, 5 tables
☆ EvalAlign: Evaluating Text-to-Image Models through Precision Alignment of Multimodal Large Models with Supervised Fine-Tuning to Human Annotations
The recent advancements in text-to-image generative models have been remarkable. Yet, the field suffers from a lack of evaluation metrics that accurately reflect the performance of these models, particularly lacking fine-grained metrics that can guide the optimization of the models. In this paper, we propose EvalAlign, a metric characterized by its accuracy, stability, and fine granularity. Our approach leverages the capabilities of Multimodal Large Language Models (MLLMs) pre-trained on extensive datasets. We develop evaluation protocols that focus on two key dimensions: image faithfulness and text-image alignment. Each protocol comprises a set of detailed, fine-grained instructions linked to specific scoring options, enabling precise manual scoring of the generated images. We Supervised Fine-Tune (SFT) the MLLM to align closely with human evaluative judgments, resulting in a robust evaluation model. Our comprehensive tests across 24 text-to-image generation models demonstrate that EvalAlign not only provides superior metric stability but also aligns more closely with human preferences than existing metrics, confirming its effectiveness and utility in model assessment.
comment: Github Repository: https://github.com/SAIS-FUXI/EvalAlign
☆ LLaMA-MoE: Building Mixture-of-Experts from LLaMA with Continual Pre-training
Mixture-of-Experts (MoE) has gained increasing popularity as a promising framework for scaling up large language models (LLMs). However, training MoE from scratch in a large-scale setting still suffers from data-hungry and instability problems. Motivated by this limit, we investigate building MoE models from existing dense large language models. Specifically, based on the well-known LLaMA-2 7B model, we obtain an MoE model by: (1) Expert Construction, which partitions the parameters of original Feed-Forward Networks (FFNs) into multiple experts; (2) Continual Pre-training, which further trains the transformed MoE model and additional gate networks. In this paper, we comprehensively explore different methods for expert construction and various data sampling strategies for continual pre-training. After these stages, our LLaMA-MoE models could maintain language abilities and route the input tokens to specific experts with part of the parameters activated. Empirically, by training 200B tokens, LLaMA-MoE-3.5B models significantly outperform dense models that contain similar activation parameters. The source codes and models are available at https://github.com/pjlab-sys4nlp/llama-moe .
☆ C-LLM: Learn to Check Chinese Spelling Errors Character by Character
Chinese Spell Checking (CSC) aims to detect and correct spelling errors in sentences. Despite Large Language Models (LLMs) exhibit robust capabilities and are widely applied in various tasks, their performance on CSC is often unsatisfactory. We find that LLMs fail to meet the Chinese character-level constraints of the CSC task, namely equal length and phonetic similarity, leading to a performance bottleneck. Further analysis reveal that this issue stems from the granularity of tokenization, as current mixed character-word tokenization struggles to satisfy these character-level constraints. To address this issue, we propose C-LLM, a Large Language Model-based Chinese Spell Checking method that learns to check errors Character by Character. Character-level tokenization enables the model to learn character-level alignment, effectively mitigating issues related to character-level constraints. Furthermore, CSC is simplified to replication-dominated and substitution-supplemented tasks. Experiments on two CSC benchmarks demonstrate that C-LLM achieves an average improvement of 10% over existing methods. Specifically, it shows a 2.1% improvement in general scenarios and a significant 12% improvement in vertical domain scenarios, establishing state-of-the-art performance. The source code can be accessed at https://github.com/ktlKTL/C-LLM.
☆ Token-based Decision Criteria Are Suboptimal in In-context Learning
In-Context Learning (ICL) typically utilizes classification criteria from probabilities of manually selected label tokens. However, we argue that such token-based classification criteria lead to suboptimal decision boundaries, despite delicate calibrations through translation and constrained rotation. To address this problem, we propose Hidden Calibration, which renounces token probabilities and uses the nearest centroid classifier on the LM's last hidden states. In detail, we use the nearest centroid classification on the hidden states, assigning the category of the nearest centroid previously observed from a few-shot calibration set to the test sample as the predicted label. Our experiments on 3 models and 10 classification datasets indicate that Hidden Calibration consistently outperforms current token-based calibrations by about 20%. Our further analysis demonstrates that Hidden Calibration finds better classification criteria with less inter-categories overlap, and LMs provide linearly separable intra-category clusters with the help of demonstrations, which supports Hidden Calibration and gives new insights into the conventional ICL.
comment: 21 pages, 14 figures, 8 tables
☆ Towards Better Graph-based Cross-document Relation Extraction via Non-bridge Entity Enhancement and Prediction Debiasing ACL 2024
Cross-document Relation Extraction aims to predict the relation between target entities located in different documents. In this regard, the dominant models commonly retain useful information for relation prediction via bridge entities, which allows the model to elaborately capture the intrinsic interdependence between target entities. However, these studies ignore the non-bridge entities, each of which co-occurs with only one target entity and offers the semantic association between target entities for relation prediction. Besides, the commonly-used dataset--CodRED contains substantial NA instances, leading to the prediction bias during inference. To address these issues, in this paper, we propose a novel graph-based cross-document RE model with non-bridge entity enhancement and prediction debiasing. Specifically, we use a unified entity graph to integrate numerous non-bridge entities with target entities and bridge entities, modeling various associations between them, and then use a graph recurrent network to encode this graph. Finally, we introduce a novel debiasing strategy to calibrate the original prediction distribution. Experimental results on the closed and open settings show that our model significantly outperforms all baselines, including the GPT-3.5-turbo and InstructUIE, achieving state-of-the-art performance. Particularly, our model obtains 66.23% and 55.87% AUC points in the official leaderboard\footnote{\url{https://codalab.lisn.upsaclay.fr/competitions/3770#results}} under the two settings, respectively, ranking the first place in all submissions since December 2023. Our code is available at https://github.com/DeepLearnXMU/CoRE-NEPD.
comment: Accepted to ACL 2024 Findings
☆ Evaluating the Ability of Large Language Models to Reason about Cardinal Directions
We investigate the abilities of a representative set of Large language Models (LLMs) to reason about cardinal directions (CDs). To do so, we create two datasets: the first, co-created with ChatGPT, focuses largely on recall of world knowledge about CDs; the second is generated from a set of templates, comprehensively testing an LLM's ability to determine the correct CD given a particular scenario. The templates allow for a number of degrees of variation such as means of locomotion of the agent involved, and whether set in the first , second or third person. Even with a temperature setting of zero, Our experiments show that although LLMs are able to perform well in the simpler dataset, in the second more complex dataset no LLM is able to reliably determine the correct CD, even with a temperature setting of zero.
comment: 9 pages, 3 figures, 1 table. Short paper accepted by COSIT 24, The 16th Conference on Spatial Information Theory
☆ SyROCCo: Enhancing Systematic Reviews using Machine Learning
The sheer number of research outputs published every year makes systematic reviewing increasingly time- and resource-intensive. This paper explores the use of machine learning techniques to help navigate the systematic review process. ML has previously been used to reliably 'screen' articles for review - that is, identify relevant articles based on reviewers' inclusion criteria. The application of ML techniques to subsequent stages of a review, however, such as data extraction and evidence mapping, is in its infancy. We therefore set out to develop a series of tools that would assist in the profiling and analysis of 1,952 publications on the theme of 'outcomes-based contracting'. Tools were developed for the following tasks: assign publications into 'policy area' categories; identify and extract key information for evidence mapping, such as organisations, laws, and geographical information; connect the evidence base to an existing dataset on the same topic; and identify subgroups of articles that may share thematic content. An interactive tool using these techniques and a public dataset with their outputs have been released. Our results demonstrate the utility of ML techniques to enhance evidence accessibility and analysis within the systematic review processes. These efforts show promise in potentially yielding substantial efficiencies for future systematic reviewing and for broadening their analytical scope. Our work suggests that there may be implications for the ease with which policymakers and practitioners can access evidence. While ML techniques seem poised to play a significant role in bridging the gap between research and policy by offering innovative ways of gathering, accessing, and analysing data from systematic reviews, we also highlight their current limitations and the need to exercise caution in their application, particularly given the potential for errors and biases.
comment: 28 pages, 5 figures. To appear in Data & Policy journal
☆ The Privileged Students: On the Value of Initialization in Multilingual Knowledge Distillation
Knowledge distillation (KD) has proven to be a successful strategy to improve the performance of a smaller model in many NLP tasks. However, most of the work in KD only explores monolingual scenarios. In this paper, we investigate the value of KD in multilingual settings. We find the significance of KD and model initialization by analyzing how well the student model acquires multilingual knowledge from the teacher model. Our proposed method emphasizes copying the teacher model's weights directly to the student model to enhance initialization. Our finding shows that model initialization using copy-weight from the fine-tuned teacher contributes the most compared to the distillation process itself across various multilingual settings. Furthermore, we demonstrate that efficient weight initialization preserves multilingual capabilities even in low-resource scenarios.
comment: 8 pages
☆ Carrot and Stick: Inducing Self-Motivation with Positive & Negative Feedback
Positive thinking is thought to be an important component of self-motivation in various practical fields such as education and the workplace. Previous work, including sentiment transfer and positive reframing, has focused on the positive side of language. However, self-motivation that drives people to reach their goals has not yet been studied from a computational perspective. Moreover, negative feedback has not yet been explored, even though positive and negative feedback are both necessary to grow self-motivation. To facilitate self-motivation, we propose CArrot and STICk (CASTIC) dataset, consisting of 12,590 sentences with 5 different strategies for enhancing self-motivation. Our data and code are publicly available at here.
comment: 10 pages, 8 figures
☆ Large Vocabulary Size Improves Large Language Models
This paper empirically investigates the relationship between subword vocabulary size and the performance of large language models (LLMs) to provide insights on how to define the vocabulary size. Experimental results show that larger vocabulary sizes lead to better performance in LLMs. Moreover, we consider a continual training scenario where a pre-trained language model is trained on a different target language. We introduce a simple method to use a new vocabulary instead of the pre-defined one. We show that using the new vocabulary outperforms the model with the vocabulary used in pre-training.
comment: Work in progress
☆ OTCE: Hybrid SSM and Attention with Cross Domain Mixture of Experts to construct Observer-Thinker-Conceiver-Expresser
Recent research has shown that combining Mamba with Transformer architecture, which has selective state space and quadratic self-attention mechanism, outperforms using Mamba or Transformer architecture alone in language modeling tasks. The quadratic self-attention mechanism effectively alleviates the shortcomings of selective state space in handling long-term dependencies of any element in the sequence. We propose a position information injection method that connects the selective state space model with the quadratic attention, and integrates these two architectures with hybrid experts with cross-sharing domains, so that we can enjoy the advantages of both. We design a new architecture with a more biomimetic idea: Observer-Thinker-Conceiver-Expresser (OTCE), which can compete with well-known medium-scale open-source language models on a small scale in language modeling tasks.
☆ eagerlearners at SemEval2024 Task 5: The Legal Argument Reasoning Task in Civil Procedure
This study investigates the performance of the zero-shot method in classifying data using three large language models, alongside two models with large input token sizes and the two pre-trained models on legal data. Our main dataset comes from the domain of U.S. civil procedure. It includes summaries of legal cases, specific questions, potential answers, and detailed explanations for why each solution is relevant, all sourced from a book aimed at law students. By comparing different methods, we aimed to understand how effectively they handle the complexities found in legal datasets. Our findings show how well the zero-shot method of large language models can understand complicated data. We achieved our highest F1 score of 64% in these experiments.
☆ Deepfake tweets automatic detection
This study addresses the critical challenge of detecting DeepFake tweets by leveraging advanced natural language processing (NLP) techniques to distinguish between genuine and AI-generated texts. Given the increasing prevalence of misinformation, our research utilizes the TweepFake dataset to train and evaluate various machine learning models. The objective is to identify effective strategies for recognizing DeepFake content, thereby enhancing the integrity of digital communications. By developing reliable methods for detecting AI-generated misinformation, this work contributes to a more trustworthy online information environment.
☆ EMMI -- Empathic Multimodal Motivational Interviews Dataset: Analyses and Annotations
The study of multimodal interaction in therapy can yield a comprehensive understanding of therapist and patient behavior that can be used to develop a multimodal virtual agent supporting therapy. This investigation aims to uncover how therapists skillfully blend therapy's task goal (employing classical steps of Motivational Interviewing) with the social goal (building a trusting relationship and expressing empathy). Furthermore, we seek to categorize patients into various ``types'' requiring tailored therapeutic approaches. To this intent, we present multimodal annotations of a corpus consisting of simulated motivational interviewing conversations, wherein actors portray the roles of patients and therapists. We introduce EMMI, composed of two publicly available MI corpora, AnnoMI and the Motivational Interviewing Dataset, for which we add multimodal annotations. We analyze these annotations to characterize functional behavior for developing a virtual agent performing motivational interviews emphasizing social and empathic behaviors. Our analysis found three clusters of patients expressing significant differences in behavior and adaptation of the therapist's behavior to those types. This shows the importance of a therapist being able to adapt their behavior depending on the current situation within the dialog and the type of user.
comment: 9 pages
☆ DaLPSR: Leverage Degradation-Aligned Language Prompt for Real-World Image Super-Resolution
Image super-resolution pursuits reconstructing high-fidelity high-resolution counterpart for low-resolution image. In recent years, diffusion-based models have garnered significant attention due to their capabilities with rich prior knowledge. The success of diffusion models based on general text prompts has validated the effectiveness of textual control in the field of text2image. However, given the severe degradation commonly presented in low-resolution images, coupled with the randomness characteristics of diffusion models, current models struggle to adequately discern semantic and degradation information within severely degraded images. This often leads to obstacles such as semantic loss, visual artifacts, and visual hallucinations, which pose substantial challenges for practical use. To address these challenges, this paper proposes to leverage degradation-aligned language prompt for accurate, fine-grained, and high-fidelity image restoration. Complementary priors including semantic content descriptions and degradation prompts are explored. Specifically, on one hand, image-restoration prompt alignment decoder is proposed to automatically discern the degradation degree of LR images, thereby generating beneficial degradation priors for image restoration. On the other hand, much richly tailored descriptions from pretrained multimodal large language model elicit high-level semantic priors closely aligned with human perception, ensuring fidelity control for image restoration. Comprehensive comparisons with state-of-the-art methods have been done on several popular synthetic and real-world benchmark datasets. The quantitative and qualitative analysis have demonstrated that the proposed method achieves a new state-of-the-art perceptual quality level, especially in real-world cases based on reference-free metrics.
☆ Evaluating Visual and Cultural Interpretation: The K-Viscuit Benchmark with Human-VLM Collaboration
To create culturally inclusive vision-language models (VLMs), the foremost requirement is developing a test benchmark that can diagnose the models' ability to respond to questions reflecting cultural elements. This paper addresses the necessity for such benchmarks, noting that existing research has relied on human annotators' manual efforts, which impedes diversity and efficiency. We propose a semi-automated pipeline for constructing cultural VLM benchmarks to enhance diversity and efficiency. This pipeline leverages human-VLM collaboration, where VLMs generate questions based on guidelines, human-annotated examples, and image-wise relevant knowledge, which are then reviewed by native speakers for quality and cultural relevance. The effectiveness of our adaptable pipeline is demonstrated through a specific application: creating a dataset tailored to Korean culture, dubbed K-Viscuit. The resulting benchmark features two types of questions: Type 1 questions measure visual recognition abilities, while Type 2 assess fine-grained visual reasoning skills. This ensures a thorough diagnosis of VLM models across various aspects. Our evaluation using K-Viscuit revealed that open-source models notably lag behind proprietary models in understanding Korean culture, highlighting areas for improvement. We provided diverse analyses of VLM performance across different cultural aspects. Besides, we explored the potential of incorporating external knowledge retrieval to enhance the generation process, suggesting future directions for improving cultural interpretation ability of VLMs. Our dataset and code will be made publicly available.
☆ InterCLIP-MEP: Interactive CLIP and Memory-Enhanced Predictor for Multi-modal Sarcasm Detection
The prevalence of sarcasm in social media, conveyed through text-image combinations, presents significant challenges for sentiment analysis and intention mining. Current multi-modal sarcasm detection methods have been proven to struggle with biases from spurious cues, leading to a superficial understanding of the complex interactions between text and image. To address these issues, we propose InterCLIP-MEP, a robust framework for multi-modal sarcasm detection. InterCLIP-MEP introduces a refined variant of CLIP, Interactive CLIP (InterCLIP), as the backbone, enhancing sample representations by embedding cross-modality information in each encoder. Furthermore, a novel training strategy is designed to adapt InterCLIP for a Memory-Enhanced Predictor (MEP). MEP uses dynamic dual-channel memory to store valuable historical knowledge of test samples and then leverages this memory as a non-parametric classifier to derive the final prediction. By using InterCLIP to encode text-image interactions more effectively and incorporating MEP, InterCLIP-MEP offers a more robust recognition of multi-modal sarcasm. Experiments demonstrate that InterCLIP-MEP achieves state-of-the-art performance on the MMSD2.0 benchmark. Code and data are available at [https://github.com/CoderChen01/InterCLIP-MEP](https://github.com/CoderChen01/InterCLIP-MEP).
comment: 8 pages, 6 figures, 6 tables
☆ Building on Efficient Foundations: Effectively Training LLMs with Structured Feedforward Layers
State-of-the-art results in large language models (LLMs) often rely on scale, which becomes computationally expensive. This has sparked a research agenda to reduce these models' parameter count and computational costs without significantly impacting their performance. Our study focuses on transformer-based LLMs, specifically targeting the computationally intensive feedforward networks (FFN), which are less studied than attention blocks. We consider three candidate linear layer approximations in the FFN by combining efficient low-rank and block-diagonal matrices. In contrast to many previous works that examined these approximations, our study i) explores these structures from the training-from-scratch perspective, ii) scales up to 1.3B parameters, and iii) is conducted within recent Transformer-based LLMs rather than convolutional architectures. We first demonstrate they can lead to actual computational gains in various scenarios, including online decoding when using a pre-merge technique. Additionally, we propose a novel training regime, called \textit{self-guided training}, aimed at improving the poor training dynamics that these approximations exhibit when used from initialization. Experiments on the large RefinedWeb dataset show that our methods are both efficient and effective for training and inference. Interestingly, these structured FFNs exhibit steeper scaling curves than the original models. Further applying self-guided training to the structured matrices with 32\% FFN parameters and 2.5$\times$ speed-up enables only a 0.4 perplexity increase under the same training FLOPs. Finally, we develop the wide and structured networks surpassing the current medium-sized and large-sized Transformer in perplexity and throughput performance. Our code is available at \url{https://github.com/CLAIRE-Labo/StructuredFFN/tree/main}.
☆ UniCoder: Scaling Code Large Language Model via Universal Code ACL 2024
Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
comment: Accepted by ACL 2024 (Main)
☆ Multilingual Knowledge Editing with Language-Agnostic Factual Neurons
Multilingual knowledge editing (MKE) aims to simultaneously revise factual knowledge across multilingual languages within large language models (LLMs). However, most existing MKE methods just adapt existing monolingual editing methods to multilingual scenarios, overlooking the deep semantic connections of the same factual knowledge between different languages, thereby limiting edit performance. To address this issue, we first investigate how LLMs represent multilingual factual knowledge and discover that the same factual knowledge in different languages generally activates a shared set of neurons, which we call language-agnostic factual neurons. These neurons represent the semantic connections between multilingual knowledge and are mainly located in certain layers. Inspired by this finding, we propose a new MKE method by locating and modifying Language-Agnostic Factual Neurons (LAFN) to simultaneously edit multilingual knowledge. Specifically, we first generate a set of paraphrases for each multilingual knowledge to be edited to precisely locate the corresponding language-agnostic factual neurons. Then we optimize the update values for modifying these located neurons to achieve simultaneous modification of the same factual knowledge in multiple languages. Experimental results on Bi-ZsRE and MzsRE benchmarks demonstrate that our method outperforms existing MKE methods and achieves remarkable edit performance, indicating the importance of considering the semantic connections among multilingual knowledge.
comment: 12 pages, 4 figures, 7 tables
☆ A Symmetry Property of Christoffel Words SC
Motivated by the theory of trapezoidal words, whose sequences of cardinality of factors by length are symmetric, we introduce a bivariate variant of this symmetry. We show that this symmetry characterizes Christoffel words, and establish other related results.
comment: In Proceedings GASCom 2024, arXiv:2406.14588
☆ UNO Arena for Evaluating Sequential Decision-Making Capability of Large Language Models
Sequential decision-making refers to algorithms that take into account the dynamics of the environment, where early decisions affect subsequent decisions. With large language models (LLMs) demonstrating powerful capabilities between tasks, we can't help but ask: Can Current LLMs Effectively Make Sequential Decisions? In order to answer this question, we propose the UNO Arena based on the card game UNO to evaluate the sequential decision-making capability of LLMs and explain in detail why we choose UNO. In UNO Arena, We evaluate the sequential decision-making capability of LLMs dynamically with novel metrics based Monte Carlo methods. We set up random players, DQN-based reinforcement learning players, and LLM players (e.g. GPT-4, Gemini-pro) for comparison testing. Furthermore, in order to improve the sequential decision-making capability of LLMs, we propose the TUTRI player, which can involves having LLMs reflect their own actions wtih the summary of game history and the game strategy. Numerous experiments demonstrate that the TUTRI player achieves a notable breakthrough in the performance of sequential decision-making compared to the vanilla LLM player.
☆ On the Transformations across Reward Model, Parameter Update, and In-Context Prompt
Despite the general capabilities of pre-trained large language models (LLMs), they still need further adaptation to better serve practical applications. In this paper, we demonstrate the interchangeability of three popular and distinct adaptation tools: parameter updating, reward modeling, and in-context prompting. This interchangeability establishes a triangular framework with six transformation directions, each of which facilitates a variety of applications. Our work offers a holistic view that unifies numerous existing studies and suggests potential research directions. We envision our work as a useful roadmap for future research on LLMs.
☆ KEHRL: Learning Knowledge-Enhanced Language Representations with Hierarchical Reinforcement Learning
Knowledge-enhanced pre-trained language models (KEPLMs) leverage relation triples from knowledge graphs (KGs) and integrate these external data sources into language models via self-supervised learning. Previous works treat knowledge enhancement as two independent operations, i.e., knowledge injection and knowledge integration. In this paper, we propose to learn Knowledge-Enhanced language representations with Hierarchical Reinforcement Learning (KEHRL), which jointly addresses the problems of detecting positions for knowledge injection and integrating external knowledge into the model in order to avoid injecting inaccurate or irrelevant knowledge. Specifically, a high-level reinforcement learning (RL) agent utilizes both internal and prior knowledge to iteratively detect essential positions in texts for knowledge injection, which filters out less meaningful entities to avoid diverting the knowledge learning direction. Once the entity positions are selected, a relevant triple filtration module is triggered to perform low-level RL to dynamically refine the triples associated with polysemic entities through binary-valued actions. Experiments validate KEHRL's effectiveness in probing factual knowledge and enhancing the model's performance on various natural language understanding tasks.
☆ UniPSDA: Unsupervised Pseudo Semantic Data Augmentation for Zero-Shot Cross-Lingual Natural Language Understanding
Cross-lingual representation learning transfers knowledge from resource-rich data to resource-scarce ones to improve the semantic understanding abilities of different languages. However, previous works rely on shallow unsupervised data generated by token surface matching, regardless of the global context-aware semantics of the surrounding text tokens. In this paper, we propose an Unsupervised Pseudo Semantic Data Augmentation (UniPSDA) mechanism for cross-lingual natural language understanding to enrich the training data without human interventions. Specifically, to retrieve the tokens with similar meanings for the semantic data augmentation across different languages, we propose a sequential clustering process in 3 stages: within a single language, across multiple languages of a language family, and across languages from multiple language families. Meanwhile, considering the multi-lingual knowledge infusion with context-aware semantics while alleviating computation burden, we directly replace the key constituents of the sentences with the above-learned multi-lingual family knowledge, viewed as pseudo-semantic. The infusion process is further optimized via three de-biasing techniques without introducing any neural parameters. Extensive experiments demonstrate that our model consistently improves the performance on general zero-shot cross-lingual natural language understanding tasks, including sequence classification, information extraction, and question answering.
☆ Evaluation of Instruction-Following Ability for Large Language Models on Story-Ending Generation
Instruction-tuned Large Language Models (LLMs) have achieved remarkable performance across various benchmark tasks. While providing instructions to LLMs for guiding their generations is user-friendly, assessing their instruction-following capabilities is still unclarified due to a lack of evaluation metrics. In this paper, we focus on evaluating the instruction-following ability of LLMs in the context of story-ending generation, which requires diverse and context-specific instructions. We propose an automatic evaluation pipeline that utilizes a machine reading comprehension (MRC) model to determine whether the generated story-ending reflects instruction. Our findings demonstrate that our proposed metric aligns with human evaluation. Furthermore, our experiments confirm that recent open-source LLMs can achieve instruction-following performance close to GPT-3.5, as assessed through automatic evaluation.
☆ ADVSCORE: A Metric for the Evaluation and Creation of Adversarial Benchmarks
Adversarial benchmarks validate model abilities by providing samples that fool models but not humans. However, despite the proliferation of datasets that claim to be adversarial, there does not exist an established metric to evaluate how adversarial these datasets are. To address this lacuna, we introduce ADVSCORE, a metric which quantifies how adversarial and discriminative an adversarial dataset is and exposes the features that make data adversarial. We then use ADVSCORE to underpin a dataset creation pipeline that incentivizes writing a high-quality adversarial dataset. As a proof of concept, we use ADVSCORE to collect an adversarial question answering (QA) dataset, ADVQA, from our pipeline. The high-quality questions in ADVQA surpasses three adversarial benchmarks across domains at fooling several models but not humans. We validate our result based on difficulty estimates from 9,347 human responses on four datasets and predictions from three models. Moreover, ADVSCORE uncovers which adversarial tactics used by human writers fool models (e.g., GPT-4) but not humans. Through ADVSCORE and its analyses, we offer guidance on revealing language model vulnerabilities and producing reliable adversarial examples.
comment: arXiv admin note: substantial text overlap with arXiv:2401.11185
☆ EHRCon: Dataset for Checking Consistency between Unstructured Notes and Structured Tables in Electronic Health Records
Electronic Health Records (EHRs) are integral for storing comprehensive patient medical records, combining structured data (e.g., medications) with detailed clinical notes (e.g., physician notes). These elements are essential for straightforward data retrieval and provide deep, contextual insights into patient care. However, they often suffer from discrepancies due to unintuitive EHR system designs and human errors, posing serious risks to patient safety. To address this, we developed EHRCon, a new dataset and task specifically designed to ensure data consistency between structured tables and unstructured notes in EHRs. EHRCon was crafted in collaboration with healthcare professionals using the MIMIC-III EHR dataset, and includes manual annotations of 3,943 entities across 105 clinical notes checked against database entries for consistency. EHRCon has two versions, one using the original MIMIC-III schema, and another using the OMOP CDM schema, in order to increase its applicability and generalizability. Furthermore, leveraging the capabilities of large language models, we introduce CheckEHR, a novel framework for verifying the consistency between clinical notes and database tables. CheckEHR utilizes an eight-stage process and shows promising results in both few-shot and zero-shot settings. The code is available at https://github.com/dustn1259/EHRCon.
☆ DemoRank: Selecting Effective Demonstrations for Large Language Models in Ranking Task
Recently, there has been increasing interest in applying large language models (LLMs) as zero-shot passage rankers. However, few studies have explored how to select appropriate in-context demonstrations for the passage ranking task, which is the focus of this paper. Previous studies mainly apply a demonstration retriever to retrieve demonstrations and use top-$k$ demonstrations for in-context learning (ICL). Although effective, this approach overlooks the dependencies between demonstrations, leading to inferior performance of few-shot ICL in the passage ranking task. In this paper, we formulate the demonstration selection as a \textit{retrieve-then-rerank} process and introduce the DemoRank framework. In this framework, we first use LLM feedback to train a demonstration retriever and construct a novel dependency-aware training samples to train a demonstration reranker to improve few-shot ICL. The construction of such training samples not only considers demonstration dependencies but also performs in an efficient way. Extensive experiments demonstrate DemoRank's effectiveness in in-domain scenarios and strong generalization to out-of-domain scenarios. Our codes are available at~\url{https://github.com/8421BCD/DemoRank}.
☆ Pruning via Merging: Compressing LLMs via Manifold Alignment Based Layer Merging
While large language models (LLMs) excel in many domains, their complexity and scale challenge deployment in resource-limited environments. Current compression techniques, such as parameter pruning, often fail to effectively utilize the knowledge from pruned parameters. To address these challenges, we propose Manifold-Based Knowledge Alignment and Layer Merging Compression (MKA), a novel approach that uses manifold learning and the Normalized Pairwise Information Bottleneck (NPIB) measure to merge similar layers, reducing model size while preserving essential performance. We evaluate MKA on multiple benchmark datasets and various LLMs. Our findings show that MKA not only preserves model performance but also achieves substantial compression ratios, outperforming traditional pruning methods. Moreover, when coupled with quantization, MKA delivers even greater compression. Specifically, on the MMLU dataset using the Llama3-8B model, MKA achieves a compression ratio of 43.75% with a minimal performance decrease of only 2.82\%. The proposed MKA method offers a resource-efficient and performance-preserving model compression technique for LLMs.
☆ What Do VLMs NOTICE? A Mechanistic Interpretability Pipeline for Noise-free Text-Image Corruption and Evaluation
Vision-Language Models (VLMs) have gained community-spanning prominence due to their ability to integrate visual and textual inputs to perform complex tasks. Despite their success, the internal decision-making processes of these models remain opaque, posing challenges in high-stakes applications. To address this, we introduce NOTICE, the first Noise-free Text-Image Corruption and Evaluation pipeline for mechanistic interpretability in VLMs. NOTICE incorporates a Semantic Minimal Pairs (SMP) framework for image corruption and Symmetric Token Replacement (STR) for text. This approach enables semantically meaningful causal mediation analysis for both modalities, providing a robust method for analyzing multimodal integration within models like BLIP. Our experiments on the SVO-Probes, MIT-States, and Facial Expression Recognition datasets reveal crucial insights into VLM decision-making, identifying the significant role of middle-layer cross-attention heads. Further, we uncover a set of ``universal cross-attention heads'' that consistently contribute across tasks and modalities, each performing distinct functions such as implicit image segmentation, object inhibition, and outlier inhibition. This work paves the way for more transparent and interpretable multimodal systems.
☆ Modelled Multivariate Overlap: A method for measuring vowel merger
This paper introduces a novel method for quantifying vowel overlap. There is a tension in previous work between using multivariate measures, such as those derived from empirical distributions, and the ability to control for unbalanced data and extraneous factors, as is possible when using fitted model parameters. The method presented here resolves this tension by jointly modelling all acoustic dimensions of interest and by simulating distributions from the model to compute a measure of vowel overlap. An additional benefit of this method is that computation of uncertainty becomes straightforward. We evaluate this method on corpus speech data targeting the PIN-PEN merger in four dialects of English and find that using modelled distributions to calculate Bhattacharyya affinity substantially improves results compared to empirical distributions, while the difference between multivariate and univariate modelling is subtle.
comment: Accepted to Interspeech 2024
☆ Does Cross-Cultural Alignment Change the Commonsense Morality of Language Models? ACL 2024
Alignment of the language model with human preferences is a common approach to making a language model useful to end users. However, most alignment work is done in English, and human preference datasets are dominated by English, reflecting only the preferences of English-speaking annotators. Nevertheless, it is common practice to use the English preference data, either directly or by translating it into the target language, when aligning a multilingual language model. The question is whether such an alignment strategy marginalizes the preference of non-English speaking users. To this end, we investigate the effect of aligning Japanese language models with (mostly) English resources. In particular, we focus on evaluating whether the commonsense morality of the resulting fine-tuned models is aligned with Japanese culture using the JCommonsenseMorality (JCM) and ETHICS datasets. The experimental results show that the fine-tuned model outperforms the SFT model. However, it does not demonstrate the same level of improvement as a model fine-tuned using the JCM, suggesting that while some aspects of commonsense morality are transferable, others may not be.
comment: The 2nd Workshop on Cross-Cultural Considerations in NLP (C3NLP) at ACL 2024
☆ Song Data Cleansing for End-to-End Neural Singer Diarization Using Neural Analysis and Synthesis Framework INTERSPEECH 2024
We propose a data cleansing method that utilizes a neural analysis and synthesis (NANSY++) framework to train an end-to-end neural diarization model (EEND) for singer diarization. Our proposed model converts song data with choral singing which is commonly contained in popular music and unsuitable for generating a simulated dataset to the solo singing data. This cleansing is based on NANSY++, which is a framework trained to reconstruct an input non-overlapped audio signal. We exploit the pre-trained NANSY++ to convert choral singing into clean, non-overlapped audio. This cleansing process mitigates the mislabeling of choral singing to solo singing and helps the effective training of EEND models even when the majority of available song data contains choral singing sections. We experimentally evaluated the EEND model trained with a dataset using our proposed method using annotated popular duet songs. As a result, our proposed method improved 14.8 points in diarization error rate.
comment: INTERSPEECH 2024 accepted
☆ Anomaly Detection of Tabular Data Using LLMs
Large language models (LLMs) have shown their potential in long-context understanding and mathematical reasoning. In this paper, we study the problem of using LLMs to detect tabular anomalies and show that pre-trained LLMs are zero-shot batch-level anomaly detectors. That is, without extra distribution-specific model fitting, they can discover hidden outliers in a batch of data, demonstrating their ability to identify low-density data regions. For LLMs that are not well aligned with anomaly detection and frequently output factual errors, we apply simple yet effective data-generating processes to simulate synthetic batch-level anomaly detection datasets and propose an end-to-end fine-tuning strategy to bring out the potential of LLMs in detecting real anomalies. Experiments on a large anomaly detection benchmark (ODDS) showcase i) GPT-4 has on-par performance with the state-of-the-art transductive learning-based anomaly detection methods and ii) the efficacy of our synthetic dataset and fine-tuning strategy in aligning LLMs to this task.
comment: accepted at the Anomaly Detection with Foundation Models workshop
☆ Cascade Reward Sampling for Efficient Decoding-Time Alignment
Aligning large language models (LLMs) with human preferences is critical for their deployment. Recently, decoding-time alignment has emerged as an effective plug-and-play technique that requires no fine-tuning of model parameters. However, generating text that achieves both high reward and high likelihood remains a significant challenge. Existing methods often fail to generate high-reward text or incur substantial computational costs. In this paper, we propose Cascade Reward Sampling (CARDS) to address both issues, guaranteeing the generation of high-reward and high-likelihood text with significantly low costs. Based on our analysis of reward models (RMs) on incomplete text and our observation that high-reward prefixes induce high-reward complete text, we use rejection sampling to iteratively generate small semantic segments to form such prefixes. The segment length is dynamically determined by the predictive uncertainty of LLMs. This strategy guarantees desirable prefixes for subsequent generations and significantly reduces wasteful token re-generations and the number of reward model scoring. Our experiments demonstrate substantial gains in both generation efficiency and alignment ratings compared to the baselines, achieving five times faster text generation and 99\% win-ties in GPT-4/Claude-3 helpfulness evaluation.
☆ Compensate Quantization Errors: Make Weights Hierarchical to Compensate Each Other
Emergent Large Language Models (LLMs) use their extraordinary performance and powerful deduction capacity to discern from traditional language models. However, the expenses of computational resources and storage for these LLMs are stunning, quantization then arises as a trending conversation. To address accuracy decay caused by quantization, two streams of works in post-training quantization methods stand out. One uses other weights to compensate existing quantization error, while the other transfers the quantization difficulty to other parts in the model. Combining both merits, we introduce Learnable Singular value Increment (LSI) as an advanced solution. LSI uses Singular Value Decomposition to extract singular values of the weights and make them learnable to help weights compensate each other conditioned on activation. Incorporating LSI with existing techniques, we achieve state-of-the-art performance in diverse quantization settings, no matter in weight-only, weight-activation or extremely low bit scenarios. By unleashing the potential of LSI, efficient finetuning on quantized model is no longer a prohibitive problem.
comment: Efficient quantization method
☆ LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments
Recent advances in Large Language Models (LLMs) have shown inspiring achievements in constructing autonomous agents that rely on language descriptions as inputs. However, it remains unclear how well LLMs can function as few-shot or zero-shot embodied agents in dynamic interactive environments. To address this gap, we introduce LangSuitE, a versatile and simulation-free testbed featuring 6 representative embodied tasks in textual embodied worlds. Compared with previous LLM-based testbeds, LangSuitE (i) offers adaptability to diverse environments without multiple simulation engines, (ii) evaluates agents' capacity to develop ``internalized world knowledge'' with embodied observations, and (iii) allows easy customization of communication and action strategies. To address the embodiment challenge, we devise a novel chain-of-thought (CoT) schema, EmMem, which summarizes embodied states w.r.t. history information. Comprehensive benchmark results illustrate challenges and insights of embodied planning. LangSuitE represents a significant step toward building embodied generalists in the context of language models.
☆ Combining Supervised Learning and Reinforcement Learning for Multi-Label Classification Tasks with Partial Labels
Traditional supervised learning heavily relies on human-annotated datasets, especially in data-hungry neural approaches. However, various tasks, especially multi-label tasks like document-level relation extraction, pose challenges in fully manual annotation due to the specific domain knowledge and large class sets. Therefore, we address the multi-label positive-unlabelled learning (MLPUL) problem, where only a subset of positive classes is annotated. We propose Mixture Learner for Partially Annotated Classification (MLPAC), an RL-based framework combining the exploration ability of reinforcement learning and the exploitation ability of supervised learning. Experimental results across various tasks, including document-level relation extraction, multi-label image classification, and binary PU learning, demonstrate the generalization and effectiveness of our framework.
☆ PlagBench: Exploring the Duality of Large Language Models in Plagiarism Generation and Detection
Recent literature has highlighted potential risks to academic integrity associated with large language models (LLMs), as they can memorize parts of training instances and reproduce them in the generated texts without proper attribution. In addition, given their capabilities in generating high-quality texts, plagiarists can exploit LLMs to generate realistic paraphrases or summaries indistinguishable from original work. In response to possible malicious use of LLMs in plagiarism, we introduce PlagBench, a comprehensive dataset consisting of 46.5K synthetic plagiarism cases generated using three instruction-tuned LLMs across three writing domains. The quality of PlagBench is ensured through fine-grained automatic evaluation for each type of plagiarism, complemented by human annotation. We then leverage our proposed dataset to evaluate the plagiarism detection performance of five modern LLMs and three specialized plagiarism checkers. Our findings reveal that GPT-3.5 tends to generates paraphrases and summaries of higher quality compared to Llama2 and GPT-4. Despite LLMs' weak performance in summary plagiarism identification, they can surpass current commercial plagiarism detectors. Overall, our results highlight the potential of LLMs to serve as robust plagiarism detection tools.
comment: 9 pages
☆ Investigating the Influence of Prompt-Specific Shortcuts in AI Generated Text Detection
AI Generated Text (AIGT) detectors are developed with texts from humans and LLMs of common tasks. Despite the diversity of plausible prompt choices, these datasets are generally constructed with a limited number of prompts. The lack of prompt variation can introduce prompt-specific shortcut features that exist in data collected with the chosen prompt, but do not generalize to others. In this paper, we analyze the impact of such shortcuts in AIGT detection. We propose Feedback-based Adversarial Instruction List Optimization (FAILOpt), an attack that searches for instructions deceptive to AIGT detectors exploiting prompt-specific shortcuts. FAILOpt effectively drops the detection performance of the target detector, comparable to other attacks based on adversarial in-context examples. We also utilize our method to enhance the robustness of the detector by mitigating the shortcuts. Based on the findings, we further train the classifier with the dataset augmented by FAILOpt prompt. The augmented classifier exhibits improvements across generation models, tasks, and attacks. Our code will be available at https://github.com/zxcvvxcz/FAILOpt.
comment: 19 pages, 3 figures, 13 tables, under review
☆ One Thousand and One Pairs: A "novel" challenge for long-context language models
Synthetic long-context LLM benchmarks (e.g., "needle-in-the-haystack") test only surface-level retrieval capabilities, but how well can long-context LLMs retrieve, synthesize, and reason over information across book-length inputs? We address this question by creating NoCha, a dataset of 1,001 minimally different pairs of true and false claims about 67 recently-published English fictional books, written by human readers of those books. In contrast to existing long-context benchmarks, our annotators confirm that the largest share of pairs in NoCha require global reasoning over the entire book to verify. Our experiments show that while human readers easily perform this task, it is enormously challenging for all ten long-context LLMs that we evaluate: no open-weight model performs above random chance (despite their strong performance on synthetic benchmarks), while GPT-4o achieves the highest accuracy at 55.8%. Further analysis reveals that (1) on average, models perform much better on pairs that require only sentence-level retrieval vs. global reasoning; (2) model-generated explanations for their decisions are often inaccurate even for correctly-labeled claims; and (3) models perform substantially worse on speculative fiction books that contain extensive world-building. The methodology proposed in NoCha allows for the evolution of the benchmark dataset and the easy analysis of future models.
comment: preprint, 29 pages
☆ Confidence Regulation Neurons in Language Models
Despite their widespread use, the mechanisms by which large language models (LLMs) represent and regulate uncertainty in next-token predictions remain largely unexplored. This study investigates two critical components believed to influence this uncertainty: the recently discovered entropy neurons and a new set of components that we term token frequency neurons. Entropy neurons are characterized by an unusually high weight norm and influence the final layer normalization (LayerNorm) scale to effectively scale down the logits. Our work shows that entropy neurons operate by writing onto an unembedding null space, allowing them to impact the residual stream norm with minimal direct effect on the logits themselves. We observe the presence of entropy neurons across a range of models, up to 7 billion parameters. On the other hand, token frequency neurons, which we discover and describe here for the first time, boost or suppress each token's logit proportionally to its log frequency, thereby shifting the output distribution towards or away from the unigram distribution. Finally, we present a detailed case study where entropy neurons actively manage confidence in the setting of induction, i.e. detecting and continuing repeated subsequences.
comment: 25 pages, 14 figures
LLMs assist NLP Researchers: Critique Paper (Meta-)Reviewing
This work is motivated by two key trends. On one hand, large language models (LLMs) have shown remarkable versatility in various generative tasks such as writing, drawing, and question answering, significantly reducing the time required for many routine tasks. On the other hand, researchers, whose work is not only time-consuming but also highly expertise-demanding, face increasing challenges as they have to spend more time reading, writing, and reviewing papers. This raises the question: how can LLMs potentially assist researchers in alleviating their heavy workload? This study focuses on the topic of LLMs assist NLP Researchers, particularly examining the effectiveness of LLM in assisting paper (meta-)reviewing and its recognizability. To address this, we constructed the ReviewCritique dataset, which includes two types of information: (i) NLP papers (initial submissions rather than camera-ready) with both human-written and LLM-generated reviews, and (ii) each review comes with "deficiency" labels and corresponding explanations for individual segments, annotated by experts. Using ReviewCritique, this study explores two threads of research questions: (i) "LLMs as Reviewers", how do reviews generated by LLMs compare with those written by humans in terms of quality and distinguishability? (ii) "LLMs as Metareviewers", how effectively can LLMs identify potential issues, such as Deficient or unprofessional review segments, within individual paper reviews? To our knowledge, this is the first work to provide such a comprehensive analysis.
☆ CLERC: A Dataset for Legal Case Retrieval and Retrieval-Augmented Analysis Generation
Legal professionals need to write analyses that rely on citations to relevant precedents, i.e., previous case decisions. Intelligent systems assisting legal professionals in writing such documents provide great benefits but are challenging to design. Such systems need to help locate, summarize, and reason over salient precedents in order to be useful. To enable systems for such tasks, we work with legal professionals to transform a large open-source legal corpus into a dataset supporting two important backbone tasks: information retrieval (IR) and retrieval-augmented generation (RAG). This dataset CLERC (Case Law Evaluation Retrieval Corpus), is constructed for training and evaluating models on their ability to (1) find corresponding citations for a given piece of legal analysis and to (2) compile the text of these citations (as well as previous context) into a cogent analysis that supports a reasoning goal. We benchmark state-of-the-art models on CLERC, showing that current approaches still struggle: GPT-4o generates analyses with the highest ROUGE F-scores but hallucinates the most, while zero-shot IR models only achieve 48.3% recall@1000.
☆ Vaporetto: Efficient Japanese Tokenization Based on Improved Pointwise Linear Classification
This paper proposes an approach to improve the runtime efficiency of Japanese tokenization based on the pointwise linear classification (PLC) framework, which formulates the whole tokenization process as a sequence of linear classification problems. Our approach optimizes tokenization by leveraging the characteristics of the PLC framework and the task definition. Our approach involves (1) composing multiple classifications into array-based operations, (2) efficient feature lookup with memory-optimized automata, and (3) three orthogonal pre-processing methods for reducing actual score calculation. Thus, our approach makes the tokenization speed 5.7 times faster than the current approach based on the same model without decreasing tokenization accuracy. Our implementation is available at https://github.com/daac-tools/vaporetto under the MIT or Apache-2.0 license.
☆ Multi-LogiEval: Towards Evaluating Multi-Step Logical Reasoning Ability of Large Language Models
As Large Language Models (LLMs) continue to exhibit remarkable performance in natural language understanding tasks, there is a crucial need to measure their ability for human-like multi-step logical reasoning. Existing logical reasoning evaluation benchmarks often focus primarily on simplistic single-step or multi-step reasoning with a limited set of inference rules. Furthermore, the lack of datasets for evaluating non-monotonic reasoning represents a crucial gap since it aligns more closely with human-like reasoning. To address these limitations, we propose Multi-LogiEval, a comprehensive evaluation dataset encompassing multi-step logical reasoning with various inference rules and depths. Multi-LogiEval covers three logic types--propositional, first-order, and non-monotonic--consisting of more than 30 inference rules and more than 60 of their combinations with various depths. Leveraging this dataset, we conduct evaluations on a range of LLMs including GPT-4, ChatGPT, Gemini-Pro, Yi, Orca, and Mistral, employing a zero-shot chain-of-thought. Experimental results show that there is a significant drop in the performance of LLMs as the reasoning steps/depth increases (average accuracy of ~68% at depth-1 to ~43% at depth-5). We further conduct a thorough investigation of reasoning chains generated by LLMs which reveals several important findings. We believe that Multi-LogiEval facilitates future research for evaluating and enhancing the logical reasoning ability of LLMs. Data is available at https://github.com/Mihir3009/Multi-LogiEval.
comment: 23 Pages
☆ Paraphrase and Aggregate with Large Language Models for Minimizing Intent Classification Errors SIGIR 2024
Large language models (LLM) have achieved remarkable success in natural language generation but lesser focus has been given to their applicability in decision making tasks such as classification. We show that LLMs like LLaMa can achieve high performance on large multi-class classification tasks but still make classification errors and worse, generate out-of-vocabulary class labels. To address these critical issues, we introduce Paraphrase and AGgregate (PAG)-LLM approach wherein an LLM generates multiple paraphrases of the input query (parallel queries), performs multi-class classification for the original query and each paraphrase, and at the end aggregate all the classification labels based on their confidence scores. We evaluate PAG-LLM on two large multi-class classication datasets: CLINC, and Banking and show 22.7% and 15.1% error reduction. We show that PAG-LLM is especially effective for hard examples where LLM is uncertain, and reduces the critical misclassification and hallucinated label generation errors
comment: Accepted at SIGIR 2024
☆ DEXTER: A Benchmark for open-domain Complex Question Answering using LLMs
Open-domain complex Question Answering (QA) is a difficult task with challenges in evidence retrieval and reasoning. The complexity of such questions could stem from questions being compositional, hybrid evidence, or ambiguity in questions. While retrieval performance for classical QA tasks is well explored, their capabilities for heterogeneous complex retrieval tasks, especially in an open-domain setting, and the impact on downstream QA performance, are relatively unexplored. To address this, in this work, we propose a benchmark composing diverse complex QA tasks and provide a toolkit to evaluate state-of-the-art pre-trained dense and sparse retrieval models in an open-domain setting. We observe that late interaction models and surprisingly lexical models like BM25 perform well compared to other pre-trained dense retrieval models. In addition, since context-based reasoning is critical for solving complex QA tasks, we also evaluate the reasoning capabilities of LLMs and the impact of retrieval performance on their reasoning capabilities. Through experiments, we observe that much progress is to be made in retrieval for complex QA to improve downstream QA performance. Our software and related data can be accessed at https://github.com/VenkteshV/DEXTER
comment: under submission, 22 pages
☆ Testing network clustering algorithms with Natural Language Processing
The advent of online social networks has led to the development of an abundant literature on the study of online social groups and their relationship to individuals' personalities as revealed by their textual productions. Social structures are inferred from a wide range of social interactions. Those interactions form complex -- sometimes multi-layered -- networks, on which community detection algorithms are applied to extract higher order structures. The choice of the community detection algorithm is however hardily questioned in relation with the cultural production of the individual they classify. In this work, we assume the entangled nature of social networks and their cultural production to propose a definition of cultural based online social groups as sets of individuals whose online production can be categorized as social group-related. We take advantage of this apparently self-referential description of online social groups with a hybrid methodology that combines a community detection algorithm and a natural language processing classification algorithm. A key result of this analysis is the possibility to score community detection algorithms using their agreement with the natural language processing classification. A second result is that we can assign the opinion of a random user at >85% accuracy.
comment: 10 pages, 8 figures
☆ Automated Adversarial Discovery for Safety Classifiers NAACL 2024
Safety classifiers are critical in mitigating toxicity on online forums such as social media and in chatbots. Still, they continue to be vulnerable to emergent, and often innumerable, adversarial attacks. Traditional automated adversarial data generation methods, however, tend to produce attacks that are not diverse, but variations of previously observed harm types. We formalize the task of automated adversarial discovery for safety classifiers - to find new attacks along previously unseen harm dimensions that expose new weaknesses in the classifier. We measure progress on this task along two key axes (1) adversarial success: does the attack fool the classifier? and (2) dimensional diversity: does the attack represent a previously unseen harm type? Our evaluation of existing attack generation methods on the CivilComments toxicity task reveals their limitations: Word perturbation attacks fail to fool classifiers, while prompt-based LLM attacks have more adversarial success, but lack dimensional diversity. Even our best-performing prompt-based method finds new successful attacks on unseen harm dimensions of attacks only 5\% of the time. Automatically finding new harmful dimensions of attack is crucial and there is substantial headroom for future research on our new task.
comment: Published at Fourth Workshop on TrustworthyNLP (TrustNLP) at NAACL 2024
☆ Attention Instruction: Amplifying Attention in the Middle via Prompting
The context window of large language models has been extended to 128k tokens or more. However, language models still suffer from position bias and have difficulty in accessing and using the middle part of the context due to the lack of attention. We examine the relative position awareness of LLMs and the feasibility of mitigating disproportional attention through prompting. We augment the original task instruction with $\texttt{attention instructions}$ that direct language models to allocate more attention towards a selected segment of the context. We conduct a comprehensive investigation on multi-document question answering task with both position-based and index-based instructions. We find that language models do not have relative position awareness of the context. Nevertheless, they demonstrate the capacity to adapt attention to a specific segment using matching indexes. Our analysis contributes to a deeper understanding of position bias in LLMs and provides a pathway to mitigate this bias by instruction, thus benefiting LLMs in locating and utilizing relevant information from retrieved documents in RAG applications.
Large Language Models Assume People are More Rational than We Really are
In order for AI systems to communicate effectively with people, they must understand how we make decisions. However, people's decisions are not always rational, so the implicit internal models of human decision-making in Large Language Models (LLMs) must account for this. Previous empirical evidence seems to suggest that these implicit models are accurate -- LLMs offer believable proxies of human behavior, acting how we expect humans would in everyday interactions. However, by comparing LLM behavior and predictions to a large dataset of human decisions, we find that this is actually not the case: when both simulating and predicting people's choices, a suite of cutting-edge LLMs (GPT-4o & 4-Turbo, Llama-3-8B & 70B, Claude 3 Opus) assume that people are more rational than we really are. Specifically, these models deviate from human behavior and align more closely with a classic model of rational choice -- expected value theory. Interestingly, people also tend to assume that other people are rational when interpreting their behavior. As a consequence, when we compare the inferences that LLMs and people draw from the decisions of others using another psychological dataset, we find that these inferences are highly correlated. Thus, the implicit decision-making models of LLMs appear to be aligned with the human expectation that other people will act rationally, rather than with how people actually act.
☆ modeLing: A Novel Dataset for Testing Linguistic Reasoning in Language Models
We introduce modeLing, a novel benchmark of Linguistics Olympiad-style puzzles which tests few-shot reasoning in AI systems. Solving these puzzles necessitates inferring aspects of a language's grammatical structure from a small number of examples. Such puzzles provide a natural testbed for language models, as they require compositional generalization and few-shot inductive reasoning. Consisting solely of new puzzles written specifically for this work, modeLing has no risk of appearing in the training data of existing AI systems: this ameliorates the risk of data leakage, a potential confounder for many prior evaluations of reasoning. Evaluating several large open source language models and GPT on our benchmark, we observe non-negligible accuracy, demonstrating few-shot emergent reasoning ability which cannot merely be attributed to shallow memorization. However, imperfect model performance suggests that modeLing can be used to measure further progress in linguistic reasoning.
♻ ☆ Reward Steering with Evolutionary Heuristics for Decoding-time Alignment
The widespread applicability and increasing omnipresence of LLMs have instigated a need to align LLM responses to user and stakeholder preferences. Many preference optimization approaches have been proposed that fine-tune LLM parameters to achieve good alignment. However, such parameter tuning is known to interfere with model performance on many tasks. Moreover, keeping up with shifting user preferences is tricky in such a situation. Decoding-time alignment with reward model guidance solves these issues at the cost of increased inference time. However, most of such methods fail to strike the right balance between exploration and exploitation of reward -- often due to the conflated formulation of these two aspects - to give well-aligned responses. To remedy this we decouple these two aspects and implement them in an evolutionary fashion: exploration is enforced by decoding from mutated instructions and exploitation is represented as the periodic replacement of poorly-rewarded generations with well-rewarded ones. Empirical evidences indicate that this strategy outperforms many preference optimization and decode-time alignment approaches on two widely accepted alignment benchmarks AlpacaEval 2 and MT-Bench. Our implementation will be available at: https://darwin-alignment.github.io.
♻ ☆ Low-Resource Multi-Granularity Academic Function Recognition Based on Multiple Prompt Knowledge
Fine-tuning pre-trained language models (PLMs), e.g., SciBERT, generally requires large numbers of annotated data to achieve state-of-the-art performance on a range of NLP tasks in the scientific domain. However, obtaining the fine-tune data for scientific NLP task is still challenging and expensive. Inspired by recent advancement in prompt learning, in this paper, we propose the Mix Prompt Tuning (MPT), which is a semi-supervised method to alleviate the dependence on annotated data and improve the performance of multi-granularity academic function recognition tasks with a small number of labeled examples. Specifically, the proposed method provides multi-perspective representations by combining manual prompt templates with automatically learned continuous prompt templates to help the given academic function recognition task take full advantage of knowledge in PLMs. Based on these prompt templates and the fine-tuned PLM, a large number of pseudo labels are assigned to the unlabeled examples. Finally, we fine-tune the PLM using the pseudo training set. We evaluate our method on three academic function recognition tasks of different granularity including the citation function, the abstract sentence function, and the keyword function, with datasets from computer science domain and biomedical domain. Extensive experiments demonstrate the effectiveness of our method and statistically significant improvements against strong baselines. In particular, it achieves an average increase of 5% in Macro-F1 score compared with fine-tuning, and 6% in Macro-F1 score compared with other semi-supervised method under low-resource settings. In addition, MPT is a general method that can be easily applied to other low-resource scientific classification tasks.
comment: This article has been accepted by The Electronic Library and the full article is now available on Emerald Insight
♻ ☆ Structured Packing in LLM Training Improves Long Context Utilization
Recent advancements in long-context large language models have attracted significant attention, yet their practical applications often suffer from suboptimal context utilization. This study investigates structuring training data to enhance semantic interdependence, demonstrating that this approach effectively improves context utilization. To this end, we introduce the Structured Packing for Long Context (SPLiCe) method, which utilizes retrieval to collate mutually relevant documents into long and coherent training examples. We validate SPLiCe empirically across models of varying sizes -- 3B, 7B, and 13B -- achieving improved performance in long-context tasks, such as Qasper and HotpotQA. Remarkably, even brief fine-tuning with SPLiCe is sufficient to realize these benefits. Additionally, SPLiCe effectively mitigates the lost-in-middle phenomenon often observed in large models. Our comprehensive analysis of SPLiCe explores its design choices and reveals intriguing transfer effects; for instance, training on programming code enhances performance on natural language tasks.
comment: new experiments with a 13B model
♻ ☆ Can Many-Shot In-Context Learning Help Long-Context LLM Judges? See More, Judge Better!
Leveraging Large Language Models (LLMs) as judges for evaluating the performance of LLMs has recently garnered attention. Nonetheless, this type of approach concurrently introduces potential biases from LLMs, raising concerns about the reliability of the evaluation results. To mitigate this issue, we propose and study two versions of many-shot in-context prompts, Reinforced and Unsupervised ICL, for helping GPT-4o-as-a-Judge in single answer grading. The former uses in-context examples with model-generated rationales, and the latter without. Based on the designed prompts, we investigate the impact of scaling the number of in-context examples on the agreement and quality of the evaluation. Furthermore, we first reveal the symbol bias in GPT-4o-as-a-Judge for pairwise comparison and then propose a simple yet effective approach to mitigate it. Experimental results show that advanced long-context LLMs, such as GPT-4o, perform better in the many-shot regime than in the zero-shot regime. Meanwhile, the experimental results further verify the effectiveness of the symbol bias mitigation approach.
comment: work in progress
♻ ☆ Attribute Diversity Determines the Systematicity Gap in VQA
The degree to which neural networks can generalize to new combinations of familiar concepts, and the conditions under which they are able to do so, has long been an open question. In this work, we study the systematicity gap in visual question answering: the performance difference between reasoning on previously seen and unseen combinations of object attributes. To test, we introduce a novel diagnostic dataset, CLEVR-HOPE. We find that while increased quantity of training data does not reduce the systematicity gap, increased training data diversity of the attributes in the unseen combination does. In all, our experiments suggest that the more distinct attribute type combinations are seen during training, the more systematic we can expect the resulting model to be.
comment: 33 pages, 20 figures
♻ ☆ Flow of Reasoning: Efficient Training of LLM Policy with Divergent Thinking
Divergent thinking, the cognitive process of generating diverse solutions, is a hallmark of human creativity and problem-solving. For machines, sampling diverse solution trajectories in complex reasoning problems is crucial for robust outcomes, data augmentation, and enhanced model generalization. Large language models (LLMs) often struggle with generating high-quality, diverse reasoning. While supervised fine-tuning helps with quality, it requires extensive supervision data to capture the full diversity of solutions. Alternatively, reinforcement learning methods like PPO aim to find limited highest-reward solutions while neglecting the solution diversity, akin to convergent thinking. To address these limitations, we propose Flow of Reasoning (FoR) -- an efficient LLM training approach enabling diverse reasoning with minimal data. FoR formulates multi-step LLM reasoning as a Markovian flow from an initial state to terminal states. The formulation allows to adapt principled GFlowNet approaches to train the LLM as a policy, which is able to sample multiple reasoning paths with probabilities proportional to the unnormalized reward. Empirical results show that, with limited training data (e.g., 15 examples), FoR can discover diverse high-quality solutions that excel greatly beyond current state-of-the-art methods across three tasks, including embodied reasoning (BlocksWorld), math puzzle solving (Game24), and logical reasoning (PrOntoQA). Code is available at https://github.com/Yu-Fangxu/FoR.
♻ ☆ FairytaleQA Translated: Enabling Educational Question and Answer Generation in Less-Resourced Languages
Question Answering (QA) datasets are crucial in assessing reading comprehension skills for both machines and humans. While numerous datasets have been developed in English for this purpose, a noticeable void exists in less-resourced languages. To alleviate this gap, our paper introduces machine-translated versions of FairytaleQA, a renowned QA dataset designed to assess and enhance narrative comprehension skills in young children. By employing fine-tuned, modest-scale models, we establish benchmarks for both Question Generation (QG) and QA tasks within the translated datasets. In addition, we present a case study proposing a model for generating question-answer pairs, with an evaluation incorporating quality metrics such as question well-formedness, answerability, relevance, and children suitability. Our evaluation prioritizes quantifying and describing error cases, along with providing directions for future work. This paper contributes to the advancement of QA and QG research in less-resourced languages, promoting accessibility and inclusivity in the development of these models for reading comprehension. The code and data is publicly available at github.com/bernardoleite/fairytaleqa-translated.
comment: Preprint - Accepted for publication at ECTEL 2024
♻ ☆ Children's Speech Recognition through Discrete Token Enhancement
Children's speech recognition is considered a low-resource task mainly due to the lack of publicly available data. There are several reasons for such data scarcity, including expensive data collection and annotation processes, and data privacy, among others. Transforming speech signals into discrete tokens that do not carry sensitive information but capture both linguistic and acoustic information could be a solution for privacy concerns. In this study, we investigate the integration of discrete speech tokens into children's speech recognition systems as input without significantly degrading the ASR performance. Additionally, we explored single-view and multi-view strategies for creating these discrete labels. Furthermore, we tested the models for generalization capabilities with unseen domain and nativity dataset. Results reveal that the discrete token ASR for children achieves nearly equivalent performance with an approximate 83% reduction in parameters.
comment: Accepted at Interspeech 2024
♻ ☆ LatentExplainer: Explaining Latent Representations in Deep Generative Models with Multi-modal Foundation Models
Deep generative models like VAEs and diffusion models have advanced various generation tasks by leveraging latent variables to learn data distributions and generate high-quality samples. Despite the field of explainable AI making strides in interpreting machine learning models, understanding latent variables in generative models remains challenging. This paper introduces LatentExplainer, a framework for automatically generating semantically meaningful explanations of latent variables in deep generative models. LatentExplainer tackles three main challenges: inferring the meaning of latent variables, aligning explanations with inductive biases, and handling varying degrees of explainability. By perturbing latent variables and interpreting changes in generated data, the framework provides a systematic approach to understanding and controlling the data generation process, enhancing the transparency and interpretability of deep generative models. We evaluate our proposed method on several real-world and synthetic datasets, and the results demonstrate superior performance in generating high-quality explanations of latent variables.
♻ ☆ When Parts are Greater Than Sums: Individual LLM Components Can Outperform Full Models
This paper studies in-context learning (ICL) by decomposing the output of large language models into the individual contributions of attention heads and MLPs (components). We observe curious components: good-performing ones that individually do well on a classification task, even when the model performs poorly; bad-performing ones that do much worse than chance; and label-biased components that always predict the same label. We find that component accuracies are well-correlated across different demonstration sets and perturbations of prompt templates, even when the full-model accuracy varies greatly. Based on our findings, we propose component reweighting, which learns to linearly re-scale the component activations from a few labeled examples. Given 24 labeled examples, our method improves by an average of 6.0% accuracy points over 24-shot ICL across 8 tasks on Llama-2-7B. Overall, this paper both enriches our understanding of ICL and provides a practical method for improvement by examining model internals.
comment: fix typos and citations; appendix
♻ ☆ Limited Out-of-Context Knowledge Reasoning in Large Language Models
Large Language Models (LLMs) have demonstrated strong capabilities as knowledge bases and significant in-context reasoning capabilities. However, previous work challenges their out-of-context reasoning ability, i.e., the ability to infer information from their training data, instead of from the context or prompt. This paper focuses on a significant facet of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge. We designed a synthetic dataset with seven representative OCKR tasks to systematically assess the OCKR capabilities of LLMs. Using this dataset, we evaluated the LLaMA2-13B-chat model and discovered that its proficiency in this aspect is limited, regardless of whether the knowledge is trained in a separate or adjacent training settings. Moreover, training the model to reason with complete reasoning data did not result in significant improvement. Training the model to perform explicit knowledge retrieval helps in only one of the tasks, indicating that the model's limited OCKR capabilities are due to difficulties in retrieving relevant knowledge. Furthermore, we treat cross-lingual knowledge transfer as a distinct form of OCKR, and evaluate this ability. Our results show that the evaluated model also exhibits limited ability in transferring knowledge across languages. The dataset used in this study is available at https://github.com/NJUNLP/ID-OCKR.
♻ ☆ CoLoR-Filter: Conditional Loss Reduction Filtering for Targeted Language Model Pre-training
Selecting high-quality data for pre-training is crucial in shaping the downstream task performance of language models. A major challenge lies in identifying this optimal subset, a problem generally considered intractable, thus necessitating scalable and effective heuristics. In this work, we propose a data selection method, CoLoR-Filter (Conditional Loss Reduction Filtering), which leverages an empirical Bayes-inspired approach to derive a simple and computationally efficient selection criterion based on the relative loss values of two auxiliary models. In addition to the modeling rationale, we evaluate CoLoR-Filter empirically on two language modeling tasks: (1) selecting data from C4 for domain adaptation to evaluation on Books and (2) selecting data from C4 for a suite of downstream multiple-choice question answering tasks. We demonstrate favorable scaling both as we subselect more aggressively and using small auxiliary models to select data for large target models. As one headline result, CoLoR-Filter data selected using a pair of 150m parameter auxiliary models can train a 1.2b parameter target model to match a 1.2b parameter model trained on 25b randomly selected tokens with 25x less data for Books and 11x less data for the downstream tasks. Code: https://github.com/davidbrandfonbrener/color-filter-olmo Filtered data: https://huggingface.co/datasets/davidbrandfonbrener/color-filtered-c4
♻ ☆ A Comprehensive Survey on Relation Extraction: Recent Advances and New Frontiers
Relation extraction (RE) involves identifying the relations between entities from underlying content. RE serves as the foundation for many natural language processing (NLP) and information retrieval applications, such as knowledge graph completion and question answering. In recent years, deep neural networks have dominated the field of RE and made noticeable progress. Subsequently, the large pre-trained language models have taken the state-of-the-art RE to a new level. This survey provides a comprehensive review of existing deep learning techniques for RE. First, we introduce RE resources, including datasets and evaluation metrics. Second, we propose a new taxonomy to categorize existing works from three perspectives, i.e., text representation, context encoding, and triplet prediction. Third, we discuss several important challenges faced by RE and summarize potential techniques to tackle these challenges. Finally, we outline some promising future directions and prospects in this field. This survey is expected to facilitate researchers' collaborative efforts to address the challenges of real-world RE systems.
♻ ☆ Make Large Language Model a Better Ranker
Large Language Models (LLMs) demonstrate robust capabilities across various fields, leading to a paradigm shift in LLM-enhanced Recommender System (RS). Research to date focuses on point-wise and pair-wise recommendation paradigms, which are inefficient for LLM-based recommenders due to high computational costs. However, existing list-wise approaches also fall short in ranking tasks due to misalignment between ranking objectives and next-token prediction. Moreover, these LLM-based methods struggle to effectively address the order relation among candidates, particularly given the scale of ratings. To address these challenges, this paper introduces the large language model framework with Aligned Listwise Ranking Objectives (ALRO). ALRO is designed to bridge the gap between the capabilities of LLMs and the nuanced requirements of ranking tasks. Specifically, ALRO employs explicit feedback in a listwise manner by introducing soft lambda loss, a customized adaptation of lambda loss designed for optimizing order relations. This mechanism provides more accurate optimization goals, enhancing the ranking process. Additionally, ALRO incorporates a permutation-sensitive learning mechanism that addresses position bias, a prevalent issue in generative models, without imposing additional computational burdens during inference. Our evaluative studies reveal that ALRO outperforms both existing embedding-based recommendation methods and LLM-based recommendation baselines.
comment: 12 pages, 5 figures
♻ ☆ Deep Prompt Multi-task Network for Abuse Language Detection ICPR
The detection of abusive language remains a long-standing challenge with the extensive use of social networks. The detection task of abusive language suffers from limited accuracy. We argue that the existing detection methods utilize the fine-tuning technique of the pre-trained language models (PLMs) to handle downstream tasks. Hence, these methods fail to stimulate the general knowledge of the PLMs. To address the problem, we propose a novel Deep Prompt Multi-task Network (DPMN) for abuse language detection. Specifically, DPMN first attempts to design two forms of deep prompt tuning and light prompt tuning for the PLMs. The effects of different prompt lengths, tuning strategies, and prompt initialization methods on detecting abusive language are studied. In addition, we propose a Task Head based on Bi-LSTM and FFN, which can be used as a short text classifier. Eventually, DPMN utilizes multi-task learning to improve detection metrics further. The multi-task network has the function of transferring effective knowledge. The proposed DPMN is evaluated against eight typical methods on three public datasets: OLID, SOLID, and AbuseAnalyzer. The experimental results show that our DPMN outperforms the state-of-the-art methods.
comment: Accepted by the International Conference on Pattern Recognition (ICPR) 2024
♻ ☆ MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning ACL2024
Parameter-efficient fine-tuning (PEFT) is a popular method for tailoring pre-trained large language models (LLMs), especially as the models' scale and the diversity of tasks increase. Low-rank adaptation (LoRA) is based on the idea that the adaptation process is intrinsically low-dimensional, i.e., significant model changes can be represented with relatively few parameters. However, decreasing the rank encounters challenges with generalization errors for specific tasks when compared to full-parameter fine-tuning. We present MELoRA, a mini-ensemble low-rank adapters that uses fewer trainable parameters while maintaining a higher rank, thereby offering improved performance potential. The core idea is to freeze original pretrained weights and train a group of mini LoRAs with only a small number of parameters. This can capture a significant degree of diversity among mini LoRAs, thus promoting better generalization ability. We conduct a theoretical analysis and empirical studies on various NLP tasks. Our experimental results show that, compared to LoRA, MELoRA achieves better performance with 8 times fewer trainable parameters on natural language understanding tasks and 36 times fewer trainable parameters on instruction following tasks, which demonstrates the effectiveness of MELoRA.
comment: ACL2024
♻ ☆ LLMs Are Few-Shot In-Context Low-Resource Language Learners
In-context learning (ICL) empowers large language models (LLMs) to perform diverse tasks in underrepresented languages using only short in-context information, offering a crucial avenue for narrowing the gap between high-resource and low-resource languages. Nonetheless, there is only a handful of works explored ICL for low-resource languages with most of them focusing on relatively high-resource languages, such as French and Spanish. In this work, we extensively study ICL and its cross-lingual variation (X-ICL) on 25 low-resource and 7 relatively higher-resource languages. Our study not only assesses the effectiveness of ICL with LLMs in low-resource languages but also identifies the shortcomings of in-context label alignment, and introduces a more effective alternative: query alignment. Moreover, we provide valuable insights into various facets of ICL for low-resource languages. Our study concludes the significance of few-shot in-context information on enhancing the low-resource understanding quality of LLMs through semantically relevant information by closing the language gap in the target language and aligning the semantics between the targeted low-resource and the high-resource language that the model is proficient in. Our work highlights the importance of advancing ICL research, particularly for low-resource languages. Our code is publicly released at https://github.com/SamuelCahyawijaya/in-context-alignment
♻ ☆ CLUE: A Clinical Language Understanding Evaluation for LLMs
Large Language Models (LLMs) are expected to significantly contribute to patient care, diagnostics, and administrative processes. Emerging biomedical LLMs aim to address healthcare-specific challenges, including privacy demands and computational constraints. Assessing the models' suitability for this sensitive application area is of the utmost importance. However, evaluation has primarily been limited to non-clinical tasks, which do not reflect the complexity of practical clinical applications. To fill this gap, we present the Clinical Language Understanding Evaluation (CLUE), a benchmark tailored to evaluate LLMs on clinical tasks. CLUE includes six tasks to test the practical applicability of LLMs in complex healthcare settings. Our evaluation includes a total of $25$ LLMs. In contrast to previous evaluations, CLUE shows a decrease in performance for nine out of twelve biomedical models. Our benchmark represents a step towards a standardized approach to evaluating and developing LLMs in healthcare to align future model development with the real-world needs of clinical application. We open-source all evaluation scripts and datasets for future research at https://github.com/TIO-IKIM/CLUE.
♻ ☆ ESC-Eval: Evaluating Emotion Support Conversations in Large Language Models
Emotion Support Conversation (ESC) is a crucial application, which aims to reduce human stress, offer emotional guidance, and ultimately enhance human mental and physical well-being. With the advancement of Large Language Models (LLMs), many researchers have employed LLMs as the ESC models. However, the evaluation of these LLM-based ESCs remains uncertain. Inspired by the awesome development of role-playing agents, we propose an ESC Evaluation framework (ESC-Eval), which uses a role-playing agent to interact with ESC models, followed by a manual evaluation of the interactive dialogues. In detail, we first re-organize 2,801 role-playing cards from seven existing datasets to define the roles of the role-playing agent. Second, we train a specific role-playing model called ESC-Role which behaves more like a confused person than GPT-4. Third, through ESC-Role and organized role cards, we systematically conduct experiments using 14 LLMs as the ESC models, including general AI-assistant LLMs (ChatGPT) and ESC-oriented LLMs (ExTES-Llama). We conduct comprehensive human annotations on interactive multi-turn dialogues of different ESC models. The results show that ESC-oriented LLMs exhibit superior ESC abilities compared to general AI-assistant LLMs, but there is still a gap behind human performance. Moreover, to automate the scoring process for future ESC models, we developed ESC-RANK, which trained on the annotated data, achieving a scoring performance surpassing 35 points of GPT-4. Our data and code are available at https://github.com/haidequanbu/ESC-Eval.
comment: Pre-print
♻ ☆ A Survey on Neural Topic Models: Methods, Applications, and Challenges
Topic models have been prevalent for decades to discover latent topics and infer topic proportions of documents in an unsupervised fashion. They have been widely used in various applications like text analysis and context recommendation. Recently, the rise of neural networks has facilitated the emergence of a new research field -- Neural Topic Models (NTMs). Different from conventional topic models, NTMs directly optimize parameters without requiring model-specific derivations. This endows NTMs with better scalability and flexibility, resulting in significant research attention and plentiful new methods and applications. In this paper, we present a comprehensive survey on neural topic models concerning methods, applications, and challenges. Specifically, we systematically organize current NTM methods according to their network structures and introduce the NTMs for various scenarios like short texts and bilingual documents. We also discuss a wide range of popular applications built on NTMs. Finally, we highlight the challenges confronted by NTMs to inspire future research. We accompany this survey with a repository for easier access to the mentioned paper resources: https://github.com/bobxwu/Paper-Neural-Topic-Models.
comment: Accepted to Artificial Intelligence Review. See https://doi.org/10.1007/s10462-023-10661-7 and a paper list at https://github.com/BobXWu/Paper-Neural-Topic-Models
♻ ☆ Mirror: A Multiple-perspective Self-Reflection Method for Knowledge-rich Reasoning ACL24
While Large language models (LLMs) have the capability to iteratively reflect on their own outputs, recent studies have observed their struggles with knowledge-rich problems without access to external resources. In addition to the inefficiency of LLMs in self-assessment, we also observe that LLMs struggle to revisit their predictions despite receiving explicit negative feedback. Therefore, We propose Mirror, a Multiple-perspective self-reflection method for knowledge-rich reasoning, to avoid getting stuck at a particular reflection iteration. Mirror enables LLMs to reflect from multiple-perspective clues, achieved through a heuristic interaction between a Navigator and a Reasoner. It guides agents toward diverse yet plausibly reliable reasoning trajectory without access to ground truth by encouraging (1) diversity of directions generated by Navigator and (2) agreement among strategically induced perturbations in responses generated by the Reasoner. The experiments on five reasoning datasets demonstrate that Mirror's superiority over several contemporary self-reflection approaches. Additionally, the ablation study studies clearly indicate that our strategies alleviate the aforementioned challenges.
comment: ACL24, Main Conference, long paper. Code is available at https://github.com/hanqi-qi/Mirror.git
♻ ☆ Fundus: A Simple-to-Use News Scraper Optimized for High Quality Extractions ACL 2024
This paper introduces Fundus, a user-friendly news scraper that enables users to obtain millions of high-quality news articles with just a few lines of code. Unlike existing news scrapers, we use manually crafted, bespoke content extractors that are specifically tailored to the formatting guidelines of each supported online newspaper. This allows us to optimize our scraping for quality such that retrieved news articles are textually complete and without HTML artifacts. Further, our framework combines both crawling (retrieving HTML from the web or large web archives) and content extraction into a single pipeline. By providing a unified interface for a predefined collection of newspapers, we aim to make Fundus broadly usable even for non-technical users. This paper gives an overview of the framework, discusses our design choices, and presents a comparative evaluation against other popular news scrapers. Our evaluation shows that Fundus yields significantly higher quality extractions (complete and artifact-free news articles) than prior work. The framework is available on GitHub under https://github.com/flairNLP/fundus and can be simply installed using pip.
comment: 10 pages, 4 figures, ACL 2024, for a screencast see https://www.youtube.com/watch?v=9GJExMelhdI
♻ ☆ ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming
When building Large Language Models (LLMs), it is paramount to bear safety in mind and protect them with guardrails. Indeed, LLMs should never generate content promoting or normalizing harmful, illegal, or unethical behavior that may contribute to harm to individuals or society. This principle applies to both normal and adversarial use. In response, we introduce ALERT, a large-scale benchmark to assess safety based on a novel fine-grained risk taxonomy. It is designed to evaluate the safety of LLMs through red teaming methodologies and consists of more than 45k instructions categorized using our novel taxonomy. By subjecting LLMs to adversarial testing scenarios, ALERT aims to identify vulnerabilities, inform improvements, and enhance the overall safety of the language models. Furthermore, the fine-grained taxonomy enables researchers to perform an in-depth evaluation that also helps one to assess the alignment with various policies. In our experiments, we extensively evaluate 10 popular open- and closed-source LLMs and demonstrate that many of them still struggle to attain reasonable levels of safety.
comment: 17 pages, preprint
♻ ☆ Prompting with Divide-and-Conquer Program Makes Large Language Models Discerning to Hallucination and Deception
Foundation models, such as Large language Models (LLMs), have attracted significant amount of interest due to their large number of applications. However, when handling tasks involving repetitive sub-tasks and/or deceptive contents, such as arithmetic calculation and article-level fake news detection, simple instructional prompts suffer from inaccurate responses. Existing works show that more complicated prompting strategies, such as Chain-of-Thoughts and Least-to-Most, can unlock LLM's powerful capacity in diverse areas. Recent researches reveal that simple divide-and-conquer prompting strategy, i.e. simply dividing the input sequence to multiple sub-inputs, can also substantially improve LLM's performance in some specific tasks such as misinformation detection. In this paper, we aim at examining the utility of divide-and-conquer prompting strategy and answer on which kind of tasks this strategy gets advantages. Specifically, we provide a theoretic analysis to divide-and-conquer prompting strategy and help us identify the specific tasks where DaC prompting can bring performance boost with theoretic guarantee. We then present two cases (large integer arithmetic and fact verification) where experimental results aligns with our theoretic analysis.
comment: Preprint
♻ ☆ C-ICL: Contrastive In-context Learning for Information Extraction
There has been increasing interest in exploring the capabilities of advanced large language models (LLMs) in the field of information extraction (IE), specifically focusing on tasks related to named entity recognition (NER) and relation extraction (RE). Although researchers are exploring the use of few-shot information extraction through in-context learning with LLMs, they tend to focus only on using correct or positive examples for demonstration, neglecting the potential value of incorporating incorrect or negative examples into the learning process. In this paper, we present c-ICL, a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations. This approach enhances the ability of LLMs to extract entities and relations by utilizing prompts that incorporate not only the positive samples but also the reasoning behind them. This method allows for the identification and correction of potential interface errors. Specifically, our proposed method taps into the inherent contextual information and valuable information in hard negative samples and the nearest positive neighbors to the test and then applies the in-context learning demonstrations based on LLMs. Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods, delivering substantial enhancements in performance across a broad spectrum of related tasks. These improvements are noteworthy, showcasing the versatility of our approach in miscellaneous scenarios.
comment: 15 pages
♻ ☆ Improving In-context Learning via Bidirectional Alignment
Large language models (LLMs) have shown impressive few-shot generalization on many tasks via in-context learning (ICL). Despite their success in showing such emergent abilities, the scale and complexity of larger models also lead to unprecedentedly high computational demands and deployment challenges. In reaction, researchers explore transferring the powerful capabilities of larger models to more efficient and compact models by typically aligning the output of smaller (student) models with that of larger (teacher) models. Existing methods either train student models on the generated outputs of teacher models or imitate their token-level probability distributions. However, these distillation methods pay little to no attention to the input, which also plays a crucial role in ICL. Based on the finding that the performance of ICL is highly sensitive to the selection of demonstration examples, we propose Bidirectional Alignment (BiAlign) to fully leverage the models' preferences for ICL examples to improve the ICL abilities of student models. Specifically, we introduce the alignment of input preferences between student and teacher models by incorporating a novel ranking loss, in addition to aligning the token-level output distribution. With extensive experiments and analysis, we demonstrate that BiAlign can consistently outperform existing baselines on a variety of tasks involving language understanding, reasoning, and coding.
♻ ☆ TRUCE: Private Benchmarking to Prevent Contamination and Improve Comparative Evaluation of LLMs
Benchmarking is the de-facto standard for evaluating LLMs, due to its speed, replicability and low cost. However, recent work has pointed out that the majority of the open source benchmarks available today have been contaminated or leaked into LLMs, meaning that LLMs have access to test data during pretraining and/or fine-tuning. This raises serious concerns about the validity of benchmarking studies conducted so far and the future of evaluation using benchmarks. To solve this problem, we propose Private Benchmarking, a solution where test datasets are kept private and models are evaluated without revealing the test data to the model. We describe various scenarios (depending on the trust placed on model owners or dataset owners), and present solutions to avoid data contamination using private benchmarking. For scenarios where the model weights need to be kept private, we describe solutions from confidential computing and cryptography that can aid in private benchmarking. We build an end-to-end system, TRUCE, that enables such private benchmarking showing that the overheads introduced to protect models and benchmark are negligible (in the case of confidential computing) and tractable (when cryptographic security is required). Finally, we also discuss solutions to the problem of benchmark dataset auditing, to ensure that private benchmarks are of sufficiently high quality.
♻ ☆ LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models ACL 2024
Efficient fine-tuning is vital for adapting large language models (LLMs) to downstream tasks. However, it requires non-trivial efforts to implement these methods on different models. We present LlamaFactory, a unified framework that integrates a suite of cutting-edge efficient training methods. It provides a solution for flexibly customizing the fine-tuning of 100+ LLMs without the need for coding through the built-in web UI LlamaBoard. We empirically validate the efficiency and effectiveness of our framework on language modeling and text generation tasks. It has been released at https://github.com/hiyouga/LLaMA-Factory and received over 24,000 stars and 3,000 forks.
comment: 13 pages, accepted to ACL 2024 System Demonstration Track
♻ ☆ Investigating the impact of 2D gesture representation on co-speech gesture generation
Co-speech gestures play a crucial role in the interactions between humans and embodied conversational agents (ECA). Recent deep learning methods enable the generation of realistic, natural co-speech gestures synchronized with speech, but such approaches require large amounts of training data. "In-the-wild" datasets, which compile videos from sources such as YouTube through human pose detection models, offer a solution by providing 2D skeleton sequences that are paired with speech. Concurrently, innovative lifting models have emerged, capable of transforming these 2D pose sequences into their 3D counterparts, leading to large and diverse datasets of 3D gestures. However, the derived 3D pose estimation is essentially a pseudo-ground truth, with the actual ground truth being the 2D motion data. This distinction raises questions about the impact of gesture representation dimensionality on the quality of generated motions, a topic that, to our knowledge, remains largely unexplored. In this work, we evaluate the impact of the dimensionality of the training data, 2D or 3D joint coordinates, on the performance of a multimodal speech-to-gesture deep generative model. We use a lifting model to convert 2D-generated sequences of body pose to 3D. Then, we compare the sequence of gestures generated directly in 3D to the gestures generated in 2D and lifted to 3D as post-processing.
comment: 8 pages. Paper accepted at WACAI 2024
♻ ☆ Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach
Amidst the rapid evolution of LLMs, the significance of evaluation in comprehending and propelling these models forward is increasingly paramount. Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs. However, the extent and nature of these impacts continue to be subjects of debate because most assessments have been restricted to a limited number of models and data points. Clarifying the effects of these factors on performance scores can be more effectively achieved through a statistical lens. Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods. With the advent of a uniform evaluation framework, our research leverages an expansive dataset of evaluation results, introducing a comprehensive statistical methodology. This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique, offering a robust and transparent approach to deciphering LLM performance data. Contrary to prevailing findings, our results challenge assumptions about emergent abilities and the influence of given training types and architectures in LLMs. These findings furnish new perspectives on the characteristics, intrinsic nature, and developmental trajectories of LLMs. By providing straightforward and reliable methods to scrutinize and reassess LLM performance data, this study contributes a nuanced perspective on LLM efficiency and potentials.
♻ ☆ CaLM: Contrasting Large and Small Language Models to Verify Grounded Generation ACL 2024
Grounded generation aims to equip language models (LMs) with the ability to produce more credible and accountable responses by accurately citing verifiable sources. However, existing methods, by either feeding LMs with raw or preprocessed materials, remain prone to errors. To address this, we introduce CaLM, a novel verification framework. CaLM leverages the insight that a robust grounded response should be consistent with information derived solely from its cited sources. Our framework empowers smaller LMs, which rely less on parametric memory and excel at processing relevant information given a query, to validate the output of larger LMs. Larger LM responses that closely align with the smaller LMs' output, which relies exclusively on cited documents, are verified. Responses showing discrepancies are iteratively refined through a feedback loop. Experiments on three open-domain question-answering datasets demonstrate significant performance gains of 1.5% to 7% absolute average without any required model fine-tuning.
comment: ACL 2024 Camera Ready Version
♻ ☆ The Uli Dataset: An Exercise in Experience Led Annotation of oGBV
Online gender based violence has grown concomitantly with adoption of the internet and social media. Its effects are worse in the Global majority where many users use social media in languages other than English. The scale and volume of conversations on the internet has necessitated the need for automated detection of hate speech, and more specifically gendered abuse. There is, however, a lack of language specific and contextual data to build such automated tools. In this paper we present a dataset on gendered abuse in three languages- Hindi, Tamil and Indian English. The dataset comprises of tweets annotated along three questions pertaining to the experience of gender abuse, by experts who identify as women or a member of the LGBTQIA community in South Asia. Through this dataset we demonstrate a participatory approach to creating datasets that drive AI systems.
♻ ☆ Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks
Information Extraction (IE) is crucial for converting unstructured data into structured formats like Knowledge Graphs (KGs). A key task within IE is Relation Extraction (RE), which identifies relationships between entities in text. Various RE methods exist, including supervised, unsupervised, weakly supervised, and rule-based approaches. Recent studies leveraging pre-trained language models (PLMs) have shown significant success in this area. In the current era dominated by Large Language Models (LLMs), fine-tuning these models can overcome limitations associated with zero-shot LLM prompting-based RE methods, especially regarding domain adaptation challenges and identifying implicit relations between entities in sentences. These implicit relations, which cannot be easily extracted from a sentence's dependency tree, require logical inference for accurate identification. This work explores the performance of fine-tuned LLMs and their integration into the Retrieval Augmented-based (RAG) RE approach to address the challenges of identifying implicit relations at the sentence level, particularly when LLMs act as generators within the RAG framework. Empirical evaluations on the TACRED, TACRED-Revisited (TACREV), Re-TACRED, and SemEVAL datasets show significant performance improvements with fine-tuned LLMs, including Llama2-7B, Mistral-7B, and T5 (Large). Notably, our approach achieves substantial gains on SemEVAL, where implicit relations are common, surpassing previous results on this dataset. Additionally, our method outperforms previous works on TACRED, TACREV, and Re-TACRED, demonstrating exceptional performance across diverse evaluation scenarios.
comment: preprint
♻ ☆ What Makes Two Language Models Think Alike?
Do architectural differences significantly affect the way models represent and process language? We propose a new approach, based on metric-learning encoding models (MLEMs), as a first step to answer this question. The approach provides a feature-based comparison of how any two layers of any two models represent linguistic information. We apply the method to BERT, GPT-2 and Mamba. Unlike previous methods, MLEMs offer a transparent comparison, by identifying the specific linguistic features responsible for similarities and differences. More generally, the method uses formal, symbolic descriptions of a domain, and use these to compare neural representations. As such, the approach can straightforwardly be extended to other domains, such as speech and vision, and to other neural systems, including human brains.
comment: 7 pages, 6 figures
♻ ☆ In-context Pretraining: Language Modeling Beyond Document Boundaries
Large language models (LMs) are currently trained to predict tokens given document prefixes, enabling them to directly perform long-form generation and prompting-style tasks which can be reduced to document completion. Existing pretraining pipelines train LMs by concatenating random sets of short documents to create input contexts but the prior documents provide no signal for predicting the next document. We instead present In-Context Pretraining, a new approach where language models are pretrained on a sequence of related documents, thereby explicitly encouraging them to read and reason across document boundaries. We can do In-Context Pretraining by simply changing the document ordering so that each context contains related documents, and directly applying existing pretraining pipelines. However, this document sorting problem is challenging. There are billions of documents and we would like the sort to maximize contextual similarity for every document without repeating any data. To do this, we introduce approximate algorithms for finding related documents with efficient nearest neighbor search and constructing coherent input contexts with a graph traversal algorithm. Our experiments show In-Context Pretraining offers a simple and scalable approach to significantly enhance LMs'performance: we see notable improvements in tasks that require more complex contextual reasoning, including in-context learning (+8%), reading comprehension (+15%), faithfulness to previous contexts (+16%), long-context reasoning (+5%), and retrieval augmentation (+9%).
♻ ☆ PromptKD: Distilling Student-Friendly Knowledge for Generative Language Models via Prompt Tuning
Recent advancements in large language models (LLMs) have raised concerns about inference costs, increasing the need for research into model compression. While knowledge distillation (KD) is a prominent method for this, research on KD for generative language models like LLMs is relatively sparse, and the approach of distilling student-friendly knowledge, which has shown promising performance in KD for classification models, remains unexplored in generative language models. To explore this approach, we propose PromptKD, a simple yet effective method that utilizes prompt tuning - for the first time in KD - to enable generative language models to transfer student-friendly knowledge. Unlike previous works in classification that require fine-tuning the entire teacher model for extracting student-friendly knowledge, PromptKD achieves similar effects by adding a small number of prompt tokens and tuning only the prompt with student guidance. Extensive experiments on instruction-following datasets show that PromptKD achieves state-of-the-art performance while adding only 0.0007% of the teacher's parameters as prompts. Further analysis suggests that distilling student-friendly knowledge alleviates exposure bias effectively throughout the entire training process, leading to performance enhancements.
comment: Code: https://github.com/gmkim-ai/PromptKD
♻ ☆ NaijaHate: Evaluating Hate Speech Detection on Nigerian Twitter Using Representative Data ACL 2024
To address the global issue of online hate, hate speech detection (HSD) systems are typically developed on datasets from the United States, thereby failing to generalize to English dialects from the Majority World. Furthermore, HSD models are often evaluated on non-representative samples, raising concerns about overestimating model performance in real-world settings. In this work, we introduce NaijaHate, the first dataset annotated for HSD which contains a representative sample of Nigerian tweets. We demonstrate that HSD evaluated on biased datasets traditionally used in the literature consistently overestimates real-world performance by at least two-fold. We then propose NaijaXLM-T, a pretrained model tailored to the Nigerian Twitter context, and establish the key role played by domain-adaptive pretraining and finetuning in maximizing HSD performance. Finally, owing to the modest performance of HSD systems in real-world conditions, we find that content moderators would need to review about ten thousand Nigerian tweets flagged as hateful daily to moderate 60% of all hateful content, highlighting the challenges of moderating hate speech at scale as social media usage continues to grow globally. Taken together, these results pave the way towards robust HSD systems and a better protection of social media users from hateful content in low-resource settings.
comment: ACL 2024 main conference. Data and models available at https://github.com/worldbank/NaijaHate
♻ ☆ Testing the Limits of Jailbreaking Defenses with the Purple Problem
The rise of "jailbreak" attacks on language models has led to a flurry of defenses aimed at preventing undesirable responses. We critically examine the two stages of the defense pipeline: (i) defining what constitutes unsafe outputs, and (ii) enforcing the definition via methods such as input processing or fine-tuning. To test the efficacy of existing enforcement mechanisms, we consider a simple and well-specified definition of unsafe outputs--outputs that contain the word "purple". Surprisingly, existing fine-tuning and input defenses fail on this simple problem, casting doubt on whether enforcement algorithms can be robust for more complicated definitions. We find that real safety benchmarks similarly test enforcement for a fixed definition. We hope that future research can lead to effective/fast enforcement as well as high quality definitions used for enforcement and evaluation.
♻ ☆ Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy
We propose a fresh take on understanding the mechanisms of neural networks by analyzing the rich directional structure of optimization trajectories, represented by their pointwise parameters. Towards this end, we introduce some natural notions of the complexity of optimization trajectories, both qualitative and quantitative, which hallmark the directional nature of optimization in neural networks: when is there redundancy, and when exploration. We use them to reveal the inherent nuance and interplay involved between various optimization choices, such as momentum and weight decay. Further, the trajectory perspective helps us see the effect of scale on regularizing the directional nature of trajectories, and as a by-product, we also observe an intriguing heterogeneity of Q,K,V dynamics in the middle attention layers in LLMs and which is homogenized by scale. Importantly, we put the significant directional redundancy observed to the test by demonstrating that training only scalar batchnorm parameters some while into training matches the performance of training the entire network, which thus exhibits the potential of hybrid optimization schemes that are geared towards efficiency.
comment: Preprint, 57 pages
♻ ☆ LLM-Assisted Content Conditional Debiasing for Fair Text Embedding
Mitigating biases in machine learning models has become an increasing concern in Natural Language Processing (NLP), particularly in developing fair text embeddings, which are crucial yet challenging for real-world applications like search engines. In response, this paper proposes a novel method for learning fair text embeddings. First, we define a novel content-conditional equal distance (CCED) fairness for text embeddings, ensuring content-conditional independence between sensitive attributes and text embeddings. Building on CCED, we introduce a content-conditional debiasing (CCD) loss to ensure that embeddings of texts with different sensitive attributes but identical content maintain the same distance from the embedding of their corresponding neutral text. Additionally, we tackle the issue of insufficient training data by using Large Language Models (LLMs) with instructions to fairly augment texts into different sensitive groups. Our extensive evaluations show that our approach effectively enhances fairness while maintaining the utility of embeddings. Furthermore, our augmented dataset, combined with the CCED metric, serves as an new benchmark for evaluating fairness.
♻ ☆ SafetyBench: Evaluating the Safety of Large Language Models ACL 2024
With the rapid development of Large Language Models (LLMs), increasing attention has been paid to their safety concerns. Consequently, evaluating the safety of LLMs has become an essential task for facilitating the broad applications of LLMs. Nevertheless, the absence of comprehensive safety evaluation benchmarks poses a significant impediment to effectively assess and enhance the safety of LLMs. In this work, we present SafetyBench, a comprehensive benchmark for evaluating the safety of LLMs, which comprises 11,435 diverse multiple choice questions spanning across 7 distinct categories of safety concerns. Notably, SafetyBench also incorporates both Chinese and English data, facilitating the evaluation in both languages. Our extensive tests over 25 popular Chinese and English LLMs in both zero-shot and few-shot settings reveal a substantial performance advantage for GPT-4 over its counterparts, and there is still significant room for improving the safety of current LLMs. We also demonstrate that the measured safety understanding abilities in SafetyBench are correlated with safety generation abilities. Data and evaluation guidelines are available at \url{https://github.com/thu-coai/SafetyBench}{https://github.com/thu-coai/SafetyBench}. Submission entrance and leaderboard are available at \url{https://llmbench.ai/safety}{https://llmbench.ai/safety}.
comment: ACL 2024 Main Conference
♻ ☆ WeatherQA: Can Multimodal Language Models Reason about Severe Weather?
Severe convective weather events, such as hail, tornadoes, and thunderstorms, often occur quickly yet cause significant damage, costing billions of dollars every year. This highlights the importance of forecasting severe weather threats hours in advance to better prepare meteorologists and residents in at-risk areas. Can modern large foundation models perform such forecasting? Existing weather benchmarks typically focus only on predicting time-series changes in certain weather parameters (e.g., temperature, moisture) with text-only features. In this work, we introduce WeatherQA, the first multimodal dataset designed for machines to reason about complex combinations of weather parameters (a.k.a., ingredients) and predict severe weather in real-world scenarios. The dataset includes over 8,000 (multi-images, text) pairs for diverse severe weather events. Each pair contains rich information crucial for forecasting -- the images describe the ingredients capturing environmental instability, surface observations, and radar reflectivity, and the text contains forecast analyses written by human experts. With WeatherQA, we evaluate state-of-the-art vision language models, including GPT4, Claude3.5, Gemini-1.5, and a fine-tuned Llama3-based VLM, by designing two challenging tasks: (1) multi-choice QA for predicting affected area and (2) classification of the development potential of severe convection. These tasks require deep understanding of domain knowledge (e.g., atmospheric dynamics) and complex reasoning over multimodal data (e.g., interactions between weather parameters). We show a substantial gap between the strongest VLM, GPT4o, and human reasoning. Our comprehensive case study with meteorologists further reveals the weaknesses of the models, suggesting that better training and data integration are necessary to bridge this gap. WeatherQA link: https://github.com/chengqianma/WeatherQA.
comment: 26 pages, 9 figures
♻ ☆ Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning
The emergence of large language models (LLMs) has opened up unprecedented possibilities for automating complex tasks that are often comparable to human performance. Despite their capabilities, LLMs still encounter difficulties in completing tasks that require high levels of accuracy and complexity due to their inherent limitations in handling multifaceted problems single-handedly. This paper introduces `Smurfs', a cutting-edge multi-agent framework designed to revolutionize the application of LLMs. By seamlessly transforming a conventional LLM into a synergistic multi-agent ensemble, Smurfs can enhance the model's ability to solve complex tasks at no additional cost. This is achieved through innovative prompting strategies that allocate distinct roles within the model, thereby facilitating collaboration among specialized agents and forming an intelligent multi-agent system. Our empirical investigation on both open-ended task of StableToolBench and closed-ended task on HotpotQA showcases Smurfs' superior capability in intricate tool utilization scenarios. Notably, Smurfs outmatches all the baseline methods in both experiments, setting new state-of-the-art performance. Furthermore, through comprehensive ablation studies, we dissect the contribution of the core components of the multi-agent framework to its overall efficacy. This not only verifies the effectiveness of the framework, but also sets a route for future exploration of multi-agent LLM systems.
♻ ☆ Regularized Best-of-N Sampling to Mitigate Reward Hacking for Language Model Alignment
Best-of-N (BoN) sampling with a reward model has been shown to be an effective strategy for aligning Large Language Models (LLMs) to human preferences at the time of decoding. BoN sampling is susceptible to a problem known as reward hacking. Because the reward model is an imperfect proxy for the true objective, over-optimizing its value can compromise its performance on the true objective. A common solution to prevent reward hacking in preference learning techniques is to optimize a reward using proximity regularization (e.g., KL regularization), which ensures that the language model remains close to the reference model. In this research, we propose Regularized Best-of-N (RBoN), a variant of BoN that aims to mitigate reward hacking by incorporating a proximity term in response selection, similar to preference learning techniques. We evaluate RBoN on the AlpacaFarm and Anthropic's hh-rlhf datasets and find that it outperforms BoN. As an application of RBoN, we use RBoN to generate a pairwise preference learning dataset. Experimental results show that a DPO model trained on a dataset generated with RBoN outperforms a DPO model generated with vanilla BoN. Our code is available at https://github.com/CyberAgentAILab/regularized-bon
♻ ☆ EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models ACL 2024
Large Language Models (LLMs) usually suffer from knowledge cutoff or fallacy issues, which means they are unaware of unseen events or generate text with incorrect facts owing to outdated/noisy data. To this end, many knowledge editing approaches for LLMs have emerged -- aiming to subtly inject/edit updated knowledge or adjust undesired behavior while minimizing the impact on unrelated inputs. Nevertheless, due to significant differences among various knowledge editing methods and the variations in task setups, there is no standard implementation framework available for the community, which hinders practitioners from applying knowledge editing to applications. To address these issues, we propose EasyEdit, an easy-to-use knowledge editing framework for LLMs. It supports various cutting-edge knowledge editing approaches and can be readily applied to many well-known LLMs such as T5, GPT-J, LlaMA, etc. Empirically, we report the knowledge editing results on LlaMA-2 with EasyEdit, demonstrating that knowledge editing surpasses traditional fine-tuning in terms of reliability and generalization. We have released the source code on GitHub, along with Google Colab tutorials and comprehensive documentation for beginners to get started. Besides, we present an online system for real-time knowledge editing, and a demo video.
comment: ACL 2024 System Demonstrations; Code: https://github.com/zjunlp/EasyEdit HF Demo: https://huggingface.co/spaces/zjunlp/EasyEdit Video: https://youtu.be/Gm6T0QaaskU Docs: https://zjunlp.gitbook.io/easyedit
♻ ☆ Reducing Privacy Risks in Online Self-Disclosures with Language Models ACL 2024
Self-disclosure, while being common and rewarding in social media interaction, also poses privacy risks. In this paper, we take the initiative to protect the user-side privacy associated with online self-disclosure through detection and abstraction. We develop a taxonomy of 19 self-disclosure categories and curate a large corpus consisting of 4.8K annotated disclosure spans. We then fine-tune a language model for detection, achieving over 65% partial span F$_1$. We further conduct an HCI user study, with 82% of participants viewing the model positively, highlighting its real-world applicability. Motivated by the user feedback, we introduce the task of self-disclosure abstraction, which is rephrasing disclosures into less specific terms while preserving their utility, e.g., "Im 16F" to "I'm a teenage girl". We explore various fine-tuning strategies, and our best model can generate diverse abstractions that moderately reduce privacy risks while maintaining high utility according to human evaluation. To help users in deciding which disclosures to abstract, we present a task of rating their importance for context understanding. Our fine-tuned model achieves 80% accuracy, on-par with GPT-3.5. Given safety and privacy considerations, we will only release our corpus and models to researcher who agree to the ethical guidelines outlined in Ethics Statement.
comment: Accepted at ACL 2024
♻ ☆ EasyInstruct: An Easy-to-use Instruction Processing Framework for Large Language Models ACL 2024
In recent years, instruction tuning has gained increasing attention and emerged as a crucial technique to enhance the capabilities of Large Language Models (LLMs). To construct high-quality instruction datasets, many instruction processing approaches have been proposed, aiming to achieve a delicate balance between data quantity and data quality. Nevertheless, due to inconsistencies that persist among various instruction processing methods, there is no standard open-source instruction processing implementation framework available for the community, which hinders practitioners from further developing and advancing. To facilitate instruction processing research and development, we present EasyInstruct, an easy-to-use instruction processing framework for LLMs, which modularizes instruction generation, selection, and prompting, while also considering their combination and interaction. EasyInstruct is publicly released and actively maintained at https://github.com/zjunlp/EasyInstruct, along with an online demo app and a demo video for quick-start, calling for broader research centered on instruction data and synthetic data.
comment: ACL 2024 System Demonstrations; Project website: https://zjunlp.github.io/project/EasyInstruct Code: https://github.com/zjunlp/EasyInstruct Video: https://youtu.be/rfQOWYfziFo Demo: https://huggingface.co/spaces/zjunlp/EasyInstruct
♻ ☆ ClaimVer: Explainable Claim-Level Verification and Evidence Attribution of Text Through Knowledge Graphs
In the midst of widespread misinformation and disinformation through social media and the proliferation of AI-generated texts, it has become increasingly difficult for people to validate and trust information they encounter. Many fact-checking approaches and tools have been developed, but they often lack appropriate explainability or granularity to be useful in various contexts. A text validation method that is easy to use, accessible, and can perform fine-grained evidence attribution has become crucial. More importantly, building user trust in such a method requires presenting the rationale behind each prediction, as research shows this significantly influences people's belief in automated systems. Localizing and bringing users' attention to the specific problematic content is also paramount, instead of providing simple blanket labels. In this paper, we present ClaimVer, a human-centric framework tailored to meet users' informational and verification needs by generating rich annotations and thereby reducing cognitive load. Designed to deliver comprehensive evaluations of texts, it highlights each claim, verifies it against a trusted knowledge graph (KG), presents the evidence, and provides succinct, clear explanations for each claim prediction. Finally, our framework introduces an attribution score, enhancing applicability across a wide range of downstream tasks.
♻ ☆ EFUF: Efficient Fine-grained Unlearning Framework for Mitigating Hallucinations in Multimodal Large Language Models
Multimodal large language models (MLLMs) have attracted increasing attention in the past few years, but they may still generate descriptions that include objects not present in the corresponding images, a phenomenon known as object hallucination. To eliminate hallucinations, existing methods manually annotate paired responses with and without hallucinations, and then employ various alignment algorithms to improve the alignment capability between images and text. However, they not only demand considerable computation resources during the finetuning stage but also require expensive human annotation to construct paired data needed by the alignment algorithms. To address these issues, we borrow the idea of unlearning and propose an efficient fine-grained unlearning framework (EFUF), which can eliminate hallucinations without the need for paired data. Extensive experiments show that our method consistently reduces hallucinations while preserving the generation quality with modest computational overhead. Our code and datasets will be publicly available.
♻ ☆ VeraCT Scan: Retrieval-Augmented Fake News Detection with Justifiable Reasoning
The proliferation of fake news poses a significant threat not only by disseminating misleading information but also by undermining the very foundations of democracy. The recent advance of generative artificial intelligence has further exacerbated the challenge of distinguishing genuine news from fabricated stories. In response to this challenge, we introduce VeraCT Scan, a novel retrieval-augmented system for fake news detection. This system operates by extracting the core facts from a given piece of news and subsequently conducting an internet-wide search to identify corroborating or conflicting reports. Then sources' credibility is leveraged for information verification. Besides determining the veracity of news, we also provide transparent evidence and reasoning to support its conclusions, resulting in the interpretability and trust in the results. In addition to GPT-4 Turbo, Llama-2 13B is also fine-tuned for news content understanding, information verification, and reasoning. Both implementations have demonstrated state-of-the-art accuracy in the realm of fake news detection.
♻ ☆ MagicLens: Self-Supervised Image Retrieval with Open-Ended Instructions ICML 2024
Image retrieval, i.e., finding desired images given a reference image, inherently encompasses rich, multi-faceted search intents that are difficult to capture solely using image-based measures. Recent works leverage text instructions to allow users to more freely express their search intents. However, they primarily focus on image pairs that are visually similar and/or can be characterized by a small set of pre-defined relations. The core thesis of this paper is that text instructions can enable retrieving images with richer relations beyond visual similarity. To show this, we introduce MagicLens, a series of self-supervised image retrieval models that support open-ended instructions. MagicLens is built on a key novel insight: image pairs that naturally occur on the same web pages contain a wide range of implicit relations (e.g., inside view of), and we can bring those implicit relations explicit by synthesizing instructions via foundation models. Trained on 36.7M (query image, instruction, target image) triplets with rich semantic relations mined from the web, MagicLens achieves results comparable with or better than prior best on eight benchmarks of various image retrieval tasks, while maintaining high parameter efficiency with a significantly smaller model size. Additional human analyses on a 1.4M-image unseen corpus further demonstrate the diversity of search intents supported by MagicLens. Code and models are publicly available at https://open-vision-language.github.io/MagicLens/.
comment: ICML 2024 (Oral); Project Website: https://open-vision-language.github.io/MagicLens/
♻ ☆ Annotation alignment: Comparing LLM and human annotations of conversational safety
To what extent do LLMs align with human perceptions of safety? We study this question via *annotation alignment*, the extent to which LLMs and humans agree when annotating the safety of user-chatbot conversations. We leverage the recent DICES dataset (Aroyo et al., 2023), in which 350 conversations are each rated for safety by 112 annotators spanning 10 race-gender groups. GPT-4 achieves a Pearson correlation of $r = 0.59$ with the average annotator rating, higher than the median annotator's correlation with the average ($r=0.51$). We show that larger datasets are needed to resolve whether GPT-4 exhibits disparities in how well it correlates with demographic groups. Also, there is substantial idiosyncratic variation in correlation *within* groups, suggesting that race & gender do not fully capture differences in alignment. Finally, we find that GPT-4 cannot predict when one demographic group finds a conversation more unsafe than another.
comment: Working draft, short paper. Main text is 5 pages, 1 figure. (v3 corrects minor typo)
♻ ☆ Cross-Care: Assessing the Healthcare Implications of Pre-training Data on Language Model Bias
Large language models (LLMs) are increasingly essential in processing natural languages, yet their application is frequently compromised by biases and inaccuracies originating in their training data. In this study, we introduce Cross-Care, the first benchmark framework dedicated to assessing biases and real world knowledge in LLMs, specifically focusing on the representation of disease prevalence across diverse demographic groups. We systematically evaluate how demographic biases embedded in pre-training corpora like $ThePile$ influence the outputs of LLMs. We expose and quantify discrepancies by juxtaposing these biases against actual disease prevalences in various U.S. demographic groups. Our results highlight substantial misalignment between LLM representation of disease prevalence and real disease prevalence rates across demographic subgroups, indicating a pronounced risk of bias propagation and a lack of real-world grounding for medical applications of LLMs. Furthermore, we observe that various alignment methods minimally resolve inconsistencies in the models' representation of disease prevalence across different languages. For further exploration and analysis, we make all data and a data visualization tool available at: www.crosscare.net.
comment: Submitted for review, data visualization tool available at: www.crosscare.net
♻ ☆ Prompting Explicit and Implicit Knowledge for Multi-hop Question Answering Based on Human Reading Process COLING 2024
Pre-trained language models (PLMs) leverage chains-of-thought (CoT) to simulate human reasoning and inference processes, achieving proficient performance in multi-hop QA. However, a gap persists between PLMs' reasoning abilities and those of humans when tackling complex problems. Psychological studies suggest a vital connection between explicit information in passages and human prior knowledge during reading. Nevertheless, current research has given insufficient attention to linking input passages and PLMs' pre-training-based knowledge from the perspective of human cognition studies. In this study, we introduce a Prompting Explicit and Implicit knowledge (PEI) framework, which uses prompts to connect explicit and implicit knowledge, aligning with human reading process for multi-hop QA. We consider the input passages as explicit knowledge, employing them to elicit implicit knowledge through unified prompt reasoning. Furthermore, our model incorporates type-specific reasoning via prompts, a form of implicit knowledge. Experimental results show that PEI performs comparably to the state-of-the-art on HotpotQA. Ablation studies confirm the efficacy of our model in bridging and integrating explicit and implicit knowledge.
comment: This paper has been accepted at COLING 2024
♻ ☆ Chain-of-Instructions: Compositional Instruction Tuning on Large Language Models
Fine-tuning large language models (LLMs) with a collection of large and diverse instructions has improved the model's generalization to different tasks, even for unseen tasks. However, most existing instruction datasets include only single instructions, and they struggle to follow complex instructions composed of multiple subtasks. In this work, we propose a novel concept of compositional instructions called chain-of-instructions (CoI), where the output of one instruction becomes an input for the next like a chain. Unlike the conventional practice of solving single instruction tasks, our proposed method encourages a model to solve each subtask step by step until the final answer is reached. CoI-tuning (i.e., fine-tuning with CoI instructions) improves the model's ability to handle instructions composed of multiple subtasks as well as unseen composite tasks such as multilingual summarization. Overall, our study find that simple CoI tuning of existing instruction data can provide consistent generalization to solve more complex, unseen, and longer chains of instructions.
♻ ☆ LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models NAACL 2024
Today's large language models (LLMs) typically train on short text segments (e.g., <4K tokens) due to the quadratic complexity of their Transformer architectures. As a result, their performance suffers drastically on inputs longer than those encountered during training, substantially limiting their applications in real-world tasks involving long contexts such as encoding scientific articles, code repositories, or long dialogues. Through theoretical analysis and empirical investigation, this work identifies three major factors contributing to this length generalization failure. Our theoretical analysis further reveals that commonly used techniques like truncating the attention window or relative positional encodings are inadequate to address them. Answering these challenges, we propose LM-Infinite, a simple and effective method for enhancing LLMs' capabilities of handling long contexts. LM-Infinite is highly flexible and can be used with most modern LLMs off-the-shelf. Without any parameter updates, it allows LLMs pre-trained with 2K or 4K-long segments to generalize to up to 200M length inputs while retaining perplexity. It also improves performance on downstream tasks such as Passkey Retrieval and Qasper in the zero-shot setting. LM-Infinite brings substantial efficiency improvements: it achieves 2.7x decoding speed up and 7.5x memory saving over the original model. Our codes are released at \url{https://github.com/Glaciohound/LM-Infinite}.
comment: NAACL 2024 Outstanding paper, 9 pages, 6 figures
♻ ☆ LinkTransformer: A Unified Package for Record Linkage with Transformer Language Models
Linking information across sources is fundamental to a variety of analyses in social science, business, and government. While large language models (LLMs) offer enormous promise for improving record linkage in noisy datasets, in many domains approximate string matching packages in popular softwares such as R and Stata remain predominant. These packages have clean, simple interfaces and can be easily extended to a diversity of languages. Our open-source package LinkTransformer aims to extend the familiarity and ease-of-use of popular string matching methods to deep learning. It is a general purpose package for record linkage with transformer LLMs that treats record linkage as a text retrieval problem. At its core is an off-the-shelf toolkit for applying transformer models to record linkage with four lines of code. LinkTransformer contains a rich repository of pre-trained transformer semantic similarity models for multiple languages and supports easy integration of any transformer language model from Hugging Face or OpenAI. It supports standard functionality such as blocking and linking on multiple noisy fields. LinkTransformer APIs also perform other common text data processing tasks, e.g., aggregation, noisy de-duplication, and translation-free cross-lingual linkage. Importantly, LinkTransformer also contains comprehensive tools for efficient model tuning, to facilitate different levels of customization when off-the-shelf models do not provide the required accuracy. Finally, to promote reusability, reproducibility, and extensibility, LinkTransformer makes it easy for users to contribute their custom-trained models to its model hub. By combining transformer language models with intuitive APIs that will be familiar to many users of popular string matching packages, LinkTransformer aims to democratize the benefits of LLMs among those who may be less familiar with deep learning frameworks.
♻ ☆ COFFEE: A Contrastive Oracle-Free Framework for Event Extraction
Event extraction is a complex information extraction task that involves extracting events from unstructured text. Prior classification-based methods require comprehensive entity annotations for joint training, while newer generation-based methods rely on heuristic templates containing oracle information such as event type, which is often unavailable in real-world scenarios. In this study, we consider a more realistic setting of this task, namely the Oracle-Free Event Extraction (OFEE) task, where only the input context is given without any oracle information, including event type, event ontology and trigger word. To solve this task, we propose a new framework, called COFFEE, which extracts the events solely based on the document context without referring to any oracle information. In particular, a contrastive selection model is introduced in COFFEE to rectify the generated triggers and handle multi-event instances. The proposed COFFEE outperforms state-of-the-art approaches under the oracle-free setting of the event extraction task, as evaluated on a public event extraction benchmark ACE05.
♻ ☆ SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning
Large Language Models (LLMs) have highlighted the necessity of effective unlearning mechanisms to comply with data regulations and ethical AI practices. LLM unlearning aims at removing undesired data influences and associated model capabilities without compromising utility beyond the scope of unlearning. While interest in studying LLM unlearning is growing, the impact of the optimizer choice for LLM unlearning remains unexplored. In this work, we shed light on the significance of optimizer selection in LLM unlearning for the first time, establishing a clear connection between second-order optimization and influence unlearning (a classical approach using influence functions to update the model for data influence removal). This insight propels us to develop a second-order optimization-based LLM unlearning framework, termed Second-Order UnLearning (SOUL), which extends the static, one-shot model update using influence unlearning to a dynamic, iterative unlearning process. Our extensive experiments show that SOUL consistently outperforms conventional first-order methods across various unlearning tasks, models, and metrics, indicating that second-order optimization offers an effective and broadly applicable solution for LLM unlearning. Codes are available at https://github.com/OPTML-Group/SOUL.
♻ ☆ Fine-Grained Detection of Solidarity for Women and Migrants in 155 Years of German Parliamentary Debates
Solidarity is a crucial concept to understand social relations in societies. In this paper, we explore fine-grained solidarity frames to study solidarity towards women and migrants in German parliamentary debates between 1867 and 2022. Using 2,864 manually annotated text snippets (with a cost exceeding 18k Euro), we evaluate large language models (LLMs) like Llama 3, GPT-3.5, and GPT-4. We find that GPT-4 outperforms other LLMs, approaching human annotation quality. Using GPT-4, we automatically annotate more than 18k further instances (with a cost of around 500 Euro) across 155 years and find that solidarity with migrants outweighs anti-solidarity but that frequencies and solidarity types shift over time. Most importantly, group-based notions of (anti-)solidarity fade in favor of compassionate solidarity, focusing on the vulnerability of migrant groups, and exchange-based anti-solidarity, focusing on the lack of (economic) contribution. Our study highlights the interplay of historical events, socio-economic needs, and political ideologies in shaping migration discourse and social cohesion. We also show that powerful LLMs, if carefully prompted, can be cost-effective alternatives to human annotation for hard social scientific tasks.
comment: Note title and author changes
♻ ☆ Aligner: Efficient Alignment by Learning to Correct
With the rapid development of large language models (LLMs) and ever-evolving practical requirements, finding an efficient and effective alignment method has never been more critical. However, the tension between the complexity of current alignment methods and the need for rapid iteration in deployment scenarios necessitates the development of a model-agnostic alignment approach that can operate under these constraints. In this paper, we introduce Aligner, a novel and simple alignment paradigm that learns the correctional residuals between preferred and dispreferred answers using a small model. Designed as a model-agnostic, plug-and-play module, Aligner can be directly applied to various open-source and API-based models with only one-off training, making it suitable for rapid iteration. Notably, Aligner can be applied to any powerful, large-scale upstream models. Moreover, it can even iteratively bootstrap the upstream models using corrected responses as synthetic human preference data, breaking through the model's performance ceiling. Our experiments demonstrate performance improvements by deploying the same Aligner model across 11 different LLMs, evaluated on the 3H dimensions (helpfulness, harmlessness, and honesty). Specifically, Aligner-7B has achieved an average improvement of 68.9% in helpfulness and 23.8% in harmlessness across the tested LLMs while also effectively reducing hallucination. In the Alpaca-Eval leaderboard, stacking Aligner-2B on GPT-4 Turbo improved its LC Win Rate from 55.0% to 58.3%, surpassing GPT-4 Omni's 57.5% Win Rate (community report).
♻ ☆ RAG-RLRC-LaySum at BioLaySumm: Integrating Retrieval-Augmented Generation and Readability Control for Layman Summarization of Biomedical Texts
This paper introduces the RAG-RLRC-LaySum framework, designed to make complex biomedical research understandable to laymen through advanced Natural Language Processing (NLP) techniques. Our Retrieval Augmented Generation (RAG) solution, enhanced by a reranking method, utilizes multiple knowledge sources to ensure the precision and pertinence of lay summaries. Additionally, our Reinforcement Learning for Readability Control (RLRC) strategy improves readability, making scientific content comprehensible to non-specialists. Evaluations using the publicly accessible PLOS and eLife datasets show that our methods surpass Plain Gemini model, demonstrating a 20% increase in readability scores, a 15% improvement in ROUGE-2 relevance scores, and a 10% enhancement in factual accuracy. The RAG-RLRC-LaySum framework effectively democratizes scientific knowledge, enhancing public engagement with biomedical discoveries.
Computer Vision and Pattern Recognition 142
☆ StableNormal: Reducing Diffusion Variance for Stable and Sharp Normal
This work addresses the challenge of high-quality surface normal estimation from monocular colored inputs (i.e., images and videos), a field which has recently been revolutionized by repurposing diffusion priors. However, previous attempts still struggle with stochastic inference, conflicting with the deterministic nature of the Image2Normal task, and costly ensembling step, which slows down the estimation process. Our method, StableNormal, mitigates the stochasticity of the diffusion process by reducing inference variance, thus producing "Stable-and-Sharp" normal estimates without any additional ensembling process. StableNormal works robustly under challenging imaging conditions, such as extreme lighting, blurring, and low quality. It is also robust against transparent and reflective surfaces, as well as cluttered scenes with numerous objects. Specifically, StableNormal employs a coarse-to-fine strategy, which starts with a one-step normal estimator (YOSO) to derive an initial normal guess, that is relatively coarse but reliable, then followed by a semantic-guided refinement process (SG-DRN) that refines the normals to recover geometric details. The effectiveness of StableNormal is demonstrated through competitive performance in standard datasets such as DIODE-indoor, iBims, ScannetV2 and NYUv2, and also in various downstream tasks, such as surface reconstruction and normal enhancement. These results evidence that StableNormal retains both the "stability" and "sharpness" for accurate normal estimation. StableNormal represents a baby attempt to repurpose diffusion priors for deterministic estimation. To democratize this, code and models have been publicly available in hf.co/Stable-X
comment: HF Demo: hf.co/Stable-X, Video: https://www.youtube.com/watch?v=sylXTxG_U2U
☆ Revisiting Referring Expression Comprehension Evaluation in the Era of Large Multimodal Models
Referring expression comprehension (REC) involves localizing a target instance based on a textual description. Recent advancements in REC have been driven by large multimodal models (LMMs) like CogVLM, which achieved 92.44% accuracy on RefCOCO. However, this study questions whether existing benchmarks such as RefCOCO, RefCOCO+, and RefCOCOg, capture LMMs' comprehensive capabilities. We begin with a manual examination of these benchmarks, revealing high labeling error rates: 14% in RefCOCO, 24% in RefCOCO+, and 5% in RefCOCOg, which undermines the authenticity of evaluations. We address this by excluding problematic instances and reevaluating several LMMs capable of handling the REC task, showing significant accuracy improvements, thus highlighting the impact of benchmark noise. In response, we introduce Ref-L4, a comprehensive REC benchmark, specifically designed to evaluate modern REC models. Ref-L4 is distinguished by four key features: 1) a substantial sample size with 45,341 annotations; 2) a diverse range of object categories with 365 distinct types and varying instance scales from 30 to 3,767; 3) lengthy referring expressions averaging 24.2 words; and 4) an extensive vocabulary comprising 22,813 unique words. We evaluate a total of 24 large models on Ref-L4 and provide valuable insights. The cleaned versions of RefCOCO, RefCOCO+, and RefCOCOg, as well as our Ref-L4 benchmark and evaluation code, are available at https://github.com/JierunChen/Ref-L4.
☆ FreeTraj: Tuning-Free Trajectory Control in Video Diffusion Models
Diffusion model has demonstrated remarkable capability in video generation, which further sparks interest in introducing trajectory control into the generation process. While existing works mainly focus on training-based methods (e.g., conditional adapter), we argue that diffusion model itself allows decent control over the generated content without requiring any training. In this study, we introduce a tuning-free framework to achieve trajectory-controllable video generation, by imposing guidance on both noise construction and attention computation. Specifically, 1) we first show several instructive phenomenons and analyze how initial noises influence the motion trajectory of generated content. 2) Subsequently, we propose FreeTraj, a tuning-free approach that enables trajectory control by modifying noise sampling and attention mechanisms. 3) Furthermore, we extend FreeTraj to facilitate longer and larger video generation with controllable trajectories. Equipped with these designs, users have the flexibility to provide trajectories manually or opt for trajectories automatically generated by the LLM trajectory planner. Extensive experiments validate the efficacy of our approach in enhancing the trajectory controllability of video diffusion models.
comment: Project Page: http://haonanqiu.com/projects/FreeTraj.html, Code Repo: https://github.com/arthur-qiu/FreeTraj
☆ Dreamitate: Real-World Visuomotor Policy Learning via Video Generation
A key challenge in manipulation is learning a policy that can robustly generalize to diverse visual environments. A promising mechanism for learning robust policies is to leverage video generative models, which are pretrained on large-scale datasets of internet videos. In this paper, we propose a visuomotor policy learning framework that fine-tunes a video diffusion model on human demonstrations of a given task. At test time, we generate an example of an execution of the task conditioned on images of a novel scene, and use this synthesized execution directly to control the robot. Our key insight is that using common tools allows us to effortlessly bridge the embodiment gap between the human hand and the robot manipulator. We evaluate our approach on four tasks of increasing complexity and demonstrate that harnessing internet-scale generative models allows the learned policy to achieve a significantly higher degree of generalization than existing behavior cloning approaches.
comment: Project page: https://dreamitate.cs.columbia.edu/
Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach. While stronger language models can enhance multimodal capabilities, the design choices for vision components are often insufficiently explored and disconnected from visual representation learning research. This gap hinders accurate sensory grounding in real-world scenarios. Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations, offering new insights into different models and architectures -- self-supervised, strongly supervised, or combinations thereof -- based on experiments with over 20 vision encoders. We critically examine existing MLLM benchmarks, addressing the difficulties involved in consolidating and interpreting results from various tasks, and introduce a new vision-centric benchmark, CV-Bench. To further improve visual grounding, we propose the Spatial Vision Aggregator (SVA), a dynamic and spatially-aware connector that integrates high-resolution vision features with LLMs while reducing the number of tokens. Additionally, we discuss the curation of high-quality visual instruction-tuning data from publicly available sources, emphasizing the importance of data source balancing and distribution ratio. Collectively, Cambrian-1 not only achieves state-of-the-art performance but also serves as a comprehensive, open cookbook for instruction-tuned MLLMs. We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes. We hope our release will inspire and accelerate advancements in multimodal systems and visual representation learning.
comment: Website at https://cambrian-mllm.github.io
☆ DreamBench++: A Human-Aligned Benchmark for Personalized Image Generation
Personalized image generation holds great promise in assisting humans in everyday work and life due to its impressive function in creatively generating personalized content. However, current evaluations either are automated but misalign with humans or require human evaluations that are time-consuming and expensive. In this work, we present DreamBench++, a human-aligned benchmark automated by advanced multimodal GPT models. Specifically, we systematically design the prompts to let GPT be both human-aligned and self-aligned, empowered with task reinforcement. Further, we construct a comprehensive dataset comprising diverse images and prompts. By benchmarking 7 modern generative models, we demonstrate that DreamBench++ results in significantly more human-aligned evaluation, helping boost the community with innovative findings.
comment: Project page: https://dreambenchplus.github.io/
☆ Long Context Transfer from Language to Vision
Video sequences offer valuable temporal information, but existing large multimodal models (LMMs) fall short in understanding extremely long videos. Many works address this by reducing the number of visual tokens using visual resamplers. Alternatively, in this paper, we approach this problem from the perspective of the language model. By simply extrapolating the context length of the language backbone, we enable LMMs to comprehend orders of magnitude more visual tokens without any video training. We call this phenomenon long context transfer and carefully ablate its properties. To effectively measure LMMs' ability to generalize to long contexts in the vision modality, we develop V-NIAH (Visual Needle-In-A-Haystack), a purely synthetic long vision benchmark inspired by the language model's NIAH test. Our proposed Long Video Assistant (LongVA) can process 2000 frames or over 200K visual tokens without additional complexities. With its extended context length, LongVA achieves state-of-the-art performance on Video-MME among 7B-scale models by densely sampling more input frames. Our work is open-sourced at https://github.com/EvolvingLMMs-Lab/LongVA.
☆ Losing Visual Needles in Image Haystacks: Vision Language Models are Easily Distracted in Short and Long Contexts
We present LoCoVQA, a dynamic benchmark generator for evaluating long-context extractive reasoning in vision language models (VLMs). LoCoVQA augments test examples for mathematical reasoning, VQA, and character recognition tasks with increasingly long visual contexts composed of both in-distribution and out-of-distribution distractor images. Across these tasks, a diverse set of VLMs rapidly lose performance as the visual context length grows, often exhibiting a striking exponential decay trend. This test assesses how well VLMs can ignore irrelevant information when answering queries -- a task that is quite easy for language models (LMs) in the text domain -- demonstrating that current state-of-the-art VLMs lack this essential capability for many long-context applications.
comment: Under review
☆ From Perfect to Noisy World Simulation: Customizable Embodied Multi-modal Perturbations for SLAM Robustness Benchmarking
Embodied agents require robust navigation systems to operate in unstructured environments, making the robustness of Simultaneous Localization and Mapping (SLAM) models critical to embodied agent autonomy. While real-world datasets are invaluable, simulation-based benchmarks offer a scalable approach for robustness evaluations. However, the creation of a challenging and controllable noisy world with diverse perturbations remains under-explored. To this end, we propose a novel, customizable pipeline for noisy data synthesis, aimed at assessing the resilience of multi-modal SLAM models against various perturbations. The pipeline comprises a comprehensive taxonomy of sensor and motion perturbations for embodied multi-modal (specifically RGB-D) sensing, categorized by their sources and propagation order, allowing for procedural composition. We also provide a toolbox for synthesizing these perturbations, enabling the transformation of clean environments into challenging noisy simulations. Utilizing the pipeline, we instantiate the large-scale Noisy-Replica benchmark, which includes diverse perturbation types, to evaluate the risk tolerance of existing advanced RGB-D SLAM models. Our extensive analysis uncovers the susceptibilities of both neural (NeRF and Gaussian Splatting -based) and non-neural SLAM models to disturbances, despite their demonstrated accuracy in standard benchmarks. Our code is publicly available at https://github.com/Xiaohao-Xu/SLAM-under-Perturbation.
comment: 50 pages. arXiv admin note: substantial text overlap with arXiv:2402.08125
☆ Unsupervised Domain Adaptation for Pediatric Brain Tumor Segmentation
Significant advances have been made toward building accurate automatic segmentation models for adult gliomas. However, the performance of these models often degrades when applied to pediatric glioma due to their imaging and clinical differences (domain shift). Obtaining sufficient annotated data for pediatric glioma is typically difficult because of its rare nature. Also, manual annotations are scarce and expensive. In this work, we propose Domain-Adapted nnU-Net (DA-nnUNet) to perform unsupervised domain adaptation from adult glioma (source domain) to pediatric glioma (target domain). Specifically, we add a domain classifier connected with a gradient reversal layer (GRL) to a backbone nnU-Net. Once the classifier reaches a very high accuracy, the GRL is activated with the goal of transferring domain-invariant features from the classifier to the segmentation model while preserving segmentation accuracy on the source domain. The accuracy of the classifier slowly degrades to chance levels. No annotations are used in the target domain. The method is compared to 8 different supervised models using BraTS-Adult glioma (N=1251) and BraTS-PED glioma data (N=99). The proposed method shows notable performance enhancements in the tumor core (TC) region compared to the model that only uses adult data: ~32% better Dice scores and ~20 better 95th percentile Hausdorff distances. Moreover, our unsupervised approach shows no statistically significant difference compared to the practical upper bound model using manual annotations from both datasets in TC region. The code is shared at https://github.com/Fjr9516/DA_nnUNet.
comment: 10 pages, 4 figures, conference
GPT-4V Explorations: Mining Autonomous Driving
This paper explores the application of the GPT-4V(ision) large visual language model to autonomous driving in mining environments, where traditional systems often falter in understanding intentions and making accurate decisions during emergencies. GPT-4V introduces capabilities for visual question answering and complex scene comprehension, addressing challenges in these specialized settings.Our evaluation focuses on its proficiency in scene understanding, reasoning, and driving functions, with specific tests on its ability to recognize and interpret elements such as pedestrians, various vehicles, and traffic devices. While GPT-4V showed robust comprehension and decision-making skills, it faced difficulties in accurately identifying specific vehicle types and managing dynamic interactions. Despite these challenges, its effective navigation and strategic decision-making demonstrate its potential as a reliable agent for autonomous driving in the complex conditions of mining environments, highlighting its adaptability and operational viability in industrial settings.
☆ ClotheDreamer: Text-Guided Garment Generation with 3D Gaussians
High-fidelity 3D garment synthesis from text is desirable yet challenging for digital avatar creation. Recent diffusion-based approaches via Score Distillation Sampling (SDS) have enabled new possibilities but either intricately couple with human body or struggle to reuse. We introduce ClotheDreamer, a 3D Gaussian-based method for generating wearable, production-ready 3D garment assets from text prompts. We propose a novel representation Disentangled Clothe Gaussian Splatting (DCGS) to enable separate optimization. DCGS represents clothed avatar as one Gaussian model but freezes body Gaussian splats. To enhance quality and completeness, we incorporate bidirectional SDS to supervise clothed avatar and garment RGBD renderings respectively with pose conditions and propose a new pruning strategy for loose clothing. Our approach can also support custom clothing templates as input. Benefiting from our design, the synthetic 3D garment can be easily applied to virtual try-on and support physically accurate animation. Extensive experiments showcase our method's superior and competitive performance. Our project page is at https://ggxxii.github.io/clothedreamer.
comment: Project Page: https://ggxxii.github.io/clothedreamer
☆ Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation
Human feedback plays a critical role in learning and refining reward models for text-to-image generation, but the optimal form the feedback should take for learning an accurate reward function has not been conclusively established. This paper investigates the effectiveness of fine-grained feedback which captures nuanced distinctions in image quality and prompt-alignment, compared to traditional coarse-grained feedback (for example, thumbs up/down or ranking between a set of options). While fine-grained feedback holds promise, particularly for systems catering to diverse societal preferences, we show that demonstrating its superiority to coarse-grained feedback is not automatic. Through experiments on real and synthetic preference data, we surface the complexities of building effective models due to the interplay of model choice, feedback type, and the alignment between human judgment and computational interpretation. We identify key challenges in eliciting and utilizing fine-grained feedback, prompting a reassessment of its assumed benefits and practicality. Our findings -- e.g., that fine-grained feedback can lead to worse models for a fixed budget, in some settings; however, in controlled settings with known attributes, fine grained rewards can indeed be more helpful -- call for careful consideration of feedback attributes and potentially beckon novel modeling approaches to appropriately unlock the potential value of fine-grained feedback in-the-wild.
☆ The Progression of Transformers from Language to Vision to MOT: A Literature Review on Multi-Object Tracking with Transformers
The transformer neural network architecture allows for autoregressive sequence-to-sequence modeling through the use of attention layers. It was originally created with the application of machine translation but has revolutionized natural language processing. Recently, transformers have also been applied across a wide variety of pattern recognition tasks, particularly in computer vision. In this literature review, we describe major advances in computer vision utilizing transformers. We then focus specifically on Multi-Object Tracking (MOT) and discuss how transformers are increasingly becoming competitive in state-of-the-art MOT works, yet still lag behind traditional deep learning methods.
comment: This report was written in November 2022, and may not contain more recent works since then
☆ Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation
Large-scale datasets with point-wise semantic and instance labels are crucial to 3D instance segmentation but also expensive. To leverage unlabeled data, previous semi-supervised 3D instance segmentation approaches have explored self-training frameworks, which rely on high-quality pseudo labels for consistency regularization. They intuitively utilize both instance and semantic pseudo labels in a joint learning manner. However, semantic pseudo labels contain numerous noise derived from the imbalanced category distribution and natural confusion of similar but distinct categories, which leads to severe collapses in self-training. Motivated by the observation that 3D instances are non-overlapping and spatially separable, we ask whether we can solely rely on instance consistency regularization for improved semi-supervised segmentation. To this end, we propose a novel self-training network InsTeacher3D to explore and exploit pure instance knowledge from unlabeled data. We first build a parallel base 3D instance segmentation model DKNet, which distinguishes each instance from the others via discriminative instance kernels without reliance on semantic segmentation. Based on DKNet, we further design a novel instance consistency regularization framework to generate and leverage high-quality instance pseudo labels. Experimental results on multiple large-scale datasets show that the InsTeacher3D significantly outperforms prior state-of-the-art semi-supervised approaches. Code is available: https://github.com/W1zheng/InsTeacher3D.
comment: 14 pages, 10 figures
☆ The MRI Scanner as a Diagnostic: Image-less Active Sampling MICCAI 2024
Despite the high diagnostic accuracy of Magnetic Resonance Imaging (MRI), using MRI as a Point-of-Care (POC) disease identification tool poses significant accessibility challenges due to the use of high magnetic field strength and lengthy acquisition times. We ask a simple question: Can we dynamically optimise acquired samples, at the patient level, according to an (automated) downstream decision task, while discounting image reconstruction? We propose an ML-based framework that learns an active sampling strategy, via reinforcement learning, at a patient-level to directly infer disease from undersampled k-space. We validate our approach by inferring Meniscus Tear in undersampled knee MRI data, where we achieve diagnostic performance comparable with ML-based diagnosis, using fully sampled k-space data. We analyse task-specific sampling policies, showcasing the adaptability of our active sampling approach. The introduced frugal sampling strategies have the potential to reduce high field strength requirements that in turn strengthen the viability of MRI-based POC disease identification and associated preliminary screening tools.
comment: Accepted in MICCAI 2024
☆ μ-Net: A Deep Learning-Based Architecture for μ-CT Segmentation
X-ray computed microtomography ({\mu}-CT) is a non-destructive technique that can generate high-resolution 3D images of the internal anatomy of medical and biological samples. These images enable clinicians to examine internal anatomy and gain insights into the disease or anatomical morphology. However, extracting relevant information from 3D images requires semantic segmentation of the regions of interest, which is usually done manually and results time-consuming and tedious. In this work, we propose a novel framework that uses a convolutional neural network (CNN) to automatically segment the full morphology of the heart of Carassius auratus. The framework employs an optimized 2D CNN architecture that can infer a 3D segmentation of the sample, avoiding the high computational cost of a 3D CNN architecture. We tackle the challenges of handling large and high-resoluted image data (over a thousand pixels in each dimension) and a small training database (only three samples) by proposing a standard protocol for data normalization and processing. Moreover, we investigate how the noise, contrast, and spatial resolution of the sample and the training of the architecture are affected by the reconstruction technique, which depends on the number of input images. Experiments show that our framework significantly reduces the time required to segment new samples, allowing a faster microtomography analysis of the Carassius auratus heart shape. Furthermore, our framework can work with any bio-image (biological and medical) from {\mu}-CT with high-resolution and small dataset size
☆ Portrait3D: 3D Head Generation from Single In-the-wild Portrait Image
While recent works have achieved great success on one-shot 3D common object generation, high quality and fidelity 3D head generation from a single image remains a great challenge. Previous text-based methods for generating 3D heads were limited by text descriptions and image-based methods struggled to produce high-quality head geometry. To handle this challenging problem, we propose a novel framework, Portrait3D, to generate high-quality 3D heads while preserving their identities. Our work incorporates the identity information of the portrait image into three parts: 1) geometry initialization, 2) geometry sculpting, and 3) texture generation stages. Given a reference portrait image, we first align the identity features with text features to realize ID-aware guidance enhancement, which contains the control signals representing the face information. We then use the canny map, ID features of the portrait image, and a pre-trained text-to-normal/depth diffusion model to generate ID-aware geometry supervision, and 3D-GAN inversion is employed to generate ID-aware geometry initialization. Furthermore, with the ability to inject identity information into 3D head generation, we use ID-aware guidance to calculate ID-aware Score Distillation (ISD) for geometry sculpting. For texture generation, we adopt the ID Consistent Texture Inpainting and Refinement which progressively expands the view for texture inpainting to obtain an initialization UV texture map. We then use the id-aware guidance to provide image-level supervision for noisy multi-view images to obtain a refined texture map. Extensive experiments demonstrate that we can generate high-quality 3D heads with accurate geometry and texture from single in-the-wild portrait images. The project page is at https://jinkun-hao.github.io/Portrait3D/.
comment: https://jinkun-hao.github.io/Portrait3D/
☆ Demystifying the Effect of Receptive Field Size in U-Net Models for Medical Image Segmentation
Medical image segmentation is a critical task in healthcare applications, and U-Nets have demonstrated promising results. This work delves into the understudied aspect of receptive field (RF) size and its impact on the U-Net and Attention U-Net architectures. This work explores several critical elements including the relationship between RF size, characteristics of the region of interest, and model performance, as well as the balance between RF size and computational costs for U-Net and Attention U-Net methods for different datasets. This work also proposes a mathematical notation for representing the theoretical receptive field (TRF) of a given layer in a network and proposes two new metrics - effective receptive field (ERF) rate and the Object rate to quantify the fraction of significantly contributing pixels within the ERF against the TRF area and assessing the relative size of the segmentation object compared to the TRF size respectively. The results demonstrate that there exists an optimal TRF size that successfully strikes a balance between capturing a wider global context and maintaining computational efficiency, thereby optimizing model performance. Interestingly, a distinct correlation is observed between the data complexity and the required TRF size; segmentation based solely on contrast achieved peak performance even with smaller TRF sizes, whereas more complex segmentation tasks necessitated larger TRFs. Attention U-Net models consistently outperformed their U-Net counterparts, highlighting the value of attention mechanisms regardless of TRF size. These novel insights present an invaluable resource for developing more efficient U-Net-based architectures for medical imaging and pave the way for future exploration. A tool is also developed that calculates the TRF for a U-Net (and Attention U-Net) model, and also suggest an appropriate TRF size for a given model and dataset.
☆ Geometry-Aware Score Distillation via 3D Consistent Noising and Gradient Consistency Modeling
Score distillation sampling (SDS), the methodology in which the score from pretrained 2D diffusion models is distilled into 3D representation, has recently brought significant advancements in text-to-3D generation task. However, this approach is still confronted with critical geometric inconsistency problems such as the Janus problem. Starting from a hypothesis that such inconsistency problems may be induced by multiview inconsistencies between 2D scores predicted from various viewpoints, we introduce GSD, a simple and general plug-and-play framework for incorporating 3D consistency and therefore geometry awareness into the SDS process. Our methodology is composed of three components: 3D consistent noising, designed to produce 3D consistent noise maps that perfectly follow the standard Gaussian distribution, geometry-based gradient warping for identifying correspondences between predicted gradients of different viewpoints, and novel gradient consistency loss to optimize the scene geometry toward producing more consistent gradients. We demonstrate that our method significantly improves performance, successfully addressing the geometric inconsistency problems in text-to-3D generation task with minimal computation cost and being compatible with existing score distillation-based models. Our project page is available at https://ku-cvlab.github.io/GSD/.
☆ Repulsive Score Distillation for Diverse Sampling of Diffusion Models
Score distillation sampling has been pivotal for integrating diffusion models into generation of complex visuals. Despite impressive results it suffers from mode collapse and lack of diversity. To cope with this challenge, we leverage the gradient flow interpretation of score distillation to propose Repulsive Score Distillation (RSD). In particular, we propose a variational framework based on repulsion of an ensemble of particles that promotes diversity. Using a variational approximation that incorporates a coupling among particles, the repulsion appears as a simple regularization that allows interaction of particles based on their relative pairwise similarity, measured e.g., via radial basis kernels. We design RSD for both unconstrained and constrained sampling scenarios. For constrained sampling we focus on inverse problems in the latent space that leads to an augmented variational formulation, that strikes a good balance between compute, quality and diversity. Our extensive experiments for text-to-image generation, and inverse problems demonstrate that RSD achieves a superior trade-off between diversity and quality compared with state-of-the-art alternatives.
☆ Sampling Strategies in Bayesian Inversion: A Study of RTO and Langevin Methods
This paper studies two classes of sampling methods for the solution of inverse problems, namely Randomize-Then-Optimize (RTO), which is rooted in sensitivity analysis, and Langevin methods, which are rooted in the Bayesian framework. The two classes of methods correspond to different assumptions and yield samples from different target distributions. We highlight the main conceptual and theoretical differences between the two approaches and compare them from a practical point of view by tackling two classical inverse problems in imaging: deblurring and inpainting. We show that the choice of the sampling method has a significant impact on the quality of the reconstruction and that the RTO method is more robust to the choice of the parameters.
☆ Vision-Language Consistency Guided Multi-modal Prompt Learning for Blind AI Generated Image Quality Assessment
Recently, textual prompt tuning has shown inspirational performance in adapting Contrastive Language-Image Pre-training (CLIP) models to natural image quality assessment. However, such uni-modal prompt learning method only tunes the language branch of CLIP models. This is not enough for adapting CLIP models to AI generated image quality assessment (AGIQA) since AGIs visually differ from natural images. In addition, the consistency between AGIs and user input text prompts, which correlates with the perceptual quality of AGIs, is not investigated to guide AGIQA. In this letter, we propose vision-language consistency guided multi-modal prompt learning for blind AGIQA, dubbed CLIP-AGIQA. Specifically, we introduce learnable textual and visual prompts in language and vision branches of CLIP models, respectively. Moreover, we design a text-to-image alignment quality prediction task, whose learned vision-language consistency knowledge is used to guide the optimization of the above multi-modal prompts. Experimental results on two public AGIQA datasets demonstrate that the proposed method outperforms state-of-the-art quality assessment models. The source code is available at https://github.com/JunFu1995/CLIP-AGIQA.
comment: Accepted by IEEE Signal Processing Letter
☆ Feature Fusion for Human Activity Recognition using Parameter-Optimized Multi-Stage Graph Convolutional Network and Transformer Models
Human activity recognition (HAR) is a crucial area of research that involves understanding human movements using computer and machine vision technology. Deep learning has emerged as a powerful tool for this task, with models such as Convolutional Neural Networks (CNNs) and Transformers being employed to capture various aspects of human motion. One of the key contributions of this work is the demonstration of the effectiveness of feature fusion in improving HAR accuracy by capturing spatial and temporal features, which has important implications for the development of more accurate and robust activity recognition systems. The study uses sensory data from HuGaDB, PKU-MMD, LARa, and TUG datasets. Two model, the PO-MS-GCN and a Transformer were trained and evaluated, with PO-MS-GCN outperforming state-of-the-art models. HuGaDB and TUG achieved high accuracies and f1-scores, while LARa and PKU-MMD had lower scores. Feature fusion improved results across datasets.
comment: 7 pages, 1 figure, conference
☆ MLAAN: Scaling Supervised Local Learning with Multilaminar Leap Augmented Auxiliary Network
End-to-end (E2E) training approaches are commonly plagued by high memory consumption, reduced efficiency in training, challenges in model parallelization, and suboptimal biocompatibility. Local learning is considered a novel interactive training method that holds promise as an alternative to E2E. Nonetheless, conventional local learning methods fall short in achieving high model accuracy due to inadequate local inter-module interactions. In this paper, we introduce a new model known as the Scaling Supervised Local Learning with Multilaminar Leap Augmented Auxiliary Network (MLAAN). MLAAN features an innovative supervised local learning approach coupled with a robust reinforcement module. This dual-component design enables the MLAAN to integrate smoothly with established local learning techniques, thereby enhancing the efficacy of the foundational methods. The method simultaneously acquires the local and global features of the model separately by constructing an independent auxiliary network and a cascade auxiliary network on the one hand and incorporates a leap augmented module, which serves to counteract the reduced learning capacity often associated with weaker supervision. This architecture not only augments the exchange of information amongst the local modules but also effectively mitigates the model's tendency toward myopia. The experimental evaluations conducted on four benchmark datasets, CIFAR-10, STL-10, SVHN, and ImageNet, demonstrate that the integration of MLAAN with existing supervised local learning methods significantly enhances the original methodologies. Of particular note, MLAAN enables local learning methods to comprehensively outperform end-to-end training approaches in terms of optimal performance while saving GPU memory.
☆ Articulate your NeRF: Unsupervised articulated object modeling via conditional view synthesis
We propose a novel unsupervised method to learn the pose and part-segmentation of articulated objects with rigid parts. Given two observations of an object in different articulation states, our method learns the geometry and appearance of object parts by using an implicit model from the first observation, distils the part segmentation and articulation from the second observation while rendering the latter observation. Additionally, to tackle the complexities in the joint optimization of part segmentation and articulation, we propose a voxel grid-based initialization strategy and a decoupled optimization procedure. Compared to the prior unsupervised work, our model obtains significantly better performance, and generalizes to objects with multiple parts while it can be efficiently from few views for the latter observation.
comment: 9 pages for the maincontent, excluding references and supplementaries
☆ OmAgent: A Multi-modal Agent Framework for Complex Video Understanding with Task Divide-and-Conquer
Recent advancements in Large Language Models (LLMs) have expanded their capabilities to multimodal contexts, including comprehensive video understanding. However, processing extensive videos such as 24-hour CCTV footage or full-length films presents significant challenges due to the vast data and processing demands. Traditional methods, like extracting key frames or converting frames to text, often result in substantial information loss. To address these shortcomings, we develop OmAgent, efficiently stores and retrieves relevant video frames for specific queries, preserving the detailed content of videos. Additionally, it features an Divide-and-Conquer Loop capable of autonomous reasoning, dynamically invoking APIs and tools to enhance query processing and accuracy. This approach ensures robust video understanding, significantly reducing information loss. Experimental results affirm OmAgent's efficacy in handling various types of videos and complex tasks. Moreover, we have endowed it with greater autonomy and a robust tool-calling system, enabling it to accomplish even more intricate tasks.
☆ The Championship-Winning Solution for the 5th CLVISION Challenge 2024
In this paper, we introduce our approach to the 5th CLVision Challenge, which presents distinctive challenges beyond traditional class incremental learning. Unlike standard settings, this competition features the recurrence of previously encountered classes and includes unlabeled data that may contain Out-of-Distribution (OOD) categories. Our approach is based on Winning Subnetworks to allocate independent parameter spaces for each task addressing the catastrophic forgetting problem in class incremental learning and employ three training strategies: supervised classification learning, unsupervised contrastive learning, and pseudo-label classification learning to fully utilize the information in both labeled and unlabeled data, enhancing the classification performance of each subnetwork. Furthermore, during the inference stage, we have devised an interaction strategy between subnetworks, where the prediction for a specific class of a particular sample is the average logits across different subnetworks corresponding to that class, leveraging the knowledge learned from different subnetworks on recurring classes to improve classification accuracy. These strategies can be simultaneously applied to the three scenarios of the competition, effectively solving the difficulties in the competition scenarios. Experimentally, our method ranks first in both the pre-selection and final evaluation stages, with an average accuracy of 0.4535 during the preselection stage and an average accuracy of 0.4805 during the final evaluation stage.
☆ When Invariant Representation Learning Meets Label Shift: Insufficiency and Theoretical Insights
As a crucial step toward real-world learning scenarios with changing environments, dataset shift theory and invariant representation learning algorithm have been extensively studied to relax the identical distribution assumption in classical learning setting. Among the different assumptions on the essential of shifting distributions, generalized label shift (GLS) is the latest developed one which shows great potential to deal with the complex factors within the shift. In this paper, we aim to explore the limitations of current dataset shift theory and algorithm, and further provide new insights by presenting a comprehensive understanding of GLS. From theoretical aspect, two informative generalization bounds are derived, and the GLS learner is proved to be sufficiently close to optimal target model from the Bayesian perspective. The main results show the insufficiency of invariant representation learning, and prove the sufficiency and necessity of GLS correction for generalization, which provide theoretical supports and innovations for exploring generalizable model under dataset shift. From methodological aspect, we provide a unified view of existing shift correction frameworks, and propose a kernel embedding-based correction algorithm (KECA) to minimize the generalization error and achieve successful knowledge transfer. Both theoretical results and extensive experiment evaluations demonstrate the sufficiency and necessity of GLS correction for addressing dataset shift and the superiority of proposed algorithm.
comment: Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
☆ Do As I Do: Pose Guided Human Motion Copy
Human motion copy is an intriguing yet challenging task in artificial intelligence and computer vision, which strives to generate a fake video of a target person performing the motion of a source person. The problem is inherently challenging due to the subtle human-body texture details to be generated and the temporal consistency to be considered. Existing approaches typically adopt a conventional GAN with an L1 or L2 loss to produce the target fake video, which intrinsically necessitates a large number of training samples that are challenging to acquire. Meanwhile, current methods still have difficulties in attaining realistic image details and temporal consistency, which unfortunately can be easily perceived by human observers. Motivated by this, we try to tackle the issues from three aspects: (1) We constrain pose-to-appearance generation with a perceptual loss and a theoretically motivated Gromov-Wasserstein loss to bridge the gap between pose and appearance. (2) We present an episodic memory module in the pose-to-appearance generation to propel continuous learning that helps the model learn from its past poor generations. We also utilize geometrical cues of the face to optimize facial details and refine each key body part with a dedicated local GAN. (3) We advocate generating the foreground in a sequence-to-sequence manner rather than a single-frame manner, explicitly enforcing temporal inconsistency. Empirical results on five datasets, iPER, ComplexMotion, SoloDance, Fish, and Mouse datasets, demonstrate that our method is capable of generating realistic target videos while precisely copying motion from a source video. Our method significantly outperforms state-of-the-art approaches and gains 7.2% and 12.4% improvements in PSNR and FID respectively.
☆ Measuring the Recyclability of Electronic Components to Assist Automatic Disassembly and Sorting Waste Printed Circuit Boards
The waste of electrical and electronic equipment has been increased due to the fast evolution of technology products and competition of many IT sectors. Every year millions of tons of electronic waste are thrown into the environment which causes high consequences for human health. Therefore, it is crucial to control this waste flow using technology, especially using Artificial Intelligence but also reclamation of critical raw materials for new production processes. In this paper, we focused on the measurement of recyclability of waste electronic components (WECs) from waste printed circuit boards (WPCBs) using mathematical innovation model. This innovative approach evaluates both the recyclability and recycling difficulties of WECs, integrating an AI model for improved disassembly and sorting. Assessing the recyclability of individual electronic components present on WPCBs provides insight into the recovery potential of valuable materials and indicates the level of complexity involved in recycling in terms of economic worth and production utility. This novel measurement approach helps AI models in accurately determining the number of classes to be identified and sorted during the automated disassembly of discarded PCBs. It also facilitates the model in iterative training and validation of individual electronic components.
comment: 15 pages, 6 figures
☆ Toward Fairer Face Recognition Datasets
Face recognition and verification are two computer vision tasks whose performance has progressed with the introduction of deep representations. However, ethical, legal, and technical challenges due to the sensitive character of face data and biases in real training datasets hinder their development. Generative AI addresses privacy by creating fictitious identities, but fairness problems persist. We promote fairness by introducing a demographic attributes balancing mechanism in generated training datasets. We experiment with an existing real dataset, three generated training datasets, and the balanced versions of a diffusion-based dataset. We propose a comprehensive evaluation that considers accuracy and fairness equally and includes a rigorous regression-based statistical analysis of attributes. The analysis shows that balancing reduces demographic unfairness. Also, a performance gap persists despite generation becoming more accurate with time. The proposed balancing method and comprehensive verification evaluation promote fairer and transparent face recognition and verification.
☆ Personalized federated learning based on feature fusion
Federated learning enables distributed clients to collaborate on training while storing their data locally to protect client privacy. However, due to the heterogeneity of data, models, and devices, the final global model may need to perform better for tasks on each client. Communication bottlenecks, data heterogeneity, and model heterogeneity have been common challenges in federated learning. In this work, we considered a label distribution skew problem, a type of data heterogeneity easily overlooked. In the context of classification, we propose a personalized federated learning approach called pFedPM. In our process, we replace traditional gradient uploading with feature uploading, which helps reduce communication costs and allows for heterogeneous client models. These feature representations play a role in preserving privacy to some extent. We use a hyperparameter $a$ to mix local and global features, which enables us to control the degree of personalization. We also introduced a relation network as an additional decision layer, which provides a non-linear learnable classifier to predict labels. Experimental results show that, with an appropriate setting of $a$, our scheme outperforms several recent FL methods on MNIST, FEMNIST, and CRIFAR10 datasets and achieves fewer communications.
☆ FASTC: A Fast Attentional Framework for Semantic Traversability Classification Using Point Cloud ECAI2023
Producing traversability maps and understanding the surroundings are crucial prerequisites for autonomous navigation. In this paper, we address the problem of traversability assessment using point clouds. We propose a novel pillar feature extraction module that utilizes PointNet to capture features from point clouds organized in vertical volume and a 2D encoder-decoder structure to conduct traversability classification instead of the widely used 3D convolutions. This results in less computational cost while even better performance is achieved at the same time. We then propose a new spatio-temporal attention module to fuse multi-frame information, which can properly handle the varying density problem of LIDAR point clouds, and this makes our module able to assess distant areas more accurately. Comprehensive experimental results on augmented Semantic KITTI and RELLIS-3D datasets show that our method is able to achieve superior performance over existing approaches both quantitatively and quantitatively.
comment: Accepted to ECAI2023 Our code is publicly available at [this](https://github.com/chenyirui/FASTC)
☆ EvalAlign: Evaluating Text-to-Image Models through Precision Alignment of Multimodal Large Models with Supervised Fine-Tuning to Human Annotations
The recent advancements in text-to-image generative models have been remarkable. Yet, the field suffers from a lack of evaluation metrics that accurately reflect the performance of these models, particularly lacking fine-grained metrics that can guide the optimization of the models. In this paper, we propose EvalAlign, a metric characterized by its accuracy, stability, and fine granularity. Our approach leverages the capabilities of Multimodal Large Language Models (MLLMs) pre-trained on extensive datasets. We develop evaluation protocols that focus on two key dimensions: image faithfulness and text-image alignment. Each protocol comprises a set of detailed, fine-grained instructions linked to specific scoring options, enabling precise manual scoring of the generated images. We Supervised Fine-Tune (SFT) the MLLM to align closely with human evaluative judgments, resulting in a robust evaluation model. Our comprehensive tests across 24 text-to-image generation models demonstrate that EvalAlign not only provides superior metric stability but also aligns more closely with human preferences than existing metrics, confirming its effectiveness and utility in model assessment.
comment: Github Repository: https://github.com/SAIS-FUXI/EvalAlign
☆ Hierarchical B-frame Video Coding for Long Group of Pictures
Learned video compression methods already outperform VVC in the low-delay (LD) case, but the random-access (RA) scenario remains challenging. Most works on learned RA video compression either use HEVC as an anchor or compare it to VVC in specific test conditions, using RGB-PSNR metric instead of Y-PSNR and avoiding comprehensive evaluation. Here, we present an end-to-end learned video codec for random access that combines training on long sequences of frames, rate allocation designed for hierarchical coding and content adaptation on inference. We show that under common test conditions (JVET-CTC), it achieves results comparable to VTM (VVC reference software) in terms of YUV-PSNR BD-Rate on some classes of videos, and outperforms it on almost all test sets in terms of VMAF BD-Rate. On average it surpasses open LD and RA end-to-end solutions in terms of VMAF and YUV BD-Rates.
☆ Improving robustness to corruptions with multiplicative weight perturbations
Deep neural networks (DNNs) excel on clean images but struggle with corrupted ones. Incorporating specific corruptions into the data augmentation pipeline can improve robustness to those corruptions but may harm performance on clean images and other types of distortion. In this paper, we introduce an alternative approach that improves the robustness of DNNs to a wide range of corruptions without compromising accuracy on clean images. We first demonstrate that input perturbations can be mimicked by multiplicative perturbations in the weight space. Leveraging this, we propose Data Augmentation via Multiplicative Perturbation (DAMP), a training method that optimizes DNNs under random multiplicative weight perturbations. We also examine the recently proposed Adaptive Sharpness-Aware Minimization (ASAM) and show that it optimizes DNNs under adversarial multiplicative weight perturbations. Experiments on image classification datasets (CIFAR-10/100, TinyImageNet and ImageNet) and neural network architectures (ResNet50, ViT-S/16) show that DAMP enhances model generalization performance in the presence of corruptions across different settings. Notably, DAMP is able to train a ViT-S/16 on ImageNet from scratch, reaching the top-1 error of 23.7% which is comparable to ResNet50 without extensive data augmentations.
comment: Under review
☆ Character-Adapter: Prompt-Guided Region Control for High-Fidelity Character Customization
Customized image generation, which seeks to synthesize images with consistent characters, holds significant relevance for applications such as storytelling, portrait generation, and character design. However, previous approaches have encountered challenges in preserving characters with high-fidelity consistency due to inadequate feature extraction and concept confusion of reference characters. Therefore, we propose Character-Adapter, a plug-and-play framework designed to generate images that preserve the details of reference characters, ensuring high-fidelity consistency. Character-Adapter employs prompt-guided segmentation to ensure fine-grained regional features of reference characters and dynamic region-level adapters to mitigate concept confusion. Extensive experiments are conducted to validate the effectiveness of Character-Adapter. Both quantitative and qualitative results demonstrate that Character-Adapter achieves the state-of-the-art performance of consistent character generation, with an improvement of 24.8% compared with other methods
☆ GIM: A Million-scale Benchmark for Generative Image Manipulation Detection and Localization
The extraordinary ability of generative models emerges as a new trend in image editing and generating realistic images, posing a serious threat to the trustworthiness of multimedia data and driving the research of image manipulation detection and location(IMDL). However, the lack of a large-scale data foundation makes IMDL task unattainable. In this paper, a local manipulation pipeline is designed, incorporating the powerful SAM, ChatGPT and generative models. Upon this basis, We propose the GIM dataset, which has the following advantages: 1) Large scale, including over one million pairs of AI-manipulated images and real images. 2) Rich Image Content, encompassing a broad range of image classes 3) Diverse Generative Manipulation, manipulated images with state-of-the-art generators and various manipulation tasks. The aforementioned advantages allow for a more comprehensive evaluation of IMDL methods, extending their applicability to diverse images. We introduce two benchmark settings to evaluate the generalization capability and comprehensive performance of baseline methods. In addition, we propose a novel IMDL framework, termed GIMFormer, which consists of a ShadowTracer, Frequency-Spatial Block (FSB), and a Multi-window Anomalous Modelling (MWAM) Module. Extensive experiments on the GIM demonstrate that GIMFormer surpasses previous state-of-the-art works significantly on two different benchmarks.
comment: Code page: https://github.com/chenyirui/GIM
☆ Vision Mamba-based autonomous crack segmentation on concrete, asphalt, and masonry surfaces
Convolutional neural networks (CNNs) and Transformers have shown advanced accuracy in crack detection under certain conditions. Yet, the fixed local attention can compromise the generalisation of CNNs, and the quadratic complexity of the global self-attention restricts the practical deployment of Transformers. Given the emergence of the new-generation architecture of Mamba, this paper proposes a Vision Mamba (VMamba)-based framework for crack segmentation on concrete, asphalt, and masonry surfaces, with high accuracy, generalisation, and less computational complexity. Having 15.6% - 74.5% fewer parameters, the encoder-decoder network integrated with VMamba could obtain up to 2.8% higher mDS than representative CNN-based models while showing about the same performance as Transformer-based models. Moreover, the VMamba-based encoder-decoder network could process high-resolution image input with up to 90.6% lower floating-point operations.
comment: 23 pages, 9 figures
☆ Multi-Modal Vision Transformers for Crop Mapping from Satellite Image Time Series
Using images acquired by different satellite sensors has shown to improve classification performance in the framework of crop mapping from satellite image time series (SITS). Existing state-of-the-art architectures use self-attention mechanisms to process the temporal dimension and convolutions for the spatial dimension of SITS. Motivated by the success of purely attention-based architectures in crop mapping from single-modal SITS, we introduce several multi-modal multi-temporal transformer-based architectures. Specifically, we investigate the effectiveness of Early Fusion, Cross Attention Fusion and Synchronized Class Token Fusion within the Temporo-Spatial Vision Transformer (TSViT). Experimental results demonstrate significant improvements over state-of-the-art architectures with both convolutional and self-attention components.
comment: 5 pages, 2 figures, 1 table. Accepted at IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2024. Our code is available at https://git.tu-berlin.de/rsim/mmtsvit
☆ LOGCAN++: Local-global class-aware network for semantic segmentation of remote sensing images
Remote sensing images usually characterized by complex backgrounds, scale and orientation variations, and large intra-class variance. General semantic segmentation methods usually fail to fully investigate the above issues, and thus their performances on remote sensing image segmentation are limited. In this paper, we propose our LOGCAN++, a semantic segmentation model customized for remote sensing images, which is made up of a Global Class Awareness (GCA) module and several Local Class Awareness (LCA) modules. The GCA module captures global representations for class-level context modeling to reduce the interference of background noise. The LCA module generates local class representations as intermediate perceptual elements to indirectly associate pixels with the global class representations, targeting at dealing with the large intra-class variance problem. In particular, we introduce affine transformations in the LCA module for adaptive extraction of local class representations to effectively tolerate scale and orientation variations in remotely sensed images. Extensive experiments on three benchmark datasets show that our LOGCAN++ outperforms current mainstream general and remote sensing semantic segmentation methods and achieves a better trade-off between speed and accuracy. Code is available at https://github.com/xwmaxwma/rssegmentation.
comment: Under Review
☆ UNICAD: A Unified Approach for Attack Detection, Noise Reduction and Novel Class Identification
As the use of Deep Neural Networks (DNNs) becomes pervasive, their vulnerability to adversarial attacks and limitations in handling unseen classes poses significant challenges. The state-of-the-art offers discrete solutions aimed to tackle individual issues covering specific adversarial attack scenarios, classification or evolving learning. However, real-world systems need to be able to detect and recover from a wide range of adversarial attacks without sacrificing classification accuracy and to flexibly act in {\bf unseen} scenarios. In this paper, UNICAD, is proposed as a novel framework that integrates a variety of techniques to provide an adaptive solution. For the targeted image classification, UNICAD achieves accurate image classification, detects unseen classes, and recovers from adversarial attacks using Prototype and Similarity-based DNNs with denoising autoencoders. Our experiments performed on the CIFAR-10 dataset highlight UNICAD's effectiveness in adversarial mitigation and unseen class classification, outperforming traditional models.
☆ Improving Quaternion Neural Networks with Quaternionic Activation Functions
In this paper, we propose novel quaternion activation functions where we modify either the quaternion magnitude or the phase, as an alternative to the commonly used split activation functions. We define criteria that are relevant for quaternion activation functions, and subsequently we propose our novel activation functions based on this analysis. Instead of applying a known activation function like the ReLU or Tanh on the quaternion elements separately, these activation functions consider the quaternion properties and respect the quaternion space $\mathbb{H}$. In particular, all quaternion components are utilized to calculate all output components, carrying out the benefit of the Hamilton product in e.g. the quaternion convolution to the activation functions. The proposed activation functions can be incorporated in arbitrary quaternion valued neural networks trained with gradient descent techniques. We further discuss the derivatives of the proposed activation functions where we observe beneficial properties for the activation functions affecting the phase. Specifically, they prove to be sensitive on basically the whole input range, thus improved gradient flow can be expected. We provide an elaborate experimental evaluation of our proposed quaternion activation functions including comparison with the split ReLU and split Tanh on two image classification tasks using the CIFAR-10 and SVHN dataset. There, especially the quaternion activation functions affecting the phase consistently prove to provide better performance.
☆ DaLPSR: Leverage Degradation-Aligned Language Prompt for Real-World Image Super-Resolution
Image super-resolution pursuits reconstructing high-fidelity high-resolution counterpart for low-resolution image. In recent years, diffusion-based models have garnered significant attention due to their capabilities with rich prior knowledge. The success of diffusion models based on general text prompts has validated the effectiveness of textual control in the field of text2image. However, given the severe degradation commonly presented in low-resolution images, coupled with the randomness characteristics of diffusion models, current models struggle to adequately discern semantic and degradation information within severely degraded images. This often leads to obstacles such as semantic loss, visual artifacts, and visual hallucinations, which pose substantial challenges for practical use. To address these challenges, this paper proposes to leverage degradation-aligned language prompt for accurate, fine-grained, and high-fidelity image restoration. Complementary priors including semantic content descriptions and degradation prompts are explored. Specifically, on one hand, image-restoration prompt alignment decoder is proposed to automatically discern the degradation degree of LR images, thereby generating beneficial degradation priors for image restoration. On the other hand, much richly tailored descriptions from pretrained multimodal large language model elicit high-level semantic priors closely aligned with human perception, ensuring fidelity control for image restoration. Comprehensive comparisons with state-of-the-art methods have been done on several popular synthetic and real-world benchmark datasets. The quantitative and qualitative analysis have demonstrated that the proposed method achieves a new state-of-the-art perceptual quality level, especially in real-world cases based on reference-free metrics.
☆ ResMaster: Mastering High-Resolution Image Generation via Structural and Fine-Grained Guidance
Diffusion models excel at producing high-quality images; however, scaling to higher resolutions, such as 4K, often results in over-smoothed content, structural distortions, and repetitive patterns. To this end, we introduce ResMaster, a novel, training-free method that empowers resolution-limited diffusion models to generate high-quality images beyond resolution restrictions. Specifically, ResMaster leverages a low-resolution reference image created by a pre-trained diffusion model to provide structural and fine-grained guidance for crafting high-resolution images on a patch-by-patch basis. To ensure a coherent global structure, ResMaster meticulously aligns the low-frequency components of high-resolution patches with the low-resolution reference at each denoising step. For fine-grained guidance, tailored image prompts based on the low-resolution reference and enriched textual prompts produced by a vision-language model are incorporated. This approach could significantly mitigate local pattern distortions and improve detail refinement. Extensive experiments validate that ResMaster sets a new benchmark for high-resolution image generation and demonstrates promising efficiency. The project page is https://shuweis.github.io/ResMaster .
☆ Seeking Certainty In Uncertainty: Dual-Stage Unified Framework Solving Uncertainty in Dynamic Facial Expression Recognition
The contemporary state-of-the-art of Dynamic Facial Expression Recognition (DFER) technology facilitates remarkable progress by deriving emotional mappings of facial expressions from video content, underpinned by training on voluminous datasets. Yet, the DFER datasets encompass a substantial volume of noise data. Noise arises from low-quality captures that defy logical labeling, and instances that suffer from mislabeling due to annotation bias, engendering two principal types of uncertainty: the uncertainty regarding data usability and the uncertainty concerning label reliability. Addressing the two types of uncertainty, we have meticulously crafted a two-stage framework aiming at \textbf{S}eeking \textbf{C}ertain data \textbf{I}n extensive \textbf{U}ncertain data (SCIU). This initiative aims to purge the DFER datasets of these uncertainties, thereby ensuring that only clean, verified data is employed in training processes. To mitigate the issue of low-quality samples, we introduce the Coarse-Grained Pruning (CGP) stage, which assesses sample weights and prunes those deemed unusable due to their low weight. For samples with incorrect annotations, the Fine-Grained Correction (FGC) stage evaluates prediction stability to rectify mislabeled data. Moreover, SCIU is conceived as a universally compatible, plug-and-play framework, tailored to integrate seamlessly with prevailing DFER methodologies. Rigorous experiments across prevalent DFER datasets and against numerous benchmark methods substantiates SCIU's capacity to markedly elevate performance metrics.
☆ Evaluating Visual and Cultural Interpretation: The K-Viscuit Benchmark with Human-VLM Collaboration
To create culturally inclusive vision-language models (VLMs), the foremost requirement is developing a test benchmark that can diagnose the models' ability to respond to questions reflecting cultural elements. This paper addresses the necessity for such benchmarks, noting that existing research has relied on human annotators' manual efforts, which impedes diversity and efficiency. We propose a semi-automated pipeline for constructing cultural VLM benchmarks to enhance diversity and efficiency. This pipeline leverages human-VLM collaboration, where VLMs generate questions based on guidelines, human-annotated examples, and image-wise relevant knowledge, which are then reviewed by native speakers for quality and cultural relevance. The effectiveness of our adaptable pipeline is demonstrated through a specific application: creating a dataset tailored to Korean culture, dubbed K-Viscuit. The resulting benchmark features two types of questions: Type 1 questions measure visual recognition abilities, while Type 2 assess fine-grained visual reasoning skills. This ensures a thorough diagnosis of VLM models across various aspects. Our evaluation using K-Viscuit revealed that open-source models notably lag behind proprietary models in understanding Korean culture, highlighting areas for improvement. We provided diverse analyses of VLM performance across different cultural aspects. Besides, we explored the potential of incorporating external knowledge retrieval to enhance the generation process, suggesting future directions for improving cultural interpretation ability of VLMs. Our dataset and code will be made publicly available.
☆ SLOctolyzer: Fully automatic analysis toolkit for segmentation and feature extracting in scanning laser ophthalmoscopy images
Purpose: To describe SLOctolyzer: an open-source analysis toolkit for en face retinal vessels appearing in infrared reflectance scanning laser ophthalmoscopy (SLO) images. Methods: SLOctolyzer includes two main modules: segmentation and measurement. The segmentation module use deep learning methods to delineate retinal anatomy, while the measurement module quantifies key retinal vascular features such as vessel complexity, density, tortuosity, and calibre. We evaluate the segmentation module using unseen data and measure its reproducibility. Results: SLOctolyzer's segmentation module performed well against unseen internal test data (Dice for all-vessels, 0.9097; arteries, 0.8376; veins, 0.8525; optic disc, 0.9430; fovea, 0.8837). External validation against severe retinal pathology showed decreased performance (Dice for arteries, 0.7180; veins, 0.7470; optic disc, 0.9032). SLOctolyzer had good reproducibility (mean difference for fractal dimension, -0.0007; vessel density, -0.0003; vessel calibre, -0.3154 $\mu$m; tortuosity density, 0.0013). SLOctolyzer can process a macula-centred SLO image in under 20 seconds and a disc-centred SLO image in under 30 seconds using a standard laptop CPU. Conclusions: To our knowledge, SLOctolyzer is the first open-source tool to convert raw SLO images into reproducible and clinically meaningful retinal vascular parameters. SLO images are captured simultaneous to optical coherence tomography (OCT), and we believe our software will be useful for extracting retinal vascular measurements from large OCT image sets and linking them to ocular or systemic diseases. It requires no specialist knowledge or proprietary software, and allows manual correction of segmentations and re-computing of vascular metrics. SLOctolyzer is freely available at https://github.com/jaburke166/SLOctolyzer.
comment: 10 pages, 5 figures, 6 tables + Supplementary (7 pages, 10 figures, 4 tables). Submitted for peer review at Translational Vision Science and Technology
☆ InterCLIP-MEP: Interactive CLIP and Memory-Enhanced Predictor for Multi-modal Sarcasm Detection
The prevalence of sarcasm in social media, conveyed through text-image combinations, presents significant challenges for sentiment analysis and intention mining. Current multi-modal sarcasm detection methods have been proven to struggle with biases from spurious cues, leading to a superficial understanding of the complex interactions between text and image. To address these issues, we propose InterCLIP-MEP, a robust framework for multi-modal sarcasm detection. InterCLIP-MEP introduces a refined variant of CLIP, Interactive CLIP (InterCLIP), as the backbone, enhancing sample representations by embedding cross-modality information in each encoder. Furthermore, a novel training strategy is designed to adapt InterCLIP for a Memory-Enhanced Predictor (MEP). MEP uses dynamic dual-channel memory to store valuable historical knowledge of test samples and then leverages this memory as a non-parametric classifier to derive the final prediction. By using InterCLIP to encode text-image interactions more effectively and incorporating MEP, InterCLIP-MEP offers a more robust recognition of multi-modal sarcasm. Experiments demonstrate that InterCLIP-MEP achieves state-of-the-art performance on the MMSD2.0 benchmark. Code and data are available at [https://github.com/CoderChen01/InterCLIP-MEP](https://github.com/CoderChen01/InterCLIP-MEP).
comment: 8 pages, 6 figures, 6 tables
☆ Suppressing Uncertainties in Degradation Estimation for Blind Super-Resolution
The problem of blind image super-resolution aims to recover high-resolution (HR) images from low-resolution (LR) images with unknown degradation modes. Most existing methods model the image degradation process using blur kernels. However, this explicit modeling approach struggles to cover the complex and varied degradation processes encountered in the real world, such as high-order combinations of JPEG compression, blur, and noise. Implicit modeling for the degradation process can effectively overcome this issue, but a key challenge of implicit modeling is the lack of accurate ground truth labels for the degradation process to conduct supervised training. To overcome this limitations inherent in implicit modeling, we propose an \textbf{U}ncertainty-based degradation representation for blind \textbf{S}uper-\textbf{R}esolution framework (\textbf{USR}). By suppressing the uncertainty of local degradation representations in images, USR facilitated self-supervised learning of degradation representations. The USR consists of two components: Adaptive Uncertainty-Aware Degradation Extraction (AUDE) and a feature extraction network composed of Variable Depth Dynamic Convolution (VDDC) blocks. To extract Uncertainty-based Degradation Representation from LR images, the AUDE utilizes the Self-supervised Uncertainty Contrast module with Uncertainty Suppression Loss to suppress the inherent model uncertainty of the Degradation Extractor. Furthermore, VDDC block integrates degradation information through dynamic convolution. Rhe VDDC also employs an Adaptive Intensity Scaling operation that adaptively adjusts the degradation representation according to the network hierarchy, thereby facilitating the effective integration of degradation information. Quantitative and qualitative experiments affirm the superiority of our approach.
☆ Evaluating and Analyzing Relationship Hallucinations in LVLMs ICML2024
The issue of hallucinations is a prevalent concern in existing Large Vision-Language Models (LVLMs). Previous efforts have primarily focused on investigating object hallucinations, which can be easily alleviated by introducing object detectors. However, these efforts neglect hallucinations in inter-object relationships, which is essential for visual comprehension. In this work, we introduce R-Bench, a novel benchmark for evaluating Vision Relationship Hallucination. R-Bench features image-level questions that focus on the existence of relationships and instance-level questions that assess local visual comprehension. We identify three types of relationship co-occurrences that lead to hallucinations: relationship-relationship, subject-relationship, and relationship-object. The visual instruction tuning dataset's long-tail distribution significantly impacts LVLMs' understanding of visual relationships. Furthermore, our analysis reveals that current LVLMs tend to disregard visual content and overly rely on the common sense knowledge of Large Language Models. They also struggle with reasoning about spatial relationships based on contextual information.
comment: ICML2024
☆ EmoLLM: Multimodal Emotional Understanding Meets Large Language Models
Multi-modal large language models (MLLMs) have achieved remarkable performance on objective multimodal perception tasks, but their ability to interpret subjective, emotionally nuanced multimodal content remains largely unexplored. Thus, it impedes their ability to effectively understand and react to the intricate emotions expressed by humans through multimodal media. To bridge this gap, we introduce EmoBench, the first comprehensive benchmark designed specifically to evaluate the emotional capabilities of MLLMs across five popular emotional tasks, using a diverse dataset of 287k images and videos paired with corresponding textual instructions. Meanwhile, we propose EmoLLM, a novel model for multimodal emotional understanding, incorporating with two core techniques. 1) Multi-perspective Visual Projection, it captures diverse emotional cues from visual data from multiple perspectives. 2) EmoPrompt, it guides MLLMs to reason about emotions in the correct direction. Experimental results demonstrate that EmoLLM significantly elevates multimodal emotional understanding performance, with an average improvement of 12.1% across multiple foundation models on EmoBench. Our work contributes to the advancement of MLLMs by facilitating a deeper and more nuanced comprehension of intricate human emotions, paving the way for the development of artificial emotional intelligence capabilities with wide-ranging applications in areas such as human-computer interaction, mental health support, and empathetic AI systems. Code, data, and model will be released.
comment: 9 pages
☆ Exploring Test-Time Adaptation for Object Detection in Continually Changing Environments
For real-world applications, neural network models are commonly deployed in dynamic environments, where the distribution of the target domain undergoes temporal changes. Continual Test-Time Adaptation (CTTA) has recently emerged as a promising technique to gradually adapt a source-trained model to test data drawn from a continually changing target domain. Despite recent advancements in addressing CTTA, two critical issues remain: 1) The use of a fixed threshold for pseudo-labeling in existing methodologies leads to the generation of low-quality pseudo-labels, as model confidence varies across categories and domains; 2) While current solutions utilize stochastic parameter restoration to mitigate catastrophic forgetting, their capacity to preserve critical information is undermined by its intrinsic randomness. To tackle these challenges, we present CTAOD, aiming to enhance the performance of detection models in CTTA scenarios. Inspired by prior CTTA works for effective adaptation, CTAOD is founded on the mean-teacher framework, characterized by three core components. Firstly, the object-level contrastive learning module tailored for object detection extracts object-level features using the teacher's region of interest features and optimizes them through contrastive learning. Secondly, the dynamic threshold strategy updates the category-specific threshold based on predicted confidence scores to improve the quality of pseudo-labels. Lastly, we design a data-driven stochastic restoration mechanism to selectively reset inactive parameters using the gradients as weights for a random mask matrix, thereby ensuring the retention of essential knowledge. We demonstrate the effectiveness of our approach on four CTTA tasks for object detection, where CTAOD outperforms existing methods, especially achieving a 3.0 mAP improvement on the Cityscapes-to-Cityscapes-C CTTA task.
☆ Multi-threshold Deep Metric Learning for Facial Expression Recognition
Effective expression feature representations generated by a triplet-based deep metric learning are highly advantageous for facial expression recognition (FER). The performance of triplet-based deep metric learning is contingent upon identifying the best threshold for triplet loss. Threshold validation, however, is tough and challenging, as the ideal threshold changes among datasets and even across classes within the same dataset. In this paper, we present the multi-threshold deep metric learning technique, which not only avoids the difficult threshold validation but also vastly increases the capacity of triplet loss learning to construct expression feature representations. We find that each threshold of the triplet loss intrinsically determines a distinctive distribution of inter-class variations and corresponds, thus, to a unique expression feature representation. Therefore, rather than selecting a single optimal threshold from a valid threshold range, we thoroughly sample thresholds across the range, allowing the representation characteristics manifested by thresholds within the range to be fully extracted and leveraged for FER. To realize this approach, we partition the embedding layer of the deep metric learning network into a collection of slices and model training these embedding slices as an end-to-end multi-threshold deep metric learning problem. Each embedding slice corresponds to a sample threshold and is learned by enforcing the corresponding triplet loss, yielding a set of distinct expression features, one for each embedding slice. It makes the embedding layer, which is composed of a set of slices, a more informative and discriminative feature, hence enhancing the FER accuracy. Extensive evaluations demonstrate the superior performance of the proposed approach on both posed and spontaneous facial expression datasets.
comment: accepted by Pattern Recognition
☆ Dynamic Pseudo Label Optimization in Point-Supervised Nuclei Segmentation MICCAI2024
Deep learning has achieved impressive results in nuclei segmentation, but the massive requirement for pixel-wise labels remains a significant challenge. To alleviate the annotation burden, existing methods generate pseudo masks for model training using point labels. However, the generated masks are inevitably different from the ground truth, and these dissimilarities are not handled reasonably during the network training, resulting in the subpar performance of the segmentation model. To tackle this issue, we propose a framework named DoNuSeg, enabling \textbf{D}ynamic pseudo label \textbf{O}ptimization in point-supervised \textbf{Nu}clei \textbf{Seg}mentation. Specifically, DoNuSeg takes advantage of class activation maps (CAMs) to adaptively capture regions with semantics similar to annotated points. To leverage semantic diversity in the hierarchical feature levels, we design a dynamic selection module to choose the optimal one among CAMs from different encoder blocks as pseudo masks. Meanwhile, a CAM-guided contrastive module is proposed to further enhance the accuracy of pseudo masks. In addition to exploiting the semantic information provided by CAMs, we consider location priors inherent to point labels, developing a task-decoupled structure for effectively differentiating nuclei. Extensive experiments demonstrate that DoNuSeg outperforms state-of-the-art point-supervised methods. The code is available at https://github.com/shinning0821/MICCAI24-DoNuSeg.
comment: early accepted by MICCAI2024
☆ Exploring Cross-Domain Few-Shot Classification via Frequency-Aware Prompting
Cross-Domain Few-Shot Learning has witnessed great stride with the development of meta-learning. However, most existing methods pay more attention to learning domain-adaptive inductive bias (meta-knowledge) through feature-wise manipulation or task diversity improvement while neglecting the phenomenon that deep networks tend to rely more on high-frequency cues to make the classification decision, which thus degenerates the robustness of learned inductive bias since high-frequency information is vulnerable and easy to be disturbed by noisy information. Hence in this paper, we make one of the first attempts to propose a Frequency-Aware Prompting method with mutual attention for Cross-Domain Few-Shot classification, which can let networks simulate the human visual perception of selecting different frequency cues when facing new recognition tasks. Specifically, a frequency-aware prompting mechanism is first proposed, in which high-frequency components of the decomposed source image are switched either with normal distribution sampling or zeroing to get frequency-aware augment samples. Then, a mutual attention module is designed to learn generalizable inductive bias under CD-FSL settings. More importantly, the proposed method is a plug-and-play module that can be directly applied to most off-the-shelf CD-FLS methods. Experimental results on CD-FSL benchmarks demonstrate the effectiveness of our proposed method as well as robustly improve the performance of existing CD-FLS methods. Resources at https://github.com/tinkez/FAP_CDFSC.
☆ High-resolution open-vocabulary object 6D pose estimation CVPR
The generalisation to unseen objects in the 6D pose estimation task is very challenging. While Vision-Language Models (VLMs) enable using natural language descriptions to support 6D pose estimation of unseen objects, these solutions underperform compared to model-based methods. In this work we present Horyon, an open-vocabulary VLM-based architecture that addresses relative pose estimation between two scenes of an unseen object, described by a textual prompt only. We use the textual prompt to identify the unseen object in the scenes and then obtain high-resolution multi-scale features. These features are used to extract cross-scene matches for registration. We evaluate our model on a benchmark with a large variety of unseen objects across four datasets, namely REAL275, Toyota-Light, Linemod, and YCB-Video. Our method achieves state-of-the-art performance on all datasets, outperforming by 12.6 in Average Recall the previous best-performing approach.
comment: Technical report. Extension of CVPR paper "Open-vocabulary object 6D pose estimation". Project page: https://jcorsetti.github.io/oryon
☆ MIRReS: Multi-bounce Inverse Rendering using Reservoir Sampling
We present MIRReS, a novel two-stage inverse rendering framework that jointly reconstructs and optimizes the explicit geometry, material, and lighting from multi-view images. Unlike previous methods that rely on implicit irradiance fields or simplified path tracing algorithms, our method extracts an explicit geometry (triangular mesh) in stage one, and introduces a more realistic physically-based inverse rendering model that utilizes multi-bounce path tracing and Monte Carlo integration. By leveraging multi-bounce path tracing, our method effectively estimates indirect illumination, including self-shadowing and internal reflections, which improves the intrinsic decomposition of shape, material, and lighting. Moreover, we incorporate reservoir sampling into our framework to address the noise in Monte Carlo integration, enhancing convergence and facilitating gradient-based optimization with low sample counts. Through qualitative and quantitative evaluation of several scenarios, especially in challenging scenarios with complex shadows, we demonstrate that our method achieves state-of-the-art performance on decomposition results. Additionally, our optimized explicit geometry enables applications such as scene editing, relighting, and material editing with modern graphics engines or CAD software. The source code is available at https://brabbitdousha.github.io/MIRReS/
comment: 16 pages, 14 figures
☆ Improving Generative Adversarial Networks for Video Super-Resolution
In this research, we explore different ways to improve generative adversarial networks for video super-resolution tasks from a base single image super-resolution GAN model. Our primary objective is to identify potential techniques that enhance these models and to analyze which of these techniques yield the most significant improvements. We evaluate our results using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). Our findings indicate that the most effective techniques include temporal smoothing, long short-term memory (LSTM) layers, and a temporal loss function. The integration of these methods results in an 11.97% improvement in PSNR and an 8% improvement in SSIM compared to the baseline video super-resolution generative adversarial network (GAN) model. This substantial improvement suggests potential further applications to enhance current state-of-the-art models.
☆ Directed Domain Fine-Tuning: Tailoring Separate Modalities for Specific Training Tasks
Large language models (LLMs) and large visual language models (LVLMs) have been at the forefront of the artificial intelligence field, particularly for tasks like text generation, video captioning, and question-answering. Typically, it is more applicable to train these models on broader knowledge bases or datasets to increase generalizability, learn relationships between topics, and recognize patterns. Instead, we propose to provide instructional datasets specific to the task of each modality within a distinct domain and then fine-tune the parameters of the model using LORA. With our approach, we can eliminate all noise irrelevant to the given task while also ensuring that the model generates with enhanced precision. For this work, we use Video-LLaVA to generate recipes given cooking videos without transcripts. Video-LLaVA's multimodal architecture allows us to provide cooking images to its image encoder, cooking videos to its video encoder, and general cooking questions to its text encoder. Thus, we aim to remove all noise unrelated to cooking while improving our model's capabilities to generate specific ingredient lists and detailed instructions. As a result, our approach to fine-tuning Video-LLaVA leads to gains over the baseline Video-LLaVA by 2% on the YouCook2 dataset. While this may seem like a marginal increase, our model trains on an image instruction dataset 2.5% the size of Video-LLaVA's and a video instruction dataset 23.76% of Video-LLaVA's.
☆ VideoHallucer: Evaluating Intrinsic and Extrinsic Hallucinations in Large Video-Language Models
Recent advancements in Multimodal Large Language Models (MLLMs) have extended their capabilities to video understanding. Yet, these models are often plagued by "hallucinations", where irrelevant or nonsensical content is generated, deviating from the actual video context. This work introduces VideoHallucer, the first comprehensive benchmark for hallucination detection in large video-language models (LVLMs). VideoHallucer categorizes hallucinations into two main types: intrinsic and extrinsic, offering further subcategories for detailed analysis, including object-relation, temporal, semantic detail, extrinsic factual, and extrinsic non-factual hallucinations. We adopt an adversarial binary VideoQA method for comprehensive evaluation, where pairs of basic and hallucinated questions are crafted strategically. By evaluating eleven LVLMs on VideoHallucer, we reveal that i) the majority of current models exhibit significant issues with hallucinations; ii) while scaling datasets and parameters improves models' ability to detect basic visual cues and counterfactuals, it provides limited benefit for detecting extrinsic factual hallucinations; iii) existing models are more adept at detecting facts than identifying hallucinations. As a byproduct, these analyses further instruct the development of our self-PEP framework, achieving an average of 5.38% improvement in hallucination resistance across all model architectures.
Prompt-Consistency Image Generation (PCIG): A Unified Framework Integrating LLMs, Knowledge Graphs, and Controllable Diffusion Models
The rapid advancement of Text-to-Image(T2I) generative models has enabled the synthesis of high-quality images guided by textual descriptions. Despite this significant progress, these models are often susceptible in generating contents that contradict the input text, which poses a challenge to their reliability and practical deployment. To address this problem, we introduce a novel diffusion-based framework to significantly enhance the alignment of generated images with their corresponding descriptions, addressing the inconsistency between visual output and textual input. Our framework is built upon a comprehensive analysis of inconsistency phenomena, categorizing them based on their manifestation in the image. Leveraging a state-of-the-art large language module, we first extract objects and construct a knowledge graph to predict the locations of these objects in potentially generated images. We then integrate a state-of-the-art controllable image generation model with a visual text generation module to generate an image that is consistent with the original prompt, guided by the predicted object locations. Through extensive experiments on an advanced multimodal hallucination benchmark, we demonstrate the efficacy of our approach in accurately generating the images without the inconsistency with the original prompt. The code can be accessed via https://github.com/TruthAI-Lab/PCIG.
☆ Lesion-Aware Cross-Phase Attention Network for Renal Tumor Subtype Classification on Multi-Phase CT Scans
Multi-phase computed tomography (CT) has been widely used for the preoperative diagnosis of kidney cancer due to its non-invasive nature and ability to characterize renal lesions. However, since enhancement patterns of renal lesions across CT phases are different even for the same lesion type, the visual assessment by radiologists suffers from inter-observer variability in clinical practice. Although deep learning-based approaches have been recently explored for differential diagnosis of kidney cancer, they do not explicitly model the relationships between CT phases in the network design, limiting the diagnostic performance. In this paper, we propose a novel lesion-aware cross-phase attention network (LACPANet) that can effectively capture temporal dependencies of renal lesions across CT phases to accurately classify the lesions into five major pathological subtypes from time-series multi-phase CT images. We introduce a 3D inter-phase lesion-aware attention mechanism to learn effective 3D lesion features that are used to estimate attention weights describing the inter-phase relations of the enhancement patterns. We also present a multi-scale attention scheme to capture and aggregate temporal patterns of lesion features at different spatial scales for further improvement. Extensive experiments on multi-phase CT scans of kidney cancer patients from the collected dataset demonstrate that our LACPANet outperforms state-of-the-art approaches in diagnostic accuracy.
comment: This article has been accepted for publication in Computers in Biology and Medicine
☆ Artistic-style text detector and a new Movie-Poster dataset
Although current text detection algorithms demonstrate effectiveness in general scenarios, their performance declines when confronted with artistic-style text featuring complex structures. This paper proposes a method that utilizes Criss-Cross Attention and residual dense block to address the incomplete and misdiagnosis of artistic-style text detection by current algorithms. Specifically, our method mainly consists of a feature extraction backbone, a feature enhancement network, a multi-scale feature fusion module, and a boundary discrimination module. The feature enhancement network significantly enhances the model's perceptual capabilities in complex environments by fusing horizontal and vertical contextual information, allowing it to capture detailed features overlooked in artistic-style text. We incorporate residual dense block into the Feature Pyramid Network to suppress the effect of background noise during feature fusion. Aiming to omit the complex post-processing, we explore a boundary discrimination module that guides the correct generation of boundary proposals. Furthermore, given that movie poster titles often use stylized art fonts, we collected a Movie-Poster dataset to address the scarcity of artistic-style text data. Extensive experiments demonstrate that our proposed method performs superiorly on the Movie-Poster dataset and produces excellent results on multiple benchmark datasets. The code and the Movie-Poster dataset will be available at: https://github.com/biedaxiaohua/Artistic-style-text-detection
☆ UBiSS: A Unified Framework for Bimodal Semantic Summarization of Videos ICMR'24
With the surge in the amount of video data, video summarization techniques, including visual-modal(VM) and textual-modal(TM) summarization, are attracting more and more attention. However, unimodal summarization inevitably loses the rich semantics of the video. In this paper, we focus on a more comprehensive video summarization task named Bimodal Semantic Summarization of Videos (BiSSV). Specifically, we first construct a large-scale dataset, BIDS, in (video, VM-Summary, TM-Summary) triplet format. Unlike traditional processing methods, our construction procedure contains a VM-Summary extraction algorithm aiming to preserve the most salient content within long videos. Based on BIDS, we propose a Unified framework UBiSS for the BiSSV task, which models the saliency information in the video and generates a TM-summary and VM-summary simultaneously. We further optimize our model with a list-wise ranking-based objective to improve its capacity to capture highlights. Lastly, we propose a metric, $NDCG_{MS}$, to provide a joint evaluation of the bimodal summary. Experiments show that our unified framework achieves better performance than multi-stage summarization pipelines. Code and data are available at https://github.com/MeiYutingg/UBiSS.
comment: Accepted by ACM International Conference on Multimedia Retrieval (ICMR'24)
☆ Priorformer: A UGC-VQA Method with content and distortion priors
User Generated Content (UGC) videos are susceptible to complicated and variant degradations and contents, which prevents the existing blind video quality assessment (BVQA) models from good performance since the lack of the adapability of distortions and contents. To mitigate this, we propose a novel prior-augmented perceptual vision transformer (PriorFormer) for the BVQA of UGC, which boots its adaptability and representation capability for divergent contents and distortions. Concretely, we introduce two powerful priors, i.e., the content and distortion priors, by extracting the content and distortion embeddings from two pre-trained feature extractors. Then we adopt these two powerful embeddings as the adaptive prior tokens, which are transferred to the vision transformer backbone jointly with implicit quality features. Based on the above strategy, the proposed PriorFormer achieves state-of-the-art performance on three public UGC VQA datasets including KoNViD-1K, LIVE-VQC and YouTube-UGC.
comment: 7 pages
☆ Crowd-Sourced NeRF: Collecting Data from Production Vehicles for 3D Street View Reconstruction
Recently, Neural Radiance Fields (NeRF) achieved impressive results in novel view synthesis. Block-NeRF showed the capability of leveraging NeRF to build large city-scale models. For large-scale modeling, a mass of image data is necessary. Collecting images from specially designed data-collection vehicles can not support large-scale applications. How to acquire massive high-quality data remains an opening problem. Noting that the automotive industry has a huge amount of image data, crowd-sourcing is a convenient way for large-scale data collection. In this paper, we present a crowd-sourced framework, which utilizes substantial data captured by production vehicles to reconstruct the scene with the NeRF model. This approach solves the key problem of large-scale reconstruction, that is where the data comes from and how to use them. Firstly, the crowd-sourced massive data is filtered to remove redundancy and keep a balanced distribution in terms of time and space. Then a structure-from-motion module is performed to refine camera poses. Finally, images, as well as poses, are used to train the NeRF model in a certain block. We highlight that we present a comprehensive framework that integrates multiple modules, including data selection, sparse 3D reconstruction, sequence appearance embedding, depth supervision of ground surface, and occlusion completion. The complete system is capable of effectively processing and reconstructing high-quality 3D scenes from crowd-sourced data. Extensive quantitative and qualitative experiments were conducted to validate the performance of our system. Moreover, we proposed an application, named first-view navigation, which leveraged the NeRF model to generate 3D street view and guide the driver with a synthesized video.
☆ SegNet4D: Effective and Efficient 4D LiDAR Semantic Segmentation in Autonomous Driving Environments
4D LiDAR semantic segmentation, also referred to as multi-scan semantic segmentation, plays a crucial role in enhancing the environmental understanding capabilities of autonomous vehicles. It entails identifying the semantic category of each point in the LiDAR scan and distinguishing whether it is dynamic, a critical aspect in downstream tasks such as path planning and autonomous navigation. Existing methods for 4D semantic segmentation often rely on computationally intensive 4D convolutions for multi-scan input, resulting in poor real-time performance. In this article, we introduce SegNet4D, a novel real-time multi-scan semantic segmentation method leveraging a projection-based approach for fast motion feature encoding, showcasing outstanding performance. SegNet4D treats 4D semantic segmentation as two distinct tasks: single-scan semantic segmentation and moving object segmentation, each addressed by dedicated head. These results are then fused in the proposed motion-semantic fusion module to achieve comprehensive multi-scan semantic segmentation. Besides, we propose extracting instance information from the current scan and incorporating it into the network for instance-aware segmentation. Our approach exhibits state-of-the-art performance across multiple datasets and stands out as a real-time multi-scan semantic segmentation method. The implementation of SegNet4D will be made available at \url{https://github.com/nubot-nudt/SegNet4D}.
comment: 10 pages, 5 figures
☆ YouDream: Generating Anatomically Controllable Consistent Text-to-3D Animals
3D generation guided by text-to-image diffusion models enables the creation of visually compelling assets. However previous methods explore generation based on image or text. The boundaries of creativity are limited by what can be expressed through words or the images that can be sourced. We present YouDream, a method to generate high-quality anatomically controllable animals. YouDream is guided using a text-to-image diffusion model controlled by 2D views of a 3D pose prior. Our method generates 3D animals that are not possible to create using previous text-to-3D generative methods. Additionally, our method is capable of preserving anatomic consistency in the generated animals, an area where prior text-to-3D approaches often struggle. Moreover, we design a fully automated pipeline for generating commonly found animals. To circumvent the need for human intervention to create a 3D pose, we propose a multi-agent LLM that adapts poses from a limited library of animal 3D poses to represent the desired animal. A user study conducted on the outcomes of YouDream demonstrates the preference of the animal models generated by our method over others. Turntable results and code are released at https://youdream3d.github.io/
☆ Repairing Catastrophic-Neglect in Text-to-Image Diffusion Models via Attention-Guided Feature Enhancement
Text-to-Image Diffusion Models (T2I DMs) have garnered significant attention for their ability to generate high-quality images from textual descriptions. However, these models often produce images that do not fully align with the input prompts, resulting in semantic inconsistencies. The most prominent issue among these semantic inconsistencies is catastrophic-neglect, where the images generated by T2I DMs miss key objects mentioned in the prompt. We first conduct an empirical study on this issue, exploring the prevalence of catastrophic-neglect, potential mitigation strategies with feature enhancement, and the insights gained. Guided by the empirical findings, we propose an automated repair approach named Patcher to address catastrophic-neglect in T2I DMs. Specifically, Patcher first determines whether there are any neglected objects in the prompt, and then applies attention-guided feature enhancement to these neglected objects, resulting in a repaired prompt. Experimental results on three versions of Stable Diffusion demonstrate that Patcher effectively repairs the issue of catastrophic-neglect, achieving 10.1%-16.3% higher Correct Rate in image generation compared to baselines.
comment: 11 pages, 3 figures
☆ Feature-prompting GBMSeg: One-Shot Reference Guided Training-Free Prompt Engineering for Glomerular Basement Membrane Segmentation MICCAI2024
Assessment of the glomerular basement membrane (GBM) in transmission electron microscopy (TEM) is crucial for diagnosing chronic kidney disease (CKD). The lack of domain-independent automatic segmentation tools for the GBM necessitates an AI-based solution to automate the process. In this study, we introduce GBMSeg, a training-free framework designed to automatically segment the GBM in TEM images guided only by a one-shot annotated reference. Specifically, GBMSeg first exploits the robust feature matching capabilities of the pretrained foundation model to generate initial prompt points, then introduces a series of novel automatic prompt engineering techniques across the feature and physical space to optimize the prompt scheme. Finally, GBMSeg employs a class-agnostic foundation segmentation model with the generated prompt scheme to obtain accurate segmentation results. Experimental results on our collected 2538 TEM images confirm that GBMSeg achieves superior segmentation performance with a Dice similarity coefficient (DSC) of 87.27% using only one labeled reference image in a training-free manner, outperforming recently proposed one-shot or few-shot methods. In summary, GBMSeg introduces a distinctive automatic prompt framework that facilitates robust domain-independent segmentation performance without training, particularly advancing the automatic prompting of foundation segmentation models for medical images. Future work involves automating the thickness measurement of segmented GBM and quantifying pathological indicators, holding significant potential for advancing pathology assessments in clinical applications. The source code is available on https://github.com/SnowRain510/GBMSeg
comment: Accepted for MICCAI2024
☆ Video-Infinity: Distributed Long Video Generation
Diffusion models have recently achieved remarkable results for video generation. Despite the encouraging performances, the generated videos are typically constrained to a small number of frames, resulting in clips lasting merely a few seconds. The primary challenges in producing longer videos include the substantial memory requirements and the extended processing time required on a single GPU. A straightforward solution would be to split the workload across multiple GPUs, which, however, leads to two issues: (1) ensuring all GPUs communicate effectively to share timing and context information, and (2) modifying existing video diffusion models, which are usually trained on short sequences, to create longer videos without additional training. To tackle these, in this paper we introduce Video-Infinity, a distributed inference pipeline that enables parallel processing across multiple GPUs for long-form video generation. Specifically, we propose two coherent mechanisms: Clip parallelism and Dual-scope attention. Clip parallelism optimizes the gathering and sharing of context information across GPUs which minimizes communication overhead, while Dual-scope attention modulates the temporal self-attention to balance local and global contexts efficiently across the devices. Together, the two mechanisms join forces to distribute the workload and enable the fast generation of long videos. Under an 8 x Nvidia 6000 Ada GPU (48G) setup, our method generates videos up to 2,300 frames in approximately 5 minutes, enabling long video generation at a speed 100 times faster than the prior methods.
☆ POPCat: Propagation of particles for complex annotation tasks
Novel dataset creation for all multi-object tracking, crowd-counting, and industrial-based videos is arduous and time-consuming when faced with a unique class that densely populates a video sequence. We propose a time efficient method called POPCat that exploits the multi-target and temporal features of video data to produce a semi-supervised pipeline for segmentation or box-based video annotation. The method retains the accuracy level associated with human level annotation while generating a large volume of semi-supervised annotations for greater generalization. The method capitalizes on temporal features through the use of a particle tracker to expand the domain of human-provided target points. This is done through the use of a particle tracker to reassociate the initial points to a set of images that follow the labeled frame. A YOLO model is then trained with this generated data, and then rapidly infers on the target video. Evaluations are conducted on GMOT-40, AnimalTrack, and Visdrone-2019 benchmarks. These multi-target video tracking/detection sets contain multiple similar-looking targets, camera movements, and other features that would commonly be seen in "wild" situations. We specifically choose these difficult datasets to demonstrate the efficacy of the pipeline and for comparison purposes. The method applied on GMOT-40, AnimalTrack, and Visdrone shows a margin of improvement on recall/mAP50/mAP over the best results by a value of 24.5%/9.6%/4.8%, -/43.1%/27.8%, and 7.5%/9.4%/7.5% where metrics were collected.
comment: 10 pages, 5 figures, Accepted in "Conference on Robots and Vision 2024"
☆ Diff3Dformer: Leveraging Slice Sequence Diffusion for Enhanced 3D CT Classification with Transformer Networks
The manifestation of symptoms associated with lung diseases can vary in different depths for individual patients, highlighting the significance of 3D information in CT scans for medical image classification. While Vision Transformer has shown superior performance over convolutional neural networks in image classification tasks, their effectiveness is often demonstrated on sufficiently large 2D datasets and they easily encounter overfitting issues on small medical image datasets. To address this limitation, we propose a Diffusion-based 3D Vision Transformer (Diff3Dformer), which utilizes the latent space of the Diffusion model to form the slice sequence for 3D analysis and incorporates clustering attention into ViT to aggregate repetitive information within 3D CT scans, thereby harnessing the power of the advanced transformer in 3D classification tasks on small datasets. Our method exhibits improved performance on two different scales of small datasets of 3D lung CT scans, surpassing the state of the art 3D methods and other transformer-based approaches that emerged during the COVID-19 pandemic, demonstrating its robust and superior performance across different scales of data. Experimental results underscore the superiority of our proposed method, indicating its potential for enhancing medical image classification tasks in real-world scenarios.
comment: conference
☆ Virtual Mines -- Component-level recycling of printed circuit boards using deep learning
This contribution gives an overview of an ongoing project using machine learning and computer vision components for improving the electronic waste recycling process. In circular economy, the "virtual mines" concept refers to production cycles where interesting raw materials are reclaimed in an efficient and cost-effective manner from end-of-life items. In particular, the growth of e-waste, due to the increasingly shorter life cycle of hi-tech goods, is a global problem. In this paper, we describe a pipeline based on deep learning model to recycle printed circuit boards at the component level. A pre-trained YOLOv5 model is used to analyze the results of the locally developed dataset. With a different distribution of class instances, YOLOv5 managed to achieve satisfactory precision and recall, with the ability to optimize with large component instances.
comment: 10 pages, 5 figures
☆ Unambiguous Recognition Should Not Rely Solely on Natural Language Training
In LaTeX text recognition using Transformer-based architectures, this paper identifies certain "bias" issues. For instance, $e-t$ is frequently misrecognized as $e^{-t}$. This bias stems from the inherent characteristics of the dataset. To mitigate this bias, we propose a LaTeX printed text recognition model trained on a mixed dataset of pseudo-formulas and pseudo-text. The model employs a Swin Transformer as the encoder and a RoBERTa model as the decoder. Experimental results demonstrate that this approach reduces "bias", enhancing the accuracy and robustness of text recognition. For clear images, the model strictly adheres to the image content; for blurred images, it integrates both image and contextual information to produce reasonable recognition results.
☆ Vastextures: Vast repository of textures and PBR materials extracted from real-world images using unsupervised methods
Vastextures is a vast repository of 500,000 textures and PBR materials extracted from real-world images using an unsupervised process. The extracted materials and textures are extremely diverse and cover a vast range of real-world patterns, but at the same time less refined compared to existing repositories. The repository is composed of 2D textures cropped from natural images and SVBRDF/PBR materials generated from these textures. Textures and PBR materials are essential for CGI. Existing materials repositories focus on games, animation, and arts, that demand a limited amount of high-quality assets. However, virtual worlds and synthetic data are becoming increasingly important for training A.I systems for computer vision. This application demands a huge amount of diverse assets but at the same time less affected by noisy and unrefined assets. Vastexture aims to address this need by creating a free, huge, and diverse assets repository that covers as many real-world materials as possible. The materials are automatically extracted from natural images in two steps: 1) Automatically scanning a giant amount of images to identify and crop regions with uniform textures. This is done by splitting the image into a grid of cells and identifying regions in which all of the cells share a similar statistical distribution. 2) Extracting the properties of the PBR material from the cropped texture. This is done by randomly guessing every correlation between the properties of the texture image and the properties of the PBR material. The resulting PBR materials exhibit a vast amount of real-world patterns as well as unexpected emergent properties. Neutral nets trained on this repository outperformed nets trained using handcrafted assets.
comment: Vastexture was published as part of Learning Zero-Shot Material States Segmentation, by Implanting Natural Image Patterns in Synthetic Data, refer to this work in citations. This document gives a more detailed and technical discussion of this repository
☆ MM-SpuBench: Towards Better Understanding of Spurious Biases in Multimodal LLMs
Spurious bias, a tendency to use spurious correlations between non-essential input attributes and target variables for predictions, has revealed a severe robustness pitfall in deep learning models trained on single modality data. Multimodal Large Language Models (MLLMs), which integrate both vision and language models, have demonstrated strong capability in joint vision-language understanding. However, whether spurious biases are prevalent in MLLMs remains under-explored. We mitigate this gap by analyzing the spurious biases in a multimodal setting, uncovering the specific test data patterns that can manifest this problem when biases in the vision model cascade into the alignment between visual and text tokens in MLLMs. To better understand this problem, we introduce MM-SpuBench, a comprehensive visual question-answering (VQA) benchmark designed to evaluate MLLMs' reliance on nine distinct categories of spurious correlations from five open-source image datasets. The VQA dataset is built from human-understandable concept information (attributes). Leveraging this benchmark, we conduct a thorough evaluation of current state-of-the-art MLLMs. Our findings illuminate the persistence of the reliance on spurious correlations from these models and underscore the urge for new methodologies to mitigate spurious biases. To support the MLLM robustness research, we release our VQA benchmark at https://huggingface.co/datasets/mmbench/MM-SpuBench.
☆ Accelerating Phase Field Simulations Through a Hybrid Adaptive Fourier Neural Operator with U-Net Backbone
Prolonged contact between a corrosive liquid and metal alloys can cause progressive dealloying. For such liquid-metal dealloying (LMD) process, phase field models have been developed. However, the governing equations often involve coupled non-linear partial differential equations (PDE), which are challenging to solve numerically. In particular, stiffness in the PDEs requires an extremely small time steps (e.g. $10^{-12}$ or smaller). This computational bottleneck is especially problematic when running LMD simulation until a late time horizon is required. This motivates the development of surrogate models capable of leaping forward in time, by skipping several consecutive time steps at-once. In this paper, we propose U-Shaped Adaptive Fourier Neural Operators (U-AFNO), a machine learning (ML) model inspired by recent advances in neural operator learning. U-AFNO employs U-Nets for extracting and reconstructing local features within the physical fields, and passes the latent space through a vision transformer (ViT) implemented in the Fourier space (AFNO). We use U-AFNOs to learn the dynamics mapping the field at a current time step into a later time step. We also identify global quantities of interest (QoI) describing the corrosion process (e.g. the deformation of the liquid-metal interface) and show that our proposed U-AFNO model is able to accurately predict the field dynamics, in-spite of the chaotic nature of LMD. Our model reproduces the key micro-structure statistics and QoIs with a level of accuracy on-par with the high-fidelity numerical solver. We also investigate the opportunity of using hybrid simulations, in which we alternate forward leap in time using the U-AFNO with high-fidelity time stepping. We demonstrate that while advantageous for some surrogate model design choices, our proposed U-AFNO model in fully auto-regressive settings consistently outperforms hybrid schemes.
☆ Speeding Up Image Classifiers with Little Companions
Scaling up neural networks has been a key recipe to the success of large language and vision models. However, in practice, up-scaled models can be disproportionately costly in terms of computations, providing only marginal improvements in performance; for example, EfficientViT-L3-384 achieves <2% improvement on ImageNet-1K accuracy over the base L1-224 model, while requiring $14\times$ more multiply-accumulate operations (MACs). In this paper, we investigate scaling properties of popular families of neural networks for image classification, and find that scaled-up models mostly help with "difficult" samples. Decomposing the samples by difficulty, we develop a simple model-agnostic two-pass Little-Big algorithm that first uses a light-weight "little" model to make predictions of all samples, and only passes the difficult ones for the "big" model to solve. Good little companion achieve drastic MACs reduction for a wide variety of model families and scales. Without loss of accuracy or modification of existing models, our Little-Big models achieve MACs reductions of 76% for EfficientViT-L3-384, 81% for EfficientNet-B7-600, 71% for DeiT3-L-384 on ImageNet-1K. Little-Big also speeds up the InternImage-G-512 model by 62% while achieving 90% ImageNet-1K top-1 accuracy, serving both as a strong baseline and as a simple practical method for large model compression.
☆ Evaluating the Quality of Hallucination Benchmarks for Large Vision-Language Models
Despite the rapid progress and outstanding performance of Large Vision-Language Models (LVLMs) in recent years, LVLMs have been plagued by the issue of hallucination, i.e., LVLMs tend to generate responses that are inconsistent with the corresponding visual inputs. To evaluate the degree of hallucination in LVLMs, previous works have proposed a series of benchmarks featuring different types of tasks and evaluation metrics. However, we find that the quality of the existing hallucination benchmarks varies, with some suffering from problems, e.g., inconsistent evaluation results under repeated tests, and misalignment with human evaluation. To this end, we propose a Hallucination benchmark Quality Measurement framework (HQM), which leverages various indicators to assess the reliability and validity of existing hallucination benchmarks separately. Specifically, for reliability we explore test-retest reliability and parallel-forms reliability, while for validity we examine criterion validity and coverage of hallucination types. Furthermore, based on the results of our quality measurement, we construct a High-Quality Hallucination Benchmark (HQH) for LVLMs. We conduct an extensive evaluation of over 10 representative LVLMs, including GPT-4o and Gemini-Vision-Pro, to provide an in-depth analysis of the hallucination issues in existing models. Our benchmark is publicly available at https://github.com/HQHBench/HQHBench.
☆ GMT: Guided Mask Transformer for Leaf Instance Segmentation
Leaf instance segmentation is a challenging multi-instance segmentation task, aiming to separate and delineate each leaf in an image of a plant. The delineation of each leaf is a necessary prerequisite task for several biology-related applications such as the fine-grained monitoring of plant growth, and crop yield estimation. The task is challenging because self-similarity of instances is high (similar shape and colour) and instances vary greatly in size under heavy occulusion. We believe that the key to overcoming the aforementioned challenges lies in the specific spatial patterns of leaf distribution. For example, leaves typically grow around the plant's center, with smaller leaves clustering and overlapped near this central point. In this paper, we propose a novel approach named Guided Mask Transformer (GMT), which contains three key components, namely Guided Positional Encoding (GPE), Guided Embedding Fusion Module (GEFM) and Guided Dynamic Positional Queries (GDPQ), to extend the meta-architecture of Mask2Former and incorporate with a set of harmonic guide functions. These guide functions are tailored to the pixel positions of instances and trained to separate distinct instances in an embedding space. The proposed GMT consistently outperforms State-of-the-Art models on three public plant datasets.
☆ Fine-tuning Diffusion Models for Enhancing Face Quality in Text-to-image Generation
Diffusion models (DMs) have achieved significant success in generating imaginative images given textual descriptions. However, they are likely to fall short when it comes to real-life scenarios with intricate details.The low-quality, unrealistic human faces in text-to-image generation are one of the most prominent issues, hindering the wide application of DMs in practice. Targeting addressing such an issue, we first assess the face quality of generations from popular pre-trained DMs with the aid of human annotators and then evaluate the alignment between existing metrics such as ImageReward, Human Preference Score, Aesthetic Score Predictor, and Face Quality Assessment, with human judgments. Observing that existing metrics can be unsatisfactory for quantifying face quality, we develop a novel metric named Face Score (FS) by fine-tuning ImageReward on a dataset of (good, bad) face pairs cheaply crafted by an inpainting pipeline of DMs. Extensive studies reveal that FS enjoys a superior alignment with humans. On the other hand, FS opens up the door for refining DMs for better face generation. To achieve this, we incorporate a guidance loss on the denoising trajectories of the aforementioned face pairs for fine-tuning pre-trained DMs such as Stable Diffusion V1.5 and Realistic Vision V5.1. Intuitively, such a loss pushes the trajectory of bad faces toward that of good ones. Comprehensive experiments verify the efficacy of our approach for improving face quality while preserving general capability.
comment: Under review
☆ Multi-Aperture Fusion of Transformer-Convolutional Network (MFTC-Net) for 3D Medical Image Segmentation and Visualization
Vision Transformers have shown superior performance to the traditional convolutional-based frameworks in many vision applications, including but not limited to the segmentation of 3D medical images. To further advance this area, this study introduces the Multi-Aperture Fusion of Transformer-Convolutional Network (MFTC-Net), which integrates the output of Swin Transformers and their corresponding convolutional blocks using 3D fusion blocks. The Multi-Aperture incorporates each image patch at its original resolutions with its pyramid representation to better preserve minute details. The proposed architecture has demonstrated a score of 89.73 and 7.31 for Dice and HD95, respectively, on the Synapse multi-organs dataset an improvement over the published results. The improved performance also comes with the added benefits of the reduced complexity of approximately 40 million parameters. Our code is available at https://github.com/Siyavashshabani/MFTC-Net
☆ Reducing the Memory Footprint of 3D Gaussian Splatting
3D Gaussian splatting provides excellent visual quality for novel view synthesis, with fast training and real-time rendering; unfortunately, the memory requirements of this method for storing and transmission are unreasonably high. We first analyze the reasons for this, identifying three main areas where storage can be reduced: the number of 3D Gaussian primitives used to represent a scene, the number of coefficients for the spherical harmonics used to represent directional radiance, and the precision required to store Gaussian primitive attributes. We present a solution to each of these issues. First, we propose an efficient, resolution-aware primitive pruning approach, reducing the primitive count by half. Second, we introduce an adaptive adjustment method to choose the number of coefficients used to represent directional radiance for each Gaussian primitive, and finally a codebook-based quantization method, together with a half-float representation for further memory reduction. Taken together, these three components result in a 27 reduction in overall size on disk on the standard datasets we tested, along with a 1.7 speedup in rendering speed. We demonstrate our method on standard datasets and show how our solution results in significantly reduced download times when using the method on a mobile device.
comment: Project website: https://repo-sam.inria.fr/fungraph/reduced_3dgs/
☆ Leveraging Knowledge Distillation for Lightweight Skin Cancer Classification: Balancing Accuracy and Computational Efficiency
Skin cancer is a major concern to public health, accounting for one-third of the reported cancers. If not detected early, the cancer has the potential for severe consequences. Recognizing the critical need for effective skin cancer classification, we address the limitations of existing models, which are often too large to deploy in areas with limited computational resources. In response, we present a knowledge distillation based approach for creating a lightweight yet high-performing classifier. The proposed solution involves fusing three models, namely ResNet152V2, ConvNeXtBase, and ViT Base, to create an effective teacher model. The teacher model is then employed to guide a lightweight student model of size 2.03 MB. This student model is further compressed to 469.77 KB using 16-bit quantization, enabling smooth incorporation into edge devices. With six-stage image preprocessing, data augmentation, and a rigorous ablation study, the model achieves an impressive accuracy of 98.75% on the HAM10000 dataset and 98.94% on the Kaggle dataset in classifying benign and malignant skin cancers. With its high accuracy and compact size, our model appears to be a potential choice for accurate skin cancer classification, particularly in resource-constrained settings.
☆ Enhancing Scientific Figure Captioning Through Cross-modal Learning
Scientific charts are essential tools for effectively communicating research findings, serving as a vital medium for conveying information and revealing data patterns. With the rapid advancement of science and technology, coupled with the advent of the big data era, the volume and diversity of scientific research data have surged, leading to an increase in the number and variety of charts. This trend presents new challenges for researchers, particularly in efficiently and accurately generating appropriate titles for these charts to better convey their information and results. Automatically generated chart titles can enhance information retrieval systems by providing precise data for detailed chart classification. As research in image captioning and text summarization matures, the automatic generation of scientific chart titles has gained significant attention. By leveraging natural language processing, machine learning, and multimodal techniques, it is possible to automatically extract key information from charts and generate accurate, concise titles that better serve the needs of researchers. This paper presents a novel approach to scientific chart title generation, demonstrating its effectiveness in improving the clarity and accessibility of research data.
comment: 7 pages
☆ Dwarf: Disease-weighted network for attention map refinement
The interpretability of deep learning is crucial for evaluating the reliability of medical imaging models and reducing the risks of inaccurate patient recommendations. This study addresses the "human out of the loop" and "trustworthiness" issues in medical image analysis by integrating medical professionals into the interpretability process. We propose a disease-weighted attention map refinement network (Dwarf) that leverages expert feedback to enhance model relevance and accuracy. Our method employs cyclic training to iteratively improve diagnostic performance, generating precise and interpretable feature maps. Experimental results demonstrate significant improvements in interpretability and diagnostic accuracy across multiple medical imaging datasets. This approach fosters effective collaboration between AI systems and healthcare professionals, ultimately aiming to improve patient outcomes
♻ ☆ Single-image camera calibration with model-free distortion correction
Camera calibration is a process of paramount importance in computer vision applications that require accurate quantitative measurements. The popular method developed by Zhang relies on the use of a large number of images of a planar grid of fiducial points captured in multiple poses. Although flexible and easy to implement, Zhang's method has some limitations. The simultaneous optimization of the entire parameter set, including the coefficients of a predefined distortion model, may result in poor distortion correction at the image boundaries or in miscalculation of the intrinsic parameters, even with a reasonably small reprojection error. Indeed, applications involving image stitching (e.g. multi-camera systems) require accurate mapping of distortion up to the outermost regions of the image. Moreover, intrinsic parameters affect the accuracy of camera pose estimation, which is fundamental for applications such as vision servoing in robot navigation and automated assembly. This paper proposes a method for estimating the complete set of calibration parameters from a single image of a planar speckle pattern covering the entire sensor. The correspondence between image points and physical points on the calibration target is obtained using Digital Image Correlation. The effective focal length and the extrinsic parameters are calculated separately after a prior evaluation of the principal point. At the end of the procedure, a dense and uniform model-free distortion map is obtained over the entire image. Synthetic data with different noise levels were used to test the feasibility of the proposed method and to compare its metrological performance with Zhang's method. Real-world tests demonstrate the potential of the developed method to reveal aspects of the image formation that are hidden by averaging over multiple images.
comment: Accepted manuscript
♻ ☆ VideoScore: Building Automatic Metrics to Simulate Fine-grained Human Feedback for Video Generation
The recent years have witnessed great advances in video generation. However, the development of automatic video metrics is lagging significantly behind. None of the existing metric is able to provide reliable scores over generated videos. The main barrier is the lack of large-scale human-annotated dataset. In this paper, we release VideoFeedback, the first large-scale dataset containing human-provided multi-aspect score over 37.6K synthesized videos from 11 existing video generative models. We train VideoScore (initialized from Mantis) based on VideoFeedback to enable automatic video quality assessment. Experiments show that the Spearman correlation between VideoScore and humans can reach 77.1 on VideoFeedback-test, beating the prior best metrics by about 50 points. Further result on other held-out EvalCrafter, GenAI-Bench, and VBench show that VideoScore has consistently much higher correlation with human judges than other metrics. Due to these results, we believe VideoScore can serve as a great proxy for human raters to (1) rate different video models to track progress (2) simulate fine-grained human feedback in Reinforcement Learning with Human Feedback (RLHF) to improve current video generation models.
♻ ☆ Unlearnable Examples for Diffusion Models: Protect Data from Unauthorized Exploitation
Diffusion models have demonstrated remarkable performance in image generation tasks, paving the way for powerful AIGC applications. However, these widely-used generative models can also raise security and privacy concerns, such as copyright infringement, and sensitive data leakage. To tackle these issues, we propose a method, Unlearnable Diffusion Perturbation, to safeguard images from unauthorized exploitation. Our approach involves designing an algorithm to generate sample-wise perturbation noise for each image to be protected. This imperceptible protective noise makes the data almost unlearnable for diffusion models, i.e., diffusion models trained or fine-tuned on the protected data cannot generate high-quality and diverse images related to the protected training data. Theoretically, we frame this as a max-min optimization problem and introduce EUDP, a noise scheduler-based method to enhance the effectiveness of the protective noise. We evaluate our methods on both Denoising Diffusion Probabilistic Model and Latent Diffusion Models, demonstrating that training diffusion models on the protected data lead to a significant reduction in the quality of the generated images. Especially, the experimental results on Stable Diffusion demonstrate that our method effectively safeguards images from being used to train Diffusion Models in various tasks, such as training specific objects and styles. This achievement holds significant importance in real-world scenarios, as it contributes to the protection of privacy and copyright against AI-generated content.
♻ ☆ EGTR: Extracting Graph from Transformer for Scene Graph Generation CVPR 2024
Scene Graph Generation (SGG) is a challenging task of detecting objects and predicting relationships between objects. After DETR was developed, one-stage SGG models based on a one-stage object detector have been actively studied. However, complex modeling is used to predict the relationship between objects, and the inherent relationship between object queries learned in the multi-head self-attention of the object detector has been neglected. We propose a lightweight one-stage SGG model that extracts the relation graph from the various relationships learned in the multi-head self-attention layers of the DETR decoder. By fully utilizing the self-attention by-products, the relation graph can be extracted effectively with a shallow relation extraction head. Considering the dependency of the relation extraction task on the object detection task, we propose a novel relation smoothing technique that adjusts the relation label adaptively according to the quality of the detected objects. By the relation smoothing, the model is trained according to the continuous curriculum that focuses on object detection task at the beginning of training and performs multi-task learning as the object detection performance gradually improves. Furthermore, we propose a connectivity prediction task that predicts whether a relation exists between object pairs as an auxiliary task of the relation extraction. We demonstrate the effectiveness and efficiency of our method for the Visual Genome and Open Image V6 datasets. Our code is publicly available at https://github.com/naver-ai/egtr.
comment: CVPR 2024 (Best paper award candidate)
♻ ☆ Attribute Diversity Determines the Systematicity Gap in VQA
The degree to which neural networks can generalize to new combinations of familiar concepts, and the conditions under which they are able to do so, has long been an open question. In this work, we study the systematicity gap in visual question answering: the performance difference between reasoning on previously seen and unseen combinations of object attributes. To test, we introduce a novel diagnostic dataset, CLEVR-HOPE. We find that while increased quantity of training data does not reduce the systematicity gap, increased training data diversity of the attributes in the unseen combination does. In all, our experiments suggest that the more distinct attribute type combinations are seen during training, the more systematic we can expect the resulting model to be.
comment: 33 pages, 20 figures
♻ ☆ Can Protective Perturbation Safeguard Personal Data from Being Exploited by Stable Diffusion?
Stable Diffusion has established itself as a foundation model in generative AI artistic applications, receiving widespread research and application. Some recent fine-tuning methods have made it feasible for individuals to implant personalized concepts onto the basic Stable Diffusion model with minimal computational costs on small datasets. However, these innovations have also given rise to issues like facial privacy forgery and artistic copyright infringement. In recent studies, researchers have explored the addition of imperceptible adversarial perturbations to images to prevent potential unauthorized exploitation and infringements when personal data is used for fine-tuning Stable Diffusion. Although these studies have demonstrated the ability to protect images, it is essential to consider that these methods may not be entirely applicable in real-world scenarios. In this paper, we systematically evaluate the use of perturbations to protect images within a practical threat model. The results suggest that these approaches may not be sufficient to safeguard image privacy and copyright effectively. Furthermore, we introduce a purification method capable of removing protected perturbations while preserving the original image structure to the greatest extent possible. Experiments reveal that Stable Diffusion can effectively learn from purified images over all protective methods.
♻ ☆ Versatile Backdoor Attack with Visible, Semantic, Sample-Specific, and Compatible Triggers
Deep neural networks (DNNs) can be manipulated to exhibit specific behaviors when exposed to specific trigger patterns, without affecting their performance on benign samples, dubbed \textit{backdoor attack}. Currently, implementing backdoor attacks in physical scenarios still faces significant challenges. Physical attacks are labor-intensive and time-consuming, and the triggers are selected in a manual and heuristic way. Moreover, expanding digital attacks to physical scenarios faces many challenges due to their sensitivity to visual distortions and the absence of counterparts in the real world. To address these challenges, we define a novel trigger called the \textbf{V}isible, \textbf{S}emantic, \textbf{S}ample-Specific, and \textbf{C}ompatible (VSSC) trigger, to achieve effective, stealthy and robust simultaneously, which can also be effectively deployed in the physical scenario using corresponding objects. To implement the VSSC trigger, we propose an automated pipeline comprising three modules: a trigger selection module that systematically identifies suitable triggers leveraging large language models, a trigger insertion module that employs generative models to seamlessly integrate triggers into images, and a quality assessment module that ensures the natural and successful insertion of triggers through vision-language models. Extensive experimental results and analysis validate the effectiveness, stealthiness, and robustness of the VSSC trigger. It can not only maintain robustness under visual distortions but also demonstrates strong practicality in the physical scenario. We hope that the proposed VSSC trigger and implementation approach could inspire future studies on designing more practical triggers in backdoor attacks.
comment: 23 pages, 21 figures, 18 tables
♻ ☆ Sim2Real Bilevel Adaptation for Object Surface Classification using Vision-Based Tactile Sensors ICRA 2024
In this paper, we address the Sim2Real gap in the field of vision-based tactile sensors for classifying object surfaces. We train a Diffusion Model to bridge this gap using a relatively small dataset of real-world images randomly collected from unlabeled everyday objects via the DIGIT sensor. Subsequently, we employ a simulator to generate images by uniformly sampling the surface of objects from the YCB Model Set. These simulated images are then translated into the real domain using the Diffusion Model and automatically labeled to train a classifier. During this training, we further align features of the two domains using an adversarial procedure. Our evaluation is conducted on a dataset of tactile images obtained from a set of ten 3D printed YCB objects. The results reveal a total accuracy of 81.9%, a significant improvement compared to the 34.7% achieved by the classifier trained solely on simulated images. This demonstrates the effectiveness of our approach. We further validate our approach using the classifier on a 6D object pose estimation task from tactile data.
comment: 6 pages, accepted to ICRA 2024
♻ ☆ LatentExplainer: Explaining Latent Representations in Deep Generative Models with Multi-modal Foundation Models
Deep generative models like VAEs and diffusion models have advanced various generation tasks by leveraging latent variables to learn data distributions and generate high-quality samples. Despite the field of explainable AI making strides in interpreting machine learning models, understanding latent variables in generative models remains challenging. This paper introduces LatentExplainer, a framework for automatically generating semantically meaningful explanations of latent variables in deep generative models. LatentExplainer tackles three main challenges: inferring the meaning of latent variables, aligning explanations with inductive biases, and handling varying degrees of explainability. By perturbing latent variables and interpreting changes in generated data, the framework provides a systematic approach to understanding and controlling the data generation process, enhancing the transparency and interpretability of deep generative models. We evaluate our proposed method on several real-world and synthetic datasets, and the results demonstrate superior performance in generating high-quality explanations of latent variables.
♻ ☆ Asymmetrical Siamese Network for Point Clouds Normal Estimation
In recent years, deep learning-based point cloud normal estimation has made great progress. However, existing methods mainly rely on the PCPNet dataset, leading to overfitting. In addition, the correlation between point clouds with different noise scales remains unexplored, resulting in poor performance in cross-domain scenarios. In this paper, we explore the consistency of intrinsic features learned from clean and noisy point clouds using an Asymmetric Siamese Network architecture. By applying reasonable constraints between features extracted from different branches, we enhance the quality of normal estimation. Moreover, we introduce a novel multi-view normal estimation dataset that includes a larger variety of shapes with different noise levels. Evaluation of existing methods on this new dataset reveals their inability to adapt to different types of shapes, indicating a degree of overfitting. Extensive experiments show that the proposed dataset poses significant challenges for point cloud normal estimation and that our feature constraint mechanism effectively improves upon existing methods and reduces overfitting in current architectures.
♻ ☆ QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge
Uncertainty in medical image segmentation tasks, especially inter-rater variability, arising from differences in interpretations and annotations by various experts, presents a significant challenge in achieving consistent and reliable image segmentation. This variability not only reflects the inherent complexity and subjective nature of medical image interpretation but also directly impacts the development and evaluation of automated segmentation algorithms. Accurately modeling and quantifying this variability is essential for enhancing the robustness and clinical applicability of these algorithms. We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ), which was organized in conjunction with International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2020 and 2021. The challenge focuses on the uncertainty quantification of medical image segmentation which considers the omnipresence of inter-rater variability in imaging datasets. The large collection of images with multi-rater annotations features various modalities such as MRI and CT; various organs such as the brain, prostate, kidney, and pancreas; and different image dimensions 2D-vs-3D. A total of 24 teams submitted different solutions to the problem, combining various baseline models, Bayesian neural networks, and ensemble model techniques. The obtained results indicate the importance of the ensemble models, as well as the need for further research to develop efficient 3D methods for uncertainty quantification methods in 3D segmentation tasks.
comment: initial technical report
♻ ☆ A Systematic Review of Few-Shot Learning in Medical Imaging
The lack of annotated medical images limits the performance of deep learning models, which usually need large-scale labelled datasets. Few-shot learning techniques can reduce data scarcity issues and enhance medical image analysis, especially with meta-learning. This systematic review gives a comprehensive overview of few-shot learning in medical imaging. We searched the literature systematically and selected 80 relevant articles published from 2018 to 2023. We clustered the articles based on medical outcomes, such as tumour segmentation, disease classification, and image registration; anatomical structure investigated (i.e. heart, lung, etc.); and the meta-learning method used. For each cluster, we examined the papers' distributions and the results provided by the state-of-the-art. In addition, we identified a generic pipeline shared among all the studies. The review shows that few-shot learning can overcome data scarcity in most outcomes and that meta-learning is a popular choice to perform few-shot learning because it can adapt to new tasks with few labelled samples. In addition, following meta-learning, supervised learning and semi-supervised learning stand out as the predominant techniques employed to tackle few-shot learning challenges in medical imaging and also best performing. Lastly, we observed that the primary application areas predominantly encompass cardiac, pulmonary, and abdominal domains. This systematic review aims to inspire further research to improve medical image analysis and patient care.
comment: 48 pages, 29 figures, 10 tables, submitted to Elsevier on 19 Sep 2023
♻ ☆ NeST: Neural Stress Tensor Tomography by leveraging 3D Photoelasticity
Photoelasticity enables full-field stress analysis in transparent objects through stress-induced birefringence. Existing techniques are limited to 2D slices and require destructively slicing the object. Recovering the internal 3D stress distribution of the entire object is challenging as it involves solving a tensor tomography problem and handling phase wrapping ambiguities. We introduce NeST, an analysis-by-synthesis approach for reconstructing 3D stress tensor fields as neural implicit representations from polarization measurements. Our key insight is to jointly handle phase unwrapping and tensor tomography using a differentiable forward model based on Jones calculus. Our non-linear model faithfully matches real captures, unlike prior linear approximations. We develop an experimental multi-axis polariscope setup to capture 3D photoelasticity and experimentally demonstrate that NeST reconstructs the internal stress distribution for objects with varying shape and force conditions. Additionally, we showcase novel applications in stress analysis, such as visualizing photoelastic fringes by virtually slicing the object and viewing photoelastic fringes from unseen viewpoints. NeST paves the way for scalable non-destructive 3D photoelastic analysis.
comment: Project webpage: https://akshatdave.github.io/nest
♻ ☆ MonoBox: Tightness-free Box-supervised Polyp Segmentation using Monotonicity Constraint
We propose MonoBox, an innovative box-supervised segmentation method constrained by monotonicity to liberate its training from the user-unfriendly box-tightness assumption. In contrast to conventional box-supervised segmentation, where the box edges must precisely touch the target boundaries, MonoBox leverages imprecisely-annotated boxes to achieve robust pixel-wise segmentation. The 'linchpin' is that, within the noisy zones around box edges, MonoBox discards the traditional misguiding multiple-instance learning loss, and instead optimizes a carefully-designed objective, termed monotonicity constraint. Along directions transitioning from the foreground to background, this new constraint steers responses to adhere to a trend of monotonically decreasing values. Consequently, the originally unreliable learning within the noisy zones is transformed into a correct and effective monotonicity optimization. Moreover, an adaptive label correction is introduced, enabling MonoBox to enhance the tightness of box annotations using predicted masks from the previous epoch and dynamically shrink the noisy zones as training progresses. We verify MonoBox in the box-supervised segmentation task of polyps, where satisfying box-tightness is challenging due to the vague boundaries between the polyp and normal tissues. Experiments on both public synthetic and in-house real noisy datasets demonstrate that MonoBox exceeds other anti-noise state-of-the-arts by improving Dice by at least 5.5% and 3.3%, respectively. Codes are at https://github.com/Huster-Hq/MonoBox.
♻ ☆ RGB-Sonar Tracking Benchmark and Spatial Cross-Attention Transformer Tracker
Vision camera and sonar are naturally complementary in the underwater environment. Combining the information from two modalities will promote better observation of underwater targets. However, this problem has not received sufficient attention in previous research. Therefore, this paper introduces a new challenging RGB-Sonar (RGB-S) tracking task and investigates how to achieve efficient tracking of an underwater target through the interaction of RGB and sonar modalities. Specifically, we first propose an RGBS50 benchmark dataset containing 50 sequences and more than 87000 high-quality annotated bounding boxes. Experimental results show that the RGBS50 benchmark poses a challenge to currently popular SOT trackers. Second, we propose an RGB-S tracker called SCANet, which includes a spatial cross-attention module (SCAM) consisting of a novel spatial cross-attention layer and two independent global integration modules. The spatial cross-attention is used to overcome the problem of spatial misalignment of between RGB and sonar images. Third, we propose a SOT data-based RGB-S simulation training method (SRST) to overcome the lack of RGB-S training datasets. It converts RGB images into sonar-like saliency images to construct pseudo-data pairs, enabling the model to learn the semantic structure of RGB-S-like data. Comprehensive experiments show that the proposed spatial cross-attention effectively achieves the interaction between RGB and sonar modalities and SCANet achieves state-of-the-art performance on the proposed benchmark. The code is available at https://github.com/LiYunfengLYF/RGBS50.
♻ ☆ AdaTreeFormer: Few Shot Domain Adaptation for Tree Counting from a Single High-Resolution Image
The process of estimating and counting tree density using only a single aerial or satellite image is a difficult task in the fields of photogrammetry and remote sensing. However, it plays a crucial role in the management of forests. The huge variety of trees in varied topography severely hinders tree counting models to perform well. The purpose of this paper is to propose a framework that is learnt from the source domain with sufficient labeled trees and is adapted to the target domain with only a limited number of labeled trees. Our method, termed as AdaTreeFormer, contains one shared encoder with a hierarchical feature extraction scheme to extract robust features from the source and target domains. It also consists of three subnets: two for extracting self-domain attention maps from source and target domains respectively and one for extracting cross-domain attention maps. For the latter, an attention-to-adapt mechanism is introduced to distill relevant information from different domains while generating tree density maps; a hierarchical cross-domain feature alignment scheme is proposed that progressively aligns the features from the source and target domains. We also adopt adversarial learning into the framework to further reduce the gap between source and target domains. Our AdaTreeFormer is evaluated on six designed domain adaptation tasks using three tree counting datasets, \ie Jiangsu, Yosemite, and London. Experimental results show that AdaTreeFormer significantly surpasses the state of the art, \eg in the cross domain from the Yosemite to Jiangsu dataset, it achieves a reduction of 15.9 points in terms of the absolute counting errors and an increase of 10.8\% in the accuracy of the detected trees' locations. The codes and datasets are available at \emph{\color{magenta}{https://github.com/HAAClassic/AdaTreeFormer}}.
♻ ☆ Knowledge Accumulation in Continually Learned Representations and the Issue of Feature Forgetting
Continual learning research has shown that neural networks suffer from catastrophic forgetting "at the output level", but it is debated whether this is also the case at the level of learned representations. Multiple recent studies ascribe representations a certain level of innate robustness against forgetting -- that they only forget minimally in comparison with forgetting at the output level. We revisit and expand upon the experiments that revealed this difference in forgetting and illustrate the coexistence of two phenomena that affect the quality of continually learned representations: knowledge accumulation and feature forgetting. Taking both aspects into account, we show that, even though forgetting in the representation (i.e. feature forgetting) can be small in absolute terms, when measuring relative to how much was learned during a task, forgetting in the representation tends to be just as catastrophic as forgetting at the output level. Next we show that this feature forgetting is problematic as it substantially slows down the incremental learning of good general representations (i.e. knowledge accumulation). Finally, we study how feature forgetting and knowledge accumulation are affected by different types of continual learning methods.
comment: TMLR 2024
♻ ☆ Continual Road-Scene Semantic Segmentation via Feature-Aligned Symmetric Multi-Modal Network ICIP 2024
State-of-the-art multimodal semantic segmentation strategies combining LiDAR and color data are usually designed on top of asymmetric information-sharing schemes and assume that both modalities are always available. This strong assumption may not hold in real-world scenarios, where sensors are prone to failure or can face adverse conditions that make the acquired information unreliable. This problem is exacerbated when continual learning scenarios are considered since they have stringent data reliability constraints. In this work, we re-frame the task of multimodal semantic segmentation by enforcing a tightly coupled feature representation and a symmetric information-sharing scheme, which allows our approach to work even when one of the input modalities is missing. We also introduce an ad-hoc class-incremental continual learning scheme, proving our approach's effectiveness and reliability even in safety-critical settings, such as autonomous driving. We evaluate our approach on the SemanticKITTI dataset, achieving impressive performances.
comment: Accepted ad ICIP 2024, 6 pages, 5 figures, 3 tables, 7 equations
♻ ☆ RaDe-GS: Rasterizing Depth in Gaussian Splatting
Gaussian Splatting (GS) has proven to be highly effective in novel view synthesis, achieving high-quality and real-time rendering. However, its potential for reconstructing detailed 3D shapes has not been fully explored. Existing methods often suffer from limited shape accuracy due to the discrete and unstructured nature of Gaussian splats, which complicates the shape extraction. While recent techniques like 2D GS have attempted to improve shape reconstruction, they often reformulate the Gaussian primitives in ways that reduce both rendering quality and computational efficiency. To address these problems, our work introduces a rasterized approach to render the depth maps and surface normal maps of general 3D Gaussian splats. Our method not only significantly enhances shape reconstruction accuracy but also maintains the computational efficiency intrinsic to Gaussian Splatting. It achieves a Chamfer distance error comparable to NeuraLangelo on the DTU dataset and maintains similar computational efficiency as the original 3D GS methods. Our method is a significant advancement in Gaussian Splatting and can be directly integrated into existing Gaussian Splatting-based methods.
♻ ☆ P-Mamba: Marrying Perona Malik Diffusion with Mamba for Efficient Pediatric Echocardiographic Left Ventricular Segmentation
In pediatric cardiology, the accurate and immediate assessment of cardiac function through echocardiography is crucial since it can determine whether urgent intervention is required in many emergencies. However, echocardiography is characterized by ambiguity and heavy background noise interference, causing more difficulty in accurate segmentation. Present methods lack efficiency and are prone to mistakenly segmenting some background noise areas, such as the left ventricular area, due to noise disturbance. To address these issues, we introduce P-Mamba, which integrates the Mixture of Experts (MoE) concept for efficient pediatric echocardiographic left ventricular segmentation. Specifically, we utilize the recently proposed ViM layers from the vision mamba to enhance our model's computational and memory efficiency while modeling global dependencies.In the DWT-based Perona-Malik Diffusion (PMD) Block, we devise a PMD Block for noise suppression while preserving the left ventricle's local shape cues. Consequently, our proposed P-Mamba innovatively combines the PMD's noise suppression and local feature extraction capabilities with Mamba's efficient design for global dependency modeling. We conducted segmentation experiments on two pediatric ultrasound datasets and a general ultrasound dataset, namely Echonet-dynamic, and achieved state-of-the-art (SOTA) results. Leveraging the strengths of the P-Mamba block, our model demonstrates superior accuracy and efficiency compared to established models, including vision transformers with quadratic and linear computational complexity.
♻ ☆ OpenDlign: Enhancing Open-World 3D Learning with Depth-Aligned Images
Recent open-world 3D representation learning methods using Vision-Language Models (VLMs) to align 3D data with image-text information have shown superior 3D zero-shot performance. However, CAD-rendered images for this alignment often lack realism and texture variation, compromising alignment robustness. Moreover, the volume discrepancy between 3D and 2D pretraining datasets highlights the need for effective strategies to transfer the representational abilities of VLMs to 3D learning. In this paper, we present OpenDlign, a novel open-world 3D model using depth-aligned images generated from a diffusion model for robust multimodal alignment. These images exhibit greater texture diversity than CAD renderings due to the stochastic nature of the diffusion model. By refining the depth map projection pipeline and designing depth-specific prompts, OpenDlign leverages rich knowledge in pre-trained VLM for 3D representation learning with streamlined fine-tuning. Our experiments show that OpenDlign achieves high zero-shot and few-shot performance on diverse 3D tasks, despite only fine-tuning 6 million parameters on a limited ShapeNet dataset. In zero-shot classification, OpenDlign surpasses previous models by 8.0% on ModelNet40 and 16.4% on OmniObject3D. Additionally, using depth-aligned images for multimodal alignment consistently enhances the performance of other state-of-the-art models.
comment: 12 pages
♻ ☆ Of Mice and Mates: Automated Classification and Modelling of Mouse Behaviour in Groups using a Single Model across Cages
Behavioural experiments often happen in specialised arenas, but this may confound the analysis. To address this issue, we provide tools to study mice in the home-cage environment, equipping biologists with the possibility to capture the temporal aspect of the individual's behaviour and model the interaction and interdependence between cage-mates with minimal human intervention. Our main contribution is the novel Group Behaviour Model (GBM) which summarises the joint behaviour of groups of mice across cages, using a permutation matrix to match the mouse identities in each cage to the model. In support of the above, we also (a) developed the Activity Labelling Module (ALM) to automatically classify mouse behaviour from video, and (b) released two datasets, ABODe for training behaviour classifiers and IMADGE for modelling behaviour.
comment: International Journal of Computer Vision (2024)
♻ ☆ Advancing Surgical VQA with Scene Graph Knowledge
Modern operating room is becoming increasingly complex, requiring innovative intra-operative support systems. While the focus of surgical data science has largely been on video analysis, integrating surgical computer vision with language capabilities is emerging as a necessity. Our work aims to advance Visual Question Answering (VQA) in the surgical context with scene graph knowledge, addressing two main challenges in the current surgical VQA systems: removing question-condition bias in the surgical VQA dataset and incorporating scene-aware reasoning in the surgical VQA model design. First, we propose a Surgical Scene Graph-based dataset, SSG-QA, generated by employing segmentation and detection models on publicly available datasets. We build surgical scene graphs using spatial and action information of instruments and anatomies. These graphs are fed into a question engine, generating diverse QA pairs. Our SSG-QA dataset provides a more complex, diverse, geometrically grounded, unbiased, and surgical action-oriented dataset compared to existing surgical VQA datasets. We then propose SSG-QA-Net, a novel surgical VQA model incorporating a lightweight Scene-embedded Interaction Module (SIM), which integrates geometric scene knowledge in the VQA model design by employing cross-attention between the textual and the scene features. Our comprehensive analysis of the SSG-QA dataset shows that SSG-QA-Net outperforms existing methods across different question types and complexities. We highlight that the primary limitation in the current surgical VQA systems is the lack of scene knowledge to answer complex queries. We present a novel surgical VQA dataset and model and show that results can be significantly improved by incorporating geometric scene features in the VQA model design. The source code and the dataset will be made publicly available at: https://github.com/CAMMA-public/SSG-QA
comment: IPCAI 2024, Int J CARS (2024)
♻ ☆ Surgical Triplet Recognition via Diffusion Model
Surgical triplet recognition is an essential building block to enable next-generation context-aware operating rooms. The goal is to identify the combinations of instruments, verbs, and targets presented in surgical video frames. In this paper, we propose DiffTriplet, a new generative framework for surgical triplet recognition employing the diffusion model, which predicts surgical triplets via iterative denoising. To handle the challenge of triplet association, two unique designs are proposed in our diffusion framework, i.e., association learning and association guidance. During training, we optimize the model in the joint space of triplets and individual components to capture the dependencies among them. At inference, we integrate association constraints into each update of the iterative denoising process, which refines the triplet prediction using the information of individual components. Experiments on the CholecT45 and CholecT50 datasets show the superiority of the proposed method in achieving a new state-of-the-art performance for surgical triplet recognition. Our codes will be released.
♻ ☆ Investigating the impact of 2D gesture representation on co-speech gesture generation
Co-speech gestures play a crucial role in the interactions between humans and embodied conversational agents (ECA). Recent deep learning methods enable the generation of realistic, natural co-speech gestures synchronized with speech, but such approaches require large amounts of training data. "In-the-wild" datasets, which compile videos from sources such as YouTube through human pose detection models, offer a solution by providing 2D skeleton sequences that are paired with speech. Concurrently, innovative lifting models have emerged, capable of transforming these 2D pose sequences into their 3D counterparts, leading to large and diverse datasets of 3D gestures. However, the derived 3D pose estimation is essentially a pseudo-ground truth, with the actual ground truth being the 2D motion data. This distinction raises questions about the impact of gesture representation dimensionality on the quality of generated motions, a topic that, to our knowledge, remains largely unexplored. In this work, we evaluate the impact of the dimensionality of the training data, 2D or 3D joint coordinates, on the performance of a multimodal speech-to-gesture deep generative model. We use a lifting model to convert 2D-generated sequences of body pose to 3D. Then, we compare the sequence of gestures generated directly in 3D to the gestures generated in 2D and lifted to 3D as post-processing.
comment: 8 pages. Paper accepted at WACAI 2024
♻ ☆ SWAP-NAS: Sample-Wise Activation Patterns for Ultra-fast NAS ICLR2024
Training-free metrics (a.k.a. zero-cost proxies) are widely used to avoid resource-intensive neural network training, especially in Neural Architecture Search (NAS). Recent studies show that existing training-free metrics have several limitations, such as limited correlation and poor generalisation across different search spaces and tasks. Hence, we propose Sample-Wise Activation Patterns and its derivative, SWAP-Score, a novel high-performance training-free metric. It measures the expressivity of networks over a batch of input samples. The SWAP-Score is strongly correlated with ground-truth performance across various search spaces and tasks, outperforming 15 existing training-free metrics on NAS-Bench-101/201/301 and TransNAS-Bench-101. The SWAP-Score can be further enhanced by regularisation, which leads to even higher correlations in cell-based search space and enables model size control during the search. For example, Spearman's rank correlation coefficient between regularised SWAP-Score and CIFAR-100 validation accuracies on NAS-Bench-201 networks is 0.90, significantly higher than 0.80 from the second-best metric, NWOT. When integrated with an evolutionary algorithm for NAS, our SWAP-NAS achieves competitive performance on CIFAR-10 and ImageNet in approximately 6 minutes and 9 minutes of GPU time respectively.
comment: ICLR2024 Spotlight
VCR: Visual Caption Restoration
We introduce Visual Caption Restoration (VCR), a novel vision-language task that challenges models to accurately restore partially obscured texts using pixel-level hints within images. This task stems from the observation that text embedded in images is intrinsically different from common visual elements and natural language due to the need to align the modalities of vision, text, and text embedded in images. While numerous works have integrated text embedded in images into visual question-answering tasks, approaches to these tasks generally rely on optical character recognition or masked language modeling, thus reducing the task to mainly text-based processing. However, text-based processing becomes ineffective in VCR as accurate text restoration depends on the combined information from provided images, context, and subtle cues from the tiny exposed areas of masked texts. We develop a pipeline to generate synthetic images for the VCR task using image-caption pairs, with adjustable caption visibility to control the task difficulty. With this pipeline, we construct a dataset for VCR called VCR-Wiki using images with captions from Wikipedia, comprising 2.11M English and 346K Chinese entities in both easy and hard split variants. Our results reveal that current vision language models significantly lag behind human performance in the VCR task, and merely fine-tuning the models on our dataset does not lead to notable improvements. We release VCR-Wiki and the data construction code to facilitate future research.
comment: 17 pages, 2 figures
♻ ☆ LIR: A Lightweight Baseline for Image Restoration
Recently, there have been significant advancements in Image Restoration based on CNN and transformer. However, the inherent characteristics of the Image Restoration task are often overlooked in many works. They, instead, tend to focus on the basic block design and stack numerous such blocks to the model, leading to parameters redundant and computations unnecessary. Thus, the efficiency of the image restoration is hindered. In this paper, we propose a Lightweight Baseline network for Image Restoration called LIR to efficiently restore the image and remove degradations. First of all, through an ingenious structural design, LIR removes the degradations existing in the local and global residual connections that are ignored by modern networks. Then, a Lightweight Adaptive Attention (LAA) Block is introduced which is mainly composed of proposed Adaptive Filters and Attention Blocks. The proposed Adaptive Filter is used to adaptively extract high-frequency information and enhance object contours in various IR tasks, and Attention Block involves a novel Patch Attention module to approximate the self-attention part of the transformer. On the deraining task, our LIR achieves the state-of-the-art Structure Similarity Index Measure (SSIM) and comparable performance to state-of-the-art models on Peak Signal-to-Noise Ratio (PSNR). For denoising, dehazing, and deblurring tasks, LIR also achieves a comparable performance to state-of-the-art models with a parameter size of about 30\%. In addition, it is worth noting that our LIR produces better visual results that are more in line with the human aesthetic.
♻ ☆ CoLM-DSR: Leveraging Neural Codec Language Modeling for Multi-Modal Dysarthric Speech Reconstruction
Dysarthric speech reconstruction (DSR) aims to transform dysarthric speech into normal speech. It still suffers from low speaker similarity and poor prosody naturalness. In this paper, we propose a multi-modal DSR model by leveraging neural codec language modeling to improve the reconstruction results, especially for the speaker similarity and prosody naturalness. Our proposed model consists of: (i) a multi-modal content encoder to extract robust phoneme embeddings from dysarthric speech with auxiliary visual inputs; (ii) a speaker codec encoder to extract and normalize the speaker-aware codecs from the dysarthric speech, in order to provide original timbre and normal prosody; (iii) a codec language model based speech decoder to reconstruct the speech based on the extracted phoneme embeddings and normalized codecs. Evaluations on the commonly used UASpeech corpus show that our proposed model can achieve significant improvements in terms of speaker similarity and prosody naturalness.
comment: Accepted by Interspeech 2024
♻ ☆ Learning to utilize image second-order derivative information for crisp edge detection
Edge detection is a fundamental task in computer vision. It has made great progress under the development of deep convolutional neural networks (DCNNs), some of which have achieved a beyond human-level performance. However, recent top-performing edge detection methods tend to generate thick and noisy edge lines. In this work, we solve this problem from two aspects: (1) leveraging the precise edge pixel location characteristics of second-order image derivatives, and (2) alleviating the issue of imbalanced pixel distribution. We propose a second-order derivative-based multi-scale contextual enhancement module (SDMC) to help the model locate true edge pixels accurately and construct a hybrid focal loss function (HFL) to alleviate the imbalanced distribution issue. We test our method on three standard benchmarks and the experiment results illustrate that our method can make the output edge maps crisp and achieves a top performance among several state-of-the-art methods on the BSDS500 dataset (ODS F-score in standard evaluation is 0.829, in crispness evaluation is 0.720), NYUD-V2 dataset (ODS F-score in standard evaluation is 0.768, in crispness evaluation is 0.546), and BIPED dataset (ODS F-score in standard evaluation is 0.903).
♻ ☆ Style-NeRF2NeRF: 3D Style Transfer From Style-Aligned Multi-View Images
We propose a simple yet effective pipeline for stylizing a 3D scene, harnessing the power of 2D image diffusion models. Given a NeRF model reconstructed from a set of multi-view images, we perform 3D style transfer by refining the source NeRF model using stylized images generated by a style-aligned image-to-image diffusion model. Given a target style prompt, we first generate perceptually similar multi-view images by leveraging a depth-conditioned diffusion model with an attention-sharing mechanism. Next, based on the stylized multi-view images, we propose to guide the style transfer process with the sliced Wasserstein loss based on the feature maps extracted from a pre-trained CNN model. Our pipeline consists of decoupled steps, allowing users to test various prompt ideas and preview the stylized 3D result before proceeding to the NeRF fine-tuning stage. We demonstrate that our method can transfer diverse artistic styles to real-world 3D scenes with competitive quality. Result videos are also available on our project page: https://haruolabs.github.io/style-n2n/
comment: 16 pages, 9 figures
♻ ☆ Diffeomorphic Template Registration for Atmospheric Turbulence Mitigation
We describe a method for recovering the irradiance underlying a collection of images corrupted by atmospheric turbulence. Since supervised data is often technically impossible to obtain, assumptions and biases have to be imposed to solve this inverse problem, and we choose to model them explicitly. Rather than initializing a latent irradiance ("template") by heuristics to estimate deformation, we select one of the images as a reference, and model the deformation in this image by the aggregation of the optical flow from it to other images, exploiting a prior imposed by Central Limit Theorem. Then with a novel flow inversion module, the model registers each image TO the template but WITHOUT the template, avoiding artifacts related to poor template initialization. To illustrate the robustness of the method, we simply (i) select the first frame as the reference and (ii) use the simplest optical flow to estimate the warpings, yet the improvement in registration is decisive in the final reconstruction, as we achieve state-of-the-art performance despite its simplicity. The method establishes a strong baseline that can be further improved by integrating it seamlessly into more sophisticated pipelines, or with domain-specific methods if so desired.
♻ ☆ CCC++: Optimized Color Classified Colorization with Segment Anything Model (SAM) Empowered Object Selective Color Harmonization
In this paper, we formulate the colorization problem into a multinomial classification problem and then apply a weighted function to classes. We propose a set of formulas to transform color values into color classes and vice versa. To optimize the classes, we experiment with different bin sizes for color class transformation. Observing class appearance, standard deviation, and model parameters on various extremely large-scale real-time images in practice we propose 532 color classes for our classification task. During training, we propose a class-weighted function based on true class appearance in each batch to ensure proper saturation of individual objects. We adjust the weights of the major classes, which are more frequently observed, by lowering them, while escalating the weights of the minor classes, which are less commonly observed. In our class re-weight formula, we propose a hyper-parameter for finding the optimal trade-off between the major and minor appeared classes. As we apply regularization to enhance the stability of the minor class, occasional minor noise may appear at the object's edges. We propose a novel object-selective color harmonization method empowered by the Segment Anything Model (SAM) to refine and enhance these edges. We propose two new color image evaluation metrics, the Color Class Activation Ratio (CCAR), and the True Activation Ratio (TAR), to quantify the richness of color components. We compare our proposed model with state-of-the-art models using six different dataset: Place, ADE, Celeba, COCO, Oxford 102 Flower, and ImageNet, in qualitative and quantitative approaches. The experimental results show that our proposed model outstrips other models in visualization, CNR and in our proposed CCAR and TAR measurement criteria while maintaining satisfactory performance in regression (MSE, PSNR), similarity (SSIM, LPIPS, UIUI), and generative criteria (FID).
comment: arXiv admin note: text overlap with arXiv:2403.01476
♻ ☆ MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection
Recently, infrared small target detection (ISTD) has made significant progress, thanks to the development of basic models. Specifically, the models combining CNNs with transformers can successfully extract both local and global features. However, the disadvantage of the transformer is also inherited, i.e., the quadratic computational complexity to sequence length. Inspired by the recent basic model with linear complexity for long-distance modeling, Mamba, we explore the potential of this state space model for ISTD task in terms of effectiveness and efficiency in the paper. However, directly applying Mamba achieves suboptimal performances due to the insufficient harnessing of local features, which are imperative for detecting small targets. Instead, we tailor a nested structure, Mamba-in-Mamba (MiM-ISTD), for efficient ISTD. It consists of Outer and Inner Mamba blocks to adeptly capture both global and local features. Specifically, we treat the local patches as "visual sentences" and use the Outer Mamba to explore the global information. We then decompose each visual sentence into sub-patches as "visual words" and use the Inner Mamba to further explore the local information among words in the visual sentence with negligible computational costs. By aggregating the visual word and visual sentence features, our MiM-ISTD can effectively explore both global and local information. Experiments on NUAA-SIRST and IRSTD-1k show the superior accuracy and efficiency of our method. Specifically, MiM-ISTD is $8 \times$ faster than the SOTA method and reduces GPU memory usage by 62.2$\%$ when testing on $2048 \times 2048$ images, overcoming the computation and memory constraints on high-resolution infrared images.
comment: The first Mamba-based model for infrared small target detection
♻ ☆ MovieLLM: Enhancing Long Video Understanding with AI-Generated Movies
Development of multimodal models has marked a significant step forward in how machines understand videos. These models have shown promise in analyzing short video clips. However, when it comes to longer formats like movies, they often fall short. The main hurdles are the lack of high-quality, diverse video data and the intensive work required to collect or annotate such data. In face of these challenges, we propose MovieLLM, a novel framework designed to synthesize consistent and high-quality video data for instruction tuning. The pipeline is carefully designed to control the style of videos by improving textual inversion technique with powerful text generation capability of GPT-4. As the first framework to do such thing, our approach stands out for its flexibility and scalability, empowering users to create customized movies with only one description. This makes it a superior alternative to traditional data collection methods. Our extensive experiments validate that the data produced by MovieLLM significantly improves the performance of multimodal models in understanding complex video narratives, overcoming the limitations of existing datasets regarding scarcity and bias.
♻ ☆ Comparing the Decision-Making Mechanisms by Transformers and CNNs via Explanation Methods CVPR24
In order to gain insights about the decision-making of different visual recognition backbones, we propose two methodologies, sub-explanation counting and cross-testing, that systematically applies deep explanation algorithms on a dataset-wide basis, and compares the statistics generated from the amount and nature of the explanations. These methodologies reveal the difference among networks in terms of two properties called compositionality and disjunctivism. Transformers and ConvNeXt are found to be more compositional, in the sense that they jointly consider multiple parts of the image in building their decisions, whereas traditional CNNs and distilled transformers are less compositional and more disjunctive, which means that they use multiple diverse but smaller set of parts to achieve a confident prediction. Through further experiments, we pinpointed the choice of normalization to be especially important in the compositionality of a model, in that batch normalization leads to less compositionality while group and layer normalization lead to more. Finally, we also analyze the features shared by different backbones and plot a landscape of different models based on their feature-use similarity.
comment: 25 pages with 37 figures, to be published in CVPR24. Project Webpage: https://mingqij.github.io/projects/cdmmtc/
♻ ☆ Adaptively Clustering Neighbor Elements for Image-Text Generation
We propose a novel Transformer-based image-to-text generation model termed as \textbf{ACF} that adaptively clusters vision patches into object regions and language words into phrases to implicitly learn object-phrase alignments for better visual-text coherence. To achieve this, we design a novel self-attention layer that applies self-attention over the elements in a local cluster window instead of the whole sequence. The window size is softly decided by a clustering matrix that is calculated by the current input data and thus this process is adaptive. By stacking these revised self-attention layers to construct ACF, the small clusters in the lower layers can be grouped into a bigger cluster, \eg vision/language. ACF clusters small objects/phrases into bigger ones. In this gradual clustering process, a parsing tree is generated which embeds the hierarchical knowledge of the input sequence. As a result, by using ACF to build the vision encoder and language decoder, the hierarchical object-phrase alignments are embedded and then transferred from vision to language domains in two popular image-to-text tasks: Image captioning and Visual Question Answering. The experiment results demonstrate the effectiveness of ACF, which outperforms most SOTA captioning and VQA models and achieves comparable scores compared with some large-scale pre-trained models. Our code is available \href{https://github.com/ZihuaEvan/ACFModel/}{[here]}.
comment: Compared to v1 and v2, we expanded this method to VQA. And it proved that our method can be applied on more general image-text generation tasks
♻ ☆ WeatherQA: Can Multimodal Language Models Reason about Severe Weather?
Severe convective weather events, such as hail, tornadoes, and thunderstorms, often occur quickly yet cause significant damage, costing billions of dollars every year. This highlights the importance of forecasting severe weather threats hours in advance to better prepare meteorologists and residents in at-risk areas. Can modern large foundation models perform such forecasting? Existing weather benchmarks typically focus only on predicting time-series changes in certain weather parameters (e.g., temperature, moisture) with text-only features. In this work, we introduce WeatherQA, the first multimodal dataset designed for machines to reason about complex combinations of weather parameters (a.k.a., ingredients) and predict severe weather in real-world scenarios. The dataset includes over 8,000 (multi-images, text) pairs for diverse severe weather events. Each pair contains rich information crucial for forecasting -- the images describe the ingredients capturing environmental instability, surface observations, and radar reflectivity, and the text contains forecast analyses written by human experts. With WeatherQA, we evaluate state-of-the-art vision language models, including GPT4, Claude3.5, Gemini-1.5, and a fine-tuned Llama3-based VLM, by designing two challenging tasks: (1) multi-choice QA for predicting affected area and (2) classification of the development potential of severe convection. These tasks require deep understanding of domain knowledge (e.g., atmospheric dynamics) and complex reasoning over multimodal data (e.g., interactions between weather parameters). We show a substantial gap between the strongest VLM, GPT4o, and human reasoning. Our comprehensive case study with meteorologists further reveals the weaknesses of the models, suggesting that better training and data integration are necessary to bridge this gap. WeatherQA link: https://github.com/chengqianma/WeatherQA.
comment: 26 pages, 9 figures
♻ ☆ Accurately Classifying Out-Of-Distribution Data in Facial Recognition
Standard classification theory assumes that the distribution of images in the test and training sets are identical. Unfortunately, real-life scenarios typically feature unseen data ("out-of-distribution data") which is different from data in the training distribution("in-distribution"). This issue is most prevalent in social justice problems where data from under-represented groups may appear in the test data without representing an equal proportion of the training data. This may result in a model returning confidently wrong decisions and predictions. We are interested in the following question: Can the performance of a neural network improve on facial images of out-of-distribution data when it is trained simultaneously on multiple datasets of in-distribution data? We approach this problem by incorporating the Outlier Exposure model and investigate how the model's performance changes when other datasets of facial images were implemented. We observe that the accuracy and other metrics of the model can be increased by applying Outlier Exposure, incorporating a trainable weight parameter to increase the machine's emphasis on outlier images, and by re-weighting the importance of different class labels. We also experimented with whether sorting the images and determining outliers via image features would have more of an effect on the metrics than sorting by average pixel value. Our goal was to make models not only more accurate but also more fair by scanning a more expanded range of images. We also tested the datasets in reverse order to see whether a more fair dataset with balanced features has an effect on the model's accuracy.
comment: 18 pages, 6 tables, 6 figures
♻ ☆ PSAvatar: A Point-based Shape Model for Real-Time Head Avatar Animation with 3D Gaussian Splatting
Despite much progress, achieving real-time high-fidelity head avatar animation is still difficult and existing methods have to trade-off between speed and quality. 3DMM based methods often fail to model non-facial structures such as eyeglasses and hairstyles, while neural implicit models suffer from deformation inflexibility and rendering inefficiency. Although 3D Gaussian has been demonstrated to possess promising capability for geometry representation and radiance field reconstruction, applying 3D Gaussian in head avatar creation remains a major challenge since it is difficult for 3D Gaussian to model the head shape variations caused by changing poses and expressions. In this paper, we introduce PSAvatar, a novel framework for animatable head avatar creation that utilizes discrete geometric primitive to create a parametric morphable shape model and employs 3D Gaussian for fine detail representation and high fidelity rendering. The parametric morphable shape model is a Point-based Morphable Shape Model (PMSM) which uses points instead of meshes for 3D representation to achieve enhanced representation flexibility. The PMSM first converts the FLAME mesh to points by sampling on the surfaces as well as off the meshes to enable the reconstruction of not only surface-like structures but also complex geometries such as eyeglasses and hairstyles. By aligning these points with the head shape in an analysis-by-synthesis manner, the PMSM makes it possible to utilize 3D Gaussian for fine detail representation and appearance modeling, thus enabling the creation of high-fidelity avatars. We show that PSAvatar can reconstruct high-fidelity head avatars of a variety of subjects and the avatars can be animated in real-time ($\ge$ 25 fps at a resolution of 512 $\times$ 512 ).
comment: 13 pages, 10 figures
♻ ☆ EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models ACL 2024
Large Language Models (LLMs) usually suffer from knowledge cutoff or fallacy issues, which means they are unaware of unseen events or generate text with incorrect facts owing to outdated/noisy data. To this end, many knowledge editing approaches for LLMs have emerged -- aiming to subtly inject/edit updated knowledge or adjust undesired behavior while minimizing the impact on unrelated inputs. Nevertheless, due to significant differences among various knowledge editing methods and the variations in task setups, there is no standard implementation framework available for the community, which hinders practitioners from applying knowledge editing to applications. To address these issues, we propose EasyEdit, an easy-to-use knowledge editing framework for LLMs. It supports various cutting-edge knowledge editing approaches and can be readily applied to many well-known LLMs such as T5, GPT-J, LlaMA, etc. Empirically, we report the knowledge editing results on LlaMA-2 with EasyEdit, demonstrating that knowledge editing surpasses traditional fine-tuning in terms of reliability and generalization. We have released the source code on GitHub, along with Google Colab tutorials and comprehensive documentation for beginners to get started. Besides, we present an online system for real-time knowledge editing, and a demo video.
comment: ACL 2024 System Demonstrations; Code: https://github.com/zjunlp/EasyEdit HF Demo: https://huggingface.co/spaces/zjunlp/EasyEdit Video: https://youtu.be/Gm6T0QaaskU Docs: https://zjunlp.gitbook.io/easyedit
♻ ☆ Interpreting the Second-Order Effects of Neurons in CLIP
We interpret the function of individual neurons in CLIP by automatically describing them using text. Analyzing the direct effects (i.e. the flow from a neuron through the residual stream to the output) or the indirect effects (overall contribution) fails to capture the neurons' function in CLIP. Therefore, we present the "second-order lens", analyzing the effect flowing from a neuron through the later attention heads, directly to the output. We find that these effects are highly selective: for each neuron, the effect is significant for <2% of the images. Moreover, each effect can be approximated by a single direction in the text-image space of CLIP. We describe neurons by decomposing these directions into sparse sets of text representations. The sets reveal polysemantic behavior - each neuron corresponds to multiple, often unrelated, concepts (e.g. ships and cars). Exploiting this neuron polysemy, we mass-produce "semantic" adversarial examples by generating images with concepts spuriously correlated to the incorrect class. Additionally, we use the second-order effects for zero-shot segmentation and attribute discovery in images. Our results indicate that a scalable understanding of neurons can be used for model deception and for introducing new model capabilities.
comment: project page: https://yossigandelsman.github.io/clip_neurons/index.html
♻ ☆ Intrinsic LoRA: A Generalist Approach for Discovering Knowledge in Generative Models
Generative models excel at creating images that closely mimic real scenes, suggesting they inherently encode scene representations. We introduce Intrinsic LoRA (I-LoRA), a general approach that uses Low-Rank Adaptation (LoRA) to discover scene intrinsics such as normals, depth, albedo, and shading from a wide array of generative models. I-LoRA is lightweight, adding minimally to the model's parameters and requiring very small datasets for this knowledge discovery. Our approach, applicable to Diffusion models, GANs, and Autoregressive models alike, generates intrinsics using the same output head as the original images. Through control experiments, we establish a correlation between the generative model's quality and the extracted intrinsics' accuracy. Finally, scene intrinsics obtained by our method with just hundreds to thousands of labeled images, perform on par with those from supervised methods trained on millions of labeled examples.
comment: https://intrinsic-lora.github.io/
♻ ☆ Non-rigid Structure-from-Motion: Temporally-smooth Procrustean Alignment and Spatially-variant Deformation Modeling CVPR 2024
Even though Non-rigid Structure-from-Motion (NRSfM) has been extensively studied and great progress has been made, there are still key challenges that hinder their broad real-world applications: 1) the inherent motion/rotation ambiguity requires either explicit camera motion recovery with extra constraint or complex Procrustean Alignment; 2) existing low-rank modeling of the global shape can over-penalize drastic deformations in the 3D shape sequence. This paper proposes to resolve the above issues from a spatial-temporal modeling perspective. First, we propose a novel Temporally-smooth Procrustean Alignment module that estimates 3D deforming shapes and adjusts the camera motion by aligning the 3D shape sequence consecutively. Our new alignment module remedies the requirement of complex reference 3D shape during alignment, which is more conductive to non-isotropic deformation modeling. Second, we propose a spatial-weighted approach to enforce the low-rank constraint adaptively at different locations to accommodate drastic spatially-variant deformation reconstruction better. Our modeling outperform existing low-rank based methods, and extensive experiments across different datasets validate the effectiveness of our method.
comment: Accepted by CVPR 2024; V2 adds new experiments
♻ ☆ EFUF: Efficient Fine-grained Unlearning Framework for Mitigating Hallucinations in Multimodal Large Language Models
Multimodal large language models (MLLMs) have attracted increasing attention in the past few years, but they may still generate descriptions that include objects not present in the corresponding images, a phenomenon known as object hallucination. To eliminate hallucinations, existing methods manually annotate paired responses with and without hallucinations, and then employ various alignment algorithms to improve the alignment capability between images and text. However, they not only demand considerable computation resources during the finetuning stage but also require expensive human annotation to construct paired data needed by the alignment algorithms. To address these issues, we borrow the idea of unlearning and propose an efficient fine-grained unlearning framework (EFUF), which can eliminate hallucinations without the need for paired data. Extensive experiments show that our method consistently reduces hallucinations while preserving the generation quality with modest computational overhead. Our code and datasets will be publicly available.
♻ ☆ Source-Free Domain Adaptation with Diffusion-Guided Source Data Generation
This paper introduces a novel approach to leverage the generalizability of Diffusion Models for Source-Free Domain Adaptation (DM-SFDA). Our proposed DMSFDA method involves fine-tuning a pre-trained text-to-image diffusion model to generate source domain images using features from the target images to guide the diffusion process. Specifically, the pre-trained diffusion model is fine-tuned to generate source samples that minimize entropy and maximize confidence for the pre-trained source model. We then use a diffusion model-based image mixup strategy to bridge the domain gap between the source and target domains. We validate our approach through comprehensive experiments across a range of datasets, including Office-31 [39], Office-Home [48], and VisDA [35]. The results demonstrate significant improvements in SFDA performance, highlighting the potential of diffusion models in generating contextually relevant, domain-specific images.
comment: arXiv admin note: substantial text overlap with arXiv:2310.01701
♻ ☆ MagicLens: Self-Supervised Image Retrieval with Open-Ended Instructions ICML 2024
Image retrieval, i.e., finding desired images given a reference image, inherently encompasses rich, multi-faceted search intents that are difficult to capture solely using image-based measures. Recent works leverage text instructions to allow users to more freely express their search intents. However, they primarily focus on image pairs that are visually similar and/or can be characterized by a small set of pre-defined relations. The core thesis of this paper is that text instructions can enable retrieving images with richer relations beyond visual similarity. To show this, we introduce MagicLens, a series of self-supervised image retrieval models that support open-ended instructions. MagicLens is built on a key novel insight: image pairs that naturally occur on the same web pages contain a wide range of implicit relations (e.g., inside view of), and we can bring those implicit relations explicit by synthesizing instructions via foundation models. Trained on 36.7M (query image, instruction, target image) triplets with rich semantic relations mined from the web, MagicLens achieves results comparable with or better than prior best on eight benchmarks of various image retrieval tasks, while maintaining high parameter efficiency with a significantly smaller model size. Additional human analyses on a 1.4M-image unseen corpus further demonstrate the diversity of search intents supported by MagicLens. Code and models are publicly available at https://open-vision-language.github.io/MagicLens/.
comment: ICML 2024 (Oral); Project Website: https://open-vision-language.github.io/MagicLens/
♻ ☆ LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models
In the rapidly evolving landscape of artificial intelligence, multi-modal large language models are emerging as a significant area of interest. These models, which combine various forms of data input, are becoming increasingly popular. However, understanding their internal mechanisms remains a complex task. Numerous advancements have been made in the field of explainability tools and mechanisms, yet there is still much to explore. In this work, we present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models. Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer, and assess the efficacy of the language model in grounding its output in the image. With our application, a user can systematically investigate the model and uncover system limitations, paving the way for enhancements in system capabilities. Finally, we present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
♻ ☆ Rethinking Pruning for Vision-Language Models: Strategies for Effective Sparsity and Performance Restoration
Vision-Language Models (VLMs) integrate information from multiple modalities and have shown remarkable success across various tasks. However, deploying large-scale VLMs in resource-constrained scenarios is challenging. Pruning followed by finetuning offers a potential solution but remains underexplored for VLMs. This study addresses two key questions: how to distribute sparsity across different modality-specific models, and how to restore the performance of pruned sparse VLMs. Our preliminary studies identified two effective pruning settings: applying the same sparsity to both vision and language models, and pruning only the language models. While LoRA finetuning aims to restore sparse models, it faces challenges due to incompatibility with sparse models, disrupting the pruned sparsity. To overcome these issues, we propose SparseLoRA, which applies sparsity directly to LoRA weights. Our experimental results demonstrate significant improvements, including an 11.3\% boost under 2:4 sparsity and a 47.6\% enhancement under unstructured 70\% sparsity. Code is released at: \url{https://github.com/Shwai-He/VLM-Compression}.
♻ ☆ WATT: Weight Average Test-Time Adaptation of CLIP
Vision-Language Models (VLMs) such as CLIP have yielded unprecedented performance for zero-shot image classification, yet their generalization capability may still be seriously challenged when confronted to domain shifts. In response, we present Weight Average Test-Time Adaptation (WATT) of CLIP, a pioneering approach facilitating full test-time adaptation (TTA) of this VLM. Our method employs a diverse set of templates for text prompts, augmenting the existing framework of CLIP. Predictions are utilized as pseudo labels for model updates, followed by weight averaging to consolidate the learned information globally. Furthermore, we introduce a text ensemble strategy, enhancing overall test performance by aggregating diverse textual cues. Our findings underscore the efficacy of WATT in enhancing performance across diverse datasets, including CIFAR-10-C, CIFAR-10.1, CIFAR-100-C, VisDA-C, and several other challenging datasets, effectively covering a wide range of domain shifts. Notably, these enhancements are achieved without necessitating additional model transformations or trainable modules. Moreover, compared to other Test-Time Adaptation methods, our approach can operate effectively with just a single image. Highlighting the potential of innovative test-time strategies, this research emphasizes their role in fortifying the adaptability of VLMs. The implementation is available at: \url{https://github.com/Mehrdad-Noori/WATT.git}.
♻ ☆ UCM-Net: A Lightweight and Efficient Solution for Skin Lesion Segmentation using MLP and CNN
Skin cancer poses a significant public health challenge, necessitating efficient diagnostic tools. We introduce UCM-Net, a novel skin lesion segmentation model combining Multi-Layer Perceptrons (MLP) and Convolutional Neural Networks (CNN). This lightweight, efficient architecture, deviating from traditional UNet designs, dramatically reduces computational demands, making it ideal for mobile health applications. Evaluated on PH2, ISIC 2017, and ISIC 2018 datasets, UCM-Net demonstrates robust performance with fewer than 50KB parameters and requires less than 0.05 Giga Operations Per Second (GLOPs). Moreover, its minimal memory requirement is just 1.19MB in CPU environment positions. It is a potential benchmark for efficiency in skin lesion segmentation, suitable for deployment in resource-constrained settings. In order to facilitate accessibility and further research in the field, the UCM-Net source code is https://github.com/chunyuyuan/UCM-Net.
comment: 17 pages, accepted by Journal of Biomedical Signal Processing and Control
♻ ☆ Improving the Explain-Any-Concept by Introducing Nonlinearity to the Trainable Surrogate Model
In the evolving field of Explainable AI (XAI), interpreting the decisions of deep neural networks (DNNs) in computer vision tasks is an important process. While pixel-based XAI methods focus on identifying significant pixels, existing concept-based XAI methods use pre-defined or human-annotated concepts. The recently proposed Segment Anything Model (SAM) achieved a significant step forward to prepare automatic concept sets via comprehensive instance segmentation. Building upon this, the Explain Any Concept (EAC) model emerged as a flexible method for explaining DNN decisions. EAC model is based on using a surrogate model which has one trainable linear layer to simulate the target model. In this paper, by introducing an additional nonlinear layer to the original surrogate model, we show that we can improve the performance of the EAC model. We compare our proposed approach to the original EAC model and report improvements obtained on both ImageNet and MS COCO datasets.
comment: This paper is accepted for publication at IEEE SIU conference, 2024
♻ ☆ MRISegmentator-Abdomen: A Fully Automated Multi-Organ and Structure Segmentation Tool for T1-weighted Abdominal MRI
Background: Segmentation of organs and structures in abdominal MRI is useful for many clinical applications, such as disease diagnosis and radiotherapy. Current approaches have focused on delineating a limited set of abdominal structures (13 types). To date, there is no publicly available abdominal MRI dataset with voxel-level annotations of multiple organs and structures. Consequently, a segmentation tool for multi-structure segmentation is also unavailable. Methods: We curated a T1-weighted abdominal MRI dataset consisting of 195 patients who underwent imaging at National Institutes of Health (NIH) Clinical Center. The dataset comprises of axial pre-contrast T1, arterial, venous, and delayed phases for each patient, thereby amounting to a total of 780 series (69,248 2D slices). Each series contains voxel-level annotations of 62 abdominal organs and structures. A 3D nnUNet model, dubbed as MRISegmentator-Abdomen (MRISegmentator in short), was trained on this dataset, and evaluation was conducted on an internal test set and two large external datasets: AMOS22 and Duke Liver. The predicted segmentations were compared against the ground-truth using the Dice Similarity Coefficient (DSC) and Normalized Surface Distance (NSD). Findings: MRISegmentator achieved an average DSC of 0.861$\pm$0.170 and a NSD of 0.924$\pm$0.163 in the internal test set. On the AMOS22 dataset, MRISegmentator attained an average DSC of 0.829$\pm$0.133 and a NSD of 0.908$\pm$0.067. For the Duke Liver dataset, an average DSC of 0.933$\pm$0.015 and a NSD of 0.929$\pm$0.021 was obtained. Interpretation: The proposed MRISegmentator provides automatic, accurate, and robust segmentations of 62 organs and structures in T1-weighted abdominal MRI sequences. The tool has the potential to accelerate research on various clinical topics, such as abnormality detection, radiotherapy, disease classification among others.
comment: We made the segmentation model publicly available
Information Retrieval 21
☆ Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track
Did you try out the new Bing Search? Or maybe you fiddled around with Google AI~Overviews? These might sound familiar because the modern-day search stack has recently evolved to include retrieval-augmented generation (RAG) systems. They allow searching and incorporating real-time data into large language models (LLMs) to provide a well-informed, attributed, concise summary in contrast to the traditional search paradigm that relies on displaying a ranked list of documents. Therefore, given these recent advancements, it is crucial to have an arena to build, test, visualize, and systematically evaluate RAG-based search systems. With this in mind, we propose the TREC 2024 RAG Track to foster innovation in evaluating RAG systems. In our work, we lay out the steps we've made towards making this track a reality -- we describe the details of our reusable framework, Ragnar\"ok, explain the curation of the new MS MARCO V2.1 collection choice, release the development topics for the track, and standardize the I/O definitions which assist the end user. Next, using Ragnar\"ok, we identify and provide key industrial baselines such as OpenAI's GPT-4o or Cohere's Command R+. Further, we introduce a web-based user interface for an interactive arena allowing benchmarking pairwise RAG systems by crowdsourcing. We open-source our Ragnar\"ok framework and baselines to achieve a unified standard for future RAG systems.
☆ Meta-experiments: Improving experimentation through experimentation
A/B testing is widexly used in the industry to optimize customer facing websites. Many companies employ experimentation specialists to facilitate and improve the process of A/B testing. Here, we present the application of A/B testing to this improvement effort itself, by running experiments on the experimentation process, which we call 'meta-experiments'. We discuss the challenges of this approach using the example of one of our meta-experiments, which helped experimenters to run more sufficiently powered A/B tests. We also point out the benefits of 'dog fooding' for the experimentation specialists when running their own experiments.
comment: 6 pages, 2 figures, 1 table
☆ Star+: A New Multi-Domain Model for CTR Prediction
In this paper, we introduce Star+, a novel multi-domain model for click-through rate (CTR) prediction inspired by the Star model. Traditional single-domain approaches and existing multi-task learning techniques face challenges in multi-domain environments due to their inability to capture domain-specific data distributions and complex inter-domain relationships. Star+ addresses these limitations by enhancing the interaction between shared and domain-specific information through various fusion strategies, such as add, adaptive add, concatenation, and gating fusions, to find the optimal balance between domain-specific and shared information. We also investigate the impact of different normalization techniques, including layer normalization, batch normalization, and partition normalization, on the performance of our model. Our extensive experiments on both industrial and public datasets demonstrate that Star+ significantly improves prediction accuracy and efficiency. This work contributes to the advancement of recommendation systems by providing a robust, scalable, and adaptive solution for multi-domain environments.
☆ Cross-domain Transfer of Valence Preferences via a Meta-optimization Approach
Cross-domain recommendation offers a potential avenue for alleviating data sparsity and cold-start problems. Embedding and mapping, as a classic cross-domain research genre, aims to identify a common mapping function to perform representation transformation between two domains. Nevertheless, previous coarse-grained preference representations, non-personalized mapping functions, and excessive reliance on overlapping users limit their performance, especially in scenarios where overlapping users are sparse. To address aforementioned challenges, we propose a novel cross-domain approach, namely CVPM. CVPM formalizes cross-domain interest transfer as a hybrid architecture of parametric meta-learning and self-supervised learning, which not only transfers user preferences at a finer level, but also enables signal enhancement with the knowledge of non-overlapping users. Specifically, with deep insights into user preferences and valence preference theory, we believe that there exists significant difference between users' positive preferences and negative behaviors, and thus employ differentiated encoders to learn their distributions. In particular, we further utilize the pre-trained model and item popularity to sample pseudo-interaction items to ensure the integrity of both distributions. To guarantee the personalization of preference transfer, we treat each user's mapping as two parts, the common transformation and the personalized bias, where the network used to generate the personalized bias is output by a meta-learner. Furthermore, in addition to the supervised loss for overlapping users, we design contrastive tasks for non-overlapping users from both group and individual-levels to avoid model skew and enhance the semantics of representations. Exhaustive data analysis and extensive experimental results demonstrate the effectiveness and advancement of our proposed framework.
☆ Context-augmented Retrieval: A Novel Framework for Fast Information Retrieval based Response Generation using Large Language Model
Generating high-quality answers consistently by providing contextual information embedded in the prompt passed to the Large Language Model (LLM) is dependent on the quality of information retrieval. As the corpus of contextual information grows, the answer/inference quality of Retrieval Augmented Generation (RAG) based Question Answering (QA) systems declines. This work solves this problem by combining classical text classification with the Large Language Model (LLM) to enable quick information retrieval from the vector store and ensure the relevancy of retrieved information. For the same, this work proposes a new approach Context Augmented retrieval (CAR), where partitioning of vector database by real-time classification of information flowing into the corpus is done. CAR demonstrates good quality answer generation along with significant reduction in information retrieval and answer generation time.
☆ On the Role of Long-tail Knowledge in Retrieval Augmented Large Language Models
Retrieval augmented generation (RAG) exhibits outstanding performance in promoting the knowledge capabilities of large language models (LLMs) with retrieved documents related to user queries. However, RAG only focuses on improving the response quality of LLMs via enhancing queries indiscriminately with retrieved information, paying little attention to what type of knowledge LLMs really need to answer original queries more accurately. In this paper, we suggest that long-tail knowledge is crucial for RAG as LLMs have already remembered common world knowledge during large-scale pre-training. Based on our observation, we propose a simple but effective long-tail knowledge detection method for LLMs. Specifically, the novel Generative Expected Calibration Error (GECE) metric is derived to measure the ``long-tailness'' of knowledge based on both statistics and semantics. Hence, we retrieve relevant documents and infuse them into the model for patching knowledge loopholes only when the input query relates to long-tail knowledge. Experiments show that, compared to existing RAG pipelines, our method achieves over 4x speedup in average inference time and consistent performance improvement in downstream tasks.
☆ A Survey on Intent-aware Recommender Systems
Many modern online services feature personalized recommendations. A central challenge when providing such recommendations is that the reason why an individual user accesses the service may change from visit to visit or even during an ongoing usage session. To be effective, a recommender system should therefore aim to take the users' probable intent of using the service at a certain point in time into account. In recent years, researchers have thus started to address this challenge by incorporating intent-awareness into recommender systems. Correspondingly, a number of technical approaches were put forward, including diversification techniques, intent prediction models or latent intent modeling approaches. In this paper, we survey and categorize existing approaches to building the next generation of Intent-Aware Recommender Systems (IARS). Based on an analysis of current evaluation practices, we outline open gaps and possible future directions in this area, which in particular include the consideration of additional interaction signals and contextual information to further improve the effectiveness of such systems.
☆ DemoRank: Selecting Effective Demonstrations for Large Language Models in Ranking Task
Recently, there has been increasing interest in applying large language models (LLMs) as zero-shot passage rankers. However, few studies have explored how to select appropriate in-context demonstrations for the passage ranking task, which is the focus of this paper. Previous studies mainly apply a demonstration retriever to retrieve demonstrations and use top-$k$ demonstrations for in-context learning (ICL). Although effective, this approach overlooks the dependencies between demonstrations, leading to inferior performance of few-shot ICL in the passage ranking task. In this paper, we formulate the demonstration selection as a \textit{retrieve-then-rerank} process and introduce the DemoRank framework. In this framework, we first use LLM feedback to train a demonstration retriever and construct a novel dependency-aware training samples to train a demonstration reranker to improve few-shot ICL. The construction of such training samples not only considers demonstration dependencies but also performs in an efficient way. Extensive experiments demonstrate DemoRank's effectiveness in in-domain scenarios and strong generalization to out-of-domain scenarios. Our codes are available at~\url{https://github.com/8421BCD/DemoRank}.
☆ Debiased Recommendation with Noisy Feedback KDD 24
Ratings of a user to most items in recommender systems are usually missing not at random (MNAR), largely because users are free to choose which items to rate. To achieve unbiased learning of the prediction model under MNAR data, three typical solutions have been proposed, including error-imputation-based (EIB), inverse-propensity-scoring (IPS), and doubly robust (DR) methods. However, these methods ignore an alternative form of bias caused by the inconsistency between the observed ratings and the users' true preferences, also known as noisy feedback or outcome measurement errors (OME), e.g., due to public opinion or low-quality data collection process. In this work, we study intersectional threats to the unbiased learning of the prediction model from data MNAR and OME in the collected data. First, we design OME-EIB, OME-IPS, and OME-DR estimators, which largely extend the existing estimators to combat OME in real-world recommendation scenarios. Next, we theoretically prove the unbiasedness and generalization bound of the proposed estimators. We further propose an alternate denoising training approach to achieve unbiased learning of the prediction model under MNAR data with OME. Extensive experiments are conducted on three real-world datasets and one semi-synthetic dataset to show the effectiveness of our proposed approaches. The code is available at https://github.com/haoxuanli-pku/KDD24-OME-DR.
comment: KDD 24 Research Track Paper
☆ DEXTER: A Benchmark for open-domain Complex Question Answering using LLMs
Open-domain complex Question Answering (QA) is a difficult task with challenges in evidence retrieval and reasoning. The complexity of such questions could stem from questions being compositional, hybrid evidence, or ambiguity in questions. While retrieval performance for classical QA tasks is well explored, their capabilities for heterogeneous complex retrieval tasks, especially in an open-domain setting, and the impact on downstream QA performance, are relatively unexplored. To address this, in this work, we propose a benchmark composing diverse complex QA tasks and provide a toolkit to evaluate state-of-the-art pre-trained dense and sparse retrieval models in an open-domain setting. We observe that late interaction models and surprisingly lexical models like BM25 perform well compared to other pre-trained dense retrieval models. In addition, since context-based reasoning is critical for solving complex QA tasks, we also evaluate the reasoning capabilities of LLMs and the impact of retrieval performance on their reasoning capabilities. Through experiments, we observe that much progress is to be made in retrieval for complex QA to improve downstream QA performance. Our software and related data can be accessed at https://github.com/VenkteshV/DEXTER
comment: under submission, 22 pages
♻ ☆ Make Large Language Model a Better Ranker
Large Language Models (LLMs) demonstrate robust capabilities across various fields, leading to a paradigm shift in LLM-enhanced Recommender System (RS). Research to date focuses on point-wise and pair-wise recommendation paradigms, which are inefficient for LLM-based recommenders due to high computational costs. However, existing list-wise approaches also fall short in ranking tasks due to misalignment between ranking objectives and next-token prediction. Moreover, these LLM-based methods struggle to effectively address the order relation among candidates, particularly given the scale of ratings. To address these challenges, this paper introduces the large language model framework with Aligned Listwise Ranking Objectives (ALRO). ALRO is designed to bridge the gap between the capabilities of LLMs and the nuanced requirements of ranking tasks. Specifically, ALRO employs explicit feedback in a listwise manner by introducing soft lambda loss, a customized adaptation of lambda loss designed for optimizing order relations. This mechanism provides more accurate optimization goals, enhancing the ranking process. Additionally, ALRO incorporates a permutation-sensitive learning mechanism that addresses position bias, a prevalent issue in generative models, without imposing additional computational burdens during inference. Our evaluative studies reveal that ALRO outperforms both existing embedding-based recommendation methods and LLM-based recommendation baselines.
comment: 12 pages, 5 figures
♻ ☆ A Survey on Neural Topic Models: Methods, Applications, and Challenges
Topic models have been prevalent for decades to discover latent topics and infer topic proportions of documents in an unsupervised fashion. They have been widely used in various applications like text analysis and context recommendation. Recently, the rise of neural networks has facilitated the emergence of a new research field -- Neural Topic Models (NTMs). Different from conventional topic models, NTMs directly optimize parameters without requiring model-specific derivations. This endows NTMs with better scalability and flexibility, resulting in significant research attention and plentiful new methods and applications. In this paper, we present a comprehensive survey on neural topic models concerning methods, applications, and challenges. Specifically, we systematically organize current NTM methods according to their network structures and introduce the NTMs for various scenarios like short texts and bilingual documents. We also discuss a wide range of popular applications built on NTMs. Finally, we highlight the challenges confronted by NTMs to inspire future research. We accompany this survey with a repository for easier access to the mentioned paper resources: https://github.com/bobxwu/Paper-Neural-Topic-Models.
comment: Accepted to Artificial Intelligence Review. See https://doi.org/10.1007/s10462-023-10661-7 and a paper list at https://github.com/BobXWu/Paper-Neural-Topic-Models
♻ ☆ Generation of Asset Administration Shell with Large Language Model Agents: Toward Semantic Interoperability in Digital Twins in the Context of Industry 4.0
This research introduces a novel approach for achieving semantic interoperability in digital twins and assisting the creation of Asset Administration Shell (AAS) as digital twin model within the context of Industry 4.0. The foundational idea of our research is that the communication based on semantics and the generation of meaningful textual data are directly linked, and we posit that these processes are equivalent if the exchanged information can be serialized in text form. Based on this, we construct a "semantic node" data structure in our research to capture the semantic essence of textual data. Then, a system powered by large language models is designed and implemented to process the "semantic node" and generate standardized digital twin models from raw textual data collected from datasheets describing technical assets. Our evaluation demonstrates an effective generation rate of 62-79%, indicating a substantial proportion of the information from the source text can be translated error-free to the target digital twin instance model with the generative capability of large language models. This result has a direct application in the context of Industry 4.0, and the designed system is implemented as a data model generation tool for reducing the manual effort in creating AAS model. In our evaluation, a comparative analysis of different LLMs and an in-depth ablation study of Retrieval-Augmented Generation (RAG) mechanisms provide insights into the effectiveness of LLM systems for interpreting technical concepts and translating data. Our findings emphasize LLMs' capability to automate AAS instance creation and contribute to the broader field of semantic interoperability for digital twins in industrial applications. The prototype implementation and evaluation results are presented on our GitHub Repository: https://github.com/YuchenXia/AASbyLLM.
comment: Published in IEEE Access
♻ ☆ ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction WWW 2024
Click-through rate (CTR) prediction has become increasingly indispensable for various Internet applications. Traditional CTR models convert the multi-field categorical data into ID features via one-hot encoding, and extract the collaborative signals among features. Such a paradigm suffers from the problem of semantic information loss. Another line of research explores the potential of pretrained language models (PLMs) for CTR prediction by converting input data into textual sentences through hard prompt templates. Although semantic signals are preserved, they generally fail to capture the collaborative information (e.g., feature interactions, pure ID features), not to mention the unacceptable inference overhead brought by the huge model size. In this paper, we aim to model both the semantic knowledge and collaborative knowledge for accurate CTR estimation, and meanwhile address the inference inefficiency issue. To benefit from both worlds and close their gaps, we propose a novel model-agnostic framework (i.e., ClickPrompt), where we incorporate CTR models to generate interaction-aware soft prompts for PLMs. We design a prompt-augmented masked language modeling (PA-MLM) pretraining task, where PLM has to recover the masked tokens based on the language context, as well as the soft prompts generated by CTR model. The collaborative and semantic knowledge from ID and textual features would be explicitly aligned and interacted via the prompt interface. Then, we can either tune the CTR model with PLM for superior performance, or solely tune the CTR model without PLM for inference efficiency. Experiments on four real-world datasets validate the effectiveness of ClickPrompt compared with existing baselines.
comment: Accepted by WWW 2024
♻ ☆ Fundus: A Simple-to-Use News Scraper Optimized for High Quality Extractions ACL 2024
This paper introduces Fundus, a user-friendly news scraper that enables users to obtain millions of high-quality news articles with just a few lines of code. Unlike existing news scrapers, we use manually crafted, bespoke content extractors that are specifically tailored to the formatting guidelines of each supported online newspaper. This allows us to optimize our scraping for quality such that retrieved news articles are textually complete and without HTML artifacts. Further, our framework combines both crawling (retrieving HTML from the web or large web archives) and content extraction into a single pipeline. By providing a unified interface for a predefined collection of newspapers, we aim to make Fundus broadly usable even for non-technical users. This paper gives an overview of the framework, discusses our design choices, and presents a comparative evaluation against other popular news scrapers. Our evaluation shows that Fundus yields significantly higher quality extractions (complete and artifact-free news articles) than prior work. The framework is available on GitHub under https://github.com/flairNLP/fundus and can be simply installed using pip.
comment: 10 pages, 4 figures, ACL 2024, for a screencast see https://www.youtube.com/watch?v=9GJExMelhdI
♻ ☆ Continuous-time Autoencoders for Regular and Irregular Time Series Imputation WSDM'24
Time series imputation is one of the most fundamental tasks for time series. Real-world time series datasets are frequently incomplete (or irregular with missing observations), in which case imputation is strongly required. Many different time series imputation methods have been proposed. Recent self-attention-based methods show the state-of-the-art imputation performance. However, it has been overlooked for a long time to design an imputation method based on continuous-time recurrent neural networks (RNNs), i.e., neural controlled differential equations (NCDEs). To this end, we redesign time series (variational) autoencoders based on NCDEs. Our method, called continuous-time autoencoder (CTA), encodes an input time series sample into a continuous hidden path (rather than a hidden vector) and decodes it to reconstruct and impute the input. In our experiments with 4 datasets and 19 baselines, our method shows the best imputation performance in almost all cases.
comment: Published as a WSDM'24 full paper (oral presentation)
♻ ☆ ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation WWW 2024
With large language models (LLMs) achieving remarkable breakthroughs in natural language processing (NLP) domains, LLM-enhanced recommender systems have received much attention and have been actively explored currently. In this paper, we focus on adapting and empowering a pure large language model for zero-shot and few-shot recommendation tasks. First and foremost, we identify and formulate the lifelong sequential behavior incomprehension problem for LLMs in recommendation domains, i.e., LLMs fail to extract useful information from a textual context of long user behavior sequence, even if the length of context is far from reaching the context limitation of LLMs. To address such an issue and improve the recommendation performance of LLMs, we propose a novel framework, namely Retrieval-enhanced Large Language models (ReLLa) for recommendation tasks in both zero-shot and few-shot settings. For zero-shot recommendation, we perform semantic user behavior retrieval (SUBR) to improve the data quality of testing samples, which greatly reduces the difficulty for LLMs to extract the essential knowledge from user behavior sequences. As for few-shot recommendation, we further design retrieval-enhanced instruction tuning (ReiT) by adopting SUBR as a data augmentation technique for training samples. Specifically, we develop a mixed training dataset consisting of both the original data samples and their retrieval-enhanced counterparts. We conduct extensive experiments on three real-world public datasets to demonstrate the superiority of ReLLa compared with existing baseline models, as well as its capability for lifelong sequential behavior comprehension. To be highlighted, with only less than 10% training samples, few-shot ReLLa can outperform traditional CTR models that are trained on the entire training set (e.g., DCNv2, DIN, SIM). The code is available \url{https://github.com/LaVieEnRose365/ReLLa}.
comment: Accepted by WWW 2024. Full and More Readable Version
♻ ☆ EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models ACL 2024
Large Language Models (LLMs) usually suffer from knowledge cutoff or fallacy issues, which means they are unaware of unseen events or generate text with incorrect facts owing to outdated/noisy data. To this end, many knowledge editing approaches for LLMs have emerged -- aiming to subtly inject/edit updated knowledge or adjust undesired behavior while minimizing the impact on unrelated inputs. Nevertheless, due to significant differences among various knowledge editing methods and the variations in task setups, there is no standard implementation framework available for the community, which hinders practitioners from applying knowledge editing to applications. To address these issues, we propose EasyEdit, an easy-to-use knowledge editing framework for LLMs. It supports various cutting-edge knowledge editing approaches and can be readily applied to many well-known LLMs such as T5, GPT-J, LlaMA, etc. Empirically, we report the knowledge editing results on LlaMA-2 with EasyEdit, demonstrating that knowledge editing surpasses traditional fine-tuning in terms of reliability and generalization. We have released the source code on GitHub, along with Google Colab tutorials and comprehensive documentation for beginners to get started. Besides, we present an online system for real-time knowledge editing, and a demo video.
comment: ACL 2024 System Demonstrations; Code: https://github.com/zjunlp/EasyEdit HF Demo: https://huggingface.co/spaces/zjunlp/EasyEdit Video: https://youtu.be/Gm6T0QaaskU Docs: https://zjunlp.gitbook.io/easyedit
♻ ☆ EasyInstruct: An Easy-to-use Instruction Processing Framework for Large Language Models ACL 2024
In recent years, instruction tuning has gained increasing attention and emerged as a crucial technique to enhance the capabilities of Large Language Models (LLMs). To construct high-quality instruction datasets, many instruction processing approaches have been proposed, aiming to achieve a delicate balance between data quantity and data quality. Nevertheless, due to inconsistencies that persist among various instruction processing methods, there is no standard open-source instruction processing implementation framework available for the community, which hinders practitioners from further developing and advancing. To facilitate instruction processing research and development, we present EasyInstruct, an easy-to-use instruction processing framework for LLMs, which modularizes instruction generation, selection, and prompting, while also considering their combination and interaction. EasyInstruct is publicly released and actively maintained at https://github.com/zjunlp/EasyInstruct, along with an online demo app and a demo video for quick-start, calling for broader research centered on instruction data and synthetic data.
comment: ACL 2024 System Demonstrations; Project website: https://zjunlp.github.io/project/EasyInstruct Code: https://github.com/zjunlp/EasyInstruct Video: https://youtu.be/rfQOWYfziFo Demo: https://huggingface.co/spaces/zjunlp/EasyInstruct
♻ ☆ VeraCT Scan: Retrieval-Augmented Fake News Detection with Justifiable Reasoning
The proliferation of fake news poses a significant threat not only by disseminating misleading information but also by undermining the very foundations of democracy. The recent advance of generative artificial intelligence has further exacerbated the challenge of distinguishing genuine news from fabricated stories. In response to this challenge, we introduce VeraCT Scan, a novel retrieval-augmented system for fake news detection. This system operates by extracting the core facts from a given piece of news and subsequently conducting an internet-wide search to identify corroborating or conflicting reports. Then sources' credibility is leveraged for information verification. Besides determining the veracity of news, we also provide transparent evidence and reasoning to support its conclusions, resulting in the interpretability and trust in the results. In addition to GPT-4 Turbo, Llama-2 13B is also fine-tuned for news content understanding, information verification, and reasoning. Both implementations have demonstrated state-of-the-art accuracy in the realm of fake news detection.
♻ ☆ MagicLens: Self-Supervised Image Retrieval with Open-Ended Instructions ICML 2024
Image retrieval, i.e., finding desired images given a reference image, inherently encompasses rich, multi-faceted search intents that are difficult to capture solely using image-based measures. Recent works leverage text instructions to allow users to more freely express their search intents. However, they primarily focus on image pairs that are visually similar and/or can be characterized by a small set of pre-defined relations. The core thesis of this paper is that text instructions can enable retrieving images with richer relations beyond visual similarity. To show this, we introduce MagicLens, a series of self-supervised image retrieval models that support open-ended instructions. MagicLens is built on a key novel insight: image pairs that naturally occur on the same web pages contain a wide range of implicit relations (e.g., inside view of), and we can bring those implicit relations explicit by synthesizing instructions via foundation models. Trained on 36.7M (query image, instruction, target image) triplets with rich semantic relations mined from the web, MagicLens achieves results comparable with or better than prior best on eight benchmarks of various image retrieval tasks, while maintaining high parameter efficiency with a significantly smaller model size. Additional human analyses on a 1.4M-image unseen corpus further demonstrate the diversity of search intents supported by MagicLens. Code and models are publicly available at https://open-vision-language.github.io/MagicLens/.
comment: ICML 2024 (Oral); Project Website: https://open-vision-language.github.io/MagicLens/
Machine Learning 150
☆ EAGLE-2: Faster Inference of Language Models with Dynamic Draft Trees
Inference with modern Large Language Models (LLMs) is expensive and time-consuming, and speculative sampling has proven to be an effective solution. Most speculative sampling methods such as EAGLE use a static draft tree, implicitly assuming that the acceptance rate of draft tokens depends only on their position. Interestingly, we found that the acceptance rate of draft tokens is also context-dependent. In this paper, building upon EAGLE, we propose EAGLE-2, which introduces a new technique of context-aware dynamic draft tree into drafting modeling. This improvement leverages the fact that the draft model of EAGLE is well-calibrated: the confidence scores from the draft model approximate acceptance rates with small errors. We conducted extensive evaluations on three series of LLMs and six tasks, with EAGLE-2 achieving speedup ratios 3.05x-4.26x, which is 20%-40% faster than EAGLE-1. EAGLE-2 also ensures that the distribution of the generated text remains unchanged, making it a lossless acceleration algorithm.
☆ GeoMFormer: A General Architecture for Geometric Molecular Representation Learning ICML 2024
Molecular modeling, a central topic in quantum mechanics, aims to accurately calculate the properties and simulate the behaviors of molecular systems. The molecular model is governed by physical laws, which impose geometric constraints such as invariance and equivariance to coordinate rotation and translation. While numerous deep learning approaches have been developed to learn molecular representations under these constraints, most of them are built upon heuristic and costly modules. We argue that there is a strong need for a general and flexible framework for learning both invariant and equivariant features. In this work, we introduce a novel Transformer-based molecular model called GeoMFormer to achieve this goal. Using the standard Transformer modules, two separate streams are developed to maintain and learn invariant and equivariant representations. Carefully designed cross-attention modules bridge the two streams, allowing information fusion and enhancing geometric modeling in each stream. As a general and flexible architecture, we show that many previous architectures can be viewed as special instantiations of GeoMFormer. Extensive experiments are conducted to demonstrate the power of GeoMFormer. All empirical results show that GeoMFormer achieves strong performance on both invariant and equivariant tasks of different types and scales. Code and models will be made publicly available at https://github.com/c-tl/GeoMFormer.
comment: 25 pages, 13 tables, l figure; ICML 2024 camera ready version
☆ Data Debiasing with Datamodels (D3M): Improving Subgroup Robustness via Data Selection
Machine learning models can fail on subgroups that are underrepresented during training. While techniques such as dataset balancing can improve performance on underperforming groups, they require access to training group annotations and can end up removing large portions of the dataset. In this paper, we introduce Data Debiasing with Datamodels (D3M), a debiasing approach which isolates and removes specific training examples that drive the model's failures on minority groups. Our approach enables us to efficiently train debiased classifiers while removing only a small number of examples, and does not require training group annotations or additional hyperparameter tuning.
☆ From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models
One of the most striking findings in modern research on large language models (LLMs) is that scaling up compute during training leads to better results. However, less attention has been given to the benefits of scaling compute during inference. This survey focuses on these inference-time approaches. We explore three areas under a unified mathematical formalism: token-level generation algorithms, meta-generation algorithms, and efficient generation. Token-level generation algorithms, often called decoding algorithms, operate by sampling a single token at a time or constructing a token-level search space and then selecting an output. These methods typically assume access to a language model's logits, next-token distributions, or probability scores. Meta-generation algorithms work on partial or full sequences, incorporating domain knowledge, enabling backtracking, and integrating external information. Efficient generation methods aim to reduce token costs and improve the speed of generation. Our survey unifies perspectives from three research communities: traditional natural language processing, modern LLMs, and machine learning systems.
☆ Concentration Inequalities for $(f,Γ)$-GANs
Generative adversarial networks (GANs) are unsupervised learning methods for training a generator distribution to produce samples that approximate those drawn from a target distribution. Many such methods can be formulated as minimization of a metric or divergence. Recent works have proven the statistical consistency of GANs that are based on integral probability metrics (IPMs), e.g., WGAN which is based on the 1-Wasserstein metric. IPMs are defined by optimizing a linear functional (difference of expectations) over a space of discriminators. A much larger class of GANs, which allow for the use of nonlinear objective functionals, can be constructed using $(f,\Gamma)$-divergences; these generalize and interpolate between IPMs and $f$-divergences (e.g., KL or $\alpha$-divergences). Instances of $(f,\Gamma)$-GANs have been shown to exhibit improved performance in a number of applications. In this work we study the statistical consistency of $(f,\Gamma)$-GANs for general $f$ and $\Gamma$. Specifically, we derive finite-sample concentration inequalities. These derivations require novel arguments due to nonlinearity of the objective functional. We demonstrate that our new results reduce to the known results for IPM-GANs in the appropriate limit while also significantly extending the domain of applicability of this theory.
comment: 21 pages
☆ USDC: A Dataset of $\underline{U}$ser $\underline{S}$tance and $\underline{D}$ogmatism in Long $\underline{C}$onversations
Identifying user's opinions and stances in long conversation threads on various topics can be extremely critical for enhanced personalization, market research, political campaigns, customer service, conflict resolution, targeted advertising, and content moderation. Hence, training language models to automate this task is critical. However, to train such models, gathering manual annotations has multiple challenges: 1) It is time-consuming and costly; 2) Conversation threads could be very long, increasing chances of noisy annotations; and 3) Interpreting instances where a user changes their opinion within a conversation is difficult because often such transitions are subtle and not expressed explicitly. Inspired by the recent success of large language models (LLMs) for complex natural language processing (NLP) tasks, we leverage Mistral Large and GPT-4 to automate the human annotation process on the following two tasks while also providing reasoning: i) User Stance classification, which involves labeling a user's stance of a post in a conversation on a five-point scale; ii) User Dogmatism classification, which deals with labeling a user's overall opinion in the conversation on a four-point scale. The majority voting on zero-shot, one-shot, and few-shot annotations from these two LLMs on 764 multi-user Reddit conversations helps us curate the USDC dataset. USDC is then used to finetune and instruction-tune multiple deployable small language models for the 5-class stance and 4-class dogmatism classification tasks. We make the code and dataset publicly available [https://anonymous.4open.science/r/USDC-0F7F].
comment: 32 pages, 18 figures
☆ Understanding and Mitigating Tokenization Bias in Language Models
State-of-the-art language models are autoregressive and operate on subword units known as tokens. Specifically, one must encode the conditioning string into a list of tokens before passing to the language models for next-token prediction. We show that, for encoding schemes such as maximum prefix matching, tokenization induces a sampling bias that cannot be mitigated with more training or data. To counter this universal problem, we propose a novel algorithm to obtain unbiased estimates from a model that was trained on tokenized data. Our method does not require finetuning the model, and its complexity, defined as the number of model runs, scales linearly with the sequence length. As a consequence, we show that one can simulate token-free behavior from a tokenized language model. We empirically verify the correctness of our method through a Markov-chain setup, where it accurately recovers the transition probabilities, as opposed to the conventional method of directly prompting tokens into the language model.
☆ General Binding Affinity Guidance for Diffusion Models in Structure-Based Drug Design
Structure-Based Drug Design (SBDD) focuses on generating valid ligands that strongly and specifically bind to a designated protein pocket. Several methods use machine learning for SBDD to generate these ligands in 3D space, conditioned on the structure of a desired protein pocket. Recently, diffusion models have shown success here by modeling the underlying distributions of atomic positions and types. While these methods are effective in considering the structural details of the protein pocket, they often fail to explicitly consider the binding affinity. Binding affinity characterizes how tightly the ligand binds to the protein pocket, and is measured by the change in free energy associated with the binding process. It is one of the most crucial metrics for benchmarking the effectiveness of the interaction between a ligand and protein pocket. To address this, we propose BADGER: Binding Affinity Diffusion Guidance with Enhanced Refinement. BADGER is a general guidance method to steer the diffusion sampling process towards improved protein-ligand binding, allowing us to adjust the distribution of the binding affinity between ligands and proteins. Our method is enabled by using a neural network (NN) to model the energy function, which is commonly approximated by AutoDock Vina (ADV). ADV's energy function is non-differentiable, and estimates the affinity based on the interactions between a ligand and target protein receptor. By using a NN as a differentiable energy function proxy, we utilize the gradient of our learned energy function as a guidance method on top of any trained diffusion model. We show that our method improves the binding affinity of generated ligands to their protein receptors by up to 60\%, significantly surpassing previous machine learning methods. We also show that our guidance method is flexible and can be easily applied to other diffusion-based SBDD frameworks.
☆ PISTOL: Dataset Compilation Pipeline for Structural Unlearning of LLMs
Recently, machine unlearning, which seeks to erase specific data stored in the pre-trained or fine-tuned models, has emerged as a crucial protective measure for LLMs. However, unlearning approaches for LLMs that have been considered thus far have focused on the removal of independent data points and have not taken into account that the stored facts are logically connected to one another and form an implicit knowledge graph. To facilitate the development of structural unlearning methods, which are essential for the practical application of unlearning, we propose PISTOL, a pipeline for compiling multi-scenario datasets for benchmarking structural LLM unlearning. Additionally, leveraging sample datasets synthesized using PISTOL, we conducted benchmarks with four distinct unlearning methods on both Llama2-7B and Mistral-7B models. This analysis helps to illustrate the prevailing challenges in effectively and robustly removing highly inter-connected data, batched data, or data skewed towards a specific domain. It also highlights the choice of pre-trained model can impact unlearning performance. This work not only advances our understandings on the limitation of current LLMs unlearning methods and proposes future research directions, but also provides a replicable framework for ongoing exploration and validation in the field.
☆ Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation
Human feedback plays a critical role in learning and refining reward models for text-to-image generation, but the optimal form the feedback should take for learning an accurate reward function has not been conclusively established. This paper investigates the effectiveness of fine-grained feedback which captures nuanced distinctions in image quality and prompt-alignment, compared to traditional coarse-grained feedback (for example, thumbs up/down or ranking between a set of options). While fine-grained feedback holds promise, particularly for systems catering to diverse societal preferences, we show that demonstrating its superiority to coarse-grained feedback is not automatic. Through experiments on real and synthetic preference data, we surface the complexities of building effective models due to the interplay of model choice, feedback type, and the alignment between human judgment and computational interpretation. We identify key challenges in eliciting and utilizing fine-grained feedback, prompting a reassessment of its assumed benefits and practicality. Our findings -- e.g., that fine-grained feedback can lead to worse models for a fixed budget, in some settings; however, in controlled settings with known attributes, fine grained rewards can indeed be more helpful -- call for careful consideration of feedback attributes and potentially beckon novel modeling approaches to appropriately unlock the potential value of fine-grained feedback in-the-wild.
☆ Improved Regret Bounds for Bandits with Expert Advice
In this research note, we revisit the bandits with expert advice problem. Under a restricted feedback model, we prove a lower bound of order $\sqrt{K T \ln(N/K)}$ for the worst-case regret, where $K$ is the number of actions, $N>K$ the number of experts, and $T$ the time horizon. This matches a previously known upper bound of the same order and improves upon the best available lower bound of $\sqrt{K T (\ln N) / (\ln K)}$. For the standard feedback model, we prove a new instance-based upper bound that depends on the agreement between the experts and provides a logarithmic improvement compared to prior results.
☆ Adam-mini: Use Fewer Learning Rates To Gain More
We propose Adam-mini, an optimizer that achieves on-par or better performance than AdamW with 45% to 50% less memory footprint. Adam-mini reduces memory by cutting down the number of learning rates in Adam: Instead of assigning an individual learning rate for each parameter using $1/\sqrt{v}$, Adam-mini uses the average of $v$ within a pre-defined parameter block as the learning rate for that block. Such a design is inspired by two empirical findings. First, the Hessian of Transformers exhibits a near-block diagonal structure with different sizes of dense sub-blocks. Second, for each of these dense sub-blocks, there exists a single high-quality learning rate that can outperform Adam, provided that sufficient resources are available to search it out. Adam-mini provides one cost-effective way to find these good learning rates and manage to cut down $\geq 90% v$ in Adam. Empirically, we verify that Adam-mini performs on par or better than AdamW on various language models sized from 125M to 7B for pre-training, supervised fine-tuning, and RLHF. The reduced memory footprint of Adam-mini also alleviates communication overheads among GPUs and CPUs, thereby increasing throughput. For instance, Adam-mini achieves 49.6% higher throughput than AdamW when pre-training Llama2-7B on 2x A800-80GB GPUs, which saves 33% wall-clock time for pre-training.
☆ Enabling more efficient and cost-effective AI/ML systems with Collective Mind, virtualized MLOps, MLPerf, Collective Knowledge Playground and reproducible optimization tournaments
In this white paper, I present my community effort to automatically co-design cheaper, faster and more energy-efficient software and hardware for AI, ML and other popular workloads with the help of the Collective Mind framework (CM), virtualized MLOps, MLPerf benchmarks and reproducible optimization tournaments. I developed CM to modularize, automate and virtualize the tedious process of building, running, profiling and optimizing complex applications across rapidly evolving open-source and proprietary AI/ML models, datasets, software and hardware. I achieved that with the help of portable, reusable and technology-agnostic automation recipes (ResearchOps) for MLOps and DevOps (CM4MLOps) discovered in close collaboration with academia and industry when reproducing more than 150 research papers and organizing the 1st mass-scale community benchmarking of ML and AI systems using CM and MLPerf. I donated CM and CM4MLOps to MLCommons to help connect academia and industry to learn how to build and run AI and other emerging workloads in the most efficient and cost-effective way using a common and technology-agnostic automation, virtualization and reproducibility framework while unifying knowledge exchange, protecting everyone's intellectual property, enabling portable skills, and accelerating transfer of the state-of-the-art research to production. My long-term vision is to make AI accessible to everyone by making it a commodity automatically produced from the most suitable open-source and proprietary components from different vendors based on user demand, requirements and constraints such as cost, latency, throughput, accuracy, energy, size and other important characteristics.
☆ M2Lingual: Enhancing Multilingual, Multi-Turn Instruction Alignment in Large Language Models
Instruction finetuning (IFT) is critical for aligning Large Language Models (LLMs) to follow instructions. Numerous effective IFT datasets have been proposed in the recent past, but most focus on high resource languages such as English. In this work, we propose a fully synthetic, novel taxonomy (Evol) guided Multilingual, Multi-turn instruction finetuning dataset, called M2Lingual, to better align LLMs on a diverse set of languages and tasks. M2Lingual contains a total of 182K IFT pairs that are built upon diverse seeds, covering 70 languages, 17 NLP tasks and general instruction-response pairs. LLMs finetuned with M2Lingual substantially outperform the majority of existing multilingual IFT datasets. Importantly, LLMs trained with M2Lingual consistently achieve competitive results across a wide variety of evaluation benchmarks compared to existing multilingual IFT datasets. Specifically, LLMs finetuned with M2Lingual achieve strong performance on our translated multilingual, multi-turn evaluation benchmark as well as a wide variety of multilingual tasks. Thus we contribute, and the 2 step Evol taxonomy used for its creation. M2Lingual repository - https://huggingface.co/datasets/ServiceNow-AI/M2Lingual
comment: 39 pages
☆ Confidence Aware Inverse Constrained Reinforcement Learning ICML 2024
In coming up with solutions to real-world problems, humans implicitly adhere to constraints that are too numerous and complex to be specified completely. However, reinforcement learning (RL) agents need these constraints to learn the correct optimal policy in these settings. The field of Inverse Constraint Reinforcement Learning (ICRL) deals with this problem and provides algorithms that aim to estimate the constraints from expert demonstrations collected offline. Practitioners prefer to know a measure of confidence in the estimated constraints, before deciding to use these constraints, which allows them to only use the constraints that satisfy a desired level of confidence. However, prior works do not allow users to provide the desired level of confidence for the inferred constraints. This work provides a principled ICRL method that can take a confidence level with a set of expert demonstrations and outputs a constraint that is at least as constraining as the true underlying constraint with the desired level of confidence. Further, unlike previous methods, this method allows a user to know if the number of expert trajectories is insufficient to learn a constraint with a desired level of confidence, and therefore collect more expert trajectories as required to simultaneously learn constraints with the desired level of confidence and a policy that achieves the desired level of performance.
comment: Paper to appear in ICML 2024
☆ WARP: On the Benefits of Weight Averaged Rewarded Policies
Reinforcement learning from human feedback (RLHF) aligns large language models (LLMs) by encouraging their generations to have high rewards, using a reward model trained on human preferences. To prevent the forgetting of pre-trained knowledge, RLHF usually incorporates a KL regularization; this forces the policy to remain close to its supervised fine-tuned initialization, though it hinders the reward optimization. To tackle the trade-off between KL and reward, in this paper we introduce a novel alignment strategy named Weight Averaged Rewarded Policies (WARP). WARP merges policies in the weight space at three distinct stages. First, it uses the exponential moving average of the policy as a dynamic anchor in the KL regularization. Second, it applies spherical interpolation to merge independently fine-tuned policies into a new enhanced one. Third, it linearly interpolates between this merged model and the initialization, to recover features from pre-training. This procedure is then applied iteratively, with each iteration's final model used as an advanced initialization for the next, progressively refining the KL-reward Pareto front, achieving superior rewards at fixed KL. Experiments with GEMMA policies validate that WARP improves their quality and alignment, outperforming other open-source LLMs.
comment: 11 main pages (34 pages with Appendix)
☆ Conformal time series decomposition with component-wise exchangeability
Conformal prediction offers a practical framework for distribution-free uncertainty quantification, providing finite-sample coverage guarantees under relatively mild assumptions on data exchangeability. However, these assumptions cease to hold for time series due to their temporally correlated nature. In this work, we present a novel use of conformal prediction for time series forecasting that incorporates time series decomposition. This approach allows us to model different temporal components individually. By applying specific conformal algorithms to each component and then merging the obtained prediction intervals, we customize our methods to account for the different exchangeability regimes underlying each component. Our decomposition-based approach is thoroughly discussed and empirically evaluated on synthetic and real-world data. We find that the method provides promising results on well-structured time series, but can be limited by factors such as the decomposition step for more complex data.
comment: Accepted at COPA 2024; 34 pages, 14 figures, 8 tables (incl. appendix)
☆ Addressing Polarization and Unfairness in Performative Prediction
When machine learning (ML) models are used in applications that involve humans (e.g., online recommendation, school admission, hiring, lending), the model itself may trigger changes in the distribution of targeted data it aims to predict. Performative prediction (PP) is a framework that explicitly considers such model-dependent distribution shifts when learning ML models. While significant efforts have been devoted to finding performative stable (PS) solutions in PP for system robustness, their societal implications are less explored and it is unclear whether PS solutions are aligned with social norms such as fairness. In this paper, we set out to examine the fairness property of PS solutions in performative prediction. We first show that PS solutions can incur severe polarization effects and group-wise loss disparity. Although existing fairness mechanisms commonly used in literature can help mitigate unfairness, they may fail and disrupt the stability under model-dependent distribution shifts. We thus propose novel fairness intervention mechanisms that can simultaneously achieve both stability and fairness in PP settings. Both theoretical analysis and experiments are provided to validate the proposed method.
☆ The MRI Scanner as a Diagnostic: Image-less Active Sampling MICCAI 2024
Despite the high diagnostic accuracy of Magnetic Resonance Imaging (MRI), using MRI as a Point-of-Care (POC) disease identification tool poses significant accessibility challenges due to the use of high magnetic field strength and lengthy acquisition times. We ask a simple question: Can we dynamically optimise acquired samples, at the patient level, according to an (automated) downstream decision task, while discounting image reconstruction? We propose an ML-based framework that learns an active sampling strategy, via reinforcement learning, at a patient-level to directly infer disease from undersampled k-space. We validate our approach by inferring Meniscus Tear in undersampled knee MRI data, where we achieve diagnostic performance comparable with ML-based diagnosis, using fully sampled k-space data. We analyse task-specific sampling policies, showcasing the adaptability of our active sampling approach. The introduced frugal sampling strategies have the potential to reduce high field strength requirements that in turn strengthen the viability of MRI-based POC disease identification and associated preliminary screening tools.
comment: Accepted in MICCAI 2024
☆ Inferring stochastic low-rank recurrent neural networks from neural data
A central aim in computational neuroscience is to relate the activity of large populations of neurons to an underlying dynamical system. Models of these neural dynamics should ideally be both interpretable and fit the observed data well. Low-rank recurrent neural networks (RNNs) exhibit such interpretability by having tractable dynamics. However, it is unclear how to best fit low-rank RNNs to data consisting of noisy observations of an underlying stochastic system. Here, we propose to fit stochastic low-rank RNNs with variational sequential Monte Carlo methods. We validate our method on several datasets consisting of both continuous and spiking neural data, where we obtain lower dimensional latent dynamics than current state of the art methods. Additionally, for low-rank models with piecewise linear nonlinearities, we show how to efficiently identify all fixed points in polynomial rather than exponential cost in the number of units, making analysis of the inferred dynamics tractable for large RNNs. Our method both elucidates the dynamical systems underlying experimental recordings and provides a generative model whose trajectories match observed trial-to-trial variability.
☆ OCALM: Object-Centric Assessment with Language Models
Properly defining a reward signal to efficiently train a reinforcement learning (RL) agent is a challenging task. Designing balanced objective functions from which a desired behavior can emerge requires expert knowledge, especially for complex environments. Learning rewards from human feedback or using large language models (LLMs) to directly provide rewards are promising alternatives, allowing non-experts to specify goals for the agent. However, black-box reward models make it difficult to debug the reward. In this work, we propose Object-Centric Assessment with Language Models (OCALM) to derive inherently interpretable reward functions for RL agents from natural language task descriptions. OCALM uses the extensive world-knowledge of LLMs while leveraging the object-centric nature common to many environments to derive reward functions focused on relational concepts, providing RL agents with the ability to derive policies from task descriptions.
comment: Accepted at the RLBRew Workshop at RLC 2024
☆ Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers
Accommodating long sequences efficiently in autoregressive Transformers, especially within an extended context window, poses significant challenges due to the quadratic computational complexity and substantial KV memory requirements inherent in self-attention mechanisms. In this work, we introduce SPARSEK Attention, a novel sparse attention mechanism designed to overcome these computational and memory obstacles while maintaining performance. Our approach integrates a scoring network and a differentiable top-k mask operator, SPARSEK, to select a constant number of KV pairs for each query, thereby enabling gradient-based optimization. As a result, SPARSEK Attention offers linear time complexity and constant memory footprint during generation. Experimental results reveal that SPARSEK Attention outperforms previous sparse attention methods and provides significant speed improvements during both training and inference, particularly in language modeling and downstream tasks. Furthermore, our method can be seamlessly integrated into pre-trained Large Language Models (LLMs) with minimal fine-tuning, offering a practical solution for effectively managing long-range dependencies in diverse applications.
comment: preprint
☆ The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources
Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications. To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet: a growing collection of 250+ tools and resources spanning text, vision, and speech modalities. We draw on a large body of prior work to survey resources (e.g. software, documentation, frameworks, guides, and practical tools) that support informed data selection, processing, and understanding, precise and limitation-aware artifact documentation, efficient model training, advance awareness of the environmental impact from training, careful model evaluation of capabilities, risks, and claims, as well as responsible model release, licensing and deployment practices. We hope this curated collection of resources helps guide more responsible development. The process of curating this list, enabled us to review the AI development ecosystem, revealing what tools are critically missing, misused, or over-used in existing practices. We find that (i) tools for data sourcing, model evaluation, and monitoring are critically under-serving ethical and real-world needs, (ii) evaluations for model safety, capabilities, and environmental impact all lack reproducibility and transparency, (iii) text and particularly English-centric analyses continue to dominate over multilingual and multi-modal analyses, and (iv) evaluation of systems, rather than just models, is needed so that capabilities and impact are assessed in context.
☆ Bandits with Preference Feedback: A Stackelberg Game Perspective
Bandits with preference feedback present a powerful tool for optimizing unknown target functions when only pairwise comparisons are allowed instead of direct value queries. This model allows for incorporating human feedback into online inference and optimization and has been employed in systems for fine-tuning large language models. The problem is well understood in simplified settings with linear target functions or over finite small domains that limit practical interest. Taking the next step, we consider infinite domains and nonlinear (kernelized) rewards. In this setting, selecting a pair of actions is quite challenging and requires balancing exploration and exploitation at two levels: within the pair, and along the iterations of the algorithm. We propose MAXMINLCB, which emulates this trade-off as a zero-sum Stackelberg game, and chooses action pairs that are informative and yield favorable rewards. MAXMINLCB consistently outperforms existing algorithms and satisfies an anytime-valid rate-optimal regret guarantee. This is due to our novel preference-based confidence sequences for kernelized logistic estimators.
comment: 30 pages, 8 figures
☆ Learning the boundary-to-domain mapping using Lifting Product Fourier Neural Operators for partial differential equations ICML 2024
Neural operators such as the Fourier Neural Operator (FNO) have been shown to provide resolution-independent deep learning models that can learn mappings between function spaces. For example, an initial condition can be mapped to the solution of a partial differential equation (PDE) at a future time-step using a neural operator. Despite the popularity of neural operators, their use to predict solution functions over a domain given only data over the boundary (such as a spatially varying Dirichlet boundary condition) remains unexplored. In this paper, we refer to such problems as boundary-to-domain problems; they have a wide range of applications in areas such as fluid mechanics, solid mechanics, heat transfer etc. We present a novel FNO-based architecture, named Lifting Product FNO (or LP-FNO) which can map arbitrary boundary functions defined on the lower-dimensional boundary to a solution in the entire domain. Specifically, two FNOs defined on the lower-dimensional boundary are lifted into the higher dimensional domain using our proposed lifting product layer. We demonstrate the efficacy and resolution independence of the proposed LP-FNO for the 2D Poisson equation.
comment: Accepted by ICML 2024 AI for Science Workshop
☆ Inducing Group Fairness in LLM-Based Decisions
Prompting Large Language Models (LLMs) has created new and interesting means for classifying textual data. While evaluating and remediating group fairness is a well-studied problem in classifier fairness literature, some classical approaches (e.g., regularization) do not carry over, and some new opportunities arise (e.g., prompt-based remediation). We measure fairness of LLM-based classifiers on a toxicity classification task, and empirically show that prompt-based classifiers may lead to unfair decisions. We introduce several remediation techniques and benchmark their fairness and performance trade-offs. We hope our work encourages more research on group fairness in LLM-based classifiers.
☆ GC-Bench: A Benchmark Framework for Graph Condensation with New Insights
Graph condensation (GC) is an emerging technique designed to learn a significantly smaller graph that retains the essential information of the original graph. This condensed graph has shown promise in accelerating graph neural networks while preserving performance comparable to those achieved with the original, larger graphs. Additionally, this technique facilitates downstream applications such as neural architecture search and enhances our understanding of redundancy in large graphs. Despite the rapid development of GC methods, a systematic evaluation framework remains absent, which is necessary to clarify the critical designs for particular evaluative aspects. Furthermore, several meaningful questions have not been investigated, such as whether GC inherently preserves certain graph properties and offers robustness even without targeted design efforts. In this paper, we introduce GC-Bench, a comprehensive framework to evaluate recent GC methods across multiple dimensions and to generate new insights. Our experimental findings provide a deeper insights into the GC process and the characteristics of condensed graphs, guiding future efforts in enhancing performance and exploring new applications. Our code is available at \url{https://github.com/Emory-Melody/GraphSlim/tree/main/benchmark}.
comment: 9 pages
☆ AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models
Although Large Language Models (LLMs) are becoming increasingly powerful, they still exhibit significant but subtle weaknesses, such as mistakes in instruction-following or coding tasks. As these unexpected errors could lead to severe consequences in practical deployments, it is crucial to investigate the limitations within LLMs systematically. Traditional benchmarking approaches cannot thoroughly pinpoint specific model deficiencies, while manual inspections are costly and not scalable. In this paper, we introduce a unified framework, AutoDetect, to automatically expose weaknesses in LLMs across various tasks. Inspired by the educational assessment process that measures students' learning outcomes, AutoDetect consists of three LLM-powered agents: Examiner, Questioner, and Assessor. The collaboration among these three agents is designed to realize comprehensive and in-depth weakness identification. Our framework demonstrates significant success in uncovering flaws, with an identification success rate exceeding 30% in prominent models such as ChatGPT and Claude. More importantly, these identified weaknesses can guide specific model improvements, proving more effective than untargeted data augmentation methods like Self-Instruct. Our approach has led to substantial enhancements in popular LLMs, including the Llama series and Mistral-7b, boosting their performance by over 10% across several benchmarks. Code and data are publicly available at https://github.com/thu-coai/AutoDetect.
☆ CausalFormer: An Interpretable Transformer for Temporal Causal Discovery
Temporal causal discovery is a crucial task aimed at uncovering the causal relations within time series data. The latest temporal causal discovery methods usually train deep learning models on prediction tasks to uncover the causality between time series. They capture causal relations by analyzing the parameters of some components of the trained models, e.g., attention weights and convolution weights. However, this is an incomplete mapping process from the model parameters to the causality and fails to investigate the other components, e.g., fully connected layers and activation functions, that are also significant for causal discovery. To facilitate the utilization of the whole deep learning models in temporal causal discovery, we proposed an interpretable transformer-based causal discovery model termed CausalFormer, which consists of the causality-aware transformer and the decomposition-based causality detector. The causality-aware transformer learns the causal representation of time series data using a prediction task with the designed multi-kernel causal convolution which aggregates each input time series along the temporal dimension under the temporal priority constraint. Then, the decomposition-based causality detector interprets the global structure of the trained causality-aware transformer with the proposed regression relevance propagation to identify potential causal relations and finally construct the causal graph. Experiments on synthetic, simulated, and real datasets demonstrate the state-of-the-art performance of CausalFormer on discovering temporal causality. Our code is available at https://github.com/lingbai-kong/CausalFormer.
☆ Probabilistic Subgoal Representations for Hierarchical Reinforcement learning
In goal-conditioned hierarchical reinforcement learning (HRL), a high-level policy specifies a subgoal for the low-level policy to reach. Effective HRL hinges on a suitable subgoal represen tation function, abstracting state space into latent subgoal space and inducing varied low-level behaviors. Existing methods adopt a subgoal representation that provides a deterministic mapping from state space to latent subgoal space. Instead, this paper utilizes Gaussian Processes (GPs) for the first probabilistic subgoal representation. Our method employs a GP prior on the latent subgoal space to learn a posterior distribution over the subgoal representation functions while exploiting the long-range correlation in the state space through learnable kernels. This enables an adaptive memory that integrates long-range subgoal information from prior planning steps allowing to cope with stochastic uncertainties. Furthermore, we propose a novel learning objective to facilitate the simultaneous learning of probabilistic subgoal representations and policies within a unified framework. In experiments, our approach outperforms state-of-the-art baselines in standard benchmarks but also in environments with stochastic elements and under diverse reward conditions. Additionally, our model shows promising capabilities in transferring low-level policies across different tasks.
☆ Learning Interpretable Fair Representations
Numerous approaches have been recently proposed for learning fair representations that mitigate unfair outcomes in prediction tasks. A key motivation for these methods is that the representations can be used by third parties with unknown objectives. However, because current fair representations are generally not interpretable, the third party cannot use these fair representations for exploration, or to obtain any additional insights, besides the pre-contracted prediction tasks. Thus, to increase data utility beyond prediction tasks, we argue that the representations need to be fair, yet interpretable. We propose a general framework for learning interpretable fair representations by introducing an interpretable "prior knowledge" during the representation learning process. We implement this idea and conduct experiments with ColorMNIST and Dsprite datasets. The results indicate that in addition to being interpretable, our representations attain slightly higher accuracy and fairer outcomes in a downstream classification task compared to state-of-the-art fair representations.
☆ Coding schemes in neural networks learning classification tasks
Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised learning in neural networks can result in strong, task-dependent feature learning. However, the nature of the emergent representations, which we call the `coding scheme', is still unclear. To understand the emergent coding scheme, we investigate fully-connected, wide neural networks learning classification tasks using the Bayesian framework where learning shapes the posterior distribution of the network weights. Consistent with previous findings, our analysis of the feature learning regime (also known as `non-lazy', `rich', or `mean-field' regime) shows that the networks acquire strong, data-dependent features. Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity. In linear networks, an analog coding scheme of the task emerges. Despite the strong representations, the mean predictor is identical to the lazy case. In nonlinear networks, spontaneous symmetry breaking leads to either redundant or sparse coding schemes. Our findings highlight how network properties such as scaling of weights and neuronal nonlinearity can profoundly influence the emergent representations.
☆ Link Prediction with Untrained Message Passing Layers
Message passing neural networks (MPNNs) operate on graphs by exchanging information between neigbouring nodes. MPNNs have been successfully applied to various node-, edge-, and graph-level tasks in areas like molecular science, computer vision, natural language processing, and combinatorial optimization. However, most MPNNs require training on large amounts of labeled data, which can be costly and time-consuming. In this work, we explore the use of various untrained message passing layers in graph neural networks, i.e. variants of popular message passing architecture where we remove all trainable parameters that are used to transform node features in the message passing step. Focusing on link prediction, we find that untrained message passing layers can lead to competitive and even superior performance compared to fully trained MPNNs, especially in the presence of high-dimensional features. We provide a theoretical analysis of untrained message passing by relating the inner products of features implicitly produced by untrained message passing layers to path-based topological node similarity measures. As such, untrained message passing architectures can be viewed as a highly efficient and interpretable approach to link prediction.
☆ Repulsive Score Distillation for Diverse Sampling of Diffusion Models
Score distillation sampling has been pivotal for integrating diffusion models into generation of complex visuals. Despite impressive results it suffers from mode collapse and lack of diversity. To cope with this challenge, we leverage the gradient flow interpretation of score distillation to propose Repulsive Score Distillation (RSD). In particular, we propose a variational framework based on repulsion of an ensemble of particles that promotes diversity. Using a variational approximation that incorporates a coupling among particles, the repulsion appears as a simple regularization that allows interaction of particles based on their relative pairwise similarity, measured e.g., via radial basis kernels. We design RSD for both unconstrained and constrained sampling scenarios. For constrained sampling we focus on inverse problems in the latent space that leads to an augmented variational formulation, that strikes a good balance between compute, quality and diversity. Our extensive experiments for text-to-image generation, and inverse problems demonstrate that RSD achieves a superior trade-off between diversity and quality compared with state-of-the-art alternatives.
☆ A Comprehensive Review of Emerging Approaches in Machine Learning for De Novo PROTAC Design
Targeted protein degradation (TPD) is a rapidly growing field in modern drug discovery that aims to regulate the intracellular levels of proteins by harnessing the cell's innate degradation pathways to selectively target and degrade disease-related proteins. This strategy creates new opportunities for therapeutic intervention in cases where occupancy-based inhibitors have not been successful. Proteolysis-targeting chimeras (PROTACs) are at the heart of TPD strategies, which leverage the ubiquitin-proteasome system for the selective targeting and proteasomal degradation of pathogenic proteins. As the field evolves, it becomes increasingly apparent that the traditional methodologies for designing such complex molecules have limitations. This has led to the use of machine learning (ML) and generative modeling to improve and accelerate the development process. In this review, we explore the impact of ML on de novo PROTAC design $-$ an aspect of molecular design that has not been comprehensively reviewed despite its significance. We delve into the distinct characteristics of PROTAC linker design, underscoring the complexities required to create effective bifunctional molecules capable of TPD. We then examine how ML in the context of fragment-based drug design (FBDD), honed in the realm of small-molecule drug discovery, is paving the way for PROTAC linker design. Our review provides a critical evaluation of the limitations inherent in applying this method to the complex field of PROTAC development. Moreover, we review existing ML works applied to PROTAC design, highlighting pioneering efforts and, importantly, the limitations these studies face. By offering insights into the current state of PROTAC development and the integral role of ML in PROTAC design, we aim to provide valuable perspectives for researchers in their pursuit of better design strategies for this new modality.
☆ Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation
Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model - Segment any Text (SaT) - to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines - including strong LLMs - across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are available at https://huggingface.co/segment-any-text under the MIT license.
☆ Cubic regularized subspace Newton for non-convex optimization
This paper addresses the optimization problem of minimizing non-convex continuous functions, which is relevant in the context of high-dimensional machine learning applications characterized by over-parametrization. We analyze a randomized coordinate second-order method named SSCN which can be interpreted as applying cubic regularization in random subspaces. This approach effectively reduces the computational complexity associated with utilizing second-order information, rendering it applicable in higher-dimensional scenarios. Theoretically, we establish convergence guarantees for non-convex functions, with interpolating rates for arbitrary subspace sizes and allowing inexact curvature estimation. When increasing subspace size, our complexity matches $\mathcal{O}(\epsilon^{-3/2})$ of the cubic regularization (CR) rate. Additionally, we propose an adaptive sampling scheme ensuring exact convergence rate of $\mathcal{O}(\epsilon^{-3/2}, \epsilon^{-3})$ to a second-order stationary point, even without sampling all coordinates. Experimental results demonstrate substantial speed-ups achieved by SSCN compared to conventional first-order methods.
☆ Data-driven Modeling in Metrology -- A Short Introduction, Current Developments and Future Perspectives
Mathematical models are vital to the field of metrology, playing a key role in the derivation of measurement results and the calculation of uncertainties from measurement data, informed by an understanding of the measurement process. These models generally represent the correlation between the quantity being measured and all other pertinent quantities. Such relationships are used to construct measurement systems that can interpret measurement data to generate conclusions and predictions about the measurement system itself. Classic models are typically analytical, built on fundamental physical principles. However, the rise of digital technology, expansive sensor networks, and high-performance computing hardware have led to a growing shift towards data-driven methodologies. This trend is especially prominent when dealing with large, intricate networked sensor systems in situations where there is limited expert understanding of the frequently changing real-world contexts. Here, we demonstrate the variety of opportunities that data-driven modeling presents, and how they have been already implemented in various real-world applications.
comment: 31 pages, Preprint
☆ ShadowLLM: Predictor-based Contextual Sparsity for Large Language Models
The high power consumption and latency-sensitive deployments of large language models (LLMs) have motivated techniques like quantization and sparsity. Contextual sparsity, where the sparsity pattern is input-dependent, is crucial in LLMs because the permanent removal of attention heads or neurons from LLMs can significantly degrade accuracy. Prior work has attempted to model contextual sparsity using neural networks trained to predict activation magnitudes, which can be used to dynamically prune structures with low predicted activation magnitude. In this paper, we look beyond magnitude-based pruning criteria to assess attention head and neuron importance in LLMs. We developed a novel predictor called ShadowLLM, which can shadow the LLM behavior and enforce better sparsity patterns, resulting in over 15% improvement in end-to-end accuracy without increasing latency compared to previous methods. ShadowLLM achieves up to a 20\% speed-up over the state-of-the-art DejaVu framework. These enhancements are validated on models with up to 30 billion parameters. Our code is available at \href{https://github.com/abdelfattah-lab/shadow_llm/}{ShadowLLM}.
☆ No More Sliding-Windows: Dynamic Functional Connectivity Based On Random Convolutions Without Learning
In the field of dynamic functional connectivity, the sliding-window method is widely used and its stability is generally recognized. However, the sliding-window method's data processing within the window is overly simplistic, which to some extent limits its effectiveness. This study proposes a feature expansion method based on random convolution, which achieves better and more noise-resistant results than the sliding-window method without requiring training. Experiments on simulated data show that the dynamic functional connectivity matrix and time series obtained using the random convolution method have a higher degree of fit (95.59\%) with the standard answers within shorter time windows, compared to the sliding-window method (45.99\%). Gender difference studies on real data also reveal that the random convolution method uncovers more gender differences than the sliding-window method. Through theoretical analysis, we propose a more comprehensive convolutional functional connectivity computation model, with the sliding-window method being a special case of this model, thereby opening up vast potential for research methods in dynamic functional connectivity.
☆ Evaluating the Robustness of Deep-Learning Algorithm-Selection Models by Evolving Adversarial Instances PPSN 2024
Deep neural networks (DNN) are increasingly being used to perform algorithm-selection in combinatorial optimisation domains, particularly as they accommodate input representations which avoid designing and calculating features. Mounting evidence from domains that use images as input shows that deep convolutional networks are vulnerable to adversarial samples, in which a small perturbation of an instance can cause the DNN to misclassify. However, it remains unknown as to whether deep recurrent networks (DRN) which have recently been shown promise as algorithm-selectors in the bin-packing domain are equally vulnerable. We use an evolutionary algorithm (EA) to find perturbations of instances from two existing benchmarks for online bin packing that cause trained DRNs to misclassify: adversarial samples are successfully generated from up to 56% of the original instances depending on the dataset. Analysis of the new misclassified instances sheds light on the `fragility' of some training instances, i.e. instances where it is trivial to find a small perturbation that results in a misclassification and the factors that influence this. Finally, the method generates a large number of new instances misclassified with a wide variation in confidence, providing a rich new source of training data to create more robust models.
comment: To appear in the proceedings of the 18th International Conference on Parallel Problem Solving from Nature (PPSN 2024)
☆ When Invariant Representation Learning Meets Label Shift: Insufficiency and Theoretical Insights
As a crucial step toward real-world learning scenarios with changing environments, dataset shift theory and invariant representation learning algorithm have been extensively studied to relax the identical distribution assumption in classical learning setting. Among the different assumptions on the essential of shifting distributions, generalized label shift (GLS) is the latest developed one which shows great potential to deal with the complex factors within the shift. In this paper, we aim to explore the limitations of current dataset shift theory and algorithm, and further provide new insights by presenting a comprehensive understanding of GLS. From theoretical aspect, two informative generalization bounds are derived, and the GLS learner is proved to be sufficiently close to optimal target model from the Bayesian perspective. The main results show the insufficiency of invariant representation learning, and prove the sufficiency and necessity of GLS correction for generalization, which provide theoretical supports and innovations for exploring generalizable model under dataset shift. From methodological aspect, we provide a unified view of existing shift correction frameworks, and propose a kernel embedding-based correction algorithm (KECA) to minimize the generalization error and achieve successful knowledge transfer. Both theoretical results and extensive experiment evaluations demonstrate the sufficiency and necessity of GLS correction for addressing dataset shift and the superiority of proposed algorithm.
comment: Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
☆ Cherry on the Cake: Fairness is NOT an Optimization Problem
Fair cake-cutting is a mathematical subfield that studies the problem of fairly dividing a resource among a number of participants. The so-called ``cake,'' as an object, represents any resource that can be distributed among players. This concept is connected to supervised multi-label classification: any dataset can be thought of as a cake that needs to be distributed, where each label is a player that receives its share of the dataset. In particular, any efficient cake-cutting solution for the dataset is equivalent to an optimal decision function. Although we are not the first to demonstrate this connection, the important ramifications of this parallel seem to have been partially forgotten. We revisit these classical results and demonstrate how this connection can be prolifically used for fairness in machine learning problems. Understanding the set of achievable fair decisions is a fundamental step in finding optimal fair solutions and satisfying fairness requirements. By employing the tools of cake-cutting theory, we have been able to describe the behavior of optimal fair decisions, which, counterintuitively, often exhibit quite unfair properties. Specifically, in order to satisfy fairness constraints, it is sometimes preferable, in the name of optimality, to purposefully make mistakes and deny giving the positive label to deserving individuals in a community in favor of less worthy individuals within the same community. This practice is known in the literature as cherry-picking and has been described as ``blatantly unfair.''
☆ CLEAR: Can Language Models Really Understand Causal Graphs?
Causal reasoning is a cornerstone of how humans interpret the world. To model and reason about causality, causal graphs offer a concise yet effective solution. Given the impressive advancements in language models, a crucial question arises: can they really understand causal graphs? To this end, we pioneer an investigation into language models' understanding of causal graphs. Specifically, we develop a framework to define causal graph understanding, by assessing language models' behaviors through four practical criteria derived from diverse disciplines (e.g., philosophy and psychology). We then develop CLEAR, a novel benchmark that defines three complexity levels and encompasses 20 causal graph-based tasks across these levels. Finally, based on our framework and benchmark, we conduct extensive experiments on six leading language models and summarize five empirical findings. Our results indicate that while language models demonstrate a preliminary understanding of causal graphs, significant potential for improvement remains. Our project website is at https://github.com/OpenCausaLab/CLEAR.
☆ Measuring the Recyclability of Electronic Components to Assist Automatic Disassembly and Sorting Waste Printed Circuit Boards
The waste of electrical and electronic equipment has been increased due to the fast evolution of technology products and competition of many IT sectors. Every year millions of tons of electronic waste are thrown into the environment which causes high consequences for human health. Therefore, it is crucial to control this waste flow using technology, especially using Artificial Intelligence but also reclamation of critical raw materials for new production processes. In this paper, we focused on the measurement of recyclability of waste electronic components (WECs) from waste printed circuit boards (WPCBs) using mathematical innovation model. This innovative approach evaluates both the recyclability and recycling difficulties of WECs, integrating an AI model for improved disassembly and sorting. Assessing the recyclability of individual electronic components present on WPCBs provides insight into the recovery potential of valuable materials and indicates the level of complexity involved in recycling in terms of economic worth and production utility. This novel measurement approach helps AI models in accurately determining the number of classes to be identified and sorted during the automated disassembly of discarded PCBs. It also facilitates the model in iterative training and validation of individual electronic components.
comment: 15 pages, 6 figures
☆ Forecasting with Deep Learning: Beyond Average of Average of Average Performance
Accurate evaluation of forecasting models is essential for ensuring reliable predictions. Current practices for evaluating and comparing forecasting models focus on summarising performance into a single score, using metrics such as SMAPE. We hypothesize that averaging performance over all samples dilutes relevant information about the relative performance of models. Particularly, conditions in which this relative performance is different than the overall accuracy. We address this limitation by proposing a novel framework for evaluating univariate time series forecasting models from multiple perspectives, such as one-step ahead forecasting versus multi-step ahead forecasting. We show the advantages of this framework by comparing a state-of-the-art deep learning approach with classical forecasting techniques. While classical methods (e.g. ARIMA) are long-standing approaches to forecasting, deep neural networks (e.g. NHITS) have recently shown state-of-the-art forecasting performance in benchmark datasets. We conducted extensive experiments that show NHITS generally performs best, but its superiority varies with forecasting conditions. For instance, concerning the forecasting horizon, NHITS only outperforms classical approaches for multi-step ahead forecasting. Another relevant insight is that, when dealing with anomalies, NHITS is outperformed by methods such as Theta. These findings highlight the importance of aspect-based model evaluation.
☆ Personalized federated learning based on feature fusion
Federated learning enables distributed clients to collaborate on training while storing their data locally to protect client privacy. However, due to the heterogeneity of data, models, and devices, the final global model may need to perform better for tasks on each client. Communication bottlenecks, data heterogeneity, and model heterogeneity have been common challenges in federated learning. In this work, we considered a label distribution skew problem, a type of data heterogeneity easily overlooked. In the context of classification, we propose a personalized federated learning approach called pFedPM. In our process, we replace traditional gradient uploading with feature uploading, which helps reduce communication costs and allows for heterogeneous client models. These feature representations play a role in preserving privacy to some extent. We use a hyperparameter $a$ to mix local and global features, which enables us to control the degree of personalization. We also introduced a relation network as an additional decision layer, which provides a non-linear learnable classifier to predict labels. Experimental results show that, with an appropriate setting of $a$, our scheme outperforms several recent FL methods on MNIST, FEMNIST, and CRIFAR10 datasets and achieves fewer communications.
☆ Differentiable Distributionally Robust Optimization Layers
In recent years, there has been a growing research interest in decision-focused learning, which embeds optimization problems as a layer in learning pipelines and demonstrates a superior performance than the prediction-focused approach. However, for distributionally robust optimization (DRO), a popular paradigm for decision-making under uncertainty, it is still unknown how to embed it as a layer, i.e., how to differentiate decisions with respect to an ambiguity set. In this paper, we develop such differentiable DRO layers for generic mixed-integer DRO problems with parameterized second-order conic ambiguity sets and discuss its extension to Wasserstein ambiguity sets. To differentiate the mixed-integer decisions, we propose a novel dual-view methodology by handling continuous and discrete parts of decisions via different principles. Specifically, we construct a differentiable energy-based surrogate to implement the dual-view methodology and use importance sampling to estimate its gradient. We further prove that such a surrogate enjoys the asymptotic convergency under regularization. As an application of the proposed differentiable DRO layers, we develop a novel decision-focused learning pipeline for contextual distributionally robust decision-making tasks and compare it with the prediction-focused approach in experiments.
comment: In Forty-first International Conference on Machine Learning (2024)
☆ Noisy Neighbors: Efficient membership inference attacks against LLMs
The potential of transformer-based LLMs risks being hindered by privacy concerns due to their reliance on extensive datasets, possibly including sensitive information. Regulatory measures like GDPR and CCPA call for using robust auditing tools to address potential privacy issues, with Membership Inference Attacks (MIA) being the primary method for assessing LLMs' privacy risks. Differently from traditional MIA approaches, often requiring computationally intensive training of additional models, this paper introduces an efficient methodology that generates \textit{noisy neighbors} for a target sample by adding stochastic noise in the embedding space, requiring operating the target model in inference mode only. Our findings demonstrate that this approach closely matches the effectiveness of employing shadow models, showing its usability in practical privacy auditing scenarios.
☆ Efficient k-means with Individual Fairness via Exponential Tilting
In location-based resource allocation scenarios, the distances between each individual and the facility are desired to be approximately equal, thereby ensuring fairness. Individually fair clustering is often employed to achieve the principle of treating all points equally, which can be applied in these scenarios. This paper proposes a novel algorithm, tilted k-means (TKM), aiming to achieve individual fairness in clustering. We integrate the exponential tilting into the sum of squared errors (SSE) to formulate a novel objective function called tilted SSE. We demonstrate that the tilted SSE can generalize to SSE and employ the coordinate descent and first-order gradient method for optimization. We propose a novel fairness metric, the variance of the distances within each cluster, which can alleviate the Matthew Effect typically caused by existing fairness metrics. Our theoretical analysis demonstrates that the well-known k-means++ incurs a multiplicative error of O(k log k), and we establish the convergence of TKM under mild conditions. In terms of fairness, we prove that the variance generated by TKM decreases with a scaled hyperparameter. In terms of efficiency, we demonstrate the time complexity is linear with the dataset size. Our experiments demonstrate that TKM outperforms state-of-the-art methods in effectiveness, fairness, and efficiency.
☆ Inference of Sequential Patterns for Neural Message Passing in Temporal Graphs
The modelling of temporal patterns in dynamic graphs is an important current research issue in the development of time-aware GNNs. Whether or not a specific sequence of events in a temporal graph constitutes a temporal pattern not only depends on the frequency of its occurrence. We consider whether it deviates from what is expected in a temporal graph where timestamps are randomly shuffled. While accounting for such a random baseline is important to model temporal patterns, it has mostly been ignored by current temporal graph neural networks. To address this issue we propose HYPA-DBGNN, a novel two-step approach that combines (i) the inference of anomalous sequential patterns in time series data on graphs based on a statistically principled null model, with (ii) a neural message passing approach that utilizes a higher-order De Bruijn graph whose edges capture overrepresented sequential patterns. Our method leverages hypergeometric graph ensembles to identify anomalous edges within both first- and higher-order De Bruijn graphs, which encode the temporal ordering of events. The model introduces an inductive bias that enhances model interpretability. We evaluate our approach for static node classification using benchmark datasets and a synthetic dataset that showcases its ability to incorporate the observed inductive bias regarding over- and under-represented temporal edges. We demonstrate the framework's effectiveness in detecting similar patterns within empirical datasets, resulting in superior performance compared to baseline methods in node classification tasks. To the best of our knowledge, our work is the first to introduce statistically informed GNNs that leverage temporal and causal sequence anomalies. HYPA-DBGNN represents a path for bridging the gap between statistical graph inference and neural graph representation learning, with potential applications to static GNNs.
☆ Improving robustness to corruptions with multiplicative weight perturbations
Deep neural networks (DNNs) excel on clean images but struggle with corrupted ones. Incorporating specific corruptions into the data augmentation pipeline can improve robustness to those corruptions but may harm performance on clean images and other types of distortion. In this paper, we introduce an alternative approach that improves the robustness of DNNs to a wide range of corruptions without compromising accuracy on clean images. We first demonstrate that input perturbations can be mimicked by multiplicative perturbations in the weight space. Leveraging this, we propose Data Augmentation via Multiplicative Perturbation (DAMP), a training method that optimizes DNNs under random multiplicative weight perturbations. We also examine the recently proposed Adaptive Sharpness-Aware Minimization (ASAM) and show that it optimizes DNNs under adversarial multiplicative weight perturbations. Experiments on image classification datasets (CIFAR-10/100, TinyImageNet and ImageNet) and neural network architectures (ResNet50, ViT-S/16) show that DAMP enhances model generalization performance in the presence of corruptions across different settings. Notably, DAMP is able to train a ViT-S/16 on ImageNet from scratch, reaching the top-1 error of 23.7% which is comparable to ResNet50 without extensive data augmentations.
comment: Under review
☆ Token-based Decision Criteria Are Suboptimal in In-context Learning
In-Context Learning (ICL) typically utilizes classification criteria from probabilities of manually selected label tokens. However, we argue that such token-based classification criteria lead to suboptimal decision boundaries, despite delicate calibrations through translation and constrained rotation. To address this problem, we propose Hidden Calibration, which renounces token probabilities and uses the nearest centroid classifier on the LM's last hidden states. In detail, we use the nearest centroid classification on the hidden states, assigning the category of the nearest centroid previously observed from a few-shot calibration set to the test sample as the predicted label. Our experiments on 3 models and 10 classification datasets indicate that Hidden Calibration consistently outperforms current token-based calibrations by about 20%. Our further analysis demonstrates that Hidden Calibration finds better classification criteria with less inter-categories overlap, and LMs provide linearly separable intra-category clusters with the help of demonstrations, which supports Hidden Calibration and gives new insights into the conventional ICL.
comment: 21 pages, 14 figures, 8 tables
☆ Conditional Bayesian Quadrature
We propose a novel approach for estimating conditional or parametric expectations in the setting where obtaining samples or evaluating integrands is costly. Through the framework of probabilistic numerical methods (such as Bayesian quadrature), our novel approach allows to incorporates prior information about the integrands especially the prior smoothness knowledge about the integrands and the conditional expectation. As a result, our approach provides a way of quantifying uncertainty and leads to a fast convergence rate, which is confirmed both theoretically and empirically on challenging tasks in Bayesian sensitivity analysis, computational finance and decision making under uncertainty.
☆ SyROCCo: Enhancing Systematic Reviews using Machine Learning
The sheer number of research outputs published every year makes systematic reviewing increasingly time- and resource-intensive. This paper explores the use of machine learning techniques to help navigate the systematic review process. ML has previously been used to reliably 'screen' articles for review - that is, identify relevant articles based on reviewers' inclusion criteria. The application of ML techniques to subsequent stages of a review, however, such as data extraction and evidence mapping, is in its infancy. We therefore set out to develop a series of tools that would assist in the profiling and analysis of 1,952 publications on the theme of 'outcomes-based contracting'. Tools were developed for the following tasks: assign publications into 'policy area' categories; identify and extract key information for evidence mapping, such as organisations, laws, and geographical information; connect the evidence base to an existing dataset on the same topic; and identify subgroups of articles that may share thematic content. An interactive tool using these techniques and a public dataset with their outputs have been released. Our results demonstrate the utility of ML techniques to enhance evidence accessibility and analysis within the systematic review processes. These efforts show promise in potentially yielding substantial efficiencies for future systematic reviewing and for broadening their analytical scope. Our work suggests that there may be implications for the ease with which policymakers and practitioners can access evidence. While ML techniques seem poised to play a significant role in bridging the gap between research and policy by offering innovative ways of gathering, accessing, and analysing data from systematic reviews, we also highlight their current limitations and the need to exercise caution in their application, particularly given the potential for errors and biases.
comment: 28 pages, 5 figures. To appear in Data & Policy journal
☆ OAML: Outlier Aware Metric Learning for OOD Detection Enhancement
Out-of-distribution (OOD) detection methods have been developed to identify objects that a model has not seen during training. The Outlier Exposure (OE) methods use auxiliary datasets to train OOD detectors directly. However, the collection and learning of representative OOD samples may pose challenges. To tackle these issues, we propose the Outlier Aware Metric Learning (OAML) framework. The main idea of our method is to use the k-NN algorithm and Stable Diffusion model to generate outliers for training at the feature level without making any distributional assumptions. To increase feature discrepancies in the semantic space, we develop a mutual information-based contrastive learning approach for learning from OOD data effectively. Both theoretical and empirical results confirm the effectiveness of this contrastive learning technique. Furthermore, we incorporate knowledge distillation into our learning framework to prevent degradation of in-distribution classification accuracy. The combination of contrastive learning and knowledge distillation algorithms significantly enhances the performance of OOD detection. Experimental results across various datasets show that our method significantly outperforms previous OE methods.
☆ UNICAD: A Unified Approach for Attack Detection, Noise Reduction and Novel Class Identification
As the use of Deep Neural Networks (DNNs) becomes pervasive, their vulnerability to adversarial attacks and limitations in handling unseen classes poses significant challenges. The state-of-the-art offers discrete solutions aimed to tackle individual issues covering specific adversarial attack scenarios, classification or evolving learning. However, real-world systems need to be able to detect and recover from a wide range of adversarial attacks without sacrificing classification accuracy and to flexibly act in {\bf unseen} scenarios. In this paper, UNICAD, is proposed as a novel framework that integrates a variety of techniques to provide an adaptive solution. For the targeted image classification, UNICAD achieves accurate image classification, detects unseen classes, and recovers from adversarial attacks using Prototype and Similarity-based DNNs with denoising autoencoders. Our experiments performed on the CIFAR-10 dataset highlight UNICAD's effectiveness in adversarial mitigation and unseen class classification, outperforming traditional models.
☆ Robust prediction under missingness shifts
Prediction becomes more challenging with missing covariates. What method is chosen to handle missingness can greatly affect how models perform. In many real-world problems, the best prediction performance is achieved by models that can leverage the informative nature of a value being missing. Yet, the reasons why a covariate goes missing can change once a model is deployed in practice. If such a missingness shift occurs, the conditional probability of a value being missing differs in the target data. Prediction performance in the source data may no longer be a good selection criterion, and approaches that do not rely on informative missingness may be preferable. However, we show that the Bayes predictor remains unchanged by ignorable shifts for which the probability of missingness only depends on observed data. Any consistent estimator of the Bayes predictor may therefore result in robust prediction under those conditions, although we show empirically that different methods appear robust to different types of shifts. If the missingness shift is non-ignorable, the Bayes predictor may change due to the shift. While neither approach recovers the Bayes predictor in this case, we found empirically that disregarding missingness was most beneficial when it was highly informative.
☆ Improving Quaternion Neural Networks with Quaternionic Activation Functions
In this paper, we propose novel quaternion activation functions where we modify either the quaternion magnitude or the phase, as an alternative to the commonly used split activation functions. We define criteria that are relevant for quaternion activation functions, and subsequently we propose our novel activation functions based on this analysis. Instead of applying a known activation function like the ReLU or Tanh on the quaternion elements separately, these activation functions consider the quaternion properties and respect the quaternion space $\mathbb{H}$. In particular, all quaternion components are utilized to calculate all output components, carrying out the benefit of the Hamilton product in e.g. the quaternion convolution to the activation functions. The proposed activation functions can be incorporated in arbitrary quaternion valued neural networks trained with gradient descent techniques. We further discuss the derivatives of the proposed activation functions where we observe beneficial properties for the activation functions affecting the phase. Specifically, they prove to be sensitive on basically the whole input range, thus improved gradient flow can be expected. We provide an elaborate experimental evaluation of our proposed quaternion activation functions including comparison with the split ReLU and split Tanh on two image classification tasks using the CIFAR-10 and SVHN dataset. There, especially the quaternion activation functions affecting the phase consistently prove to provide better performance.
☆ The Hidden Pitfalls of the Cosine Similarity Loss
We show that the gradient of the cosine similarity between two points goes to zero in two under-explored settings: (1) if a point has large magnitude or (2) if the points are on opposite ends of the latent space. Counterintuitively, we prove that optimizing the cosine similarity between points forces them to grow in magnitude. Thus, (1) is unavoidable in practice. We then observe that these derivations are extremely general -- they hold across deep learning architectures and for many of the standard self-supervised learning (SSL) loss functions. This leads us to propose cut-initialization: a simple change to network initialization that helps all studied SSL methods converge faster.
☆ SLOctolyzer: Fully automatic analysis toolkit for segmentation and feature extracting in scanning laser ophthalmoscopy images
Purpose: To describe SLOctolyzer: an open-source analysis toolkit for en face retinal vessels appearing in infrared reflectance scanning laser ophthalmoscopy (SLO) images. Methods: SLOctolyzer includes two main modules: segmentation and measurement. The segmentation module use deep learning methods to delineate retinal anatomy, while the measurement module quantifies key retinal vascular features such as vessel complexity, density, tortuosity, and calibre. We evaluate the segmentation module using unseen data and measure its reproducibility. Results: SLOctolyzer's segmentation module performed well against unseen internal test data (Dice for all-vessels, 0.9097; arteries, 0.8376; veins, 0.8525; optic disc, 0.9430; fovea, 0.8837). External validation against severe retinal pathology showed decreased performance (Dice for arteries, 0.7180; veins, 0.7470; optic disc, 0.9032). SLOctolyzer had good reproducibility (mean difference for fractal dimension, -0.0007; vessel density, -0.0003; vessel calibre, -0.3154 $\mu$m; tortuosity density, 0.0013). SLOctolyzer can process a macula-centred SLO image in under 20 seconds and a disc-centred SLO image in under 30 seconds using a standard laptop CPU. Conclusions: To our knowledge, SLOctolyzer is the first open-source tool to convert raw SLO images into reproducible and clinically meaningful retinal vascular parameters. SLO images are captured simultaneous to optical coherence tomography (OCT), and we believe our software will be useful for extracting retinal vascular measurements from large OCT image sets and linking them to ocular or systemic diseases. It requires no specialist knowledge or proprietary software, and allows manual correction of segmentations and re-computing of vascular metrics. SLOctolyzer is freely available at https://github.com/jaburke166/SLOctolyzer.
comment: 10 pages, 5 figures, 6 tables + Supplementary (7 pages, 10 figures, 4 tables). Submitted for peer review at Translational Vision Science and Technology
☆ Automated Privacy-Preserving Techniques via Meta-Learning
Sharing private data for learning tasks is pivotal for transparent and secure machine learning applications. Many privacy-preserving techniques have been proposed for this task aiming to transform the data while ensuring the privacy of individuals. Some of these techniques have been incorporated into tools, whereas others are accessed through various online platforms. However, such tools require manual configuration, which can be complex and time-consuming. Moreover, they require substantial expertise, potentially restricting their use to those with advanced technical knowledge. In this paper, we propose AUTOPRIV, the first automated privacy-preservation method, that eliminates the need for any manual configuration. AUTOPRIV employs meta-learning to automate the de-identification process, facilitating the secure release of data for machine learning tasks. The main goal is to anticipate the predictive performance and privacy risk of a large set of privacy configurations. We provide a ranked list of the most promising solutions, which are likely to achieve an optimal approximation within a new domain. AUTOPRIV is highly effective as it reduces computational complexity and energy consumption considerably.
comment: 12 pages, 6 figures, 3 tables
☆ Theory on Mixture-of-Experts in Continual Learning
Continual learning (CL) has garnered significant attention because of its ability to adapt to new tasks that arrive over time. Catastrophic forgetting (of old tasks) has been identified as a major issue in CL, as the model adapts to new tasks. The Mixture-of-Experts (MoE) model has recently been shown to effectively mitigate catastrophic forgetting in CL, by employing a gating network to sparsify and distribute diverse tasks among multiple experts. However, there is a lack of theoretical analysis of MoE and its impact on the learning performance in CL. This paper provides the first theoretical results to characterize the impact of MoE in CL via the lens of overparameterized linear regression tasks. We establish the benefit of MoE over a single expert by proving that the MoE model can diversify its experts to specialize in different tasks, while its router learns to select the right expert for each task and balance the loads across all experts. Our study further suggests an intriguing fact that the MoE in CL needs to terminate the update of the gating network after sufficient training rounds to attain system convergence, which is not needed in the existing MoE studies that do not consider the continual task arrival. Furthermore, we provide explicit expressions for the expected forgetting and overall generalization error to characterize the benefit of MoE in the learning performance in CL. Interestingly, adding more experts requires additional rounds before convergence, which may not enhance the learning performance. Finally, we conduct experiments on both synthetic and real datasets to extend these insights from linear models to deep neural networks (DNNs), which also shed light on the practical algorithm design for MoE in CL.
☆ Fault Detection for agents on power grid topology optimization: A Comprehensive analysis
The topology optimization of transmission networks using Deep Reinforcement Learning (DRL) has increasingly come into focus. Various researchers have proposed different DRL agents, which are often benchmarked on the Grid2Op environment from the Learning to Run a Power Network (L2RPN) challenges. The environments have many advantages with their realistic chronics and underlying power flow backends. However, the interpretation of agent survival or failure is not always clear, as there are a variety of potential causes. In this work, we focus on the failures of the power grid to identify patterns and detect them a priori. We collect the failed chronics of three different agents on the WCCI 2022 L2RPN environment, totaling about 40k data points. By clustering, we are able to detect five distinct clusters, identifying different failure types. Further, we propose a multi-class prediction approach to detect failures beforehand and evaluate five different models. Here, the Light Gradient-Boosting Machine (LightGBM) shows the best performance, with an accuracy of 86%. It also correctly identifies in 91% of the time failure and survival observations. Finally, we provide a detailed feature importance analysis that identifies critical features and regions in the grid.
comment: 11 Pages plus references and appendix. The appendix consist of additional material of the paper and is not included in the initial submission
☆ Memory-Enhanced Neural Solvers for Efficient Adaptation in Combinatorial Optimization
Combinatorial Optimization is crucial to numerous real-world applications, yet still presents challenges due to its (NP-)hard nature. Amongst existing approaches, heuristics often offer the best trade-off between quality and scalability, making them suitable for industrial use. While Reinforcement Learning (RL) offers a flexible framework for designing heuristics, its adoption over handcrafted heuristics remains incomplete within industrial solvers. Existing learned methods still lack the ability to adapt to specific instances and fully leverage the available computational budget. The current best methods either rely on a collection of pre-trained policies, or on data-inefficient fine-tuning; hence failing to fully utilize newly available information within the constraints of the budget. In response, we present MEMENTO, an RL approach that leverages memory to improve the adaptation of neural solvers at inference time. MEMENTO enables updating the action distribution dynamically based on the outcome of previous decisions. We validate its effectiveness on benchmark problems, in particular Traveling Salesman and Capacitated Vehicle Routing, demonstrating it can successfully be combined with standard methods to boost their performance under a given budget, both in and out-of-distribution, improving their performance on all 12 evaluated tasks.
☆ Towards Lightweight Graph Neural Network Search with Curriculum Graph Sparsification KDD 2024
Graph Neural Architecture Search (GNAS) has achieved superior performance on various graph-structured tasks. However, existing GNAS studies overlook the applications of GNAS in resource-constraint scenarios. This paper proposes to design a joint graph data and architecture mechanism, which identifies important sub-architectures via the valuable graph data. To search for optimal lightweight Graph Neural Networks (GNNs), we propose a Lightweight Graph Neural Architecture Search with Graph SparsIfication and Network Pruning (GASSIP) method. In particular, GASSIP comprises an operation-pruned architecture search module to enable efficient lightweight GNN search. Meanwhile, we design a novel curriculum graph data sparsification module with an architecture-aware edge-removing difficulty measurement to help select optimal sub-architectures. With the aid of two differentiable masks, we iteratively optimize these two modules to efficiently search for the optimal lightweight architecture. Extensive experiments on five benchmarks demonstrate the effectiveness of GASSIP. Particularly, our method achieves on-par or even higher node classification performance with half or fewer model parameters of searched GNNs and a sparser graph.
comment: Accepted by KDD 2024. The two first authors made equal contributions
☆ Compact Model Parameter Extraction via Derivative-Free Optimization
In this paper, we address the problem of compact model parameter extraction to simultaneously extract tens of parameters via derivative-free optimization. Traditionally, parameter extraction is performed manually by dividing the complete set of parameters into smaller subsets, each targeting different operational regions of the device, a process that can take several days or even weeks. Our approach streamlines this process by employing derivative-free optimization to identify a good parameter set that best fits the compact model without performing an exhaustive number of simulations. We further enhance the optimization process to address critical issues in device modeling by carefully choosing a loss function that evaluates model performance consistently across varying magnitudes by focusing on relative errors (as opposed to absolute errors), prioritizing accuracy in key operational regions of the device above a certain threshold, and reducing sensitivity to outliers. Furthermore, we utilize the concept of train-test split to assess the model fit and avoid overfitting. This is done by fitting 80% of the data and testing the model efficacy with the remaining 20%. We demonstrate the effectiveness of our methodology by successfully modeling two semiconductor devices: a diamond Schottky diode and a GaN-on-SiC HEMT, with the latter involving the ASM-HEMT DC model, which requires simultaneously extracting 35 model parameters to fit the model to the measured data. These examples demonstrate the effectiveness of our approach and showcase the practical benefits of derivative-free optimization in device modeling.
☆ METRIK: Measurement-Efficient Randomized Controlled Trials using Transformers with Input Masking
Clinical randomized controlled trials (RCTs) collect hundreds of measurements spanning various metric types (e.g., laboratory tests, cognitive/motor assessments, etc.) across 100s-1000s of subjects to evaluate the effect of a treatment, but do so at the cost of significant trial expense. To reduce the number of measurements, trial protocols can be revised to remove metrics extraneous to the study's objective, but doing so requires additional human labor and limits the set of hypotheses that can be studied with the collected data. In contrast, a planned missing design (PMD) can reduce the amount of data collected without removing any metric by imputing the unsampled data. Standard PMDs randomly sample data to leverage statistical properties of imputation algorithms, but are ad hoc, hence suboptimal. Methods that learn PMDs produce more sample-efficient PMDs, but are not suitable for RCTs because they require ample prior data (150+ subjects) to model the data distribution. Therefore, we introduce a framework called Measurement EfficienT Randomized Controlled Trials using Transformers with Input MasKing (METRIK), which, for the first time, calculates a PMD specific to the RCT from a modest amount of prior data (e.g., 60 subjects). Specifically, METRIK models the PMD as a learnable input masking layer that is optimized with a state-of-the-art imputer based on the Transformer architecture. METRIK implements a novel sampling and selection algorithm to generate a PMD that satisfies the trial designer's objective, i.e., whether to maximize sampling efficiency or imputation performance for a given sampling budget. Evaluated across five real-world clinical RCT datasets, METRIK increases the sampling efficiency of and imputation performance under the generated PMD by leveraging correlations over time and across metrics, thereby removing the need to manually remove metrics from the RCT.
comment: 18 pages, 11 figures
☆ AnnotatedTables: A Large Tabular Dataset with Language Model Annotations
Tabular data is ubiquitous in real-world applications and abundant on the web, yet its annotation has traditionally required human labor, posing a significant scalability bottleneck for tabular machine learning. Our methodology can successfully annotate a large amount of tabular data and can be flexibly steered to generate various types of annotations based on specific research objectives, as we demonstrate with SQL annotation and input-target column annotation as examples. As a result, we release AnnotatedTables, a collection of 32,119 databases with LLM-generated annotations. The dataset includes 405,616 valid SQL programs, making it the largest SQL dataset with associated tabular data that supports query execution. To further demonstrate the value of our methodology and dataset, we perform two follow-up research studies. 1) We investigate whether LLMs can translate SQL programs to Rel programs, a database language previously unknown to LLMs, while obtaining the same execution results. Using our Incremental Prompt Engineering methods based on execution feedback, we show that LLMs can produce adequate translations with few-shot learning. 2) We evaluate the performance of TabPFN, a recent neural tabular classifier trained on Bayesian priors, on 2,720 tables with input-target columns identified and annotated by LLMs. On average, TabPFN performs on par with the baseline AutoML method, though the relative performance can vary significantly from one data table to another, making both models viable for practical applications depending on the situation. Our findings underscore the potential of LLMs in automating the annotation of large volumes of diverse tabular data.
☆ Lesion-Aware Cross-Phase Attention Network for Renal Tumor Subtype Classification on Multi-Phase CT Scans
Multi-phase computed tomography (CT) has been widely used for the preoperative diagnosis of kidney cancer due to its non-invasive nature and ability to characterize renal lesions. However, since enhancement patterns of renal lesions across CT phases are different even for the same lesion type, the visual assessment by radiologists suffers from inter-observer variability in clinical practice. Although deep learning-based approaches have been recently explored for differential diagnosis of kidney cancer, they do not explicitly model the relationships between CT phases in the network design, limiting the diagnostic performance. In this paper, we propose a novel lesion-aware cross-phase attention network (LACPANet) that can effectively capture temporal dependencies of renal lesions across CT phases to accurately classify the lesions into five major pathological subtypes from time-series multi-phase CT images. We introduce a 3D inter-phase lesion-aware attention mechanism to learn effective 3D lesion features that are used to estimate attention weights describing the inter-phase relations of the enhancement patterns. We also present a multi-scale attention scheme to capture and aggregate temporal patterns of lesion features at different spatial scales for further improvement. Extensive experiments on multi-phase CT scans of kidney cancer patients from the collected dataset demonstrate that our LACPANet outperforms state-of-the-art approaches in diagnostic accuracy.
comment: This article has been accepted for publication in Computers in Biology and Medicine
☆ Multimodal Graph Benchmark
Associating unstructured data with structured information is crucial for real-world tasks that require relevance search. However, existing graph learning benchmarks often overlook the rich semantic information associate with each node. To bridge such gap, we introduce the Multimodal Graph Benchmark (MM-GRAPH), the first comprehensive multi-modal graph benchmark that incorporates both textual and visual information. MM-GRAPH surpasses previous efforts, which have primarily focused on text-attributed graphs with various connectivity patterns. MM-GRAPH consists of five graph learning datasets of various scales that are appropriate for different learning tasks. Their multimodal node features, enabling a more comprehensive evaluation of graph learning algorithms in real-world scenarios. To facilitate research on multimodal graph learning, we further provide an extensive study on the performance of various graph neural networks in the presence of features from various modalities. MM-GRAPH aims to foster research on multimodal graph learning and drive the development of more advanced and robust graph learning algorithms. By providing a diverse set of datasets and benchmarks, MM-GRAPH enables researchers to evaluate and compare their models in realistic settings, ultimately leading to improved performance on real-world applications that rely on multimodal graph data.
comment: https://mm-graph-benchmark.github.io/
☆ Does Cross-Cultural Alignment Change the Commonsense Morality of Language Models? ACL 2024
Alignment of the language model with human preferences is a common approach to making a language model useful to end users. However, most alignment work is done in English, and human preference datasets are dominated by English, reflecting only the preferences of English-speaking annotators. Nevertheless, it is common practice to use the English preference data, either directly or by translating it into the target language, when aligning a multilingual language model. The question is whether such an alignment strategy marginalizes the preference of non-English speaking users. To this end, we investigate the effect of aligning Japanese language models with (mostly) English resources. In particular, we focus on evaluating whether the commonsense morality of the resulting fine-tuned models is aligned with Japanese culture using the JCommonsenseMorality (JCM) and ETHICS datasets. The experimental results show that the fine-tuned model outperforms the SFT model. However, it does not demonstrate the same level of improvement as a model fine-tuned using the JCM, suggesting that while some aspects of commonsense morality are transferable, others may not be.
comment: The 2nd Workshop on Cross-Cultural Considerations in NLP (C3NLP) at ACL 2024
☆ Anomaly Detection of Tabular Data Using LLMs
Large language models (LLMs) have shown their potential in long-context understanding and mathematical reasoning. In this paper, we study the problem of using LLMs to detect tabular anomalies and show that pre-trained LLMs are zero-shot batch-level anomaly detectors. That is, without extra distribution-specific model fitting, they can discover hidden outliers in a batch of data, demonstrating their ability to identify low-density data regions. For LLMs that are not well aligned with anomaly detection and frequently output factual errors, we apply simple yet effective data-generating processes to simulate synthetic batch-level anomaly detection datasets and propose an end-to-end fine-tuning strategy to bring out the potential of LLMs in detecting real anomalies. Experiments on a large anomaly detection benchmark (ODDS) showcase i) GPT-4 has on-par performance with the state-of-the-art transductive learning-based anomaly detection methods and ii) the efficacy of our synthetic dataset and fine-tuning strategy in aligning LLMs to this task.
comment: accepted at the Anomaly Detection with Foundation Models workshop
☆ Cascade Reward Sampling for Efficient Decoding-Time Alignment
Aligning large language models (LLMs) with human preferences is critical for their deployment. Recently, decoding-time alignment has emerged as an effective plug-and-play technique that requires no fine-tuning of model parameters. However, generating text that achieves both high reward and high likelihood remains a significant challenge. Existing methods often fail to generate high-reward text or incur substantial computational costs. In this paper, we propose Cascade Reward Sampling (CARDS) to address both issues, guaranteeing the generation of high-reward and high-likelihood text with significantly low costs. Based on our analysis of reward models (RMs) on incomplete text and our observation that high-reward prefixes induce high-reward complete text, we use rejection sampling to iteratively generate small semantic segments to form such prefixes. The segment length is dynamically determined by the predictive uncertainty of LLMs. This strategy guarantees desirable prefixes for subsequent generations and significantly reduces wasteful token re-generations and the number of reward model scoring. Our experiments demonstrate substantial gains in both generation efficiency and alignment ratings compared to the baselines, achieving five times faster text generation and 99\% win-ties in GPT-4/Claude-3 helpfulness evaluation.
☆ Landscaping Linear Mode Connectivity ICML 2024
The presence of linear paths in parameter space between two different network solutions in certain cases, i.e., linear mode connectivity (LMC), has garnered interest from both theoretical and practical fronts. There has been significant research that either practically designs algorithms catered for connecting networks by adjusting for the permutation symmetries as well as some others that more theoretically construct paths through which networks can be connected. Yet, the core reasons for the occurrence of LMC, when in fact it does occur, in the highly non-convex loss landscapes of neural networks are far from clear. In this work, we take a step towards understanding it by providing a model of how the loss landscape needs to behave topographically for LMC (or the lack thereof) to manifest. Concretely, we present a `mountainside and ridge' perspective that helps to neatly tie together different geometric features that can be spotted in the loss landscape along the training runs. We also complement this perspective by providing a theoretical analysis of the barrier height, for which we provide empirical support, and which additionally extends as a faithful predictor of layer-wise LMC. We close with a toy example that provides further intuition on how barriers arise in the first place, all in all, showcasing the larger aim of the work -- to provide a working model of the landscape and its topography for the occurrence of LMC.
comment: ICML 2024 HiLD workshop paper
☆ Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Physical Dynamics Learning
Incorporating Euclidean symmetries (e.g. rotation equivariance) as inductive biases into graph neural networks has improved their generalization ability and data efficiency in unbounded physical dynamics modeling. However, in various scientific and engineering applications, the symmetries of dynamics are frequently discrete due to the boundary conditions. Thus, existing GNNs either overlook necessary symmetry, resulting in suboptimal representation ability, or impose excessive equivariance, which fails to generalize to unobserved symmetric dynamics. In this work, we propose a general Discrete Equivariant Graph Neural Network (DEGNN) that guarantees equivariance to a given discrete point group. Specifically, we show that such discrete equivariant message passing could be constructed by transforming geometric features into permutation-invariant embeddings. Through relaxing continuous equivariant constraints, DEGNN can employ more geometric feature combinations to approximate unobserved physical object interaction functions. Two implementation approaches of DEGNN are proposed based on ranking or pooling permutation-invariant functions. We apply DEGNN to various physical dynamics, ranging from particle, molecular, crowd to vehicle dynamics. In twenty scenarios, DEGNN significantly outperforms existing state-of-the-art approaches. Moreover, we show that DEGNN is data efficient, learning with less data, and can generalize across scenarios such as unobserved orientation.
♻ ☆ Improving physics-informed DeepONets with hard constraints
Current physics-informed (standard or deep operator) neural networks still rely on accurately learning the initial and/or boundary conditions of the system of differential equations they are solving. In contrast, standard numerical methods involve such conditions in computations without needing to learn them. In this study, we propose to improve current physics-informed deep learning strategies such that initial and/or boundary conditions do not need to be learned and are represented exactly in the predicted solution. Moreover, this method guarantees that when a deep operator network is applied multiple times to time-step a solution of an initial value problem, the resulting function is at least continuous.
comment: 26 pages, 8 figures, 6 tables; extended version
♻ ☆ Scaling and renormalization in high-dimensional regression
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models using the basic tools of random matrix theory and free probability. We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning. Analytic formulas for the training and generalization errors are obtained in a few lines of algebra directly from the properties of the $S$-transform of free probability. This allows for a straightforward identification of the sources of power-law scaling in model performance. We compute the generalization error of a broad class of random feature models. We find that in all models, the $S$-transform corresponds to the train-test generalization gap, and yields an analogue of the generalized-cross-validation estimator. Using these techniques, we derive fine-grained bias-variance decompositions for a very general class of random feature models with structured covariates. These novel results allow us to discover a scaling regime for random feature models where the variance due to the features limits performance in the overparameterized setting. We also demonstrate how anisotropic weight structure in random feature models can limit performance and lead to nontrivial exponents for finite-width corrections in the overparameterized setting. Our results extend and provide a unifying perspective on earlier models of neural scaling laws.
comment: 68 pages, 17 figures
♻ ☆ Generative Fractional Diffusion Models
We introduce the first continuous-time score-based generative model that leverages fractional diffusion processes for its underlying dynamics. Although diffusion models have excelled at capturing data distributions, they still suffer from various limitations such as slow convergence, mode-collapse on imbalanced data, and lack of diversity. These issues are partially linked to the use of light-tailed Brownian motion (BM) with independent increments. In this paper, we replace BM with an approximation of its non-Markovian counterpart, fractional Brownian motion (fBM), characterized by correlated increments and Hurst index $H \in (0,1)$, where $H=1/2$ recovers the classical BM. To ensure tractable inference and learning, we employ a recently popularized Markov approximation of fBM (MA-fBM) and derive its reverse time model, resulting in generative fractional diffusion models (GFDMs). We characterize the forward dynamics using a continuous reparameterization trick and propose an augmented score matching loss to efficiently learn the score-function, which is partly known in closed form, at minimal added cost. The ability to drive our diffusion model via fBM provides flexibility and control. $H \leq 1/2$ enters the regime of rough paths whereas $H>1/2$ regularizes diffusion paths and invokes long-term memory as well as a heavy-tailed behaviour (super-diffusion). The Markov approximation allows added control by varying the number of Markov processes linearly combined to approximate fBM. Our evaluations on real image datasets demonstrate that GFDM achieves greater pixel-wise diversity and enhanced image quality, as indicated by a lower FID, offering a promising alternative to traditional diffusion models.
♻ ☆ Why Transformers Need Adam: A Hessian Perspective
SGD performs worse than Adam by a significant margin on Transformers, but the reason remains unclear. In this work, we provide an explanation through the lens of Hessian: (i) Transformers are "heterogeneous": the Hessian spectrum across parameter blocks vary dramatically, a phenomenon we call "block heterogeneity"; (ii) Heterogeneity hampers SGD: SGD performs worse than Adam on problems with block heterogeneity. To validate (i) and (ii), we check various Transformers, CNNs, MLPs, and quadratic problems, and find that SGD can perform on par with Adam on problems without block heterogeneity, but performs worse than Adam when the heterogeneity exists. Our initial theoretical analysis indicates that SGD performs worse because it applies one single learning rate to all blocks, which cannot handle the heterogeneity among blocks. This limitation could be ameliorated if we use coordinate-wise learning rates, as designed in Adam.
♻ ☆ Deep Reinforcement Learning: A Convex Optimization Approach
In this paper, we consider reinforcement learning of nonlinear systems with continuous state and action spaces. We present an episodic learning algorithm, where we for each episode use convex optimization to find a two-layer neural network approximation of the optimal $Q$-function. The convex optimization approach guarantees that the weights calculated at each episode are optimal, with respect to the given sampled states and actions of the current episode. For stable nonlinear systems, we show that the algorithm converges and that the converging parameters of the trained neural network can be made arbitrarily close to the optimal neural network parameters. In particular, if the regularization parameter in the training phase is given by $\rho$, then the parameters of the trained neural network converge to $w$, where the distance between $w$ and the optimal parameters $w^\star$ is bounded by $\mathcal{O}(\rho)$. That is, when the number of episodes goes to infinity, there exists a constant $C$ such that \[ \|w-w^\star\| \le C\rho. \] In particular, our algorithm converges arbitrarily close to the optimal neural network parameters as the regularization parameter goes to zero. As a consequence, our algorithm converges fast due to the polynomial-time convergence of convex optimization algorithms.
♻ ☆ Pandora's White-Box: Precise Training Data Detection and Extraction in Large Language Models
In this paper we develop state-of-the-art privacy attacks against Large Language Models (LLMs), where an adversary with some access to the model tries to learn something about the underlying training data. Our headline results are new membership inference attacks (MIAs) against pretrained LLMs that perform hundreds of times better than baseline attacks, and a pipeline showing that over 50% (!) of the fine-tuning dataset can be extracted from a fine-tuned LLM in natural settings. We consider varying degrees of access to the underlying model, pretraining and fine-tuning data, and both MIAs and training data extraction. For pretraining data, we propose two new MIAs: a supervised neural network classifier that predicts training data membership on the basis of (dimensionality-reduced) model gradients, as well as a variant of this attack that only requires logit access to the model by leveraging recent model-stealing work on LLMs. To our knowledge this is the first MIA that explicitly incorporates model-stealing information. Both attacks outperform existing black-box baselines, and our supervised attack closes the gap between MIA attack success against LLMs and the strongest known attacks for other machine learning models. In fine-tuning, we find that a simple attack based on the ratio of the loss between the base and fine-tuned models is able to achieve near-perfect MIA performance; we then leverage our MIA to extract a large fraction of the fine-tuning dataset from fine-tuned Pythia and Llama models. Our code is available at github.com/safr-ai-lab/pandora-llm.
♻ ☆ An Experimental Study on the Rashomon Effect of Balancing Methods in Imbalanced Classification
Predictive models may generate biased predictions when classifying imbalanced datasets. This happens when the model favors the majority class, leading to low performance in accurately predicting the minority class. To address this issue, balancing or resampling methods are critical pre-processing steps in the modeling process. However, there have been debates and questioning of the functionality of these methods in recent years. In particular, many candidate models may exhibit very similar predictive performance, which is called the Rashomon effect, in model selection. Selecting one of them without considering predictive multiplicity which is the case of yielding conflicting models' predictions for any sample may lead to a loss of using another model. In this study, in addition to the existing debates, the impact of balancing methods on predictive multiplicity is examined through the Rashomon effect. It is important because the blind model selection is risky from a set of approximately equally accurate models. This may lead to serious problems in model selection, validation, and explanation. To tackle this matter, we conducted real dataset experiments to observe the impact of balancing methods on predictive multiplicity through the Rashomon effect. Our findings showed that balancing methods inflate the predictive multiplicity, and they yield varying results. To monitor the trade-off between performance and predictive multiplicity for conducting the modeling process responsibly, we proposed using the extended performance-gain plot for the Rashomon effect.
comment: 16 pages, 6 figures
♻ ☆ Positive concave deep equilibrium models
Deep equilibrium (DEQ) models are widely recognized as a memory efficient alternative to standard neural networks, achieving state-of-the-art performance in language modeling and computer vision tasks. These models solve a fixed point equation instead of explicitly computing the output, which sets them apart from standard neural networks. However, existing DEQ models often lack formal guarantees of the existence and uniqueness of the fixed point, and the convergence of the numerical scheme used for computing the fixed point is not formally established. As a result, DEQ models are potentially unstable in practice. To address these drawbacks, we introduce a novel class of DEQ models called positive concave deep equilibrium (pcDEQ) models. Our approach, which is based on nonlinear Perron-Frobenius theory, enforces nonnegative weights and activation functions that are concave on the positive orthant. By imposing these constraints, we can easily ensure the existence and uniqueness of the fixed point without relying on additional complex assumptions commonly found in the DEQ literature, such as those based on monotone operator theory in convex analysis. Furthermore, the fixed point can be computed with the standard fixed point algorithm, and we provide theoretical guarantees of its geometric convergence, which, in particular, simplifies the training process. Experiments demonstrate the competitiveness of our pcDEQ models against other implicit models.
♻ ☆ Feature learning as alignment: a structural property of gradient descent in non-linear neural networks
Understanding the mechanisms through which neural networks extract statistics from input-label pairs through feature learning is one of the most important unsolved problems in supervised learning. Prior works demonstrated that the gram matrices of the weights (the neural feature matrices, NFM) and the average gradient outer products (AGOP) become correlated during training, in a statement known as the neural feature ansatz (NFA). Through the NFA, the authors introduce mapping with the AGOP as a general mechanism for neural feature learning. However, these works do not provide a theoretical explanation for this correlation or its origins. In this work, we further clarify the nature of this correlation, and explain its emergence. We show that this correlation is equivalent to alignment between the left singular structure of the weight matrices and the newly defined pre-activation tangent features at each layer. We further establish that the alignment is driven by the interaction of weight changes induced by SGD with the pre-activation features, and analyze the resulting dynamics analytically at early times in terms of simple statistics of the inputs and labels. Finally, motivated by the observation that the NFA is driven by this centered correlation, we introduce a simple optimization rule that dramatically increases the NFA correlations at any given layer and improves the quality of features learned.
♻ ☆ EGTR: Extracting Graph from Transformer for Scene Graph Generation CVPR 2024
Scene Graph Generation (SGG) is a challenging task of detecting objects and predicting relationships between objects. After DETR was developed, one-stage SGG models based on a one-stage object detector have been actively studied. However, complex modeling is used to predict the relationship between objects, and the inherent relationship between object queries learned in the multi-head self-attention of the object detector has been neglected. We propose a lightweight one-stage SGG model that extracts the relation graph from the various relationships learned in the multi-head self-attention layers of the DETR decoder. By fully utilizing the self-attention by-products, the relation graph can be extracted effectively with a shallow relation extraction head. Considering the dependency of the relation extraction task on the object detection task, we propose a novel relation smoothing technique that adjusts the relation label adaptively according to the quality of the detected objects. By the relation smoothing, the model is trained according to the continuous curriculum that focuses on object detection task at the beginning of training and performs multi-task learning as the object detection performance gradually improves. Furthermore, we propose a connectivity prediction task that predicts whether a relation exists between object pairs as an auxiliary task of the relation extraction. We demonstrate the effectiveness and efficiency of our method for the Visual Genome and Open Image V6 datasets. Our code is publicly available at https://github.com/naver-ai/egtr.
comment: CVPR 2024 (Best paper award candidate)
♻ ☆ Attribute Diversity Determines the Systematicity Gap in VQA
The degree to which neural networks can generalize to new combinations of familiar concepts, and the conditions under which they are able to do so, has long been an open question. In this work, we study the systematicity gap in visual question answering: the performance difference between reasoning on previously seen and unseen combinations of object attributes. To test, we introduce a novel diagnostic dataset, CLEVR-HOPE. We find that while increased quantity of training data does not reduce the systematicity gap, increased training data diversity of the attributes in the unseen combination does. In all, our experiments suggest that the more distinct attribute type combinations are seen during training, the more systematic we can expect the resulting model to be.
comment: 33 pages, 20 figures
♻ ☆ A practical existence theorem for reduced order models based on convolutional autoencoders
In recent years, deep learning has gained increasing popularity in the fields of Partial Differential Equations (PDEs) and Reduced Order Modeling (ROM), providing domain practitioners with new powerful data-driven techniques such as Physics-Informed Neural Networks (PINNs), Neural Operators, Deep Operator Networks (DeepONets) and Deep-Learning based ROMs (DL-ROMs). In this context, deep autoencoders based on Convolutional Neural Networks (CNNs) have proven extremely effective, outperforming established techniques, such as the reduced basis method, when dealing with complex nonlinear problems. However, despite the empirical success of CNN-based autoencoders, there are only a few theoretical results supporting these architectures, usually stated in the form of universal approximation theorems. In particular, although the existing literature provides users with guidelines for designing convolutional autoencoders, the subsequent challenge of learning the latent features has been barely investigated. Furthermore, many practical questions remain unanswered, e.g., the number of snapshots needed for convergence or the neural network training strategy. In this work, using recent techniques from sparse high-dimensional function approximation, we fill some of these gaps by providing a new practical existence theorem for CNN-based autoencoders when the parameter-to-solution map is holomorphic. This regularity assumption arises in many relevant classes of parametric PDEs, such as the parametric diffusion equation, for which we discuss an explicit application of our general theory.
♻ ☆ Fusion of Movement and Naive Predictions for Point Forecasting in Univariate Random Walks
Traditional methods for point forecasting in univariate random walks often fail to surpass naive benchmarks due to data unpredictability. This study introduces a novel forecasting method that fuses movement prediction (binary classification) with naive forecasts for accurate one-step-ahead point forecasting. The method's efficacy is demonstrated through theoretical analysis, simulations, and real-world data experiments. It reliably exceeds naive forecasts with movement prediction accuracies as low as 0.55, outperforming baseline models like ARIMA, linear regression, MLP, and LSTM networks in forecasting the S\&P 500 index and Bitcoin prices. This method is particularly advantageous when accurate point predictions are challenging but accurate movement predictions are attainable, translating movement predictions into point forecasts in random walk contexts.
♻ ☆ LatentExplainer: Explaining Latent Representations in Deep Generative Models with Multi-modal Foundation Models
Deep generative models like VAEs and diffusion models have advanced various generation tasks by leveraging latent variables to learn data distributions and generate high-quality samples. Despite the field of explainable AI making strides in interpreting machine learning models, understanding latent variables in generative models remains challenging. This paper introduces LatentExplainer, a framework for automatically generating semantically meaningful explanations of latent variables in deep generative models. LatentExplainer tackles three main challenges: inferring the meaning of latent variables, aligning explanations with inductive biases, and handling varying degrees of explainability. By perturbing latent variables and interpreting changes in generated data, the framework provides a systematic approach to understanding and controlling the data generation process, enhancing the transparency and interpretability of deep generative models. We evaluate our proposed method on several real-world and synthetic datasets, and the results demonstrate superior performance in generating high-quality explanations of latent variables.
♻ ☆ FT-AED: Benchmark Dataset for Early Freeway Traffic Anomalous Event Detection
Early and accurate detection of anomalous events on the freeway, such as accidents, can improve emergency response and clearance. However, existing delays and errors in event identification and reporting make it a difficult problem to solve. Current large-scale freeway traffic datasets are not designed for anomaly detection and ignore these challenges. In this paper, we introduce the first large-scale lane-level freeway traffic dataset for anomaly detection. Our dataset consists of a month of weekday radar detection sensor data collected in 4 lanes along an 18-mile stretch of Interstate 24 heading toward Nashville, TN, comprising over 3.7 million sensor measurements. We also collect official crash reports from the Nashville Traffic Management Center and manually label all other potential anomalies in the dataset. To show the potential for our dataset to be used in future machine learning and traffic research, we benchmark numerous deep learning anomaly detection models on our dataset. We find that unsupervised graph neural network autoencoders are a promising solution for this problem and that ignoring spatial relationships leads to decreased performance. We demonstrate that our methods can reduce reporting delays by over 10 minutes on average while detecting 75% of crashes. Our dataset and all preprocessing code needed to get started are publicly released at https://vu.edu/ft-aed/ to facilitate future research.
♻ ☆ State Representation Learning Using an Unbalanced Atlas
The manifold hypothesis posits that high-dimensional data often lies on a lower-dimensional manifold and that utilizing this manifold as the target space yields more efficient representations. While numerous traditional manifold-based techniques exist for dimensionality reduction, their application in self-supervised learning has witnessed slow progress. The recent MSimCLR method combines manifold encoding with SimCLR but requires extremely low target encoding dimensions to outperform SimCLR, limiting its applicability. This paper introduces a novel learning paradigm using an unbalanced atlas (UA), capable of surpassing state-of-the-art self-supervised learning approaches. We investigated and engineered the DeepInfomax with an unbalanced atlas (DIM-UA) method by adapting the Spatiotemporal DeepInfomax (ST-DIM) framework to align with our proposed UA paradigm. The efficacy of DIM-UA is demonstrated through training and evaluation on the Atari Annotated RAM Interface (AtariARI) benchmark, a modified version of the Atari 2600 framework that produces annotated image samples for representation learning. The UA paradigm improves existing algorithms significantly as the number of target encoding dimensions grows. For instance, the mean F1 score averaged over categories of DIM-UA is ~75% compared to ~70% of ST-DIM when using 16384 hidden units.
♻ ☆ Incorporating temporal dynamics of mutations to enhance the prediction capability of antiretroviral therapy's outcome for HIV-1
Motivation: In predicting HIV therapy outcomes, a critical clinical question is whether using historical information can enhance predictive capabilities compared with current or latest available data analysis. This study analyses whether historical knowledge, which includes viral mutations detected in all genotypic tests before therapy, their temporal occurrence, and concomitant viral load measurements, can bring improvements. We introduce a method to weigh mutations, considering the previously enumerated factors and the reference mutation-drug Stanford resistance tables. We compare a model encompassing history (H) with one not using it (NH). Results: The H-model demonstrates superior discriminative ability, with a higher ROC-AUC score (76.34%) than the NH-model (74.98%). Significant Wilcoxon test results confirm that incorporating historical information improves consistently predictive accuracy for treatment outcomes. The better performance of the H-model might be attributed to its consideration of latent HIV reservoirs, probably obtained when leveraging historical information. The findings emphasize the importance of temporal dynamics in mutations, offering insights into HIV infection complexities. However, our result also shows that prediction accuracy remains relatively high even when no historical information is available. Supplementary information: Supplementary material is available.
comment: 16 pages, 6 figures
♻ ☆ Deep Reinforcement Learning with Swin Transformers
Transformers are neural network models that utilize multiple layers of self-attention heads and have exhibited enormous potential in natural language processing tasks. Meanwhile, there have been efforts to adapt transformers to visual tasks of machine learning, including Vision Transformers and Swin Transformers. Although some researchers use Vision Transformers for reinforcement learning tasks, their experiments remain at a small scale due to the high computational cost. This article presents the first online reinforcement learning scheme that is based on Swin Transformers: Swin DQN. In contrast to existing research, our novel approach demonstrate the superior performance with experiments on 49 games in the Arcade Learning Environment. The results show that our approach achieves significantly higher maximal evaluation scores than the baseline method in 45 of all the 49 games (92%), and higher mean evaluation scores than the baseline method in 40 of all the 49 games (82%).
♻ ☆ Watermark Stealing in Large Language Models ICML 2024
LLM watermarking has attracted attention as a promising way to detect AI-generated content, with some works suggesting that current schemes may already be fit for deployment. In this work we dispute this claim, identifying watermark stealing (WS) as a fundamental vulnerability of these schemes. We show that querying the API of the watermarked LLM to approximately reverse-engineer a watermark enables practical spoofing attacks, as hypothesized in prior work, but also greatly boosts scrubbing attacks, which was previously unnoticed. We are the first to propose an automated WS algorithm and use it in the first comprehensive study of spoofing and scrubbing in realistic settings. We show that for under $50 an attacker can both spoof and scrub state-of-the-art schemes previously considered safe, with average success rate of over 80%. Our findings challenge common beliefs about LLM watermarking, stressing the need for more robust schemes. We make all our code and additional examples available at https://watermark-stealing.org.
comment: ICML 2024
♻ ☆ Provable Adaptivity of Adam under Non-uniform Smoothness KDD 2024
Adam is widely adopted in practical applications due to its fast convergence. However, its theoretical analysis is still far from satisfactory. Existing convergence analyses for Adam rely on the bounded smoothness assumption, referred to as the \emph{L-smooth condition}. Unfortunately, this assumption does not hold for many deep learning tasks. Moreover, we believe that this assumption obscures the true benefit of Adam, as the algorithm can adapt its update magnitude according to local smoothness. This important feature of Adam becomes irrelevant when assuming globally bounded smoothness. This paper studies the convergence of randomly reshuffled Adam (RR Adam) with diminishing learning rate, which is the major version of Adam adopted in deep learning tasks. We present the first convergence analysis of RR Adam without the bounded smoothness assumption. We demonstrate that RR Adam can maintain its convergence properties when smoothness is linearly bounded by the gradient norm, referred to as the \emph{$(L_0, L_1)$-smooth condition. We further compare Adam to SGD when both methods use diminishing learning rate. We refine the existing lower bound of SGD and show that SGD can be slower than Adam. To our knowledge, this is the first time that Adam and SGD are rigorously compared in the same setting and the advantage of Adam is revealed.
comment: KDD 2024
♻ ☆ Towards Theoretical Understandings of Self-Consuming Generative Models ICML 2024
This paper tackles the emerging challenge of training generative models within a self-consuming loop, wherein successive generations of models are recursively trained on mixtures of real and synthetic data from previous generations. We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models, including parametric and non-parametric models. Specifically, we derive bounds on the total variation (TV) distance between the synthetic data distributions produced by future models and the original real data distribution under various mixed training scenarios for diffusion models with a one-hidden-layer neural network score function. Our analysis demonstrates that this distance can be effectively controlled under the condition that mixed training dataset sizes or proportions of real data are large enough. Interestingly, we further unveil a phase transition induced by expanding synthetic data amounts, proving theoretically that while the TV distance exhibits an initial ascent, it declines beyond a threshold point. Finally, we present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
comment: Accepted at ICML 2024
♻ ☆ Adaptively Perturbed Mirror Descent for Learning in Games ICML 2024
This paper proposes a payoff perturbation technique for the Mirror Descent (MD) algorithm in games where the gradient of the payoff functions is monotone in the strategy profile space, potentially containing additive noise. The optimistic family of learning algorithms, exemplified by optimistic MD, successfully achieves {\it last-iterate} convergence in scenarios devoid of noise, leading the dynamics to a Nash equilibrium. A recent re-emerging trend underscores the promise of the perturbation approach, where payoff functions are perturbed based on the distance from an anchoring, or {\it slingshot}, strategy. In response, we propose {\it Adaptively Perturbed MD} (APMD), which adjusts the magnitude of the perturbation by repeatedly updating the slingshot strategy at a predefined interval. This innovation empowers us to find a Nash equilibrium of the underlying game with guaranteed rates. Empirical demonstrations affirm that our algorithm exhibits significantly accelerated convergence.
comment: Accepted at ICML 2024
♻ ☆ Hyperbolic Random Forests
Hyperbolic space is becoming a popular choice for representing data due to the hierarchical structure - whether implicit or explicit - of many real-world datasets. Along with it comes a need for algorithms capable of solving fundamental tasks, such as classification, in hyperbolic space. Recently, multiple papers have investigated hyperbolic alternatives to hyperplane-based classifiers, such as logistic regression and SVMs. While effective, these approaches struggle with more complex hierarchical data. We, therefore, propose to generalize the well-known random forests to hyperbolic space. We do this by redefining the notion of a split using horospheres. Since finding the globally optimal split is computationally intractable, we find candidate horospheres through a large-margin classifier. To make hyperbolic random forests work on multi-class data and imbalanced experiments, we furthermore outline a new method for combining classes based on their lowest common ancestor and a class-balanced version of the large-margin loss. Experiments on standard and new benchmarks show that our approach outperforms both conventional random forest algorithms and recent hyperbolic classifiers.
comment: Accepted at TMLR. Code available at https://github.com/LarsDoorenbos/HoroRF
♻ ☆ CoLoR-Filter: Conditional Loss Reduction Filtering for Targeted Language Model Pre-training
Selecting high-quality data for pre-training is crucial in shaping the downstream task performance of language models. A major challenge lies in identifying this optimal subset, a problem generally considered intractable, thus necessitating scalable and effective heuristics. In this work, we propose a data selection method, CoLoR-Filter (Conditional Loss Reduction Filtering), which leverages an empirical Bayes-inspired approach to derive a simple and computationally efficient selection criterion based on the relative loss values of two auxiliary models. In addition to the modeling rationale, we evaluate CoLoR-Filter empirically on two language modeling tasks: (1) selecting data from C4 for domain adaptation to evaluation on Books and (2) selecting data from C4 for a suite of downstream multiple-choice question answering tasks. We demonstrate favorable scaling both as we subselect more aggressively and using small auxiliary models to select data for large target models. As one headline result, CoLoR-Filter data selected using a pair of 150m parameter auxiliary models can train a 1.2b parameter target model to match a 1.2b parameter model trained on 25b randomly selected tokens with 25x less data for Books and 11x less data for the downstream tasks. Code: https://github.com/davidbrandfonbrener/color-filter-olmo Filtered data: https://huggingface.co/datasets/davidbrandfonbrener/color-filtered-c4
♻ ☆ Validation of ML-UQ calibration statistics using simulated reference values: a sensitivity analysis
Some popular Machine Learning Uncertainty Quantification (ML-UQ) calibration statistics do not have predefined reference values and are mostly used in comparative studies. In consequence, calibration is almost never validated and the diagnostic is left to the appreciation of the reader. Simulated reference values, based on synthetic calibrated datasets derived from actual uncertainties, have been proposed to palliate this problem. As the generative probability distribution for the simulation of synthetic errors is often not constrained, the sensitivity of simulated reference values to the choice of generative distribution might be problematic, shedding a doubt on the calibration diagnostic. This study explores various facets of this problem, and shows that some statistics are excessively sensitive to the choice of generative distribution to be used for validation when the generative distribution is unknown. This is the case, for instance, of the correlation coefficient between absolute errors and uncertainties (CC) and of the expected normalized calibration error (ENCE). A robust validation workflow to deal with simulated reference values is proposed.
♻ ☆ Detach-ROCKET: Sequential feature selection for time series classification with random convolutional kernels
Time Series Classification (TSC) is essential in fields like medicine, environmental science, and finance, enabling tasks such as disease diagnosis, anomaly detection, and stock price analysis. While machine learning models like Recurrent Neural Networks and InceptionTime are successful in numerous applications, they can face scalability issues due to computational requirements. Recently, ROCKET has emerged as an efficient alternative, achieving state-of-the-art performance and simplifying training by utilizing a large number of randomly generated features from the time series data. However, many of these features are redundant or non-informative, increasing computational load and compromising generalization. Here we introduce Sequential Feature Detachment (SFD) to identify and prune non-essential features in ROCKET-based models, such as ROCKET, MiniRocket, and MultiRocket. SFD estimates feature importance using model coefficients and can handle large feature sets without complex hyperparameter tuning. Testing on the UCR archive shows that SFD can produce models with better test accuracy using only 10\% of the original features. We named these pruned models Detach-ROCKET. We also present an end-to-end procedure for determining an optimal balance between the number of features and model accuracy. On the largest binary UCR dataset, Detach-ROCKET improves test accuracy by 0.6\% while reducing features by 98.9\%. By enabling a significant reduction in model size without sacrificing accuracy, our methodology improves computational efficiency and contributes to model interpretability. We believe that Detach-ROCKET will be a valuable tool for researchers and practitioners working with time series data, who can find a user-friendly implementation of the model at \url{https://github.com/gon-uri/detach_rocket}.
comment: 18 pages, 5 figures, 3 tables
♻ ☆ Make Large Language Model a Better Ranker
Large Language Models (LLMs) demonstrate robust capabilities across various fields, leading to a paradigm shift in LLM-enhanced Recommender System (RS). Research to date focuses on point-wise and pair-wise recommendation paradigms, which are inefficient for LLM-based recommenders due to high computational costs. However, existing list-wise approaches also fall short in ranking tasks due to misalignment between ranking objectives and next-token prediction. Moreover, these LLM-based methods struggle to effectively address the order relation among candidates, particularly given the scale of ratings. To address these challenges, this paper introduces the large language model framework with Aligned Listwise Ranking Objectives (ALRO). ALRO is designed to bridge the gap between the capabilities of LLMs and the nuanced requirements of ranking tasks. Specifically, ALRO employs explicit feedback in a listwise manner by introducing soft lambda loss, a customized adaptation of lambda loss designed for optimizing order relations. This mechanism provides more accurate optimization goals, enhancing the ranking process. Additionally, ALRO incorporates a permutation-sensitive learning mechanism that addresses position bias, a prevalent issue in generative models, without imposing additional computational burdens during inference. Our evaluative studies reveal that ALRO outperforms both existing embedding-based recommendation methods and LLM-based recommendation baselines.
comment: 12 pages, 5 figures
♻ ☆ Learning Action-based Representations Using Invariance
Robust reinforcement learning agents using high-dimensional observations must be able to identify relevant state features amidst many exogeneous distractors. A representation that captures controllability identifies these state elements by determining what affects agent control. While methods such as inverse dynamics and mutual information capture controllability for a limited number of timesteps, capturing long-horizon elements remains a challenging problem. Myopic controllability can capture the moment right before an agent crashes into a wall, but not the control-relevance of the wall while the agent is still some distance away. To address this we introduce action-bisimulation encoding, a method inspired by the bisimulation invariance pseudometric, that extends single-step controllability with a recursive invariance constraint. By doing this, action-bisimulation learns a multi-step controllability metric that smoothly discounts distant state features that are relevant for control. We demonstrate that action-bisimulation pretraining on reward-free, uniformly random data improves sample efficiency in several environments, including a photorealistic 3D simulation domain, Habitat. Additionally, we provide theoretical analysis and qualitative results demonstrating the information captured by action-bisimulation.
comment: Published at the Reinforcement Learning Conference 2024
♻ ☆ Deep Prompt Multi-task Network for Abuse Language Detection ICPR
The detection of abusive language remains a long-standing challenge with the extensive use of social networks. The detection task of abusive language suffers from limited accuracy. We argue that the existing detection methods utilize the fine-tuning technique of the pre-trained language models (PLMs) to handle downstream tasks. Hence, these methods fail to stimulate the general knowledge of the PLMs. To address the problem, we propose a novel Deep Prompt Multi-task Network (DPMN) for abuse language detection. Specifically, DPMN first attempts to design two forms of deep prompt tuning and light prompt tuning for the PLMs. The effects of different prompt lengths, tuning strategies, and prompt initialization methods on detecting abusive language are studied. In addition, we propose a Task Head based on Bi-LSTM and FFN, which can be used as a short text classifier. Eventually, DPMN utilizes multi-task learning to improve detection metrics further. The multi-task network has the function of transferring effective knowledge. The proposed DPMN is evaluated against eight typical methods on three public datasets: OLID, SOLID, and AbuseAnalyzer. The experimental results show that our DPMN outperforms the state-of-the-art methods.
comment: Accepted by the International Conference on Pattern Recognition (ICPR) 2024
♻ ☆ Improved Dynamic Regret for Online Frank-Wolfe COLT2023
To deal with non-stationary online problems with complex constraints, we investigate the dynamic regret of online Frank-Wolfe (OFW), which is an efficient projection-free algorithm for online convex optimization. It is well-known that in the setting of offline optimization, the smoothness of functions and the strong convexity of functions accompanying specific properties of constraint sets can be utilized to achieve fast convergence rates for the Frank-Wolfe (FW) algorithm. However, for OFW, previous studies only establish a dynamic regret bound of $O(\sqrt{T}(V_T+\sqrt{D_T}+1))$ by utilizing the convexity of problems, where $T$ is the number of rounds, $V_T$ is the function variation, and $D_T$ is the gradient variation. In this paper, we derive improved dynamic regret bounds for OFW by extending the fast convergence rates of FW from offline optimization to online optimization. The key technique for this extension is to set the step size of OFW with a line search rule. In this way, we first show that the dynamic regret bound of OFW can be improved to $O(\sqrt{T(V_T+1)})$ for smooth functions. Second, we achieve a better dynamic regret bound of $O(T^{1/3}(V_T+1)^{2/3})$ when functions are smooth and strongly convex, and the constraint set is strongly convex. Finally, for smooth and strongly convex functions with minimizers in the interior of the constraint set, we demonstrate that the dynamic regret of OFW reduces to $O(V_T+1)$, and can be further strengthened to $O(\min\{P_T^\ast,S_T^\ast,V_T\}+1)$ by performing a constant number of FW iterations per round, where $P_T^\ast$ and $S_T^\ast$ denote the path length and squared path length of minimizers, respectively.
comment: v2 matches the camera-ready version for COLT2023 better
♻ ☆ Compact Proofs of Model Performance via Mechanistic Interpretability
In this work, we propose using mechanistic interpretability -- techniques for reverse engineering model weights into human-interpretable algorithms -- to derive and compactly prove formal guarantees on model performance. We prototype this approach by formally proving lower bounds on the accuracy of 151 small transformers trained on a Max-of-$K$ task. We create 102 different computer-assisted proof strategies and assess their length and tightness of bound on each of our models. Using quantitative metrics, we find that shorter proofs seem to require and provide more mechanistic understanding. Moreover, we find that more faithful mechanistic understanding leads to tighter performance bounds. We confirm these connections by qualitatively examining a subset of our proofs. Finally, we identify compounding structureless noise as a key challenge for using mechanistic interpretability to generate compact proofs on model performance.
♻ ☆ Expert with Clustering: Hierarchical Online Preference Learning Framework
Emerging mobility systems are increasingly capable of recommending options to mobility users, to guide them towards personalized yet sustainable system outcomes. Even more so than the typical recommendation system, it is crucial to minimize regret, because 1) the mobility options directly affect the lives of the users, and 2) the system sustainability relies on sufficient user participation. In this study, we consider accelerating user preference learning by exploiting a low-dimensional latent space that captures the mobility preferences of users. We introduce a hierarchical contextual bandit framework named Expert with Clustering (EWC), which integrates clustering techniques and prediction with expert advice. EWC efficiently utilizes hierarchical user information and incorporates a novel Loss-guided Distance metric. This metric is instrumental in generating more representative cluster centroids. In a recommendation scenario with $N$ users, $T$ rounds per user, and $K$ options, our algorithm achieves a regret bound of $O(N\sqrt{T\log K} + NT)$. This bound consists of two parts: the first term is the regret from the Hedge algorithm, and the second term depends on the average loss from clustering. To the best of the authors knowledge, this is the first work to analyze the regret of an integrated expert algorithm with k-Means clustering. This regret bound underscores the theoretical and experimental efficacy of EWC, particularly in scenarios that demand rapid learning and adaptation. Experimental results highlight that EWC can substantially reduce regret by 27.57% compared to the LinUCB baseline. Our work offers a data-efficient approach to capturing both individual and collective behaviors, making it highly applicable to contexts with hierarchical structures. We expect the algorithm to be applicable to other settings with layered nuances of user preferences and information.
♻ ☆ Causal Fair Machine Learning via Rank-Preserving Interventional Distributions
A decision can be defined as fair if equal individuals are treated equally and unequals unequally. Adopting this definition, the task of designing machine learning (ML) models that mitigate unfairness in automated decision-making systems must include causal thinking when introducing protected attributes: Following a recent proposal, we define individuals as being normatively equal if they are equal in a fictitious, normatively desired (FiND) world, where the protected attributes have no (direct or indirect) causal effect on the target. We propose rank-preserving interventional distributions to define a specific FiND world in which this holds and a warping method for estimation. Evaluation criteria for both the method and the resulting ML model are presented and validated through simulations. Experiments on empirical data showcase the practical application of our method and compare results with "fairadapt" (Ple\v{c}ko and Meinshausen, 2020), a different approach for mitigating unfairness by causally preprocessing data that uses quantile regression forests. With this, we show that our warping approach effectively identifies the most discriminated individuals and mitigates unfairness.
♻ ☆ CLUE: A Clinical Language Understanding Evaluation for LLMs
Large Language Models (LLMs) are expected to significantly contribute to patient care, diagnostics, and administrative processes. Emerging biomedical LLMs aim to address healthcare-specific challenges, including privacy demands and computational constraints. Assessing the models' suitability for this sensitive application area is of the utmost importance. However, evaluation has primarily been limited to non-clinical tasks, which do not reflect the complexity of practical clinical applications. To fill this gap, we present the Clinical Language Understanding Evaluation (CLUE), a benchmark tailored to evaluate LLMs on clinical tasks. CLUE includes six tasks to test the practical applicability of LLMs in complex healthcare settings. Our evaluation includes a total of $25$ LLMs. In contrast to previous evaluations, CLUE shows a decrease in performance for nine out of twelve biomedical models. Our benchmark represents a step towards a standardized approach to evaluating and developing LLMs in healthcare to align future model development with the real-world needs of clinical application. We open-source all evaluation scripts and datasets for future research at https://github.com/TIO-IKIM/CLUE.
♻ ☆ Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA
Reliable uncertainty estimation plays a crucial role in various safety-critical applications such as medical diagnosis and autonomous driving. In recent years, Bayesian neural networks (BayesNNs) have gained substantial research and industrial interests due to their capability to make accurate predictions with reliable uncertainty estimation. However, the algorithmic complexity and the resulting hardware performance of BayesNNs hinder their adoption in real-life applications. To bridge this gap, this paper proposes an algorithm and hardware co-design framework that can generate field-programmable gate array (FPGA)-based accelerators for efficient BayesNNs. At the algorithm level, we propose novel multi-exit dropout-based BayesNNs with reduced computational and memory overheads while achieving high accuracy and quality of uncertainty estimation. At the hardware level, this paper introduces a transformation framework that can generate FPGA-based accelerators for the proposed efficient multi-exit BayesNNs. Several optimization techniques such as the mix of spatial and temporal mappings are introduced to reduce resource consumption and improve the overall hardware performance. Comprehensive experiments demonstrate that our approach can achieve higher energy efficiency compared to CPU, GPU, and other state-of-the-art hardware implementations. To support the future development of this research, we have open-sourced our code at: https://github.com/os-hxfan/MCME_FPGA_Acc.git
comment: arXiv admin note: text overlap with arXiv:2308.06849
♻ ☆ AdaTreeFormer: Few Shot Domain Adaptation for Tree Counting from a Single High-Resolution Image
The process of estimating and counting tree density using only a single aerial or satellite image is a difficult task in the fields of photogrammetry and remote sensing. However, it plays a crucial role in the management of forests. The huge variety of trees in varied topography severely hinders tree counting models to perform well. The purpose of this paper is to propose a framework that is learnt from the source domain with sufficient labeled trees and is adapted to the target domain with only a limited number of labeled trees. Our method, termed as AdaTreeFormer, contains one shared encoder with a hierarchical feature extraction scheme to extract robust features from the source and target domains. It also consists of three subnets: two for extracting self-domain attention maps from source and target domains respectively and one for extracting cross-domain attention maps. For the latter, an attention-to-adapt mechanism is introduced to distill relevant information from different domains while generating tree density maps; a hierarchical cross-domain feature alignment scheme is proposed that progressively aligns the features from the source and target domains. We also adopt adversarial learning into the framework to further reduce the gap between source and target domains. Our AdaTreeFormer is evaluated on six designed domain adaptation tasks using three tree counting datasets, \ie Jiangsu, Yosemite, and London. Experimental results show that AdaTreeFormer significantly surpasses the state of the art, \eg in the cross domain from the Yosemite to Jiangsu dataset, it achieves a reduction of 15.9 points in terms of the absolute counting errors and an increase of 10.8\% in the accuracy of the detected trees' locations. The codes and datasets are available at \emph{\color{magenta}{https://github.com/HAAClassic/AdaTreeFormer}}.
♻ ☆ Knowledge Accumulation in Continually Learned Representations and the Issue of Feature Forgetting
Continual learning research has shown that neural networks suffer from catastrophic forgetting "at the output level", but it is debated whether this is also the case at the level of learned representations. Multiple recent studies ascribe representations a certain level of innate robustness against forgetting -- that they only forget minimally in comparison with forgetting at the output level. We revisit and expand upon the experiments that revealed this difference in forgetting and illustrate the coexistence of two phenomena that affect the quality of continually learned representations: knowledge accumulation and feature forgetting. Taking both aspects into account, we show that, even though forgetting in the representation (i.e. feature forgetting) can be small in absolute terms, when measuring relative to how much was learned during a task, forgetting in the representation tends to be just as catastrophic as forgetting at the output level. Next we show that this feature forgetting is problematic as it substantially slows down the incremental learning of good general representations (i.e. knowledge accumulation). Finally, we study how feature forgetting and knowledge accumulation are affected by different types of continual learning methods.
comment: TMLR 2024
♻ ☆ Local primordial non-Gaussianity from the large-scale clustering of photometric DESI luminous red galaxies
We use angular clustering of luminous red galaxies from the Dark Energy Spectroscopic Instrument (DESI) imaging surveys to constrain the local primordial non-Gaussianity parameter $\fnl$. Our sample comprises over 12 million targets, covering 14,000 square degrees of the sky, with redshifts in the range $0.2< z < 1.35$. We identify Galactic extinction, survey depth, and astronomical seeing as the primary sources of systematic error, and employ linear regression and artificial neural networks to alleviate non-cosmological excess clustering on large scales. Our methods are tested against simulations with and without $\fnl$ and systematics, showing superior performance of the neural network treatment. The neural network with a set of nine imaging property maps passes our systematic null test criteria, and is chosen as the fiducial treatment. Assuming the universality relation, we find $\fnl = 34^{+24(+50)}_{-44(-73)}$ at 68\%(95\%) confidence. We apply a series of robustness tests (e.g., cuts on imaging, declination, or scales used) that show consistency in the obtained constraints. We study how the regression method biases the measured angular power-spectrum and degrades the $\fnl$ constraining power. The use of the nine maps more than doubles the uncertainty compared to using only the three primary maps in the regression. Our results thus motivate the development of more efficient methods that avoid over-correction, protect large-scale clustering information, and preserve constraining power. Additionally, our results encourage further studies of $\fnl$ with DESI spectroscopic samples, where the inclusion of 3D clustering modes should help separate imaging systematics and lessen the degradation in the $\fnl$ uncertainty.
comment: 21 pages, 17 figures, 7 tables (Appendix excluded). Published in MNRAS
♻ ☆ Sigma-point Kalman Filter with Nonlinear Unknown Input Estimation via Optimization and Data-driven Approach for Dynamic Systems
Most works on joint state and unknown input (UI) estimation require the assumption that the UIs are linear; this is potentially restrictive as it does not hold in many intelligent autonomous systems. To overcome this restriction and circumvent the need to linearize the system, we propose a derivative-free Unknown Input Sigma-point Kalman Filter (SPKF-nUI) where the SPKF is interconnected with a general nonlinear UI estimator that can be implemented via nonlinear optimization and data-driven approaches. The nonlinear UI estimator uses the posterior state estimate which is less susceptible to state prediction error. In addition, we introduce a joint sigma-point transformation scheme to incorporate both the state and UI uncertainties in the estimation of SPKF-nUI. An in-depth stochastic stability analysis proves that the proposed SPKF-nUI yields exponentially converging estimation error bounds under reasonable assumptions. Finally, two case studies are carried out on a simulation-based rigid robot and a physical soft robot, i.e., robots made of soft materials with complex dynamics to validate effectiveness of the proposed filter on nonlinear dynamic systems. Our results demonstrate that the proposed SPKF-nUI achieves the lowest state and UI estimation errors when compared to the existing nonlinear state-UI filters.
♻ ☆ A Non-autoregressive Multi-Horizon Flight Trajectory Prediction Framework with Gray Code Representation AAAI
Flight Trajectory Prediction (FTP) is an essential task in Air Traffic Control (ATC), which can assist air traffic controllers in managing airspace more safely and efficiently. Existing approaches generally perform multi-horizon FTP tasks in an autoregressive manner, thereby suffering from error accumulation and low-efficiency problems. In this paper, a novel framework, called FlightBERT++, is proposed to i) forecast multi-horizon flight trajectories directly in a non-autoregressive way, and ii) improve the limitation of the binary encoding (BE) representation in the FlightBERT framework. Specifically, the proposed framework is implemented by a generalized encoder-decoder architecture, in which the encoder learns the temporal-spatial patterns from historical observations and the decoder predicts the flight status for the future horizons. Compared to conventional architecture, an innovative horizon-aware contexts generator is dedicatedly designed to consider the prior horizon information, which further enables non-autoregressive multi-horizon prediction. Additionally, the Gray code representation and the differential prediction paradigm are designed to cope with the high-bit misclassifications of the BE representation, which significantly reduces the outliers in the predictions. Moreover, a differential prompted decoder is proposed to enhance the capability of the differential predictions by leveraging the stationarity of the differential sequence. Extensive experiments are conducted to validate the proposed framework on a real-world flight trajectory dataset. The experimental results demonstrated that the proposed framework outperformed the competitive baselines in both FTP performance and computational efficiency.
comment: An extend version based on the AAAI version
♻ ☆ A Survey of Large Language Models for Graphs KDD'24
Graphs are an essential data structure utilized to represent relationships in real-world scenarios. Prior research has established that Graph Neural Networks (GNNs) deliver impressive outcomes in graph-centric tasks, such as link prediction and node classification. Despite these advancements, challenges like data sparsity and limited generalization capabilities continue to persist. Recently, Large Language Models (LLMs) have gained attention in natural language processing. They excel in language comprehension and summarization. Integrating LLMs with graph learning techniques has attracted interest as a way to enhance performance in graph learning tasks. In this survey, we conduct an in-depth review of the latest state-of-the-art LLMs applied in graph learning and introduce a novel taxonomy to categorize existing methods based on their framework design. We detail four unique designs: i) GNNs as Prefix, ii) LLMs as Prefix, iii) LLMs-Graphs Integration, and iv) LLMs-Only, highlighting key methodologies within each category. We explore the strengths and limitations of each framework, and emphasize potential avenues for future research, including overcoming current integration challenges between LLMs and graph learning techniques, and venturing into new application areas. This survey aims to serve as a valuable resource for researchers and practitioners eager to leverage large language models in graph learning, and to inspire continued progress in this dynamic field. We consistently maintain the related open-source materials at \url{https://github.com/HKUDS/Awesome-LLM4Graph-Papers}.
comment: Published as a KDD'24 survey paper
♻ ☆ An Embarrassingly Simple Approach to Enhance Transformer Performance in Genomic Selection for Crop Breeding IJCAI2024
Genomic selection (GS), as a critical crop breeding strategy, plays a key role in enhancing food production and addressing the global hunger crisis. The predominant approaches in GS currently revolve around employing statistical methods for prediction. However, statistical methods often come with two main limitations: strong statistical priors and linear assumptions. A recent trend is to capture the non-linear relationships between markers by deep learning. However, as crop datasets are commonly long sequences with limited samples, the robustness of deep learning models, especially Transformers, remains a challenge. In this work, to unleash the unexplored potential of attention mechanism for the task of interest, we propose a simple yet effective Transformer-based framework that enables end-to-end training of the whole sequence. Via experiments on rice3k and wheat3k datasets, we show that, with simple tricks such as k-mer tokenization and random masking, Transformer can achieve overall superior performance against seminal methods on GS tasks of interest.
comment: Accepted by IJCAI2024. Code is available at https://github.com/RenqiChen/Genomic-Selection
♻ ☆ Of Mice and Mates: Automated Classification and Modelling of Mouse Behaviour in Groups using a Single Model across Cages
Behavioural experiments often happen in specialised arenas, but this may confound the analysis. To address this issue, we provide tools to study mice in the home-cage environment, equipping biologists with the possibility to capture the temporal aspect of the individual's behaviour and model the interaction and interdependence between cage-mates with minimal human intervention. Our main contribution is the novel Group Behaviour Model (GBM) which summarises the joint behaviour of groups of mice across cages, using a permutation matrix to match the mouse identities in each cage to the model. In support of the above, we also (a) developed the Activity Labelling Module (ALM) to automatically classify mouse behaviour from video, and (b) released two datasets, ABODe for training behaviour classifiers and IMADGE for modelling behaviour.
comment: International Journal of Computer Vision (2024)
♻ ☆ Machine Learning Applications of Quantum Computing: A Review
At the intersection of quantum computing and machine learning, this review paper explores the transformative impact these technologies are having on the capabilities of data processing and analysis, far surpassing the bounds of traditional computational methods. Drawing upon an in-depth analysis of 32 seminal papers, this review delves into the interplay between quantum computing and machine learning, focusing on transcending the limitations of classical computing in advanced data processing and applications. This review emphasizes the potential of quantum-enhanced methods in enhancing cybersecurity, a critical sector that stands to benefit significantly from these advancements. The literature review, primarily leveraging Science Direct as an academic database, delves into the transformative effects of quantum technologies on machine learning, drawing insights from a diverse collection of studies and scholarly articles. While the focus is primarily on the growing significance of quantum computing in cybersecurity, the review also acknowledges the promising implications for other sectors as the field matures. Our systematic approach categorizes sources based on quantum machine learning algorithms, applications, challenges, and potential future developments, uncovering that quantum computing is increasingly being implemented in practical machine learning scenarios. The review highlights advancements in quantum-enhanced machine learning algorithms and their potential applications in sectors such as cybersecurity, emphasizing the need for industry-specific solutions while considering ethical and security concerns. By presenting an overview of the current state and projecting future directions, the paper sets a foundation for ongoing research and strategic advancement in quantum machine learning.
comment: Proceedings of the 23rd European Conference on Cyber Warfare and Security (ECCWS 2024)
♻ ☆ MANO: Exploiting Matrix Norm for Unsupervised Accuracy Estimation Under Distribution Shifts
Leveraging the models' outputs, specifically the logits, is a common approach to estimating the test accuracy of a pre-trained neural network on out-of-distribution (OOD) samples without requiring access to the corresponding ground truth labels. Despite their ease of implementation and computational efficiency, current logit-based methods are vulnerable to overconfidence issues, leading to prediction bias, especially under the natural shift. In this work, we first study the relationship between logits and generalization performance from the view of low-density separation assumption. Our findings motivate our proposed method MaNo which (1) applies a data-dependent normalization on the logits to reduce prediction bias, and (2) takes the $L_p$ norm of the matrix of normalized logits as the estimation score. Our theoretical analysis highlights the connection between the provided score and the model's uncertainty. We conduct an extensive empirical study on common unsupervised accuracy estimation benchmarks and demonstrate that MaNo achieves state-of-the-art performance across various architectures in the presence of synthetic, natural, or subpopulation shifts.
comment: The three first authors contributed equally
♻ ☆ ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming
When building Large Language Models (LLMs), it is paramount to bear safety in mind and protect them with guardrails. Indeed, LLMs should never generate content promoting or normalizing harmful, illegal, or unethical behavior that may contribute to harm to individuals or society. This principle applies to both normal and adversarial use. In response, we introduce ALERT, a large-scale benchmark to assess safety based on a novel fine-grained risk taxonomy. It is designed to evaluate the safety of LLMs through red teaming methodologies and consists of more than 45k instructions categorized using our novel taxonomy. By subjecting LLMs to adversarial testing scenarios, ALERT aims to identify vulnerabilities, inform improvements, and enhance the overall safety of the language models. Furthermore, the fine-grained taxonomy enables researchers to perform an in-depth evaluation that also helps one to assess the alignment with various policies. In our experiments, we extensively evaluate 10 popular open- and closed-source LLMs and demonstrate that many of them still struggle to attain reasonable levels of safety.
comment: 17 pages, preprint
♻ ☆ Prompting with Divide-and-Conquer Program Makes Large Language Models Discerning to Hallucination and Deception
Foundation models, such as Large language Models (LLMs), have attracted significant amount of interest due to their large number of applications. However, when handling tasks involving repetitive sub-tasks and/or deceptive contents, such as arithmetic calculation and article-level fake news detection, simple instructional prompts suffer from inaccurate responses. Existing works show that more complicated prompting strategies, such as Chain-of-Thoughts and Least-to-Most, can unlock LLM's powerful capacity in diverse areas. Recent researches reveal that simple divide-and-conquer prompting strategy, i.e. simply dividing the input sequence to multiple sub-inputs, can also substantially improve LLM's performance in some specific tasks such as misinformation detection. In this paper, we aim at examining the utility of divide-and-conquer prompting strategy and answer on which kind of tasks this strategy gets advantages. Specifically, we provide a theoretic analysis to divide-and-conquer prompting strategy and help us identify the specific tasks where DaC prompting can bring performance boost with theoretic guarantee. We then present two cases (large integer arithmetic and fact verification) where experimental results aligns with our theoretic analysis.
comment: Preprint
♻ ☆ Node-like as a Whole: Structure-aware Searching and Coarsening for Graph Classification
Graph Transformers (GTs) have made remarkable achievements in graph-level tasks. However, most existing works regard graph structures as a form of guidance or bias for enhancing node representations, which focuses on node-central perspectives and lacks explicit representations of edges and structures. One natural question is, can we treat graph structures node-like as a whole to learn high-level features? Through experimental analysis, we explore the feasibility of this assumption. Based on our findings, we propose a novel multi-view graph representation learning model via structure-aware searching and coarsening (GRLsc) on GT architecture for graph classification. Specifically, we build three unique views, original, coarsening, and conversion, to learn a thorough structural representation. We compress loops and cliques via hierarchical heuristic graph coarsening and restrict them with well-designed constraints, which builds the coarsening view to learn high-level interactions between structures. We also introduce line graphs for edge embeddings and switch to edge-central perspective to construct the conversion view. Experiments on eight real-world datasets demonstrate the improvements of GRLsc over 28 baselines from various architectures.
comment: 22 pages
♻ ☆ Towards Bayesian Data Selection ICML 2024
A wide range of machine learning algorithms iteratively add data to the training sample. Examples include semi-supervised learning, active learning, multi-armed bandits, and Bayesian optimization. We embed this kind of data addition into decision theory by framing data selection as a decision problem. This paves the way for finding Bayes-optimal selections of data. For the illustrative case of self-training in semi-supervised learning, we derive the respective Bayes criterion. We further show that deploying this criterion mitigates the issue of confirmation bias by empirically assessing our method for generalized linear models, semi-parametric generalized additive models, and Bayesian neural networks on simulated and real-world data.
comment: 5th Workshop on Data-Centric Machine Learning Research (DMLR) at ICML 2024
♻ ☆ On-Device Soft Sensors: Real-Time Fluid Flow Estimation from Level Sensor Data
Soft sensors are crucial in bridging autonomous systems' physical and digital realms, enhancing sensor fusion and perception. Instead of deploying soft sensors on the Cloud, this study shift towards employing on-device soft sensors, promising heightened efficiency and bolstering data security. Our approach substantially improves energy efficiency by deploying Artificial Intelligence (AI) directly on devices within a wireless sensor network. Furthermore, the synergistic integration of the Microcontroller Unit and Field-Programmable Gate Array (FPGA) leverages the rapid AI inference capabilities of the latter. Empirical evidence from our real-world use case demonstrates that FPGA-based soft sensors achieve inference times ranging remarkably from 1.04 to 12.04 microseconds. These compelling results highlight the considerable potential of our innovative approach for executing real-time inference tasks efficiently, thereby presenting a feasible alternative that effectively addresses the latency challenges intrinsic to Cloud-based deployments.
comment: 8 pages, 6 figures, 1 Table, Accepted by the 1st AUTONOMOUS UBIQUITOUS SYSTEMS (AUTOQUITOUS) WORKSHOP of EAI MobiQuitous 2023 - 20th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services
♻ ☆ SWAP-NAS: Sample-Wise Activation Patterns for Ultra-fast NAS ICLR2024
Training-free metrics (a.k.a. zero-cost proxies) are widely used to avoid resource-intensive neural network training, especially in Neural Architecture Search (NAS). Recent studies show that existing training-free metrics have several limitations, such as limited correlation and poor generalisation across different search spaces and tasks. Hence, we propose Sample-Wise Activation Patterns and its derivative, SWAP-Score, a novel high-performance training-free metric. It measures the expressivity of networks over a batch of input samples. The SWAP-Score is strongly correlated with ground-truth performance across various search spaces and tasks, outperforming 15 existing training-free metrics on NAS-Bench-101/201/301 and TransNAS-Bench-101. The SWAP-Score can be further enhanced by regularisation, which leads to even higher correlations in cell-based search space and enables model size control during the search. For example, Spearman's rank correlation coefficient between regularised SWAP-Score and CIFAR-100 validation accuracies on NAS-Bench-201 networks is 0.90, significantly higher than 0.80 from the second-best metric, NWOT. When integrated with an evolutionary algorithm for NAS, our SWAP-NAS achieves competitive performance on CIFAR-10 and ImageNet in approximately 6 minutes and 9 minutes of GPU time respectively.
comment: ICLR2024 Spotlight
♻ ☆ EEGEncoder: Advancing BCI with Transformer-Based Motor Imagery Classification
Brain-computer interfaces (BCIs) harness electroencephalographic signals for direct neural control of devices, offering a significant benefit for individuals with motor impairments. Traditional machine learning methods for EEG-based motor imagery (MI) classification encounter challenges such as manual feature extraction and susceptibility to noise.This paper introduces EEGEncoder, a deep learning framework that employs modified transformers and TCNs to surmount these limitations. We innovatively propose a fusion architecture, namely Dual-Stream Temporal-Spatial Block (DSTS), to capture temporal and spatial features, improving the accuracy of Motor Imagery classification task. Additionally, we use multiple parallel structures to enhance the performance of the model. When tested on the BCI Competition IV-2a dataset, our model results outperform current state-of-the-art techniques.
♻ ☆ Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach
Amidst the rapid evolution of LLMs, the significance of evaluation in comprehending and propelling these models forward is increasingly paramount. Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs. However, the extent and nature of these impacts continue to be subjects of debate because most assessments have been restricted to a limited number of models and data points. Clarifying the effects of these factors on performance scores can be more effectively achieved through a statistical lens. Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods. With the advent of a uniform evaluation framework, our research leverages an expansive dataset of evaluation results, introducing a comprehensive statistical methodology. This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique, offering a robust and transparent approach to deciphering LLM performance data. Contrary to prevailing findings, our results challenge assumptions about emergent abilities and the influence of given training types and architectures in LLMs. These findings furnish new perspectives on the characteristics, intrinsic nature, and developmental trajectories of LLMs. By providing straightforward and reliable methods to scrutinize and reassess LLM performance data, this study contributes a nuanced perspective on LLM efficiency and potentials.
♻ ☆ Tempora-Fusion: Time-Lock Puzzle with Efficient Verifiable Homomorphic Linear Combination
To securely transmit sensitive information into the future, Time-Lock Puzzles (TLPs) have been developed. Their applications include scheduled payments, timed commitments, e-voting, and sealed-bid auctions. Homomorphic TLP is a key variant of TLP that enables computation on puzzles from different clients. This allows a solver/server to tackle only a single puzzle encoding the computation's result. However, existing homomorphic TLPs lack support for verifying the correctness of the computation results. We address this limitation by introducing Tempora-Fusion, a TLP that allows a server to perform homomorphic linear combinations of puzzles from different clients while ensuring verification of computation correctness. This scheme avoids asymmetric-key cryptography for verification, thus paving the way for efficient implementations. We discuss our scheme's application in various domains, such as federated learning, scheduled payments in online banking, and e-voting.
♻ ☆ CaLM: Contrasting Large and Small Language Models to Verify Grounded Generation ACL 2024
Grounded generation aims to equip language models (LMs) with the ability to produce more credible and accountable responses by accurately citing verifiable sources. However, existing methods, by either feeding LMs with raw or preprocessed materials, remain prone to errors. To address this, we introduce CaLM, a novel verification framework. CaLM leverages the insight that a robust grounded response should be consistent with information derived solely from its cited sources. Our framework empowers smaller LMs, which rely less on parametric memory and excel at processing relevant information given a query, to validate the output of larger LMs. Larger LM responses that closely align with the smaller LMs' output, which relies exclusively on cited documents, are verified. Responses showing discrepancies are iteratively refined through a feedback loop. Experiments on three open-domain question-answering datasets demonstrate significant performance gains of 1.5% to 7% absolute average without any required model fine-tuning.
comment: ACL 2024 Camera Ready Version
♻ ☆ Bad Habits: Policy Confounding and Out-of-Trajectory Generalization in RL
Reinforcement learning agents tend to develop habits that are effective only under specific policies. Following an initial exploration phase where agents try out different actions, they eventually converge onto a particular policy. As this occurs, the distribution over state-action trajectories becomes narrower, leading agents to repeatedly experience the same transitions. This repetitive exposure fosters spurious correlations between certain observations and rewards. Agents may then pick up on these correlations and develop simplistic habits tailored to the specific set of trajectories dictated by their policy. The problem is that these habits may yield incorrect outcomes when agents are forced to deviate from their typical trajectories, prompted by changes in the environment. This paper presents a mathematical characterization of this phenomenon, termed policy confounding, and illustrates, through a series of examples, the circumstances under which it occurs.
VCR: Visual Caption Restoration
We introduce Visual Caption Restoration (VCR), a novel vision-language task that challenges models to accurately restore partially obscured texts using pixel-level hints within images. This task stems from the observation that text embedded in images is intrinsically different from common visual elements and natural language due to the need to align the modalities of vision, text, and text embedded in images. While numerous works have integrated text embedded in images into visual question-answering tasks, approaches to these tasks generally rely on optical character recognition or masked language modeling, thus reducing the task to mainly text-based processing. However, text-based processing becomes ineffective in VCR as accurate text restoration depends on the combined information from provided images, context, and subtle cues from the tiny exposed areas of masked texts. We develop a pipeline to generate synthetic images for the VCR task using image-caption pairs, with adjustable caption visibility to control the task difficulty. With this pipeline, we construct a dataset for VCR called VCR-Wiki using images with captions from Wikipedia, comprising 2.11M English and 346K Chinese entities in both easy and hard split variants. Our results reveal that current vision language models significantly lag behind human performance in the VCR task, and merely fine-tuning the models on our dataset does not lead to notable improvements. We release VCR-Wiki and the data construction code to facilitate future research.
comment: 17 pages, 2 figures
♻ ☆ Continuous-time Autoencoders for Regular and Irregular Time Series Imputation WSDM'24
Time series imputation is one of the most fundamental tasks for time series. Real-world time series datasets are frequently incomplete (or irregular with missing observations), in which case imputation is strongly required. Many different time series imputation methods have been proposed. Recent self-attention-based methods show the state-of-the-art imputation performance. However, it has been overlooked for a long time to design an imputation method based on continuous-time recurrent neural networks (RNNs), i.e., neural controlled differential equations (NCDEs). To this end, we redesign time series (variational) autoencoders based on NCDEs. Our method, called continuous-time autoencoder (CTA), encodes an input time series sample into a continuous hidden path (rather than a hidden vector) and decodes it to reconstruct and impute the input. In our experiments with 4 datasets and 19 baselines, our method shows the best imputation performance in almost all cases.
comment: Published as a WSDM'24 full paper (oral presentation)
♻ ☆ ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation with Consistency Distillation
Diffusion models are instrumental in text-to-audio (TTA) generation. Unfortunately, they suffer from slow inference due to an excessive number of queries to the underlying denoising network per generation. To address this bottleneck, we introduce ConsistencyTTA, a framework requiring only a single non-autoregressive network query, thereby accelerating TTA by hundreds of times. We achieve so by proposing "CFG-aware latent consistency model," which adapts consistency generation into a latent space and incorporates classifier-free guidance (CFG) into model training. Moreover, unlike diffusion models, ConsistencyTTA can be finetuned closed-loop with audio-space text-aware metrics, such as CLAP score, to further enhance the generations. Our objective and subjective evaluation on the AudioCaps dataset shows that compared to diffusion-based counterparts, ConsistencyTTA reduces inference computation by 400x while retaining generation quality and diversity.
♻ ☆ In-context Pretraining: Language Modeling Beyond Document Boundaries
Large language models (LMs) are currently trained to predict tokens given document prefixes, enabling them to directly perform long-form generation and prompting-style tasks which can be reduced to document completion. Existing pretraining pipelines train LMs by concatenating random sets of short documents to create input contexts but the prior documents provide no signal for predicting the next document. We instead present In-Context Pretraining, a new approach where language models are pretrained on a sequence of related documents, thereby explicitly encouraging them to read and reason across document boundaries. We can do In-Context Pretraining by simply changing the document ordering so that each context contains related documents, and directly applying existing pretraining pipelines. However, this document sorting problem is challenging. There are billions of documents and we would like the sort to maximize contextual similarity for every document without repeating any data. To do this, we introduce approximate algorithms for finding related documents with efficient nearest neighbor search and constructing coherent input contexts with a graph traversal algorithm. Our experiments show In-Context Pretraining offers a simple and scalable approach to significantly enhance LMs'performance: we see notable improvements in tasks that require more complex contextual reasoning, including in-context learning (+8%), reading comprehension (+15%), faithfulness to previous contexts (+16%), long-context reasoning (+5%), and retrieval augmentation (+9%).
♻ ☆ PromptKD: Distilling Student-Friendly Knowledge for Generative Language Models via Prompt Tuning
Recent advancements in large language models (LLMs) have raised concerns about inference costs, increasing the need for research into model compression. While knowledge distillation (KD) is a prominent method for this, research on KD for generative language models like LLMs is relatively sparse, and the approach of distilling student-friendly knowledge, which has shown promising performance in KD for classification models, remains unexplored in generative language models. To explore this approach, we propose PromptKD, a simple yet effective method that utilizes prompt tuning - for the first time in KD - to enable generative language models to transfer student-friendly knowledge. Unlike previous works in classification that require fine-tuning the entire teacher model for extracting student-friendly knowledge, PromptKD achieves similar effects by adding a small number of prompt tokens and tuning only the prompt with student guidance. Extensive experiments on instruction-following datasets show that PromptKD achieves state-of-the-art performance while adding only 0.0007% of the teacher's parameters as prompts. Further analysis suggests that distilling student-friendly knowledge alleviates exposure bias effectively throughout the entire training process, leading to performance enhancements.
comment: Code: https://github.com/gmkim-ai/PromptKD
♻ ☆ On Parameter Estimation in Deviated Gaussian Mixture of Experts AISTATS 2024
We consider the parameter estimation problem in the deviated Gaussian mixture of experts in which the data are generated from $(1 - \lambda^{\ast}) g_0(Y| X)+ \lambda^{\ast} \sum_{i = 1}^{k_{\ast}} p_{i}^{\ast} f(Y|(a_{i}^{\ast})^{\top}X+b_i^{\ast},\sigma_{i}^{\ast})$, where $X, Y$ are respectively a covariate vector and a response variable, $g_{0}(Y|X)$ is a known function, $\lambda^{\ast} \in [0, 1]$ is true but unknown mixing proportion, and $(p_{i}^{\ast}, a_{i}^{\ast}, b_{i}^{\ast}, \sigma_{i}^{\ast})$ for $1 \leq i \leq k^{\ast}$ are unknown parameters of the Gaussian mixture of experts. This problem arises from the goodness-of-fit test when we would like to test whether the data are generated from $g_{0}(Y|X)$ (null hypothesis) or they are generated from the whole mixture (alternative hypothesis). Based on the algebraic structure of the expert functions and the distinguishability between $g_0$ and the mixture part, we construct novel Voronoi-based loss functions to capture the convergence rates of maximum likelihood estimation (MLE) for our models. We further demonstrate that our proposed loss functions characterize the local convergence rates of parameter estimation more accurately than the generalized Wasserstein, a loss function being commonly used for estimating parameters in the Gaussian mixture of experts.
comment: Accepted to AISTATS 2024, 32 pages, 2 figures, 1 table
♻ ☆ Testing the Limits of Jailbreaking Defenses with the Purple Problem
The rise of "jailbreak" attacks on language models has led to a flurry of defenses aimed at preventing undesirable responses. We critically examine the two stages of the defense pipeline: (i) defining what constitutes unsafe outputs, and (ii) enforcing the definition via methods such as input processing or fine-tuning. To test the efficacy of existing enforcement mechanisms, we consider a simple and well-specified definition of unsafe outputs--outputs that contain the word "purple". Surprisingly, existing fine-tuning and input defenses fail on this simple problem, casting doubt on whether enforcement algorithms can be robust for more complicated definitions. We find that real safety benchmarks similarly test enforcement for a fixed definition. We hope that future research can lead to effective/fast enforcement as well as high quality definitions used for enforcement and evaluation.
♻ ☆ Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy
We propose a fresh take on understanding the mechanisms of neural networks by analyzing the rich directional structure of optimization trajectories, represented by their pointwise parameters. Towards this end, we introduce some natural notions of the complexity of optimization trajectories, both qualitative and quantitative, which hallmark the directional nature of optimization in neural networks: when is there redundancy, and when exploration. We use them to reveal the inherent nuance and interplay involved between various optimization choices, such as momentum and weight decay. Further, the trajectory perspective helps us see the effect of scale on regularizing the directional nature of trajectories, and as a by-product, we also observe an intriguing heterogeneity of Q,K,V dynamics in the middle attention layers in LLMs and which is homogenized by scale. Importantly, we put the significant directional redundancy observed to the test by demonstrating that training only scalar batchnorm parameters some while into training matches the performance of training the entire network, which thus exhibits the potential of hybrid optimization schemes that are geared towards efficiency.
comment: Preprint, 57 pages
♻ ☆ A General Theory for Softmax Gating Multinomial Logistic Mixture of Experts ICML 2024
Mixture-of-experts (MoE) model incorporates the power of multiple submodels via gating functions to achieve greater performance in numerous regression and classification applications. From a theoretical perspective, while there have been previous attempts to comprehend the behavior of that model under the regression settings through the convergence analysis of maximum likelihood estimation in the Gaussian MoE model, such analysis under the setting of a classification problem has remained missing in the literature. We close this gap by establishing the convergence rates of density estimation and parameter estimation in the softmax gating multinomial logistic MoE model. Notably, when part of the expert parameters vanish, these rates are shown to be slower than polynomial rates owing to an inherent interaction between the softmax gating and expert functions via partial differential equations. To address this issue, we propose using a novel class of modified softmax gating functions which transform the input before delivering them to the gating functions. As a result, the previous interaction disappears and the parameter estimation rates are significantly improved.
comment: Accepted to ICML 2024, 32 pages, 3 figures, 3 tables
♻ ☆ Achieving Dimension-Free Communication in Federated Learning via Zeroth-Order Optimization
Federated Learning (FL) offers a promising framework for collaborative and privacy-preserving machine learning across distributed data sources. However, the substantial communication costs associated with FL pose a significant challenge to its efficiency. Specifically, in each communication round, the communication costs scale linearly with the model's dimension, which presents a formidable obstacle, especially in large model scenarios. Despite various communication efficient strategies, the intrinsic dimension-dependent communication cost remains a major bottleneck for current FL implementations. In this paper, we introduce a novel dimension-free communication strategy for FL, leveraging zero-order optimization techniques. We propose a new algorithm, FedDisco, which facilitates the transmission of only a constant number of scalar values between clients and the server in each communication round, thereby reducing the communication cost from $\mathscr{O}(d)$ to $\mathscr{O}(1)$, where $d$ is the dimension of the model parameters. Theoretically, in non-convex functions, we prove that our algorithm achieves state-of-the-art rates, which show a linear speedup of the number of clients and local steps under standard assumptions and dimension-free rate for low effective rank scenarios. Empirical evaluations through classic deep learning training and large language model fine-tuning substantiate significant reductions in communication overhead compared to traditional FL approaches. Our code is available at https://github.com/ZidongLiu/FedDisco.
♻ ☆ LLM-Assisted Content Conditional Debiasing for Fair Text Embedding
Mitigating biases in machine learning models has become an increasing concern in Natural Language Processing (NLP), particularly in developing fair text embeddings, which are crucial yet challenging for real-world applications like search engines. In response, this paper proposes a novel method for learning fair text embeddings. First, we define a novel content-conditional equal distance (CCED) fairness for text embeddings, ensuring content-conditional independence between sensitive attributes and text embeddings. Building on CCED, we introduce a content-conditional debiasing (CCD) loss to ensure that embeddings of texts with different sensitive attributes but identical content maintain the same distance from the embedding of their corresponding neutral text. Additionally, we tackle the issue of insufficient training data by using Large Language Models (LLMs) with instructions to fairly augment texts into different sensitive groups. Our extensive evaluations show that our approach effectively enhances fairness while maintaining the utility of embeddings. Furthermore, our augmented dataset, combined with the CCED metric, serves as an new benchmark for evaluating fairness.
♻ ☆ Is Temperature Sample Efficient for Softmax Gaussian Mixture of Experts? ICML 2024
Dense-to-sparse gating mixture of experts (MoE) has recently become an effective alternative to a well-known sparse MoE. Rather than fixing the number of activated experts as in the latter model, which could limit the investigation of potential experts, the former model utilizes the temperature to control the softmax weight distribution and the sparsity of the MoE during training in order to stabilize the expert specialization. Nevertheless, while there are previous attempts to theoretically comprehend the sparse MoE, a comprehensive analysis of the dense-to-sparse gating MoE has remained elusive. Therefore, we aim to explore the impacts of the dense-to-sparse gate on the maximum likelihood estimation under the Gaussian MoE in this paper. We demonstrate that due to interactions between the temperature and other model parameters via some partial differential equations, the convergence rates of parameter estimations are slower than any polynomial rates, and could be as slow as $\mathcal{O}(1/\log(n))$, where $n$ denotes the sample size. To address this issue, we propose using a novel activation dense-to-sparse gate, which routes the output of a linear layer to an activation function before delivering them to the softmax function. By imposing linearly independence conditions on the activation function and its derivatives, we show that the parameter estimation rates are significantly improved to polynomial rates. Finally, we conduct a simulation study to empirically validate our theoretical results.
comment: Accepted to ICML 2024, 47 pages, 2 figures, 2 tables
♻ ☆ Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling
Multi-fidelity surrogate modeling aims to learn an accurate surrogate at the highest fidelity level by combining data from multiple sources. Traditional methods relying on Gaussian processes can hardly scale to high-dimensional data. Deep learning approaches utilize neural network based encoders and decoders to improve scalability. These approaches share encoded representations across fidelities without including corresponding decoder parameters. This hinders inference performance, especially in out-of-distribution scenarios when the highest fidelity data has limited domain coverage. To address these limitations, we propose Multi-fidelity Residual Neural Processes (MFRNP), a novel multi-fidelity surrogate modeling framework. MFRNP explicitly models the residual between the aggregated output from lower fidelities and ground truth at the highest fidelity. The aggregation introduces decoders into the information sharing step and optimizes lower fidelity decoders to accurately capture both in-fidelity and cross-fidelity information. We show that MFRNP significantly outperforms state-of-the-art in learning partial differential equations and a real-world climate modeling task. Our code is published at: https://github.com/Rose-STL-Lab/MFRNP
comment: A novel probabilistic inference approach for scalable multi-fidelity surrogate modeling
♻ ☆ On Least Square Estimation in Softmax Gating Mixture of Experts ICML 2024
Mixture of experts (MoE) model is a statistical machine learning design that aggregates multiple expert networks using a softmax gating function in order to form a more intricate and expressive model. Despite being commonly used in several applications owing to their scalability, the mathematical and statistical properties of MoE models are complex and difficult to analyze. As a result, previous theoretical works have primarily focused on probabilistic MoE models by imposing the impractical assumption that the data are generated from a Gaussian MoE model. In this work, we investigate the performance of the least squares estimators (LSE) under a deterministic MoE model where the data are sampled according to a regression model, a setting that has remained largely unexplored. We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions. We demonstrate that the rates for estimating strongly identifiable experts, namely the widely used feed-forward networks with activation functions $\mathrm{sigmoid}(\cdot)$ and $\tanh(\cdot)$, are substantially faster than those of polynomial experts, which we show to exhibit a surprising slow estimation rate. Our findings have important practical implications for expert selection.
comment: Accepted to ICML 2024, 29 pages, 2 figures, 2 tables
♻ ☆ Federated Learning for Estimating Heterogeneous Treatment Effects
Machine learning methods for estimating heterogeneous treatment effects (HTE) facilitate large-scale personalized decision-making across various domains such as healthcare, policy making, education, and more. Current machine learning approaches for HTE require access to substantial amounts of data per treatment, and the high costs associated with interventions makes centrally collecting so much data for each intervention a formidable challenge. To overcome this obstacle, in this work, we propose a novel framework for collaborative learning of HTE estimators across institutions via Federated Learning. We show that even under a diversity of interventions and subject populations across clients, one can jointly learn a common feature representation, while concurrently and privately learning the specific predictive functions for outcomes under distinct interventions across institutions. Our framework and the associated algorithm are based on this insight, and leverage tabular transformers to map multiple input data to feature representations which are then used for outcome prediction via multi-task learning. We also propose a novel way of federated training of personalised transformers that can work with heterogeneous input feature spaces. Experimental results on real-world clinical trial data demonstrate the effectiveness of our method.
♻ ☆ FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning ICML 2024
Recent advances in reinforcement learning (RL) heavily rely on a variety of well-designed benchmarks, which provide environmental platforms and consistent criteria to evaluate existing and novel algorithms. Specifically, in multi-agent RL (MARL), a plethora of benchmarks based on cooperative games have spurred the development of algorithms that improve the scalability of cooperative multi-agent systems. However, for the competitive setting, a lightweight and open-sourced benchmark with challenging gaming dynamics and visual inputs has not yet been established. In this work, we present FightLadder, a real-time fighting game platform, to empower competitive MARL research. Along with the platform, we provide implementations of state-of-the-art MARL algorithms for competitive games, as well as a set of evaluation metrics to characterize the performance and exploitability of agents. We demonstrate the feasibility of this platform by training a general agent that consistently defeats 12 built-in characters in single-player mode, and expose the difficulty of training a non-exploitable agent without human knowledge and demonstrations in two-player mode. FightLadder provides meticulously designed environments to address critical challenges in competitive MARL research, aiming to catalyze a new era of discovery and advancement in the field. Videos and code at https://sites.google.com/view/fightladder/home.
comment: ICML 2024
♻ ☆ ZeroG: Investigating Cross-dataset Zero-shot Transferability in Graphs KDD 2024
With the development of foundation models such as large language models, zero-shot transfer learning has become increasingly significant. This is highlighted by the generative capabilities of NLP models like GPT-4, and the retrieval-based approaches of CV models like CLIP, both of which effectively bridge the gap between seen and unseen data. In the realm of graph learning, the continuous emergence of new graphs and the challenges of human labeling also amplify the necessity for zero-shot transfer learning, driving the exploration of approaches that can generalize across diverse graph data without necessitating dataset-specific and label-specific fine-tuning. In this study, we extend such paradigms to zero-shot transferability in graphs by introducing ZeroG, a new framework tailored to enable cross-dataset generalization. Addressing the inherent challenges such as feature misalignment, mismatched label spaces, and negative transfer, we leverage a language model to encode both node attributes and class semantics, ensuring consistent feature dimensions across datasets. We also propose a prompt-based subgraph sampling module that enriches the semantic information and structure information of extracted subgraphs using prompting nodes and neighborhood aggregation, respectively. We further adopt a lightweight fine-tuning strategy that reduces the risk of overfitting and maintains the zero-shot learning efficacy of the language model. The results underscore the effectiveness of our model in achieving significant cross-dataset zero-shot transferability, opening pathways for the development of graph foundation models. Codes and data are available at https://github.com/NineAbyss/ZeroG.
comment: Accepted by SIGKDD 2024, research track
♻ ☆ Accurately Classifying Out-Of-Distribution Data in Facial Recognition
Standard classification theory assumes that the distribution of images in the test and training sets are identical. Unfortunately, real-life scenarios typically feature unseen data ("out-of-distribution data") which is different from data in the training distribution("in-distribution"). This issue is most prevalent in social justice problems where data from under-represented groups may appear in the test data without representing an equal proportion of the training data. This may result in a model returning confidently wrong decisions and predictions. We are interested in the following question: Can the performance of a neural network improve on facial images of out-of-distribution data when it is trained simultaneously on multiple datasets of in-distribution data? We approach this problem by incorporating the Outlier Exposure model and investigate how the model's performance changes when other datasets of facial images were implemented. We observe that the accuracy and other metrics of the model can be increased by applying Outlier Exposure, incorporating a trainable weight parameter to increase the machine's emphasis on outlier images, and by re-weighting the importance of different class labels. We also experimented with whether sorting the images and determining outliers via image features would have more of an effect on the metrics than sorting by average pixel value. Our goal was to make models not only more accurate but also more fair by scanning a more expanded range of images. We also tested the datasets in reverse order to see whether a more fair dataset with balanced features has an effect on the model's accuracy.
comment: 18 pages, 6 tables, 6 figures
Multimedia 4
☆ UBiSS: A Unified Framework for Bimodal Semantic Summarization of Videos ICMR'24
With the surge in the amount of video data, video summarization techniques, including visual-modal(VM) and textual-modal(TM) summarization, are attracting more and more attention. However, unimodal summarization inevitably loses the rich semantics of the video. In this paper, we focus on a more comprehensive video summarization task named Bimodal Semantic Summarization of Videos (BiSSV). Specifically, we first construct a large-scale dataset, BIDS, in (video, VM-Summary, TM-Summary) triplet format. Unlike traditional processing methods, our construction procedure contains a VM-Summary extraction algorithm aiming to preserve the most salient content within long videos. Based on BIDS, we propose a Unified framework UBiSS for the BiSSV task, which models the saliency information in the video and generates a TM-summary and VM-summary simultaneously. We further optimize our model with a list-wise ranking-based objective to improve its capacity to capture highlights. Lastly, we propose a metric, $NDCG_{MS}$, to provide a joint evaluation of the bimodal summary. Experiments show that our unified framework achieves better performance than multi-stage summarization pipelines. Code and data are available at https://github.com/MeiYutingg/UBiSS.
comment: Accepted by ACM International Conference on Multimedia Retrieval (ICMR'24)
☆ Exploring compressibility of transformer based text-to-music (TTM) models INTERSPEECH 2024
State-of-the art Text-To-Music (TTM) generative AI models are large and require desktop or server class compute, making them infeasible for deployment on mobile phones. This paper presents an analysis of trade-offs between model compression and generation performance of TTM models. We study compression through knowledge distillation and specific modifications that enable applicability over the various components of the TTM model (encoder, generative model and the decoder). Leveraging these methods we create TinyTTM (89.2M params) that achieves a FAD of 3.66 and KL of 1.32 on MusicBench dataset, better than MusicGen-Small (557.6M params) but not lower than MusicGen-small fine-tuned on MusicBench.
comment: Proceedings of INTERSPEECH 2024
♻ ☆ ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation with Consistency Distillation
Diffusion models are instrumental in text-to-audio (TTA) generation. Unfortunately, they suffer from slow inference due to an excessive number of queries to the underlying denoising network per generation. To address this bottleneck, we introduce ConsistencyTTA, a framework requiring only a single non-autoregressive network query, thereby accelerating TTA by hundreds of times. We achieve so by proposing "CFG-aware latent consistency model," which adapts consistency generation into a latent space and incorporates classifier-free guidance (CFG) into model training. Moreover, unlike diffusion models, ConsistencyTTA can be finetuned closed-loop with audio-space text-aware metrics, such as CLAP score, to further enhance the generations. Our objective and subjective evaluation on the AudioCaps dataset shows that compared to diffusion-based counterparts, ConsistencyTTA reduces inference computation by 400x while retaining generation quality and diversity.
♻ ☆ MagicLens: Self-Supervised Image Retrieval with Open-Ended Instructions ICML 2024
Image retrieval, i.e., finding desired images given a reference image, inherently encompasses rich, multi-faceted search intents that are difficult to capture solely using image-based measures. Recent works leverage text instructions to allow users to more freely express their search intents. However, they primarily focus on image pairs that are visually similar and/or can be characterized by a small set of pre-defined relations. The core thesis of this paper is that text instructions can enable retrieving images with richer relations beyond visual similarity. To show this, we introduce MagicLens, a series of self-supervised image retrieval models that support open-ended instructions. MagicLens is built on a key novel insight: image pairs that naturally occur on the same web pages contain a wide range of implicit relations (e.g., inside view of), and we can bring those implicit relations explicit by synthesizing instructions via foundation models. Trained on 36.7M (query image, instruction, target image) triplets with rich semantic relations mined from the web, MagicLens achieves results comparable with or better than prior best on eight benchmarks of various image retrieval tasks, while maintaining high parameter efficiency with a significantly smaller model size. Additional human analyses on a 1.4M-image unseen corpus further demonstrate the diversity of search intents supported by MagicLens. Code and models are publicly available at https://open-vision-language.github.io/MagicLens/.
comment: ICML 2024 (Oral); Project Website: https://open-vision-language.github.io/MagicLens/
Performance 3
☆ Enabling more efficient and cost-effective AI/ML systems with Collective Mind, virtualized MLOps, MLPerf, Collective Knowledge Playground and reproducible optimization tournaments
In this white paper, I present my community effort to automatically co-design cheaper, faster and more energy-efficient software and hardware for AI, ML and other popular workloads with the help of the Collective Mind framework (CM), virtualized MLOps, MLPerf benchmarks and reproducible optimization tournaments. I developed CM to modularize, automate and virtualize the tedious process of building, running, profiling and optimizing complex applications across rapidly evolving open-source and proprietary AI/ML models, datasets, software and hardware. I achieved that with the help of portable, reusable and technology-agnostic automation recipes (ResearchOps) for MLOps and DevOps (CM4MLOps) discovered in close collaboration with academia and industry when reproducing more than 150 research papers and organizing the 1st mass-scale community benchmarking of ML and AI systems using CM and MLPerf. I donated CM and CM4MLOps to MLCommons to help connect academia and industry to learn how to build and run AI and other emerging workloads in the most efficient and cost-effective way using a common and technology-agnostic automation, virtualization and reproducibility framework while unifying knowledge exchange, protecting everyone's intellectual property, enabling portable skills, and accelerating transfer of the state-of-the-art research to production. My long-term vision is to make AI accessible to everyone by making it a commodity automatically produced from the most suitable open-source and proprietary components from different vendors based on user demand, requirements and constraints such as cost, latency, throughput, accuracy, energy, size and other important characteristics.
♻ ☆ gpu_tracker: Python package for tracking and profiling GPU utilization in both desktop and high-performance computing environments
Determining the maximum usage of random-access memory (RAM) on both the motherboard and on a graphical processing unit (GPU) over the lifetime of a computing task can be extremely useful for troubleshooting points of failure as well as optimizing memory utilization, especially within a high-performance computing (HPC) setting. While there are tools for tracking compute time and RAM, including by job management tools themselves, tracking of GPU usage, to our knowledge, does not currently have sufficient solutions. We present gpu_tracker, a Python package that tracks the computational resource usage of a task while running in the background, including the real compute time that the task takes to complete, its maximum RAM usage, and the maximum GPU RAM usage, specifically for Nvidia GPUs. We demonstrate that gpu_tracker can seamlessly track computational resource usage with minimal overhead, both within desktop and HPC execution environments.
♻ ☆ Proactive Service Assurance in 5G and B5G Networks: A Closed-Loop Algorithm for End-to-End Network Slicing
The customization of services in Fifth-generation (5G) and Beyond 5G (B5G) networks relies heavily on network slicing, which creates multiple virtual networks on a shared physical infrastructure, tailored to meet specific requirements of distinct applications, using Software Defined Networking (SDN) and Network Function Virtualization (NFV). It is imperative to ensure that network services meet the performance and reliability requirements of various applications and users, thus, service assurance is one of the critical components in network slicing. One of the key functionalities of network slicing is the ability to scale Virtualized Network Functions (VNFs) in response to changing resource demand and to meet Customer Service Level agreements (SLAs). In this paper, we introduce a proactive closed-loop algorithm for end-to-end network orchestration, designed to provide service assurance in 5G and B5G networks. We focus on dynamically scaling resources to meet key performance indicators (KPIs) specific to each network slice and operate in parallel across multiple slices, making it scalable and capable of managing completely automatically real-time service assurance. Through our experiments, we demonstrate that the proposed algorithm effectively fulfills service assurance requirements for different network slice types, thereby minimizing network resource utilization and reducing the over-provisioning of spare resources.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
Database 3
☆ Not All RDF is Created Equal: Investigating RDF Load Times on Resource-Constrained Devices
As the role of knowledge-based systems in IoT keeps growing, ensuring resource efficiency of RDF stores becomes critical. However, up until now benchmarks of RDF stores were most often conducted with only one dataset, and the differences between the datasets were not explored in detail. In this paper we aim to close this research gap by experimentally evaluating load times of eight diverse RDF datasets from the RiverBench benchmark suite. In the experiments we use five different RDF store implementations and several resource-constrained hardware platforms. To analyze the results, we introduce the notion of relative loading speed (RLS), allowing us to observe that the loading speed can differ between datasets by as much as a factor of 9.01. This serves as clear evidence that "not all RDF is created equal" and stresses the importance of using multiple benchmark datasets in evaluations. We outline the possible reasons for this drastic difference, which should be further investigated in future work. To this end, we published the data, code, and the results of our experiments.
☆ Efficient Antagonistic k-plex Enumeration in Signed Graphs
A signed graph is a graph where each edge receives a sign, positive or negative. The signed graph model has been used in many real applications, such as protein complex discovery and social network analysis. Finding cohesive subgraphs in signed graphs is a fundamental problem. A k-plex is a common model for cohesive subgraphs in which every vertex is adjacent to all but at most k vertices within the subgraph. In this paper, we propose the model of size-constrained antagonistic k-plex in a signed graph. The proposed model guarantees that the resulting subgraph is a k-plex and can be divided into two sub-k-plexes, both of which have positive inner edges and negative outer edges. This paper aims to identify all maximal antagonistic k-plexes in a signed graph. Through rigorous analysis, we show that the problem is NP-Hardness. We propose a novel framework for maximal antagonistic k-plexes utilizing set enumeration. Efficiency is improved through pivot pruning and early termination based on the color bound. Preprocessing techniques based on degree and dichromatic graphs effectively narrow the search space before enumeration. Extensive experiments on real-world datasets demonstrate our algorithm's efficiency, effectiveness, and scalability.
☆ Avoiding Materialisation for Guarded Aggregate Queries
Database systems are often confronted with queries that join many tables but ultimately only output comparatively small aggregate information. Despite all advances in query optimisation, the explosion of intermediate results as opposed to a much smaller final result challenges modern relational database management systems (DBMSs). In this work, we propose the integration of optimisation techniques into relational DBMSs that aim at minimising, and often entirely eliminating, the need for materialising join results for aggregate queries, provided that they satisfy certain conditions. Apart from novel logical optimisations aimed at practicability, we also provide new, natural, physical operators for combining joins and counting with the aim of reducing the size of intermediate results. We experimentally validate the efficacy of our optimisations through their implementation in Spark SQL, but we note that they are naturally applicable in any RDBMS. Our experiments show consistent significant speed-ups -- often by factor 2 and higher -- for analytical and graph queries. At the same time, we observe no performance degradation, even on queries which, from a theoretical point of view, are least amenable to the proposed optimisations.